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Summary

The dissertation examines the asymmetric Weibull distributions extended to the higher

dimensional setting. Newly developed definitions along with the methods of estimation

of the parameters are presented. This provides the basis for applications in modelling

financial data including the univariate and the multivariate double Weibull model for

currency exchange rates. The dissertation starts with an extensive review of the uni-

variate Weibull distribution followed by its generalization to the multivariate case. This

generalization is the core of the dissertation and its main contribution to science. A

well known representation of the asymmetric univariate Laplace distribution is used

as the starting point. Properties of the new family of distributions are described in

detail and parameters are estimated using the method of moments. In the final part of

the dissertation an application of the new family of distributions to modelling financial

data in the case of bivariate currency exchange rate data set is given. This new family

shows the potential for modelling purposes.

Keywords: asymmetric Laplace law; double Weibull distribution; multivariate asym-

metric Weibull distribution; currency exchange rate modelling



Povzetek

Disertacija obravnava nesimetrične Weibullove porazdelitve tako v eni kot v več di-

menzijah. Predstavimo deloma nove definicije teh porazdelitev in izpeljemo metode

za ocenjevanje parametrov, kar je nujna predpostavka za uporabo pri modeliranju fi-

nančnih podatkov kot so donosi finančnih naložb ali modeliranje menjalnih tečajev.

Po obširnem pregledu v eni dimenziji je predstavljena posplošitev na več dimenzij. Ta

posplošitev je dejanski prispevek disertacije. Posplošitev je posredna prek reprezentacij

nesimetrične Laplaceove porazdelitve v eni dimenziji. Disertacija navaja lastnosti te

nove družine porazdelitev in se loti tudi vprašanj ocenjevanja parametrov in simulacij.

Disertacija se zaključi s finančno uporabo te nove družine porazdelitev na dejanskih

menjalnih tečajih.

Ključne besede: asimetrična Laplaceova transformacija; dvojna Weibullova porazdelitev;

večrazsežna asimetrična Weibullova porazdelitev; finančno modeliranje
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Introduction

The exponential distribution, whose standard probability density function (p.d.f.) is

given by

fE(x) = e−x, x > 0, (1)

is one of the most widely used distributions in science. Taking the 1/α power of a

standard exponential variable leads to classical Weibull distribution with the p.d.f.

f(x) = αxα−1e−x
α

, x > 0. (2)

This distribution is used to model the breaking strength of materials (see Weibull [96,

97]) as well as in other applications, including quality control and reliability (see Weibull

[98]). It is widely used probability distribution in finance, science and engineering (see

Halinan [28], and Johnson at al. [40]). The distribution can be extended to the whole

real line by symmetrization of the density (2), leading to the p.d.f.

f(x) =
α

2
|x|α−1e−|x|

α

, x 6= 0, (3)

(see Balakrishnan and Kocherlakota [7]). This symmetric distribution is useful in

modeling financial asset returns and in non-life insurance (see Chenyao et al. [9],

Hürlimann [34], Mittnik and Rachev [74]).

The same distribution can be obtained by rising a Laplace variable with density

f(x) =
1

2
e−|x|, x ∈ R, (4)

to the (signed) 1/α power. Fernandez and Steel (see [19]) introduced skewness into the

symmetric double Weibull distribution including two inverse scale factors (one on the

positive and one on the negative half-axis) transforming a symmetric distribution with

p.d.f. f into a skew one with the p.d.f.

g(x) =
2κ

1 + κ2

{
f(xκ), x ≥ 0

f(x
κ
), x < 0,

(5)

where κ > 0. Normal density generates the class of skew normal distributions (see

Tiao and Lund [93], Mudholkar and Hutson [76], and references therein). The Laplace

(double exponential) density (4) leads to the class of skew Laplace distributions, use-

ful for stochastic modeling in variety of fields, including finance, economics, and the

sciences (see Kotz et al. [49] and references therein). Ayebo and Kozubowski (see [6])

considered skew exponential power laws on R, which generalize both the skew normal

and the skew Laplace distributions.
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Asymmetric double Weibull (ADW) distributions are obtained following Fernandez

and Steel approach (see [19]). One type of asymmetric distributions is obtained when

the skewness is applied directly into the symmetric double Weibull distribution via (5).

The other type arises from taking (signed) powers of skew Laplace laws. These two

types of distributions have different forms and are discussed separately.

It is known that the standard Laplace random variable Y admits representation

Y
d
=
√

2EZ, (6)

where Z is a standard normal and E is a standard exponential random variable (see

Kotz et al. [49]). This representation is a scale mixture of normal distributions (in

other words, a normal distribution with a stochastic variance 2E).

The question whether the double Weibull distribution itself is a scale mixture of normal

distributions similar to (6) is considered. It turns out that answer is positive, but only

in the case 0 < α ≤ 1. For α = 1, the double Weibull distribution reduces to the

Laplace distribution, which is a scale mixture of normal distributions (see (6) above).

It is known that for α < 1, the classical Weibull variable W = E
1
α admits the repre-

sentation

W
d
= E/S, (7)

where S is a stable random variable - a positive random variable with p.d.f. fS(s) and

the Laplace transform

g(t) = Ee−tS =

∫ ∞
0

e−stfS(s)ds = e−t
α

, (8)

(see Yannaros [95] and also Jurić [41]). Then the corresponding double Weibull variable

X admits the representation

X
d
= IW

d
= IE/S

d
= Y/S,

where Y is a standard Laplace variable and I is a variable taking on the values ±1

with probabilities 1/2 . Thus, comparing with (6), we conclude that X is a mixture of

normal distributions and the following new result summarizes this discussion,

X
d
=

(√
2E

S

)
Z.

As already said, there are two ways of deriving an asymmetric double Weibull distri-

bution. The first model, named ”Asymmetric double Weibull distribution of type I”

is obtained by introducing skewness into the symmetric (double) Weibull distribution

using the approach of Fernandez and Steel (see [19]) and the fact that the classical

Weibull variable can be represented as a power of an exponential variable.
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Adding an additional scale parameter σ > 0, the following formulas for density and

distribution function are obtained:

g(x) =
1

σα
ακ

1 + κ2

{
(κx)α−1e−(xκ

σ
)α , x > 0

(−x
κ
)α−1e−(− x

σκ
)α , x < 0

and G(x) =

{
1− 1

1+κ2
e−(xκ

σ
)α , x ≥ 0

κ2

1+κ2
e−(− x

σκ
)α , x < 0,

(9)

We denote the distribution of X by ADWα(σ, κ) and write X ∼ ADWα(σ, κ).

To construct the second model, the operations of taking the power and introducing

skewness are reversed. The steps for obtaining this model include symmetrization of the

standard exponential random variable to obtain Laplace random variable, introducing

the skewness into the Laplace p.d.f. via (5) to obtain a skew Laplace r.v. and taking

(signed) 1/α power. This model is named ”Asymmetric double Weibull distribution of

type II”. The following formulas for density and corresponding distribution function

are obtained:

g(x) =
1

σ

ακ

1 + κ2

{
xα−1e−

κ
σ
xα , x > 0

(−x)α−1e−
1
κσ

(−x)α , x < 0.
and GX(x) =

{
1− 1

1+κ2
e−

κ
σ
xα , x ≥ 0

κ2

1+κ2
e−

1
κσ

(−x)α , x < 0.

(10)

We denote the distribution of X as ADW∗α(σ, κ) and write X ∼ ADW∗α(σ, κ).

The most important contribution of this work is the extension of the univariate Weibull

distribution to the multidimensional case. As already stated, the standard Laplace

random variable Y admits the representation

Y
d
=
√

2EZ,

where E is standard exponential and Z is standard normal variable independent of E.

Furthermore, Kozubowski and Podgórski, (see [48]) show that the random variable

Y
d
= mE +

√
2EZ (11)

has the asymmetric Laplace distribution in the sense of (5), where m is a parameter of

asymmetry. On the other hand, let L have the symmetric Laplace distribution and let S

be an independent stable random variable with index α ∈ (0, 1] defined by the Laplace

transform (8). It can be shown by an elementary calculation that the random variable

Y = L/S has the symmetric Weibull distribution with parameters α and σ = 1. This

together with (11) leads to the idea that the random variable W defined by

W
d
=
mE +

√
2EX

S
(12)
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with independent E, X ∼ N(0, τ 2) and S, has the asymmetric double Weibull distribu-

tion. It can be verified by an elementary calculation that W indeed has the asymmetric

Weibull distribution in the sense of (5) with parameters α, σ = τ and κ =
√
m2+4τ2−m

2τ
.

The above representation leads to a multidimensional generalization of the univariate

asymmetric Weibull distribution. We define

W =
mE +

√
2EX

S
, (13)

where m ∈ Rd, the quantity Σ is a d× d positive semi definite symmetric matrix, and

the notation X ∼ Nd(0,Σ) is used to indicate a d-dimensional normal distribution with

the mean vector 0 and the covariance matrix Σ. The marginal distributions of W are

asymmetric Weibull as well. This justifies the name asymmetric multivariate Weibull

distribution.

Symmetric and asymmetric, univariate and multivariate versions of classical (standard)

Weibull and Laplace distributions have been used to model asset returns and currency

exchange rates, (see [43], [52], [66], [74] and [83]). The above generalization provides

a new family of distributions which can potentially be used in modeling multivariate

financial data. The components will never be independent but the advantage of this

generalization is in the fact that this family of distributions inherits nice properties of

the multivariate normal distribution. Linear combinations of components are asym-

metric Weibull. The other limitation is that α ∈ (0, 1] but it can be shown that only

for such α we get a unimodal distribution which is of advantage for modeling purposes.

Thus, the motivation for our work is to generalize asymmetric double univariate Weibull

model and place it in the multidimensional setting. The model itself has an elegant

form with nice properties showing a good application potential.

The thesis is organized as follows. First, in Chapter 1, we introduce skewness in sym-

metric (double) Weibull distribution following the approach of Fernandez and Steel

(see [19]), and derive basic formulas for densities and cumulative distribution func-

tions. Expressions for moments and other common parameters are provided as well.

In Chapter 2, we discuss estimation of the parameters and provide algebraic expres-

sions for some of them. We also present asymptotic properties of the estimators for

certain cases. For those parameters that could not be expressed analytically, we de-

velop computer routines which are given in Appendices.

Chapter 3 is dedicated to practical applications in the univariate setting. Here, the

asymmetric double Weibull distribution of type II along with three other distributions

(Normal, Asymmetric Laplace and Exponential power) is applied to model currency

exchange data set. The Kolmogorov-Smirnov distance is calculated to evaluate good-

ness of fit for each distribution. The results prove the Weibull model to be adequate.

In Chapter 4 a review of univariate and multivariate Weibull distributions based on

4



literature search is presented.

Chapter 5 discusses the representation of multivariate Weibull random vector defined

by using the asymmetric Laplace and stable subordinator r.v. The connection of the

multivariate model with type I univariate Weibull r.v. is shown. Properties obtained

from the multivariate model such as the polar representation, linear transformation,

conditional distribution, expected values and covariance matrices are presented as well.

We continue with formula for density and a simulation algorithm accompanied with

the graphical representation in Chapter 6.

Chapter 7 describes the quadrant probabilities in the bivariate case. In Chapter 8 esti-

mation of the parameters based on method of moments is explained in detail. In order

to obtain the parameters, numerical search using statistical package R is performed.

The final part in Chapter 9 includes the application part of the bivariate case followed

by a commentary and conclusions.
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1 Asymmetric double Weibull distributions

This chapter starts with a review of the classical Weibull distribution and its funda-

mental properties. Next, an extension of the symmetric Weibull distribution to the

whole real line, leading to the symmetric (double) Weibull distribution, is presented.

We derive some basic properties along with the representation and the facts connected

with stability and limiting properties. At the end, skewness is introduced into the

symmetric distribution, leading to asymmetric double Weibull distributions of type I

and II. The results of this chapter closely follow Jurić and Kozubowski [42].

1.1 Classical Weibull distribution

For α > 0, the variable Y = E
1
α ,where E is a standard exponential random variable,

has the standard Weibull distribution. With additional location and a scale parameter,

we obtain a three-parameter Weibull distribution corresponding to the distribution of

the random variable: X = σY +ξ = σE
1
α+ξ denoted byWα(ξ, σ). The three-parameter

probability density function takes the form

fX(x) =
α

σ

(
x− ξ
σ

)α−1

e−(x−ξσ )
α

, x > ξ, (14)

where α > 0 is the shape parameter, σ > 0 is the scale parameter and ξ ∈ R is the

location parameter. The corresponding cumulative distribution function is:

FX(x) = 1− e−(x−ξσ )
α

, x > ξ. (15)

The exponential distribution is obtained for α = 1 and the Rayleigh distribution for

α = 2 as special cases. For α > 1 there is a single mode at

x = σ

(
α− 1

α

) 1
α

+ ξ. (16)

This value tends to σ + ξ as α→∞. For 0 < α ≤ 1 the mode is at ξ, and the density

is a decreasing function of x for all x > ξ.

Since Xα has the standard exponential distribution, if X is Weibull with σ = 1 and ξ =

0, the n-th moment of X is the same as the n
α

-th moment of the standard exponential

random variable,

E(Xn) = Γ
(n
α

+ 1
)
. (17)

6



The method of moments estimation gives the following equations for σ and α:

σ̂ = ea+ γ
π

√
6(b−a2) and α̂ =

π√
6(b− a2)

,

where γ is the Euler constant, a = log σ − γ
α

, and

b = (log σ)2 − 2 log σ(log σ − a) + (log σ − a)2 +

(
log σ − a

γ

)2
π2

6
.

The maximum likelihood estimator for σ leads to

σ̂ =

(
1

n

n∑
i=1

Xα
i

) 1
α

(18)

when α is known. When this quantity is substituted into the log-likelihood function,

this results in the function

h(α) = n

{
logα− log

(
1

n

n∑
i=1

log xαi

)
− 1 + (α− 1)

1

n

n∑
i=1

log xi

}
, (19)

which needs to be maximized (numerically) with respect to α. It can be shown that

this procedures leads to unique estimates of both parameters. See Rockette at al. [85],

Harter and Moore [32], [33], McCool [71], Pike [81] and Thoman at al. [92] for more

information in this regard.

Many authors following Weibull (see Weibull [98], Kao [45],[46]) used this distribu-

tion in reliability and quality work. It is a flexible class of distributions whose hazard

function can be decreasing, constant or increasing depending on the shape parameter α.
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1.2 Balakrishnan and Kocherlakota double Weibull distribu-

tion

In this section we describe a symmetrization of Weibull distribution which was intro-

duced by Balakrishnan and Kacherlakota (see [7]).

If a positive random variable X has density f , a random variable Y on R = (−∞,∞)

can be defined with the density

h(x) =
1

2
f(|x|) x ∈ R. (20)

If f has the density of a standard exponential random variable (1), the symmetrization

leads to a Laplace distribution with density (4) (see Kotz et al. [49]). The same

procedure applied to the Weibull density (2) leads to a symmetric double Weibull

distribution with density (3). Adding location and scale parameters, a three parameter

double Weibull distribution introduced by Balakrishnan and Kocherlakota (see [7]) is

obtained. Balakrishnan and Kocherlakota studied order statistics and linear estimation

of parameters from this distribution (see also Dattareya Rao and Narasimhan [15]).

The density takes the form:

f(x) =
α

2σ

∣∣∣∣x− ξσ
∣∣∣∣α−1

e−|
x−ξ
σ
|α , x ∈ R. (21)

For ξ = 0, the above density which is denoted as DWα(σ), can be written as

f(x) =
α

2σ

(x
σ
)α−1e−( x

σ
)α , x ≥ 0

(−x
σ
)α−1e−(− x

σ
)α , x < 0,

(22)

while the corresponding distribution function is:

F (x) =

1− 1
2
e−( x

σ
)α , x ≥ 0

1
2
e−(− x

σ
)α , x < 0

(23)

(see Kotz et al. [49]).

It can be seen that the standard double Weibull distribution, DWα, with density (3),

is unimodal with the mode at 0 if α ≤ 1. When α > 1, the distribution is bimodal

with two modes located symmetrically on each side of the origin,

m1 =

(
α− 1

α

) 1
α

and m2 = −
(
α− 1

α

) 1
α

. (24)
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Moments and related parameters are obtained from those of the classical Weibull dis-

tribution (see Jurić [41]). If X ∼ DWα(1), then the n-th moment of X exists for

n > −α and equals

E(Xn) =

{
Γ
(
n
α

+ 1
)
, if n is even

0, if n is odd.
(25)

The absolute moment of order η is

E(|X|η) = Γ
( η
α

+ 1
)
, η > −α. (26)

In particular the mean is zero and the variance is Γ (1 + 2/α). The distribution and

the quantile functions can be determined directly from the p.d.f. as:

F (x) =

{
1− 1

2
e−x

α
, x ≥ 0

1
2
e−(−x)α , x < 0.

and F−1(ρ) =

{
(− log[2(1− ρ)])

1
α , if ρ ≥ 1

2
,

− [− log(2ρ)]
1
α , if ρ < 1

2
.

(27)

1.2.1 Representations

By construction, a standard double Weibull variable X ∼ DWα(1) admits the following

representations in terms of the standard classical Weibull and exponential variables (W

and E, respectively):

X
d
= IW

d
= IE

1
α . (28)

Here, I is a variable taking on the values ±1 with probabilities 1/2, and all variables

are mutually independent. Note that the absolute value of X has the classical Weibull

distribution. On the right hand-side of (28), we can first symmetrize the exponential

distribution, obtaining the Laplace variable Y = IE with density (4), and subsequently

take the 1/α (signed) power of Y (see Jurić [41]). This leads to the representation

X
d
= Y < 1

α
>, (29)

where for a ∈ R,

x<a> = |x|asign(x) =

{
xa, x ≥ 0

−|x|a, x < 0

is the signed power function.

9



Recall that the standard Laplace random variable Y admits the representation

Y
d
=
√

2EZ, (30)

where Z is a standard normal and E is a standard exponential random variable (see,

Kotz et al. [49]). Thus, one more representation of X ∼ DWα can be derived, this

time related to the normal distribution:

X
d
= (
√

2EZ)<
1
α
> = 2

1
2αE

1
2αZ< 1

α
>. (31)

For α < 1, the classical Weibull variable W = E
1
α admits the representation

W
d
= E/S, (32)

where S is a stable random variable - a positive random variable with p.d.f. fS(s) and

the Laplace transform (8), (see Yannaros [95] and also Jurić and Kozubowski [42]).

Then the double Weibull variable X can be represented as:

X
d
= IW

d
= IE/S

d
= Y/S,

where Y is a standard Laplace variable. It can be seen that X is a mixture of normal

distributions.

Finally, consider the case α > 1, and suppose that X ∼ DWα(1) is a scale mixture of

normal distributions, that is X
d
= TZ, where T and Z are independent, Z is standard

normal, and T is some non-negative random variable. Note that the distribution of Z

is unimodal with the mode at zero. Since this property holds if and only if the relevant

variable can be represented as a product of two independent variables, of which one

is standard uniform (see Shepp [88]), it follows that Z
d
= V U , where V and U are

independent and U is standard uniform. Thus, we also have X
d
= (TV )U , showing in

turn, that X is unimodal with the mode at zero as well. However, when α > 1, X has

two modes (24), so it can not have the above representation. Therefore, we have the

following result.
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Proposition 1.1 Let X ∼ DWα. Then, the distribution of X is a scale mixture of

normal distributions if and only if 0 < α ≤ 1. Moreover, for 0 < α < 1 we have

X
d
=

(√
2E

S

)
Z,

where all variables on the right-hand side are independent, E is standard exponential,

Z is standard normal, and S is a stable random variable with distribution function.

(8).

Proof. We need to prove that (
√

2E
S

)Z is symmetric Weibull. Define a function

Φ : R+ × R+ × R→ R3 as

Φ(u, s, z) = (u, s,

√
2u

s
z). (33)

Then,

Φ−1(u, s, x) = (u, s,
sx√
2u

), (34)

and Jacobian

JΦ−1(u, s, x) =
s√
2u
. (35)

A straightforward application of the transformation formula gives the p.d.f. of r.v.

(E, S,X):

fE,S,X(u, s, x) = e−ufS(s)
1√
2π
e−

s2x2

4u
s√
2u
. (36)

By integrating over u and taking into account Oberhettinger and Badii 5.28 formula∫ ∞
0

1√
t
e−

a
t
−ptdt =

(
π

p

) 1
2

e−2
√
ap (37)

(see [79]), we get

fS,X(s, x) =
s

2
fS(s)e−s|x| (38)

Take the derivative with respect to y in∫ ∞
0

e−ysfS(s)ds = e−y
α

(39)

to get ∫ ∞
0

se−ysfS(s)ds = αyα−1e−y
α

(40)

we have

fX(x) =
α

2
|x|α−1e−|x|

α

. (41)
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1.3 Stability properties

Some interesting properties ofDWα variables are presented in this section. For Y1,. . . ,Yn

being i.i.d.classical Laplace random variables, the following relation holds:

p
1
2 (Y1 + Y2 + · · ·+ YNp)

d
= Y1,

where Np is a geometric random variable with the probability mass function

P(Np = k) = (1− p)k−1p, k = 1, 2, 3 . . .

and is independent from the Y ′i s (see Kotz et al. [49]).

Since Xi
d
= Y

< 1
α
>

i and X<α>
i

d
= Yi where X1,. . . ,Xn are i.i.d. random variables with

the DWα distribution, the following relation can be obtained:

p
1
2 (X<α>

1 +X<α>
2 + · · ·+X<α>

Np )
d
= X<α>

1 .

Also,

p
1
2X<α>

1 + (1− I)X<α>
2

d
= X<α>

1

p
1
2 IX<α>

1 + (1− I)(X<α>
2 + p

1
2X<α>

3 )
d
= X<α>

1 ,

(see Jurić and Kozubowski [42]), where X1, X2, and X3 are i.i.d. DWα variables, I has

a Bernoulli distribution with P(I = 1) = 1 − P(I = 0) = p, and all variables in these

relations are mutually independent.

Finally, the property of stability with respect to the operation of minimum is derived,

n
1
α min(|X1|, |X2|, . . . |Xn|)

d
= |X1|,

which follows from the same property of the Weibull distribution. The importance of

the above stability properties is discussed in the context of modeling financial data (see

Mittnik and Rachev [74]).

1.4 Asymmetric double Weibull distribution of type I

In this part skewness is introduced into the symmetric double Weibull distribution

following the approachof Fernandez and Steel, (see [19]), showing two different ways

of obtaining asymmetric double Weibull distribution. In Chapter 5, the multivari-

ate generalization of this asymmetric Weibull distribution will be considered showing

that the marginal distribution of the multivariate Weibull distribution is Type I. The

asymmetric double Weibull distribution of type I arises from the following steps:

12



• Start with a standard exponential random variable E with density (1).

• Convert E into a standard classical Weibull random variable W = E
1
α with the

p.d.f (2).

• Convert the density of W into a double Weibull density function f given by (3).

• Apply the procedure (5) of Fernandez and Steel (see [19]) to the f above.

With an additional scale parameter σ > 0, the following definition of an asymmetric

double Weibull distribution of type I is obtained:

Definition 1.1 A random variable X is said to have an asymmetric double Weibull

distribution of type I (ADW) if for parameters α > 0, σ > 0 and κ > 0 the density

function of X has the form

g(x) =
1

σα
ακ

1 + κ2

{
(κx)α−1e−(xκ

σ
)α , x > 0

(−x
κ
)α−1e−(− x

σκ
)α , x < 0

(42)

We denote the distribution of X by ADWα(σ, κ) and write X ∼ ADWα(σ, κ).

The distribution function can be easily computed as follows:

G(x) =

{
1− 1

1+κ2
e−(xκ

σ
)α , x ≥ 0

k2

1+κ2
e−(− x

σκ
)α , x < 0.

(43)

If the following notation is used,

x+ =

{
x, x > 0

0, x ≤ 0
and x− =

{
0, x > 0

−x, x < 0,
(44)

the p.d.f. of corresponding ADWα(σ, κ) distribution can be written in a more compact

way:

g(x) =
1

σα
ακ

1 + κ2

[
(x+κ)α−1e−(κ

σ
x+)α +

(
x−

κ

)α−1

e−(x
−
κσ

)α

]
, x 6= 0.

Some limiting cases can be emphasized:

• For σ = 0 and κ > 0, the distribution is degenerate at zero, by taking the limit

of the c.d.f. as σ → 0+.
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• For κ = 0 and σ > 0 we do not have a proper distribution, since the limit of the

c.d.f. as κ→ 0+ (with σ held fixed) is equal to 0 for every x 6= 0. However, when

κ→ 0+ and σ = aκ→ 0+, where a > 0 is some constant, then the ADWα(σ, κ)

distribution converges weakly to the classical Weibull distribution with shape

parameter a.

• If κ→∞ and σ is fixed, then the c.d.f. approaches 1 at each x that is not zero,

which again is not a valid c.d.f. However, when κ→∞ and σ = a
κ
→ 0+, where

a > 0 is some constant, then the ADWα(σ, κ) distribution converges weakly

to the distribution of −W , where W has the classical Weibull distribution with

shape parameter a.

In Figure 1 graphs of selectedADWα densities with κ = 1.5, σ = 1, α = 0.9, 1, 1.5, and

3 respectively are presented.The figure is reprinted from [42].

Figure 1: Graphs of asymmetric double Weibull densities ADWα

.
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1.5 Asymmetric double Weibull distribution of type II

The distribution is constructed following the steps:

• Start with a standard exponential random variable E .

• Symmetrize the density of E to obtain a double exponential (Laplace) density

function (4).

• Introduce a skewness into the Laplace p.d.f. using (5) to obtain a skew Laplace

r.v. Y with the p.d.f.

f(x) =
1

σ

κ

1 + κ2

{
e
−xκ
σ , x > 0

e
x
κσ , x < 0,

(45)

where we also included an additional scale parameter σ > 0 (see Kozubowski and

Podgórski [51]).

• Take the (signed) 1/α power of Y .

This leads to the following result.

Definition 1.2 A random variable X is said to have an asymmetric double Weibull

distribution of type II ADW∗ if for parameters α > 0, σ > 0 and κ > 0 the denity

function of X has the form

g(x) =
1

σ

ακ

1 + κ2

{
xα−1e−

κ
σ
xα , x > 0

(−x)α−1e−
1
κσ

(−x)α , x < 0.
(46)

We denote the distribution of X by ADW∗α(σ, κ) and write X ∼ ADW∗α(σ, κ).

The corresponding distribution function is

GX(x) =

{
1− 1

1+κ2
e−

κ
σ
xα , x ≥ 0

κ2

1+κ2
e−

1
κσ

(−x)α , x < 0.
(47)

Using the notation x+ and x− described previously in (44), the p.d.f. of the ADW∗

distribution can be written in a more compact way:

g(x) =
1

σ

ακ

1 + κ2

[
(x+)α−1e−

κ
σ

(x+)α + (x−)α−1e−
1
σκ

(x−)α
]
, x 6= 0.

As in the case of the ADW distribution, the following limit cases can be emphasized.
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• When σ = 0 and κ > 0 we obtain degenerate distribution at zero (corresponding

to the random variable X = 0).

• If κ→ 0+ and σ = aκ→ 0 for some constant a > 0, the ADW∗(σ, κ) distribution

converges weakly to the classical Weibull distribution with scale parameter a1/α.

• If κ → ∞ and σ = a
κ
→ 0+ for some a > 0, the ADW∗(σ, κ) distribution

converges weakly to the distribution of −W , where W has the classical Weibull

distribution with scale parameter a1/α.

Figure 2 contains selected ADWα
∗ densities with κ = 1.5, σ = 1, α = 0.9, 1, 1.5, and

3 respectively.The figure is reprinted from [42].

Figure 2: Graphs of asymmetric double Weibull densities ADW∗α
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1.6 Connection between the two asymmetric double Weibull

distributions

If X ∼ ADWα(1, κ) and Y ∼ ADW∗α(1, κ), assuming α’s being equal and denoting

c.d.f.’s by G(x) and G∗(x) respectively, the probability integral transformation (see

DeGroot [16], p. 154) yields the following result:

Y
d
= (G∗)−1(G(X)).

The quantile function of Y ∼ ADW∗(1, κ) is of the form (see Jurić [41]):

(G∗)−1(ρ) =

{
−[−κ log(ρ1+(κ)2

(κ)2
)]

1
α , 0 < ρ < (κ)2

1+(κ)2{
− 1
κ

log[(1 + (κ)2)(1− ρ)]
} 1
α , (κ)2

1+(κ)2
≤ ρ < 1,

(48)

which combining with G given by (43) gives

Y
d
= κ(1− 1

α
)sign(X)X.

If X ∼ ADWα(σ, κ) and Y ∼ ADW∗α(σ, κ), the following connection is obtained:

Y
d
= σ

1
α
−1κ(1− 1

α
)sign(X)X. (49)

Note that for α = 1, Y
d
= X. It can be concluded that the two ways of getting a skew

double Weibull distribution lead to the same distribution.

1.7 Moments and related parameters

In this section moments and related parameters of asymmetric double Weibull distri-

butions are presented. The proofs can be found in Jurić (see [41]).

1.7.1 Asymmetric double Weibull distribution of type I

If X ∼ ADWα(σ, κ), then the following results for the moments are obtained:

EXn =
κ2

1 + κ2
(−σκ)nΓ

(n
α

+ 1
)

+
1

1 + κ2

(σ
κ

)n
Γ
(n
α

+ 1
)
, −α < n ∈ Z (50)

E|X|η =
κη+2

1 + κ2
σηΓ

( η
α

+ 1
)

+
1

1 + κ2

(σ
κ

)η
Γ
( η
α

+ 1
)
, −α < η ∈ R (51)

E(X+)η =
(σ
κ

)η 1

1 + κ2
Γ
( η
α

+ 1
)
, −α < η ∈ R (52)
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E(X−)η = (σκ)η
κ2

1 + κ2
Γ
( η
α

+ 1
)
, −α < η ∈ R (53)

In particular,

EX =
σ

κ

1− κ4

1 + κ2
Γ

(
1

α
+ 1

)
=
σ

κ
(1− κ2)Γ

(
1

α
+ 1

)
, (54)

Var(X) =
σ2

κ2

{
1 + κ6

1 + κ2
Γ

(
2

α
+ 1

)
− (1− κ2)2Γ2

(
1

α
+ 1

)}
, (55)

and the coefficient of skewness is

γ1 = (1−κ2)
(1 + κ4)Γ( 3

α
+ 1)− 3(1− κ2 + κ4)Γ( 1

α
+ 1)Γ( 2

α
+ 1) + 2(1− κ2)2Γ3( 1

α
+ 1){

(1− κ2 + κ4)Γ( 2
α

+ 1)− (1− κ2)2Γ2( 1
α

+ 1)
} 3

2

.

The quantiles can be derived as:

xρ =


σ
κ

[
log 1

(1+κ2)(1−ρ)

] 1
α
, ρ ≥ κ2

1+κ2

−σκ
[
log κ2

ρ(1+κ2)

] 1
α
, ρ < κ2

1+κ2
.

(56)

Median is easily computed from the above equation:

M =


σ
κ

[
log 2

1+κ2

] 1
α , κ ∈ (0, 1]

−σκ
[
log 2κ2

1+κ2

] 1
α
, κ ∈ (1,∞).

(57)

Discussion about modes is summarized in the following Proposition.

Proposition 1.2 If X ∼ ADWα(σ, κ) with density (9) then,

(i) For α ≤ 1 the distribution is unimodal with the mode at 0. Moreover, the value of

the density at the mode is

g(0) =

{
∞, α < 1

κ
σ(1+κ2)

, α = 1.

(ii) For α > 1 the distribution is bimodal with the two modes,

m1 = −σκ
(
α− 1

α

) 1
α

< 0 and m2 =
σ

κ

(
α− 1

α

) 1
α

> 0.

Moreover, we have g(0) = 0 and

g(m1) = g(m2) =
α

σ

κ

1 + κ2

(
α− 1

α

)α−1
α

e−(α−1
α

).

Our next result provides the entropy of asymmetric double Weibull distribution.
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Proposition 1.3 Let X have an ADWα(σ, κ) distribution with density f given by (9).

Then the entropy of X is

H(X) = E{− log f(X)} = − log

(
1

σ

ακ

1 + κ2

)
+
γ(α− 1)

α
+ 1, (58)

where γ ≈ 0.5772 is the Euler constant.

1.7.2 Asymmetric double Weibull distribution of type II

For X ∼ ADW∗α(σ, κ), th following results for the moments are obtained:

EXn =
κ2

1 + κ2
(−1)n (σκ)

n
α Γ
(n
α

+ 1
)

+
1

1 + κ2

(σ
κ

)n
α

Γ
(n
α

+ 1
)
, −α < n ∈ Z (59)

E|X|η =
κ2

1 + κ2
(σκ)

η
αΓ
( η
α

+ 1
)

+
1

1 + κ2
(
σ

κ
)
η
αΓ
( η
α

+ 1
)
, −α < η ∈ R (60)

E(X+)η =
1

1 + κ2

(σ
κ

) η
α

Γ
( η
α

+ 1
)
, η > −α (61)

E(X−)η =
κ2

1 + κ2
(κσ)

η
αΓ
( η
α

+ 1
)
, η > −α. (62)

In particular,

EX =
Γ( 1

α
+ 1)

1 + κ2

(σ
κ

) 1
α

(1− κ2+ 2
α ), (63)

VarX =
1

1 + κ2

(σ
κ

) 2
α

{
(1 + κ2+ 4

α )Γ

(
2

α
+ 1

)
− (1− κ2+ 2

α )2

1 + κ2
Γ2

(
1

α
+ 1

)}
, (64)

and the coefficient of skewness is

γ1 =
(1 + κ2)2(1− κ2+ 6

α )Γ( 3
α

+ 1)− 3(1 + κ2)(1− κ2+ 2
α )(1 + κ2+ 4

α )Γ( 1
α

+ 1)Γ( 2
α

+ 1){
(1 + κ2)(1 + κ2+ 4

α )Γ( 2
α

+ 1)− (1− κ2+ 2
α )2Γ2( 1

α
+ 1)

} 3
2

+

+
2(1− κ2+ 2

α )3Γ3( 1
α

+ 1){
(1 + κ2)(1 + κ2+ 4

α )Γ( 2
α

+ 1)− (1− κ2+ 2
α )2Γ2( 1

α
+ 1)

} 3
2

.

The ρ-th quantile of the ADW∗α(σ, κ) distribution is

xρ =


[
σ
κ

log 1
(1+κ2)(1−ρ)

] 1
α
, ρ ≥ κ2

1+κ2

−[σκ log κ2

ρ(1+κ2)
]
1
α , ρ < κ2

1+κ2
.

(65)
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In particular, the median is

M =


[
σ
κ

log 2
1+κ2

] 1
α , κ ∈ (0, 1]

−
[
σκ log 2κ2

1+κ2

] 1
α
, κ ∈ (1,∞).

(66)

The following result concerns the modality.

Proposition 1.4 If X ∼ ADW∗α(σ, κ) with density (10) then

(i) For α ≤ 1 the distribution is unimodal with the mode at 0.The value of the density

at the mode is

g(0) =

{
∞, α < 1

κ
σ(1+κ2)

, α = 1.

(ii) For α > 1 the distribution is bimodal with the two modes

m1 = −
(
σκ
α− 1

α

) 1
α

< 0 and m2 =

(
σ

κ

α− 1

α

) 1
α

> 0.

Moreover, we have g(0) = 0 and

g(m1) =
1

σ

ακ

1 + κ2
(σκ)(α−1

α
)

(
α− 1

α

)(α−1
α )

e−(α−1
α ),

g(m2) =
1

σ

ακ

1 + κ2

(σ
κ

)(α−1
α )
(
α− 1

α

)(α−1
α )

e−(α−1
α ).

It is interesting, that unlike the ADW case, here the values at the modes in case α > 1

are not the same (unless κ = 1 and distribution is symmetric).

Finally, we have

Proposition 1.5 Let X have an ADW∗α(σ, κ) distribution with density f given by

(10). Then the entropy of X is

H(X) = − log

(
1

σ

ακ

1 + κ2

)
+
γ(α− 1)

α
+ 1− α− 1

α

(
log σ +

κ2 − 1

κ2 + 1
log κ

)
, (67)

where γ is the Euler constant.

We can use the connection between the two Weibull distributions given in (49) to obtain

many properties of Y ∼ ADW∗α(σ, κ) from those of X ∼ ADWα(σ, κ).
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1.8 Representations and simulation

An extension of the representation (28) to the skew case is straightforward (see Jurić

[41]). A standard conditioning argument shows that in case X ∼ ADWα(σ, κ) we have

X
d
= σIE

1
α , (68)

where E has a standard exponential distribution and

I =

{
−κ, with prob. κ2

1+κ2

1
κ
, with prob. 1

1+κ2
.

(69)

The following algorithm for generating random variates from this distribution is pre-

sented.

An ADWα(σ, κ) generator.

• Generate a standard exponential variable E

• Generate a standard uniform [0, 1] random variable U

• If U < κ2

κ2+1
, set I ← −κ else set I ← κ−1

• Set X ← σIE
1
α

• Return X

A similar representation of a skew Weibull variable of type II,

X
d
= σ1/αI<1/α>E

1
α , (70)

where I and E are as before, produced the following random variate generator based

on the above representation.

An ADW∗α(σ, κ) generator.

• Generate a standard exponential variate E

• Generate a standard uniform [0, 1] random variate U

• If U < κ2

κ2+1
set J ← −κ 1

α , else set J ← κ−
1
α

• Set X ← σ
1
αJE

1
α

• Return X
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Remark. The above representations are useful in showing that the distribution of

|X|, where X has a skew Weibull distribution, is a mixture of two classical Weibull

distributions. For example, if X ∼ ADW∗α(1, κ), then

|X| = κ1/αIW1 + κ−1/α(1− I)W2, (71)

where I, W1 and W2 are independent, I takes on the values 1 and 0 with probabilities
κ2

1+κ2
and 1

1+κ2
, respectively, and W1 and W2 are two i.i.d. standard classical Weibull

variables.
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2 Estimation of the parameters - the univariate case

In this chapter we discuss maximum likelihood estimation of the skew double Weibull

parameters. We focus on estimating σ and κ, assuming that the shape parameter α is

known. We establish the existence and uniqueness of the estimators, and derive their

asymptotic properties. We also briefly discuss a numerical procedure for estimating

the parameter α. The results of this chapter closely follow Jurić and Kozubowski [43].

2.1 Asymmetric double Weibull distribution of Type I

For an i.i.d. random sample from an ADWα(σ, κ) distribution with density (9), the

log-likelihood function takes the form:

logL(α, σ, κ) = n
{

logα + (1 + (α− 1)x̄sign) log κ− α log σ − log(1 + κ2)+

(α− 1)
1

n

n∑
i=1

log |xi| −
1

σακα
(
κ2αx̄+

α + x̄−α
)}

, (72)

where

x̄+
α =

1

n

n∑
i=1

(x+
i )α, x̄−α =

1

n

n∑
i=1

(x−i )α, x̄sign =
1

n

n∑
i=1

sign(xi),

and x+
i and x−i are given by (44) as before.

2.1.1 Fisher information matrix

If X has theADWα(σ, κ) distribution with the vector-parameter γ = (γ1, γ2)′ = (σ, κ)′

and density g given by (9), a straightforward calculation of the Fisher information

matrix produces the following result:

I(σ, κ) =


α2

σ2
α2

σκ
κ2−1
κ2+1

α2

σκ
κ2−1
κ2+1

α2

κ2
+ 4

(1+κ2)2

 . (73)

2.1.2 Case 1: The value of σ is unknown

Using the result in (72), the following function needs to be maximized

Q(σ) = −α log σ − κα

σα
x̄+
α −

1

κασα
x̄−α .

23



A unique maximum likelihood estimator (MLE) of σ is obtained and presented with

the following expression:

σ̂n =

(
καX̄+

α +
1

κα
X̄−α

) 1
α

. (74)

.

Proposition 2.1 Let X1, . . . , Xn be i.i.d. r.v.’s from the ADWα(σ, κ) distribution

with an unknown value of σ. The MLE of σ is given by (74) and is

(i) consistent;

(ii) asymptotically normal, that is
√
n(σ̂n − σ)

d→ N(0, σ
2

α2 );

(iii) asymptotically efficient, that is, the asymptotic variance σ2/α2 coincides with the

reciprocal of the Fisher information I(σ).

Proof. Write

σ̂n = h

(
1

n

n∑
i=1

Wi

)
,

where

Wi = κα(X+
i )α +

1

κα
(X−i )α =

{
καXα

i , Xi ≥ 0,
1
κα

(−Xi)
α, Xi < 0,

and h(x) = x
1
α , x ≥ 0, and note that the variables Wi are i.i.d. with mean EWi = σα

and variance VarWi = σ2α (by the relations (52)-(53)). Thus, by the law of large

numbers and the continuity of h, we have

σ̂n = h

(
1

n

n∑
i=1

Wi

)
d→ h (σα) = (σα)

1
α = σ,

which proves the consistency. By the central limit theorem,

n
1
2

(
1

n

n∑
i=1

Wi − σα
)

d→ N
(
0, σ2α

)
,

where the right-hand-side denotes a normal variable with mean 0 and variance σ2α.

Thus, by the continuity of h and standard large sample theory results (see Serfling

[87]), we have

n
1
2

(
h

(
1

n

n∑
i=1

Wi

)
− h (σα)

)
d→ N(0, η2), (75)

where

η2 = [h′(x)|x=σα ]
2
σ2α = (σ1−α/α)2σ2α =

σ2

α2
. (76)
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This proves Part (ii). The asymptotic efficiency is obtained by noting that the asymp-

totic variance σ2/α2 is the same as the reciprocal of the Fisher information I(σ) given

by the first entry in the Fisher information matrix (73).

2.1.3 Case 2: The value of κ is unknown

Using (72), the following function needs to be maximized:

Q(κ) = (1 + (α− 1)x̄sign) log κ− log(1 + κ2)− κα

σα
x̄+
α −

1

κασα
x̄−α . (77)

The result is shown in the following Proposition.

Proposition 2.2 If not both x̄+
α and x̄−α are equal to zero, then there exists a unique

κ̂n ∈ (0,∞) that maximizes the function Q(κ) in (77). The value of κ̂n is a unique

positive solution of the equation

(1 + (α− 1)x̄sign) (1 + κ2)κα − 2κα+2 +
α

σα
(1 + κ2)(x̄−α − x̄+

ακ
2α) = 0. (78)

Proof. For simplicity, denote

A =
1

σα
x̄+
α B =

1

σα
x̄−α , and D = 1 + (α− 1)x̄sign.

Several cases will be considered.

Case 1: A > 0, B = 0. Here, all sample values are positive, in which case D = α. We

need to maximize the function

Q(κ) = α log κ− log(1 + κ2)− Aκα (79)

with respect to κ ∈ (0,∞). The derivative of Q is

u(κ) =
dQ

dκ
=

1

κ(1 + κ2)
(u1(κ)− u2(κ)),

where

u1(κ) = α− (2− α)κ2 and u2(κ) = Aακα(1 + κ2).

Consider the above functions on the interval (0,∞). Note that the derivative u is

continuous, positive when κ → 0+, and negative when κ → ∞. Consequently, there

is at least one solution of the equation u(κ) = 0, or equivalently, u1(κ) = u2(κ). We

claim that there is exactly one solution. Indeed, when 0 < α < 2, then u1 is strictly

decreasing while u2 is strictly increasing, when α = 2, we have u1(κ) = 2 for each
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κ (with u2 being strictly increasing), and when α > 2, both u1 and u2 are strictly

increasing and concave. We conclude that there is a unique value κ̂ ∈ (0,∞) that

maximizes the function Q, and can be found by solving the equation u1(κ)−u2(κ) = 0,

which coincides with (78) when B = 0. This concludes Case 1.

Case 2: A = 0, B > 0. Here, all sample values are negative, and D = 2− α. We need

to maximize the function

Q(κ) = (2− α) log κ− log(1 + κ2)− B

κα
.

Note that we have

Q(1/κ) = α log κ− log(1 + κ2)−Bκα,

which is the same function as (79) of Case 1 with A > 0 replaced by B > 0. Thus, this

case follows from the previous one.

Case 3: A > 0 and B > 0. Write the derivative of Q in (77) as

v(κ) =
dQ(κ)

dκ
=
κα(D − κ2(2−D)) + α(1 + κ2)(B − Aκ2α)

(1 + κ2)κα+1
. (80)

Note that the function v is continuous on (0,∞), positive when κ→ 0+, and negative

when κ → ∞. Consequently, v has at least one positive zero. Below, we show that v

has exactly one positive zero, which corresponds to the maximum value of Q. To see

this, first note that a zero of v satisfies the equation

κα(D − κ2(2−D)) + α(1 + κ2)(B − Aκ2α) = 0. (81)

Next, denote

y = κα, x = κ2,

and observe that if κ > 0 satisfies (81), then x and y satisfies the system{
y(D − x(2−D)) + α(1 + x)(B − Ay2) = 0

y = x
α
2 .

(82)

We claim that the system (82) does not admit more than one solution in the region

x, y > 0. Indeed, the first equation is quadratic in y and can be solved easily for y in

terms of x leading to

y =
1

2Aα

√((2−D)x−D
x+ 1

)2

+ 4ABα2 − (2−D)x−D
x+ 1

 = h(u(x)),

where

u(x) =
(2−D)x−D

x+ 1
, x ∈ [0,∞),
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and

h(u) =
1

2Aα
(
√
u2 + 4ABα2 − u) =

2Bα√
u2 + 4ABα2 + u

, u ∈ (−∞,∞).

Note that the function u is increasing on (0,∞), while the function h is decreasing

on (−∞,∞). Thus, the function v(x) = h(u(x)) is decreasing on (0,∞), so that the

system of equations (82), which can be written as{
y = v(x)

y = x
α
2 ,

has at most one solution in the region x, y > 0. This concludes Case 3, and the result

follows.

The properties of the MLE are presented below.

Proposition 2.3 Let X1, . . . , Xn be i.i.d. variables from an ADWα(σ, κ) distribution

where the values of α and σ are known. Then the MLE of κ, which is the unique

solution κ̂n of the equation (78), is

(i) consistent;

(ii) asymptotically normal, that is,
√
n(κ̂n − κ)

d→ N(0, σ2
κ), where

σ2
κ =

κ2(1 + κ2)2

α2(1 + κ2)2 + 4κ2
; (83)

(iii) asymptotically efficient, that is, the asymptotic variance (83) coincides with the

reciprocal of the Fisher information I(κ).

To prove this result, we need the following lemma, which can be established by a

straightforward albeit lengthy algebra.

Lemma 2.1 Let X have an ADWα(σ, κ) distribution, and let

W = [W1,W2,W3] ′ = [(X+)α, (X−)α, sign(X)] ′.

Then the mean vector and the covariance matrix of W are

EW ′ =

[
σα

κα(1 + κ2)
,
σακα+2

1 + κ2
,
1− κ2

1 + κ2

]′
(84)

and

Cov(W ) = ΣW =
1

(1 + κ2)2


σ2α(1+2κ2)

κ2α
−κ2σ2α 2κ2σα

κα

−κ2σ2α σ2ακ2α+2(2 + κ2) −2κα+2σα

2κ2σα

κα
−2κα+2σα 4κ2

 , (85)

respectively.

27



Proof of Proposition 2.3. Since the MLE κ̂n is a unique solution of (78), it can be

written as

κ̂n = H(x̄+
α , x̄

−
α , x̄sign),

where H(·, ·, ·) is a continuous and differentiable function satisfying the equation

F (x̄+
α , x̄

−
α , x̄sign, H(x̄+

α , x̄
−
α , x̄sign)) = 0

with

F (y1, y2, y3, y4) = [1 + (α− 1)y3]yα4 (1 + y2
4)− 2yα+2

4 +
α

σα
(1 + y2

4)(y2 − y1y
2α
4 ).

(i) To establish the consistency of the MLE, note that by the law of large numbers, we

have

(X̄+
α , X̄

−
α , X̄sign)′

d→ (µ1, µ2, µ3)′ =

[
σα

κα(1 + κ2)
,
σακ2+α

1 + κ2
,
1− κ2

1 + κ2

]′
,

see Lemma 2.1. Thus, by the continuity of H, we obtain

κ̂n = H(X̄+
α , X̄

−
α , X̄sign)′

d→ H(µ1, µ2, µ3) = κ,

since the quantities

y1 = µ1 =
σα

κα(1 + κ2)
, y2 = µ2 =

σακ2+α

1 + κ2
, y3 =

1− κ2

1 + κ2
, y4 = κ (86)

satisfy the equation F (y1, y2, y3, y4) = 0.

(ii) According to the central limit theorem, we have

√
n[(X̄+

α , X̄
−
α , X̄sign)′ − (µ1, µ2, µ3)′]→ N(0, ΣW ),

where the right-hand-side denotes a bivariate normal variable with mean zero and

variance-covariance matrix ΣW given by (85). Now, by standard large sample theory

results (see Serfling [87]) it follows that as n→∞, we have

√
n[H(X̄+

α , X̄
−
α , X̄sign)′ −H(µ1, µ2, µ3)]→ N(0, Ω),

where Ω = DΣWD
′ and D is the vector of partial derivatives

D =

[
∂H

∂y1

,
∂H

∂y2

,
∂H

∂y3

]
(y1,y2,y3)=(µ1,µ2,µ3)

. (87)

Since the function H satisfies the equation

F (y1, y2, y3, H(y1, y2, y3)) = 0,
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we have
∂

∂y1

H(y1, y2, y3) =

∂
∂y1
F (y1, y2, y3, y4)|y4=H(y1,y2,y3)

∂
∂y4
F (y1, y2, y3, y4)|y4=H(y1,y2,y3)

, (88)

∂

∂y2

H(y1, y2, y3) =

∂
∂y2
F (y1, y2, y3, y4)|y4=H(y1,y2,y3)

∂
∂y4
F (y1, y2, y3, y4)|y4=H(y1,y2,33)

, (89)

∂

∂y3

H(y1, y2, y3) =

∂
∂y3
F (y1, y2, y3, y4)|y4=H(y1,y2,y3)

∂
∂y4
F (y1, y2, y3, y4)|y4=H(y1,y2,33)

, (90)

Routine calculations produce

∂

∂y1

F (y1, y2, y3, y4) = − α

σα
y2α

4 (1 + y2
4),

∂

∂y2

F (y1, y2, y3, y4) =
α

σα
(1 + y2

4),

∂

∂y3

F (y1, y2, y3, y4) = (α− 1)(1 + y2
4)yα4 ,

∂

∂y4

F (y1, y2, y3, y4) = [1 + (α− 1)y3][αyα−1
4 + (α + 2)yα+1

4 ]− 2(2 + α)y1+α
4 +

+
α

σα
[−2αy1y

2α−1
4 + 2y2y4 − (2α + 2)y1y

2α+1
4 ].

Substituting (86) into the above derivatives, we obtain

∂

∂y1

F (y1, y2, y3, y4)|(y1,y2,y3,y4)=(µ1,µ2,µ3,H(µ1,µ2,µ3)) = − α

σα
κ2α(1 + κ2),

∂

∂y2

F (y1, y2, y3, y4)|(y1,y2,y3,y4)=(µ1,µ2,µ3,H(µ1,µ2,µ3)) =
α

σα
(1 + κ2),

∂

∂y3

F (y1, y2, y3, y4)|(y1,y2,y3,y4)=(µ1,µ2,µ3,H(µ1,µ2,µ3)) = (α− 1)(1 + κ2)κα,

∂

∂y4

F (y1, y2, y3, y4)|(y1,y2,y3,y4)=(µ1,µ2,µ3,H(µ1,µ2,µ3)) = − κα−1

1 + κ2
[4κ2 + α2(1 + κ2)2].

Consequently, the vector of partial derivatives (87) takes the form

D = − (1 + κ2)2

κα−1(4κ2 + α2(1 + κ2)2)

[
− α

σα
κ2α,

α

σα
, (α− 1)κα

]
.

After some algebra, we find that the product Ω = DΣWD
′ coincides with (83). This

concludes the proof of asymptotic normality.

(iii) To establish the asymptotic efficiency, note that the asymptotic variance is the

reciprocal of the Fisher information (see Fisher information matrix (73)).

29



2.1.4 Case 3: The values of σ and κ are unknown

Here we need to maximize the function

Q(κ, σ) = (1 + (α− 1)x̄sign) log κ− log(1 + κ2)− α log σ − κα

σα
x̄+
α −

1

κασα
x̄−α , (91)

where x̄+
α , x̄−α , and x̄sign are as before. Note that for each fixed κ > 0, the maximum of

Q occurs at the point (κ, σ(κ)), where σ(κ) is the MLE of σ, given by (74). Thus, for

each κ, σ > 0 we have

Q(κ, σ) ≤ Q(κ, σ(κ)) = (1 + (α− 1)x̄sign) log κ− log(1 + κ2)− log

[
καx̄+

α +
x̄−α
κα

]
− 1.

(92)

Consider first the case when all sample values are positive (x+
i = xi and x−i = 0 for

each i). In this case we have x̄+
α > 0, x̄−α = 0, and x̄sign = 1, and the right-hand-side of

(92) takes the form

Q(κ, σ(κ)) = − log(1 + κ2)− log x̄+
α − 1.

Since this function is decreasing in κ, the least upper bound of Q(κ, σ) is attained

when κ = 0 and σ = σ(0) = 0. Although these values of the parameters are not visible,

as κ → 0+ and σ(κ) = κ(x̄+
α )

1
α → 0+, the ADWα(σ(κ), κ) distribution converges to

the classical Weibull distribution with scale parameter (x̄+
α )

1
α (see the discussion of

special cases following Definition 1.1). Intuitively, it makes sense to conclude that the

underlying distribution is concentrated on (0,∞) if all sample values are positive.

Next, consider the case when all sample values are negative, so that x̄+
α = 0, x̄−α > 0,

and x̄sign = −1. Here, the right-hand-side of (92) takes the form

Q(κ, σ(κ)) = 2 log κ− log(1 + κ2)− log x̄−α − 1,

which is an increasing function of κ. Consequently, the maximum value of Q(κ, σ)

occurs in the limit when κ→∞ and σ(κ) = (x̄−α )
1
α/κ→ 0. This limiting distribution

corresponds to a random variable−X, whereX has a classical Weibull distribution with

scale parameter (x̄−α )
1
α . Again, it is reasonable that the distribution is concentrated on

the negative half line if all sample values are negative. Finally, if not all sample values

are positive (or negative), we have the following result.

Proposition 2.4 Let X1,. . . ,Xn be an i.i.d. variables from the ADWα(σ, κ) distribu-

tion with known α, and suppose that

X̄+
α =

1

n

n∑
i=1

(X+
i )α > 0 and X̄−α =

1

n

n∑
i=1

(X−i )α > 0.
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Then, there exist unique MLE’s of κ and σ: κ̂n is the unique positive solution of the

equation

[1 + (α− 1)X̄sign] + α− 2κ2

1 + κ2
− 2αX̄+

α κ
2α

X̄+
α κ

2α + X̄−α
= 0, (93)

where X̄sign = 1
n

∑n
i=1 sign(Xi), and

σ̂n =

(
κ̂αnX̄

+
α +

1

κ̂αn
X̄−α

) 1
α

. (94)

Proof. We need to maximize the function u(κ) = Q(κ, σ(κ)) given by the right-hand-

side of (92). Write
∂

∂κ
u(κ) =

1

κ
(h1(κ)− h2(κ)) , (95)

where

h1(κ) = D + α− 2κ2

1 + κ2
, h2(κ) =

2αX̄+
α κ

2α

X̄+
α κ

2α + X̄−α
, D = 1 + (α− 1)X̄sign.

Observe that the function h1 is monotonically decreasing on the interval (0,∞) with

h1(0) = D + α > 0 and h1(∞) = D + α − 2. On the other hand, the function h2 is

monotonically increasing on the interval (0,∞), with h2(0) = 0 and h2(∞) = 2α >

D + α− 2. Consequently, there exist a unique point κ̂n ∈ (0,∞), such that the above

derivative is negative for κ > κ̂n and positive for 0 < κ < κ̂n, showing that the function

u attains a unique maximum value on the interval (0,∞). The value that maximizes u

is obtained by solving the equation u′(κ) = 0, which is the same as (93). This concludes

the proof.

Remark. Note that when α = 1, which corresponds to skew Laplace distribution (see

Kotz et al. [49]), the MLE of κ takes an explicit form: κ̂n = 4
√
X̄−α /X̄

+
α .

We skip the technical derivation of the following result, as it can be established in

almost the same way as Proposition 2.3.

Proposition 2.5 Let X1, . . . , Xn be i.i.d. variables from the ADWα(σ, κ) distribution

with unknown values of σ and κ. Then, the MLE’s of σ and κ given in Proposition 2.4

are

(i) consistent;

(ii) asymptotically bivariate normal, with the asymptotic covariance matrix

ΣMLE =
σ2

4(α2 + 1)


(1+κ2)2

κ2
+ 4

α2
1−κ4
σκ

1−κ4
σκ

(1+κ2)2

σ2

 , (96)
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(iii) asymptotically efficient, that is, the above asymptotic covariance matrix coincides

with the inverse of the Fisher information matrix.

2.2 Asymmetric double Weibull Distribution of Type II

Let X1,. . . ,Xn be an i.i.d. random sample from ADW∗α(σ, κ) distribution with density

(10), and let x1, . . . , xn be their particular realization. The log-likelihood function then

becomes

logL∗(α, σ, κ) = n

{
logα + log

κ

1 + κ2
− log σ + (α− 1)

1

n

n∑
i=1

log |xi| −
1

σ

(
κx̄+

α +
x̄−α
κ

)}
,

(97)

where x̄+
α and x̄−α are defined as before. Again, here our main focus is the estimation of σ

and κ assuming that α is known. The results presented below can be obtained in almost

the same way as those in the previous section. Moreover, since the transformation

Yi = X<α>
i , i = 1, . . . , n, yields a random sample from skew Laplace distribution (45),

we can apply results already available for this case (see Kotz et al. [50]). For this

reason we shall skip computational details, and refer to Jurić [41] for technical details.

2.2.1 Fisher information matrix

If X has theADW∗α(σ, κ) distribution with the vector-parameter γ = (γ1, γ2)′ = (σ, κ)′

and density g given by (10), routine calculations produce the following result:

I(σ, κ) =

[
1
σ2

κ2−1
σκ(1+κ2)

κ2−1
σκ(1+κ2)

κ4+6κ2+1
κ2(1+κ2)2

]
, (98)

see Jurić [41] for details.

2.2.2 Case 1: The value of σ is unknown

Here, we need to maximize the function

Q(σ) = − log σ − 1

σ

(
κx̄+

α +
x̄−α
κ

)
.

It is easy to see that

σ̂n = κX̄+
α +

1

κ
X̄−α . (99)

is the unique MLE of σ. The following result, which can be proved in the same way as

Proposition 2.1, presents the asymptotic behavior of σ̂n.
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Proposition 2.6 Let X1,. . . ,Xn be i.i.d. r.v.’s from the ADW∗α(σ, κ) distribution with

an unknown value of σ. The MLE of σ is given by (99) and is

(i) consistent;

(ii) asymptotically normal, that is
√
n(σ̂n − σ)

d→ N(0, σ2);

(iii) asymptotically efficient, that is the asymptotic variance σ2 coincides with the re-

ciprocal of the Fisher information I(σ).

2.2.3 Case 2: The value of κ is unknown

In view of (97), we need to maximize the function

Q(κ) = log κ− log(1 + κ2)− κ

σ
x̄+
α −

1

κσ
x̄−α . (100)

This is essentially the same function as that in the skew Laplace case (see Kotz et al.

[49], Section 3.5.1.3), so the Laplace results imply that there is a unique positive value

κ̂n that maximizes the function Q, provided that not both x̄+
α and x̄−α are equal to zero.

Setting the derivative of Q to zero, we find that the MLE of κ is the unique positive

solution of the equation

1

κ
− 2κ

1 + κ2
+

1

κ2

x̄−α
σ
− x̄+

α

σ
= 0. (101)

The properties of the MLE, which essentially follow from the Laplace case, are presented

below.

Proposition 2.7 Let X1, . . . , Xn be i.i.d. variables from an ADW∗α(σ, κ) distribution

where the values of α and σ are known. Then the MLE of κ, which is the unique

solution κ̂n of the equation (101), is

(i) consistent;

(ii) asymptotically normal, that is,
√
n(κ̂n − κ)

d→ N(0, σ2
κ), where

σ2
κ =

κ2(1 + κ2)2

(1 + κ2)2 + 4κ2
; (102)

(iii) asymptotically efficient, that is, the asymptotic variance (102) coincides with the

reciprocal of the Fisher information I(κ).
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2.2.4 Case 3: The values of σ and κ are unknown

The analysis of this case parallels the analogous case connected with the skew double

Weibull distribution of type I. For any fixed κ > 0 the log-likelihood function (97) is

maximized by the MLE of σ̂n given by (99). When we substitute this value into the

log-likelihood function, we are left with maximizing the resulting expression,

Q(κ) = 2 log κ− log(κ2x̄+
α + x̄−α )− log(1 + κ2),

with respect to κ. This is essentially the skew Laplace case (on transformed data)

discussed in Kotz et al. (see [50]), so we shall skip the derivation of the results below

(see Jurić [41] for details). If all sample values are positive (so that x̄−α = 0), the above

function is decreasing, so the maximum occurs at κ = 0 (and σ = 0), corresponding

to a one sided Weibull distribution with scale parameter (x̄+
α )

1
α (as in the case of Type

I distribution). Similarly, when all sample values are negative (so that x̄+
α = 0), the

function Q is increasing in κ, with the maximum occurring at κ = ∞ (and σ = 0).

This corresponds to the variable −X, where X has a classical Weibull distribution with

scale parameter (x̄−α )
1
α . If not all sample values are positive (or negative), then we have

the following result (see Jurić [41]).

Proposition 2.8 Let X1,. . . ,Xn be i.i.d. variables from the ADW∗α(σ, κ) distribution

with unknown values of σ and κ. Then, if X̄+
α > 0 and X̄−α > 0, the MLE’s of σ and

κ are given by

σ̂n =

(
X̄−α
X̄+
α

) 1
4

X̄+
α +

(
X̄+
α

X̄−α

) 1
4

X̄−α and κ̂n = 4

√
X̄−α
X̄+
α

, (103)

respectively. Moreover, the MLE’s are

(i) consistent;

(ii) asymptotically bivariate normal, with the asymptotic covariance matrix

ΣMLE =

[
σ2(κ4+6κ2+1)

8κ2
σ(1−κ4)

8κ
σ(1−κ4)

8κ
(1+κ2)2

8

]
;

(iii) asymptotically efficient, that is, the asymptotic covariance matrix coincides with

the inverse of the Fisher information matrix.

Remark. Observe that unlike the similar case of skew distribution of Type I, here

both estimators are given explicitly.
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2.3 Estimation of σ, κ and α

For both Type I and II distributions, the estimation of α requires a numerical approach,

as is the case with the classical Weibull distribution. For example, for Type II distri-

bution, substitute the MLE’s of σ and κ given in Proposition 2.8 into the log-likelihood

function, which (after some algebra) leads to the problem of maximizing the function

Q(α) = log
ακ̂(α)

σ̂(α)(1 + κ̂(α)2)
+ (α− 1)

1

n

n∑
i=1

log |xi|

with respect to α > 0. Here, κ̂(α) and σ̂(α) are the MLE’s given by (103). When

optimizing the function Q numerically, one usually restricts the range of the α’s to a

finite interval, typically including α = 1 corresponding to the Laplace case.
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3 Application - the univariate case

In this chapter we present a skew double Weibull model for currency exchange rates.

The results below closely follow Jurić and Kozubowski [43].

3.1 Modeling currency exchange rates (conditional distribu-

tion of the changes)

Many different distributions have been proposed in the past to model currency exchange

rates, including stable Paretian laws (see Westerfield [100], McFarland et al. [72, 73],

So [89], Koedjik et al. [47] and Nolan [77]), Student-t distribution (see Boothe and

Glassman [8] and Koedjik et al. [47]), mixture of normals (see Boothe and Glassman

[8] and Tucker and Pond [94]), asymmetric Laplace distribution (see Kozubowski and

Podgórski [52]), and exponential power distribution (see Ayebo and Kozubowski [6]).

While there is still no general consensus regarding the best theoretical model, Chenayo

et al. (see [9]) found the fit of a double Weibull model to be the best.

Following the proposals of Chenyao et al. (see [9]), Hürliman (see [34]), and Mittnik

and Rachev (see [74]), who reported excellent results with the (double) Weibull dis-

tribution, we propose the asymmetric double Weibull distribution ADW∗ to model

currency exchange rates. We fit this distribution to our data, and compare its perfor-

mance with that of the normal, asymmetric Laplace (AL), and exponential power (EP)

distributions.

Our data are daily currency exchange rates, quoted in U.K. pounds, for fifteen cur-

rencies reported for the period of January 2, 1980 to May 21, 1996. These data were

used before in Nolan (see [77]), Kozubowski and Podgórski (see [52]), and Ayebo and

Kozubowski (see [6]). Following a common practice, we converted the daily data Pi to

Xi = log(Pi+1/Pi) (the logarithmic return), resulting in 4274 values for each currency.

The models used include the asymmetry parameter κ (see Table 1). The estimation

shows that κ is close to 1 in all cases which does not imply asymmetry for the data set

used. However, this can be interpreted as statistical evidence that it may be necessary

to model asymmetry. This point is also considered in Kozubowski and Panorska (see

[60]).
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Currency α σ κ

Australia 1.0931 0.0037 0.9994

Austria 1.1585 0.0017 1.0234

Belgium 1.1373 0.0023 1.0117

Canada 1.1490 0.0024 1.0066

Denmark 1.1384 0.0018 1.0148

France 1.0789 0.0023 1.0073

Germany 1.2079 0.0012 1.0276

Italy 1.0467 0.0029 0.9916

Japan 1.2322 0.0017 1.0393

Netherlands 1.1979 0.0013 1.0255

Norway 1.1286 0.0018 1.0034

Spain 1.1021 0.0022 0.9916

Sweden 1.0673 0.0026 0.9945

Switzerland 1.2462 0.0012 1.0294

U.S. 1.1363 0.0026 1.0111

Table 1: Estimated values of α, σ and κ of the fitted ADW∗α(σ, κ) distributions. Note:

reprinted from [43]

We use maximum likelihood estimators presented in Chapter 2 to fit the skew Weibull

model to the data. All zero returns have been excluded from the data set, since the

likelihood function takes the logarithm of the data values. In effect, we model the

conditional distribution of the changes, given that a non-zero change has occurred.

This approach is different from that of prior studies, where stochastic models were

fitted to the entire data, including the zero values (which are about 5% of the data in

our case). The results of estimation for all fifteen currencies are presented in Table 1.

To compare the fits of competing models, we consider the standard Kolmogorov-

Smirnov (K-S) distance between the data and the model distributions.
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Fit Australia Austria Belgium Canada Denmark

Normal 0.064 0.055 0.073 0.042 0.057

AL 0.028 0.049 0.060 0.031 0.048

EP 0.022 0.045 0.056 0.016 0.042

ADW∗ 0.017 0.035 0.045 0.011 0.031

Fit France Germany Italy Japan Netherlands

Normal 0.075 0.066 0.070 0.049 0.065

AL 0.043 0.077 0.030 0.062 0.071

EP 0.043 0.071 0.029 0.052 0.063

ADW∗ 0.038 0.055 0.025 0.038 0.048

Fit Norway Spain Sweden Switzerland US

Normal 0.058 0.064 0.093 0.055 0.046

AL 0.036 0.038 0.027 0.075 0.028

EP 0.030 0.035 0.027 0.067 0.019

ADW∗ 0.021 0.026 0.022 0.049 0.016

Table 2: Kolmogorov-Smirnov distances between the data and the four models:

normal, asymmetric Laplace, skew exponential power and asymmetric double Weibull

(ADW∗). Note: reprinted from [43]

The values of this statistic are listed in Table 2. As we can see from the table, the

normal distribution provides a rather poor fit, as expected, while the asymmetric dou-

ble Weibull model works best. Note that, similarly to the case of modeling the entire

data set (as reported in Ayebo and Kozubowski [6]), the skew EP model provides only

a very slight improvement over the AL distribution. Overall, the skew Weibull model

provides a substantial improvement over both, the AL and the skew EP models.

3.2 Modeling the unconditional distribution of the currency

exchange rates

In our approach, the variable X ∼ ADW∗α(σ, κ) represents the (logarithmic) change of

the exchange rate, provided that one has actually occurred. Thus, the unconditional

distribution can be written as the variable Y = IX, where I is a Bernoulli variable
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with parameter p, independent of X:

I =

{
0, with prob. 1− p
1, with prob. p

and Y =

{
0, with prob. 1− p
X, with prob. p.

(104)

Consequently, the distribution of Y contains an atom at zero, and can be calculated in

the following way:

(i) For x < 0,

P (Y ≤ x) = P (IX ≤ x) = P (I = 1 and X ≤ x) = pF (x). (105)

(ii) For x ≥ 0,

P (Y ≤ x) = P (IX ≤ x) = P (I = 0 or (I = 1 and X ≤ x))

= P (I = 0) + P (I = 1)P (X ≤ x) = P (I = 0) + P (I = 1)F (x)

= 1− p+ pF (x). (106)

Thus, the cumulative distribution function of Y is of the form:

FY (x) =

{
pF (x), x < 0

1− p+ pF (x), x ≥ 0,
(107)

where F is the c.d.f. of X. In practice, the parameter p can be estimated as the

proportion of non-zero returns in the data set, thus the probability that the exchange

rate does change. When change occurs it is generated from the Weibull distribution. To

illustrate, we consider the case of Australian dollar, where we obtain p̂ = 4094/4274 =

0.9578849. The resulting mixed skew Weibull model provides a better fit compared with

the competition when applied to the entire data sets. Indeed, this can be seen from

Table 3, which contains the results of fitting the same four models to the Australian

currency, with each model being of the form (107) with p̂ stated above.

Fit Australia

Normal 0.069

AL 0.049

EP 0.028

ADW ∗ 0.016

Table 3: Kolmogorov-Smirnov distances between the data and four models calculated

for entire data set (including zero returns) - Australian dollar. Note: reprinted from

[43]
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4 Univariate and Multivariate Weibull Distributions

and their Applications - Review

The aim of this chapter is to review different existing variations of both, symmetric and

asymmetric, univariate and multivariate Weibull distributions along with their basic

mathematical properties and to put those generalizations into a broader context.

Over the years, people have been conducting numerous investigations in various fields

connected with Weibull distributions in order to establish proper applications in the

areas such as finance, insurance, economics, biostatistics, etc.

Recently, many researchers used Weibull distributions in modeling financial data as

well as in survival analysis. Due to extensive use of the Weibull distribution in various

areas, discovering the original sources of the information is almost impossible. There-

fore, the purpose of this part of our work is to provide a concise resource of the most

important properties of the univariate and multivariate Weibull distributions placed

within one chapter. The facts are not necessary for our purposes but shed some light

on various ways one can generalize the Weibull distribution.

4.1 Univariate Weibull distribution

Four different models are considered, each supported with pdf’s, c.d.f.’s, moments or

maximum likelihood estimation and application part if possible.

For the purpose of estimation, it is assumed that X1, X2, ..., Xn is an i.i.d. sample and

X(1) < X(2) < .... < X(n) are the corresponding order statistics.

4.1.1 Flaih- Elsalloukh-Mendi-Milanova’s skewed double inverted Weibull

distribution

Following the approach of Fernandez and Steel (see [19]), the authors introduced skew-

ness into the symmetric inverted Weibull distribution obtaining the four-parameter

Skewed Double Inverted Weibull distribution, named SDIWα(σ, κ). The basic prop-

erties such as probability density function, cumulative distribution function, moments

and maximum entropy are derived (see Flaih et al. [23]).

The symmetrization procedure (20) of the inverted Weibull distribution function

f(x) =
β

α

(
1

x

)(β+1)

e−
1
α

( 1
x

)β (108)
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leads to a double inverted Weibull distribution function with density

f(x) =
β

2α
|x|−(β+1)e−

1
α |x|−β. (109)

The skewness is introduced following the approach of Fernandez and Steel (see [19]),

leading to the probability density function

f(x, µ, α, β, ε) =

 β
2α

(
x−µ
1+ε

)−(β+1)
e−

1
α(x−µ1+ε )

−β

, x ≥ µ

β
2α

(
µ−x
1−ε

)−(β+1)
e−

1
α(µ−x1−ε )

−β

, x < µ,
(110)

where α > 0 is a scale parameter, β > 0 is a shape parameter, µ is a location pa-

rameter, while −1 < ε < 1 is the skewness parameter. The density is denoted by

SDIWβ(α, β, ε, µ). The corresponding distribution function is:

F (x) =

1− 1+ε
2

[
1− e− 1

α

(
x−µ
1+ε

)−β]
, x ≥ µ

1−ε
2

[
1− e− 1

α

(
µ−x
1−ε

)−β]
, x < µ.

(111)

In the special case for β = 1, the density simplifies to:

f(x;µ, α, 1, ε) =

 1
2α

(
x−µ
1+ε

)−2
e−

1
α(x−µ1+ε )

−1

, x ≥ µ

1
2α

(
µ−x
1−ε

)−2
e−

1
α(µ−x1−ε )

−1

, x < µ,
(112)

which is the skewed double inverted exponential distribution, while the case β = 2

yields

f(x;µ, α, 2, ε) =

 1
α

(
x−µ
1+ε

)−3
e−

1
α(x−µ1+ε )

−2

, x ≥ µ

1
α

(
µ−x
1−ε

)−3)
e−

1
α(µ−x1−ε )

−2

, x < µ,
(113)

the skewed symmetric double inverted Rayleigh distribution.

When 1 ≤ k ≤ n, the MLE’s are found by the usual procedure of taking the derivatives

of the log likelihood function. The MLE of α can be easily derived from the equation
∂
∂α
lk(β, α, ε, µ) = 0, leading to

α̂ =

[
1

n

n∑
i=k+1

(
xi − µ
1 + ε

)−β
+

k∑
i=1

(
µ− xi
1− ε

)−β]
, (114)

while β̂1 and β̂2 can be calculated numerically by the use of some standard iterative

procedure (i.e., Newton-Raphson method). Numerical methods must be applied to find

other estimates as well.

The application part is illustrated by presenting two data sets. The first one, the

number of million revolutions before failure for 23 endurance of deep - groove ball
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bearings, and the second one, the time intervals, in hours, between failures of the

air conditioning system of an airplane. The MLE’s of the unknown parameters and

the log-likelihoods of four distributions are compared: Gamma(λ, α), Weibull(λ, α),

EE(λ, α) and SDIW (β, α, µ, ε). While the first model did not show a good fit in terms

of negative log-likelihood values, the second one proved to be the best outperforming

other competitors. It can be concluded that SDIW (β, α, µ, ε) is very sensitive to

the type of data, but at least in some cases works better than Gamma, Weibull or

Exponential distribution.

4.1.2 Flaih-Elsalloukh-Mendi-Milanova’s exponentiated inverted Weibull

distribution

The authors proposed the extension of the standard inverted Weibull distribution

(see Flaih et al. [22]) to the standard exponentiated inverted Weibull distribution by

adding another shape parameter. The distribution function of standard exponentiated

inverted Weibull distribution function (EIW) takes the form:

Fθ(x) = (e−x
−β

)θ, x, β, θ > 0. (115)

The corresponding density is:

f(x) = θβx−(β+1)(e−x
−β

)θ, x > 0. (116)

For this distribution, the k-th moment is given by

E(Xk) =

∫ ∞
0

θβxkx−(β+1)(e−x
−β

)θdx = θ
k
βΓ(1− k

β
), x > 0, β > k. (117)

The maximum likelihood estimator of θ in terms of β is as follows:

θ̂(β) =
n∑n

i=1 x
−β
i

, (118)

while the MLE of β is obtained as the fixed point solution of the non-linear equation

of the form h(β) = β, where

h(β) = β − n

β
+

n∑
i=1

log xi +
n
∑n

i=1 x
−β
i log xi∑n

i=1 x
−β
i

= 0. (119)

To find β̂ and θ̂ numerical methods are required. The least square estimators are

obtained following the formulae:
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θ̂ = exp

(∑n
i=1 log2 xi

∑n
i=1 log yi +

∑n
i=1 yi log xi

∑n
i=1 log xi

(
∑n

i=1 log xi)2 − n
∑n

i=1 log2 xi

)
, (120)

and

β̂ =
n
∑n

i=1 yi log xi −
∑n

i=1 yi
∑n

i=1 log xi

(
∑n

i=1 log xi)2 − n
∑n

i=1 log2 xi
. (121)

The application part includes the following procedure. Two distributions, inverted

Weibull distribution(IW ) and exponentiated inverted Weibull distribution, (EIW ) are

fitted into the uncensored data set consisting of 100 observations concerning tensile

strength of carbon fibers. Shape parameters θ and β were estimated along with the

values of the log-likelihood functions. The log-likelihood ratio test has been performed

provided a significantly better fit for the exponentiated inverted Weibull distribution

EIW than inverted Weibull distribution.

4.1.3 Ali-Woo’s skew-symmetric reflected distribution

In this paper the authors bring definitions of skew-symmetric distributions for a num-

ber of reflected distributions symmetric about zero (see [4]). For the purpose of this

work, the skew reflected Weibull distribution is studied. As Balakrishnan and Kocher-

lakota (see [7]) previously described , the p.d.f. of the double Weibull distribution is

obtained as

f(x) =
α

2
|x|α−1e−|x|

α

, x ∈ R, α > 0. (122)

Using the standard signum function, denoted by sign(x), the above c.d.f can be ex-

pressed as:

F (x) =
1

2
+

1

2
sign(x)(1− e−|x|α). (123)

Skewed Reflected (Double) Weibull Distribution proposed by Ali and Woo, denoted by

SDWα(1, c), is derived using Azzalini’s approach of introducing skewness (see [3]) and

the previous equation:

f(z; c) =
α

2
|z|α−1e−|z|

α

[1 + sign(cz)(1− e−|cz|α)], z ∈ R. (124)

Adding a scale parameter σ we obtain a skewed reflected (double) Weibull Distribution

denoted by SDWα(σ, c):
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f(z; c) =
α

2σ
| z
σ
|α−1e−|

z
σ
|α [1 + sign(

cz

σ
)(1− e−|

cz
σ
|α)], z ∈ R. (125)

The corresponding c.d.f. arises from the previous equation and is given by:

F (z; c) =

1− e−zα + 1
2(1+cα)

e−(1+cα)zα , z ≥ 0, c > 0

1
2(1+cα)

e−(1+cα)(−z)α , z < 0, c > 0.
(126)

For positive c, the k-th moment of the distribution is calculated as follows:

E(Zk) = Γ

(
k

α
+ 1

)
+ (−1 + (−1)k)

1

2

Γ( k
α

+ 1)

(1 + cα)
k
α

+1
, k = 1, 2, 3, .... (127)

Next, the following procedure is related to the representation of the distribution show-

ing the interesting connection between skew Laplace distribution and Ali-Woo model.

If a random variable X follows a skew Laplace distribution with parameter λ = cα,

X ∼ SL(λ = cα), it can be proved that for λ > 0, X< 1
α
> d

= SDWα(1, c). We start with

the p.d.f. of the skew Laplace distribution which has the form:

f(x) =
1

2
e−|x|(1 + sign(λx)(1− e−|λx|)). (128)

For y < 0, the c.d.f of Y = X< 1
α
> is obtained as follows:

P (Y < y) = P (X < −|y|α) = P (X < −(−y)α) = Fx(−(−y)α) (129)

and the corresponding p.d.f. can be easily found:

f(y) = F ′x(−(−y)α)(−1)α(−y)α−1(−1) = fX(−(−y)α)α(−y)α−1. (130)

Since fX is a skew-Laplace, inserting into (128), the following expression is obtained:

g(y) =
1

2
α|y|α−1e−|y|

α

e−|λ||y|
α

. (131)

It can be easily verified that the above density is the Ali-Woo Skew Double Weibull

model, SDWα(1, λ), for λ = cα. For y > 0, by similar procedure, we obtain:

P (Y < y) = 1− P (X > yα) = 1− 1− Fx(yα) = Fx(y
α). (132)

Taking the derivative the following expression arises:
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f(y) = F ′X(yα)αyα−1 = fX(yα)αyα−1. (133)

Inserting into (128), the Ali-Woo model with λ = cα is obtained.

g(y) =
1

2
αyα−1e−y

α

e(2−|λ|yα). (134)

4.1.4 Ali-Woo-Nadarajah’s skew-symmetric (double) reflected inverted Weibull

distribution

This model is obtained by applying the Azzalini’s manner of introducing skewness into

the Double Inverted Weibull Distribution DIWα(σ, c) (see [5]). The model is presented

with formulae for p.d.f and c.d.f., but no connection with the previous distributions

seems to exist.

The definition of a skewed inverse reflected distribution is proposed by the authors

having the p.d.f. specified by:

f(x) =
α

2

1

|x|α+1
e−

1
|x|α
(

1 + sign(cx)e−
1

|x|αcα
)
.

Adding a scale parameter σ the formula for density is obtained:

f(x) =
α

2σ

1

|x
σ
|α+1

e
− 1
| xσ |

α

(
1 + sign(

cx

σ
)e
− 1
| xσ |

αcα

)
. (135)

The corresponding c.d.f. takes the form:

F (x) =


1
2

[
1− e−

1
(− xσ )α − cα

cα+1
+ cα

cα+1
e
− 1

(− xσ )α
cα+1
cα

]
, x < 0

1
2

[
1 + e

− 1
( xσ )α − cα

cα+1
+ cα

cα+1
e
− 1

( xσ )α
cα+1
cα

]
, x ≥ 0.

(136)

Moments are given by:

E(Xn) =
1

2
Γ
(

1− n

α

)[
1 + (−1)n +

(
cα

1 + cα

)1−n
α

(1− (−1)n)

]
(137)

E|X|η = Γ
(

1− n

α

)
. (138)
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4.2 Multivariate Weibul distributions

In this section the review of five different generalizations of exisiting multivariate

Weibull distributions is presented. Most of the models are supported with formulae for

p.d.f, c.d.f, MLE’s and survival function.

4.2.1 Hanagal’s multivariate Weibull distribution

The author presented a new multivariate Weibull distribution with many interesting

properties. Knowing that there are many bivariate or multivariate Weibull distribu-

tions, (see [29]), based on bivariate or multivariate exponential distributions that are

obtained as extensions of univariate exponential distribution, the reason Hanagal’s mul-

tivariate model has been chosen is that this multivariate Weibull distribution (MVW )

is obtained from multivariate exponential (MVE ) model of Marshall-Olkin (see [69])

which is the MVE having the marginals as exponentials.

Based on this, if Y = (Y1, Y2, ..., Yk) is (k + 1) parameter version of MVE model of

Marshall-Olkin(see [69]) and Hanagal (see [29]), taking the transformations

Xi = Y
1
c
i (139)

c > 0, i = 1, ..., k, the vector X = (X1, X2, ..., Xk), has, what one could call, multivari-

ate Weibull distribution. Taking the survival function of Marshall-Olkin MVE model,

(see [69])

F̄Y(y) = P [Y1 > y1, ..., Yk > yk] = exp[−
k∑
i=1

λiyi − λ0 max(y1, ..., yk)], λ0, ..., λk > 0,

(140)

and the above transformation, the corresponding survival function (not absolutely con-

tinuous with respect to Lebesgue measure on Rk) of X of MVW is given by:

F̄X(x) = P [X1 > x1, ..., Xk > xk] = exp[−
k∑
i=1

λix
c
i − λ0max(x1, ..., xk)

c]. (141)

As this distribution describes failure times and is derived from MV E of Marshall-

Olkin, (see [69]) all applications of MVE will become real applications of this dis-

tribution as well (for e.g., simultaneous failure of nuclear power stations, simultane-

ous failure of hydroelectric pumps in aeroplanes, etc). The marginal distributions of

X = (X1, X2, ...., Xk) are:

P [Xi > xi] = F̄X(0, ..., xi, 0, ..., 0) = exp[−(λi + λ0)xci ], i = 1, ..., k, (142)
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which is the survival function of Weibull distribution with parameters (λi + λ0, c).

Further, the MLEs of the parameters of MVW model are derived. The log-likelihood

of the sample of size n is given by:

logL = p log c+ n0 log λ0 +
k∑
i=1

λi log λi

+
k∑
i=1

ni(e) log(λi + λ0) +
k∑
i=1

(c− 1)
n∑
j=1

log xij

−
k∑
r=2

(r − 1)(c− 1)
∑
j∈Sr

log x(k)j −
k∑
i=1

λi

n∑
j=1

xcij − λ0

n∑
j=1

xc(k)j,

where p = [nk−
∑k

r=2(r− 1)n0(r)], n0(r) = number of observations with r of X ′is, i =

1, ..., k are equal, n0 =
∑k

r=2 n0(r), ni =number of observations in n which the random

variable Xi < X(k),ni(e) = number of observations with Xi strictly the maximum of the

(X1, ..., Xk). The likelihood equations with respect to the parameters (λ0, λ1, ..., λk, c)

are:

n0/λ0 +
k∑
i=1

ni(e)/(λi + λ0)−
n∑
j=1

xc(k)j = 0 (143)

ni/λi + ni(e)/(λi + λ0)−
n∑
j=1

xcij = 0, i = 1, ..., k (144)

p

c
+

k∑
i=1

n∑
j=1

log xij−
k∑
r=2

(r−1)
∑
j∈Sr

log x(k)j−
k∑
i=1

λi

n∑
j=1

xcij log xij−λ0

n∑
j=1

xc(k) log x(k)j = 0.

(145)

The equations are difficult to solve algebraically, so the introduction of consistent esti-

mators (u0, u1, ..., uk+1) are needed as an initial solution in Newton-Raphson procedure

or Fisher’s method of scoring to obtain the MLE’s λ̂ = (λ̂0, λ̂1, ..., λ̂k, ĉ).
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4.2.2 Malevergne-Sornette’s multivariate Weibull distributions

In this section a discussion of the non-Gaussian properties of the distributions of the

asset returns is presented. The authors Malevergne and Sornette describe multivariate

distributions for asset returns (see [66]) where marginal distributions are parameterized

in terms of modified Weibull distribution. Two key parameters, c-the exponent and

χ-the characteristic scale of the modified Weibull distribution are derived. Statistical

tests of this parametrization are discussed.

Following previous work, the marginal probability distribution of returns is determined

as follows :

f(x) =
1

2π

c

χ
c
2

|x|
c
2
−1e−(

|x|
χ

)c , (146)

where c and χ are the two key parameters. Taking into account a possible asymme-

try between negative and positive returns (thus leading to possible non zero-average

return), a more general parametrization takes form:

f(x) =


Q
π

c+

χ

c+
2

+

|x|
c+
2
−1e
−(
|x|
χ+

)c+ , x ≥ 0

1−Q
π

c−

χ

c−
2
−

|x|
c−
2
−1e
−(
|x|
χ−

)c− , x < 0.
(147)

where Q (respectively 1−Q ) is the fraction of positive (respectively negative) returns.

Only the case Q = 1
2

will be considered since it is the only manageable case.

Transformation of the modified Weibull p.d.f. into a Gaussian law takes the form:

P (x1, x2, ..., xN) =
1

2Nπ
N
2

√
detV

[
−
∑
i,j

V −1
i,j

(
|xi|
χi

) c
2
(
|xj|
χj

) c
2

][
N∏
i=1

ci|xi|
c
2
−1

χ
c
2
i

e−(
|x|
χ

)c

]
(148)

where V ′i s are the components of the covariance matrix V .

4.2.3 Jye-Chyi’s least square estimation for multivariate Weibull model of

Hougaard based on accelerated life test

A simple method of incorporating the information collected from the accelerated life

test on components and series system levels is introduced (see [44]). Due to Hogaard
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(see [36]), the underlying distribution of life-times of components is assumed to be

multivariate Weibull. The method of maximum likelihood estimation involves complex

computational procedure and closed form solution is not obtained.

A system of m identical components whose lifetimes could be dependent is consid-

ered. Suppose that life-times of m components, denoted as Z1, ..., Zm, are identically

distributed. Regardless whether the components are assembled into a system, the

Hougaard multivariate Weibull distribution MVW (see [36]) of modeling components

life-times, is applied. The corresponding survival function of the MVW takes form ,

F̄Y(z1, z2, ..., zm) = exp

{
−

 m∑
k=1

(
zk
θk

)βk
δ

δ}, δ ∈ (0, 1], βi, θi > 0, i = 1, ..., k,

z1, ..., zm ≥ 0. (149)

This distribution includes important properties such as a physical motivation (see [36]),

existence of absolutely continuous probability density function, Weibull marginals and

stability relations formulated in Tawn (see [91]).

4.2.4 Crowder’s multivariate distribution with Weibull connections

In this section we describe a simple form of multivariate distribution which, for certain

parameter values, has Weibull marginals (see [13]). A single parameter taking positive,

negative or zero values is included in the distribution. The marginals and conditional

distributions can be presented in a simple forml which makes the distribution suitable

for practical application and interpretation. It is known that a parametric analysis of

failure time data, both in univariate and multivariate case, is widely modeled using

the Weibull distribution. Some discussions are made regarding the distribution of

survival times really being Weibull (see [80], [81]). Johnson and Kotz (see [37]) propose

multivariate exponential distribution which leads to Weibull distribution by taking

power transformations of each variable.

Suppose T1, T2, , ...Tp are independent Weibull random variables with survival function

P (Tj > tj) = exp(−αjt
φj
j ) (150)

and log-means E[lnTj] = −Φ−1
j (lnαj +γ), where γ is the Euler’s constant. Taking into

account the normal linear mixed-effects model, the author suggests (see [12] ) taking

lnαj = ln ξ + lnα, where ξ is a fixed effects parameter and α varies randomly over

individuals.
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The same paper assumed that a multivariate Burr distribution for T = (T1, T2, , ..., Tp)

resulted from the assumption that α has a Gamma distribution, while in view of the

central limit theorem and corresponding normal random effects model, lnα is normally

distributed.

If we assume that α has a stable distribution with distribution function G on (0,∞)

of characteristic exponent ν, (see Feller [18]), T has joint survival function

P (T > t) =

∫ ∞
0

exp

(
−

p∑
j=1

αjt
φj
j

)
dGν(α) = exp(−sν), (151)

where s =
∑
ξjt

φj
j which is a multivariate distribution having Weibull marginals.

4.2.5 Hsiaw-Chan-Yeh’s multivariate semi-Weibull distribution

The author (see [35]) proposes two more general multivariate distributions with Weibull

marginals that are constructed following Lee (see [64]) and Marshall and Olkin (see [70])

results. The first one, named the Marshall-Olkin multivariate semi-Weibull distribution

is denoted as MO −MSW . The second one is termed the multivariate semi Weibull

distribution (and denoted as MSW ). Here, more general cases are considered.

A distribution with parameters p ∈ (0, 1) and α = (α1, α2, ..., αk) ≥ 0 with survival

function of the form

F̄x(X) = e−Ψ(x) (152)

is said to be a k-variate semi-Weibull distribution if Ψ(X) satisfies the functional equa-

tion

Ψ(x) =
1

p
Ψ(p

1
α1 x1, p

1
α2 x2, ..., p

1
αk xk), x ≥ 0. (153)

Ψ(x) is nonnegative and monotonically increasing in all xi. This MSW is considered

homogeneous if all α′is are equal. If F̄X is the joint survival function of the k-variate

random vector X, then the function

Ḡ(x) =
βF̄X

1− (1− β)F̄ (x)
, x ≥ 0, 0 < β ≤ 1, (154)

is a proper k-variate survival function. The family of distributions of this form is

defined as Marshall-Olkin multivariate family of distributions.
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The Marshal-Olkin multivariate Weibull distribution is of the form:

F̄X(x) = exp
{
−

k∑
i=1

λix
αi
i +

k−1∑
1=i

k∑
j=2

λij max(xαii , x
αj
j ) + ...+ λ12...k max(xα1

1 ...x
αk
k )
}

(155)

with all λi, λij, λ12...k > 0 and α = (α1, ..., αk) > 0 and X > 0. The function

Ψ(x) =
k∑
i=1

λix
αi
i +

k−1∑
1=i

k∑
j=2

λij max(xαii , x
αj
j ) + ...+ λ12...k max(xα1

1 ...x
αk
k ) (156)

satisfies the functional equation of the survival function, so it can be concluded that it

belongs to the MSW distributions. For any p ∈ (0, 1) we have

Ψ(x) =
k∑
i=1

λi(p
1/αixi)

αi+

+
k−1∑
1=i

k∑
j=2

λij max((p1/αixi)
αi , (p1/αjxj)

αj) + ...+ λ12...k max
1≤i≤k

((p1/αixi)
αi)

= Ψ(p1/α1x1, p
1/α2x2, ..., p

1/αkxk) = Ψ(p1/αx). (157)

The same can be proved for multivariate extension of Lee’s survival functions (see [64]):

F̄X(x) = e−(
∑k
i=1 x

4
i )

1
2 (158)

and

F̄X(x) = e−(
∑k
i=1 x

4
i )

1/2

e−
∑k
i=1 λ

2
i x

2
i+
∑k−1

1=i

∑k
<j=2 λij max(x2i ,x

2
j )+...+λ12...k max(x21...x

2
k). (159)
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5 Asymmetric multivariate Weibull distribution

5.1 Definition and basic properties

A class of multivariate laws as an extension of univariate Weibull distribution is pre-

sented in this chapter. The well known representation of the asymmetric univariate

Laplace distribution is used as the starting point. Properties of this new family possess

some similarities to the multivariate normal distribution and are explored including

moments, correlations, densities and simulation algorithms.

As was said before, skewness has been introduced into the symmetric double Weibull

distribution by Fernandez and Steel (see [19]). Two inverse scale factors transform a

symmetric distribution with p.d.f. f into an asymmetric one with the p.d.f.

g(x) =
κ

σ(1 + κ2)

{
f(xκ/σ), x > 0

f( x
σκ

), x < 0,
(160)

where κ > 0. This distribution will be called the asymmetric Weibull distribution with

parameters κ and σ. However, this procedure does not lend itself to generalization to

multivariate distributions.

To this end recall that the standard Laplace random variable Y admits the represen-

tation

Y
d
=
√

2EZ, (161)

where E is standard exponential and Z is standard normal independent of E, (see Kotz

et al. [49]). This representation shows that the distribution of Y is a scale mixture

of normal distributions. Furthermore, Kozubowski and Podgórski (see [48]) show that

the random variable

Y
d
= mE +

√
2EZ (162)

has the asymmetric Laplace distribution in the sense of (160). On the other hand, let

L have the symmetric Laplace distribution and let S be an independent stable random

variable with index α ∈ (0, 1] defined by the Laplace transform

g(t) = Ee−tS =

∫ ∞
0

e−stfS(s)ds = e−t
α

. (163)

It can be shown by an elementary calculation that the random variable Y = L/S has

the symmetric Weibull distribution with parameters α and σ = 1. This together with

(162) leads to the idea that the random variable W defined by

W
d
=
mE +

√
2EX

S
(164)

with E, X ∼ N(0, τ 2) and S independent has the asymmetric Weibull distribution.
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Theorem 5.1 The random variable W
d
= mE+

√
2EX

S
, where E is a standard exponential

random variable, E ∼ exp(1), S standard stable random variable independent of E

given by the Laplace transform (8) and X normal random variable, X ∼ N(0, τ 2) has

the ADWα(σ, κ) distribution with parameters

σ = τ and κ =

√
m2 + 4τ 2 −m

2τ
.

Proof: Since W = mE+
√

2EX
S

we define a function Φ : R+ × R+ × R→ R3 as

Φ(u, s, x) = (u, s,
mu+

√
2ux

s
). (165)

Then

Φ−1(u, s, w) = (u, s,
ws−mu√

2u
). (166)

Knowing that Jacobian J of the function Φ−1 is

JΦ−1(u, s, x) =
s√
2u
, (167)

it follows that p.d.f. of r.v. (E, S,W ) is:

fE,S,W (u, s, w) = e−ufS(s)
1√
2πσ

e−
(ws−mu)2

4σ2u
s√
2u
. (168)

Elementary calculation yields:

fE,S,W (u, s, w) = e−ufS(s)
1√
2πσ

e
mws
2σ2 e−

w2s2

4uσ2 e−
m2u
4σ2

s√
2u
. (169)

Integrating over u and applying formula 5.28 Oberhettinger and Badii∫ ∞
0

1√
t
e−

a
t
−ptdt =

(
π

p

) 1
2

e−2
√
ap (170)

(see [79]), we get:

fS,W (s, w) =
s

2σ
√

1 + m2

4σ2

e
mws
2σ2 e−2

√
1+ m2

4σ2

√
w2s2

4σ2 fS(s). (171)

After some simplification we obtain:

fS,W (s, w) =
s

2
√

4σ2 +m2
e−

s
2σ2

[
√

4σ2+m2|w|−mw]fS(s). (172)
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Case 1: w > 0

fS,W (s, w) =
s

2
√

4σ2 +m2
e−

s
2σ2

[(
√

4σ2+m2−m)w]fS(s). (173)

Since E(Se−λS) = αλα−1e−λ
α

it follows:

fW (w) =
α

2
√

4σ2 +m2

[
(
√

4σ2 +m2 −m)w

2σ2

]α−1

e−(
(
√

4σ2+m2−m)w
2σ2

)α (174)

Case 2: w < 0

fS,W (s, w) =
s

2
√

4σ2 +m2
e−

s
2σ2

[(
√

4σ2+m2+m)(−w)]fS(s), (175)

which gives

fW (w) =
α

2
√

4σ2 +m2

[
(
√

4σ2 +m2 +m)(−w)

2σ2

]α−1

e−(
−w(
√

4σ2+m2+m)
2σ2

)α . (176)

It follows that fW has appropriate form with:

κ

τ
=

√
4σ2 +m2 −m

2σ2
(177)

and
1

κτ
=

√
4σ2 +m2 +m

2σ2
. (178)

By multiplying the equations we obtain

σ = τ and κ =

√
m2 + 4σ2 −m

2σ
. (179)

Next, we want to check the constants in the formula for density ofADWα by calculating

cases for w > 0 and w < 0.

First,
1

κ
=

2σ√
m2 + 4σ2 −m

, (180)

which, upon multiplying by
√
m2 + 4σ2 +m, leads to:

κ+
1

κ
=

√
m2 + 4σ2

σ
and

κ

κ2 + 1
=

σ√
m2 + 4σ2

. (181)

Case 1: For w > 0 we obtain

1

σα
ακ

1 + κ2
κα−1 =

1

σα
ασ√

m2 + 4σ2

(√
m2 + 4σ2 −m

2σ

)α−1

, (182)
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leading to

α√
m2 + 4σ2

(√
m2 + 4σ2 −m

2σ2

)α−1

. (183)

Case 2: Similarly, for w < 0 we have

1

σα
ακ

1 + κ2

1

κα−1
=

1

σα
ασ√

m2 + 4σ2

1

(
√
m2+4σ2−m

2σ
)α−1

. (184)

Upon multiplying the latter fraction by (
√

4σ2 +m2 +m)α−1, the following expression

is obtained:

α√
m2 + 4σ2

(√
m2 + 4σ2 +m

2σ2

)α−1

. (185)

The representation (164) leads to a multidimensional generalization of the univariate

asymmetric Weibull distribution. We define

W =
mE +

√
2EX

S
(186)

where m ∈ Rd, and Σ is a d × d positive semi definite symmetric matrix, and the

notation X ∼ Nd(0,Σ) is used to indicate a d-dimensional normal distribution with

the mean vector 0 and the covariance matrix Σ. Note that by (12) the marginal distri-

butions of W are asymmetric Weibull. This justifies the name asymmetric multivariate

Weibull distribution.

Symmetric and asymmetric versions of various distributions have been used to model

asset returns and currency exchange rates, (see [43], [52], [66], [74] and [83]). The above

generalization provides a new family of distributions which can potentially be used in

modeling multivariate financial data. The components will never be independent but

the advantage of this generalization is in the fact that this family of distributions in-

herits nice properties of the multivariate normal distribution. Linear combinations of

components are asymmetric Weibull. The other limitation is that α ∈ (0, 1] but it can

be shown that only for such α we get a unimodal distribution which is of advantage for

modeling purposes. The chapter continues with the representation followed by distri-

butions of linear combinations, conditional distributions, moments and the covariance

matrix.
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Definition 5.1 A random vector W ∈ Rd has a multivariate Weibull distribution with

parameters 0 < α ≤ 1, m ∈ Rd, and Σ is a d × d positive semi definite symmetric

matrix, denoted by Wd(α,m,Σ) if the following representation holds:

W =
mE +

√
2EX

S
, (187)

where E is a standard exponential random variable, S standard stable random variable

independent of E given by the Laplace transform (8), and X ∈ Rd a multivariate normal

random vector centered at zero with the covariance matrix Σ, denoted by X ∼ Nd(0,Σ)

independent of (E, S).

For m = 0, the symmetric case is obtained while for α = 1 the variable S is constant and

equal to 1 so that W has an asymmetric Laplace distribution (with Laplace marginals).

For α = 1
2
, the variable S has the Lévy density

fS(s) =
1

2
√
πs3

e−
1
4s , s > 0. (188)

5.2 Polar representation

The class of elliptically symmetric distributions consists of laws with non singular Σ

and the density

f(x) = kd|Σ|−
1
2 g[(x−m)′Σ−1(x−m)], (189)

where g is a one-dimensional real valued function independent of d, and kd is a propor-

tionality constant. We will denote the laws with the density (189) by ECd(m,Σ, g).

Every r.v. Y ∼ ECd(0,Σ, g) admits the representation (see Fang et al. [17])

Y
d
= RHUd, (190)

where H is a d× d matrix such that HH′ = Σ, R is a positive r.v. independent of Ud

(having the distribution of
√

Y′Σ−1Y), and Ud is a r.v. uniformly distributed on the

sphere Sd−1 , so that HUd is uniformly distributed on the surface of the hyperellipsoid{
y ∈ Rd : yΣ−1y = 1

}
, (see Kotz et al. [48]).

Proposition 5.1 Let Y ∼ Wd(α, 0,Σ) where Σ > 0.Then, Y admits the polar repre-

sentation(190), where H is d × d matrix such that HH′ = Σ, Ud is a r.v. uniformly

distributed on the sphere Sd−1, and R is a positive r.v. independent of Ud with the

density

fR(z) =

√
2d

2
d
2 Γ
(
d
2

+ 1
) ∫ ∞

0

(z
y

)d−1
e−

1
2

( z
y

)2
∫ ∞

0

√
xe−y

2xfS(
√
x)dxdy. (191)
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Proof: By Definition 5.1 the vector Y has the representation (187). Take m = 0

and Σ = HH′, where H is a d × d non-singular lower triangular matrix. The r.v.

X ∼ Nd(0,Σ) has the representation X = HN, where N ∼ Nd(0, I). Further, the r.v.

N allows the representation N
d
= RNUd, where RN and Ud are independent and Ud is

uniformly distributed on Sd while RN ∼ χ2(d). Therefore, it is sufficient to show that√
2E
S2RN has density (191) which follows by an elementary calculation.

Note that for invertible Σ, the multivariate Weibull distribution has a density. By

independence, we have that

(W|E = u, S = s) ∼ Nd

(
mu

s
,
2u

s2
Σ

)
. (192)

The unconditional density will be computed in Chapter 6 for the case d = 2.

5.3 Linear transformations

The multivariate asymmetric Weibull distribution inherits some of the properties of

the multivariate normal distribution.

Proposition 5.2 Let W = (W1,W2, ...,Wd)
′ ∼ Wd(α,m,Σ) and let A be an l×d real

matrix. Then, the random vector AW is Wl(α,mA,ΣA) where

mA = Am and ΣA = AΣA′.

Proof: We note

AW =
A(mE +

√
2EX)

S
=

AmE +
√

2EAX

S
(193)

where the random vector AW is centered at mA = Am and AX ∼ Nl(0,AΣA′). This

concludes the proof.

In particular, it follows that all univariate and multivariate marginals as well as linear

combinations of the components of a multivariate Weibull are multivariate Weibull.

Corollary 5.1 Let W = (W1,W2, ...,Wd)
′ ∼ Wd(α,m,Σ), where Σ = (σi,j)

d
i,j=1.Then,

(i) For all k ≤ d, (W1, ...,Wk) ∼ Wk(α,mk,Σk), where mk = (m1, ...,mk) and Σk is

a k × k matrix with σ′ij = σij for i, j = 1, ...k;

(ii) For any b = (b1, ..., bd)
′ ∈ Rd, the r.v. Wb =

∑d
k=1 bkWk, is univariate asymmetric

Weibull random variable with σ =
√

b′Σb and µ = m′b.

(iii) Marginal distributions are again multivariate asymmetric Weibull.
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5.4 Conditional distributions

Consider W ∼ Wd(α,m,Σ). It is of some interest to consider conditional distributions.

Let

W =

(
W1

W2

)
∼ Wd(α,m,Σ)

with corresponding dimensions d1 and d2, d1 + d2 = d and

X =

(
X1

X2

)
∼ Nd(0,Σ),

with

m =

(
m1

m2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σij are elements of the matrix Σ. With the above notation we have:

Proposition 5.3 Assume that |Σ22| > 0 and m2 = 0. The distribution of

W1 −Σ12Σ
−1
22 W2 (194)

is Wd1

(
α,m1,Σ11 −Σ12Σ

−1
22 Σ21

)
.

Proof: The vector X1 −Σ12Σ
−1
22 X2 is independent of (E, S,W2). This means that

m1E +
√

2E
(
X1 −Σ12Σ

−1
22 X2

)
S

∼ Wd1

(
α,m1,Σ11 −Σ12Σ

−1
22 Σ21

)
.

Note that by independence(
X1 −Σ12Σ

−1
22 X2|E = u, S = s,W2 = w2

)
∼ Nd1

(
0,Σ11 −Σ12Σ

−1
22 Σ21

)
where

w2 =
m2u+

√
2ux2

s
.

5.5 Expectations and covariances

First we need negative moments of S. We note that on the one hand∫ ∞
0

tβ−1E(e−tS)dt =

∫ ∞
0

tβ−1e−t
α

dt =
1

α
Γ

(
β

α

)
(195)
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and on the other∫ ∞
0

tβ−1E(e−tS)dt = E
(∫ ∞

0

tβ−1e−tSdt

)
= E

(
Γ(β)

Sβ

)
. (196)

It follows that

Γ(β)E[S−β] =
1

α
Γ

(
β

α

)
=

1

β
Γ

(
β

α
+ 1

)
. (197)

Taking β = n we get

E[S−n] =
1

n

Γ(n
α

+ 1)

Γ(n)
=

Γ
(
n
α

+ 1
)

Γ(n+ 1)
(198)

Let W ∼ Wd(α,m,Σ). By independence of E, S and X in the Definition 5.1, it follows

that

E(Wi|E, S) =
miE

S
and cov (Wi,Wj|E, S) =

2E

S2
σij . (199)

We compute

E (W) = E (E (W|E, S)) = mΓ

(
1

α
+ 1

)
(200)

and

cov(Wi,Wj) = E (cov (Wi,Wj|E, S)) + cov (E (Wi|E, S) ,E (Wj|E, S)) (201)

= σijE
(

2E

S2

)
+ cov

(
miE

S
,
mjE

S

)
= σijΓ

(
2

α
+ 1

)
+mimj

[
Γ

(
2

α
+ 1

)
− Γ

(
1

α
+ 1

)2
]
.

59



6 Densities and simulation

Applications of the Wd(α,m,Σ) depend on effective estimation methods. To apply

maximum likelihood explicit densities are needed. However, it is known that the den-

sities of the standard stable random variable are known explicitly in special cases like

α = 1/2 only. Assume that Σ is invertible. From Definition 5.1 and linear transforma-

tion properties of multivariate normal distribution, it follows that

fW|E=u,S=s(w) =
sn

(2π)d/2(2u)d/2
√
|Σ|

exp

[
− s

2

4u

(
w − mu

s

)T
Σ−1

(
w − mu

s

)]
.

(202)

Denote

a = w′Σ−1w, b = w′Σ−1m and c = m′Σ−1m . (203)

Rewriting (202) we get

fW|E=u,S=s(w) =
sn

(2π)d/2(2u)d/2
√
|Σ|

exp

[
−as

2

4u
+
bs

2
− cu

4

]
. (204)

We multiply by fE(u)fS(s) and first integrate over u to obtain the joint density of W

and S. By formula (5.34) in [79] we have for µ, p, q > 0∫ ∞
0

1

uµ
e−

p
t
−qtdt = 2

(
p

q

)−µ/2+1/2

Kµ−1 (2
√
pq) (205)

where Kν(z) is the modified Bessel function of index ν. Let β =
√
a
(
c
4

+ 1
)

. Using

(297) we get after some computation that

fW,S(w, s) =
sd/2+1

(2π)d/2
√
|Σ|

e
bs
2

(
β

a

)d/2−1

Kd/2−1 (βs) fS(s) . (206)

By formula (3.20) in [79] the function Kν(p) has the representation

Kν(p) =

√
π(p/2)νe−p

Γ(ν + 1/2)

∫ ∞
0

e−pt [t(t+ 2)]ν−1/2 dt . (207)

for p > 0, ν > −1/2. Denote for y > 0

φd(y) = E
(
Sde−yS

)
= (−1)d

dn

dtn
(
e−t

α)
t=y

.

The function φd is elementary but the expressions are cumbersome for larger d. Using

the representation (299) in (298), and inverting the order of integration by Fubini we

get the density of W in integral form as

fW(w) = (208)

=

√
π
(
β
a

)d/2−1 (β
2

)d/2−1

(2π)d/2Γ
(
d
2
− 1

2

)√
|Σ|

∫ ∞
0

[t(t+ 2)]d/2−3/2 φd (β(1 + t)− b/2) dt.
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An application of the Cauchy-Schwarz inequality gives that β ≥ b/2 for w 6= 0 so

that the argument in φd is always positive. The above representations involve ele-

mentary functions only and can be used to implement numerical maximum likelihood

procedures. For d = 2 and d = 3 the expressions simplify considerably. We get

fW(w) =
1

2π
√
|Σ|

∫ ∞
0

1√
t(t+ 2)

φ2

(
β(1 + t)− b

2

)
dt . (209)

for d = 2 and for d = 3 noting that K1/2(z) =
√

π
2z
e−z

fW(w) =
1

4π
√
|Σ|

a−1/2φ2(β − b/2) (210)

which is a closed form expression. This is remarkable given that in general there is no

closed form expression for fS. Note that for odd d the functions Kd/2−1 are elementary

and hence the densities can be expressed in closed form but the expressions are work-

able for smaller dimensions. These possibilities will be explored in subsequent research.

Despite the lack of explicit formulae for densities the multivariate asymmetric Weibull

distributions can be simulated effectively. The remarkable algorithm due to Chambers,

Mellow and Stuck (see [10]) modified by Weron (see [99]) provides a way to simulate

stable random variables with parameter α ∈ (0, 1) easily. We outline the steps:

• generate a uniform random variable X ∼ U(0, π).

• substitute X into the function

Uα(x) =
[sin(αx)]

α
1−α sin[(1− α)x]

(sinx)
1

1−α

• generate E ∼ exp(1).

• compute S =
[
Uα(x)
E

] 1−α
α

. The random variable S has the standard stable distri-

bution defined in (8).

Following the definition of the Wd(α,m,Σ) distribution the simulation algorithm con-

sists of the following steps:

• for given α generate a standard stable subordinator random variable S following

the algorithm presented above.

• generate a standard exponential random variable E independent of S.
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• Independently of S and E generate multivariate normal random vector X ∼
Nd(0,Σ).

• Compute W using the representation (187).

Figure 3 shows the simulated sample points from various bivariate distributions in

the case d = 2. These snapshots clearly show how the choice of parameters affects

the nature of these distributions. The asymmetric pattern can be observed from the

graphs.

Figure 3: Scatterplots of various distributions
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7 Quadrant probabilities in the bivariate case

Our objective here is to compute the probabilities of bivariate skew-Weibull random

vector W = (W1,W2) ∼ W2(α,m,Σ) landing in the four quadrants,

Q1 = {(w1, w2) : w1 > 0, w2 > 0}, Q2 = {(w1, w2) : w1 < 0, w2 > 0},
Q3 = {(w1, w2) : w1 < 0, w2 < 0}, Q4 = {(w1, w2) : w1 > 0, w2 < 0}.

(211)

We shall assume that the parameter Σ is a non-singular, positive-definite matrix of the

form

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
(212)

where σ2
1 = Var(X1) > 0, σ2

2 = Var(X2) > 0, while ρ ∈ (−1, 1) is the correlation of X1

and X2, with X = (X1, X2) being an underlying mean-zero bivariate normal random

vector in the stochastic representation (187) of W. In this notation, the PDF of X is

of the form

g(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
x2

1

σ2
1

− 2ρ
x1x2

σ1σ2

+
x2

2

σ2
2

]}
. (213)

First, we note that the stable subordinator S in the stochastic representation of W,

and the associated parameter α, play no role in these probabilities. Furthermore, it is

clear that in the special case m = 0, we have P(W ∈ Qi) = P(X ∈ Qi). Since the

latter probabilities are well-known [see, e.g., [101]], we have the following result.

Proposition 7.1 If W ∼ W2(α,m,Σ) and m = 0, then

P(W ∈ Q1) = P(W ∈ Q3) =
1

4
+

1

2π
sin−1 ρ (214)

and

P(W ∈ Q2) = P(W ∈ Q4) =
1

4
− 1

2π
sin−1 ρ. (215)

Going beyond this special case, we shall first assume that the two components of the

parameter m = (m1,m2) are both positive. This is reflected in our notation for the

four probabilities,

P
(i)
+,+ = P(W ∈ Qi), i = 1, 2, 3, 4, (216)

with the subscript +,+ indicating m1 > 0, m2 > 0. As will be shown in the sequel, the

other cases, involving various combinations of the signs of m1 and m2, can be deduced

from this pivotal case.
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Proposition 7.2 Let W ∼ W2(α,m,Σ) where m1,m2 > 0. Then we have

P
(1)
+,+ =

√
1−ρ2
2π
·
{∫ π/2

0
dθ

1−ρ sin(2θ)
+
∫ π/2

0
dθ

1+ρ sin(2θ)+4(σ1/m1)2(1−ρ2) cos2 θ

+
∫ π/2

0
dθ

1+ρ sin(2θ)+4(σ2/m2)2(1−ρ2) sin2 θ

+
∫ π/2

0
dθ

1−ρ sin(2θ)+4 max{(σ1/m1)2 cos2 θ,(σ2/m2)2 sin2 θ}(1−ρ2)

}
,

(217)

P
(2)
+,+ =

√
1−ρ2
2π
·
{∫ π/2

0
dθ

1+ρ sin(2θ)
−
∫ π/2

0
dθ

1+ρ sin(2θ)+4(σ1/m1)2(1−ρ2) cos2 θ

+
∫ tan−1

(
σ1
σ2

m2
m1

)
0

dθ
1−ρ sin(2θ)+4(σ2/m2)2(1−ρ2) sin2 θ

−
∫ tan−1

(
σ1
σ2

m2
m1

)
0

dθ
1−ρ sin(2θ)+4(σ1/m1)2(1−ρ2) cos2 θ

}
,

(218)

P
(3)
+,+ =

√
1−ρ2
2π
·
{∫ π/2

0
dθ

1−ρ sin(2θ)

−
∫ π/2

0
dθ

1−ρ sin(2θ)+4 min{(σ1/m1)2 cos2 θ,(σ2/m2)2 sin2 θ}(1−ρ2)

}
.

(219)

P
(4)
+,+ =

√
1−ρ2
2π
·
{∫ π/2

0
dθ

1+ρ sin(2θ)
−
∫ π/2

0
dθ

1+ρ sin(2θ)+4(σ2/m2)2(1−ρ2) sin2 θ

+
∫ π/2

tan−1
(
σ1
σ2

m2
m1

) dθ
1−ρ sin(2θ)+4(σ1/m1)2(1−ρ2) cos2 θ

−
∫ π/2

tan−1
(
σ1
σ2

m2
m1

) dθ
1−ρ sin(2θ)+4(σ2/m2)2(1−ρ2) sin2 θ

}
.

(220)

Proof. The result follows from standard conditioning argument, leading to

P
(i)
+,+ =

∫∞
0

∫∞
0
P (i)(x1, x2)g(x1, x2)dx1dx2

+
∫∞

0

∫ 0

−∞ P
(i)(x1, x2)g(x1, x2)dx1dx2

+
∫ 0

−∞

∫∞
0
P (i)(x1, x2)g(x1, x2)dx1dx2

+
∫ 0

−∞

∫ 0

−∞ P
(i)(x1, x2)g(x1, x2)dx1dx2

= I + II + III + IV,

(221)

where g is the bivariate normal density (213) and

P (i)(x1, x2) = P(W ∈ Qi|X1 = x1, X2 = x2), i = 1, 2, 3, 4. (222)

For example, with i = 1, the first integral in (221) reduces to

I =

∫ ∞
0

∫ ∞
0

g(x1, x2)dx1dx2, (223)

as

P (1)(x1, x2) = P(m1E +
√

2Ex1 > 0,m2E +
√

2Ex2 > 0) = 1, (224)

since x1, x2 > 0 and m1,m2 > 0. A substitution x1 = σ1y1, x2 = σ2y2, followed by

switching to polar coordinates y1 = r cos θ, y2 = r sin θ, transforms (223) into

I =
1

2π
√

1− ρ2

∫ π/2

0

∫ ∞
0

r exp

{
−(1− 2ρ sin θ cos θ)r2

2(1− ρ2)

}
drdθ. (225)
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Upon routine evaluation of the inner integral in (225), we arrive at

I =

√
1− ρ2

2π

∫ π/2

0

dθ

1− ρ sin(2θ)
, (226)

leading to the very first term in (217). We omit straightforward albeit quite tedious

derivations of the remaining cases, which are obtained similarly.

Remark 5. Note that while the integrals in Proposition 7.2 generally do not seem to

admit close forms (with the exception of the first one in each of the four expressions),

they are relatively straightforward to compute viz. standard Monte Carlo integration.

We also note that these probabilities are affected by the parameter ρ as well as the

ratios σi/mi, i = 1, 2. In the boundary cases mi = 0, any of the integrals that depend

on mi are evaluated by taking the limit as mi approaches zero (and the majority of

them reduce to zero). In particular, in the special case m1 = m2 = 0, we have

P
(1)
+,+ = P

(3)
+,+ =

√
1− ρ2

2π

∫ π/2

0

dθ

1− ρ sin(2θ)
(227)

and

P
(2)
+,+ = P

(4)
+,+ =

√
1− ρ2

2π

∫ π/2

0

dθ

1 + ρ sin(2θ)
. (228)

Moreover, the above integrals are explicit, since (227) and (228) coincide with (214)

and (215), respectively.

As stated earlier, the other cases involving various combinations of the signs of m1 and

m2 can be deduced from the pivotal case presented in Proposition 7.2. As we discuss

this, we shall use a notation where we emphasize the dependence of the quadrants’

probabilities on the parameters m1, m2, and ρ. That is, the quantity P
(i)
+,+ in (216) will

be written as P
(i)
+,+(m1,m2, ρ) to emphasize its dependence on these three parameters.

Similarly, we shall write

P
(i)
+,−(m1,m2, ρ) = P(W ∈ Qi), i = 1, 2, 3, 4, (229)

when we have m1 > 0 and m2 < 0,

P
(i)
−,+(m1,m2, ρ) = P(W ∈ Qi), i = 1, 2, 3, 4, (230)

when we have m1 < 0 and m2 > 0, and

P
(i)
−,−(m1,m2, ρ) = P(W ∈ Qi), i = 1, 2, 3, 4, (231)

when we have m1 < 0 and m2 < 0. Under this notation, we have the following

result, where for brevity we write P
(i)
+,−, P

(i)
−,+, and P

(i)
−,− to denote P

(i)
+,−(m1,m2, ρ),

P
(i)
−,+(m1,m2, ρ), and P

(i)
−,−(m1,m2, ρ), respectively.

65



Proposition 7.3 In the above notation, the following relations hold:

P
(1)
+,− = P

(4)
+,+(m1,−m2,−ρ), P

(2)
+,− = P

(3)
+,+(m1,−m2,−ρ), (232)

P
(3)
+,− = P

(2)
+,+(m1,−m2,−ρ), P

(4)
+,− = P

(1)
+,+(m1,−m2,−ρ), (233)

P
(1)
−,+ = P

(2)
+,+(−m1,m2,−ρ), P

(2)
−,+ = P

(1)
+,+(−m1,m2,−ρ), (234)

P
(3)
−,+ = P

(4)
+,+(−m1,m2,−ρ), P

(4)
−,+ = P

(3)
+,+(−m1,m2,−ρ), (235)

P
(1)
−,− = P

(3)
+,+(−m1,−m2, ρ), P

(2)
−,− = P

(4)
+,+(−m1,−m2, ρ), (236)

P
(3)
−,− = P

(1)
+,+(−m1,−m2, ρ), P

(4)
−,− = P

(2)
+,+(−m1,−m2, ρ). (237)

Proof. Since the above relations easily follow from the stochastic representation of W,

we shall omit them all but one, to illustrate the derivations. Consider the left-hand-side

of the first relation in (232),

P
(1)
+,− = P(W ∈ Q1) = P(m1E +

√
2EX1 > 0,m2E +

√
2EX2 > 0), (238)

where m1 > 0, m2 < 0, E ∼ exp(1) , and (X1, X2) is zero-mean bivariate normal with

the covariance matrix (212). Clearly, the probability in (238) is the same as

P(m1E +
√

2EX1 > 0, (−m2)E +
√

2E(−X2) < 0), (239)

where we have m1 > 0, −m2 > 0, E is as before, and (X1,−X2) is zero-mean

bivariate normal with the covariance matrix Σ̃, which is the same as Σ given by

(212) but with ρ replaced with −ρ. Thus, this probability coincides with the prob-

ability P(W̃ ∈ Q4), where W̃ is skew Weibull with the stochastic representation

W̃ = (m1E +
√

2EX1, (−m2)E +
√

2E(−X2)). Consequently, according to our no-

tation, this is precisely the expression on the right-hand side of the first relation in

(232). The other relations in (232) - (237) are established in a similar way.
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8 Estimation of the parameters - multivariate case

In this chapter we derive the mean, the covariance, and estimation of the parameters

based on the methods of moments. We focus on estimating the parameters α, m1, m2

and the coefficients of 2× 2 matrix Σ. In order to simplify the calculation, in the form

mE
S

+
√
E
S
X, number 2 is omitted under the square root. Using the parametrization

(13), the following relation can be obtained

E(WiWj) = E
[
(mi

E

S
+

√
E

S
Xi)(mj

E

S
+

√
E

S
Xj)
]
. (240)

Taking into account that E(E2) = 2, E(S−2) = 1
2
Γ(1 + 2

α
) and E(Xi) = 0, the equation

reduces to

E(WiWj) = mimjΓ(1 +
2

α
) +

σij
2

Γ(1 +
2

α
). (241)

In particular,

E(W 2
i ) = m2

iΓ

(
1 +

2

α

)
+
σii
2

Γ

(
1 +

2

α

)
. (242)

where σi,i denotes V ar(Xi). Furthermore,

E(Wi) = miΓ

(
1 +

1

α

)
. (243)

In a similar way, the covariance is obtained as

Cov(Wi,Wj) = Γ

(
1 +

2

α

)
mimj +

1

2
Γ

(
1 +

2

α

)
σij − Γ2

(
1 +

1

α

)
mimj, (244)

leading to

Cov(Wi,Wj) =

[
2

α
Γ
( 2

α

)
−
( 1

α

)2

Γ2
( 1

α

)]
mimj +

1

α
Γ
( 2

α

)
σij. (245)

Using the multivariate notation and denoting cα = 2
α

Γ( 2
α

)−( 1
α

)2Γ2( 1
α

) and dα = 1
α

Γ( 2
α

),

the above equation reduces to:

Cov(W) = mm′cα + Σdα. (246)

As mentioned before, the estimation of the parameters α, m1, m2 as well as the coef-

ficients of the 2 × 2 matrix Σ will be obtained by the method of moments. Only the

bivariate case will be considered. The following equations are included in the calcula-

tion:
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W̄1 =
1

n

n∑
i=1

W1i ≈ E(W1) = m1Γ(1 +
1

α
), (247)

W̄2 =
1

n

n∑
i=1

W2i ≈ E(W2) = m2Γ(1 +
1

α
), (248)

W 2
1 =

1

n

n∑
i=1

W 2
1i ≈ E(W 2

1 ) = m2
1Γ(1 +

2

α
) +

1

2
Γ(1 +

2

α
)σ11, (249)

W 2
2 =

1

n

n∑
i=1

W 2
2i ≈ E(W 2

2 ) = m2
2Γ(1 +

2

α
) +

1

2
Γ(1 +

2

α
)σ22, (250)

W1W2 =
1

n

n∑
i=1

W1iW2i ≈ E(W1W2) = m1m2Γ(1 +
2

α
) +

1

2
Γ(1 +

2

α
)σ12, (251)

1

n

n∑
i=1

W 2
1iW

2
2i ≈ E(W 2

1W
2
2 ) = Γ(1 +

4

α
){

m2
1m

2
2 +

1

4
[m2

1σ22 +m2
2σ11] +

1

6
σ2

12 +
1

12
σ11σ22 +m1m2σ12

}
. (252)

The latter formula is computed using the following proposition:

Proposition 8.1 Let W ∼ Wd(α,m,Σ). Then the following formula applies:

E(W 2
1W

2
2 ) = Γ(1 +

4

α
)
{
m2

1m
2
2 +

1

4
[m2

1σ22 +m2
2σ11] +

1

6
σ2

12 +
1

12
σ11σ22 +m1m2σ12

}
.

Proof: We start with

E

{(m1E +
√
EX1

S

)2(m2E +
√
EX2

S

)2
}

= (253)

=

[
m2

1m
2
2E(E4) +m2

1E(E3)E(X2
2 ) +m2

2E(E3)E(X2
1 ) + E(E2)E(X2

1X
2
2 )+

+ 2m2E(E
5
2 )E(X2

1X2) + 2m1E(E
5
2 )E(X1X

2
2 ) + 4m1m2E(E3)E(X1X2)

]
E(S−4)

and taking into account that E(X1X2) = σ12, E(En) = Γ(1 + n) and

E(X2
1X2) = 0, E(X1X

2
2 ) = 0, E(X2

1X
2
2 ) = 2σ2

12 + σ11σ22, (254)
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(see [68]), leads to (252). The following notation σ2
X1

= σ11, σ2
X2

= σ22 , ρ2 =
σ2
12

σ11σ22
,

σ11 = σ2
x, σ22 = σ2

y , and σ12 = ρσxσy, where ρ is a corelation coefficient of X1 and X2

will be used. It remains to find

E(Xn
1X

m
2 ) = σnX1

σmX2

n∑
i=0

(
n

i

)
(1− ρ2)

i
2γiρ

n−iγm+n−i, (255)

where E(Zi) = γi, Zi is a standard normal random variable andγi = 0 if i is odd

γi = (i− 1)!! if i is even.
(256)

Here, (i − 1)!! denotes the double factorial, that is, the product of every odd number

from i− 1 to 1.

Proposition 8.2 If X ∼ Nd(0,Σ), the following result holds:

E(Xn
1X

m
2 ) = σnX1

σmX2

n∑
i=0

(
n

i

)
(1− ρ2)

i
2γiρ

n−iγm+n−i,

Proof: It is known

E(Xn
1X

m
2 ) =

1

2πσxσy
√

1− ρ2

∫ ∞
−∞

∫ ∞
−∞

xnym exp

[
− 1

2(1− ρ2)

(x2

σ2
x

+
y2

σ2
y

−2ρxy

σxσy

)]
dxdy.

(257)

Substituting x
σx

= u and extending the expression u2 − 2ρuy
σy

to complete the square,

the following form transforming the inner integral is obtained,

σn+1
x ym exp

(
− y2

2σ2
y

)∫ ∞
−∞

un exp

(
− 1

2(1− ρ2)
(u− ρy

σy
)2

)
du, (258)

which after some adjustments leads to:

√
2π
√

1− ρ2σn+1
x ym exp

(
− y2

2σ2
y

)
E(Un). (259)

Since U ∼ N( ρy
σy
, 1−ρ2), it follows that u =

√
1− ρ2Z+ ρy

σy
where Z ∼ N(0, 1). Taking

the n− th power of
√

1− ρ2Z + ρy
σy

, we have the following form:

√
2π
√

1− ρ2σn+1
x ym exp

(
− y2

2σ2
y

)
E

(
n∑
i=0

(
n

i

)√
1− ρ2

i
Zi(

ρy

σy
)n−i

)
. (260)
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Applying the expectation, and substituting E(Zi) = γi, after some constant reductions,

the outer integral becomes:

σnx√
2πσy

∫ ∞
−∞

ym exp

(
− y2

2σ2
y

)(
n∑
i=0

(
n

i

)
(1− ρ2)

i
2γiρ

n−i(
y

σy
)n−i

)
dy. (261)

The above equation can be written as

σnx√
2πσy

n∑
i=0

(
n

i

)
(1− ρ2)

i
2γiρ

n−iσmy

∫ ∞
−∞

(
y

σy

)m+n−i

exp

(
− 1

2

(
y

σy

)2
)
dy, (262)

which, after substitution z = y
σy

, leads to

σnxσ
m
y

n∑
i=0

(
n

i

)
(1− ρ2)

i
2γiρ

n−i
∫ ∞
−∞

zm+n−i 1√
2π

exp

(
− 1

2
z2

)
dz. (263)

The latter integral defines E(Zm+n−i) = γm+n−i which gives us the final result stated

in (255).

To estimate the parameters, m1 and m2 will be expressed from (247) and (248) yielding:

m1 =
W1

Γ(1 + 1
α

)
and m2 =

W2

Γ(1 + 1
α

)
. (264)

Substituting into (249) - (251) and denoting

Gα =
Γ(1 + 2

α
)

Γ2(1 + 1
α̂

)
, (265)

the following equations arise:

σ̂11 =
2
[
W 2

1 −Gα(W1)2
]

Γ(1 + 2
α̂

)
, (266)

σ̂22 =
2
[
W 2

2 −Gα(W2)2
]

Γ(1 + 2
α̂

)
, (267)

σ̂12 =
2
[
W1W2 −GαW1 W2

]
Γ(1 + 2

α̂
)

. (268)

Substituting these expressions into (252) and some lenghty calculation, the following

equation depending only on the parameter α is obtained:
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E(W 2
1W

2
2 ) = Γ(1+

4

α
)

{
(W 1 W 2)2

Γ4(1 + 1
α

)
+

1

2

(W 1)2

[
W

2

2 −Gα(W 2)2

]
+ (W 2)2

[
W

2

1 −Gα(W 1)2

]
Γ2(1 + 1

α
)Γ(1 + 2

α
)

+
2

3

[
W1W2 −GαW 1 W 2

]2

Γ2(1 + 2
α

)

+
1

3

[
W

2

1 −Gα(W 1)2

][
W

2

2 −Gα(W 2)2

]
Γ2(1 + 2

α
)

+

2W 1W 2

[
(W1W2)−GαW 1 W 2

]
Γ2(1 + 1

α
)Γ(1 + 2

α
)

}
, (269)

where

Gα =
Γ(1 + 2

α
)

Γ2(1 + 1
α

)
. (270)

In order to show the importance of the estimation procedure, numerical search is ap-

plied. To estimate parameter α, formula (269) is coded in statistical package R (see Ap-

pendices). Since the equation depends only on the parameter α, the bisection method

is performed (see Appendices) yielding the result of α = 0.8419174.Standard errors

are estimated by a bootstrap study: once the parameters are estimated new samples

are generated from the asymmetric Weibull distribution with the estimated parameters

using the simulation algorithms (described previously in Chapter 6) and parameters

are then reestimated. After many repetitions one can give standard errors from the

empirical sampling distributions. Applying the above formulas and procedures, the

estimates of the parameters are obtained and presented in Table 4.
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9 Application - multivariate case

This section presents the asymmetric multivariate double Weibull model of currency

exchange rates.Various distributions were used in the univariate case in the past, in-

cluding stable Paretian laws (see Westerfield [100], McFarland et al. [72, 73], So [89],

Koedjik et al. [47] and Nolan [77]), Student-t distribution (see Boothe and Glassman

[8], Koedjik et al. [47]), mixture of normals (see Boothe and Glassman [8], Tucker

and Pond [94]), asymmetric Laplace (see Kozubowski and Podgórski [52]), exponential

power (see Ayebo and Kozubowski [6]), and (double) Weibull distribution (see Chenyao

et al. [9]). Still, there is no general consensus regarding the best theoretical model,

even though Chenyao et al. (see [9]) found the fit of the double Weibull model to be

the best. Jurić and Kozubowski, (see [42]) showed that the skew univariate Weibull

model outperformed the ”competitors” .

Following Chenyao (see [9]), Hürliman (see [34]) and Mittnik and Rachev (see [74]),

who report excellent results with the (double) Weibull distribution, the fit of the sec-

ond representation of asymmetric double Weibull model to currency exchange rates,

comparing the fit to that of normal, asymmetric Laplace (AL), and exponential power

distributions (EP) showed the best results (see Jurić and Kozubowski [43]).

The same approach from the univariate case has been performed in the multivariate

case. Financial institutions, however, have to deal with risks arising from baskets of

currencies whose exchange rate movements exhibit heavy tails, correlations and asym-

metries. We model such multivarite exchange rate data by the multivariate asymmetric

Weibull distribution. The parameters are estimated using the method of moments and

goodness of fit checks show a promising fit. A particular advantage of the multivariate

asymmetric Weibull distribution is that by Corollary 5.1 (ii) linear combinations of

the components have one dimensional asymmetric Weibull distributions. Baskets of

currencies are exactly such linear combinations which means that the model can be

used to assess the risks of arbitrary baskets of currencies.

The new data set contains daily currency exchange rates for transforming USD to

JPY and GBP to JPY covering the period from June, 1st, 2000 until, May 30th 2014.

The variable of interest is the logarithm of the exchange rate ratio for two consecu-

tive days, and the data were transformed accordingly, resulting in 3652 values. The

data set was imported from the web site http://www.global-view.com/forex-trading-

tools/forex-history/.

For the chosen dataset the estimates are as follows with standard errors in parentheses:

p̂ = 0.0197(0.0023) α̂ = 0.8419(0.0438)
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and

m̂ = 10−4

(
−0.2021 0.1686

(0.9860) (1.2157)

)
Σ̂ = 10−4


0.1434 0.1185

(0.0178) (0.0142)

0.1185 0.2167

(0.0142) (0.268)


The results are summarized in the following table:

m1 = −0.00002021 m2 = 0.00001686

σ11 = 0.00001434 σ22 = 0.00002167

σ12 = 0.00001185 α = 0.8419174

Table 4: Estimated values of m1, m2, σ11, σ22, σ12 and α obtained from the data set

imported from http://www.global-view.com/forex-trading-tools/forex-history/

The scatterplot in Figure 4 clearly shows the asymmetric pattern of the data. A glance

at simulated scatterplots in Figure 3 indicates that the multivariate asymmetric Weibull

distribution appears to be a good model for the exchange rate data.

Figure 4: Scatterplot showing log-returns USD/JPY vs. log-returns GBP/JPY

73



The following results presented in the histograms for transforming USD to JPY and

GBP to JPY along with the QQ plots are obtained.

Figure 5: Histogram of log-returns transforming USD to JPY

Figure 6: Histogram of log-returns transforming GBP to JPY
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Figure 7: QQ plot comparing log-returns of USD/JPY

Figure 8: QQ plot comparing log-returns of GBP/JPY

These charts above show that the fit of QQ plot comparing log returns of GBP/JPY is

reasonably good, but not as good as one for log returns of USD/JPY. The explanation

may be the fact that the GBP dataset exhibits more variability than the USD data set.

To show that the asymmetric Weibull distribution still has the modeling potential, the

histograms and QQ plots comparing the normal distribution with the data are created.

The results are shown in the following graphical presentations.
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Figure 9: Histogram of log-returns transforming USD to JPY, comparison to normal

distribution

Figure 10: Histogram of log-returns transforming GBP to JPY, comparison to normal

distribution
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Figure 11: Normal QQ plot comparing log- returns of USD/JPY

Figure 12: Normal QQ plot comparing log - returns of GBP/JPY

Obviously, QQ plots comparing the data with normal distribution did not show a

good fit proving that multivariate Weibull distribution fits the data in a more suitable

77



way. In order to show that multivariate Weibull distribution performs a good fit,

projections in the directions of the several vectors are chosen. The parameters in the

new univariate data sets are estimated using the method of moments in the same way

as with previous univariate data transforming USD to JPY and GBP to JPY. By

Corollary 5.1, the projections are univariate asymmetric Weibull distributions. We can

check the goodness of fit by looking at QQ plots for projections. The similar comparison

was presented in Dhar et al. (see [14]). Obtained QQ plots along with analogous fits of

the normal distributions are presented in the following graphical presentation. It can

be clearly seen that fits of multivariate Weibull distribution showed a better fit than

QQ plots showing the comparison with normal distribution.

Figure 13: QQ plot comparing log-returns of the Weibull (on the left) and normal

distribution (on the fight) in the direction of the chosen vectors
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In addition, three-dimensional histogram of log-returns of the USD/JPY and GBP/JPY

data is presented. It can be clearly seen that the data presented exhibit the same pat-

tern as those in the two dimensional scatterplots.

Figure 14: Three-dimensional histogram including 40 log- returns of the USD/JPY

and GBP/JPY

Also, it can be observed that just as in the univaritae case, the bivariate data set does

not imply a significant asymmetry which can be seen by noting that the parameters

m are close to zero. Still this can be interpreted as statistical evidence that it may be

necessary to model asymmetry.
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10 Conclusion

Properties of the classical Weibull distribution are reviewed at the beginning of the work

pointing out some important facts connected with stability and limiting properties.

We summarized some basic facts about the symmetric (double) univariate Weibull

distribution and introduce asymmetric double Weibull distributions along with their

basic properties. Maximum likelihood method is used to estimate the parameters.

Some estimators are available in closed form, while others require a numerical search.

In addition, different variations of, both symmetric and asymmetric multivariate and

univariate Weibull distributions are considered. Different models are considered, each

supported with p.d.f.’s c.d.f.’s, moment or maximum likelihood estimation and appli-

cation part.

Next, introduction of multivariate extension of the one dimensional asymmetric Weibull

distribution to multivariate setting is presented finding a natural way to extend the

univariate Weibull distribution to Rd. The method of moments is used to estimate pa-

rameters. Extending applications of asymmetric univariate case to multivariate setting

was performed generalizing the findings about the usefulness of asymmetric multivari-

ate distribution in the area of finance.

We believe that this work is a contribution to the science. The application of asymmet-

ric double Weibull distribution of type II ( in univariate case ) indicates the usefulness

of this model in mathematical finance. It is shown that the comparison with other

models proves that this model exhibits a good fit for many types of financial data.

This is an indication of the modeling potential of these distributions in multivariate

setting. Given the potential for applications it is necessary to examine and establish

a firm theoretical background. The dissertation develops theoretical properties and

estimation procedures for this new family of distributions. An application to two-

dimensional currency exchange data set is examined. It exhibits a good fit and captures

the asymmetry presented in the data.
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[50] Kotz, S., Kozubowski, T.J. and Podgórski, K. (2002). Maximum likelihood esti-
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APPENDIX A: ESTIMATION - QQ PLOTS-HISTOGRAMS

d<-read.table("fdata.txt")

logratiousd<-d[,1]

logratiogbp<-d[,2]

A2<-mean(logratiousd)

B2<-mean(logratiogbp)

C2<-mean(logratiousd*logratiogbp)

K2<-mean(logratiousd^2)

L2<-mean(logratiogbp^2)

f4<-function(alpha)

{f4<-gamma(4/alpha +1)

f4}

f1<-function(alpha)

{f1<- f1}

f2<-function(alpha)

{f2<-gamma(2/alpha +1)

f2}

G<-function(alpha)

{G<-1/gamma(1+1/alpha)^2

G}

f1sq<-function(alpha)

{f1sq<-gamma(1/alpha +1)^2

f1sq}

f1fth<-function(alpha)

{f1fth<-gamma(1/alpha +1)^4

f1fth}

f2sq<-function(alpha)

{f2sq<-gamma(2/alpha +1)^2

f2sq}

p11<-function(alpha){

p11<-(A2*B2)^2/f1fth(alpha)

p11}

p22<-function(alpha){

p22<-1/2*(A2^2*(L2-G(alpha)*B2^2)+B2^2*(K2-G(alpha)*

A2^2))/(f1sq(alpha)*f2(alpha))

p22}

p33<-function(alpha){

p33<-2/3*(C2-G(alpha)*A2*B2)^2

/f2sq(alpha)

p33}

p44<-function(alpha){

p44<-1/3*(K2-G(alpha)*A2^2)*(L2-G(alpha)*

B2^2)/f2sq(alpha)

p44}

p55<-function(alpha){

1



p55<-2*(A2*B2)*(C2-G(alpha)*A2*B2)/(f1sq(alpha)*

f2(alpha))

p55}

EST<-function(alpha){

EST<-f4(alpha)*(p11(alpha)+p22(alpha)+p33(alpha)+

p44(alpha)+p55(alpha))-mean(logratiousd^2*logratiogbp^2)

EST}

#Bisection -Tolerance:epsilon=0.0000000001.

epsilon <- 0.0000000001

left<-0.5

right<-1.0

difference<-1

while ( difference > epsilon) {

currentestimate<-(left+right)/2

if( EST(currentestimate) >0 ) {

left<-currentestimate

}

else

{

right<-currentestimate

}

difference<-right-left

}

alphahat<-currentestimate

alphahat = 0.8419174

#Estimates of the parameters

m1hat<-A2/f1(alphahat)

m2hat<-B2/f1(alphahat)

sigma11hat<-K2/f2(alphahat)-m1hat^2

sigma22hat<-L2/f2(alphahat)-m2hat^2

sigma12hat<-C2/f2(alphahat)-m1hat*m2hat

gamma(1/alphahat +1)

m1hat = -2.021262e-05

m2hat = 1.685584e-05

sigma11hat = 1.434195e-05

sigma22hat = 2.166902e-05

sigma12hat = 1.184681e-05

#USD/JPY values

alphahat = 0.8419174

sigmahatusd<-sqrt(sigma11hat/2)

kappa1hat<-(sqrt(4*sigma11hat)+m1hat^2-m1hat)/

(2*sqrt(sigma11hat))

sigmahatusd= 0.002677868 #sigma for usd
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kappa1hat= 1.002669 #kappa for usd

#GBP/JPY values

alphahat = 0.8419174

m1hat<-A2/gamma(1+1/alphahat)

m2hat<-B2/gamma(1+1/alphahat)

sigma11hat<-2*(K2-(G(alphahat)*A2^2))/f2(alphahat)

sigma22hat<-2*(L2-(G(alphahat)*B2^2))/f2(alphahat)

sigma12hat<-2*(C2-(G(alphahat)*B2*A2))/f2(alphahat)

sigmahatgbp<-sqrt(sigma22hat/2)

kappa2hat<-(sqrt(4*sigma22hat+m2hat^2)-m2hat)

/(2*sqrt(sigma22hat))

sigmahatgbp=0.0046550 #sigma for gbp

kappa2hat=0.9987206 #kappa for gbp

#PDF,USD/JPY

alphahat=0.8419174,sigmahatusd=0.002677868,

kappa1hat= 1.002669

ff2<-function(x,a,s,k)

{

x<-seq(-0.04,0.04, 0.001)

y<-rep(1,times=length(x))

for(i in 1:length(x)) {

if (x[i]>=0)

{y[i]<- ((1/s^a)*(a*k))/(1+k^2)*(x[i]*k)^(a-1)

*exp(-(k*x[i]/s)^a)}

else

{y[i]<-((1/s^a)*(a*k))/(1+k^2)*(-x[i]/k)^(a-1)

*exp(-(-x[i]/(k*s))^a)}

y[i]

}

y

}

x<-seq(-0.04,0.04,0.001)

hist(logratiousd,probability="TRUE",xlim=c(-0.05,0.05),

ylim=c(0,78),xlab=NULL,ylab=NULL)

par(new=T)

plot(x,ff2(x,0.8419174,0.002677868,1.002669),

xlim=c(-0.05, 0.05),ylim=c(0,70),type="l",

ylab=NULL, axes=FALSE, col=2)

#PDF,GBP/JPY,alphahat=0.8419174,

sigmahatgbp=0.004655019,

kappa2hat=0.9987206

ff2<-function(x,a,s,k){

x<-seq(-0.04,0.04, 0.001)
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y<-rep(1, times=length(x))

for(i in 1:length(x)){

if (x[i]>=0)

{y[i]<- ((1/s^a)*(a*k))/(1+k^2)*(x[i]*k)^(a-1)

*exp(-(k*x[i]/s)^a)}

else

{y[i]<-((1/s^a)*(a*k))/(1+k^2)*(-x[i]/k)^(a-1)

*exp(-(-x[i]/(k*s))^a)}

y[i]

}

y

}

x<-seq(-0.04,0.04,by=0.001)

hist(logratiogbp, breaks=20,probability="TRUE",

xlim=c(-0.05, 0.05),

ylim=c(0,60), xlab=NULL, ylab=NULL)

par(new=T)

plot(x,ff2(x,0.8419174,0.004655019,0.9987206),

xlim=c(-0.05, 0.05),

ylim=c(0,70),type="l",ylab=NULL,axes=FALSE,col=2)

#QQ plots USD

rho<-rep(0,times=length(logratiousd))

rhofunction<-function(n)

{

for(i in 1 : n)

{

rho[i]<-i/(n+(1/4))

}

return(rho)}

rho<-rhofunction(length(logratiousd))

Xrho1<-function(rho, alphahat, sigmahatusd, kappa1hat)

{ Xrho1<-rep(0, times=length(logratiousd))

for(i in 1:length(logratiousd))

{

if ((kappa1hat^2)/(1+kappa1hat^2)<=rho[i])

Xrho1[i]<-sigmahatusd/kappa1hat*

(log(1/(( 1+kappa1hat^2)*(1-rho[i]))))^(1/alphahat)

else

Xrho1[i]<-(-sigmahatusd)*kappa1hat*(log(kappa1hat^2)

/(( 1+kappa1hat^2)*rho[i])))^(1/alphahat)

}

return(Xrho1)

}

Xrho1(rho, 0.8419174,0.002677868,1.002669)

srho<-sort(rho)
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qf<-Xrho1(srho,0.8419174,0.002677868,1.002669)

sqf<-sort(qf)

sqf

plot(sort(logratiousd),sqf)

# QQ PLOTS GBP

rho<-rep(0,times=length(logratiogbp))

rhofunction<-function(n)

{

for(i in 1 : n)

{

rho[i]<-i/(n+(1/4))

}

return(rho)}

rho<-rhofunction(length(logratiogbp))

Xrho1<-function(rho,alphahat,sigmahatgbp,kappa2hat)

{ Xrho1<-rep(0, times=length(logratiogbp))

for(i in 1:length(logratiogbp))

{

if ((kappa2hat^2)/(1+kappa2hat^2)<=rho[i])

Xrho1[i]<-sigmahatgbp/kappa2hat *(log(1/((1+kappa2hat^2)

*(1-rho[i]))))^(1/alphahat)

else

Xrho1[i]<-(-sigmahatgbp)*kappa2hat*(log(kappa2hat^2)

/(( 1+kappa2hat^2)*rho[i])))^(1/alphahat)

}

return(Xrho1)

}

Xrho1(rho,0.8419174,0.004655019,0.9987206)

srho<-sort(rho)

qf1<-Xrho1(srho,0.8419174,0.004655019,0.9987206)

sqf1<-sort(qf1)

sqf1

plot(sort(logratiogbp),sqf1)

#QQ plots comparison with normal distribution

plot(sort(logratiousd), qnorm(rho, m1hat,sqrt(sigma11hat)),

xlab="logratiousd", ylab="quantiles from normal distribution")

plot(sort(logratiogbp), qnorm(rho, m2hat,sqrt(sigma22hat)),

xlab="logratiogbp", ylab="quantiles from normal)

#HISTOGRAM and PDF,USD/JPY NORMAL DISTRIBUTION

x<-seq(-4,4, 0.0001)

y<-rep(1, times=length(x))

hist(logratiousd,probability="TRUE",xlim=c(-0.05, 0.05),

ylim=c(0,78),xlab=NULL,ylab=NULL)

par(new=T)
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plot(x, dnorm(x,m1hat, sqrt(sigma11hat)),xlim=c(-0.05, 0.05),

ylim=c(0,70),type="l",ylab=NULL,axes=FALSE,col=2)

#HISTOGRAM and PDF,GBP/JPY alpha=0.09,sigma=0.005,

kappa2=0.9981285

x<-seq(-0.04,0.04, 0.001)

y<-rep(1, times=length(x))

hist(logratiogbp,breaks=20,probability="TRUE",

xlim=c(-0.05,0.05),ylim=c(0,60),xlab=NULL,ylab=NULL)

par(new=T)

plot(x, dnorm(x,m2hat,sqrt(sigma22hat)),xlim=c(-0.05, 0.05),

ylim=c(0,70),

type="l",ylab=NULL,axes=FALSE,col=2)

#PROJECTIONS in the direction of the various vectors

a1=c( sqrt(2)/2,sqrt(2)/2)

projmat1<-as.matrix(cbind(logratiousd,logratiogbp))

project1<-projmat1%*%a1

project1mean<-mean(project1)

project1meansquare<-mean(project1^2)

alphahat<- 0.8419174

m1project1<-project1mean/gamma(1+1/alphahat)

sigma11project1<-2*( project1meansquare -(G(alphahat)

*project1mean^2))/f2(alphahat)

sigmaproject1<-sqrt(sigma11project1/2)

kappaproject1<-(sqrt(4*sigma11project1

+m1project1^2)-m1project1)/(2*sqrt(sigma11project1))

#QQ plot

rho<-rep(0, times=length(project1))

rhofunction<-function(n)

{

for(i in 1:n)

{

rho[i]<-i/(n+(1/4))

}

return(rho)}

rho<-rhofunction(length(project1))

Xrho1<-function(rho, alphahat, sigmaproject1,kappaproject1)

{ Xrho1<-rep(0, times=length(project1))

for(i in 1:length(project1))

{

if ((kappaproject1^2)/(1+kappaproject1^2)<=rho[i])

Xrho1[i]<-sigmaproject1/kappaproject1

*(log(1/(( 1+kappaproject1^2)*(1-rho[i]))))^(1/alphahat)

else
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Xrho1[i]<-(-sigmaproject1)*kappaproject1*

(log(kappaproject1^2/(( 1+kappaproject1^2)

*rho[i])))^(1/alphahat)

}

return(Xrho1)

}

Xrho1(rho,0.8419174,0.006,1.00148)

srhoproject1<-sort(rho)

qfproject1<-Xrho1(srho,0.8419174,0.006,1.00148)

sqfproject1<-sort(qfproject1)

plot(sort(project1), sqfproject1,

xlab="projection with the vector (\sqrt(2)/2,\sqrt(2)/2)",

ylab= "quantiles from Weibull distribution")

a2=c(-sqrt(2)/2,sqrt(2)/2)

projmat2<-as.matrix(cbind(logratiousd,logratiogbp))

project2<-projmat2%*%a2

project2mean<-mean(project2)

project2meansquare<-mean(project2^2)

m1project2<-project2mean/gamma(1+1/alphahat)

sigma11project2<-2*(project2meansquare

-(G(alphahat)*project2mean^2))/f2(alphahat)

sigmaproject2<-sqrt(sigma11project2/2)

kappaproject2<-(sqrt(4*sigma11project2+m1project2^2)-

m1project2)/(2*sqrt(sigma11project2))

#QQ plot

rho<-rep(0, times=length(project2))

rhofunction<-function(n)

{

for(i in 1 : n)

{

rho[i]<-i/(n+(1/4))

}

return(rho)}

rho<-rhofunction(length(project2))

Xrho1<-function(rho, alphahat, sigmaproject2,kappaproject2)

{Xrho1<-rep(0, times=length(project2))

for(i in 1:length(project2))

{

if ((kappaproject2^2)/(1+kappaproject2^2)<=rho[i])

Xrho1[i]<-sigmaproject2/kappaproject2*

(log(1/(( 1+kappaproject2^2)*(1-rho[i]))))^(1/alphahat)

else

Xrho1[i]<-(-sigmaproject2)*kappaproject2

*(log(kappaproject2^2)
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/(( 1+kappaproject2^2)*rho[i])))^(1/alphahat)

}

return(Xrho1)

}

Xrho1(rho,0.8419174,0.006,1.00148)

srhoproject2<-sort(rho)

qfproject2<-Xrho1(srho,0.8419174,0.006,1.00148)

sqfproject2<-sort(qfproject2)

plot(sort(project2),sqfproject2,

xlab="projection with the vector (-\sqrt(2)/2,\sqrt(2)/2)",

ylab="quantiles from Weibull distribution")

a3=c(sqrt(3), -sqrt(3))

projmat3<-as.matrix(cbind(logratiousd,logratiogbp))

project3<-projmat3%*%a3

project3mean<-mean(project3)

project3meansquare<-mean(project3^2)

m1project3<-project3mean/gamma(1+1/alphahat)

sigma11project3<-2*( project3meansquare -

(G(alphahat)*project3mean^2))

/f2(alphahat)

sigmaproject3<-sqrt(sigma11project3/2)

kappaproject3<-(sqrt(4*sigma11project3+m1project3^2)-m1project3)/

(2*sqrt(sigma11project3))

#QQ plots

rho<-rep(0, times=length(project3))

rhofunction<-function(n)

{

for(i in 1:n)

{

rho[i]<-i/(n+(1/4))

}

return(rho)}

rho<-rhofunction(length(project3))

Xrho1<-function(rho,alphahat,sigmaproject3,kappaproject3)

{Xrho1<-rep(0, times=length(project3))

for(i in 1:length(project3))

{

if ((kappaproject3^2)/(1+kappaproject3^2)<=rho[i])

Xrho1[i]<-sigmaproject3/kappaproject3*

(log(1/((1+kappaproject3^2)*(1-rho[i]))))^(1/alpha)

else

Xrho1[i]<-(-sigmaproject3)*kappaproject3

*(log(kappaproject3^2)/(( 1+kappaproject3^2)*rho[i])))^(1/alpha)

}
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return(Xrho1)

}

Xrho1(rho,0.8419174,0.006546593,1.002806)

srhoproject3<- sort(rho)

qfproject3<-Xrho1(srho,0.8419174,0.006546388,1.002806)

sqfproject3<-sort(qfproject3)

plot(sort(project3),sqfproject3,

xlab="projection with the vector (\sqrt(3),-\sqrt(3))",

ylab="quantiles from Weibull distribution")

a4=c(-sqrt(3),-sqrt(3))

projmat4<-as.matrix(cbind(logratiousd,logratiogbp))

project4<-projmat4%*%a4

project4mean<-mean(project4)

project4meansquare<-mean(project4^2)

m1project4<-project4mean/gamma(1+1/alphahat)

sigma11project4<-2*(project4meansquare

-(G(alphahat)*project4mean^2))/f2(alphahat)

sigmaproject4<-sqrt(sigma11project4/2)

kappaproject4<-(sqrt(4*sigma11project4+m1project4^2)

-m1project4)/(2*sqrt(sigma11project4))

#QQ plot

rho<-rep(0, times=length(project4))

rhofunction<-function(n)

{

for(i in 1:n)

{

rho[i]<-i/(n+(1/4))

}

return(rho)}

rho<-rhofunction(length(project4))

Xrho1<-function(rho,alphahat,sigmaproject4,kappaproject4)

{ Xrho1<-rep(0, times=length(project4))

for(i in 1:length(project4))

{

if ((kappaproject4^2)/(1+kappaproject4^2)<=rho[i])

Xrho1[i]<-sigmaproject4/kappaproject4

*(log(1/(( 1+kappaproject4^2)*(1-rho[i]))))^(1/alphahat)

else

Xrho1[i]<-(-sigmaproject4)*kappaproject4*(log(kappaproject4^2)

/(( 1+kappaproject4^2)*rho[i])))^(1/alphahat)

}

return(Xrho1)

}

Xrho1(rho, 0.8419174,0.01435818,0.9998524)
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srhoproject4<- sort(rho)

qfproject4<-Xrho1(srho,0.8419174,0.01435818,0.9998524)

sqfproject4<-sort(qfproject4)

plot(sort(project4),sqfproject4,

xlab="projection with the vector (-\sqrt(3),-\sqrt(3))",

ylab="quantiles from Weibull distribution" )

#Plotting

par(mfrow=c(3,2))

plot(sort(project1), sqfproject1,

xlab="projection with the vector (\sqrt(2)/2,\sqrt(2)/2)",

ylab="quantiles from Weibull distribution")

plot(sort(project1), qnorm(rho, project1mean,sqrt(sigma11project1)),

xlab="projection with the vector (\sqrt(2)/2,\sqrt(2)/2)",

ylab="quantiles from Normal distribution")

plot(sort(project2),sqfproject2,

xlab="projection with the vector(-\sqrt(2)/2,\sqrt(2)/2)",

ylab="quantiles from Weibull distribution")

plot(sort(project2), qnorm(rho, project2mean,sqrt(sigma11project2)),

xlab="projection with the vector(-\sqrt(2)/2,\sqrt(2)/2)",

ylab="quantiles from Normal distribution")

plot(sort(project3),sqfproject3,

xlab="projection with the vector (\sqrt(3),-\sqrt(3))",

ylab="quantiles from Weibull distribution" )

plot(sort(project3), qnorm(rho, project3mean ,sqrt(sigma11project3)),

xlab="projection with the vector (\sart(3),-\sqrt(3))",

ylab="quantiles from Normal distribution")

#SCATTERPLOT

projmat<-as.matrix(cbind(logratiousd,logratiogbp))

plot(projmat,main ="Scatterplot logratio USD vs. logratio GBP",

xlab="logratio USD",ylab="logratio GBP")

#3DHISTOGRAM

#Create cuts:

x_c2 <- cut(logratiousd, 40)

y_c2 <- cut(logratiogbp, 40)

z2 <- table(x_c2, y_c2)

hist3D(z=z2, border="black")
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APPENDIX B: Daljši povzetek disertacije v slovenskem jeziku

Asimetrična večrazsežna Weibullova porazdelitev

Kratek povzetek

Disertacija obravnava nesimetrične Weibullove porazdelitve tako v eni kot v več di-

menzijah. V disertaciji so predstavljene deloma nove definicije teh porazdelitev in

izpeljane metode za ocenjevanje parametrov, kar je nujna predpostavka za uporabo pri

modeliranju finančnih podatkov kot so donosi finančnih naložb ali modeliranje men-

jalnih tečajev. Po obširnem pregledu reyultatov v eni dimenziji, je predstavljena pos-

plošitev na več dimenzij. Ta posplošitev je dejanski prispevek disertacije. Posplošitev

je posredna prek reprezentacij nesimetrične Laplacove porazdelitve v eni dimenziji.

Navedene so lastnosti te nove družine porazdelitev in obravnavana vprašanja ocenje-

vanja parametrov in simulacij. Na koncu so predstavljene uporabe te nove družine

porazdelitev na dejanskih menjalnih tečajih.

UVOD

Weibullova porazdelitev je ena od standardnih porazdelitev v statistiki. Dobimo jo

tako, da eksponentno slučajno spremenljivko potenciramo na potenco 1/α in dobimo

slučajno spremenljivko z gostoto

f(x) = αxα−1e−x
α

, x > 0 . (271)

Porazdelitev je poimenovana po Waloddiju Weibullu, ki jo je uporabljal za modeliranje

nateznih trdnosti materijalov (glej Weibull [96, 97]), kontroli kvalitete in teoriji zane-

sljivosti (glej [98]). Ta porazdelitev je eden od najpogosteǰsih statističnih modelov (glej

Halinan [28]) kot tudi obširno bibliografijo v Johnson at al. (glej [40]).

Weibullovo porazdelitev lahko razširimo na celotno realno os s simetrizacijo gostote

(271), kar pomeni, da je gostota enaka

f(x) =
α

2
|x|α−1e−|x|

α

, x 6= 0. (272)

Simetrične univariatne Weibullove porazdelitve so našle številne uporabe tako kot mod-

eli donosov finančih naložb kot tudi na drugih področjih, recimo v zavarovalnǐstvu kot

model za porazdelitve izgub (glej Chenyao et al. [9], Hürlimann [34], Mittnik and

Rachev [74]).

Obstaja obširno empirično dokazno gradivo, da logaritmi donosov finančnih naložb niso

simetrično porazdeljeni. Zato je pri modeliranju takšnih finančnih podatkov potrebno

to dejstvo upoštevati in iskati družine porazdelitev, ki niso simetrične. Simetrično
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Weibullovo porazdelitev lahko na več načinov posplošimo tako, da postane asimetrična

(272). Fernandez and Steel (glej [19]) uvedeta inverzna faktorja, s katerima simetrično

porazdelitev pretvorita v asimetrično, tako da je nova gostota enaka

g(x) =
κ

σ(1 + κ2)

{
f(xκ/σ), x > 0

f( x
σκ

), x < 0,
(273)

kjer je κ > 0. S tem dobimo asimetrično Weibullovo porazdelitev s parametri α, σ

in κ. V enodimenzionalnem primeru dobimo tako vsestransko uporabno družino po-

razdelitev, ki omogoča modeliranje in ocenjevanje parametrov. Vendar ta pristop ne

omogoča posplošitev na večrazsežne porazdelitve.

Posplošitev na večrazsežni primer poteka s pomočjo ustrezne reprezentacije enodimen-

zionalne asimetrične Weibullove porazdelitve. Če ima Y standardno Laplacovo po-

razdelitev, potem velja enakost v porazdelitvi

Y
d
=
√

2EZ, (274)

kjer je E standardna eksponentna slučajna spremenljivka neodvisna od standardizirano

normalne slučajne spremenljivke Z, (glej Kotz et al. [49]). Gre torej za mešanico

normalnih porazdelitev s slučajno varianco. Kozubowski and Podgórski (glej [48]) sta

pokazala, da za slučajno spremenljivko Y z asimetrično Laplaceovo porazdelitvijo po

definiciji (273) velja

Y
d
= mE +

√
2EZ . (275)

Po drugi strani za simetrično Laplaceovo slučajno spremenljivko L in od nje neod-

visno stabilno slučajno spremenljivko S z indeksom α ∈ (0, 1] definirano z Laplaceovo

transformacijo

g(t) = Ee−tS =

∫ ∞
0

e−stfα(s)ds = e−t
α

, (276)

velja, da je ima spremenljivka Y = L/S simetrično Weibullovo porazdelitev s parametroma

α in σ = 1. To dejstvo in enakost v (275) vodita do naslednje reprezentacije asimetrične

Weibullove porazdelitve:

W
d
=
mE +

√
2EX

S
(277)

pri čemer so E, X ∼ N(0, τ 2) in S neodvisne. Elementaren račun pokaže, da ima

slučajna spremenljivka v (277) asimetrično Weibullovo porazdelitev v smislu (273) s

parametri α,

σ = τ in κ =

√
m2 + 4τ 2 −m

2τ
.

Reprezentacijo (277) lahko naravno posplošimo na več dimenzij, s tem da slučajno spre-

menljivko X zamenjamo z multivariatno normalnim vektorjem X. S tem se zavestno
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odpovemo možnosti, da bi bile komponente neodvisne, vendar ima ta nova družina po-

razdelitev številne ugodne lastnosti. Ta pot je lahko alternativa kopulam, ki se pogosto

uporabljajo za konstrukcijo porazdelitev z danimi robnimi porazdelitvami. Definiramo

W =
mE +

√
2EX

S
(278)

kjer je m ∈ Rd, d × d simetrična matrika Σ pa je pozitivno semi-definitna. Oznaka

X ∼ Nd(0,Σ) pomeni, da ima X večrazsežno normalno porazdelitev s pričakovano

vrednostjo m in kovariančno matriko Σ. Iz reprezentacije (277) sledi, da so robne

porazdelitve vse asimetrične Weibullove v smislu definicije (273), tako da je da je

poimenovanje asimetrična večrazsežna Weibullova porazdelitev naravno.

Zgoraj definirano družino porazdelitev bi lahko uporabili za modeliranje multivariat-

nih finančnih podatkov. Posplošitev res ne dopušča neodvisnih komponent, vendar od

normalne porazdelitve podeduje številne lastnosti kot recimo to, da so vse robne po-

razdelitve istega tipa in vse linearne kombinacije komponent asimetrične Weibullove.

Pri pogojnih porazdelitvah se lastnosti normalnih vektorjev ne prenesejo v lepi obliki.

Omejiti se moramo tudi na parametre α ∈ (0, 1], vendar se izkaže, da samo v tem

primeru dobimo unimodalne porazdelitve, ki so vsebinsko primerne za modeliranje.

ASIMETRIČNA VEČRAZSEŽNA WEIBULLOVA PORAZDELITEV

Izpeljave v preǰsnjem razdelku vodijo do naslednje matematične definicije:

Definicija 1: Slučajni vektor W ∈ Rd ima asimetrično večrazsežno Weibullovo po-

razdelitev s parametri 0 < α ≤ 1, m ∈ Rdin Σ, ki jo označimo z Wd(α,m,Σ), če lahko

zapǐsemo

W
d
=

mE +
√

2EX

S
. (279)

Pri tem je E standardna eksponentna slučajna spremenljivka, S od nje neodvisna sta-

bilna slučajna spremenljivka dana z Laplacovo transformacijo

Ee−tS = e−t
α

, (280)

in X ∈ Rd večrazsežen normalni vektor s pričkovano vrednostjo 0 in kovariančno ma-

triko Σ, torej X ∼ Nd(0,Σ), neodvisen od (E, S).

Opomba 1. Za m = 0 so vse robne porazdelitve simetrične.

Opomba 2 Za α = 1 je S = 1 in dobimo asimetrične Laplacove porazdelitve kot mejni

primer.

Opomba 3 Za α = 1
2

je gostota slučajne spremenljivke S znana Lévyjeva gostota dana
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z

fS(s) =
1

2
√
πs3

e−
1
4s , s > 0. (281)

Opomba 4 Za obrnljivo matriko Σ ima večrazsežna asimetrična Weibullova porazdelitev

gostoto. Iz definicij sledi

(W|E = e, S = s) ∼ Nd

(
me

s
,
2e

s2
Σ

)
. (282)

Iz tega lahko načeloma dobimo gostoto z integracijo, za primer d = 3 pa je možno

gostoto izračunati v ekplicitni obliki (glej razdelek 6).

POLARNA REPREZENTACIJA

Kot prvo bomo pokažemo, da družina porazdelitev iz Definicije 1 spada med eliptične

porazdelitve. Po definiciji gre za porazdelitve, ki imajo za matriko Σ gostoto oblike

f(x) = kd|Σ|−
1
2 g[(x−m)′Σ−1(x−m)], (283)

za funkcijo g ene spremenljivke, kd pa je ustrezna normalizacijska konstanta. Razred

takih porazdelitev označimo z ECd(m,Σ, g). Vsako porazdelitev slučajnega vektorja

Y s porazdelitvijo iz Y ∼ ECd(0,Σ, g) lahko predstavimo kot

Y
d
= RHU(d) (284)

kjer je H taka d × d matrika, da je HH′ = Σ, R je pozitivna slučajna spremenljivka

in U(d) slučajni vektor enakomerno porazdeljen po površini enotske krogle v Rd neod-

visen od R, (glej Fang, et al. [17]). Konkretno ima R porazdelitev enako porazdelitvi√
Y′Σ−1Y, medtem ko je HU(d) enakomerno porazdeljena po površini elipsoida

{
y ∈

Rd : yΣ−1y = 1
}

, (glej Kotz et al. [48]).

Trditev 1: Naj bo Y ∼ Wd(α, 0,Σ), kjer predpostavljamo |Σ| > 0. Slučajni vektor

Y dopušča polarno reprezentacijo oblike (284), kjer je H taka d × d matrika, da je

HH′ = Σ, U(d) je enakomerno porazdeljen vektor na površini enotske krogle v Rd,

neodvisen od slučajne spremenljivke R z gostoto

fR(z) =

√
2d

2
d
2 Γ
(
d
2

+ 1
) ∫ ∞

0

(z
y

)d−1
e−

1
2

( z
y

)2
∫ ∞

0

√
xe−y

2xfα(
√
x)dxdy. (285)

Dokaz: Po Definiciji 1 ima vektor Y reprezentacijo (279). Naj bo m = 0 in Σ = HH′,

kjer je H spodnja trikotna matrika. Slučajni vektor X ∼ Nd(0,Σ) ima reprezentacijo

X = HN, kjer je N ∼ Nd(0, I). Znano je, da ima N reprezentacijo N
d
= RNUd, kjer

sta RN in U(d) neodvisna, U(d) je enakomerno porazdeljen po površini enotske krogle
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v Rd in je R2
N ∼ χ2(d). Sklepamo lahko, da je dovolj dokazati, da ima

√
2E
S2RN gostoto

(285), kar dokazuje trditev, slednje pa sledi z neposrednim preverjanjem.

LINEARNE TRANSFORMACIJE

Večrazsežna asimetrična Weibullova porazdelitev podeduje nekatere lastnosti večrazsežne

normalne porazdelitve.

Trditev 2: Naj bo W = (W1,W2, ...,Wd)
′ ∼ Wd(α,m,Σ) in naj bo A realna l × d

matrika. Slučajni vektor AW je porazdeljen kot Wl(α,mA,ΣA), kjer je mA = Am in

ΣA = AΣA′.

Dokaz: Opazimo, da je

AW =
A(mE +

√
2EX)

S
=

AmE +
√

2EAX

S
(286)

kjer ima AW pričakovano vrednost mA = Am in je AX ∼ Nl(0,AΣA′). Iz zgorn-

jega sledi, da so vse robne porazdelitve asimetrične Weibullove porazdelitve iz družine

asimetričnih Weibullovih porazdelitev. Dejstvo, da lahko najdemo večrazsežno po-

razdelitev s asimetričnimi Weibullovimi robnimi porazdelitvami, pri katerih so vse lin-

earne kombinacije spet asimetrične Weibullove, je presenetljivo, saj to za neodvisne

slučajne spremenljivke z asimetrično Weibullovo porazdelitvijo ne velja.

Korolar 1: Naj bo W = (W1,W2, ...,Wd)
′ ∼ Wd(α,m,Σ), kjer je Σ = (σi,j)

d
i,j=1.

Velja,

(i) Za vse k ≤ d je (W1, ...,Wk) ∼ Wk(α,m
′,Σ′), kjer je m′ = (m1, ...,mk)

′ in je Σ′

k × k matrika s σ′i,j = σi,j za i, j = 1, ...k;

(ii) Za katerikoli vektor b = (b1, ..., bd)
′ ∈ Rd ima slučajna spremenljivka Wb =∑d

k=1 bkWk enorazsežno asimetrično Weibullovo porazdelitev s parametri σ =
√

b′Σb

in µ = m′b.

(iii) Vse robne porazdelitve so asimetrične Weibullove.

Dokaz: Za (i) lahko uporabimo Trditev 2 s k × d matriko A = (ai,j) tako da je ai,i = 1

in ai,j = 0 za i 6= j. Za (ii) uporabimo Trditev 2 z l = 1. Za (iii) uporabimo definicijo

Wd(α,m,Σ) porazdelitve in dejstvo, da so robne porazdelitve večrazsežne normalne

porazdelitve večrazsežne normalne.

POGOJNE PORAZDELITVE

Naj bo W ∼ Wd(α,m,Σ). Poznavanje pogojnih porazdelitev je pogosto pomem-

bno, vendar se v primeru večrazsežnih asimetričnih Weibullovih porazdelitev lastnosti

večrazsežne normalne porazdelitve ne prenesejo na lep način.
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Naj bo

W =

(
W1

W2

)
∼ Wd(α,m,Σ)

s pripadajočima dimenzijama d1 in d2, d1 + d2 = d ter

X =

(
X1

X2

)
∼ Nd(0,Σ),

z

m =

(
m1

m2

)
in Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Z zgornjim oznakami velja

Trditev 3: Privzemite, da je |Σ22| > 0 in m2 = 0. Porazdelitev vektorja

W1 −Σ12Σ
−1
22 W2 (287)

je Wd1

(
α,m1,Σ11 −Σ12Σ

−1
22 Σ21

)
.

Dokaz: Vektor X1 −Σ12Σ
−1
22 X2 je neodvisen od (E, S,W2). Iz tega sledi, da je

m1E +
√

2E
(
X1 −Σ12Σ

−1
22 X2

)
S

∼ Wd1

(
α,m1,Σ11 −Σ12Σ

−1
22 Σ21

)
.

Vektor v (287) ni neodvisen od W2 kot pri večrazsežni normalni porazdelitvi, zato

analogij ni mogoče razširiti na asimetrično Weibullovo porazdelitev. V nekaterih primerih

je možno izračunati pogojno pričakovano vrednost in pogojno varianco.

PRIČAKOVANE VREDNOSTI IN KOVARIANCE

Predstavitev nove družine porazdelitev vključuje tudi izračun momentov. Za ta namen

potrebujemo momente stabilne slučajne spremenljivke S. Po eni strani je∫ ∞
0

tβ−1E(e−tS)dt =

∫ ∞
0

tβ−1e−t
α

dt =
1

α
Γ

(
β

α

)
, (288)

po drugi strani pa∫ ∞
0

tβ−1E(e−tS)dt = E
(∫ ∞

0

tβ−1e−tSdt

)
= E

(
Γ(β)

Sβ

)
. (289)

Sledi, da je

Γ(β)E[S−β] =
1

α
Γ

(
β

α

)
=

1

β
Γ

(
β

α
+ 1

)
. (290)
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Za poseben primer β = n dobimo

E[S−n] =
1

n

Γ(n
α

+ 1)

Γ(n)
=

Γ
(
n
α

+ 1
)

Γ(n+ 1)
(291)

Računamo lahko

E (W) = E (E (W|E, S)) = mΓ

(
1

α
+ 1

)
(292)

in posledično

cov(Wi,Wj) = E (cov (Wi,Wj|E, S)) + cov (E (Wi|E, S) ,E (Wj|E, S)) (293)

= σijE
(

2E

S2

)
+ cov

(
miE

S
,
mjE

S

)
= σijΓ

(
2

α
+ 1

)
+mimj

[
Γ

(
2

α
+ 1

)
− Γ

(
1

α
+ 1

)2
]
.

GOSTOTE IN SIMULACIJE

Uporabe asimetrične Weibullove porazdelitve so odvisne od učinkovitih metod za ocen-

jevanje parametrov. Metoda največjega verjetja zahteva poznavanje gostot. Za stabilne

slučajne spremenljivke so eksplicitne gostote znane le v nekaterih primerih, recimo ko je

α = 1/2. Privzemimo, da je matrika Σ obrnljiva. Iz Definicije 1 in lastnosti večrazsežne

normalne porazdelitve sledi, da je

fW|E=u,S=s(w) =
sd

(2π)d/2(2u)d/2
√
|Σ|

exp

[
− s

2

4u

(
w − mu

s

)T
Σ−1

(
w − mu

s

)]
.

(294)

Iz pogojne gostote bi načeloma lahko izračunali gostoto, vendar je gostota fS(s) ek-

splicitno znana le v nekaterih primerih. Kljub temu je gostote možno izraziti z integrali

elementarnih funkcij in jih v primeru, ko je d lih, tudi eksplicitno izračunati. Označimo

a = w′Σ−1w, b = w′Σ−1m in c = m′Σ−1m . (295)

Prepǐsemo (202)

fW|E=u,S=s(w) =
sd

(2π)d/2(2u)d/2
√
|Σ|

exp

[
−as

2

4u
+
bs

2
− cu

4

]
, (296)

množimo z fE(u)fS(s) in integriramo po u. Dobimo gostoto para (W, S). Po formuli

(5.34) v [79] za µ, p, q > 0 velja∫ ∞
0

1

uµ
e−

p
t
−qtdt = 2

(
p

q

)−µ/2+1/2

Kµ−1 (2
√
pq) (297)
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kjer je Kν(z) modificirana Besslova funkcija z indeksom ν. Označimo β =
√
a
(
c
4

+ 1
)
.

Z uporabo (297) po nekaj preurejanja sledi

fW,S(w, s) =
sd/2+1

(2π)d/2
√
|Σ|

e
bs
2

(
β

a

)d/2−1

Kd/2−1 (βs) fS(s) . (298)

Po formuli (3.20) v [79] ima funkcija Kν(p) integralsko reprezentacijo

Kν(p) =

√
π(p/2)νe−p

Γ(ν + 1/2)

∫ ∞
0

e−pt [t(t+ 2)]ν−1/2 dt . (299)

za p > 0, ν > −1/2. Za y > 0 označimo

φd(y) = E
(
Sde−yS

)
= (−1)d

dn

dtn
(
e−t

α) ∣∣
t=y

.

Funkcija φd je elementarna, vendar so izrazi za večje d zapleteni. Z uporabo reprezentacije

(299) in (298) in z zamenjavo vrstnega reda integracije dobimo

fW(w) = (300)

=

√
π
(
β
a

)d/2−1 (β
2

)d/2−1

(2π)d/2Γ
(
d
2
− 1

2

)√
|Σ|

∫ ∞
0

[t(t+ 2)]d/2−3/2 φd (β(1 + t)− b/2) dt.

Po Cauchy-Schwarzovi neenačbi je β ≥ b/2 za w 6= 0, tako da je za w 6= 0 argument

v φd pozitiven. Te oblike gostot dopuščajo implementacijo metode največjega verjetja.

Za d = 2 in d = 3 se izrazi še poenostavijo. Dobimo

fW(w) =
1

2π
√
|Σ|

∫ ∞
0

1√
t(t+ 2)

φ2

(
β(1 + t)− b

2

)
dt . (301)

za d = 2 in za d = 3 z upoštevanjem K1/2(z) =
√

π
2z
e−z

fW(w) =
1

4π
√
|Σ|

a−1/2φ2(β − b/2) (302)

kar je elementaren izraz. Glede na to, da gostote fS(s) ne poznamo, je dejstvo pre-

senetljivo. Omenimo, da je načeloma za lihe d funkcija Kd/2−1 elementarna in se gostote

načeloma izražajo v sklenjeni obliki.

Kljub temu, da za gostoto v splošnem ne obstajajo ekplicitne formule, pa je možno

asimetrične Weibullove porazdelitve učinkovito simulirati. Chambers, Mellow and

Stuck (glej [10]) so izpeljali učikovit algoritem, ki ga je kasneje prilagodil Weron

(glej [99]), s katerim lahko simuliramo stabilne slučajne spremenljivke s parametrom

α ∈ (0, 1). Postopek je naslednji:
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Figure 15: Bivariatne gostote (n = 1000), α = 0.9

• Generiramo enakomerno porazdeljeno slučajno spremenljivko X ∼ U(0, π).

• Na X uporabimo funkcijo

Uα(x) =
[sin(αx)]

α
1−α sin[(1− α)x]

(sinx)
1

1−α

• Generiramo eksponentno slučajno spremenljivko E ∼ exp(1).

• Izračunamo S =
[
Uα(X)
E

] 1−α
α

. Slučajna spremenljivka S ima standardno stabilno

porazdelitev dano z (280).

Če sledimo definiciji Wd(α,m,Σ) porazdelitve, lahko strnemo algoritem simulacije v

naslednje korake:

• Za α generiramo stabilno slučajno spremenljivko S po zgornjem algoritmu.

19



• Generiramo od S neodvisno standardno eksponentno spremenljivko E.

• Generiramo od S in E neodvisen normalno porazdeljen slučajni vektor X ∼
Nd(0,Σ).

• Izračunamo W z uporabo reprezentacije (279).

Slika 1 prikazuje simulirane točke z asimetrično Weibullovo porazdelitvijo za d = 2. Iz

slik je mogoče razbrati asimetrično naravo porazdelitev in vpliv izbire parametrov.

UPORABE

Enorazsežno asimetrično Weibullovo porazdelitev so številni avtorji uspešno uporabili

kot model za finančne podatke. Disertacija predstavi uporabo bivariatne asimetrične

Weibullove porazdelitve. Podatki za primer so menjalni tečaji dolarja in japonskega

jena ter britanskega funta in japonskega jena. Podatke logaritmiramo in neničelne

spremembe tečaja modeliramo z asimetrično Weibullovo porazdelitvijo. Že razsevni

grafikon sam pokaže, da je v podatkih prisotna asimetrija. Preverjanje prilagajanja

enorazsežnih porazdelitev s QQ grafikoni pokaže, da je ujemanje dosti bolǰse kot

pri privzetku o normalnosti. Ker so linearne kombinacije komponent asimetričnega

Weibullovega vektorja tudi asimetrične Weibullove, lahko na enak način preverjamo

tudi ujemanje poljubnih ortogonalnih projekcij na enotske vektorje v R2. Tudi QQ

grafikoni za posamezne smeri pokažejo dobro ujemanje in so občutno bolǰsi kot bi-

variatna normalna porazdelitev. Številne empirične študije so pokazale, da so po-

razdelitve finančnih podatkov tipično asimetrične s težkimi repi. Bivariatna Weibullova

porazdelitev se je izkazala kot primerneǰsi in zanesljiveǰsi model za menjalne tečaje, kar

nakazuje na uporabnost nove družine porazdelitev tudi v drugih okolǐsčinah.
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