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ELECTRICITY PRICE MODELLING AND THE ROLE OF NEW 

DEVELOPMENTS IN ELECTRICITY MARKETS 

 

Summary 

 

In recent years, European countries have moved from regulated regional monopolies to 

liberalised electricity markets. The power market has changed from a vertically integrated 

structure into a competitive market. The day-ahead electricity market is a wholesale market 

where standard hourly contracts are sold for day-ahead physical delivery. The market clearing 

price is determined at the intersection of the market’s supply and demand curve. The main 

electricity characteristics significantly influencing electricity price determination in a 

competitive market are: non-storability, the required balance of production and consumption 

in every moment, it is an essential and homogenous commodity, has low demand elasticity, 

and there’s a difference in physical and contract flows. Due to impossibility of economical 

storage of electricity and required real time balance of production and consumption, unlike 

other commodities markets, negative electricity prices can arise. Therefore, the dissertation 

thoroughly researches the performance of contemporary electricity price forecasting 

algorithms (EPF) and the role of new developments in electricity markets. Under the umbrella 

term “new developments in electricity markets,” we individually research market impact of 

supported renewable generation and electricity market coupling. The dissertation relies on a 

publicly available data source ENTSO-E transparency platform, and thoroughly avoids data 

blending, to foster easy and fast research reproducibility.   

 

In the first chapter, we provide a thorough systematic overview of electricity price forecasting 

accuracy for the major contemporary forecasting algorithms. Forecasting performance is 

assessed based on the evidence from the Greek & Hungarian Power Market simulation. We 

provide valuable and reliable information to the interested audience by comparing forecasting 

accuracy with the statistical Diebold-Mariano test applied on the simulation samples with more 

than 1000 days. Only the support vector machine algorithm statistically outperformed the 

econometric autoregressive benchmark model. Furthermore, we answer important research 

question on how the training sample size impacts forecasting accuracy. Our findings suggest 

that the training data sample size is positively correlated with the EPF accuracy however, 

models have a turning point after which the relationship is converted. An artificial neural 

network and long short-term memory model achieve better forecasting accuracy if trained on 

considerably larger training samples compared to the other major contemporary forecasting 

algorithms. Also, training on hourly clustered data samples can improve forecasting accuracy. 

However, the answer is ambiguous as it depends on the selected forecasting algorithm and 

electricity market. The introduced demand-supply ratio explanatory variable has a minor 

positive effect on the overall forecasting accuracy, but no significant effect in the case extreme 

price situations.  

 



 

 

In the second chapter, we research the impact of market coupling on electricity markets. To do 

so, we propose a simulation framework that replicates day-ahead power exchange operations. 

Modelling coupled market areas consistently in one integrated framework is a specific 

challenge and is frequently overlooked in the electricity market research. The market coupling 

process is simulated at the junction of three regional power markets, namely the Central 

Western Europe, the Northern Italian, and the South Eastern Europe markets. The simulation 

results are compared against the market realisations at the time non-coupled electricity 

market’s junction. The simulation results empirically confirm that in coupled electricity 

markets inefficient cross-border capacity usage is eliminated. Additionally, with the simulation 

results we can confirm improved electricity price convergence and price volatility in coupled 

electricity markets, which is in line with findings in the literature and market coupling 

objective. By the estimated Vector Autoregression model, we have for the first time analysed 

electricity price shock transmission in the European electricity markets. The model results 

suggest improved electricity price shock transmission in coupled electricity markets. 

 

In the third chapter, we address the topic researchers pay the most attention in the context of 

supported renewable generation, the so-called ‘merit order effect.’ We empirically confirm the 

merit order effect in less mature and the yet unresearched Greek, Hungarian, and Romanian 

electricity markets. By researching the merit order effect, we provide a valuable addition to the 

existing literature focused on key EU energy areas in terms of installed renewable generation 

capacity and market maturity. To conduct the analysis, we used data from the ENTSO-E 

transparency platform blended with the Romanian transmission system operator data on 

realised production. Data blending was unavoidable due to the extensively missing data points 

and non-reported data types for the actual generation in the ENTSO-E TP data base. To 

simulate the adjustment of the realised day-ahead electricity prices in the non-renewable 

generation scenario, we developed a simulation framework intuitively close to DIME (Dispatch 

and Investment Model for Electricity Markets in Europe) model. Electricity generation 

dispatch can be efficiently simulated by the unit commitment models that minimises total 

dispatch costs of the power plant fleet. Due to the limited public data availability to develop a 

unit commitment model, we rely on a family of data mining algorithms to estimate the profile 

of the supply curves ranked by their short-run marginal costs in an increasing order, together 

with the dispatched energy – a so-called merit order. The applied approach efficiently handled 

the non-linear behaviour of the electricity price signals and bridged the gap in limited data 

availability to simulate electricity prices in non-renewable generation scenario. 

 

Keywords: electricity price forecasting, machine learning, EU market coupling, renewable 

electricity sources, merit order effect, ENTSOE-E transparency platform 



 

MODELIRANJE CEN ELEKTRIČNE ENERGIJE IN VPLIV NOVIH 

DEJAVNIKOV NA TRGE ELEKTRIČNE ENERGIJE 

 

Povzetek 

 

V zadnjih letih so evropske države prešle iz reguliranih regionalnih monopolnih tržnih struktur 

k liberaliziranemu trgu z električno energijo (EE). Trg z EE za dan vnaprej je veleprodajni trg, 

kjer se trguje s standardiziranimi urnimi pogodbami za fizično dobavo za dan vnaprej. Borzna 

cena EE je določena s presečiščem tržne premice ponudbe in povpraševanja. Njene glavne 

značilnosti, ki pomembno vplivajo na oblikovanje cen na konkurenčnem trgu, so: nezmožnost 

shranjevanja, zahtevano ravnovesje proizvodnje in potrošnje v realnem času, homogena 

dobrina, nizka elastičnost povpraševanja, razlikovanje fizičnih in pogodbenih tokov. Kot 

posledica nezmožnosti ekonomičnega shranjevanja, zahtevanega ravnovesja proizvodnje in 

porabe v realnem času se lahko oblikujejo negativne cene EE, ki niso značilne za trge ostalih 

surovin. Disertacija temeljito razišče uporabnost sodobnih napovedovalnih algoritmov za 

napovedovanje cen električne energije in vpliv novih dejavnikov na omenjene trge. Pod 

krovnim izrazom »vpliv novih dejavnikov na trge električne energije« individualno raziščemo 

tržni vpliv subvencionirane proizvodnje iz obnovljivih virov energije in proces spajanja trgov 

z EE. Omenjena trenda poglavitno vplivata na delovanje trga in sta predmet številnih raziskav. 

Doktorsko delo temelji na javno dostopnem podatkovnem viru ENTSO-E in se ob tem izogiba 

mešanju virov. Tako zagotovimo enostavno in hitro ponovljivost izvedenih podatkovnih 

simulacij. 

 

V prvem poglavju podamo temeljit in sistematičen pregled natančnosti napovedovanja cen EE 

z najpomembnejšimi sodobnimi algoritmi. Z omenjenimi algoritmi smo napovedovali cene EE 

za dan v naprej na madžarskem in grškem tgu. S primerjavo napovedovalne natančnosti s 

statističnim Diebold-Marianovim testom na simulacijskih vzorcih z več kot 1000 

napovedovalnimi dnevi zagotovimo zainteresiranemu bralcu dragocene in zanesljive 

informacije o lastnostih posameznih napovedovalnih algoritmov. Med izbranimi 

napovedovalnimi algoritmi je v primerjavi z ekonometričnim modelom časovnih vrst 

natančnejša samo metoda podpornih vektorjev statistično. Z raziskavo dodatno odgovorimo na 

pomembno raziskovalno vprašanje, kako velikost učnega vzorca vpliva na natančnost 

napovedi. Naše ugotovitve kažejo, da je velikost učnega vzorca pozitivno povezana z 

natančnostjo napovedovanja cen električne energije, vendar imajo modeli prelomno točko, po 

kateri se razmerje obrne. Nevronske mreže in model z dolgim kratkoročnim spominom (angl. 

long short-term memory, LSTM) v primeru učenja na bistveno večjih učnih vzorcih dosegata 

večjo natančnost napovedovanja kot drugi sodobni napovedovalni algoritmi. Poleg tega lahko 

učenje na urnih podatkih v gručah (angl. hourly clusterd data samples) izboljša natančnost 

napovedovanja, vendar odgovor ni enoznačen, saj je odvisen od izbranega napovedovalnega 

algoritma in trga z EE. Na splošno ima dodatna pojasnjevalna spremenljivka razmerja med 



 

 

povpraševanjem in ponudbo (angl. demand-supply ration, DSR) manj izrazit pozitiven učinek 

na napovedovalno natančnost, v ekstremnih cenovnih situacijah pa je ta zanemarljiv. 

 

V drugem poglavju raziščemo vpliv spajanja trgov z EE na njihovo delovanje. V ta namen 

razvijemo simulacijsko okolje, ki preslika delovanje borz z EE za dan v naprej na spojenih 

trgih. Modeliranje le teh oz. razvoj primernega simulacijskega okolja je poseben izziv, ki je v 

tržnih raziskavah pogosto spregledan. Proces spajanja je simuliran na stičišču treh regionalnih 

trgov, in sicer srednjezahodne Evrope, severne Italije in jugovzhodne Evrope. Rezultate 

simulacije primerjamo s tržnimi realizacijami na takrat še nespojenih trgih z EE in s tem 

empirično potrdimo, da je na spojenih trgih odpravljena neučinkovita raba čezmejnih prenosnih 

zmogljivosti. Z rezultati dodatno potrdimo izboljšano konvergenco in manjšo volatilnost cen 

na spojenih trgih, kar je v skladu z ugotovitvami v literaturi in ciljem spajanja trgov. Z 

ocenjenim modelom vektorske avtoregresije v nadaljevanju prvič analiziramo prenos cenovnih 

šokov EE na evropskih trgih. Izsledki modela kažejo na izboljšan prenos cenovnih šokov na 

spojenih trgih. 

 

V tretjem poglavju obravnavamo proizvodnjo EE iz obnovljivih virov energije (OVE), ki ji 

raziskovalci posvečajo največjo pozornost in t. i. učinku izrivanja konvencionalnih virov 

električne energije (angl. merit order effect, MOE). Prisotnost omenjenega učinka empirično 

potrdimo na neraziskanem in manj zrelem grškem, madžarskem in romunskem trgu. Z učinkom 

zagotovimo doprinos k obstoječi literaturi, ki se osredotoča na ključna energetska področja 

Evropske unije (EU) glede na količino proizvodne zmogljivosti iz OVE in zrelost trga z EE. 

Za izvedbo analize smo uporabili podatke iz baze ENTSO-E, ki so združeni s podatki o 

realizirani proizvodnji romunskega operaterja prenosnega sistema. Zaradi manjkajočih 

opazovanj in podatkovnih tipov v bazi ENTSO-E TP je bilo mešanje podatkovnih virov 

neizogibno. Z uporabo modela, ki je intuitivno blizu modelu DIME (Dispatch and Investment 

Model for Electricity Markets in Europe), smo izvedli simulacijo prilagajanja realiziranih cen 

EE za dan vnaprej brez proizvodnje iz OVE. Proizvodnjo EE je mogoče učinkovito simulirati 

z optimizacijskimi modeli proizvodnje (angl. unit commitment models), ki minimizirajo skupne 

stroške proizvodnje elektrarn. Za razvoj takšnega modela smo zaradi omejene dostopnosti 

javnih podatkov s pomočjo algoritmov podatkovnega rudarjenja ocenili ponudbene krivulje 

konvencionalne proizvodnje. Te so razvrščene v naraščajočem vrstnem redu glede na 

kratkoročne mejne stroške proizvodnje, skupaj s količino proizvedene energije (angl. merit 

order). Omenjen pristop učinkovito obravnava nelinearnosti cenovnih signalov EE in premosti 

vrzel manjkajočih podatkov za implementacijo optimizacijskega modela proizvodnje. 

 

Ključne besede: napovedovanje cen električne energije, strojno učenje, evropsko spajanje 

trgov električne energije, obnovljivi viri električne energije, učinek izrivanja, ENTSOE-E 

podatkovna baza 
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INTRODUCTION 

 

Description of the broader scientific area of the doctoral dissertation 
 

Data availability and accessibility to qualified parties has historically limited applied power 

market research (Hirth et al., 2018). In Europe, this situation has changed with the 

commencement of publicly available power system data through the ENTSOE-TP data base 

(ENTSO-E TP, 2020). With the power market liberalisation, increased renewable production, 

and improved public data availability, electricity price forecasting (EPF) and market 

simulations have become an interdisciplinary research area attracting different professionals 

(economists, engineers, mathematicians, and statisticians). 

 

In regulated electricity markets dominated by publicly owned monopolies, price variations 

were minimal and under the control of government agencies. In such an environment, the 

attention was focused on demand forecasting and the most sophisticated statistical techniques 

have been proposed to achieve satisfactory short-run predictions (Fezzi, 2007). In contrast, in 

liberalised electricity markets price volatility has increased far beyond those of any other 

commodity or financial asset. This is especially true for spot prices (day-ahead market) where 

volatility can be as high as 50% on a daily scale, i.e., over 10 times higher than for other energy 

products (Weron & Misiorek, 2005). Due to considerable market risk on the competitive 

wholesale power market, electricity price forecasting (EPF) became an unavoidable task for 

both producers and consumers (Garcia-Martos et al., 2012). According to Weron’s EPF review 

article in 2014, main forecasting methodologies include time series econometrics, machine 

learning and data mining, and agent-based modelling (Weron, 2014). Lago, De Ridder, & De 

Schutter (2018) presented the largest benchmark of EPF algorithms to date – although in a 

simulation environment in which market participants typically do not operate and without 

addressing open research question on optimal learning sample size.  

 

One of the goals of the European Union (EU), related to energy markets, is the establishment 

of the Energy union, and consequently electricity price convergence. Neighbouring electricity 

markets are typically interconnected by the electricity transmission network – enabling cross-

border energy exchange. Before the introduction of the market coupling mechanism, cross-

border capacity and electricity energy were traded at two different auctions, thus the price 

information may not have been available instantaneously and frequently resulted in the 

inefficient use of cross-border capacities (CBC) (Kiesel & Kusterman, 2016). A market 

coupling mechanism ensures the optimal allocation of the CBC and supports electricity price 

convergence. Kiesel & Kusterman (2016) explained that in coupled markets it becomes crucial 

to model electricity prices in all areas consistently in one integrated framework. Thus, there is 

a consensus among researchers that coupled electricity markets cannot be efficiently analysed 

in isolation without accounting for the market coupling specialities. Additionally, Lago et al. 

(2018) argued that the effects of market integration can dramatically modify the dynamics of 

electricity prices, but there is a lack of general modelling framework that could model this 
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effect and analyse its impact on the electricity market. These raise the argument that the 

development of an integrated modelling framework should be put at the heart of applied 

electricity market research. 

 

The introduction of guaranteed feed-in-tariffs to support renewable electricity generation 

changed market dynamics as the required power to maintain the power system balance equal 

to the system load reduced for renewable generation. This situation required new terminology 

and Saint-Drenan et al. (2009) introduced a so-called “residual load.” The theoretical concept 

that in the short-run increases in subsidised renewable energy generation reduce electricity 

prices was first introduced by Jensen and Skytte (2002). This theoretical concept, recognised 

as the merit order effect, is confirmed and thoroughly researched in the developed European 

electricity markets. Research by Würzburg, Labandeira, & Linares (2013) stands out as it 

econometrically confirms the concept in Germany and Austria, which can be considered as the 

most developed European market areas in terms of market maturity and share of renewable 

capacity in their generation mix. Delayed Power exchanges establishment in the region of 

Southeast Europe (SEE) and considerably higher volatility compared to other mature European 

markets, characterise SEE electricity markets as less developed (Božić et al., 2020). More 

scientific research is needed that would further study electricity market concepts in developing 

European markets. 

 

 

Research questions addressed in this dissertation 
 

The doctoral dissertation aims to address the following research questions, which can be 

aligned along three dimensions: 

 

• Dimension 1: Electricity price forecasting (EPF) methods 

- Research question 1.1: Do modern statistical approaches (data mining and machine 

learning) perform better than the linear econometric time series model in electricity 

price forecasting? 

- Research question 1.2: What is the effect of training data set size on the forecasting 

performance? 

- Research question 1.3: Does model training on hourly clustered data samples enhance 

electricity price forecasting performance? 

- Research question 1.4: Does the demand-supply ratio (DSR) explanatory variable 

enhance electricity price forecasting performance in extreme price situations? 

 

• Dimension 2: Market coupling simulation 

- Research question 2.1: How should market simulations be designed in coupled 

electricity markets? 

- Research question 2.2: Does electricity market coupling ensure efficient cross-border 

capacity allocation and electricity price convergence? 
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- Research question 2.3: What is the impact of market coupling on electricity price 

volatility? 

- Research question 2.4: Does market coupling improve electricity price shock 

transmission? 

 

• Dimension 3: Renewable energy sources (RES) and merit order effect 

- Research question 3.1: Does crowding out of conventional electricity production 

sources by renewable energy sources lead to lower electricity prices on the Southeast 

Europe (SEE) electricity markets? 

- Research question 3.2: Can modern statistical approaches bridge the gap in data 

availability and efficiently simulate electricity prices in the no-RES generation 

scenario? 

- Research question 3.3: Does renewable energy source (RES) generation enhance 

electricity price volatility in the Southeast Europe (SEE) electricity markets? 

 

Each dimension forms one of the three research topics the dissertation addresses. The research 

topics are detailed below. 

 

 

Performance of alternative electricity price forecasting methods: Findings from the 

Greek & Hungarian power exchanges 

 

The dissertation analyses the performance of modern statistical approaches for day-ahead 

electricity price forecasting. Forecasting performance of the alternative or modern statistical 

approaches from the data mining, machine learning and deep learning family is compared to 

the econometric autoregressive model with exogeneous explanatory variables. Due to the 

complexity of electricity price data generation process, the relationships between the dependent 

and explanatory variables are complex (non-linear). The ability of alternative models to adapt 

to a non-linear and fast-changing price signal behaviour may not necessarily result in better 

point forecasts (Weron, 2014). To statistically verify this open question, this dissertation 

evaluates the forecasting performance of selected contemporary models trained on Greek and 

Hungarian day-ahead electricity markets. In addition, with the study design we provide 

valuable insights on the impact of a different training sample size, as well as the impact of 

training on an hourly clustered sample on the forecasting performance.  

 

 

An Integrated Model for Electricity Market Coupling Simulations: Evidence from the 

European Power Market Crossroad 

 

Despite the fact that previously independent market areas have become connected through 

market-coupling auctions, many scholars usually analyse electricity markets independently. 

Kiesel and Kusterman (2016) explained that in coupled electricity markets it becomes crucial 
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to model electricity prices in all areas consistently in one integrated framework. Coupled day-

ahead markets increase the overall efficiency of trading by promoting effective competition, 

increasing liquidity, and enabling a more efficient utilisation of the cross-border capacities and 

generation resources across Europe (NEMO Committee, 2020b). This doctoral dissertation 

aims to add to the electricity price modelling literature an integrated simulation solution for 

electricity price determination and efficient cross-border capacity allocation. The proposed 

integrated simulation framework replicates day-ahead power exchange operations in coupled 

electricity markets. The dissertation applies the proposed solution to eliminate observed 

inefficient cross-border capacity allocations at a time of the simulation of non-coupled 

interconnectors, and adjusts market clearing prices in Austria, Italy, Slovenia, and Croatia, 

accordingly. Based on the simulation results, this dissertation empirically confirms the effects 

of market coupling on efficient cross-border capacity allocation, price convergence, and 

improved price shock transmission.  

 

 

The crowding out of conventional electricity generation by renewable energy sources: 

Evidence from Greek, Hungarian, and Romanian electricity data 

 

Due to the national promotion strategies on renewable energies in the electricity sector, and 

triggered by the Directive (2001/77/EC), all EU member states have introduced policies to 

support the market introduction of renewable energy sources (RES). Guaranteed feed-in-tariffs 

support for renewable electricity generation has led to the growth in the installed capacity of 

supported technologies. The theoretical consideration introduced by Jensen and Skytte (2002) 

predicts that in the short-run an increase in renewable energy sources generation reduces 

electricity prices. The price reducing impact is by scholars recognised as the merit-order effect. 

It is explained as the right shift of the system supply curve when supported RES generation 

with low variable costs is integrated into the supply curve. With the econometric model 

specified by Würzburg, Labandeira, & Linares (2013), the dissertation confirms the presence 

of the merit order effect in the less mature Central and South East European electricity markets. 

Further, the thesis simulates the adjustment of the realised day-ahead electricity prices to the 

no-RES generation scenario. With the simulation results, the thesis empirically analyses the 

effect of RES generation on the electricity price levels, price volatility, and electricity net 

export. 

 

An assessment of the dissertation’s contribution to the field of knowledge 
 

By studying the presented dissertation topics and answering research questions, the dissertation 

provides several contributions to the electricity price modelling field of knowledge. To answer 

the research questions aligned along the first dimension, the dissertation provides independent 

electricity price forecasting simulations on yet unresearched Greek and Hungarian day-ahead 

electricity markets. Forecasting performance is evaluated on more than one thousand 
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simulation days, which ensures reliable accuracy comparison of the alternative models and 

statistical Diebold-Mariano test execution. The dissertation offers one of the first systematic 

quantitative overviews of the forecasting performance of the respective contemporary 

forecasting algorithms. The electricity price forecasting field has experienced a massive 

increase in the number of published articles, as well as the number of citations. This suggests 

that the research field would benefit from the systematic overview article that statistically 

evaluates forecasting performance of the contemporary algorithms with respect to the 

applicative limitations in the day-ahead market operations. Further, the dissertation thoroughly 

studies the impact of training sample size on forecasting performance of algorithms and 

provides insights to this intriguing research question that remained open in a similar study by 

Lago, De Ridder, & De Schutter (2018). The dissertation offers relevant information to novice 

scholars, and as well to researchers with numerous years of experience and published articles 

in the field. 

 

Motivated by the currently ongoing final steps in the EU electricity markets integration, the 

dissertation proposes a solution for applied simulations in coupled day-ahead electricity 

markets. Several scholars have agreed that electricity prices in coupled electricity markets must 

be modelled in all areas consistently in one integrated framework. However, proposed solutions 

typically rely on statistical methods that cannot provide insight into the market coupling 

process itself i.e., efficient CBC allocation. The EUPHEMIA algorithm, a single price-coupling 

solution calculates electricity prices across Europe respecting the cross-border capacity 

constraints on a day-ahead basis. The dissertation simulation framework relies on the 

EUPHEMIA algorithm developed by the European Power Exchanges and proposes an 

alternative orderbook generation process based on publicly available data. The orderbook 

generation is based on the econometrically estimated aggregate supply price elasticity functions 

for each market individually. The power market data accessibility to qualified parties limited 

the development of forecasting algorithms and applied power system research (Díaz et al., 

2019). The proposed order book generation solution bridges the need for the publicly 

unavailable power exchange orderbook data and stimulates scholars to further research coupled 

electricity markets. Finally, the dissertation empirically provides answers to the research 

questions on improved electricity price convergence, reduced price volatility, and improved 

price shock transmission in coupled electricity markets. 

 

The crowding out of conventional electricity generation by renewable energy sources (RES) 

recognised by the scholars as the merit order effect (MOE) is thoroughly researched in key EU 

energy areas (Denmark, Germany, Spain, etc.). These are areas with higher shares of renewable 

capacity in their generation mix and matured electricity markets. The dissertation empirically 

confirms and quantifies MOE in Greek, Hungarian, and Romanian day-ahead electricity 

markets. With the MOE analysis and simulation on yet unresearched SEE power markets, the 

dissertation supplements existing literature focused on key EU energy areas in terms of 

installed renewable generation capacity and market maturity. Data availability and accessibility 

historically limited applied power market research (Hirth et al., 2018). Due to the limited 

https://synonyms.reverso.net/synonym/en/intriguing
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publicly availability data, traditional simulation models used in the power system or agent-

based simulations cannot be applied to simulate electricity prices in a no-RES generation 

scenario. Therefore, the dissertation simulates the adjustment of the realised electricity prices 

to the no-RES generation scenario with a framework based on modern statistical methods. The 

proposed framework successfully bridges the gap in the limited public availability of data to 

solve simulation models intuitively close to power system or agent-based simulations.  

 

Data and methodology 
 

This dissertation is built upon a publicly available data source ENTSO-E TP, ensuring fast and 

easy study reproducibility. According to Hirth, Mühlenpfordt, & Bulkeley (2018), data 

availability and accessibility historically limited applied power market research. Power market 

research is data intensive, as it typically requires hourly data resolution on electricity 

consumption, generation, transmission, etc. The situation in Europe changed in 2015 with the 

commencement of the Transparency Platform (TP) operated by the European Network of 

Transmission System Operators for Electricity (ENTSO-E). According to ENTSO-E (2020), 

there are three channels of data collection, a graphical user interface (GUI), a restful application 

programming interface(API), and a file transfer protocol. From ENTSO-E TP, we utilised 

reported hourly data on forecasted and actual consumption, aggregated production for each 

type of power plants, reported power plant outages, forecasted solar and wind production, 

scheduled commercial exchanges (net-export), and day-ahead electricity prices. In the data 

collection phase, we noticed missing data points and non-reported data types in the ENTSO-E 

TP data base. Romania is not in the first chapter scope, evaluating the forecasting performance 

of alternative algorithms, as we could not find a replacement for the non-reported Romanian 

power plant outages data type. The Romanian data set utilised in the third chapter researching 

merit order effect is a blend of ENTSO-E TP data and Romanian national transmission system 

operator’s data source (Transelectrica, 2020) for the reported aggregated production values. 

Except for the aforementioned exception, the dissertation data sets are obtained through API 

implementation in R software environment from ENTSO-E TP. Because ENTSO-E TP 

includes all European countries, it enables the study of differences among the individual 

electricity price indexes and other power market characteristics. 

 

The dissertation employs several quantitative methodological approaches executed in R 

software environment. The first chapter evaluates a forecasting performance of alternative 

electricity price forecasting methods from the family of machine learning and artificial 

intelligence algorithms. The econometric autoregressive model with exogeneous explanatory 

variables is a benchmark model, as the other alternative approaches are used to overcome the 

linearity bias in the ordinary least squares estimator. In the second chapter, we propose an 

integrated model for electricity market coupling simulations. Power exchange orderbooks are 

generated based on the estimated supply price elasticity functions. The relationship between 

the supply prices and equilibrium quantity may introduce a bias as a consequence of a possible 
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reverse causality, therefore, we estimate supply price elasticity functions by the method of 

instrumental variables. Electricity prices and cross border capacity allocations in coupled 

market areas are determined by the mathematical optimisation model. Electricity price shock 

transmission in coupled market areas is analysed by the estimated vector autoregressive 

models, as they allow to characterise the joint distribution of power prices in the studied 

coupled electricity markets. In the third chapter, we quantify and confirm the crowding out of 

conventional electricity generation by renewable energy sources by the estimated multivariate 

regression model. As well, we simulate the adjustment of the realised day-ahead electricity 

prices to the no-RES generation scenario. In the simulation, we account for the changed 

international net export dynamics and conventional generation dispatch adjustment to the 

omitted RES generation. The impact of the omitted RES generation on electricity net export is 

estimated by the multivariate regression model, whereas the dynamic adaptation of generation 

mix is approximated by the machine learning algorithms. 

 

 

Structure of the doctoral dissertation 
 

The dissertation is organised in three chapters, each investigating a different, but interrelated 

topic connected to electricity market price modelling: 

 

• Chapter 1: Performance of alternative electricity price forecasting methods: findings 

from the Greek & Hungarian power exchanges; 

• Chapter 2: An integrated model for electricity market coupling simulations: A 

Slovenian day-ahead market case study; 

• Chapter 3: Crowding out of conventional electricity generation by renewable energy 

sources: evidence from Greek, Hungarian, and Romanian electricity markets. 

 

The chapters can be read individually, which may lead to certain repetition when describing 

the related literature, the data sources used, and the methods. They are followed by a 

conclusion, which summarises the findings and assesses the scientific contribution of the 

dissertation to the literature. The dissertation is supplemented by several appendices, which 

provide modelling results in more detail, and concluded with an extended abstract in the 

Slovenian language. 
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1 PERFORMANCE OF ALTERNATIVE ELECTRICITY PRICE 

FORECASTING METHODS: FINDINGS FROM THE GREEK & 

HUNGARIAN POWER EXCHANGES 

 

1.1 Introduction 
 

The liberalisation of the power market has led to a change from a centralised structure where 

the only variable of interest in terms of prediction was demand, to a competitive environment 

where the prediction of price is an unavoidable task for both producers and consumers (Garcia-

Martos et al., 2012). Risk related to the daily market operations is derived from high price 

volatility. This is especially valid for spot prices, where volatility can be as high as 50% on a 

daily scale, i.e., over 10 times higher than for other energy products (natural gas and crude oil) 

(Weron & Misiorek, 2005). According to study examining the economic impact of price 

forecast inaccuracies on forecast users in a day-ahead market operations, a 1% mean absolute 

percentage error (MAPE) accuracy metrics improvement resulted in a 0.1-0.35% cost reduction 

(Zareipour et al., 2010). 

 

According to Misiorek & Weron (2014) existing EPF methods are: multi-agent models, 

fundamental models, reduced-form models, statistical model and computational intelligence 

models. We can differentiate between three forecasting time horizons: short- , medium- and 

long-term EPF (Cerjan et al., 2013). In the day-ahead markets (short-term) most important EPF 

methods are statistical models and computational intelligence (CI) techniques. Statistical 

models are frequently criticized for linearity bias. Linearity bias implies the inability to model 

non-linear electricity price behaviour (Weron, 2014) and rapid changes in the price signal 

(Chan et al., 2012), ultimately resulting in poorer forecasting performance. Today there is an 

important subfield of deep learning in the artificial neural networks models (Lago, De Ridder, 

& De Schutter, 2018).  

 

In the reviewed EPF literature considering CI models, training and testing data sets used in the 

point forecast simulations are typically fixed over the considered time series. Such experiment 

setting indicates that once the EPF models are calibrated, market participants would rely on the 

non-recalibrated model version for the indefinite period, i.e., during the whole out-of-sample 

testing period. This rather arguable experiment setting in case of the applied EPF practice in 

the day-ahead market operations, is in our study bridged by the simulation of a typical daily 

EPF process. Analysis of the training data set size effect on the forecasting accuracy remains 

open in the review study of neural network based approaches and traditional algorithms in 

Lago, De Ridder, & De Schutter (2018). With the study design we can provide insights to the 

yet unaddressed research question. To improve forecasting accuracy some researches include 

dummy variables associated with the individual hours of the day into the EPF models (Díaz et 

al., 2019; Panapakidis & Dagoumas, 2016). To fully extract individual hour predictive 

information, we have implemented an EPF model for each single hour of the day. Linearity 
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bias reduction i.e. superior forecasting accuracy of the alternative models compared to the 

statistical benchmark model is usually confirmed by lower forecasting error and the statistically 

significant Diebold-Mariano test (DM) (Grossi & Nan, 2019; Lago, De Ridder, & De Schutter, 

2018; Lago, De Ridder, Vrancx et al. 2018; Nowotarski & Weron, 2018; Weron, 2014). 

However, a typical model back-test period varies markedly e.g. from one week per season to 

over a year period. Similar EPF model review study by Lago, De Ridder, & De Schutter (2018) 

used a year of data for the out-of-sample forecasting accuracy analysis. We use considerably 

longer time series which make accuracy comparison of alternative models and statistical DM 

test more reliable. In the studied research papers data set is typically a blend of various data 

sources. Blended data sets are limiting fast and easy research reproducibility. Our study is 

based on a single publicly available data source. There is a substantial amount of EPF papers 

focusing on Western, Northern and Southern European countries. To the best of our knowledge 

there is no similar EPF study, researching countries of the Central and Eastern Europe (CEE) 

and Southeast Europe. We aspire to bridge this gap by providing EPF evidence from Greek 

and Hungarian power markets. 

 

To simulate sound application of the most important EPF methods in the day-ahead markets 

we have executed computationally intensive dynamic forecasting by the rolling-window 

approach. Furthermore, simulation is exclusively based on hourly data set available on the 

ENTSOE-TP before the power exchange order book closure. The optimal training data set size 

is determined by incrementing the number of included days in the training data set by the 

increment of 28 days (from 28 to 336 days) and further analysis of the forecasting accuracy 

under different training data sample sizes. Full individual hour predictive information 

extraction is done with the calibration of 24 smaller models on hourly clustered samples. In our 

analysis, we used a data set based on a time series of 1,368 days (almost a 4-year period). 

Maximum training sample size of 332 days allows analysis of the out of sample model 

behaviour on over a more than 1,000-day period. This makes accuracy comparison of 

alternative models and statistical DM test more reliable. The analysis is based upon a single 

publicly available data source ENTSOE-TP, ensuring an easy study reproducibility.  

 

Although number of authors reported superior forecasting accuracy of the computational 

intelligence EPF models, they have overlooked the importance of the applicative nature of the 

experiment in the day-ahead electricity markets. Our research will further investigate the 

superiority of the most important alternative models, however based on a considerably longer 

time series and by a rolling window analysis simulating sound application of the EPF tools in 

the day-ahead markets. Furthermore, with the computationally intensive study design we can 

answer intriguing research questions associated with the EPF simulation settings: does training 

sample size in matter, does model training on hourly clustered data samples enhance EPF 

accuracy and can the demand-supply ratio (DSR) explanatory variable enhance EPF accuracy 

in extreme price situations? 

 

https://synonyms.reverso.net/synonym/en/intriguing


10 

 

The chapter is structured as follows. In Section 1.2 is a literature review of the most important 

research papers with a specific focus on the data sample size used in the out-of-sample 

forecasting. Section 1.3 outlines electricity price formation process with a focus on Greek and 

Hungarian electricity market. Study design and a concise explanation of the selected models 

are in Section 1.4. In Section 1.5 represent ENTSOE TP, data collection process and used data 

set. In Section 1.6 are positioned simulation results with their interpretation and discussion. In 

Section 1.7 is located research conclusion with outlined research findings. 

 

1.2 Electricity price forecasting methods 
 

The power system data accessibility was historically limited to the qualified parties with direct 

participation in the electricity markets. This situation has limited the development of EPF and 

applied power system research (Díaz et al., 2019).With the power market liberalisation and 

increased renewable production, EPF has become an interdisciplinary research area attracting 

many researches. In the EPF extensively used statistical time series model are of ARX type 

models, where AR stands for the autoregressive variable (historical price) and X for 

exogeneous explanatory variables (e.g. load, wind production etc.). Adding a moving average 

in the model, results in ARMAX model and integration of the former, results in ARIMAX 

model. Implementation of the artificial neural network (ANN) based models and other CI 

approaches is complex, as the definition of the free parameters (in case of ANN models 

additional network architecture definition) is mainly dependent on experience (Yang et al., 

2017). Number of authors have reported their superior performance compared to the statistical 

EPF models. An EPF review article by Weron (2014) continues to serve as a good reference 

point to many researches interested in the topic. In our research autoregressive time series 

model with the exogeneous variables (ARX) serves as a benchmark model. Proposed 

alternative models to bridge the linearity bias in the benchmark model are: K-Nearest 

Neighbours (KNN), Regression Tree (M5P), Random Forest Regression (RFR), Support 

Vector Machine (SVM), Artifical Neural Net (ANN) and Long Short-Term Memory (LSTM). 

Regression tree approaches and KNN algorithm used in this chapter are not part of the revision 

in Weron (2014). As the regression tree based model won the Global Energy Forecasting 

Competition (GEFCOM) in price and load forecasting section, we have considered this 

methods in our study (Gaillard et al., 2016). Application of KNN in GEFCOM solar power 

forecasting competition is used by Zhang & Wang (2015) for the identification of similar days 

with regards to the weather conditions. 

 

In the initial phase of EPF commonly used models are statistical time series models. 

Presumably due to the before mentioned data accessibility issue there are many publications 

researching univariate time series approaches. In one of the earliest publications ARMA model 

is applied for the Germany day-ahead price forecasting (Crespo Cuaresma et al., 2004). Models 

are calibrated on approximately a year and a half of data, and the performance is evaluated 

based on the month and half data. Better forecasting performance is reported for models 

calibrated on the hourly clustered data samples. Comparison of EPF accuracy of a univariate 
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ARMA model with ARMAX model base on Californian data is done by Weron & Misiorek 

(2005). Exogeneous variable added to base ARMA model is forecasted load value. Models are 

calibrated on approximately one-year period whereas testing is based on 8 months out-of-

sample test period. ARMAX model performed on average better. Statistically based univariate 

EPF of Nord Pool market by rolling approach is conducted in Raviv, Bouwman, & van Dijk 

(2015). Authors used in the study 18 years of data, with a single rolling window setting of 365 

days. Models compared forecasting performance of multivariate models with additional 

variables associated with hourly, daily and weekly dynamics compared to the base univariate 

statistical models. Multivariate models had higher accuracy. EPF with rolling window analysis 

with advanced statistical methods based on the Italian day ahead market data is done by Grossi 

& Nan (2019). Authors compared forecasting accuracy of univariate Self- Exciting Threshold 

Auto Regressive model (SETAR) with the SETARX model, where X stands for the renewable 

system generation. Authors generated 365 day-ahead forecasts with models estimated on a 2-

year long rolling window. Multivariate model SETARX model outperformed univariate 

SETAR model. 

 

Comparison of the statistical ARIMA, SVM and ANN model based on Californian data  is 

done by Che & Wang (2010). Models were calibrated on 28 days of data and tested on two out-

of-sample forecasted weeks. The only exogenous variable used in the analysis is wind power 

generation. ARIMA model was outperformed by both alternative methods, with SVM model 

having the highest accuracy. The empirical comparison of the deep learning neural network 

approaches and traditional algorithms based on the Belgium data is analysed by Lago, De 

Ridder, & De Schutter (2018). Models were trained on five-year period and back-tested on a 

one year out-of-sample period. Explanatory variables used in the analysis are load forecast and 

the reported generation availability in the system. Neural network models were the models with 

highest reported accuracy. Based on univariate time series ANN with wavelet transformation 

and ARIMA model with wavelet transformation are tested based on  the Californian and 

Spanish data in Catalão, Pousinho, & Mendes (2010). Models were back-tested on 4 

representative weeks of yearly seasons. Calibration for each week was done on 42 days period. 

ANN models outperformed statistical ARIMA model. In paper by Panapakidis & Dagoumas 

(2016) Italian Southern region day ahead price is forecasted based on the artificial neural 

network models with different topologies in combination with additional clustering algorithm.  

Models are trained on approximately 3 years of data and back tested on 4 months period. 

Additional included explanatory variables are weekday dummies, load, renewable production 

and natural gas price. ANN models with rich explanatory variables data set and additional 

clustering algorithm outperformed univariate ANN models. ANN method with wrapper 

function fort the feature selection is tested and compared to a Pattern Sequence-based 

Forecasting method (PSF) on Australian, New-Yorker and Spanish market by Neupane, Perera, 

Aung, & Woon (2012). Explanatory variables (features) in the models are past electricity data, 

weather data and calendar data. Models were trained on 3 years period and back tested on 1-

year period. ANN method had higher accuracy compared to the PSF method. Price forecasting 

and price spike probability forecasting for Finish Nord Pool day-ahead market is done by 
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Voronin & Partanen (2013). Exogenous explanatory variables in the models are load and 

reported total generation. ARIMA time series model is compared to the ANN model. Models 

are trained on 2-year period and back tested on a year of out-of-sample data. In both cases ANN 

model had higher reported forecasting accuracy. Gradient boosted regression trees tested on 

Spanish market outperformed linear regression model in paper by Díaz et al. (2019). Gradient 

boosted regression tree is an ensemble machine learning technique closely tied to random forest 

algorithm (RFR) used in our study. Researchers trained models on 30 months period and back 

tested proposed methods on 6 months of the out-of-sample test data. Study is based upon a rich 

set of explanatory variables. 

 

Rolling window analysis simulating typical day-ahead application of EPF tools is newer 

applied in studies using CI approaches. This might be associated with the time-consuming 

computation of such an analysis. Training and testing sample sizes vary from study to study 

markedly. With the research on optimal training size our chapter provides indicative optimum 

values for frequently used EPF algorithms. We use considerably longer out-of-sample back test 

period compared to the reviewed articles. This makes our accuracy comparison of alternative 

models and statistical DM test more reliable. Data set used in the studied researches is typically 

a blend of fundamental data provided by the national transmission system operator (TSO) and 

power exchange closing prices from different sources. Non-of the papers analysing European 

countries based their study upon ENTSOE-TP data source. There can be found only few studies 

that explore EPF performance in more than one country. 

 

1.3 Greek and Hungarian day-ahead markets 
 

The day-ahead market is a wholesale market where the standard hourly contracts are traded for 

the day-ahead physical delivery (24 hourly contracts). The competitive price is determined by 

the intersection of a market supply and demand curve as illustrated in Figure 1.1. The profile 

of the supply curve is defined by the ranking of the production units by their short-run marginal 

costs in increasing order, together with the dispatched energy, in merit order (Sensfuß et al., 

2008). Electricity is an essential commodity, and as such in the short-term exhibits inelastic 

demand, therefore is typically represented by a flat vertical line (Cerjan et al., 2013). 

Renewable production is supported by the feed-in tariffs. As a natural consequence, the 

purchased load in the electricity markets is reduced accordingly for the subsidised renewable 

production (Keles et al., 2013). Renewable generation availability has a negative impact on 

electricity prices, and this fact is recognised as a merit order effect (Martin de Lagarde & Lantz, 

2018). 

 

Recent reforms in the Greek power market in 2018 resulted in the establishment of Hellenic 

Energy Exchange (HEE), which undertook all the responsibilities that previously belonged to 

the LAGIE market operator. The Greek day-ahead market refers to wholesale transactions 

during each D-1 calendar day, where electricity supply contracts are auctioned for each market 

time unit (1 hr.) of physical delivery on day D. The delivery day (D) consists of 24 purchased 
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time units, starting at 01:00 Eastern Europe Time (EET) on calendar day D, and ending at 01:00 

EET on the next calendar day D+1. The orderbook opens at 10:30 (D-1) and remains open for 

150 min., closing at 13:00 (D-1) (Ioannidis et al., 2019).  

 

Figure 1.1: Merit order effect 

 
Source: Keles, D., Genoese, M., Möst, D., Ortlieb, S., & Fichtner, W., A combined modelling approach for 

wind power feed-in and electricity spot prices, 2013, p. 214. 

 

The ‘residual load’ or the reduced load that has to be bought in the market is defined as: 

 

𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍 𝒍𝒐𝒂𝒅 = 𝑳𝒐𝒂𝒅 − 𝑾𝒊𝒏𝒅 − 𝑺𝒐𝒍𝒂𝒓 (1.1) 

 

Hungarian power exchange (HUPX) was established in 2010.  It operates organized Hungarian 

spot power market where standard hourly and block day-ahead electricity products can be 

traded.  HUPX has a leading position in Central and Eastern Europe (HUPX, 2020). According 

to the market rules, orderbook closes at 11:00 (D-1) (HUPX, 2019). 

 

Table 1.1 summarises the Greek power generation mix from 1.1.2015 to 30.9.2018. On 

average, the total generation is just above the 40 TWh per annum.1 Lignite-fired power plants 

historically represent the biggest share of production, however, in 2017 and 2018 this share 

was balanced with the gas production. In 2015, wind and solar power production reached 

production of 7.1 TWh. Since 2015, renewable generation has an upward production trend and 

reached a total production of 8 TWh in the 3rd quarter of 2018. 

 

 

 

 

 

 
1 Please note that ENTSO-E TP reports for Greece-only generation periods for hydro-pumped storage power 

plants, causing a bias due to the non-reported consumption periods. 
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Table 1.1: Greek generation mix production in TWh 

Year Lignite Gas Oil 

Pumped 

Storage 

Water 

Reservoir Solar Wind Total 

2015 18.9 8.4 0.0 0.9 4.5 3.6 3.5 39.8 

2016 15.1 13.7 0.0 0.6 4.2 3.6 3.7 41.0 

2017 16.8 16.6 0.0 0.4 3.0 3.6 4.2 44.7 

20183rd 14.4 14.4 0.0 0.6 4.3 3.3 4.6 41.7 

Source: ENTSO-E TP (2019). 

 

As detailed in Table 1.2, there is no solar generation and only moderate wind generation in the 

overall Hungarian generation mix. Nuclear power plants accounts for a major share in the 

Hungarian generation mix. As in Greece, lignite-fired power production decline is 

compensated with the gas production increase.  

 

Table 1.2: Hungarian generation mix production in TWh 

Year Biomass Lignite  Gas Nuclear Other 

Run of 

river 

Water 

reservoir Wind Total 

2015 0.8 6.0 4.3 14.9 0.9 0.1 0.1 0.1 27.1 

2016 0.8 5.5 5.4 15.1 0.8 0.1 0.1 0.1 28.0 

2017 0.9 4.8 6.9 15.2 0.8 0.1 0.1 0.1 28.9 

20183rd 0.6 3.5 4.2 11.1 0.6 0.1 0.1 0.1 20.3 

Source: ENTSO-E TP (2019). 

 

According to Table 1.3, Greece can be characterised as a natural electricity importer with the 

average yearly total net imports above 6 TWh. The country imports electricity on all 

interconnections with the neighbouring countries. The sole exceptions were the Turkish border 

in 2016 and on the Italian border in 2018. 

 

Table 1.3: Greek net import per border in TWh 
Year GR-AL GR-BG GR-IT GR-MK GR-TR Total 

2015 0.8 2.4   1.1 1.9   0.3 6.4 

2016 1.3 3.8   1.7 2.4 –0.6 8.6 

2017 0.3 2.9   1.3 1.2   0.5 6.2 

20183rd 1.0 2.9 –0.7 1.4   0.5 5.3 

Source: ENTSO-E TP (2019). 

 

Hungary is an electricity importer with the average yearly total net imports around 13 TWh. 

As detailed in Table 1.3, Hungary on average imports energy on all interconnected borders 

with the exceptions on the Croatian and Romanian border.  

 

Table 1.4: Hungarian net import per border in TWh 
Year HU-AT HU-HR HU-SR HU-RO HU-UA HU-SK Total 

2015 3.4 -3.5 2.5 -0.4 4.2 7.5 13.7 

2016 2.9 -1.1 1.0 0.0 3.3 6.6 12.7 

2017 4.1 -3.0 0.7 -1.7 3.9 8.8 12.8 

20183rd 1.5 -0.8 1.3 1.7 2.9 5.0 11.6 

Source: ENTSO-E TP (2019). 

 

In the survey literature, there is a considerable number of articles addressing EPF of Spanish 

PX (Díaz et al., 2019; Yang et al., 2017; J.-L. Zhang et al., 2019). In Table 1.5, we can observe 
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that the Greek and Spanish2 PX indexes exhibit similar price patterns according to the price 

levels and the overall variance. Price levels in Greece and Spain are significantly higher 

compared to Germany, whereas the price variance in Germany is higher. Hungarian PX index 

is on average above the German PX index and bellow the Greek and Spanish indexes. Variance 

in Hungary is almost twice higher compared to the variance in Greece and Spain. From 2014 

to the end of year 2017, the monthly average volume of energy exchanged on the Greek PX is 

above 4 TWh, in Hungary above 1 TWh, in Spain under 15 TWh, and in Germany close to 20 

TWh (The European Commission, 2017). 

 

Table 1.5: PX index in €/MWh and overall variance 
Year GR HU DE ES 

2015 51.9 40.6 31.8 / 

2016 42.8 35.5 29.0 39.7 

2017 54.7 50.4 34.2 52.2 

2018 56.9 46.5 41.7 55.4 

VAR 178.3 355.3 241.4 178.2 

Source: ENTSO-E TP (2019). 

 

1.4 Methodology 
 

The sole superiority of the forecasting accuracy does not necessarily imply that forecasts from 

other models contain no additional information (Diebold & Mariano, 1995). The superiority of 

the alternative models compared to the benchmark model is therefore mutually confirmed by 

lower forecasting error and the statistically significant Diebold-Mariano test (DM). 

 

In the surveyed literature, considering hourly EPF, a single EPF model typically serves as a 

forecaster for all hours of the day, i.e., calibration of a single model on an hourly non-clustered 

sample. In order to extract useful predictive information, some authors introduce dummy 

variables associated with the individual hours of the day (Díaz et al., 2019; Panapakidis & 

Dagoumas, 2016) into the EPF models. To fully extract individual hour predictive information, 

we have implemented an EPF model for each single hour of the day, i.e., calibration of 24 

models on hourly clustered samples. A direct consequence of this implementation is the 

reduced size of the learning sample by the multiple of 24 on the same data. The hourly non-

clustered yearly data sample consists of 8,760 hourly data points (365 days x 24 hours = 8,760 

data points), whereas hourly clustered samples consist of 365 hourly data points (365 days x 1 

hour = 365 hours). 

 

Luo & Weng (2019) observed that the training mean squared error (MSE) fluctuates around 

the minimum value as we increase the training sample size, while the testing MSE becomes 

extremely large. One of their findings due to the overfitting is that more training data is not 

necessarily connected with the higher out-of-sample forecasting accuracy (Luo & Weng, 

2019). We have determined the optimal training data set size by increasing the number of 

 
2 Please note that ENTSO-E TP does not report the Spanish PX index for the whole year of 2015. 
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included days in the training data set from 28 to 336 days (28, 56, …, 336 days). The increment 

of 28 days replicates an increment of a month, with such setting we have analysed the effect 

over a year’s time horizon. 

 

A price spike is characterised by a sudden departure of prices from the normal regime for a 

very short time interval (Grossi & Nan, 2019). Such a situation could be predominantly 

associated with electricity demand, generation outages, transmission congestions, market 

participant behaviours, etc. (Hong et al., 2016). To control for the generation outages, we have 

added a demand-supply ratio (DSR) defined as: 

 

𝐷𝑆𝑅 =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑜𝑎𝑑

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (1.2) 

 

to the base set of explanatory variables. DSR summarises the share of the available installed 

generation capacity to cover the residual load. High DSR index values indicate low availability 

of free generation capacities and tight market conditions (Alexander & Dominique, 2007). 

 

As the models are calibrated on the realised data set, we have additionally executed out-of-

sample accuracy tests on the forecasted fundamental explanatory variables. This simulates a 

typical use of forecasters in the day-ahead markets and tests their robustness. Day-ahead 

publicly available forecasts in the domain of load and renewable generation are published on 

the ENTSO-E TP no later than two hours before the gate closure of the day-ahead market 

(ENTSO-E TP, 2020). 

 

1.4.1 ARX model 

 

The linear ARX forecaster serves as a benchmark EPF model estimated by the Ordinary Least 

Squares (OLS) method. All the alternative models are implemented to overcome the linearity 

bias in the ARX approach. The workhorse linear model is defined as: 

 

 𝑃𝑟𝑖𝑐𝑒𝑡 = 𝛼+𝛽 𝑃𝑟𝑖𝑐𝑒𝑡−24 + 𝛿 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐿𝑜𝑎𝑑𝑡 + ∑ 𝜃𝑖
6
𝑖=1 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝐷𝑢𝑚𝑚𝑦𝑖𝑡 + 𝜀𝑡        (1.3) 

 

𝑃𝑟𝑖𝑐𝑒𝑡−24 in Equation 1.3 is an autoregressive term that brings in the model’s previous day 

price level information. Variable 𝑃𝑟𝑖𝑐𝑒𝑡−24 is included instead of 𝑃𝑟𝑖𝑐𝑒𝑡−1, as at the time of 

forecasting for the next delivery day (D+1) the variable 𝑃𝑟𝑖𝑐𝑒𝑡−1 is observable only for the 

first hour of the D+1. This is a natural consequence of a day-ahead market design (explained 

in Section 3), as the whole set of daily hours is quoted at once. The 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐿𝑜𝑎𝑑𝑡 term is 

calculated according to the Equation 1.1. As the only fundamental variable in this model is 

Residual Load, this model is referenced as RL Model. 
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The demand-supply ratio defined in the Equation 1.2 is specifically addressed to improve the 

EPF accuracy during the price spike events. Equation 1.4 is for the DSR variable extended 

Equation 1.3 and is referenced as RL + DSR Model: 

 

𝑃𝑟𝑖𝑐𝑒𝑡 = 𝛼+𝛽 𝑃𝑟𝑖𝑐𝑒𝑡−24 + 𝛿 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐿𝑜𝑎𝑑𝑡 + 𝛾 𝐷𝑆𝑅𝑡 + ∑ 𝜃𝑖
6
𝑖=1 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 𝐷𝑢𝑚𝑚𝑦𝑖𝑡 + 𝜀𝑡   (1.4) 

 

The ARX model is a time series model where ‘AR’ stands for the autoregressive term, i.e., 
𝑃𝑟𝑖𝑐𝑒𝑡−24, and ‘X’ for the exogenous variables (Residual Load & Weekday dummies). 

Exogenous variables are not part of the dependent variable time series, as is the case for the AR 

terms. The ARX model is estimated by the OLS estimator. OLS is not the best way of 

estimating the derived Equation 1.3, as it imposes a linear relationship on the whole data space 

(Wang & Witten, 1996). This is deemed to be the main weakness of the model, causing poorer 

forecastin1.g performance. 

 

1.4.2 K-nearest neighbours – the k-NN algorithm 

 

The K-NN algorithm is a non-parametric method used for classification and regression 

(Altman, 1992). The algorithm itself is popular due to the straightforward interpretability. The 

results of the model are based on the selected number of past observations that are closest to 

the current state of the explanatory variables according to the predefined metrics. Regression 

predictions are obtained by averaging the output variables that are considered k nearest 

neighbours by the selected distance metrics (Mangalova & Agafonov, 2014). 

         

Common distance metrics is the Euclidian distance, defined for points A(x1, x2, …, xm) and B(y1, 

y2, …, ym), i.e., two different observations, as: 

 

𝑑𝑖𝑠𝑡(𝐴, 𝐵) = √
∑ (𝑥𝑖−𝑦𝑖)2𝑚

𝑖=1

𝑚
                  (1.5) 

 

where m is the dimensionality of a feature space (Price, Residual Load, …, Weekday Dummy). 

The number of data point’s neighbours (K) is a free parameter that must be adjusted during the 

model implementation. 

 

1.4.3 Regression Tree – the M5P algorithm 

 

The M5P algorithm enables application of the decision tree building logic used in the 

classification problems (class variables) for the purpose of continuous prediction. The concept 

used to overcome the linearity, is that it initially builds a tree based on the splitting criteria 

which minimises intra-subset variation in the class values down each branch (Wang & Witten, 

1996). Intra-subset variation minimisation stands for ‘Standard Deviation Reduction’ (SDR) 

computed as: 
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𝑺𝑫𝑹 = 𝒔𝒅(𝑻) − ∑
|𝑻𝒊|

|𝑻|
× 𝒔𝒅(𝑻𝒊)𝒊                    (1.6) 

 

where 𝑇 is the set of examples that reach each node, and 𝑇1, 𝑇2 … 𝑇𝑛 are the sets that result from 

splitting the node according to the chosen attribute. Linear regression is applied in every leaf 

node of the constructed tree. The number of the linear regression models equals the number of 

the leaf nodes. Explanatory variables or attributes used in the linear regression in each leaf 

node are those that are referenced by the tests or linear models somewhere in the subtree at this 

node (Quinlan, 1992). The minimum number of instances at each leaf is a stopping criterion 

for a tree growth and an adjustable parameter. 

 

1.4.4 Random forest regression – RFR 

 

Random forest regression is an ensemble method closely related to the regression tree MP5 

algorithm. The algorithm produces a collection of regression trees and takes a mean prediction 

of the built regression trees as an output. A forest is built upon the principle of bagging, i.e., 

combining models with low bias and high variance error in order to reduce the variance, while 

keeping the bias low (Lago, De Ridder, & De Schutter, 2018). Random forests are a 

combination of tree predictors where each tree depends on the values of a random vector 

sampled independently, and with the same distribution for all trees in the forest (Breiman, 

2001). A set of free parameters must be predefined or tuned during the model implementation. 

Free parameters are several trees to grow and several variables to be sampled as a candidate at 

each split. 

 

1.4.5 Support vector machine – SVM 

 

SVM is a computationally-intensive method used for classification and regression tasks. SVM 

performs a non-linear mapping of the data into a higher dimensional space to create linear 

decision boundaries in the new space by simple linear functions (Weron, 2014): 

 

𝑦𝑡 = 𝑓(𝑋𝑡) = 〈𝑊, 𝜑(𝑋𝑡)〉 + 𝑏                  (1.7) 

 

In Equation 1.7, 〈∙〉 denotes the dot product, 𝑊 a weight vector, b the bias, and 𝜑(∙) the non-

linear mapping function. In order to find the optimum linear decision boundaries, the convex 

quadratic optimisation problem must be solved (Yan & Chowdhury, 2014). A detailed 

description of a full derivation procedure can be found in Yan & Chowdhury (2014) and 

Thissen, van Brakel, de Weijer, Melssen, & Buydens (2003). The data set used in the SVM 

model is normalised to achieve an easier training process. We have to choose three parameters 

when applying SVM with Radial Basis Function (RBF) kernel, 𝐶 (connected with a loss 

function), 𝜀 (defines bandwidth of a 2 𝜀 tube), and 𝛾 (parameter of a RBF kernel). 
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1.4.6 Artificial neural net – ANN 

 

In the last decade, the field of neural networks has experienced several innovations that have 

led to what is known as ‘deep learning’ (DL) (Yang et al., 2017). In particular, one of the 

traditional issues of neural networks had always been the large computational cost of large 

models training (Lago, De Ridder, & De Schutter, 2018). The situation changed once, showing 

that such networks could be trained efficiently by a so-called ‘greedy layer-wise pre-training 

algorithm’ (Hinton et al., 2006). There is no generally agreed threshold dividing shallow 

learning from deep learning. According to Schmidhuber, models with more than 10 hidden 

layers are classified as extremely deep learning algorithms (Schmidhuber, 2015). The 

implementation of neural network based approaches is complex, as the definition of parameters 

and network architecture is mainly dependent on experience (Yang et al., 2017). For this 

chapter, we have implemented feedforward neural networks, sometimes called ‘multilayer 

perceptrons.’ The feedforward mechanism relates to the fact that there are no feedback 

connections in which outputs of the model are fed back into itself (Ian et al., 2016). The depth 

of the model is associated with the number of the network layers. In its simplest form, it is 

called a ‘single-layer perceptron,’ as there are no hidden layers and it is equivalent to linear 

regression (Weron, 2014). The ANN weights are determined by a learning algorithm that 

minimises the cost function. For full model derivations, please refer to (Ian et al., 2016). 

Applied ANN models have two hidden layers, returning a single continuous value. The used 

data set was normalised to achieve an easier training process.  

 

1.4.7 Long short-term memory model – LSTM 

 

Long short-term memory (LSTM) is a frequently used deep learning artificial recurrent neural 

network architecture. There are numbers of LSTM applications in the field of voice and 

handwriting recognition. Feed-forward artificial neural networks (ANNs) are memoryless, as 

their response to an input is independent of the previous network state. They are static in the 

sense that they produce only one set of output values, not a sequence of values from a given 

input (Weron, 2014). ANNs with the feedback connections are dynamic systems referred to as 

‘recurrent neural networks’ (RNN). When a new input pattern is presented, the neuron outputs 

are computed. Because of the feedback, the inputs to each neuron are modified, which leads 

the network to enter a new state (Weron, 2014). In LSTMs, a memory cell containing a node 

with a self-connected recurrent edge of fixed weight one is introduced to maintain its state 

value over a long time, such that the gradient can pass across many time steps without vanishing 

(Lipton et al., 2015). It has been shown that LSTMs work better than simple RNNs for training 

long-term sequence data. The complex model structure of LSTMs makes the training and 

decoding of LSTM models more expensive (Miao et al., 2016). Due to the network architecture 

with feedback connections they are suitable for forecasting complex nonlinear time series. For 

a full model description, please refer to (Hochreiter & Schmidhuber, 1997).We have trained a 

LSTM model for 10 epochs with two connected hidden layers and an output layer returning a 

single continuous value.  
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1.5 Data, model implementation & forecast measurement 
 

Data availability and accessibility in a user-friendly format is specifically a problem in the less 

matured power markets. Such conditions in Europe have changed with the commencement of 

the Transparency Platform (TP) operated by the European Network of Transmission System 

Operators for Electricity (ENTSO-E). The sole purpose of the TP is to foster transparency in 

the power market, and level the playing field between small and large parties (Hirth et al., 

2018). Besides the free access to the historical power system data on an hourly resolution, TP 

offers access to the historical load forecasts, renewable generation forecasts, and outage 

information. This information is available in the standardised format on the TP from 5 January 

2015 on. In the studied research papers, the data set is typically a blend of various data sources. 

Our analysis is based upon a single publicly available data source ENTSOE-TP, which is not 

a common point in the reviewed literature. ENTSOE-TP has three channels of data collection, 

a graphical user interface (GUI), a restful application programming interface (API), and a file 

transfer protocol (FTP) (ENTSO-E TP, 2020). There are existing R and Python libraries for 

easier data transfer through API and FTP channels. The data collection process was carried out 

by the API-related code executed in R. The working data set spans from 1.1.2015 to 30.9.2018, 

resulting in a time series of 1,368 days or 32,832 hourly observations. 

 

Weron concluded in his EPF review study that many of the time series regression approaches 

are hybrid solutions, as they use additional fundamental explanatory variables Weron (2014). 

The common set of fundamental explanatory variables are ambient weather conditions, load, 

generation capacity, wind power, gas, and coal prices (González et al., 2005; Karakatsani & 

Bunn, 2008; Kristiansen, 2012; Uniejewski et al., 2016; Weron & Misiorek, 2008). We have 

used the following set of variables for the EPF simulation: 

 

– DA market clearing price: for every market time unit the day-ahead prices in the bidding 

zone. 

– Actual load: actual total load per bidding zone per market time unit, the total load being 

defined as equal to the sum of power generated by plants on both TSO/DSO networks, from 

which is deduced: 

– the balance (export-import) of exchanges on interconnections between neighbouring 

bidding zones 

– the power absorbed by energy storage resources. 

– Forecasted load: day-ahead forecast of total load per market time unit per bidding zone. 

Publication at the latest two hours before the gate closure time of the day-ahead market in 

the bidding area. 

– Actual solar generation: actual aggregated solar net generation output (MW) per market 

time unit. 

– Forecasted solar generation: forecast of solar power generation (MW) per bidding zone, 

per each market time unit of the following day. The information is published no later than 

18:00 (CET), one day before actual delivery takes place. 
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– Actual wind generation: actual aggregated wind net generation output (MW) per market 

time unit. 

– Forecasted wind generation: forecast of wind power generation (MW) per bidding zone, 

per each market time unit of the following day. The information is published no later than 

18:00 (CET), one day before actual delivery takes place. 

– Installed generation capacity availability: The planned unavailability of 100 MW or 

more of a generation unit, including changes of 100 MW or more in the planned 

unavailability of that generation unit, expected to last for at least one market time unit up 

to three years ahead. 

 

In addition to the aforementioned fundamental explanatory variables, we have considered the 

dummy variables associated with each weekday and price time series autoregressive terms. 

 

In the time series of 32,832 hourly observations, we have registered for some of the variables 

missing data points. In the Greek data set there were 395 missing hourly observations, and in 

the Hungarian data set there were 616 missing hourly observations. The missing data points 

were replaced by averaging two respective nearest available observations. Except for these 

artificially calculated data points and normalisation for the support vector machine, the neural 

network model and long short-term memory model, we use raw, non-processed data in the 

analysis. 

 

Tables A1 and A2 of the Appendix present key statistical metrics of the Greek and Hungarian 

price time series from 1.1.2015 to 30.9.2018. The lowest prices are on average observed during 

the night-time. Prices start rising during the morning rush hours, and the maximum prices are 

observed in the evening peak hours (18:00-21:00). Evening peak hours are also the hours where 

minimum prices were never close to 0 €/MWh. The standard deviation in these hours almost 

doubles, implying that these are the hours with the highest price volatility. 

 

In the reviewed literature, training and testing data sets are ordinarily fixed over the considered 

time series. It would be reasonable to assume that market participants would execute their 

market operations according to the indications of the utmost updated and recently calibrated 

EPF models. For this purpose, we have implemented dynamic model calibration and testing by 

the rolling-window approach over the available data set. 

 

As summarized in Table 1.6 each model is recalibrated 14,232 times to obtain the forecasts for 

the whole time series subject to different training sample sizes. Introduction of the DSR 

explanatory variable in the workhorse model defined by the Equation 1.3, triggers an additional 

set of calibrations. 
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Table 1.6: Number of calibrations per model – hourly non-clustered training regime 
Total sample size 

(days) 

Training sample size 

(days) 

Forecasting 

sample size 

(days) 

Number of 

calibrations 

per Model 

1,368 28 1,340 1,340 

1,368 56 1,312 1,312 

1,368 ... ... ... 

1,368 ... ... ... 

1,368 336 1,032 1,032    
14,232 

Source: Own work. 

 

Investigation of the EPF accuracy under the hourly clustered training regime has a consequence 

of having a small individual model for each hour of the day. The number of 14,232 calibrations 

under hourly non-clustered training regime must be consequently multiplied by 24 to obtain 

the number of calibrations under the hourly clustered training regime. 

 

The main outcome of such an experiment setting is considerable computational time, especially 

for the more complex methods such as the support vector machine (SVM) and artificial neural 

network (ANN) models. All alternative approaches have free parameters that must be fine-

tuned to obtain the optimal results. Consequently, fine tuning of free parameters is only 

executed on the first run calibration. 

 

Forecasting performance of the proposed alternative models compared to the benchmark model 

is analysed by comparing different accuracy metrics. The statistical significance of the error 

differential between the base and alternative models is then further statistically confirmed by 

the positive outcome of the Diebold-Mariano test (DM). 

 

For evaluating an hourly point forecast, the simplest performance metric is a mean absolute 

error (MAE) defined as: 
 

𝑴𝑨𝑬 =
𝟏

𝑵
∑ |𝑨𝒕 − 𝑭𝒕|𝑵

𝒕=𝟏  (1.8) 

 

In Equation 1.8, 𝐴𝑡 stands for the observed price and 𝐹𝑡 for the forecasted price. As it is hard 

to compare forecasting accuracy on different data sets by the MAE measure, mean absolute 

percentage error (MAPE) is by far the most popular evaluating approach in point electricity 

price forecasts (Weron, 2014): 

 

𝑴𝑨𝑷𝑬 =  
𝟏

𝒏
∑ |

𝑨𝒕−𝑭𝒕

𝑨𝒕
|𝒏

𝒕=𝟏   (1.9) 

 

MAPE metrics can be misleading in cases when electricity prices are close to zero, as the values 

become very large. In the case of high prices, errors become relatively smaller. The pitfalls of 

the MAPE metrics can be seized by the symmetric MAPE measurement proposed and 

discussed by Spyros Makridakis (1993) as: 
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𝒔𝑴𝑨𝑷𝑬 =  
𝟏

𝒏
∑ |

𝑨𝒕−𝑭𝒕

(𝑨𝒕+𝑭𝒕)/𝟐
|𝒏

𝒕=𝟏   (1.10) 

 

Another frequently used metric in the domain of EPF is the ‘root mean squared error’ (RMSE) 

defined by Equation 1.11 (Weron & Misiorek, 2005): 

 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝑵
∑ (𝑨𝒕 − 𝑭𝒕)𝟐𝑵

𝒏=𝟏    (1.11) 

 

The quadratic term in the equation penalizes harsher forecasts with higher errors, which is 

adequate in cases of price spikes. The drawback of this metric compared to the MAE is an 

unnatural interpretability, unambiguity, and some other issues discussed by (Willmott & 

Matsuura (2005). 

 

The Diebold-Mariano (DM) test is used to test the statistical difference between the two pairs 

of forecasts. In our case, the ARX model is pairwise tested against the alternative CI models. 

The null hypothesis of alternative models (CI) having an accuracy equal to or worse than a 

benchmark ARX model is tested. Considering time series {𝑦𝑡}𝑡=1
𝑇 , the benchmark forecast 

{�̂�𝐴𝑅𝑋,𝑡}
𝑡=1

𝑇
 and the alternative forecasts{�̂�𝐶𝐼,𝑡}

𝑡=1

𝑇
, with the associated error terms {𝜀𝐴𝑅𝑋,𝑡}

𝑡=1

𝑇
 

and {𝜀𝐶𝐼,𝑡}
𝑡=1

𝑇
, the DM tests the hypothesis that the mean of the loss differential series defined 

as 𝑑𝑡
𝐶𝐼,𝐴𝑅𝑋 = 𝐿(𝜀𝐶𝐼,𝑡) −  𝐿(𝜀𝐴𝑅𝑋,𝑡) is greater than or equal to zero. The loss function 

𝐿(𝜀𝐴𝑅𝑋,𝑡) can be of the absolute or square type, e.g. |𝜀𝐴𝑅𝑋,𝑡| or 𝜀𝐴𝑅𝑋,𝑡
2. 

 

In the one-sided DM test version, the 𝐻𝑜 (null) and 𝐻1 (alternative) hypotheses are defined as: 

 

{
𝑯𝒐: 𝑬[𝒅𝒕

𝑪𝑰,𝑨𝑹𝑿] ≥ 𝟎

𝑯𝟏: 𝑬[𝒅𝒕
𝑪𝑰,𝑨𝑹𝑿] < 𝟎

 (1.12) 

 

If the null hypothesis is rejected, we can confirm that the alternative forecast {�̂�𝐶𝐼,𝑡}
𝑡=1

𝑇
 has 

statistically significantly better performance. We tested the hypothesis with the modified 

version of the DM test as discussed by Harvey, Leybourne, & Newbold (1997). 

 

1.6 Results & discussion 
 

According to the reported best performance metrics for the Greek market in Table 1.7, we 

conclude that four out of six alternative EPF models turned out to have higher accuracy than 

the benchmark ARX model. The support vector machine (SVM) model (8.30% sMAPE) had 

the best performance, with MAE metrics 0.71 €/MWh lower than the benchmark ARX model 

(9.60% sMAPE). In the Hungarian market EPF simulation, only the SVM model (16.50% 

sMAPE) outperformed the benchmark ARX model (17.00% sMAPE). The difference in the 

reported MAE metrics value is 0.26/MWh in favour of the SVM model. Table A3 of the 
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Appendix summarizes the forecasting statistics on working days, and Table A4 of the 

Appendix over the weekends. Dummy variables associated with each weekday were included 

in the models to address weekly price dynamics. In Greece, sMAPE accuracy metrics drop on 

weekends on average by 2 percentage points compared to the forecasts on weekdays and in 

Hungary by 7 percentage points.  

 

In both markets the DM test null hypothesis is rejected in one of the settings of the SVM model. 

Reported p-values for all the other alternative models are above the threshold p-value of 0.05. 

A mutual condition for overcoming the linearity bias in the benchmark model, i.e., better 

forecasting accuracy and a statistically significant DM test is fulfilled only by the SVM model. 

Figures 1.2 and 1.3 further present the dependency between the forecasting performance and 

learning sample size for the studied markets. In both markets, the K-nearest neighbour (KNN) 

model has the best performance with smaller sample sizes, whereas other models on average 

reach their best performance with larger training sample sizes. ANN and LSTM model 

achieved best forecasting performance with the largest training sample. The best performance 

of later models is reached with the learning sample sizes between 84 and 112 days. Once the 

optimum forecasting performance is reached, it starts with larger learning samples notably 

declining. Based on the shape of the forecasting errors curves, we conclude that models have a 

turning point that coincides with the optimum training size after which their performance starts 

notably deteriorating. 

  

The typical use of the forecasters in the day-ahead markets is simulated with the out-of-sample 

forecasts based on the forecasted fundamental variables values. In Figures 1.2 and 1.3, this set 

of forecasts is plotted with the dashed line type, whereas the solid line presents forecasts based 

on the actual, realised data. Forecasts of models trained on hourly clustered data are plotted in 

red colour, whereas models trained on hourly non-clustered data are plotted in blue colour. 

Out-of-sample forecasts with the actual test data are plotted with a solid line, whereas out-of-

sample forecasts with the forecasted test data inputs are plotted with a dashed line. The 

performance metrics of the forecasters under both scenarios are reported in Table 1.4. Based 

on the Greek data set, EPF models have equivalent accuracy metrics under both test data sets 

except for the KNN, LSTM, and ANN models. Models trained on Hungarian data have a 

constant drop in sMAPE metrics when forecasting based on the forecasted explanatory variable 

values. According to the ENTSO-E TP knowledge base, explanatory variables forecasts are 

provided by the transmission system operators no later than two hours before the PX gate 

closure (ENTSO-E TP, 2020). A residual load forecast could be considered of good quality, as 

the reported sMAPE forecasting metrics are almost alike under both scenarios. A detailed 

examination is beyond the scope of this chapter. 

 

The DSR ratio is added to the models to integrate the supply side market tightness information 

and to improve the price spikes forecasting accuracy. Figures 1.4 and 1.5 compare the 

forecasting performance between the models built upon the residual load (RL Model, defined 

in Equation 1.3) and extended models by the DSR ratio (RL+DSR Model, defined in Equation 
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1.4). In Greece, the best forecasting performance is reached with the added DSR ratio. In 

Hungary, only the ANN model has the highest accuracy with added DSR ratio. However, under 

both data sets accuracy improvement is trivial, this is especially true considering the price 

spikes forecasting accuracy. Figures A1 and A2 of the Appendix visualize forecasting 

behaviour on 50 highest and 50 lowest observed prices in each market. The average forecasted 

price of all RL models is almost perfectly aligned with the average forecasted price of all 

RL+DSR models. A reason for the insignificant impact might be that on the ENTSO-E TP 

information is available only for the planned outages. For the considered time series unplanned 

outages for Greece and Hungary are not reported. This is a rather unexpected result, but a 

similar conclusion is also found by Alexander & Dominique (2007). 

 

Table 1.7: EPF models best performance – ascending sMAPE ordering 

Country Method RL/DSR Data sample Test input Window MAE RMSE SMAPE MAPE DM test p-value 

GR SVM DSR Non-clustered Actual 84 4.03 8.04 8.30% 17.20% 0.04 
GR SVM DSR Non-clustered Forecast 84 4.03 8.07 8.30% 17.30% 0.30 

GR RFR DSR Non-clustered Actual 28 4.38 8.40 8.90% 16.70% 0.61 

GR RFR DSR Non-clustered Forecast 28 4.35 8.34 8.90% 16.80% 0.11 
GR M5P DSR Non-clustered Actual 112 4.43 8.47 9.00% 17.20% 1.00 

GR M5P DSR Non-clustered Forecast 112 4.42 8.42 9.00% 17.20% 1.00 
GR KNN DSR Non-clustered Actual 28 4.70 9.05 9.40% 17.50% 1.00 

GR KNN DSR Non-clustered Forecast 28 4.67 9.01 9.30% 17.50% 1.00 

GR ARX DSR Non-clustered Actual 28 4.74 8.38 9.60% 17.60% / 
GR ARX DSR Non-clustered Forecast 28 4.74 8.41 9.60% 17.80% / 

GR ANN DSR Non-clustered Actual 168 4.92 8.81 9.90% 18.10% 1.00 

GR ANN DSR Non-clustered Forecast 168 4.83 8.58 9.70% 18.00% 1.00 
GR LSTM DSR Non-clustered Actual 336 5.25 8.66 10.60% 18.20% 1.00 

GR LSTM DSR Non-clustered Forecast 336 5.24 8.68 10.50% 18.30% 1.00 

HU SVM RL Clustered Actual 28 6.43 9.93 16.50% 23.90% 0.13 
HU SVM RL Clustered Forecast 28 6.69 10.22 17.20% 24.00% 0.03 

HU ARX RL Clustered Actual 112 6.69 10.31 17.00% 22.00% / 

HU ARX RL Clustered Forecast 112 7.07 10.73 18.30% 22.00% / 
HU LSTM RL Clustered Actual 112 6.69 10.31 17.00% 22.00% 0.99 

HU LSTM RL Clustered Forecast 112 7.07 10.73 18.30% 22.00% 0.92 

HU RFR RL Clustered Actual 28 6.74 10.07 17.20% 24.50% 0.69 
HU RFR RL Clustered Forecast 28 6.86 10.24 17.70% 24.30% 0.12 

HU ANN DSR Non-clustered Actual 224 7.08 11.04 17.70% 24.80% 1.00 

HU ANN DSR Non-clustered Forecast 224 7.17 11.10 17.90% 25.10% 1.00 
HU M5P RL Non-clustered Actual 112 7.20 10.64 18.00% 25.20% 0.95 

HU M5P RL Non-clustered Forecast 112 7.40 10.95 18.70% 24.60% 0.88 

HU KNN RL Non-clustered Actual 28 7.17 10.37 18.40% 25.30% 0.85 
HU KNN RL Non-clustered Forecast 28 7.66 11.02 20.10% 25.10% 0.98 

Source: Own work. 

 

The superiority of eliminating the linearity bias by the proposed alternative models is, 

according to our experiment design, confirmed by the mutual condition of the better forecasting 

accuracy and positive DM test. In both markets the mutual condition is fulfilled only by the 

SVM model. Based on Greek data set, K-nearest neighbours (k-NN), regression tree (M5P), 

and random forest regression (RFR) models achieve on the best run better forecasting accuracy 

compared to the benchmark, but the DM test is found insignificant. The artificial neural net 

(ANN) model and long short-term memory (LSTM) model are compared to the benchmark 

model inferior in terms of accuracy and have an insignificant DM test. SVM model trained on 

Hungarian data set is the only model out of six proposed alternative models where the reported 

accuracy metrics are lower compared to the benchmark ARX model. Conducted DM test is as 



26 

 

well statistically positive with the forecasted explanatory values. All other tested approaches 

have lower accuracy and statistically insignificant DM tests. 

 

All models out-of-sample forecasting error density functions have the shape of a normal 

distribution (Figure 1.4 and 1.5). Distributions are centred around 0€, and the three standard 

deviations interval approximately spans from –25 € to +25 €. In both markets, the highest peak 

is observed by the SVM density function, meaning that the SVM model has the highest 

probability of committing 0 € forecasting error. Hungarian density functions are wider and 

have lower peaks at 0 € forecasting error. This a natural consequence, as the models forecasting 

accuracy in Hungary notably drops compared to Greek results. 

 

Figure 1.2: Greece – out of sample sMAPE forecasting error 

 
Source: Own work. 

 

To some extent, larger training sample sizes indeed contributed to the higher EPF accuracy of 

the promising ANN and LSTM models, however, they did not outperform the benchmark 

model on their best run. The poor performance of the neural network-based approaches might 

be associated with the initial free parameters setting, that is deemed to be optimal for all the 

consequent calibrations. The parameters defining depth and number of neurons were 

thoroughly discussed in Lago, De Ridder, & De Schutter (2018), where the authors reported 

sMAPE metrics for the suboptimal parameter setting of 14.30% vs. 13.27% for the optimal 

parameter setting. The ability of CI models to adapt to non-linear and fast-changing price signal 

behaviour may not necessarily result in better point forecasts (Weron, 2014). Albeit 
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computational intensity and complex implementation of the neural net-based models, there are 

instances where such sophisticated methods were outperformed by the other forecasters 

(Conejo et al., 2005; Lin et al., 2010; Pousinho et al., 2012; Shafie-khah et al., 2011; 

Vahidinasab et al., 2008; Yang et al., 2017). Conversely, a comprehensive analysis on the 

Belgium data set has statistically confirmed superior performance of the neural network 

approach compared to other models (Lago, De Ridder, & De Schutter, 2018). The performance 

of the SVM, ANN, and ARIMA models is tested over a 2-week period in the Californian market 

in Che & Wang (2010). In one of the setups, the SVM model (0.75 RMSE) notably 

outperformed an alternative ANN model (1.41 RMSE) and a traditional ARIMA model (3.98 

RMSE) in terms of forecasting accuracy. 

 

Figure 1.3: Hungary – out-of-sample sMAPE forecasting error 

 
Source: Own work. 

 

In the literature survey in Lago, De Ridder, & De Schutter (2018), it is concluded that the out-

of-sample accuracy test periods typically correspond to four representative weeks, i.e., one best 

week per season. Even if the forecasting accuracy is reported for the same market, and for the 

same out-of-sample (forecasting) test period, the errors of the individual methods are not truly 

comparable unless identical in-sample (calibration) periods are used, and therefore they cannot 

be used to formulate general statements about a method’s efficiency unless such is the case 

(Weron, 2014).  

 

To our knowledge, there has been no EPF article in the literature exclusively relying on the 

ENTSO-E TP data source. Data blending is a common feature in the reviewed literature. In 
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Lago, et al. (2018), Lago, De Ridder, & De Schutter (2018) and Lagarde & Lantz (2018) 

ENTSO-E TP data is combined with the national transmission system operator’s data sources. 

The main advantage of a centralised data source is simple and rapid data accessibility and study 

reproducibility. During the data collection phase, we noticed that there are missing data points 

and non-reported data types in the ENTSO-E TP database. In addition, there is missing data 

history for Greece before 1.1.2015. To sum up, we believe there are further opportunities for 

improving data availability & consistency on the ENTSO-E TP with data reporting consistency 

and data quality checks as discussed in Hirth et al. (2018). 

 

Figure 1.4: Greek out-of-sample forecasting error density functions 

 
Source: Own work. 

 

Our EPF simulation, based on the seven different forecasters with a typically used explanatory 

variables set, and a different scenario analysis (learning sample size, hourly clustered training, 

and demand-supply ratio explanatory variable), suggest that the key to notably improve the 

forecasting accuracy lies in higher data quality and more importantly in the extended set of 

explanatory variables. The data quality issue is related to the fact that we have registered 

missing hourly data points in the data set. In addition, unavailability of the unplanned outages 

information, which should be part of the demand-supply ratio, might have affected poor 

forecasting accuracy in the price spikes events. We have limited our analysis to the residual 

load and demand-supply ratio fundamental explanatory variables, as the main purpose of the 

research is to analyse forecasting performance of the alternative forecasting models. 

Consequently, the supply side dynamics associated with the production profit optimisation is 

overlooked and requires special attention in future research. This could be addressed with 

variables such as fuel costs and CO2 price, related to the marginal costs of production as 
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addressed by Panapakidis & Dagoumas (2016) and Sensfuß et al. (2008). Market integration is 

effectively handled by Lago et al. (2018) by incorporating fundamental variables from 

neighbouring markets and by simultaneous EPF of the connected markets. Greece and Hungary 

are characterised as natural electricity importers. To potentially further enhance EPF accuracy 

in both analysed countries, in future research electricity price developments in the neighbouring 

markets should be controlled.  

 

 

Figure 1.5: Hungarian out-of-sample forecasting error density functions 

 
Source: Own work. 

 

1.7 Conclusion 
 

Closing a gap of the yet unresearched power markets of Central and Eastern Europe and 

Southeast Europe was primarily feasible due to publicly available Greek and Hungarian data 

set on the ENTSOE transparency platform. The electricity price forecasting with a single data 

source turned out to be practical as the data collection process is user friendly. Simulation of a 

typical daily forecasting process with the selected econometric, data mining and machine 

learning algorithms resulted in implementation of computationally very intensive dynamic 

forecasting by the rolling-window approach.  

 

Based on more than one thousand day long back-test period, only the support vector machine 

model successfully bridges the linearity bias in the benchmark, econometric autoregressive 

model with exogeneous explanatory variables, by lower forecasting accuracy metrics and a 

statistically significant Diebold-Mariano test. A random forest, regression tree, and k-nearest 
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neighbour algorithm trained on Greek data set, have higher forecasting accuracy compared to 

the benchmark econometric model, however, with the statistically insignificant Diebold-

Mariano test. The support vector machine model trained on the Hungarian data set is the only 

model with improved forecasting accuracy compared to the benchmark econometric model. 

 

Models trained on the Greek data set have better results with training on the hourly non-

clustered data samples. Training on hourly clustered Hungarian data samples on average 

resulted in higher forecasting accuracy. The main difference between the Greek and Hungarian 

data sets is a markedly higher Hungarian price variance. The training data sample size is 

positively correlated with the EPF accuracy; however, models have a turning point after which 

the relationship is converted. Artificial neural network based models achieve higher accuracy 

if trained on considerably larger training samples compared to the other proposed alternative 

models. 

 

In future work, it is possible to extend our research to other yet unresearched European markets 

with a specific focus on having enough results to establish if model training on hourly clustered 

data samples gives better results in electricity markets with relatively higher price variance. 

For fostering such comparative analysis, it is of key importance to put additional effort in 

further improving data availability and quality. 
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2 AN INTEGRATED MODEL FOR ELECTRICITY MARKET 

COUPLING: EVIDENCE FROM THE EUROPEAN POWER 

MARKET CROSSROAD 

 

2.1 Introduction 
 

One of the major changes in the European electricity markets is – besides the increasing share 

of a renewable infeed – the fact that previously independent market areas have become 

connected through market-coupling auctions. Day-ahead auctions are no longer organised 

separately for cross-border capacities (CBCs) and electricity. Instead, CBCs are implicitly 

auctioned in the day-ahead auction of electricity such that price differences between market 

areas are minimised, implying that the overall welfare is maximised (Kiesel & Kusterman, 

2016). An implicit auction system has been introduced to solve inefficient network usage in 

non-coupled electricity market design with the additional beneficial side effects of price 

convergence, improved market liquidity, and less volatile electricity prices (Gómez, 2016). In 

Europe, a Single Day-ahead Coupling (SDAC) project is currently ongoing, with the goal to 

finalize the creation of a single pan-European cross zonal day-ahead electricity market. An 

integrated day-ahead market will increase the overall efficiency of trading by promoting 

effective competition, increasing liquidity, and enabling a more efficient utilisation of the 

generation resources across Europe (NEMO Committee, 2020b). 

 

This study researches the inefficient CBCs utilisation and the underlying effect on electricity 

prices in non-coupled day-ahead electricity markets. As a case study, we have simulated market 

coupling, i.e. implicit CBCs allocation on historical realisations on Austrian-Italian (ATIT), 

Austrian-Slovenian (ATSI), and Croatia-Slovenian (HRSI) cross-border interconnectors. The 

simulation goal is to eliminate the observed inefficient CBCs utilisation at the time of the 

simulation non-coupled interconnectors, and to adjust market clearing prices in Austria, Italy, 

Slovenia, and Croatia, accordingly. With the simulation results we can empirically confirm the 

implications and benefits from market coupling on CBC usage efficiency, electricity price 

convergence, price volatility, and price shock transmission. The proposed market coupling 

simulation framework is integrated as the CBCs allocations and electricity prices are 

determined by the solution of a single mathematical optimisation problem.  

 

The novelties of our paper are: (i) simulation of market coupling impact on the suppliers’ and 

consumers’ income; (ii) visual comparison of CBC utilisation and electricity prices in non-

coupled and simulated coupled markets for the same market time-unit; (iii) a market coupling 

simulation with the social welfare maximisation algorithm (EUPHEMIA); (iv) the use of an 

alternative order book generation process based on the econometrically estimated aggregate 

supply price elasticities; and (v) an electricity price shock transmission analysis with a vector 

autoregressive (VAR) model and the underlying impulse response functions (IRF). 
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To the best of our knowledge regional market coupling on ATIT, ATSI, and HRSI cross-border 

interconnectors has not been jointly researched yet. We aspire to bridge this gap by providing 

simulation results and impact assessment on suppliers’ and consumers’ income. Further, this 

is the first study that intuitively presents market coupling benefits on CBCs utilisation and 

electricity prices. In the reviewed literature considering electricity market coupling, benefits 

are typically presented non-intuitively i.e. numerically. With the simulation results, we can 

analyse CBCs utilisation and its implications on electricity price dynamics in non-coupled and 

simulated market coupling environments. A visual comparison of the CBC utilisation and the 

underlying effect on electricity prices, under both market regimes for the same market time-

unit, intuitively presents market coupling benefits.  

 

Modelling coupled electricity markets with statistical models (Grossia et al., 2018; Hellwig et 

al., 2020; Parisio & Pelagatti, 2014) or advanced computational intelligence models 

(Dagoumas et al., 2017; Lago et al., 2018; Li & Becker, 2021) is not convenient for a detailed 

electricity price and the CBCs utilisation analysis. Kiesel & Kusterman (2016) explained that 

in coupled markets it becomes crucial to model electricity prices in all areas consistently in one 

integrated framework. The capacity of relevant network elements in simulated market 

perimeter scope and the underlying CBCs allocation dynamics is, in market simulations, 

frequently overlooked. While the effects of market integration can dramatically modify the 

dynamics of electricity prices, there is a lack of a general modelling framework that could 

model this effect and analyse its impact on the electricity market (Lago et al., 2018). We, 

therefore, propose a new integrated simulation approach that appears to be a natural fit for 

applied market simulations in coupled electricity markets. CBCs allocation and electricity price 

determination is compliant with the social welfare maximisation algorithm (EUPHEMIA) used 

by the European power exchanges. 

 

As discussed by Lijesen (2007), a spot market often represents just a small part of all system 

electricity trade. Therefore, market coupling simulations exclusively relying on a spot power 

exchange order book data could be influenced by the apparent lower market liquidity. In such 

an experimental setting, analysis of the overall market adaptation implied by the market 

coupling mechanism might be arguable. In contrast, power exchange order book data are 

typically publicly unavailable or in user-unfriendly formats – figures of aggregated curves. 

Therefore, we propose an alternative order book generation process based on the 

econometrically estimated aggregate supply price elasticity functions. Individual market order 

books are built upon the estimated measure of overall market responsiveness in quantity 

supplied to a change in price. The proposed day-ahead simulation framework, to calculate 

electricity prices across Europe, respecting the capacity of the relevant network elements, is to 

the best of our knowledge a new approach for applied simulations in coupled electricity 

markets. 

 

The statistical VAR model encompasses the type of complex price dynamics that are 

characteristic of electrical networks (De Vany & Walls, 1999). In the analysed market scope, 
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the model contemporaneously acknowledges the direct and indirect effects of a change in each 

network node electricity price. Electricity price shock transmission indicating market 

integration is therefore analysed with a VAR model and IRF functions. As far as we are aware, 

this is the earliest analysis of electricity price shock transmission for the same price observation 

under non-coupled and simulated market coupling regimes. Comparison of the electricity price 

shock transmission under both market regimes gives a statistical insight into the adjusted 

market dynamics implied by the market coupling mechanism. 

 

The remainder of this paper is organised as follows. The following section looks more closely 

into the market coupling and provides literature review on market coupling simulations and 

analysis. Section 2.3 outlines the methodology and its application. Data, data availability, and 

the underlying effects on the study design are summarised in Section 2.4. Section 2.5 reports 

and discusses the empirical results. Section 2.6 presents concluding remarks with summarised 

key research findings. 

 

 

2.2 Day-ahead market coupling and pre-coupling inefficiencies at the 

crossroads of Europe 
 

In the day-ahead auctions market, the clearing volume and market clearing electricity price is 

determined by the intersection of the supply and demand curves. However, in interconnected 

electricity markets, this traditional economic model of one demand curve and one supply curve 

has to be extended to incorporate for the possibility to “transport” electricity from one market 

area to the other (Kiesel & Kusterman, 2016). The possibility to “transport” electricity up to 

the interconnector capacity is recognised as a shift in supply and demand curves with respect 

to the underlying power exchange price elasticities. Market coupling process integrates energy 

and transmission market. Mandate to integrate energy and transmission market is given to a 

power exchange’s social welfare maximising algorithm. This process is frequently recognized 

as the implicit CBC allocation. The core concept of the outlined market coupling principle is 

summarised in Figure 2.1. 

 

The market coupling mechanism with the efficient use of CBC supports electricity price 

convergence in the EU. Please note that in interconnected non-coupled markets, the mandate 

to regulate electricity transport is given through explicit CBC auctions to market agents. As the 

electricity and CBC rights are traded at two different auctions, inefficiencies in their utilisation 

frequently occur (information asymmetry). Inefficient use of CBCs is typically a partial CBC 

utilisation in the case of a price spread between the market areas or CBC utilisation in an 

adverse direction (electricity export from higher price area to lower price area). These 

situations might be associated with the strategic behaviour of market agents or their inability 

to optimally act in non-coupled electricity markets. As a result, prices in non-coupled electricity 

markets diverge and provide an unreliable price signal to the market agents.  
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Figure 2.1:Price determination in coupled electricity markets 

 
Source: JAO (2019), p.11. 

 

The market coupling mechanism with the efficient use of CBC supports electricity price 

convergence in the EU. Please note that in interconnected non-coupled markets, the mandate 

to regulate electricity transport is given through explicit CBC auctions to market agents. As the 

electricity and CBC rights are traded at two different auctions, inefficiencies in their utilisation 

frequently occur (information asymmetry). Inefficient use of CBCs is typically a partial CBC 

utilisation in the case of a price spread between the market areas or CBC utilisation in an 

adverse direction (electricity export from higher price area to lower price area). These 

situations might be associated with the strategic behaviour of market agents or their inability 

to optimally act in non-coupled electricity markets. As a result, prices in non-coupled electricity 

markets diverge and provide an unreliable price signal to the market agents.  

 

Regional scope of the simulation and geo-economic location is presented in Figure 2.2. The 

Slovenian electricity market is located at the power market crossroads of Europe. Through the 

Austrian interconnector it is connected to the mature Central Western Europe (CWE) power 

markets, through the Italian interconnector to the Italian-north region with traditionally high 

prices (Pellini, 2012), and through the Croatian interconnector to the evolving South Eastern 

Europe (SEE) markets that are characterised by high price volatility (Božić et al., 2020). The 

Slovenian day-ahead electricity market coupled on 1 January 2011 with the Italian market, and 

on 21 July 2016 with the Austrian market. The Croatian power exchange was established on 

10 February 2016, whereas market coupling with the Slovenian power exchange was launched 

on 20 June 2018. On that date, Slovenia became fully coupled due to the fact that there are no 

existing CBCs with Hungary. With the available data on the ENTSOE-TP3, we can simulate 

and analyse market effects of implicit CBC allocation on the Austrian-Slovenian (ATSI), 

Austrian-Italian (ATIT), and Croatian-Slovenian (HRSI) interconnectors. 

 

 

 
3 Transparency Platform (TP) operated by the European Network of Transmission System Operators for 

Electricity (ENTSO-E) was established in 2015. Therefore, data prior to 2015 is not available in the data set. 
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Figure 2.2: Simulation perimeter 

 
Source: Own work. 

 

Electricity is an essential commodity, and as such exhibits inelastic demand in the short-term 

(Cerjan et al., 2013). Demand in market simulations is typically assumed to be price inelastic 

since most consumers are inflexible and willing to pay high prices to ensure having the 

necessary power (Kiesel & Kusterman, 2016). The relationship between total peak demand and 

spot prices, i.e. demand price elasticity is empirically confirmed to be marginal by Lijesen 

(2007). In contrast, if producers sold electricity in the forward or futures market, they face a 

make-or-buy decision in the day-ahead market. This leads to price-sensitive demand in the 

auction, as producers are willing to buy back electricity and not to produce it in case of low 

market prices (Kiesel & Kusterman, 2016). Several authors discussed that strategic behaviour 

is different in implicit auctions as opposed to explicit auctions. Cross-border trade can induce 

price convergence across countries and thereby reallocate gains and losses correlated with 

market power as a result of two concomitant effects: a ‘volume’ effect, due to the mere 

increase/decrease of demand in each market, and a ‘strategy or bid effect,’ corresponding to 

the modifications of bid strategies induced by the increased/decreased number of despatched 

generators (Parisio & Bosco, 2008). If generators act strategically in oligopolistic markets, the 

integration of energy and transmission markets effectively induces demand elasticity because 

generators anticipate the impact of their bid on transmission. This should reduce the ability of 

strategic generators to exercise market power and should therefore reduce prices. However, if 

companies own generation facilities at several nodes, integration could also provide an 

incentive to increase the exercise of market power (Ehrenmann & Neuhoff, 2009). 

 

The literature on empirical analysis and fundamental simulations of market coupling are rather 

scarce. De Vany & Walls (1999) analysed analysed day-ahead prices in five connected Central 

Western Europe markets. They conclude that due to improved liquidity, volatility, and extreme 

price situations are reduced in coupled markets. Kiesel & Kusterman (2016) discussed that in 

coupled markets it becomes crucial for risk and portfolio management to model electricity 

prices in all areas consistently in one integrated framework. There are papers exclusively 

researching electricity price forecasting in coupled electricity markets: electricity price 

forecasting with statistical models (Grossia et al., 2018; Hellwig et al., 2020; Parisio & 
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Pelagatti, 2014) or advanced computational intelligence models (Dagoumas et al., 2017; Lago 

et al., 2018). Dagoumas et al. (2017) proposed an integrated model for risk management in 

electricity trade with the goal to optimise CBCs trading on at the time non-coupled Greek and 

Italian border. They conclude that the proposed integrated model could potentially reduce risk 

in market operations in non-coupled interconnected electricity markets. Lago, et al. (2018) 

emphasise the importance of considering market integration in forecasting day-ahead 

electricity prices in Europe. They proposed a deep neural network approach with selected 

features on Belgium and French markets. Further, Abadie & Chamorro (2021) econometrically 

simulated the economics of interconnector between France and Spain with a policy 

recommendations for link expansion. The referenced econometric and computational 

intelligence studies typically only indirectly account for market interconnection and are too 

general for comprehensive CBC utilisation analysis. In comparison to the referenced studies 

our simulation framework directly models interconnection. Therefore, we can visualise CBC 

utilisation process and intuitively communicate benefits of the market coupling process. Pellini 

(2012) analysed the potential impact of market coupling in the Italian electricity market using 

the optimal dispatch model. The main finding is that high-priced areas such as Italy could 

greatly benefit from the introduction of this mechanism. The simulation was carried out by the 

production cost-based model under alternatives scenarios. The simulation perimeter is Italy 

with the interconnected markets where the ITSI interconnector is part of the simulation. The 

Slovenian electricity market is analysed by Predovnik & Švigelj (2017), where simulation of 

market coupling process on the ATSI interconnector based on a power exchange order book 

data for calendar year 2013 resulted in significant social welfare benefit improvement. In 

comparison to Predovnik & Švigelj (2017), the perimeter of market simulation is extended by 

the ATIT and HRSI interconnector. To simulate overall market addaptation, we utilise the 

estimated supply price elasticities instead of the power exchange order book data. In addition, 

visual comparison of CBC utilisation in non-coupled and simulated coupled markets for the 

same market time-unit is visually presented. Furthermore, simulation is enriched by the 

econometric analysis of electricity price shock transmisson under the non-coupled and 

simulated market coupling regimes.price convergence in the selected deregulated power 

markets in the USA by the estimated VAR model. They confirmed different price dynamics 

for different block-hours of the day. Gómez (2016) concluded that inefficient interconnector 

usage was eliminated and market integration improved with market coupling between France 

and Spain. Meeus (2011), based on the calculated performance indicator in transitional market 

phases on the interconnector between Denmark and Germany, concluded that price market 

coupling outperforms previous market settings. Huisman & Kiliç (2013) econometrically  

 

 

2.3 Methodology 
 

The analysis of the market coupling process is tackled by an interdisciplinary approach. The 

overall social-welfare maximising electricity prices and CBC allocations are determined by the 

EUPHEMIA algorithm. Simulation order books are generated based on the estimated aggregate 
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supply price elasticities. Due to the possible reverse causality between the supplied quantity 

and equilibrium electricity prices, supply price elasticities are estimated by the method of 

instrumental variables. Electricity price dynamics in Slovenia and in interconnected 

neighbouring countries is further statistically analysed by the Vector Auto Regression (VAR) 

model. Data processing and computations are carried out in the R software environment. 

 

 

2.3.1 Supply price elasticity estimation 

 

Since renewable generation is supported by the feed-in tariffs, the purchased load in the 

electricity markets is reduced accordingly for the subsidised renewable generation (Keles et 

al., 2013). Renewable generation availability, therefore, has a negative impact on electricity 

prices, and this fact is recognised as a merit order effect (Martin de Lagarde & Lantz, 2018). 

Lower prices result from the fact that renewables bid into wholesale electricity markets at 

almost-zero prices and therefore shift the electricity supply curve accordingly (Keles et al., 

2013). Residual load (RL) corresponds to the load reduced for the renewables’ generation 

(Equation 2.1): 

 

𝑅𝐿ℎ =  𝐿𝑜𝑎𝑑ℎ − 𝑊𝑖𝑛𝑑ℎ − 𝑆𝑜𝑙𝑎𝑟ℎ                 (2.1) 

 

where index ℎ indicates hourly observations. 

 

The supply and demand in a particular electricity market always have to be balanced. 

Therefore, market equilibrium 𝑆𝑢𝑝𝑝𝑙𝑦ℎ, i.e. conventional generation (Equation 2.2), is 

calculated as a sum of market residual load and market net-export position (NX): 

 

𝑆𝑢𝑝𝑝𝑙𝑦ℎ =  𝑅𝐿ℎ + 𝑁𝑋ℎ                             (2.2) 

 

The basic form for the supply price elasticity estimation is a regression model defined by 

Equation 2.3. The Equation is known as the constant elasticity form as the elasticity of 𝑆𝑢𝑝𝑝𝑙𝑦 

with respect to changes in 𝑃𝑟𝑖𝑐𝑒 is 𝛽 =
𝑑𝑆𝑢𝑝𝑝𝑙𝑦/𝑆𝑢𝑝𝑝𝑙𝑦

𝑑𝑃𝑟𝑖𝑐𝑒/𝑃𝑟𝑖𝑐𝑒
=

𝑑𝑙𝑛 (𝑆𝑢𝑝𝑝𝑙𝑦)

𝑑𝑙𝑛 (𝑃𝑟𝑖𝑐𝑒)
, which does not vary with 

other explanatory variables. A one percent change in 𝑃𝑟𝑖𝑐𝑒, translates, on average, into an 

expected 𝑆𝑢𝑝𝑝𝑙𝑦 change by 𝛽 percent.  

 

The relationship between supply prices and equilibrium quantity may introduce a bias as a 

consequence of a possible reverse causality (Hellwig et al., 2020). Due to possible reverse 

causality, endogeneity is likely to be present in the base model form. Supply price elasticity 

(Equation 2.3) is thus estimated by the instrumental variables (IV) regression. We engage 

lagged values for 𝑃𝑟𝑖𝑐𝑒ℎ−1 and 𝑅𝐿ℎ−1, and daily average hydro production (𝐻𝑦𝑑𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑−1) 

variables as instruments (Equation 2.4). Using lagged values of the endogenous variable is an 

effective estimation strategy if the lagged values do not themselves belong to the respective 
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estimating equation, and if they are sufficiently correlated with the simultaneously determined 

explanatory variable (Reed, 2015). Lagged electricity price values 𝑃𝑟𝑖𝑐𝑒ℎ−1  are used as an 

adequate set of instruments in the econometric estimation of a real-time price elasticity of 

electricity by Lijesen (2007). Lagged residual load value 𝑅𝐿ℎ−1 is used as an instrument as it 

is correlated with 𝑃𝑟𝑖𝑐�̂�ℎ but does not directly effect 𝑆𝑢𝑝𝑝𝑙𝑦ℎ,𝑚. Unavailable instrument 

variable data, the daily average hydro production in Croatia (𝐻𝑦𝑑𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅
𝐻𝑅), is substituted by the 

Slovenian hydro production (𝐻𝑦𝑑𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑆𝐼) variable. The Slovenian hydro electricity generation is 

intense on the Drava and Sava rivers, and both of them flow through Croatia (HSE, 2021). 

Unobserved Croatian hydro production is deemed to correlate on a daily average basis with the 

Slovenian hydro production. Therefore, we engage lagged daily average hydro 

production (𝐻𝑦𝑑𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑−1) as an additional instrument variable. 

 

𝑙𝑛 (𝑆𝑢𝑝𝑝𝑙𝑦ℎ,𝑚) =  𝛼𝑚 +  𝛽𝑚 × 𝑙 𝑛(𝑃𝑟𝑖𝑐�̂�ℎ,𝑚) + ∑  𝜗𝑚,𝑙𝑚 × 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐷𝑢𝑚𝑚𝑦ℎ,𝑙𝑚

𝐿𝑚
𝑙𝑚=1 +

                                    ∑  𝛾𝑖 × 𝐻𝑜𝑢𝑟𝐷𝑢𝑚𝑚𝑦ℎ,𝑚
23
𝑖=1 + 𝜀ℎ,𝑚                               (2.3)

        

𝑙 𝑛(𝑃𝑟𝑖𝑐�̂�ℎ,𝑚) =  𝛼𝑚 +  𝛾𝑚 × 𝑙𝑛(𝑃𝑟𝑖𝑐𝑒ℎ−1,𝑚) +   𝛿𝑚 × 𝑙 𝑛(𝑅𝐿ℎ−1,𝑚) +  𝜂𝑚 ×

                                 𝑙𝑛 (𝐻𝑦𝑑𝑟𝑜̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑑−1,𝑚) +  𝜀ℎ,𝑚                  (2.4)

    

𝑤ℎ𝑒𝑟𝑒 𝑚 ∈ {𝐴𝑇, 𝐼𝑇, 𝑆𝐼, 𝐻𝑅},

𝐿𝐴𝑇 ∈ {𝐴𝑇𝑆𝐼, 𝑆𝐼𝐴𝑇, 𝐴𝑇𝐼𝑇, 𝐼𝑇𝐴𝑇}, 𝐿𝐻𝑅 ∈ {𝐻𝑅𝑆𝐼, 𝑆𝐼𝐻𝑅}, 𝐿𝐼𝑇

∈ {𝐼𝑇𝐴𝑇, 𝐴𝑇𝐼𝑇, 𝐼𝑇𝑆𝐼, 𝑆𝐼𝐼𝑇}, 𝐿𝑆𝐼 ∈ {𝑆𝐼𝐴𝑇, 𝐴𝑇𝑆𝐼, 𝑆𝐼𝐼𝑇, 𝐼𝑇𝑆𝐼, 𝑆𝐼𝐻𝑅, 𝐻𝑅𝑆𝐼}.   

 

In Equations 2.3 and 2.4 index 𝑚 indicates the individual market included into the simulation 

scope and index 𝑙𝑚 represents individual interconnector (line) connected to the market 𝑚. 

Index ℎ − 1 indicates lagged hourly observations.  

 

Bollino & Madlener, (2016) analysed relationship between exercise of demand market power 

and renewable energy sources, in the Italian day ahead electricity market, using ex ante 

individual bids, in 2010–2011. They confirmed that in periods with high-RES generation and 

congested CBCs some generators exercise market power. To control for the potential exercise 

of market power in congested periods, we have included dummy variables 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐷𝑢𝑚𝑚𝑦ℎ,𝑙𝑚
 in the supply price elasticity estimation (Equation 2.3). Dummy 

variables 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐷𝑢𝑚𝑚𝑦ℎ,𝑙𝑚
  indicate CBC congestion in each border direction. Further, 

according to Longstaff & Wang (2004) electricity produced during a daily peak hour is quite 

different from that produced over night, in terms of the fundamental demand and supply 

functions, as well as the relative risk aversion of the market participants. Therefore, we 

included into the supply price elasticity estimation (Equation 2.3) a set of dummy variables 

𝐻𝑜𝑢𝑟𝐷𝑢𝑚𝑚𝑦ℎ,𝑚 indicating each individual hour of the day. Set of dummy variables 

𝐻𝑜𝑢𝑟𝐷𝑢𝑚𝑚𝑦ℎ,𝑚 controls in the supply price elasticity estimation fundamental differences 

described by Longstaff & Wang (2004). 
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As discussed by Halužan, Verbič & Zorić (2020), the majority of electricity price forecasting 

algorithms perform better with calibration on a smaller estimation sample size. Supply price 

elasticity functions are estimated by the selected 7-day rolling-window approach over the 

available data set. Therefore, each calibration dataset contains 168 data points for the model 

estimation. The selected window size is large enough for the unbiased supply price elasticity 

estimation and narrow enough to recognise for the temporary supply features. By the term 

“temporary supply features”, we specifically address non-accounted variables such as 

hydrology situation, production availability, fuel prices, strategic behaviour, etc. 

 

Simulation order books for each individual market are generated based on the estimated 

aggregate supply price elasticities functions according to the Equation 2.3. The joint effect of 

the estimated supply price elasticity (𝛽) and included dummy variables ( 𝛾𝑖,  𝜗,𝑙𝑚 ) is considered 

in the orderbook generation process for each individual hour of the day. Realised market 

equilibrium electricity price (𝑃𝑟𝑖𝑐𝑒ℎ) and conventional generation (𝑆𝑢𝑝𝑝𝑙𝑦ℎ) serve as a 

reference point in a calculation of orderbook’s supply and demand orders. Unique supply price 

𝑝𝑚,ℎ,𝑠,𝑜 and quantity 𝑞𝑚,ℎ,𝑠,𝑜 pairs are generated according to a 0.25 % price step increment 

from 𝑃𝑟𝑖𝑐𝑒ℎ and the estimated supply change from 𝑆𝑢𝑝𝑝𝑙𝑦ℎ, with the stopping criteria at the 

realised maximum 𝑆𝑢𝑝𝑝𝑙𝑦ℎ value in past 7 days. In the power exchange order book, each price 

step increment is associated with a unique price 𝑝𝑚,ℎ,𝑠,𝑜 and quantity 𝑞𝑚,ℎ,𝑠,𝑜 pair. Index 𝑜 

indicates unique hourly order and index 𝑠 classifies order type 𝑠 ∈ {𝑆𝑢𝑝𝑝𝑙𝑦|𝐷𝑒𝑚𝑎𝑛𝑑}. 

Consumer demand in the simulation order books is assumed to be fixed, i.e. price inelastic. 

Therefore, price-sensitive demand in the orderbooks is associated with the producers’ 

willingness to buy back electricity sold in forward or futures market and not to produce it in 

case of low market prices (Kiesel & Kusterman, 2016). Unique producers’ demand order price 

𝑝𝑚,ℎ,𝑠,𝑜 and quantity 𝑞𝑚,ℎ,𝑠,𝑜 pairs are generated according to a 0.25 % price step decrement 

from 𝑃𝑟𝑖𝑐𝑒ℎ and the estimated supply change from 𝑆𝑢𝑝𝑝𝑙𝑦ℎ, with the stopping criteria at the 

realised minimum 𝑆𝑢𝑝𝑝𝑙𝑦ℎ value in past 7 days. 

 

 

2.3.2 Market coupling algorithm 

 

The electricity power exchange price is determined by the social welfare maximisation 

algorithm that maximises the consumer and producer surplus. The algorithm, used by the 

European power exchanges, is called EUPHEMIA (NEMO Committee, 2020a) and is a part of 

the Price Coupling of Regions4 (PCR). EUPHEMIA5 was developed to efficiently couple day-

 
4 Price Coupling of Regions (PCR) is the project of European Power Exchanges to develop a single price coupling 

solution to be used to calculate electricity prices across Europe, respecting the capacity of the relevant network 

elements on a day-ahead basis. 
5
 For a general algorithm description, please refer to a public description by NEMO Committee (2020a) and for a 

deeper technical discussion to a paper by Martin et al. (2014). 
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ahead markets and handle standard and more sophisticated order types with all their 

requirements (Gómez, 2016). 

 

In an available transfer capacity (ATC) model, the bidding zones (markets) are linked by 

interconnectors (bidding zone lines) representing a given topology (NEMO Committee, 

2020a). The energy from one bidding zone to its neighbouring zone can only flow through 

these lines and is limited by the available transfer capacity. Figure 2.2 presents a grid topology 

of the analysed market coupling area between Austria, Italy, Slovenia, and Croatia. The 

objective of the market coupling algorithm is to eliminate existing CBC utilisation 

inefficiencies at the time of simulation non-coupled borders. CBC utilisation adjustments at 

the time of simulation already coupled borders, result from energy redistribution associated 

with the inefficient CBCs utilisation on non-coupled borders. To handle energy redistribution 

effect appropriately, all neighbouring interconnected markets should be included in the 

simulation perimeter. 

 

Implicit CBC allocation and market clearing prices based on newly generated order books and 

new flow limits are determined according to a mathematical optimisation model defined by 

Equations 2.5–2.7. In the objective function (Equation 2.5), 𝐴𝐶𝐶𝐸𝑃𝑇𝑚,ℎ,𝑠,𝑜 is a continuous 

variable assigning hourly order acceptance (0 < 𝐴𝐶𝐶𝐸𝑃𝑇𝑚,ℎ,𝑠,𝑜 ≤ 1) or order rejection 

(𝐴𝐶𝐶𝐸𝑃𝑇𝑚,ℎ,𝑠,𝑜 =  0). Supply order quantities have a positive sign, whereas demand order 

quantities have a negative sign (𝑞𝑚,ℎ,𝑠,𝑜). On each interconnector, the flow variable 𝐹𝑙𝑜𝑤𝑙 is 

limited according to the established available transmission capacity value 𝐴𝑇𝐶𝑙 (Equation 2.6). 

𝐴𝑇𝐶𝑙 is the residual quantity that could be transmitted through the interconnector after the day-

ahead CBCs nominations. A market clearing condition, i.e. the balance of domestic demand, 

domestic supply, and net-exports (∑ 𝐹𝑙𝑜𝑤𝑚,𝑙𝑚 ) is imposed by the Equation 2.7. The last 

accepted order with the highest price determines the market clearing price. The optimisation 

objective function for aggregated hourly orders and optimisation constraints are defined by the 

following set of equations, adapted from EUPHEMIA’s public description by NEMO (2020a): 

 

− ∑ 𝐴𝐶𝐶𝐸𝑃𝑇𝑚,ℎ,𝑠,𝑜 ×  𝑞𝑚,ℎ,𝑠,𝑜𝑚,ℎ,𝑠,𝑜 ×  𝑝𝑚,ℎ,𝑠,𝑜                (2.5) 

 

𝑠. 𝑡.  

 

𝐹𝑙𝑜𝑤𝑙 ≤ 𝐴𝑇𝐶𝑙                       (2.6) 

∑ 𝐴𝐶𝐶𝐸𝑃𝑇𝑚,ℎ,𝑠,𝑜 ×𝑚 𝑞𝑚,ℎ,𝑠,𝑜 – ∑ 𝐹𝑙𝑜𝑤𝑚,𝑙𝑚  = 0               (2.7) 

 

where, 𝑚 ∈  {𝐴𝑇, 𝐼𝑇, 𝑆𝐼, 𝐻𝑅}, and 𝑙 ∈ {𝐴𝑇𝐼𝑇, 𝐼𝑇𝐴𝑇, 𝐴𝑇𝑆𝐼, 𝑆𝐼𝐴𝑇, 𝑆𝐼𝐼𝑇, 𝐼𝑇𝑆𝐼, 𝑆𝐼𝐻𝑅, 𝐻𝑅𝑆𝐼}. 

 

The linear program defined by Equations 2.5–2.7 is written in the R programming environment 

with the lpSolaveApi package. 
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2.3.3 Vector Autoregression model 

 

Vector autoregressive (VAR) models are a rational choice to study price dynamics in the 

interconnected neighbouring markets. VARs allow us to characterise the joint distribution of 

power prices in the studied electricity network perimeter. Furthermore, impulse-response 

functions are a convenient way to visualise the direct and indirect impact of an exogeneous 

shock at a particular network node on the time paths of prices at all nodes (De Vany & Walls, 

1999). 

 

VAR models are commonly written as 𝑉𝐴𝑅(𝑝), where 𝑝 denotes the number of autoregressive 

terms in the model. In compact form notation, estimated 𝑉𝐴𝑅(𝑝) model is written as: 

 

(

𝑃𝑟𝑖𝑐𝑒𝐴𝑇,𝑡

⋮
𝑃𝑟𝑖𝑐𝑒𝑚,𝑡

) = [

𝑎𝐴𝑇,1 ⋯ 𝑎𝐴𝑇,4

⋮ ⋱ ⋮
𝑎𝑚,1 ⋯ 𝑎𝑚,4

] (

𝑃𝑟𝑖𝑐𝑒𝐴𝑇,𝑡−𝑝

⋮
𝑃𝑟𝑖𝑐𝑒𝑚,𝑡−𝑝

) + (

𝜀𝐴𝑇,𝑡

⋮
𝜀𝑚,𝑡

)              (2.8) 

 

where 𝑚 ∈  {𝐴𝑇, 𝐼𝑇, 𝑆𝐼, 𝐻𝑅}. 

 

VAR models are estimated on the realised day-ahead electricity price series and on the 

electricity price series generated by the market coupling simulation. For each model, the 

number of autoregressive terms 𝑝 is determined by the Akaike Information Criterion (AIC). 

The VAR models require data to be stationary. A formal test for testing a stationary is the 

Dickey-Fuller test. The null of the test is “a unit root is present in the series”, hence rejecting 

the null means having a stationary time series.  

 

VAR modelling analysis enables Granger causality testing. The Granger causality test is a 

statistical test for determining whether a time series is useful in forecasting another time series. 

The Granger causality test is not a cause-and-effect relationship test, rather it is a test if lagged 

values of one variable can improve predictability of another variable i.e. reduce model 

residuals. Statistical testing is executed on the electricity price series before and after the market 

coupling simulation. If the null hypothesis is rejected, this means that the lags of a tested 

variable provide significant information about the future values of another variable.  

 

 

2.3.4 Impact on the suppliers’ and consumers’ income 

 

In the simulated market coupling environment change in the suppliers’ income (∆𝑆𝐼) for each 

individual market (m) is calculated according to the Equation 2.9: 

 

∆𝑆𝐼𝑚 =   ∑ 𝑆𝑢𝑝𝑝𝑙𝑦𝑚,ℎ
∗ × 𝑃𝑟𝑖𝑐𝑒𝑚,ℎ

∗ −  ∑ 𝑆𝑢𝑝𝑝𝑙𝑦𝑚,ℎ × 𝑃𝑟𝑖𝑐𝑒𝑚,ℎ              (2.9) 
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where: 

𝑆𝑢𝑝𝑝𝑙𝑦𝑚,ℎ
∗  is the simulated supply after the market-coupling simulation; 

𝑃𝑟𝑖𝑐𝑒𝑚,ℎ
∗  is the simulated market clearing price after the market-coupling simulation. 

 

Electricity demand is assumed to be inelastic, therefore we can calculate change in consumer’s 

income (∆𝐶𝐼) for each individual market (m) according to the Equation 2.10. 

 

∆𝐶𝐼𝑚 =   ∑ 𝐿𝑜𝑎𝑑𝑚,ℎ × 𝑃𝑟𝑖𝑐𝑒𝑚,ℎ −  ∑ 𝐿𝑜𝑎𝑑𝑚,ℎ × 𝑃𝑟𝑖𝑐𝑒𝑚,ℎ
∗                        (2.10) 

 

Due to the publicly unavailable historical prices for CBCs in organised explicit auctions, we 

could not evaluate impact on transmission system operators’ congestion rent income. 

Therefore, the overall market coupling impact on the suppliers’ and consumers’ income i.e. 

generated surplus (∆𝑆𝑢𝑟𝑝𝑙𝑢𝑠) is calculated for each individual market (m) as a joint income 

change according to the Equation 2.11. 

 

∆𝑆𝑢𝑟𝑝𝑙𝑢𝑠𝑚 =  ∆𝑆𝐼𝑚 + ∆𝐶𝐼𝑚                 (2.11) 

 

2.4 Data 
 

Data availability and accessibility in a user-friendly format generally limits applied power 

market research (Hirth et al., 2018). Such conditions in Europe have changed in 2015 with the 

commencement of the Transparency Platform (TP) operated by the European Network of 

Transmission System Operators for Electricity (ENTSO-E). Simulation is based on a publicly 

available data source ENTSOE-TP. Data is available in the standardised format on the 

ENTSOE-TP from 1 January 2015 on. Due to data availability issue, we are limited to analyse 

and simulate market coupling on selected borders from 1 January 2015 on. The simulation cut-

off date is 20 June 2018, as on that date the Slovenian market coupled with the Croatian market. 

As the ITSI border has been coupled since 1 January 2011, the implied simulation allocation 

changes on this border result from energy redistribution associated with inefficiencies on ATIT, 

ATSI, & SIHR borders. 

 

According to ENTSO-E (2020) there are three channels of data collection, a graphical user 

interface (GUI), a restful application programming interface (API), and a file transfer protocol 

(FTP). Market coupling simulation is based on the following set of variables: 

 

DA market clearing price: for every market time unit the day-ahead prices in bidding zone. 

Actual load: actual total load per bidding zone per market time unit. 

Actual hydro generation: actual aggregated run-of-river net generation output (MW) per 

market time unit. 

Actual wind generation: actual aggregated wind net generation output (MW) per market time 

unit. 
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Actual solar generation: actual aggregated solar net generation output (MW) per market time 

unit. 

Total nominated capacity: The value published for the day ahead time horizon consists of 

nominations from the following allocations: yearly, quarterly, monthly, weekly, and daily. 

Forecasted Transfer Capacities: The forecasted NTC (MW) per direction between bidding 

zones, including technical profiles only in NTC allocation method, one value per market time 

unit. Please note that, the Available Transmission Capacity ATC, is the part of NTC that 

remains available, after each phase of the allocation procedure, for further commercial activity 

(ENTSOE, 2001). 

 

In the supply price elasticity estimation (Equation 2.4), the missing instrument variable, the 

daily average hydro production in Croatia (𝐻𝑦𝑑𝑟𝑜       
   
 𝐻𝑅), is substituted by the Slovenian hydro 

production (𝐻𝑦𝑑𝑟𝑜       
   
 𝑆𝐼) variable. T 

 

 

2.5 Results & discussion 
 

2.5.1 Market coupling simulation results 

 

The supply price elasticity model is dynamically estimated for each simulation day by a rolling 

window approach. Table A5 in the Appendix represents the estimation summary with 

goodness-of-fit metrics. We can conclude that the most variation in dependent variable is 

explained if the explanatory variables are estimated by the 7-day rolling window. The Croatian 

power exchange has been operational since 10 February 2016. Therefore, there is a missing 

section in the estimated supply price elasticity curve before that date (CROPEX, 2016). 

According to the estimation results, the supply is relatively price inelastic in Slovenia and 

Croatia (Figure 2.3).  

 

In Austria, the estimated price elasticity is higher compared to Slovenia and Croatia, whereas 

the supply in Italy can be described as price elastic (elasticity coefficients above one). The 

supply price elasticity during peak (9-20) hours is on average considerably higher compared to 

the off-peak (0-8 & 21-24) hours. A most notable hourly differentiation in supply price 

elasticity is observed in Croatian and Slovenian electricity markets. Estimation of the 

individual supply price elasticity functions for each individual hour of the day turned out to be 

justified. In terms of estimated supply price elasticities, electricity supplied during daily peak 

hours is more elastic from that supplied during off-peak hours. Analysis of this observation is 

beyond the scope of the article. Order book generation for the market coupling simulation with 

differentiated supply price elasticities on hourly basis is rationalised. In the analysed period 

ATSI cross-border interconnector transitioned from non-coupled to coupled market regime 

(integration of energy and transmission market). Based on the estimated supply price 

elasticities we do not recognize a pattern that would indicate changed market behaviour of 

generators in Austrian or Slovenian market after the integration (Figure 2.3). Estimation of the 

supply price elasticity by the rolling window approach recognises temporary supply features. 



44 

 

The estimated supply price elasticities are without a yearly trend, and this is most likely to be 

associated with the randomness of the available production capacity and hydrological situation. 

Detailed analysis of generators' market behaviour is beyond the scope of this article. 

 

Figure 2.3:Estimated supply price elasticity (loglinear model) 

 
Source: Own work. 

 

 

Table 2.1 summarises realised electricity day-ahead prices and by the market coupling 

algorithm simulated prices. The Croatian power exchange was launched on 10 February 2016. 

Before that date, it was not part of the simulation perimeter. The most notable price and 

variance reductions are observed in Slovenia and Croatia. In Austria, where the realised day-

ahead electricity prices are on average the lowest, simulated electricity prices rise on average 

by 0.22 €/MWh with a marginal increase in the standard deviation. On the Italian market, with 

the highest realised prices, simulated prices drop on average by 0.12 €/MWh with a minor 

decrease in the standard deviation. The Slovenian simulated price is on average lower by 0.24 

€/MWh, whereas the Croatian price is lower by 1.19 €/MWh. The standard deviation fell on 

average in Slovenia by 10.01 €/MWh, and in Croatia by 42.77 €/MWh. The most notable 

declines are observed in simulation year 2017, where the Croatian price is reduced by more 

than 2 €/MWh and the standard deviation is reduced by 93 €/MWh. The market coupling 

simulation overall resulted in significantly improved price convergence. 
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The Appendix Table A6 reports changes in realised supply as a result of the market coupling 

simulation. In the market coupling simulation, demand is considered inelastic, subsequently all 

changes in CBC utilisation caused by the simulation are accounted as the supply changes. 

Simulation market clearing condition is respected (Equation 2.7) as the net sum of overall 

changes in CBC utilisation (sum of the supply shifts) equals 0. The simulated supply changes 

are proportional with respect to the country size in terms of total supply, however relative 

changes turned out to be rather small (on average less than 0.3 percent).  

 

Table 2.1: Descriptive statistics for realised day-ahead prices and simulated prices. 

Year Country 

Realised Prices Simulated Prices Difference 

Mean S.D. Mean S.D. Mean S.D. 

2015 AT 31.76 158.41 32.03 161.32 0.27 2.91 

2015 HR NA NA NA NA NA NA 

2015 IT-Nord 52.76 200.72 52.64 198.55 -0.12 -2.17 

2015 SI 41.48 266.73 41.20 248.63 -0.28 -18.10 

2016 AT 28.93 156.32 29.08 158.38 0.15 2.06 

2016 HR 34.68 164.50 34.68 157.78 0.00 -6.72 

2016 IT-Nord 42.59 224.84 42.45 226.35 -0.14 1.51 

2016 SI 35.53 180.28 35.24 170.36 -0.29 -9.92 

2017 AT 34.23 310.80 34.49 312.44 0.26 1.64 

2017 HR 51.82 576.44 49.76 483.15 -2.06 -93.29 

2017 IT-Nord 54.46 339.79 54.36 332.09 -0.10 -7.70 

2017 SI 49.58 468.44 49.28 450.25 -0.30 -18.19 

2018-Q2 AT 35.55 234.98 35.76 234.03 0.21 -0.95 

2018-Q2 HR 42.11 291.64 40.60 263.32 -1.51 -28.32 

2018-Q2 IT-Nord 52.82 211.44 52.71 212.98 -0.11 1.54 

2018-Q2 SI 40.66 281.45 40.56 287.61 -0.10 6.16 

Source: Own work. 

 

Figure 2.4 summarises cross-border transactions on the ATSI and HRSI interconnectors prior 

to market coupling implementation and simulated market coupling CBCs allocation. Instances 

with correct economic reasoning of energy exports from cheap to expensive markets are 

observed in the II. And IV. quadrants. Full CBC utilisation is an instance where the CBC is 

fully utilised, but, with insufficient capacity to ensure price convergence. Economical CBC 

utilisation is an instance where the CBC is sufficient and price convergence between price areas 

is achieved. These observations are marked by green colour and are located on horizontal axis 

(0 € price spread). The partial CBC utilisation (marked by blue colour) defines instances with 

the correct economic reasoning, however, by partial CBC utilisation and with an existing price 

spread. Adverse CBC utilisation instances (marked by red colour) are located in the I. and III. 

quadrants. These are instances with net energy exports from high-price area into a low-price 

area. Figure A3 in the Appendix further summarises cross-border transactions on the ATIT and 

ITSI borders. Please note that implicit allocation on ATIT border started on 24 February 2015 

and on ITSI border on 1 January 2011, so we can observe evident CBC allocation corrections 

only on the ATIT border. 

 

 



46 

 

Figure 2.4: Realised and simulated flow on ATSI and HRSI  interconnector. 

 
Source: Own work. 

 

The relative frequencies of cross-border capacity utilisation status before and after the market 

coupling simulation are reported in Table 2.2. The main outcome of the market coupling 

simulation is the elimination of the adverse and partial CBC utilisation category. On the ATIT 

border, implicit CBC allocation started on 24 February 2015. In Table 2.1, we can observe that 

the Austrian market is historically the cheapest, whereas Italy is the market with the highest 

prices. Due to the natural tendency of exports from the Austrian market to the Italian market 

and a short period under the explicit CBC allocation regime, there are no significant changes 

in the simulated market coupling CBC allocation on the ATIT border. The market coupling 

simulation on the ATSI border significantly improved CBC utilisation. Before the market 

coupling simulation, CBCs were adversely or partially utilised 27% of the time. These cases 

are altered in a market coupling simulation to full CBC utilisation category for 46% of the time 

or to the economic CBC utilisation category for 54% of the time. In the studied perimeter, the 

smallest price spread is observed between the Slovenian and Croatian markets. Most notable 

improvement is reported on the HRSI border where CBCs were adversely utilised 45% of the 

time and partially for 55% of the time. Under a simulated market coupling regime, economic 

CBC utilisation, i.e. price convergence, is reported for 99% of the time. On the ITSI border, 

implicit CBC allocation started on 1 January 2011. Simulation changes in CBC utilisation on 

the ITSI border are exclusively the result of energy redistribution, due to inefficiency 
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elimination on the ATIT, ATSI, or HRSI borders. In the market coupling simulation, full 

capacity utilisation rises from 55% to 61% of the time. 

 

Market coupling impact assessment on the suppliers’ and consumers’ income for the analysed 

period is reported in the Appendix Table A7. Please note, that Supply is realised supply in 

MWh (ENTSOE-TP data); ∆ NX is a supply change induced by the market coupling simulation 

in MWh; Supply* is optimal supply according to market coupling simulation in MWh; Load 

in MWh (ENTSOE-TP data) and Average Price ∆ is an average price change induced by the 

market coupling simulation in €/MWh. In the analysed period overall income improved for 

almost 16 million €. We observe that the most significant contribution to the generated surplus 

has the simulation of market coupling on HRSI interconnector. In the period when only HRSI 

interconnector operated in non-coupled market regime, the overall income in simulated market 

perimeter improved for more than 13 million €. This is in line with the observed frequent 

inefficient CBC utilization on HRSI interconnector (Table 2.2). Inefficient CBC utilization is 

less frequent on ATIT and ATSI interconnectors, subsequently market coupling simulation in 

that period has minor impact on the estimated overall suppliers’ and consumers’ income 

(563.789,00 €).  

 

Table 2.2: Relative frequency table of cross-border capacity utilisation status. 
Interconnector CBC utilisation Realised Simulated 

ATIT Adverse CBC u. 1% 0% 

ATIT Economical CBC u. 2% 6% 

ATIT Full CBC u. 96% 94% 

ATIT Partial CBC u. 1% 0% 

ATSI Adverse CBC u. 10% 0% 

ATSI Economical CBC u. 28% 46% 

ATSI Full CBC u. 45% 54% 

ATSI Partial CBC u. 17% 0% 

HRSI Adverse CBC u. 45% 0% 

HRSI Economical CBC u. 0% 99% 

HRSI Full CBC u. 0% 1% 

HRSI Partial CBC u. 55% 0% 

ITSI Economical CBC u. 45% 39% 

ITSI Full CBC u. 55% 61% 

Source: Own work. 

 

2.5.2 Price shock transmission 

 

Impulse response functions are determined by the estimated VAR (24)6 model on the realised 

and simulation generated electricity day-ahead price time series, for the period from 10 

February 2016 to 20 June 2018. Selected time window coincides with the establishment of 

Croatian power exchange and observed severe inefficient CBCs usage on HRSI border. 

Executed Dickey-Fuller tests for testing a stationarity of price time series are rejected for all 

markets (Appendix Table A8). Test null hypothesis of having a non-stationary time series is 

 
6For each model, the order of autoregression 𝑝 is determined by the Akaike Information Criterion; in our case we 

employ a VAR(24) model. 
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tested. Tests are executed on the realised price time series and by the market coupling algorithm 

simulated price time series. Lags variable is the number of lagged variables included in the 

testing equation. Rejecting the null hypothesis means having a stationary price time series. 

Therefore, VAR models are estimated without any further time series transformations.  

 

Figure 2.5: Impulse response functions (IRF) of estimated VAR models 

 
Source: Own work. 

 

In Figure 2.5, we can visualise the direct and indirect impact of an exogenous shock at a 

particular network node on the hourly time paths of prices at all nodes. All markets have in 

common that prices 24, 48, … and 168 hours past due exert a positively correlated influence 

on the current price in the studied markets. The previously mentioned influence diminishes 

over time. According to Figure 2.5, we can conclude that price shocks originating in the 

Slovenian and Croatian markets, characterised by the low supply price elasticity, are 

transmitted with low magnitude towards markets with relatively higher supply price elasticity 

(the Italian and Austrian markets). On the contrary, shocks originating in markets with higher 

supply price elasticity are transmitted with higher magnitude to markets with low supply price 

elasticity. In the simulated market coupling environment, price shock transmission dynamics 

amplifies towards the Slovenian market. Price shock transmission from Croatia and Italy to 

Slovenia is instantaneous and echoes above a 1.5 standard deviation. The most severe and 

frequent inefficient CBCs allocation occur on the HRSI border, therefore, instantaneous shock 

transmission from Croatia to Slovenia is in line with the market coupling theory and confirms 

improved market integrations in coupled electricity markets. The VAR model estimation 

results are reported in Table A9. 
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Price shock transmission with the characteristic 24-hour lag in the non-coupled market regime, 

indicates an incentive of market participants to readjust their strategies after the observed price 

shock in one of the neighbouring markets. The instantaneous and amplified price shock 

transmission from Italy and Croatia to Slovenia is most likely associated with the previously 

inefficient energy redistribution between the non-coupled Croatian and Slovenian markets. 

Market integration, indicated by the price shock transmission intensity and price shock 

transmission timing, improves in the simulated market coupling environment.  

 

The null hypothesis in the Granger causality test is that the tested price time series does not 

Granger-cause other VAR model price time series. We have executed test for each VAR model 

price time series (AT, HR, SI, IT). Performed Granger causality test results are reported in the 

Appendix Table A10. By rejecting the null hypothesis, we confirm that the tested time series 

Granger causes at least one of the other time series. Tests executed on realised and simulated 

price time series are rejected at 0.00 p-value (Table A10 in the Appendix). Therefore, we infer 

that in the analysed perimeter, knowing the price value of a single market is valuable for 

forecasting future values of at least one of the other markets. 

 

2.5.3 Discussion 

 

Slovenia, positioned at the heart of the case study simulation perimeter, is connected to the 

Central Western Europe power markets, the Italian market, and South Eastern Europe markets, 

which substantially differ in terms of maturity and electricity price levels. Market coupling 

simulation at the power market crossroads of Europe makes it an interesting case to study the 

implications and benefits from market coupling with the neighbouring countries with respect 

to the CBC usage efficiency, electricity price convergence, price volatility, and price shock 

transmission. 

 

Inefficient usage of CBC in non-coupled markets typically resulted in partial CBC utilisation 

in case of a price spread between the market areas or CBC utilisation in adverse direction 

(exports from high price area to low price area). As the electricity and CBC rights are traded at 

two different auctions, inefficient CBCs utilisation is frequently present. Price convergence in 

such a market set-up is rarely achieved. Partial or adverse CBC utilisation are less frequent on 

borders with pre-existing larger price spreads such as ATSI and ATIT, where CBCs are deemed 

to be fully utilised most of the time. In the studied perimeter, we can observe that most severe 

and frequent inefficiencies in CBCs utilisation occur on the HRSI border. The HRSI border 

connects markets with low supply price elasticity and sufficient CBC to eliminate price spread 

majority of the time. Due to the asymmetry in the electricity and CBC rights auction in non-

coupled markets, the price convergence between the Slovenian and Croatian markets is not 

achieved. The market coupling algorithm eliminates all inefficiencies in CBCs utilisation, 

which is visualised in Figure 2.4. Further, we observe a pronounced price shock transmission 

with a characteristic 24-hour lag in non-coupled markets, indicating an incentive of market 
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participants to readjust their strategies after the observed price shock in the neighbouring 

market. A strong incentive to readjust strategies after the observed price shock (Figure 2.5) and 

a considerable amount of unutilised CBCs on HRSI interconnector (Table 2.2), indicate the 

inability to optimally act in non-coupled electricity markets. Exercise of market power is 

typically associated with CBC congestions. Therefore, we conclude that the inability to 

optimally act in non-coupled electricity markets is associated with presented information 

asymmetry due to two different auctions. In simulated coupled markets, price shock 

transmission becomes instantaneous. Therefore, a given mandate to market agents to regulate 

electricity transport in non-coupled electricity markets is shown to be inefficient. Pellini (2012) 

concluded that high-priced areas, such as Italy, could greatly benefit from the introduction of 

the market coupling mechanism. According to our simulation results, we conclude that market 

coupling is beneficial for all involved counterparties.  

 

Market coupling impact on the suppliers’ and consumers’ income is positive. In the analysed 

period the overall income improved for almost 16 million €. The most evident price change in 

the market coupling simulation is observed in the Croatian market with the price reduction on 

yearly average basis above 1 €/MWh. Price changes in other markets are considerably lower. 

Most severe and frequent instances of suboptimal CBC utilisation are registered on the HRSI 

border. Sufficient residual values of non-utilised CBCs on the HRSI border and low supply 

price elasticities in both markets resulted in a significantly improved price convergence 

between the Slovenian and Croatian markets. Due to low residual values of non-utilised CBCs 

on the ATIT, ATSI, and ITSI borders and relatively higher supply price elasticity on the 

Austrian and Italian markets, the price difference between the realised and simulated market is 

low. Price dynamics in markets with lower supply price elasticities marginally changes with 

the implementation of market coupling mechanism. The market coupling mechanism converts 

a residual value of the non-utilised CBCs in non-coupled markets into improved market 

liquidity. Significant price changes are achieved even by a marginal change in the CBC 

utilisation. We conclude similarly as Huisman and Kiliç (2013) that due to improved liquidity 

in coupled markets, volatility and extreme price situations are reduced. The risk related to the 

daily market operations is typically derived from high price volatility. This is especially valid 

for spot prices, where the volatility can be as high as 50% on a daily scale, i.e. over 10 times 

higher than for other energy products (natural gas and crude oil) (Weron & Misiorek, 2005). 

In non-coupled markets with low supply price elasticity and sufficient residual values of non-

utilised CBCs, a reliable and fair price signal is essential. The market coupling mechanism 

guarantees a reliable and fair price signal to all market participants. 

 

By the estimated VAR model and underlying impulse response functions, we have empirically 

confirmed that the magnitude of the price shock transmission in the coupled markets 

significantly amplifies and changes the overall price dynamics. In general, the price shock 

transmission amplifies from the markets with the most severe and frequent CBCs allocation 

inefficiencies. With the sufficient available cross-border capacity, price shocks are no longer 

locally absorbed. In the non-coupled market regime, the observed price shock transmission 
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with a 24-hour lag indicates the incentive and opportunity of market participants to readjust 

their strategies after the observed price shock. The observed price shock transmission with the 

characteristic 24-hour lag in the non-coupled market regime is a result of asymmetry between 

the electricity and CBC rights auctions. Electricity price shock transmission materialise 

instantaneously i.e. without a lag in the simulated market coupling regime. With the improved 

price shock transmission, market integration in coupled markets significantly improves 

throughout the coupled market areas. 

 

The applied simulation approach of order book generation and electricity price determination 

compliant to the social welfare maximisation algorithm used by the European power exchanges 

is a convincing choice for the applied market simulations in coupled day-ahead markets. 

Following from the mathematical optimisation model, we have confirmed that the market 

coupling mechanism ensures efficient transmission capacities utilisation with the power flow 

following economic logic. The proposed simulation framework provides invaluable and 

detailed insights in the price determination and CBCs allocation process that cannot be attained 

in the general statistical or computational intelligence modelling framework. An alternative 

order book generation process based on the econometrically estimated aggregate supply price 

elasticity functions closes a gap associated with power exchange order book data availability. 

Spot market often represents just a small part of the total electricity trade (2007). Apparent 

lower market liquidity in the real spot power exchange order book data is bridged by the 

econometrically estimated aggregate supply price elasticity functions. Estimation of the 

aggregated supply price elasticity by the rolling window is justified as it recognises 

unaccounted temporary supply features. The stylised fact that the supply price elasticity during 

daily peak hours is lower compared to off-peak hours is confirmed and accounted by the 

estimation on peak and off-peak hourly samples. 

 

The proposed simulation framework could be modified for electricity price forecasting tasks. 

In an electricity price forecasting setting, applicable factors on the demand and supply sides 

can be incorporated in the order book generation mechanics, whereas network factors are 

accounted for in the binding network constraints. Insights in the price determination and CBCs 

allocation process could significantly improve price spike forecasting, as the CBC congestions 

are determined by the simulation. A price spike is characterised by a sudden departure of prices 

from the normal regime for a very short time interval (Grossi & Nan, 2019). Such a situation 

could be predominantly associated with electricity demand, generation outages, transmission 

congestion, market participant behaviours, etc. (Hong et al., 2016). In the future, we plan to 

extend our research to electricity price forecasting coupled European electricity markets, with 

the implementation of marginal costs and production availability in order book generation 

mechanics. 
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2.6 Conclusion 
 

We have simulated market coupling at the power market crossroads of Europe, with a goal to 

eliminate the observed inefficient cross-border capacity (CBC) utilisation on Austrian-Italian, 

Austrian-Slovenian, and Croatian-Slovenian cross-border interconnectors. Empirical 

implications of regional market coupling on efficient cross-border capacity utilization and the 

underlying effect on market clearing prices have not been jointly researched yet. 

 

Market coupling simulation results confirmed the efficient CBC usage, improved electricity 

price convergence, reduced price volatility, and improved price shock transmission in coupled 

electricity markets. Market integration, indicated by the price shock transmission intensity and 

price shock transmission timing, empirically improves in the market coupling environment. 

The market coupling mechanism ensures that the transmission capacities are always efficiently 

utilised with the power flow following economic logic. Spare capacity on cross-border 

interconnectors occurs only when all opportunities for arbitrage have been exploited and prices 

are equal, which follows from the mathematical optimisation model. In the studied regional 

scope of the simulation, the most severe and constant inefficiencies in CBCs utilisation occur 

on the interconnectors connecting the Slovenian and Croatian power markets. These markets 

are characterised by low supply price elasticity, but with a sufficient CBC to eliminate existing 

pre-coupling price spread. The estimated overall market coupling impact on the suppliers’ and 

consumers’ income i.e. generated surplus is significant, especially in period with simulated 

market coupling on the Croatian-Slovenian cross-border interconnectors.  

 

Proposed simulation framework provides valuable and detailed insights in the electricity price 

determination and CBCs allocation process that cannot be attained in the general statistical or 

computational intelligence modelling framework. An alternative power exchange order book 

generation process, based on the publicly available ENTSOE-TP data, efficiently bridges 

concerns with the partially accounted system trade in real order books and public order book 

data availability. The proposed simulation framework, compliant with the social welfare 

maximisation algorithm (EUPHEMIA) is recognised as a convincing choice for the applied 

simulations in coupled electricity markets. With currently ongoing final steps in EU markets 

integration – referred as the Single Day-ahead Coupling project, the simulations results are of 

significant importance for EU policy makers, network operators, and market agents. Most 

important, exclusively relying on publicly available ENTSOE-TP data and flexible order book 

generation mechanics, the simulation framework can be adjusted for a specific application of 

the interested market participant. 
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3 THE CROWDING OUT OF CONVENTIONAL ELECTRICITY 

GENERATION BY RENEWABLE ENERGY SOURCES: 

IMPLICATIONS FROM GREEK, HUNGARIAN, AND ROMANIAN 

ELECTRICITY MARKETS 

 

3.1 Introduction 
 

Growth in electricity generation from renewable energy sources (RES) to achieve a less 

polluting and import-dependent energy sector in the EU member states has influenced 

electricity market dynamics. National promotion strategies triggered by the Directive 

(2001/77/EC) on renewable energies in the electricity sector have been the major driving force 

for this development. All EU member states have introduced policies to support the market 

introduction of RES (Ragwitz & Held, 2007). Guaranteed feed-in-tariffs have been most 

successful to stimulate investments in renewable energies, as investors receive their income on 

the basis of the set up renewable promotion scheme and not from the electricity sold on spot 

markets with highly volatile prices (Sensfuß et al., 2008). Consequently, increased renewable 

generation of electricity crowds out other high(er) marginal-cost technologies and results in 

lower electricity prices in the wholesale electricity market (Keles et al., 2013). The crowding 

out of generation from conventional (non-renewable) energy sources with higher marginal 

costs is recognised in the literature as a merit order effect (MOE). Lower prices result from the 

fact that renewables bid into wholesale electricity markets at almost-zero prices, and therefore 

shift the electricity supply curve to the right (Keles et al., 2013). 

 

The novelties of this chapter are twofold. First, an empirical analysis is conducted in order to 

confirm and quantify merit order effect in yet unresearched Hungarian, Romanian and Greek 

electricity markets. Second, relying on data mining algorithms, we simulate electricity prices 

in the no-RES generation scenario and quantify changes in the conventional generation 

portfolio as a result of the excluded RES generation. The analysed electricity markets of Central 

and South East Europe given their characteristics qualify for a merit-order effect analysis. 

Greek and Romanian electricity markets have higher RES generation shares in their electricity 

generation mix, and clearly qualify as interesting case studies. In contrast, Hungary has a low 

share of renewable generation and serves as a control country. Due to its direct interconnection 

to the Romanian market, it could be considered as a natural price cap for the expected 

Romanian prices in the no-RES generation scenario simulation. We expect to confirm that the 

increase in RES generation crowds out conventional generation sources and in the short-run 

reduces the price of electricity. Further, based on the no-RES generation simulation results, we 

investigate the effect of RES generation on the electricity price levels, price volatility, and 

electricity net export. 

 

The empirical MOE analysis is executed to supplement the existing literature focused on key 

EU energy areas in terms of installed renewable capacity and electricity market development. 



54 

 

Prior studies considering empirical confirmation and quantification of the MOE typically 

address the German (Benhmad & Percebois, 2018; Neubarth et al., 2006; Sensfuß et al., 2008; 

Weigt, 2009; Würzburg et al., 2013), Spanish (Figueiredo & Silva, 2019; Gelabert et al., 2011; 

Gil et al., 2012; Sáenz de Miera et al., 2008), and Danish (Jónsson et al., 2010; Unger et al., 

2018) electricity markets. Based on the literature review, there is no similar study investigating 

the MOE in the EU member countries in Central and South East Europe regions. 

 

In this chapter, we empirically confirm and quantify MOE by a multivariate regression model 

similar to Würzburg et al. (2013) analysing the MOE in the German and Austrian electricity 

markets. For the preparation of simulated no-RES generation scenario, we have further 

estimated the influence of RES generation on the country electricity net-export and aggregated 

supply curves for different electricity generation technologies. Part of the domestic RES 

generation is typically exported to neighbouring countries. Therefore, only a domestically 

absorbed RES generation share causes MOE and reduces domestic electricity prices. The 

influence of RES generation on country electricity net export is quantified by a multivariate 

regression model. According to the economic theory, supply curve quantity and price pairs are 

determined by the short-run marginal costs of different electricity generation technologies. 

Aggregated supply curve for the individual generation technology is estimated based on the 

observed day-ahead electricity prices and reported electricity dispatch. Due to the prominent 

non-linear behaviour of the electricity price signals (Weron, 2014), we estimate aggregated 

supply curves by employing data mining algorithms. The estimated energy imbalance caused 

by the excluded renewable generation is compensated by the additional conventional 

generation dispatch. The required additional conventional generation dispatch to maintain 

energy balance is priced according to the estimated aggregated supply curves. Based on the no-

RES generation simulation results, we can study the effect of RES generation on electricity 

price levels and volatility. 

 

The chapter is structured as follows. Section 2 looks more closely into the MOE theory and 

provides literature review. Section 3 outlines the methodology and its application. Data, data 

availability, and country electricity generation mix features are summarised in Section 4. 

Section 5 reports and discusses the empirical results. Finally, Section 6 presents concluding 

remarks with summarised key research findings. 

 

 

3.2 Merit order effect 
 

Guaranteed feed-in-tariffs support for RES electricity generation has led to growth in the 

installed capacity of supported technologies. Throughout the chapter, wind and solar electricity 

generation are addressed by the RES electricity generation. Theoretical consideration 

introduced by Jensen and Skytte (2002) suggest that renewable electricity generation results in 

lower electricity prices. Electricity price is determined at the intersection of the aggregated 

demand and supply curves. According to Cerjan et al. (2013) electricity is an essential 
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commodity, and as such, in the short-term exhibits inelastic demand (Cerjan et al., 2013). This 

is in Figure 3.1 indicated by a vertical line D. The profile of the supply curve is defined by the 

ranking of the generation units by their short-run marginal costs in increasing order, together 

with the dispatched energy, in a merit order (Sensfuß et al., 2008). In Figure 3.1, electricity 

price is determined at the price level P at the intersection with the gas power plant short-run 

marginal costs (Figure 3.1). 

 

Figure 3.1: Merit order based on marginal costs, merit order electricity price setting & merit 

order effect. 

 
Source: Own work. 

 

The price reducing impact is called a ‘merit-order effect’ and can be explained with the right 

shift of the supply curve when RES generation with low variable costs is integrated into the 

supply curve (Figure 3.1). Assuming an inelastic demand, electricity price as an intersection 

between supply and demand will thus decrease to price P’ associated with the short-run 

marginal costs of nuclear technology (Figure 3.1). The gradient of the supply curve depends 

mainly on technologies, efficiencies, fuel prices, start-up costs, and 𝐶𝑂2 price (Keles et al., 

2013). 

 

Electricity interconnections have become increasingly common as a means of integrating 

electricity markets (Macedo et al., 2021). In general, countries tend to (net) export greater 

amount of electricity if domestic RES generation increases (Croonenbroeck & Palm, 2020). In 

Figure 3.1 - 2, this is illustrated with the increase of electricity price from P’ to P’’. Price 

movement from P’ to P’’ is induced by the foreign demand (NX) for cheaper electricity due to 

the MOE, which increases the final demand for electricity (D + NX). New electricity price P’’ 

is associated by the short-run marginal costs of coal electricity generation technology. 
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Table 3.1 summarises day-ahead electricity prices in the analysed period. The influence of 

German electricity prices on electricity prices across the other regions is confirmed in many 

studies (Bunn & Gianfreda, 2010; Lindström & Regland, 2012; Ziel et al., 2015). Table 3.1 

confirms this stylized fact, as the electricity price levels of the analysed perimeter follow 

German price dynamics. 

Table 3.1: Day-ahead electricity prices in €/MWh 
Year DE HU RO GR 

2015 31.8 40.6 36.4 51.9 

2016 29.0 35.5 33.4 42.8 

2017 34.2 50.4 48.2 54.7 

2018 44,5 51.0 46,5 60,4 

Source: ENTSO-E TP 2020. 

 

Figure 3.2 presents electricity generation mixes of Hungarian, Romanian, and Greek power 

systems. RES have insignificant contribution to the Hungarian generation mix, as there is no 

solar generation, whereas wind accounts for less than 2.5% of total generation on a yearly basis. 

In the Romanian generation mix, on average, 10% of electricity is generated by the wind and 

2.5% in solar power plants. In Greece, 10% and 7.5% of electricity is generated by the wind 

and solar power plants, respectively. Based on the observed wind and solar maximum 

generation outputs in the analysed power systems, we can conclude that the installed RES 

capacity remained relatively constant over the 2015–2018 period (Table A11 of the Appendix). 

Romania with 12.5% and Greece with 17.5% RES share in generation mix clearly qualify as 

good candidates for the MOE analysis. 

 

Figure 3.2: Hungarian, Romanian and Greek electricity generation mixes in percentages. 

 
Source: ENTSO-E TP 2020. 
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According to Würzburg et al. (2013), key MOE studies can be classified in simulation-based 

and empirical analysis studies. Simulation studies are based on the simulation models (e.g., 

unit commitment model) using real past or hypothetical data, whereas empirical studies are 

generally performed with econometrics models on real past data. Due to fundamental 

difference in approaches, drawing general conclusions and result comparison of different 

papers should be done with special care. 

 

Important simulation-based studies typically rely on information rich and flexible simulation 

models used for power system or agent-based simulations. With an agent-based simulation 

platform, Sensfuss et al. (2008) analysed German electricity prices with and without RES 

generation. RES generation caused a price reduction by 1.7 to 7.8 €/MWh. Weber and Woll 

(2012) simulated the German electricity system by 34 generation technologies for electricity 

generation, fuel prices, and 𝐶𝑂2 prices. In the no-RES generation, scenario electricity prices 

are 4.04 €/MWh higher compared to the base scenario with wind generation. Fürsch et al. 

(2012) simulated merit-order effect for Germany based on the DIME Model (Dispatch and 

Investment Model for Electricity Markets in Europe). This model accounts for the international 

flows and dynamic adaptation of generation mix to increased RES generation. Due to the 

predicted RES generation growth, they predicted in years 2015, 2020, 2025, and 2030 a price 

reduction of 2 €/MW, 4 €/MWh, 5 €/MWh, and 10 €/MWh, respectively. Sáenz et al. (2008) 

in the Spanish market simulation analysis, between years 2005 and 2007, report a price 

reduction caused by the wind generation of 7.08€/MWh to 12.44 €/MWh. 

 

With the increased market transparency and ex-post data availability number of published 

empirical studies quantifying the impact of RES generation on electricity prices significantly 

increased. Neuberth et al. (2006) estimated by the univariate econometric model the impact of 

wind generation on German electricity day-ahead prices in years 2004 and 2005. They find that 

the electricity price drops by 1.89 € for each additional GW of wind power generation. Using 

time series regression analysis, Cludius et al. (2014) estimated a price drop caused by RES 

generation in Germany by 6€/MWh in 2010, 10 €/MWh in 2012, and a projected price drop of 

14-16 € in year 2016. 

 

Macedo et al. (2021) using a SARMAX/GARCH time series econometric approach estimated 

the impact of RES generation and net export on Swedish day-ahead electricity prices from 2016 

to 2020. They estimated model for each hour of the day individually and confirmed 

homogenous negative impact of RES generation on electricity price. A 1% increase in RES 

generation decreased the electricity price by 0.0609%. Macedo et al. (2020) expanded 

preceding study to the Portugal electricity market. They estimated that the 1% increase in RES 

generation on average decreased the Portuguese electricity price by 0.056%. Figueiredo and 

Pereira da Silva (2019) based on historical Spain and Portuguese (Iberian market) electricity 

power exchange data, quantified the MOE with the GARCH econometric model. For the period 

from 2013–2017, they confirmed a MOE of 13.11 €/MWh for wind generation and 8.79 

€/MWh for solar generation. 
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Azofra et al. (2014) estimated the MOE in the Spanish electricity market using a data mining 

regression tree (M5P) algorithm. For year 2012, they have estimated a price drop between 7.42 

and 10.94 €/MWh caused by the wind generation. Cló et al. (2015) estimated the MOE of wind 

and solar generation in the Italian power market. They have reported that in the years 2005–

2013 for each additional GW of solar and wind generation the electricity prices on average 

dropped by 2.3 €/MWh and 4.2 €/MWh, respectively. Janda (2018) investigated the influence 

of solar generation on Slovak day-ahead electricity price in years 2011–2016. The estimated 

multivariate model indicates that, ceteris paribus, 1% increase in solar generation is associated 

with a spot price decrease from 0.016% to 0.067%. Given the literature review of the most 

important studies on MOE in European electricity markets, we aspire to close the gap of yet 

unresearched MOE in Central and South East European electricity markets. 

 

 

3.3 Methodology 
 

The presence of MOE in Hungary, Greece, and Romania is initially statistically verified by a 

multivariate regression model. Then, we simulate the adjustment of the realised electricity 

prices to the no-RES generation scenario. The applied no-RES generation simulation approach 

intuitively takes as an example the DIME model (Dispatch and Investment Model for 

Electricity Markets in Europe) used by Fürsch et al. (2012). The DIME model accounts for the 

international flows and dynamic adaptation of the generation mix to changes in RES 

generation. 

 

 

3.3.1 Econometric merit order effect verification 

 

To statistically verify the presence of the MOE, we estimate a multivariate regression model 

similar to Würzburg et al. (2013). Neubarth et al. (2006) found that with daily average values 

RES explanatory variables tend to be more relevant for the definition of day-ahead prices in 

the German market area. Therefore, to eliminate ad hoc anomalies and short-term noise, all 

model variables are calculated as the daily average values. In Equation 3.1, electricity price 

(𝑃𝑒𝑙𝑒𝑐,𝑑) is the dependent variable, whereas the explanatory variables are the previous day 

electricity price (𝑃𝑒𝑙𝑒𝑐,𝑑−1), realised German electricity price (𝑃𝐷𝐸,𝑑), the demand for electricity 

(𝐿𝑜𝑎𝑑𝑑), wind and solar generation (𝑅𝐸𝑆𝑑), the net export of electricity (𝑁𝑋𝑑), and standard 

error term (𝜀𝑑). In Equation 3.1, Δ represents the first difference operator and 𝑑 stands for daily 

observations: 

 

∆𝑃𝑒𝑙𝑒𝑐,𝑑 = 𝛽𝑜 +  𝛽1∆𝑃𝑒𝑙𝑒𝑐,𝑑−1 + 𝛽2∆𝑃𝐷𝐸,𝑑 + 𝛽3∆𝐿𝑜𝑎𝑑𝑑 + 𝛽4∆𝑅𝐸𝑆𝑑 + 𝜀𝑑            (3.1) 
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According to Weron (2014), AR-type models provide the backbone of all time series electricity 

price models, therefore the autoregressive explanatory variable (𝑃𝑒𝑙𝑒𝑐,𝑑−1) is used in the model. 

The German–Austrian market features an important renewable capacity that is obviously 

related to the strong renewable support scheme that has been in place for many years 

(Würzburg et al., 2013). Explanatory variable 𝑃𝐷𝐸,𝑑 is added into the models, as the influence 

of German electricity price on electricity prices across other regions is confirmed in other 

studies (Bunn & Gianfreda, 2010; Lindström & Regland, 2012; Ziel et al., 2015). According 

to Würzburg et al. (2013) Germany is a highly developed economy where the energy markets 

are linked either through substitution possibilities for consumers or through input factor 

influences (such as gas-fired power plants). For the studied perimeter, we could not find 

appropriate public coal and gas price indexes therefore, variable 𝑃𝐷𝐸,𝑑 is used as an indicator 

for the fuel and CO2 price levels in Greek, Hungarian, and Romanian markets. The electricity 

demand 𝐿𝑜𝑎𝑑𝑑 is inelastic, but with high seasonality and sensitivity to weekly patterns of 

consumption. The MOE in Equation (3.1) is controlled by the variable 𝑅𝐸𝑆 𝑑 measuring the 

daily wind and solar electricity generation. 

 

 

3.3.2 Electricity price simulation in the no-RES generation scenario 

 

In the no-RES generation simulation, we adjust observed hourly electricity prices by 

eliminating present merit order effect and adjusting net-export levels. Therefore, simulation 

requires estimation of the power plants merit order and electricity exports dependency on RES 

generation. In the no-RES generation scenario, an additional quantity that must be supplied 

from the conventional power plants is equal to the sum of realised RES-generation and net-

export implied by the RES generation (foreign demand for cheaper energy). The power system 

characteristic is that the electricity supply and demand must always be balanced. Therefore, we 

can equate the required volume of additional conventional generation to secure the power 

system balance in the simulated no-RES generation scenario by Equation 3.2: 

 

∆𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦ℎ =  ∆𝐿𝑜𝑎𝑑ℎ +  ∆𝑁𝑋ℎ − ∆𝑅𝐸𝑆ℎ                         (3.2) 

 

The electricity demand is deemed to be inelastic; therefore, we can reconstruct the realised 

intersection of the aggregated supply and demand curve as a function of the observed electricity 

day-ahead price and the estimated merit order of the system power plants. The simulated 

electricity price in the no-RES scenario corresponds to a shift of the supply and demand curve. 

The left shift of the supply curve is equal to the realised RES generation, whereas the demand 

shift is equal to the estimated change in the net export (∆𝑁�̂�) triggered by the RES generation. 

Therefore, estimated energy imbalance (𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒̂ ) caused by the excluded RES 

generation is filled by the additional conventional generation supply, according to Equation 

3.3: 
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𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒̂
ℎ =  ∆𝑁�̂�ℎ − ∆𝑅𝐸𝑆ℎ                           (3.3) 

 

The estimated 𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒̂
ℎ is the required additional conventional supply that secures 

the power system balance and is priced according to the estimated system merit order. The 

simulated market clearing electricity price is equal to a price in the last price-quantity pair that 

fills estimated 𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒̂  quantity. 

 

 

3.3.2.1 Impact of the RES generation on electricity net export 

 

Traber & Kemfert (2009) confirmed that the neighbouring countries with lower RES 

generation in their generation mix (high 𝐶𝑂2 intensity) benefit by the electricity imports from 

countries with higher RES generation in the generation mix (low 𝐶𝑂2 intensity). The impact of 

RES generation on net export is estimated by the multivariate regression model (Equation 3.4). 

According to the economic theory, the electricity net export should be lower in no-RES 

generation scenarios. Therefore, it is crucial to quantify the impact of RES generation on 

electricity net export and account for it in the no-RES generation scenario. In Equation 24, 

electricity net export (𝑁𝑋ℎ) is the dependent variable, whereas the explanatory variables 

include the 24-hour-lagged electricity net export (𝑁𝑋ℎ−24) and the realised wind and solar 

generation (𝑅𝐸𝑆ℎ), whereas 𝜀ℎ represents the standard disturbance term. In the multivariate 

regression model, defined by Equation 3.4, Δ represents the first difference operator and ℎ 

stands for the hourly observations: 

 

∆𝑁�̂�ℎ = 𝛽𝑜 +  𝛽1∆𝑁𝑋ℎ−24 + 𝛽2∆𝑅𝐸𝑆ℎ+𝜀ℎ                (3.4) 

 

The influence of RES generation on net export, i.e. international trade, is controlled by the 

𝑁𝑋ℎ  variable calculated as a sum of all country inflows and outflows (Equation 3.5): 

 

𝑁𝑋ℎ =  ∑ (𝐼𝑛𝑓𝑙𝑜𝑤𝑖 − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑖)
𝐼
𝑖  𝑤ℎ𝑒𝑟𝑒  𝑖 ∈ {𝐵𝑜𝑟𝑑𝑒𝑟1 , … , 𝐵𝑜𝑟𝑑𝑒𝑟𝐼}             (3.5) 

 

The impact of RES generation on net export is estimated by the 7-day rolling-window approach 

over the available data set. Therefore, each model is estimated on 168 hourly data points.  

 

 

3.3.2.2 Merit order estimation 

 

The ranking of the generation units by their short-run marginal costs in the increasing order, 

together with the dispatched energy, can be efficiently simulated by the unit commitment 
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models7 that minimises the total dispatch costs of the power plant fleet (Schill et al., 2017). For 

the considered time-period and analysed country scope, we could not obtain the required data.8 

With our publicly available data source, we were limited to the reported aggregated hourly 

output for each type of power plants (presented in Figure 3.2) and hourly day-ahead power 

prices. Therefore, we model short-term economic dispatch of gas, lignite, nuclear, and other 

power plants on the aggregate level. Due to the low marginal costs of generation, the supply of 

the hydro and nuclear technology is predominantly defined by the hydrology levels and nuclear 

availability. The economic dispatch of the hydro and nuclear power plants in the no-RES 

generation scenario is due to the low marginal costs and technical characteristics of the 

generation deemed to be unchanged. The merit order of gas, lignite nuclear, and other power 

is modelled according to Equation 3.6, where 𝑃𝑒𝑙𝑒𝑐,𝑖,ℎ is the day-ahead electricity price, 

𝑂𝑢𝑡𝑝𝑢𝑡𝑆ℎ𝑎𝑟𝑒𝑖,ℎ is the percentage output of the observed aggregate power plant capacity and 

𝜀𝑖,ℎ is the error term. According to the electricity market, economics observed day-ahead 

electricity price (𝑃𝑒𝑙𝑒𝑐,𝑖,ℎ) corresponds to the generation marginal costs of the most expensive 

power plant serving electricity to the market. In Equation 3.6, ℎ stands for the hourly 

observations: 

 

𝑂𝑢𝑡𝑝𝑢𝑡𝑆ℎ𝑎𝑟𝑒𝑖,ℎ = 𝛽𝑜 + 𝛽𝑜𝑃𝑒𝑙𝑒𝑐,𝑖,ℎ+𝜀𝑖,ℎ 𝑤ℎ𝑒𝑟𝑒  𝑖 ∈ {𝐺𝑎𝑠, 𝐿𝑖𝑔𝑛𝑖𝑡𝑒, 𝑂𝑡ℎ𝑒𝑟}           (3.6) 

 

Non-linear electricity price behaviour fundamentally results from the profile of the supply 

curve. Therefore, we estimate model defined by Equation 3.6 with predictive modelling 

approaches that can handle such non-linearities. We have estimated the merit order for the 

distinct types of power plants by three data mining algorithms: the k-nearest neighbours 

algorithm (KNN)9, regression tree algorithm (M5P)10, and the random forest algorithm 

(RFR)11. Merit order is estimated by the 7-day rolling-window approach over the entire data 

set. The selected window size is large enough for the unbiased estimation and narrow enough 

to recognise for the temporary supply features. By the term ‘temporary supply features,’ we 

specifically address non-accounted variables such as generation availability, fuel prices, 𝐶𝑂2  

prices, start-up costs, strategic behaviour, etc. 

 

 

3.4 Data 
 

Data availability and accessibility historically limited applied power market research (Hirth et 

al., 2018). The situation in Europe has changed in 2015 with the commencement of the 

 
7 Troha and Hauser (Schill & Gerbaulet, 2015) used unit commitment model to evaluate the impact of start-up 

costs and grid operator on the UK power price equilibrium. Schill et al. investigated the impact of fluctuating RES 

generation on the start-up costs in Germany (Schill et al., 2017). 
8 Unit commitment models are reliable and efficient, but require exact set of data for each individual power plant 

(generation data, outages data, start-up cost, efficiency factor, fuel prices, CO2 price, etc.). 
9 For a detailed description of the KNN algorithm please refer to (Mangalova & Agafonov, 2014). 
10 For a detailed description of the M5P algorithm please refer to (Wang & Witten, 1996). 
11 For a detailed description of the RFR algorithm please refer to (Breiman, 2001). 
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Transparency Platform (TP) (ENTSO-E TP, 2020) operated by the European Network of 

Transmission System Operators for Electricity (ENTSO-E). The Hungarian, Greek, and 

Romanian working data sets span from 1.1.2015 to 30.9.2018, resulting in a time series of 

1,368 days or 32,832 hourly observations. 

 

With the available ENTSO-E TP data, we were limited to the reported aggregated hourly output 

for each type of power plants, scheduled commercial exchanges (net export), and hourly day-

ahead power prices. In the data collection phase, we noticed that there are missing data points 

and non-reported data types in the ENTSO-E TP data base. Therefore, the Romanian data set 

is a blend of ENTSO-E TP data and Romanian national transmission system operator’s data 

source (Transelectrica, 2020) for the reported aggregated actual generation. With the blended 

data set, we can econometrically confirm the MOE and quantify the RES generation effect on 

the country’s net exports. The no-RES generation simulation is structured upon the estimated 

merit order, as we could not find required data for solving unit commitment problem (historical 

power plant output, fuel prices, start-up costs, efficiency, etc.). Merit order estimation is 

performed with the family of data mining algorithms that can handle non-linearities associated 

with the profile of the supply curve and electricity prices. Due to the limited public data 

availability, the analysed countries can still be classified as less mature power markets. 

 

 

3.5 Results & discussion  
 

3.5.1 Econometric merit order effect verification and quantification 

 

Multivariate regression models are estimated to econometrically confirm and quantify merit 

order effect in Hungary, Greece, and Romania in the period from 2015 to 2018-Q3. For each 

country, we have estimated eight model specifications to quantify and confirm MOE. 

Estimation results are reported in the Appendix Table A12. Model specifications 1–4 are 

estimated on the individual calendar year data samples. Model specification 5 is estimated on 

the whole data sample from year 2015 to 2018-Q3. Model specification 6 differentiates the 

impact of solar and wind generation on the observed day-ahead electricity prices. Models 7 & 

8 differentiate the MOE of upper quarter of high-load days and the lower quarter of low-load 

days. 

 

Estimation on the individual calendar year data samples is done to observe possible differences 

due to varying penetrations of renewable sources, and due to possible long-run adjustment of 

the electricity sector to merit-order effects (model specification 1–4). In Figure 3.2, we can 

observe that the electricity generation mix shares are varying in the analysed period. In all 

countries, we can observe a tendency towards less lignite generation share in the generation 

mixes. With such an analysis setting, we can detect the influence of generation shares in 

generation mixes on the price effects of renewable generation over the time. 
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Model specification 5 is estimated on the whole data sample from year 2015 to 2018-Q3. Table 

3.2 summarises estimation results of model 5 and confirms MOE, i.e. negative impact of 

increased RES generation (∆Ren) on electricity prices. Model specification 6 is estimated to 

differentiate the impact of solar and wind generation on the observed day-ahead electricity 

prices. This is done by the use of separate coefficients that intend to identify the different 

generation patterns of these technologies (Würzburg et al., 2013). Econometrically estimated 

quantitative MOE is interpreted as a price reduction in €/MWh for each additional GWh of 

renewable generation. Würzburg et al. (2013) reported that much higher price effects are 

reported for smaller power systems compared to larger power systems, as the 1 GWh of 

additional electricity generation presents much higher generation share in smaller systems. 

Models 7 & 8 are estimated on data samples of upper quarter of high-load days and the lower 

quarter of low-load days. This is done to verify economic theory, that due to the steep profile 

of merit order curve when the electricity system is close to full capacity, RES generation has 

much higher impact on the electricity price reduction. This phenomena is observed and 

confirmed in following reviewed papers: Gelabert et al. (2011), Jonsson et al. (2010), and 

Würzburg et al. (2013). Estimation results for different model specifications for the Greek 

electricity market are reported in Table A12, for the Hungarian electricity market in Table A13, 

and for the Romanian electricity market in Table A14 of the Appendix. 

 

Table 3.2: OLS estimation of daily changes in electricity prices (2015-2018-Q3) 
Model 5 GR HU RO 
 ∆Pelec, t ∆Pelec, t ∆Pelec, t 

∆Pelec, t-1 0.704 [0.00***] 0.582 [0.00***] 0.549 [0.00***] 

∆DE, t 0.160 [0.00***] 0.313 [0.00***] 0.283 [0.00***] 

∆Load, t 0.001 [0.00***] 0.006 [0.00***] 0.004 [0.00***] 

∆Ren, t -0.004 [0.00***] -0.013 [0.00***] -0.007 [0.00***] 

R2 0.77 0.75 0.72 

Adjusted R2 0.77 0.75 0.72 

F-test 1127.29 994.96 846.03 

p-value (F) 0.00 0.00 0.00 

Note: *** and ** indicating significance at 1% and 5 % levels, respectively; and p-values in [] brackets. 

Source: Own work. 

 

Model specification 5, estimated on the whole data sample, confirms the MOE presence in all 

three countries. The coefficients of renewable generation reported in Table 3.2 are negative 

and statistically significant. Greek day-ahead electricity price decreases ceteris paribus by 4 

€/MWh for each additional GWh produced by the RES. Ceteris paribus, The Hungarian day-

ahead electricity price would decrease by roughly 13 €/MWh, whereas the Romanian electricity 

price would decrease on average by 7 €/MWh for each additional GWh produced by the RES. 

 

Model specifications 1–4, estimated for each individual year (2015–2018), confirm the general 

findings of the model 5. In the Greek electricity market, coefficients associated with the RES 

generation are always negative and indicate an average decrease of electricity price from 5–7 
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€/MWh for each additional GWh produced by the RES. In Figure 3.2, we can observe the 

highest share of gas generation in the year 2017. The gas price is only significant for the high-

load days because of the additional requirements for fossil fuels so that peak-load plants can 

cope with the unusually high demand (Würzburg et al., 2013). Therefore, the electricity price 

was frequently set by the expensive gas generation technology. This coincides with the highest 

econometrically estimated MOE in 2017. 

 

The coefficients associated with RES generation in Hungary are always negative and indicate 

an average decrease of the electricity price from 5–35 €/MWh for each additional GWh 

produced by the RES. In 2017, the high Hungarian electricity price coincided with the high 

share of gas generation in that year (Figure 3.2). The highest MOE is – similar to the Greek 

market – estimated by the model specification 3 for the calendar year 2017. The coefficients 

are statistically significant, except in the model estimated on data for 2018.  

 

Generation shares in the Romanian generation mix are stable (Figure 3.2). RES generation 

coefficients for Romania are always negative and indicate an average decrease of electricity 

price from 6–11 €/MWh for each additional GWh produced by the RES. The highest MOE is 

estimated by the model specification 1 for the calendar year 2015. Therefore, the highest 

estimated MOE in the first year could be associated with the lagging adjustment of the 

electricity sector to merit-order effects. 

 

Model specification 6 differentiates the MOE of wind and solar generation. According to Table 

A11 of the Appendix, the observed maximum solar penetration and wind penetration in Greece 

are 1.7 GW and 2.1 GW, respectively (ENTSO-E TP). The wind and solar generation 

coefficients in Greece are negative, similar in levels, and statistically significant. Ceteris 

paribus, additional GWh of wind generation decreases day-ahead electricity prices 

approximately by 4 €/MWh, whereas an additional GWh of solar generation reduces electricity 

prices by 3€/MWh. As there was no solar generation in Hungary in the analysed period, model 

specification 6 estimated to differentiate the MOE of wind and solar generation is equivalent 

to model specification 5. According to Table A11 of the Appendix, the observed maximum 

solar penetration and wind penetration in Romania are 2.8 GW and 0.9 GW, respectively 

(ENTSO-E TP). The wind generation coefficient in Romania is statistically significant and 

negative and, while solar generation coefficient is statistically significant and positive. Positive 

solar generation coefficient indicates higher electricity prices with solar penetration in the 

generation mix. This is not in line with the economic reasoning outlined in Section 2. Solar 

generation peaks in summer during day hours, where the electricity prices are due to naturally 

lower hydro generation availability and higher electricity consumption (air conditioning) 

typically higher. This positive correlation between the summer solar generation and electricity 

prices might have influenced model estimation. The inclusion of a dummy variable indicating 

a summer period did not improve the results. 
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For Greece, the comparison of the MOE on high- and low-load days confirms the findings of 

previous studies, wherein the MOE is more pronounced for high-load days. The difference 

between the high-load days (model specification 7) and low-load days (model specification 8) 

is approximately 2 €/MWh. The estimated coefficients are statistically significant in both 

model specifications. Similarly, the comparison of MOE on high and low load days in Hungary 

reveals an approximately 5 €/MWh difference in electricity price reduction. For Romania, the 

obtained results are not completely in line with previous studies, as the estimates indicate 

higher MOE on low load days, where the difference between the high- and low-load days is 

approximately 1 €/MWh.  

 

3.5.2 Electricity price simulation in the no-RES generation scenario 

 

The adjustment of the realised day-ahead prices to the no-RES generation scenario requires 

several pieces of analysis. Firstly, it is crucial to quantify the impact of RES generation on the 

electricity net export. In the no-RES generation scenario, the electricity net export must be 

adjusted for the electricity net-export share associated with the RES generation. Secondly, 

merit order estimation is required for the determination of the aggregated demand and supply 

curve intersection (given the inelastic domestic demand assumption and observed day-ahead 

electricity price). Based on the estimated energy imbalance caused by the excluded RES 

generation (Equation 3.3), new no-RES generation electricity day-ahead price is determined 

with a left shift of the estimated merit order and demand shift that is equal to the estimated 

change in the net export. 

 

Foreign demand for cheaper energy, i.e. the impact of RES generation on net export is 

estimated by the multivariate regression model (Equation 3.4). The model is estimated by the 

7-day rolling-window approach over the available data set. The explanatory variable 𝑅𝐸𝑆𝑡 

illustrates the impact of RES generation on net export. The estimation summary for the Greek 

electricity market results in statistically significant coefficients indicating that 4.5–5.5% of the 

Greek net export is RES generation dependent (Table A15). Yearly aggregation of the 

estimation results for the Hungarian electricity market is reported in Table A16 in the 

Appendix. The coefficient has a positive value between 0.43–0.85 and is statistically 

significant. Therefore, 43–85% of the Hungarian net export is RES generation dependent. 

Further, 46–53% of the Romanian net export is attributed to the RES generation (Table A17). 

The estimated explanatory coefficients are statistically positive and in line with previous 

research findings. A more detailed analysis of the RES generation impact on electricity net 

export is beyond the scope of this research. This is in line with the research findings of Traber 

& Kemfert (Traber & Kemfert, 2009), that the neighbouring countries with lower RES 

generation benefit by the electricity imports from countries with higher RES generation in the 

generation mix. 

 

Merit order, i.e. ranking of the generation units by their short-run marginal costs in increasing 

order, together with the dispatched energy, is estimated by the family of data-mining 
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algorithms. Different merit order estimation approaches are applied to assure and confirm 

simulation robustness. Merit order is estimated by the 7-day rolling-window approach over the 

entire data set. Figure 3.3 represents the aggregation of weekly merit order estimations by the 

regression tree algorithm (M5P). Estimated merit orders by the k-nearest neighbours (Figure 

A4) and random forest regression algorithms (Figure A5) have similar shapes compared to the 

M5P algorithm and are presented in the Appendix. Both algorithms serve as a robustness check 

and lead to similar results compared to the M5P algorithm. Supply curve shapes are defined by 

the technology short-run marginal costs. Estimated aggregated short-term economic dispatch 

of the marginal cost intensive technologies is in accord with the economic reasoning discussed 

in (Schröder et al., 2013). 

 

Estimated supply curves of gas and lignite power plants have the steepest slope, which is 

expected due to the high fuel and CO2 costs.12 Conversely, the nuclear supply curve is very 

stable due to the low marginal costs and limited generation flexibility. The estimated supply 

curve of the nuclear technology is perfectly elastic at the approximate yearly average electricity 

price level. This confirms that the nuclear generation variation is especially low and estimating 

characteristic supply curve is unreasonable. Therefore, nuclear power plant generation is 

excluded from the merit order used in the no-RES generation scenario. 

 

Figure 3.3: Estimated merit order by the M5P algorithms. 

 
Source: Own work. 

 
12 For general review of generation costs for different electricity generation technologies please refer to Schröder 

et al. (2013).  
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Power plants classified under the category “Other” represent only a small generation share in 

the analysed scope (Figure 3.2). The estimated U-shaped Hungarian curve for other supply is 

a result of aggregating all other ENTSO-E TP generation types into this category (Biomass, 

Fossil Oil, Other, etc.) The estimated other supply curve for the Greek market is perfectly price 

elastic (Fossil Oil; ENTSO-E TP category), whereas for the Romanian market (Biomass; 

ENTSO-E TP category) it is price dependent. The merit order estimated by the k-nearest 

neighbours algorithm is graphically represented in Figure A4 of the Appendix.13 Figure A5 of 

the Appendix is a graphical representation of the merit order estimated by the random forest 

algorithm.14 

 

Merit orders estimated by all three algorithms are similar in shape and confirm discussed 

technology characteristics. The applied modelling approaches are suitable to cope with the non-

linear electricity supply curve behaviour. Nuclear power plant generation is confirmed to be 

stable and does not vary. Due to the low marginal costs of generation, the supply of the hydro 

and nuclear technology is predominantly defined by the hydrology levels and nuclear 

availability. The slope of the merit order is defined by the technologies with significant short-

term marginal costs of generation. Therefore, the adjusted electricity price in the no-RES 

generation simulation is determined by the estimated merit order of lignite, gas, and other 

technology. 

 

Table 3.3: No-RES generation simulation results 

Year Country 
 Realised Prices Simulated Prices Difference 

Model Mean S.D. Mean S.D. Mean S.D. 

2015 HU KNN 40.61 236.59 40.77 232.01 0.17 -4.58 

2015 HU M5P 40.61 236.59 40.66 234.85 0.05 -1.75 

2015 HU RFR 40.61 236.59 40.82 231.84 0.21 -4.75 

2016 HU KNN 35.49 171.09 35.52 170.50 0.03 -0.60 

2016 HU M5P 35.49 171.09 35.49 170.88 0.01 -0.22 

2016 HU RFR 35.49 171.09 35.54 170.19 0.05 -0.90 

2017 HU KNN 50.36 580.99 50.36 580.99 0.00 0.00 

2017 HU M5P 50.36 580.99 50.36 580.99 0.00 0.00 

2017 HU RFR 50.36 580.99 50.36 580.99 0.00 0.00 

2018-Q2 HU KNN 46.46 291.18 46.46 291.12 0.00 -0.07 

2018-Q2 HU M5P 46.46 291.18 46.46 291.13 0.00 -0.06 

2018-Q2 HU RFR 46.46 291.18 46.46 291.04 0.00 -0.14 

2015 GR KNN 51.93 121.42 52.75 105.21 0.82 -16.21 

2015 GR M5P 51.93 121.42 52.13 119.75 0.20 -1.67 

2015 GR RFR 51.93 121.42 52.89 104.76 0.96 -16.66 

2016 GR KNN 42.85 81.07 44.13 83.76 1.28 2.69 

2016 GR M5P 42.85 81.07 43.18 80.06 0.33 -1.00 

2016 GR RFR 42.85 81.07 44.43 82.89 1.58 1.83 

 
13 A free parameter applicable to this specific model application, “k” (number of nearest neighbours), is set to 20. 

For detailed algorithm description please refer to Mangalova & Agafonov (2014). 
14 A free parameter applicable to this specific model application, “number of trees,” is set to 20. For a detailed 

RFR algorithm description, please refer to Breiman (2001). 
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Year Country 
 Realised Prices Simulated Prices Difference 

Model Mean S.D. Mean S.D. Mean S.D. 

2017 GR KNN 54.68 292.08 57.56 322.83 2.88 30.75 

2017 GR M5P 54.68 292.08 55.53 297.71 0.85 5.63 

2017 GR RFR 54.68 292.08 57.94 332.23 3.26 40.15 

2018-Q2 GR KNN 56.94 103.94 58.96 76.84 2.02 -27.10 

2018-Q2 GR M5P 56.94 103.94 57.55 94.59 0.61 -9.36 

2018-Q2 GR RFR 56.94 103.94 59.35 72.48 2.41 -31.46 

2015 RO KNN 36.43 204.84 37.66 197.59 1.23 -7.25 

2015 RO M5P 36.43 204.84 36.85 204.64 0.42 -0.20 

2015 RO RFR 36.43 204.84 38.03 195.57 1.60 -9.27 

2016 RO KNN 33.37 163.77 34.63 160.33 1.25 -3.44 

2016 RO M5P 33.37 163.77 33.76 164.20 0.39 0.43 

2016 RO RFR 33.37 163.77 35.01 156.80 1.63 -6.97 

2017 RO KNN 48.19 575.54 50.34 564.07 2.15 -11.47 

2017 RO M5P 48.19 575.54 48.88 572.86 0.69 -2.69 

2017 RO RFR 48.19 575.54 50.91 563.52 2.72 -12.02 

2018-Q2 RO KNN 41.19 356.62 42.91 343.25 1.72 -13.37 

2018-Q2 RO M5P 41.19 356.62 41.63 353.76 0.44 -2.86 

2018-Q2 RO RFR 41.19 356.62 43.26 346.44 2.07 -10.18 

Source: Source: Own work.. 

 

Table 3.3 summarises the results of the no-RES scenario simulation based on the previously 

analysed impact of RES generation on net export and estimated merit order. The Hungarian 

realised day-ahead price adjusted to the no-RES generation scenario on average changed 

insignificantly (Table 3.3). In year 2015, simulated electricity prices would rise between 0.05–

0.21 €/MWh, whereas the standard deviation is reduced. Analogous results are established for 

the year 2016. The reduced standard deviation in the no-RES generation scenario, registered in 

all simulation years, is a result of eliminated volatile RES generation. Similar to Dong et al. 

(Dong et al., 2019), we confirm that RES generation amplifies electricity price volatility. In 

contrast, according to the simulation results in years 2017 and 2018, the effect of RES 

generation on the electricity prices is insignificant. Due to lower RES generation share in the 

Hungarian generation mix (Figure 3.2) and high electricity exports associated with the RES 

generation (Table A15 of the Appendix), simulation results correspond to the MOE reasoning. 

Simulation robustness is proved, as the general conclusions do not depend on the selected merit 

order forecasting algorithm. 

 

The Greek realised day-ahead price adjusted to the no-RES generation scenario on average 

changed between 0.2–3.26 €/MWh. Estimated energy imbalance covered by the conventional 

generation technologies had the highest impact on the electricity prices in simulation years 

2017 and 2018. However, in the analysed period, the Greek RES generation share remained 

steady. Therefore, simulated electricity price peaks in years 2017 and 2018 coincide with the 

changed estimated merit order profile of gas generation. In years 2017 and 2018, the estimated 

merit order profiles become much more explicit and with notable slope changes near the full 

capacity utilisation (Figure 3.3). After year 2016, German electricity prices significantly 
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increased. Therefore, changed estimated merit order profiles slope is most likely associated 

with the structural change in the short-term marginal costs structure. The highest electricity 

price increase between 0.85–3.26 €/MWh is simulated in year 2017. Price volatility is on 

average reduced, though in 2017 simulation results indicate increased price volatility. The 

lowest hydro generation is reported in year 2017 (Figure 3.2), whereas RES generation share 

remained steady. As a result, market clearing price occurred more frequently at the steepest 

profile of the supply curve. Low hydrology was compensated by the increased lignite and gas 

generation (Figure 3.2). Therefore, realised RES generation had to some extent stabilizing 

effect on the electricity prices as the simulated standard deviation in no-RES scenario 

increased. Due to higher RES generation share in the Greek generation mix (Figure 3.2) and 

low electricity exports associated with the RES generation, simulation results correspond to 

the MOE reasoning. 

 

The Romanian realised day-ahead price adjusted to the no-RES generation scenario on average 

amounted between 0.39–2.72 €/MWh (Table 3.3). The estimated energy imbalance covered by 

the conventional generation technologies had the highest impact on the electricity prices in 

simulation years 2017 and 2018. In the analysed period, the Romanian RES generation share 

remained steady. Therefore, the simulated electricity price peaks in years 2017 and 2018 

coincide with the changed estimated merit order profile of the gas and lignite generation. The 

estimated merit order profiles in these years become much more explicit and with notable slope 

changes near the full capacity utilisation (Figure 3.3). The simulation results confirm reduced 

price volatility with excluded RES generation. With the simulation results, we can confirm that 

the RES generation has much higher impact on the electricity price reduction if the electricity 

price setting occurs at the steep profile of the merit order. The highest electricity price increase 

between 2.15–2.72 €/MWh is simulated in year 2017. The highest electricity price increase 

coincides with the lowest reported hydro generation in Romania and structural change in the 

German electricity price. The German electricity price was on average 5 €/MWh higher in year 

2017 compared to the year 2016 (Table 3.1). In year 2018, the German electricity price rose an 

additional 7 €/MWh. The change in the estimated Romanian gas & lignite supply curves 

profiles coincides with a rise of German electricity prices. Therefore, we conclude that the rise 

in Romanian electricity prices is associated with higher short-term marginal costs of electricity 

generation. Further analysis is beyond the scope of this chapter. 

 

The simulated electricity price and standard deviation are on average reduced in all three 

countries. Due to the lower RES generation share in the Hungarian generation mix (Figure 3.2), 

simulation results indicate minor price changes and standard deviation reductions. Therefore, 

simulation results are more representative in the Greek and Romanian electricity markets, as 

the price increments are in the range 0.2–3.26 €/MWh, and with notably reduced standard 

deviations. The overall simulation robustness is provided, as the general conclusions do not 

depend on the selected merit order forecasting algorithm. 
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3.5.3 Discussion  

 

Würzburg et al. (2013) classify MOE studies in the simulation-based and empirical analysis 

studies. In our study, the initial empirical confirmation and ceteris paribus quantification of the 

MOE is performed by the frequently practiced econometric approach. The adjustment of the 

realised day-ahead prices to the no-RES generation scenario is simulated according to the 

estimated power plant merit order. Simulation-based studies typically rely on solving 

information rich and flexible simulation models used for power system or agent-based 

simulations (Schill et al., 2017; Troha & Hauser, 2015). Due to the limited public data 

availability in the analysed country scope discussed in the previous sections, assembly of such 

simulation-based studies was not feasible. Therefore, modern statistical methods are used to 

bridge this gap in the preparation of the no-RES generation simulation. A family of data mining 

algorithms is used to estimate the power plants merit order. The estimated energy imbalance 

caused by the excluded RES generation is compensated by the additional conventional 

generation dispatch according to the estimated power plant merit order that sets a new 

electricity price. 

 

Due to the fundamental difference in electricity generation mixes, interconnection properties, 

and approaches to the analysis, the comparison of obtained results from different studies could 

be misleading and should be done with special care. Therefore, we limit discussion section to 

the MOE econometric confirmation, as the ceteris paribus quantification of the MOE is a 

characteristic of the individual electricity market. In the existing literature focused on the key 

EU energy markets, MOE is econometrically confirmed by the negative sign and statistical 

significance of the explanatory variable indicating the effect of RES generation on electricity 

prices. Based on the estimated econometric models, we confirmed MOE in Hungarian, 

Romanian, & Greek electricity markets. In Greece, we could not find significant difference 

between the coefficients for solar and wind generation, and therefore the price effects seem to 

be very similar. Conversely, the Romanian solar generation coefficient turned out to be 

positive. The positive correlation between the pronounced summer solar generation peak and 

high electricity prices might have influenced model estimation. Wind is the only reported RES 

source in the Hungarian electricity system, therefore the distinction between the effect of solar 

and wind generation on electricity prices in not applicable. 

 

The estimated MOE in Hungary and Greece is higher on the high-load days compared to the 

low load days. A similar effect is reported by Würzburg et al. (2013), Sensfuß et al. (2008), 

Weight (2009), and Wo et al. (2009). In contrast, the estimated MOE in Romanian electricity 

market is higher on low load days. One possible explanation for this contradicting phenomenon 

is a steeper profile of the lignite supply curve. The estimated lignite supply curve has a steeper 

profile already in the lower-quantity area, compared to the estimated Hungarian and Greek 

lignite supply curves (Figure 3.3). The electricity price setting on low-load days occurs in the 

lower-quantity area, therefore a pronounced MOE could be justified by the steep merit order 

profile in the price setting area. The econometric findings are in accord to the estimated merit 
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order profiles. Therefore, estimation of the power plant merit order by the modern statistical 

methods turned out to provide invaluable reasoning insights to the econometrically estimated 

results. 

 

The simulation results of the no-RES generation scenario on average suggest insignificant 

changes of the Hungarian realised day-ahead price adjusted to the no-RES generation scenario. 

The Greek and Romanian electricity markets, with higher RES generation shares in their 

electricity generation mix, empirically qualify as more interesting case studies. In line with the 

economic theory, the simulation results indicate significant price increments in the no-RES 

generation scenario in both countries. Additionally, reduced price volatility is found due to 

eliminated intermittent RES generation. 

 

Simulation robustness of our no-RES generation simulation is proved as the general 

conclusions do not depend on the selected merit order forecasting algorithm. On average, we 

confirm higher electricity prices and lower price volatility. Further, impact of RES generation 

is more profound with higher electricity prices, i.e. higher short-term marginal costs of 

production. Supply side dynamics associated with profit optimisation is due to the limited 

public data availability approximated with modern statistical methods and requires special 

attention in future research. The simulation approach, with the direct control of the short-term 

electricity production marginal costs, would provide additional valuable insights into the merit 

order data generation process. 

 

 

3.6 Conclusion 
 

With the empirical analysis and no-RES generation simulation, we confirm economic theory 

predictions that an increase in RES generation in the short-run reduces the electricity price in 

the Hungarian, Greek, and Romanian electricity markets. National promotion strategies 

triggered by the Directive (2001/77/EC) on renewable energies in the electricity sector are 

considered as the main reason for this development. All EU member states have introduced 

policies to support the market introduction of RES generation. Therefore, this chapter 

supplements and verifies existing literature findings focused on the investigation of the effects 

of installed renewable capacity on electricity market development. 

 

Econometric models confirmed statistically significant MOE in all analysed countries. The 

RES generation effect on the electricity price levels primarily depends on the individual power 

system characteristics. Econometrically estimated MOE is quantitatively interpreted as a price 

reduction in €/MWh for each additional GWh of renewable generation. Therefore, the 

estimated merit order effect is much larger in the smaller Hungarian power system, compared 

to the bigger Greek and Romanian power systems. The estimated MOE is stable throughout 

different model variations and in line with the reviewed literature findings. In the Romanian 

electricity market, we found an exception, as the solar generation turned out to be positively 
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correlated with electricity prices. The positive correlation between the pronounced summer 

solar generation peak and high electricity prices might have influenced model estimation with 

differentiated RES sources. In the Hungarian and Greek electricity markets, we found a 

pronounced MOE on high-load days, whereas in Romania the effect is more pronounced on 

low-load days. The estimated supply curves for each generation technology provided valuable 

insights to assist the reasoning behind the estimated econometric coefficients. 

 

Simulation of the no-RES generation scenario accounts for the international flow dynamics 

and adaptation of the conventional generation dispatch to the omitted RES generation. The 

estimated energy imbalance in the no-RES generation scenario, caused by the excluded RES 

generation, is compensated by the additional conventional generation dispatch according to the 

estimated power plant merit order. A family of data mining algorithms applied for the merit 

order estimation suitably handled non-linear behaviour of the electricity price signals and 

bridged gap in limited data availability. The impact of RES generation on country net export 

is estimated by the multivariate regression model and empirically reveals that RES generation 

stimulates foreign demand. We confirmed price increments due to the excluded RES generation 

in all three countries. In addition, the reduced standard deviation in the no-RES generation 

scenario is a result of omitted volatile RES generation. Simulation robustness is proved as the 

general conclusions do not depend on the selected merit order estimation algorithm. 

Econometric MOE confirmation and supporting simulation framework turned out to be 

successful combination, as the estimated power system merit order profiles support results from 

econometric models. 

 

CONCLUDING REMARKS 

 

This doctoral dissertation aims to provide insights into electricity price forecasting and the roll 

of new developments in electricity markets. It provides answers to several research questions 

pertaining to the following three research topics: performance of alternative electricity price 

forecasting methods with findings from the Greek & Hungarian power exchanges; an 

integrated model for electricity market coupling with evidence from the European power 

market crossroad; and the crowding out of conventional electricity generation by renewable 

energy sources in Greek, Hungarian, and Romanian electricity markets. A summary of the 

findings and an assessment of the contribution to the field of knowledge is provided in the form 

of answers to the research questions identified in the beginning of the dissertation. Leading 

numbers indicate a chapter connection with a research question.  

 

 

- Research question 1.1: Do, in electricity price forecasting, modern statistical 

approaches (data mining and machine learning) perform better compared to the 

econometric time series model? 

 



73 

 

Electricity price forecasting is a relatively young interdisciplinary research field, which started 

expanding with the power market liberalisation, when the first studies on the determinants of 

electricity prices in liberalised market emerged, and accelerated in Europe with the increased 

renewable generation after 2010. In the beginning, sophisticated statistical techniques were 

proposed to achieve satisfactory short-run predictions. With the increased renewable 

generation and implied increased electricity price volatility the field has moved towards the 

application of data mining and machine learning forecasting algorithms. Statistical models are 

criticized for linearity bias i.e., the inability to model rapid changes in the price signal. 

Systematic benchmarking of forecasting performance of the selected k-nearest, regression tree, 

random forest regression, support vector machine, artificial neural net, and long short-term 

memory algorithm against the econometric time series model, revealed that the support vector 

machine algorithm overcomes the linearity bias in the ordinary least squares estimator. This is 

confirmed by the lower forecasting accuracy metrics and a statistically significant Diebold-

Mariano. A random forest, regression tree, and k-nearest neighbour algorithm have higher 

forecasting accuracy compared to the benchmark econometric model, however, with the 

statistically insignificant Diebold-Mariano test. 

 

- Research question 1.2: What is the effect of training data set size on the forecasting 

performance? 

 

With the electricity price forecasting shift towards the application of data mining and machine 

learning algorithms new research questions have emerged. Data mining and machine learning 

algorithms typically have a set of “free parameters” that can influence forecasting performance. 

Lago, De Ridder, & De Schutter (2018) presented to date the largest benchmark of electricity 

price forecasting algorithms with an open research question on optimal learning sample size. 

By relying on a large number of experiments for each individual model, we have extensively 

analysed the effect of training data set size on forecasting performance. The forecasting 

performance of the individual methods depends on the selected market, and so our findings 

cannot be used to formulate general statements about a method’s optimal training sample size. 

However, our findings suggest that the sample size is positively correlated with the electricity 

price forecasting accuracy and models have a turning point after which the relationship is 

converted. Artificial neural network-based models achieve higher accuracy if trained on 

considerably larger training samples compared to the other proposed alternative models. 

 

- Research question 1.3: Does model training on hourly clustered data samples enhance 

electricity price forecasting performance? 

 

In one of the earliest electricity price forecasting publications by Crespo Cuaresma, Hlouskova, 

Kossmeier, & Obersteiner (2004), a univariate time series ARMA model was used to forecast 

Germany’s day-ahead price. To fully extract the individual hour predictive information, they 

trained an ARMA model for each single hour i.e., model training on hourly clustered samples. 

The hourly clustered training regime has a consequence of having an individual model for each 
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hour of the day. They reported better forecasting performance for models calibrated on the 

hourly clustered data samples. Scholars typically train a single model that is used to forecast 

all day hours. A consequence of the hourly clustered training regime is a reduction of training 

samples by the factor 24. Such a training regime could be a specific challenge for models that 

achieve higher forecasting accuracy if trained on considerably larger training samples. Our 

models trained on the Greek data set performed better with training on the hourly non-clustered 

data samples. However, training on hourly clustered Hungarian data samples on average 

resulted in higher forecasting accuracy. Therefore, training on hourly clustered data samples 

could in a specific electricity market enhance electricity price forecasting performance.   

 

- Research question 1.4: Does the demand-supply ratio (DSR) explanatory variable 

enhance electricity price forecasting performance in extreme price situations? 

 

An extreme price situation is characterised by a sudden departure of prices from the normal 

regime for a very short time interval. The DSR explanatory variable indicates the share of the 

available installed generation capacity to cover the electricity demand. High DSR index values 

indicate low availability of free generation capacities and tight market conditions (Alexander 

& Dominique, 2007). In tight market conditions, so-called ‘price spikes’ may occur. 

Conversely, in loose market conditions negative electricity prices may occur. In the Greek 

market, models reach better forecasting performance with the additional DSR ratio explanatory 

variable. And yet, in Hungary only the artificial neural network (ANN) model has the highest 

accuracy with added DSR ratio explanatory variable. However, under both data sets accuracy 

improvement is trivial, which is especially true considering the extreme price forecasting 

accuracy. Closely studying the forecasting behaviour on the 50 highest and 50 lowest observed 

prices in each market, revealed that the DSR explanatory variable has an insignificant impact 

on forecasting accuracy. Alexander & Dominique (2007) reported similar findings. 

 

- Research question 2.1: How should market simulations be designed in coupled 

electricity markets? 

 

One of the major changes in the European electricity markets is the fact that previously 

independent market areas have become connected through market-coupling auctions. Day-

ahead market auctions are no longer organised separately for cross-border capacities (CBCs) 

and electricity. Instead, in coupled electricity markets the overall social-welfare maximising 

electricity prices and CBC allocations are determined jointly by the EUPHEMIA algorithm. 

Kiesel & Kusterman (2016) discussed that in coupled markets that it becomes crucial to model 

electricity prices in all areas consistently in one integrated framework. Further, Lago, et al. 

(2018) once again explained that there is a lack of a general modelling framework to model 

electricity market coupling and analyse its impact on the electricity market. Therefore, we 

propose an integrated simulation framework where the CBC’s allocations and electricity prices 

are determined by the solution of a single mathematical optimisation problem, i.e., the 
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EUPHEMIA algorithm. An orderbook for each market area is generated based on the 

econometrically estimated aggregate supply price elasticities. With the proposed simulation 

framework, we can jointly analyse the impact of electricity market coupling on capacity 

allocation and its implications on electricity price determination process. Statistical models or 

advanced computational intelligence models are too general for such a detailed analysis. 

 

- Research question 2.2: Does electricity market coupling ensure efficient cross-border 

capacity allocation and electricity price convergence? 

 

To study the effect of electricity market coupling on efficient cross-border capacity allocation 

and electricity price convergence, the dissertation simulates market coupling at the power 

market crossroads of Europe. The simulation goal is to eliminate the observed inefficient CBCs 

utilisation at the time of the simulation non-coupled interconnectors, and to adjust market 

clearing prices in Austria, Italy, Slovenia, and Croatia, accordingly. The market coupling 

mechanism ensures that the transmission capacities are always efficiently utilised with the 

power flow following economic logic. Spare capacity on cross-border interconnectors occurs 

only when all opportunities for arbitrage have been exploited and prices are equal, which 

follows from the mathematical optimisation model. In the studied perimeter, we can observe 

that most severe and frequent inefficiencies in CBCs utilisation occur on the HRSI border. The 

HRSI border connects markets with low supply price elasticity and sufficient CBC to eliminate 

observed price spread majority of the time. Due to the asymmetry in the electricity and CBC 

rights auction in non-coupled markets, the price convergence between the Slovenian and 

Croatian markets is not achieved. A given mandate to market agents to regulate electricity 

transport in non-coupled markets is shown to be inefficient. Based on the simulation results, 

we confirm that the market coupling algorithm eliminates all inefficiencies in CBCs utilisation 

and enhances electricity price convergence. We can empirically confirm Meeus’ (2011) 

research findings, that electricity market coupling outperforms previous market settings. 

 

- Research question 2.3: What is the impact of market coupling on electricity price 

volatility? 

 

As shown in the answers to Research questions 2.1 and 2.2, the dissertation that is based on the 

simulation results studies the implications and benefits from electricity market coupling on 

different market features. According to Lago, et al. (2018) effects of market integration, i.e., 

electricity market coupling can dramatically modify the dynamics of electricity prices. With 

the market coupling simulation results, we can empirically confirm reduced electricity price 

volatility in the simulated electricity market perimeter. The simulation results therefore confirm 

the findings of Huisman and Kiliç (2013), who econometrically analysed day-ahead prices in 

five connected Central Western Europe markets, and concluded that due to improved liquidity, 

volatility and extreme price situations are reduced in coupled electricity markets. 
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- Research question 2.4: Does market coupling improve electricity price shock 

transmission? 

 

As shown in the answers to Research questions 2.1, 2.2 and 2.3, based on the simulation results 

the dissertation studies the implications and benefits from electricity market coupling on 

various market features. De Vany & Walls (1999) discussed that the statistical Vector 

Autoregression (VAR) model encompasses the type of complex price dynamics that are 

characteristic of electrical networks. Therefore, the dissertation analyses electricity price shock 

transmission indicating market integration with estimated VAR models and impulse response 

functions (IRF). As far as we are aware, this is the earliest analysis of electricity price shock 

transmission for the same price observation under realised non-coupled and simulated market 

coupling regimes. The comparison of estimated impulse response function representing 

electricity price shock transmission under both market regimes reveals modified electricity 

price dynamics in coupled electricity markets. 

 

The observed price shock transmission with the characteristic 24-hour lag in the non-coupled 

market regime, indicates an incentive of market participants to readjust their strategies after the 

observed price shock in one of the neighbouring markets. Price shock transmission in the 

simulated market coupling regime is instantaneous and amplified. Market integration, indicated 

by the price shock transmission intensity and price shock transmission timing, empirically 

improves in the simulated market coupling environment. 

 

- Research question 3.1: Does crowding out of conventional electricity generation 

sources by renewable energy generation lead to lower electricity prices on the Southeast 

Europe (SEE) electricity markets? 

 

National promotion strategies, triggered by the Directive (2001/77/EC), to support renewable 

energy sources (RES) and achieve a less polluting and (foreign) dependent energy sector have 

many consequences. Among them, an increased renewable production of electricity crowds out 

other high(er) marginal-cost generation technologies and results in lower electricity prices in 

the wholesale electricity market (Würzburg et al., 2013). The crowding out of conventional 

electricity generation sources by renewable energy generation is recognised by scholars as the 

so-called ‘merit order effect’ (MOE). With the estimated econometric models on Hungarian, 

Romanian and Greek electricity market data, the dissertation statistically confirms the 

significant presence of MOE in the developing Southeast Europe (SEE) electricity markets. 

Executed econometric MOE analysis supplements existing research findings focused on key 

EU energy areas in terms of installed renewable capacity and electricity market development. 

Also, the dissertation adjusts observed hourly electricity prices to the simulated no-RES 

generation scenario by eliminating the observed merit order effect and adjusting net-export 

levels, accordingly. The estimated energy imbalance caused by the excluded RES generation 

is filled by the additional conventional generation supply. The required additional conventional 

generation dispatch to maintain energy balance is priced according to the estimated 
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conventional generation supply curves. Hence, the simulated market clearing electricity price 

is equal to a price in the last price-quantity pair, supplied by the conventional generation that 

fills the estimated energy imbalance quantity. The simulation results indicate a significant price 

increment in countries with pronounced RES generation (Greece and Romania). Therefore, 

simulated significant price increments affirm econometric findings that RES generation leads 

to lower electricity prices on the Southeast Europe electricity markets. 

 

- Research question 3.2: Can modern statistical approaches bridge the gap in data 

availability and efficiently simulate electricity prices in the no-RES generation 

scenario? 

 

As illustrated in the answer to Research questions 3.1, the dissertation in the simulated no-RES 

generation scenario adjusts observed electricity prices accordingly. The applied no-RES 

generation simulation approach intuitively takes as an example DIME model (Dispatch and 

Investment Model for Electricity Markets in Europe) applied by Fürsch, Malischek, & 

Lindenberger (2012). The DIME model accounts for the international flows and dynamic 

adaptation of the generation mix to changes in RES generation. Dynamic adaptation of the 

generation mix can be efficiently simulated by the unit commitment model that minimises the 

total dispatch costs of the power plant fleet. Due to the limited publicly data availability, the 

unit commitment models used in the power system or agent-based simulations cannot be 

applied in analysed markets. Therefore, the dissertation relies on a family of data mining 

algorithms to rank generation units by their short-run marginal costs in the increasing order 

together with the dispatched energy. Due to the prominent non-linear behaviour of the 

electricity price signals (Weron, 2014), we estimate aggregated supply curves by the modern 

statistical approaches that can handle such non-linearities. The proposed simulation framework 

is intuitively close to power system or agent-based simulations. Therefore, the application of 

modern statistical approaches can bridge the gap in the limited public data availability to 

efficiently simulate electricity prices in the no-RES generation scenario. 

 

- Research question 3.3: Does renewable energy source (RES) generation enhance 

electricity price volatility in Southeast Europe (SEE) electricity markets? 

 

As shown in the answer to Research question 3.1, the dissertation in the simulated no-RES 

generation scenario adjusts observed hourly electricity prices accordingly. Therefore, the 

dissertation can analyse simulated electricity prices and observed electricity prices for the same 

time-periods. Electricity price volatility in the no-RES generation scenario is on average 

reduced compared to the observed price volatility. Reduced electricity price volatility is a result 

of omitted volatile RES generation. Therefore, renewable energy generation enhances 

electricity price volatility in the Southeast Europe (SEE) electricity markets. The research 

findings are consistent with the results found by Dong et al., (2019). 
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Hirth, Mühlenpfordt, & Bulkeley (2018) discussed that data availability and accessibility 

historically limited applied power market research. However, the situation in Europe changed 

in 2015 with the commencement of the Transparency Platform (TP) operated by the European 

Network of Transmission System Operators for Electricity (ENTSO-E). Applied electricity 

market research is data-intensive and requires hourly data resolution. The dissertation’ 

quantitative work objective is to rely on a single data source and avoid common data blending 

approach, which limits fast and easy research reproducibility. Therefore, we collected data 

from ENTSOE-TP through a restful application programming interface (API) program in R 

environment. Downloaded data sets from ENTSO-E TP revealed specific data type 

unavailability and missing data observations. Due to missing reported outages data type, we 

could not have included the Romanian power market in the scope of the first chapter. 

Furthermore, the dissertation approximated missing hydro generation data in Croatia by 

Slovenian data in the second chapter. Lastly, due to the missing Romanian actual generation 

data on ENTSO-E TP, we could not avoid data blending in the third chapter. Data blending is 

clearly time-consuming as it requires development of additional data gathering procedures and 

data manipulation. We conclude that the data availability and quality is an ongoing issue still 

limiting applied electricity market research. 

 

Even though the dissertation provides several new findings regarding the electricity price 

modelling and the role of new developments in electricity markets, several limitations exist. 

First, the dissertation offers a systematic quantitative overview of the forecasting performance 

of six contemporary forecasting algorithms only on Greek and Hungarian electricity market 

data. Therefore, it cannot be used to formulate general statements about a method’s efficiency. 

Further, analysis is limited to a six fundamental contemporary forecasting algorithms and 

results cannot be generalised to other existing alternative algorithms. Second, analysis of the 

market coupling effect on electricity prices and cross-border capacities utilisation would 

greatly benefit from the inclusion of all EU electricity markets in the simulation scope. An 

extended simulation scope would as well enrich the vector autoregression analysis of the 

electricity price shock transmission. In addition, the orderbook generation process based on the 

econometrically estimated supply price elasticity function could be supplemented with other 

modern statistical methods. Third, electricity price simulation in the no-RES generation 

scenario is due to unavailable public data in the analysed countries limited to the execution 

with modern statistical methods. However, it would be valuable to simulate no-RES generation 

scenario with the agent-based unit commitment models and benchmark obtained results. 

 

Despite the discussed limitations, which could stimulate much needed future research, the 

dissertation addresses certain unanswered research questions and showcases the practical 

application of modern statistical approaches in the electricity markets. First, with the first 

systematic overviews of the statistically evaluated forecasting performance of the 

contemporary algorithms with respect to the applicative limitations in the day-ahead market 

operations, the dissertation provides reliable information to the interested electricity market 

participants and research community. Further, the dissertation thoroughly analyses the impact 
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of training sample size on algorithms forecasting performance and provides insights to this yet 

unaddressed research question. Second, with ongoing final steps in EU electricity markets 

integration, the dissertation proposes a solution for applied simulations in coupled day-ahead 

electricity markets. Scholars discuss that there is a lack of a general modelling framework to 

model electricity market coupling and analyse its impact on the electricity market. Moreover, 

the dissertation has empirical simulations that provide answers to the research questions on 

improved electricity price convergence, reduced price volatility, and improved price shock 

transmission in coupled electricity markets. Third, by researching the merit order effect in the 

developing SEE electricity markets, the dissertation supplements existing literature focused on 

key EU energy areas in terms of installed renewable capacity and electricity market 

development. Fourth, the electricity market research is data-intensive and typically requires 

hourly data resolution. Data availability and accessibility historically limits applied power 

market research. The dissertation is built upon a publicly available data source ENTSO-E TP, 

and avoids data source blending as much as possible. This ensures fast and easy study 

reproducibility and could hopefully promote future research.  
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Appendix 1: Chapter 1 

 

Table A1: Greek price index descriptive statistics 

Hour Maximum Minimum Mean Median 
Standard 
deviation Variance 

1   82.00   0.00 49.22 49.59   8.49   72.11 

2   82.00   1.00 47.96 48.98   8.94   79.96 

3   76.53   0.00 46.07 47.25   9.90   98.01 
4   76.51   0.00 44.79 46.40 10.54 111.09 

5   76.11   2.00 45.34 46.83 10.10 101.92 

6   79.00   0.00 47.15 48.41   9.15   83.67 
7 145.56   5.00 49.94 50.15   9.97   99.39 

8 145.56   0.00 52.41 51.29 12.25 150.00 

9 150.25   0.00 53.38 51.80 13.64 186.13 
10 150.27   0.00 53.07 51.41 13.55 183.67 

11 150.32   0.00 52.19 50.95 13.23 175.05 

12 150.32   0.00 51.36 50.64 12.93 167.16 
13 150.30   0.00 50.92 50.49 12.80 163.92 

14 141.61   0.00 48.99 50.00 12.67 160.54 

15 150.27   0.00 49.80 50.14 13.92 193.73 
16 150.27   0.00 51.11 50.56 14.23 202.45 

17 150.27   0.00 53.06 51.09 14.90 221.98 

18 299.00   7.70 55.95 52.30 18.37 337.46 
19 299.00 26.52 57.73 53.00 19.99 399.47 

20 299.00 32.00 58.10 53.66 19.05 362.87 
21 149.00 36.91 56.21 53.23 13.78 189.94 

22 145.05 25.00 52.71 51.65   9.01   81.18 

23 111.11   2.00 51.34 51.20   7.88   62.12 
24   83.50   0.00 50.75 51.10 10.12 102.51 

Source: Own work. 
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Table A2: Hungarian price index descriptive statistics 

Hour Maximum Minimum Mean Median 

Standard 

deviation Variance 

1   83.64     0.02 33.22 32.10 11.49 132.06 

2   79.03     0.00 29.81 29.30 10.53 110.81 
3   64.49     0.00 27.24 26.89 9.99 99.79 

4   60.25   –0.02 26.07 26.13 9.84 96.83 

5   70.18 –17.44 26.97 26.80 9.98 99.60 
6   88.74 –25.97 30.72 30.47 11.30 127.58 

7 133.11   –6.00 38.42 38.55 14.67 215.18 

8 195.15     0.02 46.87 46.81 18.26 333.45 
9 250.04     0.08 50.18 49.10 19.24 370.09 

10 250.09     0.11 50.40 48.47 19.03 362.30 
11 250.05     0.21 49.28 46.96 18.83 354.55 

12 250.07     0.21 49.27 46.57 19.20 368.47 

13 190.35     0.21 48.50 45.66 19.39 375.88 
14 150.03     0.05 46.34 44.07 19.01 361.31 

15 200.07     0.01 45.36 43.02 19.41 376.59 

16 250.02     0.10 46.21 43.92 19.99 399.48 
17 250.06     0.25 48.32 45.84 20.46 418.52 

18 300.10     2.15 51.39 49.01 21.25 451.50 

19 200.07   11.06 53.40 50.76 19.35 374.61 
20 150.06   15.99 55.06 52.18 18.16 329.73 

21 144.43   10.30 53.49 51.00 16.55 273.88 

22 133.39     6.44 46.85 44.01 14.34 205.61 
23 113.04     0.78 42.48 40.60 12.56 157.67 

24   93.23     0.02 36.17 34.50 11.36 129.13 

Source: Own work. 
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Table A3: Working days EPF models performance – ascending sMAPE ordering 

Country Method RL/DSR Data sample Test input Window MAE RMSE SMAPE MAPE DM test p-value 

GR SVM DSR Non-clustered Actual 56 3.99 8.23 7.70% 13.20% 0.96 

GR SVM DSR Non-clustered Forecast 56 3.98 8.22 7.70% 13.20% 0.89 
GR RFR DSR Non-clustered Actual 28 4.33 8.59 8.20% 13.50% 1.00 

GR RFR DSR Non-clustered Forecast 28 4.27 8.47 8.10% 13.50% 0.99 

GR M5P DSR Non-clustered Actual 112 4.38 8.76 8.30% 13.30% / 
GR M5P DSR Non-clustered Forecast 112 4.36 8.67 8.30% 13.30% / 

GR ARX DSR Non-clustered Actual 28 4.54 8.26 8.70% 14.10% 1.00 

GR ARX DSR Non-clustered Forecast 28 4.56 8.29 8.80% 14.20% 1.00 
GR KNN DSR Non-clustered Actual 28 4.69 9.35 8.80% 13.90% 1.00 

GR KNN DSR Non-clustered Forecast 28 4.65 9.25 8.70% 14.00% 1.00 

GR ANN DSR Non-clustered Actual 140 4.80 8.80 9.20% 14.50% 1.00 
GR ANN DSR Non-clustered Forecast 140 4.75 8.63 9.10% 14.50% 1.00 

GR LSTM RL Non-clustered Actual 336 5.32 8.93 10.20% 15.40% 1.00 

GR LSTM RL Non-clustered Forecast 336 5.33 8.94 10.10% 15.60% 1.00 
HU SVM RL Clustered Actual 28 6.39 10.23 14.70% 18.90% 0.03 

HU SVM RL Clustered Forecast 28 6.68 10.54 15.50% 19.00% 0.32 

HU ARX RL Clustered Actual 112 6.73 10.81 15.20% 18.60% / 
HU ARX RL Clustered Forecast 112 7.10 11.24 16.30% 18.70% / 

HU LSTM RL Clustered Actual 112 6.73 10.81 15.20% 18.60% 0.59 

HU LSTM RL Clustered Forecast 112 7.10 11.24 16.30% 18.70% 0.18 
HU RFR DSR Clustered Actual 28 6.68 10.22 15.30% 19.40% 0.03 

HU RFR DSR Clustered Forecast 28 6.68 10.23 15.40% 19.10% 0.33 
HU ANN DSR Non-clustered Actual 224 7.06 11.57 15.80% 20.50% 0.97 

HU ANN DSR Non-clustered Forecast 224 7.14 11.61 16.00% 20.80% 0.57 

HU M5P RL Non-clustered Actual 28 7.08 10.83 16.10% 20.70% 0.52 
HU M5P RL Non-clustered Forecast 28 7.22 11.01 16.70% 20.30% 0.61 

HU KNN RL Clustered Actual 28 7.34 11.49 16.30% 22.30% 0.67 

HU KNN RL Clustered Forecast 28 7.30 11.32 16.50% 21.90% 0.39 

Source: Own work. 
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Table A4: Weekends EPF models performance – ascending sMAPE ordering 

Country Method RL/DSR Data sample Test input Window MAE RMSE SMAPE MAPE DM test p-value 

GR SVM DSR Non-clustered Actual 56 4.24 7.79 10.00% 26.40% 0.00 

GR SVM DSR Non-clustered Forecast 56 4.27 7.92 10.10% 26.70% 0.00 
GR RFR DSR Non-clustered Actual 140 4.45 7.33 10.50% 25.30% 0.00 

GR RFR DSR Non-clustered Forecast 140 4.47 7.45 10.50% 25.30% 0.00 

GR M5P RL Non-clustered Actual 196 4.54 7.59 10.50% 26.60% 0.00 
GR M5P RL Non-clustered Forecast 196 4.59 7.69 10.60% 26.80% 0.00 

GR KNN DSR Non-clustered Actual 28 4.70 8.27 10.80% 26.30% 0.06 

GR KNN DSR Non-clustered Forecast 28 4.70 8.39 10.80% 26.30% 0.11 
GR LSTM DSR Non-clustered Actual 336 4.95 7.74 11.40% 24.80% 0.00 

GR LSTM DSR Non-clustered Forecast 336 4.90 7.76 11.20% 25.10% 0.00 
GR ANN RL Non-clustered Actual 336 5.12 8.31 11.60% 27.80% 0.99 

GR ANN RL Non-clustered Forecast 336 5.07 8.41 11.50% 27.10% 0.71 

GR ARX DSR Non-clustered Actual 56 5.11 8.18 11.80% 26.70% / 
GR ARX DSR Non-clustered Forecast 56 5.10 8.25 11.80% 26.90% / 

HU SVM RL Clustered Actual 56 6.44 9.04 20.60% 35.60% 0.98 

HU SVM RL Clustered Forecast 56 6.64 9.25 21.40% 35.50% 0.71 
HU ARX RL Clustered Actual 112 6.58 8.93 21.30% 30.50% / 

HU ARX RL Clustered Forecast 112 6.99 9.34 23.10% 30.20% / 

HU LSTM RL Clustered Actual 112 6.58 8.93 21.30% 30.50% 1.00 
HU LSTM RL Clustered Forecast 112 6.99 9.34 23.10% 30.20% 1.00 

HU RFR RL Clustered Actual 56 6.71 9.29 21.50% 35.10% 1.00 

HU RFR RL Clustered Forecast 56 6.87 9.48 22.10% 34.70% 1.00 
HU ANN RL Non-clustered Actual 252 7.16 9.71 22.30% 35.60% 1.00 

HU ANN RL Non-clustered Forecast 252 7.22 9.78 22.40% 35.90% 1.00 

HU M5P DSR Non-clustered Actual 112 7.26 9.91 22.50% 37.40% 1.00 
HU M5P DSR Non-clustered Forecast 112 7.34 10.08 22.90% 36.70% 1.00 

HU KNN RL Non-clustered Actual 28 7.26 9.84 23.20% 37.80% 1.00 

HU KNN RL Non-clustered Forecast 28 7.81 10.57 25.20% 37.10% 1.00 

Source: Own work. 



3 

 

Appendix 5: Chapter 1 

 

Figure A1: Extreme minimum price forecasting – 50 lowest price observations 

 
Source: Own work. 
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Figure A2: Extreme maximum price forecasting – 50 highest price observations 

 
Source: Own work. 
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Table A5: Average price elasticity of generation – loglinear model, estimated by the rolling 

window approach 

Country Product Window (days) Beta (%) p-value 𝑅2 

AT OFF-PL 7 0.89 0.00 0.59 

AT OFF-PL 14 0.77 0.00 0.51 

AT OFF-PL 21 0.70 0.00 0.46 

AT OFF-PL 28 0.66 0.00 0.43 

AT PL 7 0.89 0.00 0.67 

AT PL 14 0.80 0.00 0.61 

AT PL 21 0.75 0.00 0.57 

AT PL 28 0.71 0.00 0.54 

HR OFF-PL 7 0.63 0.02 0.31 

HR OFF-PL 14 0.55 0.03 0.24 

HR OFF-PL 21 0.50 0.02 0.22 

HR OFF-PL 28 0.47 0.01 0.20 

HR PL 7 0.23 0.08 0.20 

HR PL 14 0.21 0.07 0.15 

HR PL 21 0.20 0.08 0.13 

HR PL 28 0.19 0.07 0.11 

IT OFF-PL 7 1.36 0.00 0.68 

IT OFF-PL 14 1.27 0.00 0.65 

IT OFF-PL 21 1.22 0.00 0.63 

IT OFF-PL 28 1.18 0.00 0.62 

IT PL 7 1.26 0.00 0.62 

IT PL 14 1.17 0.00 0.60 

IT PL 21 1.12 0.00 0.59 

IT PL 28 1.08 0.00 0.59 

SI OFF-PL 7 0.58 0.01 0.38 

SI OFF-PL 14 0.49 0.00 0.31 

SI OFF-PL 21 0.43 0.00 0.26 

SI OFF-PL 28 0.39 0.01 0.24 

SI PL 7 0.40 0.03 0.34 

SI PL 14 0.36 0.03 0.29 

SI PL 21 0.33 0.02 0.26 

SI PL 28 0.32 0.02 0.24 

Source: Own work. 
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Table A6: Realised supply in MWh (ENTSOE-TP data) and supply changes induced by the 

market coupling simulation 

Year Country Realised supply Supply change Relative supply change 

2015 AT 37,909,618 124,484 0.33% 

2015 HR 9,361,044 0 0.00% 

2015 IT-Nord 109,012,866 -104,493 -0.10% 

2015 SI 11,921,937 -19,991 -0.17% 

2015 ∑ 168,205,464 0 / 

2016 AT 44,030,736 158,939 0.36% 

2016 HR 10,588,367 24,038 0.23% 

2016 IT-Nord 115,557,100 -135,293 -0.12% 

2016 SI 13,359,509 -47,685 -0.36% 

2016 ∑ 183,535,711 0 / 

2017 AT 42,058,191 187,941 0.45% 

2017 HR 10,490,766 -138,717 -1.32% 

2017 IT-Nord 114,851,058 -40,991 -0.04% 

2017 SI 13,215,258 -8,233 -0.06% 

2017 ∑ 180,615,272 0 / 

2018-Q2 AT 21,991,988 64,132 0.29% 

2018-Q2 HR 6,489,009 -30,697 -0.47% 

2018-Q2 IT-Nord 59,894,443 -33,919 -0.06% 

2018-Q2 SI 6,265,449 484 0.01% 

2018-Q2 ∑ 94,640,889 0 / 

Source: Own work. 
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Table A7. Estimated impact on the suppliers’ income in € (∆ SI), estimated impact on consumers’ income in € (∆ CI) and the combined income 

effect in € (∆ Surplus) 
Period NonCoupled CBCs Country Supply ∆ NX Supply* Load Average Price ∆ ∆ SI ∆ CI ∆ Surplus 

1.1.2015-23.2.2015 ATSI_ATIT AT 5,353,812 8,052 5,361,864 8,880,343 0.29 2,053,473 -2,672,647 -619,174 

1.1.2015-23.2.2015 ATSI_ATIT HR 1,557,442 NA NA 2,515,751 NA NA NA NA 
1.1.2015-23.2.2015 ATSI_ATIT IT-Nord 14,874,713 -13,927 14,860,786 23,079,203 -0.10 -1,512,727 2,333,696 820,969 

1.1.2015-23.2.2015 ATSI_ATIT SI 1,774,269 5,876 1,780,144 1,870,143 0.04 814,667 -975,270 -160,603 

1.1.2015-23.2.2015 ATSI_ATIT ∑ 23,560,237 0 22,002,794 36,345,440 / 1,355,413 -1,314,221 41,192 

24.2.2015-9.2.2016 ATSI AT 36,556,185 69,607 36,625,793 57,967,437 0.26 5,148,410 -12,592,746 -7,444,335 

24.2.2015-9.2.2016 ATSI HR 7,803,599 NA NA 16,127,095 NA NA NA NA 
24.2.2015-9.2.2016 ATSI IT-Nord 106,315,506 -94,631 106,220,875 154,884,558 -0.13 -19,768,282 26,305,674 6,537,392 

24.2.2015-9.2.2016 ATSI SI 11,548,216 25,023 11,573,240 11,957,944 -0.32 -2,458,911 3,888,451 1,429,540 

24.2.2015-9.2.2016 ATSI ∑ 162,223,506 0 154,419,908 240,937,034 / -17,078,782 17,601,379 522,597 

10.2.2016-20.7.2016 ATSI_HRSI AT 16,121,613 87,247 16,208,860 22,209,701 0.22 6,006,987 -4,859,499 1,147,488 
10.2.2016-20.7.2016 ATSI_HRSI HR 4,528,609 -20,507 4,508,102 6,472,817 -0.70 -2,588,502 4,364,983 1,776,481 

10.2.2016-20.7.2016 ATSI_HRSI IT-Nord 36,641,352 -75,291 36,566,061 54,958,053 -0.20 -8,456,914 8,307,833 -149,082 

10.2.2016-20.7.2016 ATSI_HRSI SI 4,920,005 8,551 4,928,555 4,453,536 -0.20 -1,599,945 1,087,710 -512,234 
10.2.2016-20.7.2016 ATSI_HRSI ∑ 62,211,579 0 62,211,578 88,094,107 / -6,638,374 8,901,027 2,262,653 

21.7.2016-20.6.2018 HRSI AT 87,958,922 307,709 88,266,631 126,757,486 0.20 27,944,779 -25,325,319 2,619,460 
21.7.2016-20.6.2018 HRSI HR 23,039,533 -180,772 22,858,761 36,797,061 -1.27 -37,538,847 47,937,901 10,399,054 

21.7.2016-20.6.2018 HRSI IT-Nord 241,483,896 -108,220 241,375,676 324,805,533 -0.11 -31,336,333 33,016,178 1,679,845 

21.7.2016-20.6.2018 HRSI SI 26,519,663 -18,716 26,500,947 26,245,551 -0.27 -8,201,565 6,658,031 -1,543,534 

21.7.2016-20.6.2018 HRSI ∑ 379,002,014 0 379,002,015 514,605,631 / -49,131,967 62,286,791 13,154,825 
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Figure A3: Realised and simulated flow on ATIT (from 1 January 2015 to 20 June 2018) and 

the HRSI (from 10 February 2016 to 20 June 2018) interconnector 

 
Source: Own work. 
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Table A8: Dickey-Fuller test results 

 Realised Simmulated 

Country Dickey-Fuller Lags p-value Dickey-Fuller Lags p-value 

AT -16.619 26 0.01 -16.491 26 0.01 

HR -12.486 26 0.01 -12.01 26 0.01 

IT -12.13 26 0.01 -10.006 26 0.01 

SI -10.126 26 0.01 -11.813 26 0.01 

Source: Own work. 
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Appendix 12: Chapter 2 

 

Table A9: Vector Autoregression estimates – realised day ahead price time series & market coupling simulation day ahead price time series 

Variable 
Realised day-ahead prices Simulatated day-ahead prices  

AT HR IT SI AT HR IT SI 

AT(-1) 0.10 [0.00***] 0.15 [0.00***] 0.13 [0.00***] 0.15 [0.00***] 0.11 [0.00***] 0.16 [0.00***] 0.14 [0.00***] 0.16 [0.00***] 

AT(-2) -0.03 [0.00***] 0.07 [0.00***] 0.02 [0.00***] 0.05 [0.00***] -0.03 [0.00***] 0.08 [0.00***] 0.04 [0.00***] 0.08 [0.00***] 

AT(-3) -0.12 [0.00***] 0.01 [0.53] -0.01 [0.12] 0.03 [0.03**] -0.11 [0.00***] 0.05 [0.00***] -0.01 [0.43] 0.04 [0.00***] 

AT(-4) -0.06 [0.00***] 0.03 [0.01***] 0.01 [0.23] 0.06 [0.00***] -0.05 [0.00***] 0.05 [0.00***] 0.00 [0.54] 0.05 [0.00***] 

AT(-5) -0.08 [0.00***] 0.05 [0.00***] -0.01 [0.16] 0.04 [0.00***] -0.08 [0.00***] 0.05 [0.00***] -0.01 [0.23] 0.04 [0.00***] 

AT(-6) -0.06 [0.00***] 0.01 [0.33] 0.00 [0.67] 0.03 [0.02**] -0.05 [0.00***] 0.02 [0.04**] 0.00 [0.83] 0.02 [0.02**] 

AT(-7) -0.01 [0.07] 0.05 [0.00***] 0.03 [0.00***] 0.06 [0.00***] -0.01 [0.12] 0.05 [0.00***] 0.03 [0.00***] 0.06 [0.00***] 

AT(-8) -0.07 [0.00***] 0.03 [0.00***] 0.02 [0.02**] 0.03 [0.01**] -0.06 [0.00***] 0.03 [0.01***] 0.02 [0.00***] 0.03 [0.00***] 

AT(-9) -0.04 [0.00***] 0.03 [0.00***] -0.02 [0.04**] 0.03 [0.01***] -0.03 [0.00***] 0.05 [0.00***] -0.02 [0.06] 0.04 [0.00***] 

AT(-10) -0.01 [0.10] 0.02 [0.03**] 0.00 [0.72] 0.01 [0.26] -0.01 [0.11] 0.02 [0.04**] 0.00 [0.73] 0.02 [0.05] 

AT(-11) -0.04 [0.00***] 0.02 [0.10] 0.00 [0.63] 0.01 [0.32] -0.05 [0.00***] 0.02 [0.15] 0.00 [0.78] 0.02 [0.09] 

AT(-12) -0.06 [0.00***] 0.01 [0.62] -0.01 [0.39] 0.02 [0.13] -0.05 [0.00***] 0.03 [0.00***] -0.01 [0.47] 0.03 [0.00***] 

AT(-13) -0.01 [0.32] 0.05 [0.00***] 0.03 [0.00***] 0.08 [0.00***] -0.01 [0.33] 0.07 [0.00***] 0.03 [0.00***] 0.07 [0.00***] 

AT(-14) -0.05 [0.00***] 0.05 [0.00***] 0.01 [0.18] 0.04 [0.00***] -0.05 [0.00***] 0.05 [0.00***] 0.01 [0.21] 0.04 [0.00***] 

AT(-15) -0.06 [0.00***] 0.01 [0.43] 0.02 [0.02**] 0.04 [0.00***] -0.05 [0.00***] 0.02 [0.08] 0.02 [0.00***] 0.02 [0.05] 

AT(-16) -0.06 [0.00***] 0.01 [0.33] 0.00 [0.61] 0.02 [0.13] -0.06 [0.00***] 0.02 [0.17] 0.00 [0.77] 0.01 [0.30] 

AT(-17) -0.04 [0.00***] 0.04 [0.00***] 0.03 [0.00***] 0.00 [0.88] -0.04 [0.00***] 0.02 [0.03**] 0.02 [0.00***] 0.02 [0.14] 

AT(-18) -0.05 [0.00***] 0.04 [0.00***] 0.00 [0.99] 0.03 [0.02**] -0.05 [0.00***] 0.05 [0.00***] 0.00 [0.56] 0.04 [0.00***] 

AT(-19) -0.03 [0.00***] 0.00 [0.95] -0.02 [0.03**] 0.00 [0.77] -0.03 [0.00***] 0.00 [0.94] -0.01 [0.09] 0.00 [0.92] 

AT(-20) -0.03 [0.00***] 0.02 [0.13] 0.00 [0.81] 0.00 [0.80] -0.03 [0.00***] 0.00 [0.86] 0.00 [0.70] 0.00 [0.81] 

AT(-21) -0.04 [0.00***] -0.03 [0.01***] 0.00 [0.94] -0.05 [0.00***] -0.04 [0.00***] -0.04 [0.00***] 0.00 [0.72] -0.04 [0.00***] 

AT(-22) -0.03 [0.00***] -0.02 [0.05**] -0.01 [0.14] -0.02 [0.06] -0.03 [0.00***] -0.02 [0.05**] -0.02 [0.05] -0.03 [0.01***] 

AT(-23) 0.04 [0.00***] 0.06 [0.00***] 0.02 [0.04**] 0.04 [0.00***] 0.04 [0.00***] 0.05 [0.00***] 0.02 [0.01***] 0.05 [0.00***] 

AT(-24) 0.23 [0.00***] 0.15 [0.00***] 0.09 [0.00***] 0.14 [0.00***] 0.23 [0.00***] 0.14 [0.00***] 0.10 [0.00***] 0.15 [0.00***] 

HR(-1) 0.04 [0.00***] -0.09 [0.00***] 0.07 [0.00***] 0.14 [0.00***] 0.02 [0.25] -0.20 [0.00***] 0.05 [0.00***] 0.09 [0.00***] 

HR(-2) 0.01 [0.01***] -0.13 [0.00***] 0.03 [0.00***] 0.09 [0.00***] 0.03 [0.07] -0.27 [0.00***] 0.01 [0.38] 0.05 [0.02**] 

HR(-3) 0.00 [0.51] -0.11 [0.00***] 0.01 [0.01***] 0.06 [0.00***] -0.02 [0.14] -0.17 [0.00***] 0.02 [0.36] 0.06 [0.01***] 

HR(-4) 0.00 [0.76] -0.14 [0.00***] 0.02 [0.00***] 0.04 [0.00***] -0.02 [0.22] -0.26 [0.00***] 0.00 [0.88] 0.01 [0.54] 

HR(-5) 0.01 [0.05] -0.12 [0.00***] 0.02 [0.00***] 0.05 [0.00***] 0.01 [0.73] -0.21 [0.00***] 0.00 [0.99] 0.01 [0.61] 

HR(-6) 0.01 [0.29] -0.10 [0.00***] 0.01 [0.14] 0.03 [0.00***] 0.01 [0.72] -0.24 [0.00***] -0.02 [0.33] 0.00 [0.89] 

HR(-7) 0.00 [0.58] -0.08 [0.00***] 0.03 [0.00***] 0.02 [0.01**] 0.01 [0.42] -0.21 [0.00***] -0.01 [0.47] -0.02 [0.33] 

HR(-8) -0.01 [0.01***] -0.09 [0.00***] 0.02 [0.00***] 0.02 [0.02**] 0.00 [0.97] -0.24 [0.00***] 0.00 [0.80] -0.06 [0.01***] 

HR(-9) -0.01 [0.04**] -0.08 [0.00***] 0.01 [0.10] 0.02 [0.01**] -0.03 [0.11] -0.25 [0.00***] -0.01 [0.72] -0.07 [0.01***] 

HR(-10) 0.01 [0.18] -0.08 [0.00***] 0.01 [0.32] 0.01 [0.14] 0.00 [0.80] -0.25 [0.00***] 0.02 [0.32] -0.07 [0.00***] 
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Variable 
Realised day-ahead prices Simulatated day-ahead prices  

AT HR IT SI AT HR IT SI 
HR(-11) 0.00 [0.53] -0.07 [0.00***] 0.02 [0.00***] 0.01 [0.37] 0.01 [0.45] -0.12 [0.00***] -0.01 [0.68] -0.01 [0.56] 

HR(-12) 0.01 [0.12] -0.06 [0.00***] 0.02 [0.00***] 0.03 [0.00***] -0.02 [0.18] -0.18 [0.00***] 0.02 [0.34] 0.00 [0.89] 

HR(-13) 0.01 [0.24] -0.07 [0.00***] 0.01 [0.01**] 0.01 [0.36] -0.01 [0.52] -0.17 [0.00***] -0.03 [0.12] -0.03 [0.17] 

HR(-14) 0.00 [0.65] -0.09 [0.00***] 0.01 [0.32] -0.01 [0.31] 0.00 [0.91] -0.22 [0.00***] 0.00 [0.90] -0.03 [0.16] 

HR(-15) 0.01 [0.02**] -0.07 [0.00***] 0.01 [0.05] 0.00 [0.69] 0.04 [0.02**] -0.17 [0.00***] 0.02 [0.34] 0.00 [0.85] 

HR(-16) -0.01 [0.07] -0.08 [0.00***] 0.00 [0.57] 0.00 [0.57] -0.01 [0.66] -0.22 [0.00***] 0.00 [0.91] -0.06 [0.02**] 

HR(-17) 0.00 [0.52] -0.09 [0.00***] 0.00 [0.62] 0.00 [0.93] 0.00 [0.96] -0.21 [0.00***] -0.02 [0.23] -0.02 [0.31] 

HR(-18) -0.01 [0.04**] -0.09 [0.00***] 0.00 [0.71] 0.01 [0.17] -0.01 [0.40] -0.18 [0.00***] -0.01 [0.52] 0.01 [0.58] 

HR(-19) -0.01 [0.09] -0.05 [0.00***] 0.01 [0.14] 0.01 [0.32] 0.00 [0.92] -0.12 [0.00***] -0.01 [0.61] 0.04 [0.07] 

HR(-20) -0.01 [0.24] -0.07 [0.00***] 0.00 [0.93] 0.01 [0.21] 0.00 [0.96] -0.11 [0.00***] -0.01 [0.76] 0.01 [0.71] 

HR(-21) 0.01 [0.08] -0.07 [0.00***] -0.01 [0.01**] -0.01 [0.48] 0.02 [0.27] -0.10 [0.00***] -0.02 [0.32] 0.03 [0.25] 

HR(-22) 0.01 [0.22] -0.03 [0.00***] -0.01 [0.24] 0.01 [0.18] 0.01 [0.69] -0.09 [0.00***] -0.02 [0.27] -0.01 [0.79] 

HR(-23) 0.01 [0.11] 0.01 [0.08] 0.01 [0.04**] 0.02 [0.03**] 0.00 [0.78] -0.04 [0.05**] -0.03 [0.06] -0.04 [0.08] 

HR(-24) 0.05 [0.00***] 0.11 [0.00***] 0.06 [0.00***] 0.11 [0.00***] 0.01 [0.70] 0.02 [0.30] 0.01 [0.61] -0.01 [0.75] 

IT(-1) 0.01 [0.03**] 0.07 [0.00***] -0.01 [0.23] 0.11 [0.00***] 0.02 [0.00***] 0.10 [0.00***] 0.00 [0.77] 0.11 [0.00***] 

IT(-2) -0.01 [0.12] -0.01 [0.16] -0.17 [0.00***] 0.02 [0.06] -0.01 [0.08] 0.02 [0.04**] -0.17 [0.00***] 0.02 [0.01**] 

IT(-3) 0.00 [0.68] 0.01 [0.13] -0.14 [0.00***] 0.06 [0.00***] 0.00 [0.69] 0.04 [0.00***] -0.15 [0.00***] 0.04 [0.00***] 

IT(-4) -0.01 [0.43] -0.01 [0.26] -0.16 [0.00***] 0.02 [0.17] 0.00 [0.64] 0.01 [0.21] -0.16 [0.00***] 0.02 [0.06] 

IT(-5) -0.03 [0.00***] -0.02 [0.11] -0.11 [0.00***] 0.02 [0.12] -0.03 [0.00***] 0.00 [0.92] -0.12 [0.00***] 0.00 [0.92] 

IT(-6) -0.04 [0.00***] -0.02 [0.07] -0.12 [0.00***] 0.00 [0.88] -0.03 [0.00***] -0.01 [0.49] -0.13 [0.00***] -0.01 [0.55] 

IT(-7) -0.02 [0.01***] -0.05 [0.00***] -0.12 [0.00***] 0.02 [0.10] -0.02 [0.00***] 0.00 [0.71] -0.13 [0.00***] 0.00 [0.67] 

IT(-8) -0.01 [0.33] -0.03 [0.01***] -0.08 [0.00***] 0.00 [0.83] -0.01 [0.25] -0.01 [0.57] -0.08 [0.00***] 0.00 [0.82] 

IT(-9) -0.03 [0.00***] -0.01 [0.26] -0.10 [0.00***] 0.01 [0.51] -0.03 [0.00***] -0.01 [0.47] -0.11 [0.00***] -0.01 [0.58] 

IT(-10) -0.01 [0.04**] -0.01 [0.15] -0.09 [0.00***] -0.03 [0.01**] -0.01 [0.06] -0.03 [0.01***] -0.09 [0.00***] -0.03 [0.00***] 

IT(-11) -0.01 [0.16] -0.01 [0.51] -0.07 [0.00***] 0.04 [0.00***] -0.01 [0.27] 0.02 [0.04**] -0.07 [0.00***] 0.02 [0.02**] 

IT(-12) -0.02 [0.04**] -0.02 [0.02**] -0.09 [0.00***] -0.01 [0.24] -0.02 [0.01**] -0.02 [0.04**] -0.09 [0.00***] -0.02 [0.04**] 

IT(-13) -0.02 [0.01***] -0.03 [0.01***] -0.07 [0.00***] 0.00 [0.77] -0.02 [0.02**] 0.00 [0.67] -0.08 [0.00***] 0.00 [0.82] 

IT(-14) -0.01 [0.32] 0.01 [0.21] -0.09 [0.00***] 0.03 [0.01**] -0.01 [0.33] 0.01 [0.45] -0.09 [0.00***] 0.01 [0.22] 

IT(-15) -0.02 [0.02**] -0.01 [0.46] -0.09 [0.00***] -0.01 [0.37] -0.02 [0.02**] -0.02 [0.10] -0.09 [0.00***] -0.02 [0.12] 

IT(-16) 0.00 [0.49] 0.02 [0.10] -0.05 [0.00***] 0.02 [0.07] 0.01 [0.40] 0.02 [0.10] -0.05 [0.00***] 0.02 [0.05] 

IT(-17) 0.01 [0.46] 0.01 [0.61] -0.09 [0.00***] 0.01 [0.37] 0.00 [0.49] 0.01 [0.54] -0.09 [0.00***] 0.00 [0.95] 

IT(-18) -0.01 [0.05**] 0.01 [0.35] -0.10 [0.00***] -0.01 [0.57] -0.02 [0.03**] 0.00 [0.96] -0.10 [0.00***] 0.00 [0.91] 

IT(-19) -0.01 [0.14] -0.02 [0.03**] -0.06 [0.00***] 0.01 [0.51] -0.01 [0.05] -0.01 [0.60] -0.06 [0.00***] 0.00 [0.85] 

IT(-20) -0.02 [0.03**] 0.01 [0.40] -0.08 [0.00***] -0.01 [0.58] -0.02 [0.01**] -0.01 [0.62] -0.08 [0.00***] -0.01 [0.38] 

IT(-21) -0.02 [0.02**] 0.00 [0.98] -0.07 [0.00***] 0.00 [0.92] -0.01 [0.04**] -0.01 [0.53] -0.07 [0.00***] -0.01 [0.47] 

IT(-22) 0.00 [0.96] -0.04 [0.00***] -0.06 [0.00***] -0.01 [0.40] 0.00 [0.75] -0.01 [0.18] -0.07 [0.00***] -0.01 [0.32] 

IT(-23) 0.02 [0.00***] 0.05 [0.00***] 0.01 [0.13] 0.06 [0.00***] 0.03 [0.00***] 0.05 [0.00***] 0.01 [0.04**] 0.05 [0.00***] 

IT(-24) 0.08 [0.00***] 0.14 [0.00***] 0.28 [0.00***] 0.18 [0.00***] 0.09 [0.00***] 0.18 [0.00***] 0.29 [0.00***] 0.18 [0.00***] 



4  

Variable 
Realised day-ahead prices Simulatated day-ahead prices  

AT HR IT SI AT HR IT SI 
SI(-1) 0.00 [0.39] 0.05 [0.00***] 0.02 [0.00***] -0.25 [0.00***] 0.01 [0.51] 0.06 [0.01***] 0.01 [0.61] -0.24 [0.00***] 

SI(-2) 0.00 [0.33] 0.03 [0.00***] 0.03 [0.00***] -0.25 [0.00***] -0.02 [0.17] 0.09 [0.00***] 0.03 [0.09] -0.23 [0.00***] 

SI(-3) 0.01 [0.31] 0.02 [0.04**] 0.01 [0.06] -0.21 [0.00***] 0.02 [0.13] 0.00 [0.99] 0.01 [0.65] -0.23 [0.00***] 

SI(-4) 0.01 [0.20] 0.02 [0.00***] 0.03 [0.00***] -0.17 [0.00***] 0.02 [0.21] 0.12 [0.00***] 0.05 [0.01**] -0.15 [0.00***] 

SI(-5) 0.01 [0.07] 0.03 [0.00***] 0.01 [0.02**] -0.16 [0.00***] 0.01 [0.73] 0.09 [0.00***] 0.03 [0.14] -0.13 [0.00***] 

SI(-6) 0.01 [0.25] 0.02 [0.03**] 0.00 [0.41] -0.15 [0.00***] 0.00 [0.99] 0.11 [0.00***] 0.04 [0.05] -0.13 [0.00***] 

SI(-7) 0.00 [0.79] 0.01 [0.23] 0.01 [0.37] -0.15 [0.00***] -0.01 [0.43] 0.09 [0.00***] 0.04 [0.02**] -0.10 [0.00***] 

SI(-8) 0.00 [0.84] 0.00 [0.74] 0.01 [0.20] -0.14 [0.00***] -0.01 [0.43] 0.12 [0.00***] 0.01 [0.50] -0.07 [0.01***] 

SI(-9) 0.01 [0.06] -0.01 [0.21] 0.00 [0.83] -0.13 [0.00***] 0.02 [0.20] 0.11 [0.00***] 0.01 [0.46] -0.06 [0.01***] 

SI(-10) 0.02 [0.00***] 0.01 [0.28] 0.01 [0.09] -0.09 [0.00***] 0.02 [0.20] 0.15 [0.00***] 0.00 [0.87] -0.03 [0.28] 

SI(-11) 0.01 [0.02**] -0.02 [0.04**] 0.00 [0.57] -0.12 [0.00***] 0.00 [0.91] 0.00 [0.88] 0.01 [0.51] -0.10 [0.00***] 

SI(-12) 0.00 [0.89] -0.01 [0.51] 0.00 [0.93] -0.12 [0.00***] 0.03 [0.11] 0.08 [0.00***] 0.00 [0.85] -0.11 [0.00***] 

SI(-13) 0.00 [0.66] 0.00 [0.58] -0.01 [0.04**] -0.09 [0.00***] 0.01 [0.41] 0.07 [0.01**] 0.03 [0.18] -0.07 [0.01***] 

SI(-14) 0.00 [0.41] -0.03 [0.00***] -0.01 [0.29] -0.14 [0.00***] 0.00 [0.91] 0.07 [0.01***] -0.01 [0.73] -0.11 [0.00***] 

SI(-15) -0.01 [0.15] -0.03 [0.00***] -0.01 [0.06] -0.12 [0.00***] -0.04 [0.01**] 0.05 [0.08] -0.03 [0.15] -0.12 [0.00***] 

SI(-16) 0.00 [0.78] -0.02 [0.04**] 0.00 [0.85] -0.10 [0.00***] 0.00 [0.89] 0.10 [0.00***] -0.01 [0.77] -0.06 [0.02**] 

SI(-17) -0.01 [0.25] -0.02 [0.01***] -0.01 [0.08] -0.09 [0.00***] -0.01 [0.48] 0.09 [0.00***] 0.01 [0.48] -0.08 [0.00***] 

SI(-18) 0.00 [0.55] -0.01 [0.22] 0.00 [0.64] -0.07 [0.00***] 0.00 [0.80] 0.08 [0.00***] 0.00 [0.85] -0.10 [0.00***] 

SI(-19) 0.01 [0.31] -0.02 [0.04**] 0.00 [0.40] -0.07 [0.00***] 0.00 [0.81] 0.03 [0.20] 0.00 [0.87] -0.12 [0.00***] 

SI(-20) 0.00 [0.82] -0.01 [0.10] 0.00 [0.75] -0.07 [0.00***] -0.01 [0.67] 0.02 [0.51] 0.00 [0.98] -0.09 [0.00***] 

SI(-21) 0.00 [0.93] 0.01 [0.14] 0.01 [0.02**] -0.04 [0.00***] -0.02 [0.35] 0.04 [0.08] 0.03 [0.16] -0.07 [0.00***] 

SI(-22) 0.00 [0.38] 0.01 [0.08] 0.01 [0.03**] -0.03 [0.00***] 0.01 [0.62] 0.07 [0.01***] 0.03 [0.10] -0.01 [0.54] 

SI(-23) 0.01 [0.01***] 0.01 [0.12] 0.00 [0.50] -0.01 [0.20] 0.02 [0.17] 0.04 [0.13] 0.03 [0.04**] 0.04 [0.10] 

SI(-24) 0.01 [0.00***] 0.12 [0.00***] 0.01 [0.04**] 0.03 [0.00***] 0.04 [0.01***] 0.10 [0.00***] 0.03 [0.05**] 0.12 [0.00***] 

R2 0.3953 0.3767 0.464 0.2997 0.3937 0.3298 0.4597 0.3323 
Adjusted R2 0.3924 0.3738 0.4614 0.2964 0.3908 0.3266 0.4571 0.3291 

F-test 137.3 126.9 181.8 89.86 136.4 103.3 178.7 104.5 

p-value(F) 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 
Log-likelihood -240,423.0       -216,040.5       

Source: Own work. 
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Appendix 13: Chapter 2 

 

Table A10: Granger causality test results 

 Realised Simulated 

Country F-Test p-value F-Test p-value 

AT 30.581 0.00 32.797 0.00 

HR 27.34 0.00 7.6089 0.00 

IT 14.967 0.00 13.307 0.00 

SI 5.6263 0.00 4.1955 0.00 

 

 

Appendix 14: Chapter 3 

 

Table A11: Observed maximum generation mix penetrations in MW 

Country Type 2015 2016 2017 2018-Q3 

GR Gas 3,733 3,492 3,850 4,310 

GR Hydro 1,979 2,080 1,961 2,260 

GR Lignite 4,110 3,808 5,150 3,651 

GR Other 2 2 0 0 

GR Solar 2,062 1,923 1,847 1,933 

GR Wind 1,412 1,330 1,702 1,695 

HU Gas 854.25 800.75 770.5 763 

HU Hydro 26.5 27 26 26.25 

HU Lignite 1,502.25 1,651.25 1,948.75 1,681.50 

HU Nuclear 1,941.00 1,937.75 1,939.00 1,939.00 

HU Other 458.25 464.75 432.75 164 

HU Wind 304.75 306 301 298.25 

RO Gas 3,466 3,635 3,523 3,007 

RO Hydro 4,330 4,691 3,985 4,416 

RO Lignite 2,283 2,390 2,441 2,147 

RO Nuclear 1,426 1,420 1,433 1,415 

RO Other 78 74 70 64 

RO Solar 774 807 847 864 

RO Wind 2,686 2,795 2,756 2,750 

Source: ENTSO-E TP 2020. 
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Appendix 15: Chapter 3 

 

Table A12: OLS estimation of daily changes in Greek electricity prices. 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 Year 

2015 

Year 

2016 

Year 

2017 

Year 

2018 
All Years 

All Years 

Ren split 

All Years 

High load 

All Years 

Low load 

  ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t 

∆Pelec, d-1 
0.382 

[0.00***] 

0.390 

[0.00***] 

0.645 

[0.00***] 

0.672 

[0.00***] 

0.704 

[0.00***] 

0.707 

[0.00***] 

0.677 

[0.00***] 

0.578 

[0.00***] 

∆DE, d 
0.065 

[0.01***] 

0.107 

[0.00***] 

0.199 

[0.00***] 

0.156 

[0.00***] 

0.160 

[0.00***] 

0.161 

[0.00***] 

0.226 

[0.00***] 

0.107 

[0.00***] 

∆Load, d 
0.003 

[0.00***] 

0.002 

[0.00***] 

0.002 

[0.00***] 

0.001 

[0.07] 

0.001 

[0.00***] 

0.001 

[0.00***] 

0.002 

[0.00***] 

0.003 

[0.00***] 

∆Ren, d 
-0.005 

[0.00***] 

-0.005 

[0.00***] 

-0.006 

[0.00***] 

-0.005 

[0.00***] 

-0.004 

[0.00***] 
/ 

-0.005 

[0.00***] 

-0.003 

[0.00***] 

∆Wind, d / / / / / 
-0.004 

[0.00***] 
/ / 

∆Solar, d / / / / / 
-0.003 

[0.00***] 
/ / 

R2 0.59 0.50 0.76 0.78 0.77 0.77 0.80 0.57 

Adjusted R2 0.59 0.49 0.76 0.78 0.77 0.77 0.80 0.57 

F-test 130.80 88.34 291.30 233.72 1127.29 903.12 330.65 112.90 

p-value (F) 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Note: "***" and "**" indicating significance at 1% and 5 % levels respectively and P-values in [] brackets. 

Source: Own work. 
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Appendix 16: Chapter 3 

 

Table A13: OLS estimation of daily changes in Hungarian electricity prices 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 Year 

2015 

Year 

2016 

Year 

2017 

Year 

2018 
All Years 

All Years 

Ren split 

All Years 

High load 

All Years 

Low load 

 ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t 

∆Pelec, d-1 
0.469 

[0.00***] 

0.549 

[0.00***] 

0.501 

[0.00***] 

0.424 

[0.00***] 

0.582 

[0.00***] 

0.582 

[0.00***] 

0.689 

[0.00***] 

0.563 

[0.00***] 

∆DE, d 
0.207 

[0.00***] 

0.305 

[0.00***] 

0.228 

[0.00***] 

0.531 

[0.00***] 

0.313 

[0.00***] 

0.313 

[0.00***] 

0.258 

[0.00***] 

0.262 

[0.00***] 

∆Load, d 
0.008 

[0.00***] 

0.004 

[0.00***] 

0.013 

[0.00***] 

0.003 

[0.00***] 

0.006 

[0.00***] 

0.006 

[0.00***] 

0.008 

[0.00***] 

0.005 

[0.00***] 

∆Ren, d 
-0.015 

[0.00***] 

-0.009 

[0.05] 

-0.035 

[0.00***] 

-0.005 

[0.47] 

-0.013 

[0.00***] 
/ 

-0.014 

[0.07] 

-0.009 

[0.08] 

∆Wind, d / / / / / 
-0.013 

[0.00***] 
/ / 

∆Solar, d / / / / / / / / 

R2 0.63 0.71 0.74 0.82 0.75 0.75 0.74 0.70 

Adjusted R2 0.63 0.71 0.73 0.81 0.75 0.75 0.74 0.70 

F-test 152.8 218.78 248.39 294.11 994.96 994.96 235.97 194.62 

p-value (F) 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Note: "***" and "**" indicating significance at 1% and 5 % levels respectively and P-values in [] brackets. 

Source: Own work. 
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Appendix 17: Chapter 3 

 

Table A14: OLS estimation of daily changes in Romanian electricity prices 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

 Year 

2015 

Year 

2016 

Year 

2017 

Year 

2018 All Years 

All Years 

Ren split 

All Years 

High load 

All Years 

Low load 

 ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t ∆Pelec, t 

∆Pelec, d-1 
0.362 

[0.00***] 

0.414 

[0.00***] 

0.433 

[0.00***] 

0.497 

[0.00***] 

0.549 

[0.00***] 

0.545 

[0.00***] 

0.633 

[0.00***] 

0.452 

[0.00***] 

∆DE, d 
0.243 

[0.00***] 

0.209 

[0.00***] 

0.294 

[0.00***] 

0.386 

[0.00***] 

0.283 

[0.00***] 

0.254 

[0.00***] 

0.251 

[0.00***] 

0.262 

[0.00***] 

∆Load, d 
0.004 

[0.00***] 

0.005 

[0.00***] 

0.008 

[0.00***] 

0.003 

[0.00***] 

0.004 

[0.00***] 

0.006 

[0.00***] 

0.005 

[0.00***] 

0.007 

[0.00***] 

∆Ren, d 
-0.008 

[0.00***] 

-0.006 

[0.00***] 

-0.011 

[0.00***] 

-0.008 

[0.00***] 

-0.007 

[0.00***] 
/ 

-0.007 

[0.00***] 

-0.008 

[0.00***] 

∆Wind, d / / / / / 
-0.007 

[0.00***] 
/ / 

∆Solar, d / / / / / 
0.015 

[0.00***] 
/ / 

R2 0.68 0.68 0.73 0.73 0.72 0.73 0.72 0.71 

Adjusted R2 0.67 0.67 0.72 0.73 0.72 0.73 0.72 0.7 

F-test 186.68 185.74 226.84 178.19 846.03 708.57 210.61 197.77 

p-value (F) 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

Note: "***" and "**" indicating significance at 1% and 5 % levels respectively and P-values in [] brackets. 

Source: Own work. 

 

Appendix 18: Chapter 3 

 

Table A15: OLS estimation of net export in Greece 
 Year 2015 Year 2016 Year 2017 Year 2018 

 NX, t NX, t NX, t NX, t 

NX, t-24 0.750 [0.00***] 0.811 [0.00***] 0.796 [0.00***] 0.759 [0.00***] 

RES, t 0.048 [0.00***] 0.052 [0.00***] 0.055 [0.00***] 0.045 [0.00***] 

R2 0.59 0.66 0.66 0.59 

Adjusted R2 0.59 0.66 0.66 0.59 

F-test 2814.29 7426.11 8053.16 4659.02 

p-value (F) 0.00 0.00 0.00 0.00 

Note: "***" and "**" indicating significance at 1% and 5 % levels respectively and P-values in [] brackets. 

Source: Own work. 
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Appendix 19: Chapter 3 

 

Table A16: OLS estimation of net export in Hungary 
 Year 2015 Year 2016 Year 2017 Year 2018 

 NX, t NX, t NX, t NX, t 

NX, t-24 0.860 [0.00***] 0.860 [0.00***] 0.847 [0.00***] 0.886 [0.00***] 

RES, t 0.427 [0.00***] 0.626 [0.00***] 0.849 [0.00***] 0.695 [0.00***] 

R2 0.75 0.75 0.74 0.78 

Adjusted R2 0.75 0.75 0.74 0.78 

F-test 13091.44 12891.61 12407.85 12122.70 

p-value (F) 0.00 0.00 0.00 0.00 

Note: "***" and "**" indicating significance at 1% and 5 % levels respectively and P-values in [] brackets. 

Source: Own work. 

 

Appendix 20: Chapter 3 

 

Table A17: OLS estimation of net export in Romania 
 Year 2015 Year 2016 Year 2017 Year 2018 
 NX, t NX, t NX, t NX, t 

NX, t-24 0.458 [0.00***] 0.528 [0.00***] 0.363 [0.00***] 0.446 [0.00***] 

RES, t 0.330 [0.00***] 0.424 [0.00***] 0.513 [0.00***] 0.393 [0.00***] 

R2 0.55 0.58 0.57 0.48 

Adjusted R2 0.55 0.58 0.57 0.48 

F-test 5208.98 6010.65 5664.70 3118.52 

p-value (F) 0.00 0.00 0.00 0.00 

Note: "***" and "**" indicating significance at 1% and 5 % levels respectively and P-values in [] brackets. 

Source: Own work. 
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Appendix 21: Chapter 3 

 

Figure A4: Estimated merit order by the k-nearest neighbour algorithm (yearly aggregation of 

weekly estimates) 

 
Source: Own work. 
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Appendix 22: Chapter 3 

 

Figure A5: Estimated merit order by the random forest algorithm (yearly aggregation of 

weekly estimates) 

 

Source: Own work. 
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Appendix 23: Razširjeni povzetek disertacije v slovenskem jeziku 

 

V zadnjih letih so evropske države prestrukturirale trge z električno energijo iz vertikalno 

integrirane strukture v konkurenčne liberalizirane trge. Trg z električno energijo za dan vnaprej 

je veleprodajni trg, kjer se trguje s standardiziranimi urnimi pogodbami s fizično dobavo za 

dan vnaprej. Borzna cena električne energije je določena s presečiščem tržne funkcije ponudbe 

in povpraševanja. Glavne značilnosti, ki pomembno vplivajo na oblikovanje cen električne 

energije na konkurenčnem trgu, so: nezmožnost skladiščenja, zahtevano ravnovesje 

proizvodnje in potrošnje v realnem času, nujna in homogena dobrina, nizka elastičnost 

povpraševanja, razlikovanje fizičnih in pogodbenih tokov. Kot posledica nezmožnosti 

ekonomičnega skladiščenja in zahtevanega ravnovesja proizvodnje in porabe v realnem času 

se lahko oblikujejo negativne cene električne energije, ki niso značilne za trge ostalih surovin. 

Disertacija temeljito razišče uporabnost sodobnih algoritmov za napovedovanje cen električne 

energije in vpliv novih dejavnikov na trge električne energije. Pod krovnim izrazom »vpliv 

novih dejavnikov na trge električne energije« ločeno raziščemo tržni vpliv subvencionirane 

proizvodnje iz obnovljivih virov energije in proces spajanja trgov z električno energijo. 

Omenjena trenda poglavitno vplivata na delovanje trga in sta predmet številnih raziskav. 

Doktorsko delo temelji na javno dostopnem podatkovnem viru ENTSOE-TP in se ob tem 

izogiba mešanju virov. Na ta način zagotovimo enostavno in hitro ponovljivost izvedenih 

podatkovnih simulacij. 

 

Z doktorsko disertacijo želimo odgovoriti na naslednja raziskovalna vprašanja, ki jih lahko 

razvrstimo vzdolž treh raziskovalnih dimenzij. Prva dimenzija naslovi naslednja raziskovalna 

vprašanja: Ali so sodobni statistični pristopi (podatkovno rudarjenje in strojno učenje) pri 

napovedovanju cen električne energije uspešnejši v primerjavi z linearnim ekonometričnim 

modelom časovnih vrst; Kako vpliva velikost množice podatkov za učenje modelov na 

uspešnost napovedovanja; Ali učenje posamičnih modelov za vsako uro v dnevu posebej 

izboljša učinkovitost napovedovanja cen električne energije; Ali pojasnjevalna spremenljivka, 

ki opisuje razmerje med povpraševanjem in ponudbo, izboljša učinkovitost napovedovanja 

cene električne energije v robnih pogojih? 

 

 Z drugo dimenzijo raziščemo naslednja raziskovalna vprašanja: Kako oblikovati tržne 

simulacije na spojenih trgih električne energije; Ali spajanje trgov električne energije 

zagotavlja učinkovito dodeljevanje čezmejnih prenosnih zmogljivosti in konvergenco cen 

električne energije; Kakšen je vpliv spajanja trgov električne energije na volatilnost cen 

električne energije; Ali spajanje trgov električne energije pozitivno vpliva na prenos cenovnih 

šokov? 

 

Tretja raziskovalna dimenzija odgovori na naslednja znastvena vprašanja: Ali izrivanje 

konvencionalnih virov proizvodnje električne energije z obnovljivimi viri energije znižuje cene 

električne energije na trgih jugovzhodne Evrope; Ali lahko sodobni statistični pristopi 

premostijo vrzel v razpoložljivosti podatkov in učinkovito simulirajo cene električne energije 
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v scenariju brez proizvodnje iz obnovljivih virov energije; Ali proizvodnja iz obnovljivih virov 

energije povečuje volatilnost cen električne energije na trgih jugovzhodne Evrope; Ali 

razpoložljivost podatkov omejuje raziskovalno delo s področja trgov električne energije? 

 

Vsaka dimenzija raziskovalnih vprašanj tvori eno od naslednjih treh raziskovalnih tem: 

Kratkoročno napovedovanje cen električne energije s sodobnimi statističnimi pristopi; 

Simulacije spojenih trgov električne energije; Izrivanje konvencionalnih virov električne 

energije na veleprodajnem trgu z obnovljivimi. V doktorski disertaciji so omenjene 

raziskovalne teme predstavljene v obliki treh samostojnih poglavij, in sicer: (1) Učinkovitost 

sodobnih metod za napovedovanje cene električne energije: ugotovitve iz grškega in 

madžarskega trga; (2) Integrirani model za simulacije spojenih trgov električne energije: 

opažanja na stičišču evropskih trgov električne energije; (3) Izrivanje konvencionalne 

proizvodnje električne energije z obnovljivimi viri energije: izid na grškem, madžarskem in 

romunskem trgu električne energije. 

 

Vsi trije sklopi tvorijo splet ekonomske teorije s področja trga električne energije in aplikacije 

sodobnih statističnih pristopov za empirično raziskavo izhodiščnih raziskovalnih vprašanj. 

Odgovore vzdolž prve raziskovalne dimenzije smo pridobili s primerjavo učinkovitosti 

napovedovalnih tehnik s področja ekonometrije, podatkovnega rudarjenja in strojnega učenja. 

Učinkovitost napovedovalnih tehnik smo primerjali z merami natančnosti in na podlagi 

izvedenega statističnega Diebold-Marianovega testa. V drugem sklopu smo pri oceni 

agregirane elastičnosti ponudbe zaradi potencialnih pristranskosti, ki bi lahko vplivale na oceno 

z metodo najmanjših kvadratov, instrumentirali cene električne energije in s tem kontrolirali 

modelsko endogenost. Borzne cene in čezmejne pretoke na območju spojenih trgov električne 

energije smo določili na podlagi tehnične specifikacije borznega algoritma tj. linearnega 

programiranja. Z oceno vektorsko avtoregresijskega modela smo dodatno analizirali prenos 

cenovnih šokov v nespojenem režimu delovanja trgov in v simuliranem okolju spojenih trgov 

električne energije. V zadnjem sklopu ekonometrično ocenimo vpliv izrivanja konvencionalnih 

virov energije (angl. merit order effect) in vpliv proizvodnje iz obnovljivih virov energije na 

izvoz električne energije. Simulacija cen brez proizvodnje iz obnovljivih virov energije je 

izvedena s pomočjo algoritmov iz družine podatkovnega rudarjenja, in sicer za oceno 

ponudbene funkcije konvencionalne proizvodnje električne energije. 

 

Učinkovitost sodobnih metod za napovedovanje cene električne energije: ugotovitve z 

grškega in madžarskega trga 

 

V prvem poglavju obravnavamo temo, ki ji raziskovalci s področja trga z elektročino energijo 

posvečajo največ pozornosti. Napovedovanje cen je z liberalizacijo trga in rastjo nestanovitne 

proizvodnje iz obnovljivih virov energije postalo interdisciplinarno področje, ki privlači 

različne strokovnjake (ekonomiste, inženirje, matematike in statistike). Zaradi tveganosti tržnih 

operacij v opisanem dinamičnem okolju je napovedovanje cen električne energije postala 

prednostna naloga proizvajalcev in odjemalcev električne energije (Garcı́a-Martos, Rodrı́guez 
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& Sánchez, 2012). Za grški in madžarski trg smo pridobili podatke iz javno dostopne 

podatkovne baze ENTSOE-TP in jih uporabili za izvedbo primerjalne analize učinkovitosti 

sodobnih metod za napovedovanje cen električne energije . 

 

Napovedovanje cen električne energije je razmeroma mlado interdisciplinarno raziskovalno 

področje, ki je ob nastanku temeljilo na uporabi statističnih in ekonometričnih pristopov za 

doseganje zadovoljivih kratkoročnih napovedi. S povečano proizvodnjo iz obnovljivih virov 

energije in posledično povečano nestanovitnostjo cen električne energije sta se znanost in 

stroka zatekli k uporabi naprednih algoritmov s področja podatkovnega rudarjenja in strojnega 

učenja. Statistični in ekonometrični modeli so kritizirani zaradi linearnosti oz. slabe 

napovedovalne učinkovitosti, ki je povezana z nezmožnostjo učinkovitega modeliranja hitrih 

sprememb cenovnega signala. Izvedena sistematična primerjalna analiza uspešnosti 

napovedovanja ekonometričnega modela časovnih vrst z izbranimi metodami s področja 

rudarjenja podatkov in strojnega učenja pokaže, da je metoda podpornih vektorjev statistično 

natančnejša. To potrdi nižja metrika natančnosti napovedi in statistično značilen Diebold-

Marianov test. Preostali napovedovalni algoritmi so; regresijska drevesa, naključni gozd, 

metoda najbližjih sosedov in nevronske mreže, ki so glede na metriko natančnosti uspešnejše 

v primerjavi z referenčnim ekonometričnim modelom, vendar imajo statistično neznačilen 

Diebold-Marianov test. 

 

Z uporabo algoritmov podatkovnega rudarjenja in strojnega učenja za napovedovanje cen 

električne energije so se pojavila nova raziskovalna vprašanja. Algoritmi za rudarjenje 

podatkov in strojno učenje imajo običajno nabor "prostih parametrov", ki lahko vplivajo na 

uspešnost napovedovanja. Lago, De Ridder in De Schutter (2018) zaključijo študijo o 

učinkovitosti osrednjih metod za napovedovanje cen električne energije z odprtim 

raziskovalnim vprašanjem o optimalni velikosti vzorca za učenje algoritmov. Z velikim 

številom simuliranih nastavitev za vsak posamezen model smo statistično raziskali omenjen 

učinek na uspešnost napovedovanja cen električne energije. Ugotovili smo, da je učinkovitost 

napovedovanja cen električne energije posameznih metod odvisna od izbranega trga in 

velikosti učnega vzorca. Zato omenjenih zaključkov ni mogoče uporabiti za oblikovanje 

splošnih trditev o optimalni velikosti vzorca za učenje določene metode. Kljub temu smo 

ugotovili, da je velikost učnega vzorca pozitivno povezana z natančnostjo napovedovanja cen 

električne energije in da imajo modeli prelomno točko, kjer se razmerje obrne. Modeli, ki 

temeljijo na nevronskih mrežah, ob bistveno večjih vzorcih za učenje v splošnem dosegajo 

večjo natančnost v primerjavi z drugimi izbranimi metodami. 

 

V eni zgodnejših publikacij so Crespo Cuaresma, Hlouskova, Kossmeier in Obersteiner (2004) 

uporabili ARMA model časovnih vrst za napovedovanje cen električne energije v Nemčiji za 

dan vnaprej. Da bi v celoti izluščili informacije posamezne ure, so za vsako uro v dnevu ocenili 

ARMA model, ki so ga učili na grupiranih urnih podatkih. Poročali so o boljši učinkovitosti v 

primerjavi s pristopom, ki se ga v raziskavah najpogosteje uporablja in temelji na uporabi enega 

splošnega modela za napovedovanje vseh ur v dnevu. Posledica učenja na grupiranih urnih 
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podatkih je zmanjšanje velikosti učnega vzorca za faktor števila 24 (število ur v dnevu) v 

primerjavi z učnim vzorcem, uporabljenim pri tradicionalnem pristopu. Takšen režim učenja 

bi lahko bil problematičen za modele, ki dosegajo boljšo napovedovalno uspešnost šele pri 

bistveno večjih učnih vzorcih. V primerjavi z uporabo enega splošnega modela za 

napovedovanje cen električne energije madžarskega trga so modeli, uporabljeni v naši 

raziskavi, uspešnejši, ker za učenje uporabijo grupirane urne podatke. Pri napovedovanju cen 

na grškem trgu so enaki modeli manj uspešni. Zato zaključimo, da lahko na določenih trgih 

učenje modelov na grupiranih urnih podatkih izboljša uspešnost napovedovanja cen električne 

energije. 

 

V modele za napovedovanje cen električne energije smo vključili dodatno pojasnjevalno 

spremenljivko DSR (angl. demand-supply ratio), ki označuje delež razpoložljive inštalirane 

proizvodne zmogljivosti za pokrivanje povpraševanja po električni energiji. Visoke vrednosti 

pojasnjevalne spremenljivke DSR kažejo na nizko razpoložljivost prostih proizvodnih 

zmogljivosti in tesne tržne razmere (Alexander & Dominique, 2007). V zaostrenih tržnih 

razmerah lahko pride do t. i. cenovnih skokov, v ohlapnih razmerah pa do negativnih cen 

električne energije. Za cenovne skoke (angl. price spike) je značilen zelo kratek nenaden odmik 

cen EE od običajnega režima. Z dodatno vključeno pojasnjevalno spremenljivko DSR vsi 

modeli na grškem trgu dosežejo boljše napovedovalne rezultate. Medtem ko na madžarskem 

trgu doseže višjo natančnost samo model nevronske mreže, ki ima dodano pojasnjevalno 

spremenljivko DSR. Podrobna analiza uspešnosti napovedovanja cen električne energije na 

obeh trgih razkrije, da pojasnjevalna spremenljivka DSR nepomembno vpliva na natančnost 

napovedovanja cen električne energije v 50. najvišjih in 50. najnižjih primerih cen električne 

energije. Alexander in Dominique (2007) poročata o podobnih ugotovitvah, zato zaključimo, 

da v zaostrenih tržnih razmerah dodatna pojasnjevalna spremenljivka DSR ne izboljša 

uspešnosti napovedovanja cen električne energije. 

 

 

Integrirani model za simulacije spojenih trgov električne energije: učinki na stičišču 

evropskih trgov električne energije 

 

V drugem poglavju podrobno preučimo spajanje trgov električne energije v EU in predlagamo 

metodološko rešitev za tržne simulacije na spojenih trgih električne energije . Prav tako 

odgovorimo na pomembna vprašanja, povezana z učinkovito alokacijo čezmejnih prenosnih 

kapacitet, konvergenco cen električne energije in prenosom cenovnih šokov med trgi. 

Odgovore na raziskovalna vprašanja pridobimo empirično, z izvedeno simulacijo spajanja 

avstrijskega, italijanskega, slovenskega in hrvaškega trga z električno energijo. Slovenski trg, 

ki je osrednji trg simulacije, je preko avstrijskega daljnovoda povezan z razvitimi trgi električne 

energije srednjezahodne Evrope, ob tem je povezan s severno regijo Italije s tradicionalno 

visokimi cenami (Pellini, 2012) in preko hrvaškega daljnovoda z jugovzhodnimi evropskimi 

trgi v razvoju, za katere je značilna visoka volatilnost cen (Božić et al., 2020). Empirične 



16  

ugotovitve s stičišča evropskih trgov električne energije so vsebinsko izredno relevantne in 

pridobljene na podlagi podatkov javno dostopne podatkovne baze ENTSOE-TP. 

 

V povezavi z energetskimi trgi je eden izmed glavnih ciljev EU vzpostavitev energetske unije 

in posledično konvergence cen električne energije. Zaradi tehničnih omejitev prenosnega 

omrežja in različnih proizvodnih mešanic električne energije je konvergenca cen znotraj EU 

težko dosegljiva. Eden izmed ukrepov, ki bistveno pripomore k doseganju tega cilja, je spajanje 

trgov (angl. market coupling). Ti omogočajo optimalno izkoriščenost čezmejnih prenosnih 

zmogljivosti med trgi. Dražbe za čezmejne prenosne kapacitete in električno energijo na trgu 

za dan v naprej niso več organizirane ločeno. Namesto tega se na celotnem spojenem območju 

trgov z borznim algoritmom EUPHEMIA, ki maksimira socialno blaginjo vseh udeležencev 

na trgu, določita cena in alokacija čezmejnih prenosnih kapacitet . Kiesel in Kusterman (2016) 

sta ugotovila, da je na spojenih trgih električne energije ključnega pomena hkratno modeliranje 

cen na vseh področjih z enim simulacijskim modelom. Lago et al. (2018) podobno izpostavijo, 

da primanjkuje metodologija za empirične simulacije na spojenih trgih z električno energijo. 

Zato v drugem poglavju predlagamo simulacijski pristop, kjer se alokacija čezmejnih prenosnih 

kapacitet in cena EE določita hkrati z rešitvijo matematičnega optimizacijskega problema – 

algoritem EUPHEMIA. Vhodni podatek za matematično optimizacijo je knjiga oddanih 

naročil, ki jo za posamezno tržno območje pridobimo na podlagi ekonometrično ocenjene 

cenovne elastičnosti ponudbe. S predlaganim simulacijskim pristopom lahko tako hkrati 

analiziramo vpliv spajanja trga na dodeljevanje čezmejnih prenosnih kapacitet in na proces 

določitve cene električne energije. Statistični modeli ali napredni modeli s področja 

podatkovnega rudarjenja in strojnega učenja so splošni in ne omogočajo izvedbe takšne 

empirične analize. 

 

Cilj izvedene simulacije spajanja avstrijskega, italijanskega, slovenskega in hrvaškega trga je 

odpraviti ugotovljeno neučinkovito rabo čezmejnih prenosnih kapacitet med takrat še 

nespojenimi trgi in temu ustrezno prilagoditi tržne cene električne energije v Avstriji, Italiji, 

Sloveniji in na Hrvaškem. Mehanizem spajanja trgov zagotavlja, da so čezmejne prenosne 

kapacitete vedno učinkovito izkoriščene z ekonomsko razlago pretokov energije proti trgom z 

višjo tržno ceno električne energije. Proste čezmejne prenosne kapacitete se pojavijo šele, ko 

so izkoriščene vse možnosti za arbitražo in so cene med trgi enake, kar izhaja iz specifikacije 

matematičnega optimizacijskega modela. V proučevanem obdobju lahko opazimo, da se 

izrazito neučinkovita raba čezmejnih prenosnih kapacitet pojavlja na meji med Hrvaško in 

Slovenijo (HRSI). Omenjena meja povezuje trga z ocenjeno nizko cenovno elastičnostjo 

ponudbe in zadostno količino čezmejnih prenosnih kapacitet za odpravo cenovnih razlik. 

Zaradi časovne razlike med dražbo za čezmejne prenosne kapacitete in električno energijo 

prihaja do informacijske asimetrije na nespojenih trgih, zato je konvergenca med slovenskim 

in hrvaškim trgom redko dosežena. Izkaže se, da je dano pooblastilo tržnim agentom za 

regulacijo prenosa električne energije na nespojenih trgih neučinkovito. Na podlagi 

simulacijskih rezultatov potrjujemo, da algoritem za spajanje trga odpravlja vse 

neučinkovitosti pri izkoriščanju čezmejnih prenosnih kapacitet in poveča konvergenco cen. Z 
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izvedeno simulacijo empirično potrdimo, da je spojitev trgov z električno energijo 

učinkovitejše od prejšnjega tržnega mehanizma. 

 

Po mnenju Laga et al. (2018) lahko učinki spajanja trgov izrazito spremenijo dinamiko 

oblikovanja cen električne energije. Z empiričnimi rezultati simulacije spajanja trgov lahko 

potrdimo zmanjšano volatilnost cen na simuliranem območju. Prav tako ti rezultati potrjujejo 

ugotovitve Huismana in Kiliça (2013), ki sta ekonometrično analizirala cene na petih spojenih 

trgih srednje in zahodne Evrope. Ugotovila sta, da se zaradi izboljšane likvidnosti cenovna 

volatilnost zmanjša, ob enem pa se zmanjša tudi število ekstremnih cenovnih situacij na 

spojenih trgih električne energije. 

 

De Vany in Walls (1999) zaključita, da je ekonometrični model vektorske avtoregresije (VAR) 

izrazito primeren za modeliranje kompleksne dinamike cen električne energije, ki je značilen 

za povezane trge s čezmejnimi prenosnimi kapacitetami. Zato v poglavju z ocenjenimi VAR 

modeli raziščemo prenos cenovnih šokov, ki so dober indikator integriranosti trgov v EU. Na 

podlagi pregledane literature zaključimo, da gre za prvo analizo prenosov cenovnih šokov na 

realiziranih podatkih nespojenih trgov in na podlagi podatkov simulacije spojenih trgov. 

Primerjava ocenjenih funkcij impulznega odziva (angl. impulse respone functions), ki v VAR 

modelu predstavljajo prenos cenovnih šokov, razkriva spremenjeno tržno dinamiko cen na 

spojenih trgih električne energije. Statistično značilen prenos cenovnih šokov na nespojenih 

trgih s 24-urnim zamikom kaže na iniciativo tržnih udeležencev, da ob opaženem cenovnem 

šoku na enem od sosednjih trgov prilagodijo svoje strategije z enodnevnim zamikom. Prenos 

cenovnih šokov električne energije v simuliranem spojenem tržnem režimu je glede na 

rezultate ocenjenega modela takojšen in okrepljen. Glede na podatke empirične simulacije se 

integriranost trga z električno energijo v EU izboljša z uvajanjem spajanja trgov, kar potrjuje 

odpravljen časovni zamik in okrepljena intenzivnost prenosov cenovnih šokov s trgi, ki so 

povezani s čezmejnimi prenosnimi kapacitetami. 

 

Izrivanje konvencionalne proizvodnje električne energije z obnovljivimi viri energije 

na grškem, madžarskem in romunskem trgu električne energije 

 

V zadnjem poglavju analiziramo vpliv proizvodnje električne energije iz obnovljivih virov 

energije na trg. Nacionalne podporne sheme, ki jih je sprožila direktiva (2001/77/ES) za 

podporo obnovljivim virom energije s ciljem zmanjšanja izpusta toplogrednih plinov in tuje 

energetske odvisnosti, izrazito vplivajo na oblikovanje tržnih cen. Proizvodnja električne 

energije iz obnovljivih virov energije je brez stroškov goriva in se poplača iz omenjenih 

podpornih shem. Posledično proizvodnje iz obnovljivih virov energije na trgu izrivajo 

konvencionalne proizvodne tehnologije z višjimi mejnimi stroški proizvodnje, kar privede do 

nižjih tržnih cen (Würzburg et al., 2013). Izrivanje konvencionalnih virov proizvodnje 

električne energije s proizvodnjo iz obnovljivih virov energije raziskovalci poimenujejo kot t. 

i. učinek izrivanja konvencionalnih virov (angl. merit order effect). Cilj poglavja je 

ekonometrično potrditi prisotnost izrivanja konvencionalnih virov in simulacijsko prilagoditi 
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realizirane tržne cene električne energije na scenarij brez proizvodnje iz obnovljivih virov 

energije na grškem, madžarskem in romunskem trgu. 

 

Zaradi manjkajočih romunskih podatkov o proizvodnji na javno dostopni podatkovni bazi 

ENTSOE-TP se v raziskavi nismo mogli izogniti mešanju podatkovnih virov. Mešanje 

podatkovnih virov je zamudno, saj zahteva razvoj dodatnih programov za zbiranje podatkov in  

njihovo nadaljnjo obdelavo. Razpoložljivost in kakovost podatkov še vedno omejujeta 

raziskave s področja trgov z električno energijo. 

 

Z ocenjenimi ekonometričnimi modeli statistično potrdimo prisotnost t. i. učinka izrivanja 

konvencionalnih virov električne energije na evropskih trgih v razvoju. Za vsako državo smo 

ocenili osem različnih modelov za potrditev omenjenega učinka. Razlikujemo med modeli, ki 

so ocenjeni na podatkih za posamezno koledarsko leto, in modeli, ki so ocenjeni na urnih 

podatkih med letoma 2015 in 2018. S prvo skupino modelov lahko zaznamo možne dolgoročne 

prilagoditve tržnih udeležencev na povečano proizvodnjo iz obnovljivih virov energije, z drugo 

skupino modelov pa lahko razlikujemo med učinkom vetrne in solarne proizvodnje na izrivanje 

konvencionalne proizvodnje električne energije. Izvedena ekonometrična analiza dopolnjuje 

obstoječe raziskave, ki so osredotočene na ključna energetska področja EU glede na inštalirano 

moč obnovljivih virov energije in razvitost trga z električno energijo. 

 

Za dodatno potrditev negativnega vpliva obnovljivih virov energije proizvodnje na cene 

električne energije in z namenom ocene vpliva obnovljivih virov energije proizvodnje na 

volatilnost cen, realizirane tržne cene električne energije simulacijsko prilagodimo na scenarij 

brez proizvodnje iz obnovljivih virov energije. Uporabljen simulacijski pristop intuitivno sledi 

modelu DIME (Dispatch and Investment Model for Electricity Markets in Europe), ki so ga v 

podobni študiji uporabili Fürsch, Malischek in Lindenberger (2012). Model DIME upošteva 

vpliv proizvodnje iz obnovljivih virov energije na mednarodne pretoke električne nergije in 

dinamično prilagajanje konvencionalnih virov proizvodnje glede na spremembe proizvodnje 

iz obnovljivih virov energije. Proizvodnjo električne energije je mogoče učinkovito simulirati 

z optimizacijskimi modeli proizvodnje (angl. unit commitment models), ki minimizirajo skupne 

stroške proizvodnje elektrarn. Zaradi omejene dostopnosti javnih podatkov za razvoj 

optimizacijskega modela proizvodnje s pomočjo algoritmov podatkovnega rudarjenja ocenimo 

ponudbo konvencionalnih elektrarn, razvrščeno glede na kratkoročne mejne stroške 

proizvodnje v naraščajočem vrstnem redu skupaj s količino proizvedene energije (angl. merit 

order). Omenjeni pristop učinkovito opravi z nelinearnostjo cenovnih signalov električne 

energije (Weron, 2014) in premosti vrzel manjkajočih podatkov za implementacijo 

optimizacijskega modela proizvodnje, s katerim lahko opravimo učinkovito simulacijo tržnih 

cen električne energije v scenariju brez proizvodnje iz obnovljivih virov energije.  

 

Vpliv proizvodnje iz obnovljivih virov energije na mednarodne pretoke električne energije smo 

ocenili z ekonometričnim modelom. Ocenjene vrednosti pojasnjevalnih spremenljivk so 

statistično značilne in v skladu s predhodnimi raziskavami (Traber & Kemfert, 2009), ki 
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potrjujejo, da proizvodnja iz obnovljivih virov energije zmanjšuje uvoz električne energije. 

Rezultate ekonometričnega modela smo za izračun scenarija brez proizvodnje iz obnovljivih 

virov energije integrirali v simulacijsko okolje. Rezultati simulacije kažejo na znaten porast 

cen v državah z izrazito proizvodnjo električne energije iz obnovljivih virov energije (Grčija 

in Romunija). Izračunana volatilnost cen električne energije se v scenariju brez proizvodnje iz 

obnovljivih virov energije v povprečju zmanjša. Zmanjšana volatilnost cen električne energije 

je posledica izključene nestanovitne proizvodnje iz obnovljivih virov energije. S simulacijo 

potrdimo, da na trgih jugovzhodne Evrope proizvodnja energije iz obnovljivih virov niža cene 

električne energije in povečuje cenovno volatilnost. Simulacijski rezultati se ujemajo z 

raziskovalnimi spoznanji iz danskega in švedskega trga z električno energijo (Dong et al., 

2019). 

 

Čeprav disertacija ponuja več novih spoznanj glede modeliranja cen in vpliva novih dejavnikov 

na trge električne energije, ima določene omejitve. Prvič, disertacija je s sistematičnim 

kvantitativnim pregledom napovedovalne uspešnosti šestih sodobnih napovedovalnih 

algoritmov omejena na ugotovitve z grškega in madžarskega trga električne energije, zato 

oblikovanje splošnih trditev o učinkovitosti metod ni možno. Poleg tega je analiza omejena na 

šest temeljnih sodobnih napovedovalnih algoritmov, zato rezultatov ni mogoče posplošiti na 

druge obstoječe alternativne napovedovalne algoritme. Drugič, analiza učinka spajanja trgov 

električne energije trgov na cene in izkoriščenost čezmejnih prenosnih zmogljivosti bi bila z 

vključitvijo vseh evropskih trgov z električno energijo v izvedeno simulacijo metodološko 

ustreznejša. Razširjen obseg simulacije bi dodatno obogatil vektorsko avtoregresijsko analizo 

prenosa šoka cene električne energije, saj bi lahko preučili omenjen vpliv na vseh evropskih 

trgih. Uporabljen postopek izdelave knjige borznih naročil, ki temelji na ekonometrično 

ocenjeni funkciji elastičnosti ponudbene cene, bi lahko dopolnili tudi z uporabo sodobnih 

statističnih metod. Tretjič, simulacija cene električne energije v scenariju proizvodnje brez 

obnovljivih virov energije je zaradi nedostopnih javnih podatkov v analiziranih državah 

omejena zgolj na izvedbo s sodobnimi statističnimi metodami. Izvedba dodatne simulacije 

scenarija proizvodnje brez obnovljivih virov energije  z optimizacijskimi modeli, ki temeljijo 

na teoriji agentov, in primerjava dobljenih rezultatov bi dodatno doprinesla k vrednosti študije. 

 

Disertacija s prvim sistematičnim pregledom natančnosti sodobnih napovedovalnih metod, ki 

upošteva omejitve delovanja trga z električno energijo za dan vnaprej, poda raziskovalcem in 

tudi udeležencem trga z električno energijo statistično ovrednoteno informacijo. S statistično 

analizo prinaša tudi nove odgovore na aktualno raziskovalno vprašanje o vplivu velikosti 

podatkovne množice za učenje natančnosti napovedovalnih metod. Raziskovalci pogosto 

razpravljajo o pomanjkanju učinkovitega metodološkega pristopa za modeliranje spojenih 

trgov z električno energijo. Disertacija zaradi aktualne problematike na področju raziskovanja 

spojenih trgov v EU predlaga metodološki pristop, ki omogoča robustno izvedbo tržnih 

simulacij na spojenih trgih. Z izvedenimi empiričnimi simulacijami odgovori tudi na aktualna 

raziskovalna vprašanja o konvergenci in volatilnosti cen ter prenosu cenovnih šokov na 

spojenih trgih električne energije. Raziskovalno delo z analizo izrivanja konvencionalnih virov 
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proizvodnje električne energije z obnovljivimi viri energije na trgih jugovzhodne Evrope 

dopolni obstoječo literaturo, ki je osredotočena le na razvita energetska področja EU. 

Znanstveno raziskovalno delo s področja trgov z električno energijo je podatkovno intenzivno 

in je bilo v preteklosti zaradi nerazpoložljivosti in javne nedostopnosti podatkov oteženo. 

Disertacija temelji na javno dostopni podatkovni bazi ENTSOE-TP in se v največji možni meri 

izogiba mešanju virov podatkov. To zagotavlja enostavno ponovljivost študije in bi lahko 

skupaj z izpostavljenimi omejitvami spodbudilo nadaljnje raziskovalno delo na področju trgov 

z električno energijo. 


