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SUMMARY 

There is an increasing uptake of artificial intelligence in business, but there remain concerns 

that organizations fail to realize the full value of their investments. Despite extensive 

research on AI, not enough empirical studies have explored how AI can create business 

value. This study extends the literature by contextualizing the integrative model of IT 

business value, using a resource-based view to examine the relationship between AI and 

organizational performance. We employ the dynamic capabilities approach and a 

knowledge-based view and propose several variables as mediating this relationship: 

automation–augmentation, process innovation, organizational learning, decision-making 

performance, and process performance. We analyze 448 EU organizations using artificial 

intelligence in their business operations using structural equation modeling. The results 

validate the proposed serial multiple-mediation model, according to which artificial 

intelligence capabilities should boost decision-making processes and process transformation 

activities to yield business value. 

Keywords: Artificial intelligence, Resource-based View, Business Process Management, 

Business Value, Automation, Augmentation, Organizational Learning, Business Process 

Innovation, Incremental improvement, Radical improvement, Decision-making 

Performance, Business Process Performance, Organizational Performance, Firm 

Performance 

  



 

POVZETEK 

Uvajanje umetne inteligence v poslovanje doživlja rast, kljub temu pa ne gre prezreti 

pomislekov. Mnoge organizacije ne realizirajo ali izkoristijo vseh prednosti, ki jih prinašajo 

naložbe v umetno inteligenco. Pretekle raziskave so le v manjši meri podale empirične 

rezultate o ustvarjanju poslovne vrednosti z umetno inteligenco. Pričujoča študija razširja 

dosedanja dognanja s kontekstualizacijo integrativnega modela poslovne vrednosti IT (angl. 

IT Business Value) in z uporabo pogleda na osnovi virov (angl. Resource-Based View) nudi 

izboljšanje razumevanja razmerja med umetno inteligenco in organizacijsko uspešnostjo. Na 

podlagi teorij pogleda dinamičnih zmogljivosti (angl. Dynamic Capabilities View) in na 

znanju temelječe perspektive (angl. Knowledge-based View) predlagamo avtomatizacijo in 

avgmentacijo, procesno inovacijo, organizacijsko učenje, uspešnost odločanja in uspešnost 

izvajanja procesov kot spremenljivke mediacije. Z uporabo strukturnih modelov smo 

analizirali 448 organizacij iz EU, ki uporabljajo umetno inteligenco v svojem poslovanju. 

Rezultati potrjujejo predlagani model zaporedne večkratne mediacije (angl. serial multiple-

mediation model), po katerem zmogljivosti umetne inteligence pozitivno vplivajo na procese 

odločanja in aktivnosti transformacije procesov, s tem pa spodbujajo poslovno uspešnost 

oziroma podpirajo ustvarjanje poslovne vrednosti. 

Ključne besede: umetna inteligenca, teorija na temelju virov, management poslovnih 

procesov, poslovna vrednost, avtomatizacija, avgmentacija, organizacijsko učenje, inovacije 

poslovnih procesov, postopne izboljšave, radikalne izboljšave, učinkovitost odločanja, 

učinkovitost poslovnih procesov, uspešnost poslovanja 

  



 

 



i 

TABLE OF CONTENTS 

1 INTRODUCTION ........................................................................................................ 1 

1.1 Motivation ............................................................................................................... 1 

1.2 Purpose of the Study .............................................................................................. 2 

1.3 Formulation of the Research Question ................................................................ 2 

1.4 Objectives and Contributions ............................................................................... 4 

1.5 Outline ..................................................................................................................... 5 

2 THEORETICAL BACKGROUND AND HYPOTHESES ...................................... 6 

2.1 AI and Firm Performance ................................................................................... 11 

2.2 AI Business Value Model ..................................................................................... 13 

2.3 Business Process Performance ............................................................................ 16 

2.3.1 Process Execution Time ..................................................................................... 17 

2.3.2 Operational Costs ............................................................................................... 17 

2.3.3 Process Quality .................................................................................................. 17 

2.3.4 Flexibility ........................................................................................................... 18 

2.4 Organizational Performance ............................................................................... 18 

2.4.1 Productivity ........................................................................................................ 19 

2.4.2 Profitability ........................................................................................................ 20 

2.4.3 Market Performance ........................................................................................... 20 

2.4.4 Customer Relations ............................................................................................ 21 

2.5 The Mediating Role of Business Process Performance ..................................... 21 

2.6 The Mediating Effect of Decision-Making Performance .................................. 24 

2.6.1 Decision-Making Performance and Business Process Performance .................. 24 

2.6.2 Decision-Making Performance and Organizational Performance ..................... 27 

2.7 Automation–Augmentation: The Relationship Between AI Adoption, 

Cognitive Business Process Automation and Organizational Learning ......... 27 

2.7.1 The Mediating Role of Cognitive Business Process Automation ...................... 29 

2.7.2 The Mediating Role of Organizational Learning ............................................... 32 



ii 

2.8 Ambidextrous Innovation: Interactions Between AI Adoption and Business 

Process Innovation ............................................................................................... 37 

2.9 Organizational Learning and Business Process Innovation ............................ 40 

2.10 Organizational Context ....................................................................................... 42 

2.10.1 Digital Maturity ............................................................................................. 42 

2.10.2 Data-Driven Culture ...................................................................................... 43 

2.10.3 Business Process Management Maturity ....................................................... 44 

2.10.4 Organizational Culture .................................................................................. 46 

2.11 Brief Overview of Hypotheses ............................................................................ 49 

3 COMPONENT-BASED VIEW OF AI ADOPTION .............................................. 50 

3.1 Big Data and AI .................................................................................................... 51 

3.2 Cognitive Computing and Technologies ............................................................ 51 

3.3 AI-Related Technologies ..................................................................................... 52 

3.3.1 Data Analytics.................................................................................................... 53 

3.3.2 Business Intelligence ......................................................................................... 54 

3.3.3 Business Analytics ............................................................................................. 55 

3.3.4 Big Data Analytics ............................................................................................. 56 

3.3.5 Knowledge Discovery and Data Mining ........................................................... 56 

3.3.6 Integration of AI-Based Methods ...................................................................... 57 

3.4 Development of the Concept ............................................................................... 58 

3.4.1 Literature Identification ..................................................................................... 59 

3.4.2 Exploratory Research ......................................................................................... 66 

3.4.3 Five-Dimensional Conceptualization ................................................................ 68 

3.4.4 AI-Enabled Dynamic Capabilities ..................................................................... 74 

3.5 Development of the Measure............................................................................... 76 

3.5.1 Generated Items ................................................................................................. 76 

3.5.2 Content Validity Assessment of the Items ......................................................... 81 

3.6 Formal Measurement Model Specification ....................................................... 84 

3.7 Scale Purification and Refinement ..................................................................... 85 

3.7.1 Pilot study .......................................................................................................... 85 



iii 

3.7.2 Exploratory Factor Analysis .............................................................................. 87 

3.7.3 Confirmatory Factor Analysis ............................................................................ 92 

3.8 Validation .............................................................................................................. 97 

3.8.1 Confirmatory Factor Analysis ............................................................................ 97 

3.8.2 Validity, Reliability and Measurement Model Fit ............................................. 98 

3.8.3 Nomological Validity ......................................................................................... 99 

4 COGNITIVE BUSINESS PROCESS AUTOMATION ......................................... 99 

4.1 Theoretical Foundations .................................................................................... 100 

4.1.1 Automation ....................................................................................................... 100 

4.1.2 Business Process Automation .......................................................................... 101 

4.1.3 Knowledge Intensive Processes ....................................................................... 101 

4.1.4 Augmenting Automation With Decision-Making Capabilities ....................... 101 

4.1.5 Automation Continuum .................................................................................... 102 

4.2 Development of the Concept ............................................................................. 104 

4.2.1 Literature Identification ................................................................................... 104 

4.2.2 Compilation of the Key Attributes and Preliminary Definition ....................... 111 

4.2.3 Refinement of the Definition ........................................................................... 111 

4.2.4 Developed definition of the CBPA concept ..................................................... 115 

4.3 Development of the Measure ............................................................................. 116 

4.3.1 Generated Items ............................................................................................... 116 

4.3.2 Content Validity Assessment of the Items ....................................................... 116 

4.4 Formal Measurement Model Specification ...................................................... 118 

4.5 Scale Purification and Refinement ................................................................... 118 

4.5.1 Exploratory Factor Analysis ............................................................................ 118 

4.5.2 Confirmatory Factor Analysis .......................................................................... 123 

4.6 Validation ............................................................................................................ 125 

4.6.1 Confirmatory Factor Analysis .......................................................................... 125 

4.6.2 Validity, Reliability and Measurement Model Fit ........................................... 126 

4.6.3 Nomological Validity ....................................................................................... 127 

5 RESEARCH DESIGN AND METHODOLOGY.................................................. 128 

5.1 Research Design ................................................................................................. 128 



iv 

5.2 Sampling Strategy .............................................................................................. 128 

5.3 Operational Definition of Variables ................................................................. 129 

5.3.1 Main Constructs ............................................................................................... 129 

5.3.2 Moderators ....................................................................................................... 134 

5.3.3 Control Variables ............................................................................................. 136 

5.4 Instrument .......................................................................................................... 137 

5.4.1 Design .............................................................................................................. 137 

5.4.2 Accessibility..................................................................................................... 137 

5.5 Methodological Assumptions, Limitations, and Delimitations ...................... 139 

5.5.1 Assumptions..................................................................................................... 139 

5.5.2 Limitations ....................................................................................................... 140 

5.5.3 Delimitations .................................................................................................... 141 

5.5.4 Visibility .......................................................................................................... 141 

5.5.5 Content ............................................................................................................. 141 

5.5.6 Communication and Navigation ...................................................................... 142 

5.5.7 Engagement: Personalization and Gamification .............................................. 142 

5.5.8 Privacy and General Data Protection Regulation ............................................ 143 

5.5.9 Measurement of Survey-Based Constructs ...................................................... 143 

5.6 Data Collection ................................................................................................... 147 

5.6.1 LinkedIn Pro Subscription Source ................................................................... 148 

5.6.2 ZoneFiles.io Source ......................................................................................... 149 

5.6.3 Email Invitations .............................................................................................. 150 

5.7 Sample Characteristics ...................................................................................... 150 

5.8 Ethical Considerations ...................................................................................... 152 

6 ANALYSIS ............................................................................................................... 153 

6.1 Case Screening ................................................................................................... 153 

6.1.1 Missing Data in Rows ...................................................................................... 153 

6.1.2 Unengaged Responses ..................................................................................... 153 

6.1.3 Outliers............................................................................................................. 153 

6.2 Variable Screening ............................................................................................. 153 

6.2.1 Missing Data in Columns ................................................................................ 153 



v 

6.2.2 Skewness and Kurtosis ..................................................................................... 154 

6.3 Exploratory Factor Analysis ............................................................................. 154 

6.3.1 Adequacy and Reliability ................................................................................. 154 

6.3.2 Convergent Validity ......................................................................................... 155 

6.3.3 Reexamining Adequacy, Reliability, and Convergent Validity ....................... 156 

6.3.4 Discriminant Validity ....................................................................................... 157 

6.4 Confirmatory Factory Analysis ........................................................................ 158 

6.4.1 Item Parceling .................................................................................................. 158 

6.4.2 Validity, Reliability, and Measurement Model Fit .......................................... 158 

6.4.3 Pair-Wise Construct Comparison for Discriminant Validity ........................... 159 

6.4.4 Heterotrait-Monotrait Ratio for Assessing Discriminant Validity ................... 160 

6.4.5 Common Method Variance .............................................................................. 160 

6.4.6 Non-Response Bias .......................................................................................... 161 

6.4.7 Measurement Model Fit ................................................................................... 162 

6.5 Structural Models............................................................................................... 163 

6.5.1 Multivariate Assumptions (Outliers, Influentials and Multicollinearity) ........ 163 

6.5.2 Control Variables ............................................................................................. 164 

6.5.3 Post-hoc Structural Equation Modeling Power Analysis ................................. 168 

6.5.4 Hypotheses Testing .......................................................................................... 169 

6.5.5 Testing Additional Paths .................................................................................. 173 

6.5.6 Moderated Effects ............................................................................................ 176 

7 DISCUSSION ........................................................................................................... 185 

7.1 Answering the Research Question .................................................................... 185 

7.1.1 AI Adoption Impact on Organizational Performance ...................................... 186 

7.1.2 Business Process Performance Impact on Organizational Performance.......... 190 

7.1.3 Decision-Making Performance Impact Business Processes and Organizational 

Performance ..................................................................................................... 192 

7.1.4 The Mediating Role of Cognitive Business Process Automation .................... 193 

7.1.5 The Mediating Role of Organizational Learning ............................................. 196 

7.1.6 The Mediating Role of Incremental Business Process Innovation .................. 198 

7.1.7 The Mediating Role of Radical Business Process Innovation ......................... 199 

7.1.8 Organizational Learning Impact on Business Process Innovation ................... 201 



vi 

7.2 Additional Findings ........................................................................................... 202 

7.2.1 Automation–augmentation............................................................................... 203 

7.2.2 Ambidextrous Innovation ................................................................................ 204 

7.3 Distinguishing AI from IT – Unique Contributions and Business Value ..... 206 

7.4 The Impact of Large Language Models and Generative Pre-trained 

Transformer Technology .................................................................................. 211 

7.4.1 Managerial Perspectives Today ....................................................................... 212 

7.4.2 Shifting Focus of AI Applications ................................................................... 213 

7.4.3 Measuring Deployment Across Technologies and Paradigms ........................ 215 

8 CONCLUSION ........................................................................................................ 216 

8.1 Theoretical Contributions ................................................................................. 216 

8.2 Managerial Implications ................................................................................... 219 

8.3 Limitations and Recommendations for Future Research .............................. 222 

8.4 Reproducibility and Transparency of Research ............................................. 224 

REFERENCE LIST ........................................................................................................ 226 

APPENDICES ................................................................................................................. 272 

LIST OF TABLES 

Table 1: Selected Empirical Studies on AI and Firm Performance ...................................... 6 

Table 2: Selected Empirical Studies on Digital Maturity, Automation, Process and Firm 

Performance .......................................................................................................... 43 

Table 3: Selected Empirical Studies on Data-Driven Culture, IT and Firm Performance .. 44 

Table 4: Selected Empirical Studies on BPM Maturity, Innovation, OL and Process 

Performance .......................................................................................................... 45 

Table 5: Selected Empirical Studies on Organizational Culture, Innovation, Organizational 

Learning and Firm Performance ........................................................................... 47 

Table 6: Summary of Formulated Hypotheses .................................................................... 49 

Table 7: Studies on AI Adoption at the Firm-Level............................................................ 59 

Table 8: Exemplary Definitions of Adoption from Management Information Systems 

Journals .................................................................................................................. 62 

Table 9: Exemplary Definitions of AI from Management Information Systems Journals . 62 

Table 10: AI Types .............................................................................................................. 64 

Table 11: AI Capabilities .................................................................................................... 64 

Table 12: AI Application Domains ..................................................................................... 65 



vii 

Table 13: Main Findings From Expert Interviews .............................................................. 67 

Table 14: Organizing Attributes Into Common Themes and Dimensions .......................... 69 

Table 15: Factors in Conceptualizing Constructs ................................................................ 71 

Table 16: Items Generated to Measure AI Adoption .......................................................... 77 

Table 17: Definition of Descriptive and Quantitative methods ........................................... 83 

Table 18: Acceptable Measure Values for Content Validity ............................................... 83 

Table 19: Results of the Content Validity Analysis ............................................................ 84 

Table 20: Characteristics of the Pilot Study Sample ........................................................... 86 

Table 21: Assessment of Non-Response Bias Using Independent Samples t-Test ............. 87 

Table 22: Indicators, the Results of Scale Purification ....................................................... 88 

Table 23: KMO and Bartlett's Test ...................................................................................... 89 

Table 24: Extracted Communalities .................................................................................... 89 

Table 25: Anti-Image Correlation ....................................................................................... 90 

Table 26: Reliability Analysis of Factors ............................................................................ 91 

Table 27: 5-Factor Rotated Matrix ...................................................................................... 91 

Table 28: Factor Loadings, Cronbach's Alpha, Composite Reliability, AVE ..................... 93 

Table 29: Factor Correlation Matrix .................................................................................... 94 

Table 30: Factor Loadings, Cronbach's Alpha, CR, AVE ................................................... 96 

Table 31: Factor Loadings, Cronbach's Alpha, CR, AVE ................................................... 97 

Table 32: Final Second-Order Model Factor Loadings, Cronbach's Alpha, CR, AVE ....... 98 

Table 33: Nomological Validity Analysis ........................................................................... 99 

Table 34: Main Findings From Dictionaries and Prior Studies on CBPA ........................ 105 

Table 35: Main Findings From Dictionaries and Prior Studies on Process Automation .. 108 

Table 36: Main Findings From Expert Interviews ............................................................ 109 

Table 37: Organizing Attributes Into Common Themes ................................................... 111 

Table 38: Main Findings From Prior Studies on Robotic Process Automation ................ 111 

Table 39: Concepts Shared and Unique Attributes ........................................................... 113 

Table 40: Summary of Shared Attributes Between Concepts ........................................... 114 

Table 41: Factors of Construct Conceptualization ............................................................ 115 

Table 42: Items Generated to Measure CBPA .................................................................. 116 

Table 43: Acceptable Measure Values for Content Validity ............................................. 117 

Table 44: Results of the Content Validity Analysis .......................................................... 117 

Table 45: Pattern Matrix for 2-Factor Solution ................................................................. 119 

Table 46: Factor Correlation Matrix for 2-Factor Solution ............................................... 119 

Table 47: KMO and Bartlett's Test .................................................................................... 119 

Table 48: Extracted Communalities .................................................................................. 120 

Table 49: Anti-Image Correlation ..................................................................................... 121 

Table 50: 1-Factor Matrix.................................................................................................. 122 

Table 51: Generated Indicators.......................................................................................... 122 

Table 52: Abridged Model Loadings, Cronbach's alpha, CR, AVE ................................. 125 

Table 53: Final Model Factor Loadings, Cronbach's alpha, CR, AVE ............................. 126 

Table 54: Nomological Validity Analysis ......................................................................... 127 



viii 

Table 55: Proportional Country-Stratified Sampling ........................................................ 128 

Table 56: Measurement of Survey-Based Constructs (1st Part) ........................................ 143 

Table 57: Measurement of Survey-Based Constructs (2nd Part) ....................................... 145 

Table 58: LinkedIn Pro Subscription Individual Requests ............................................... 148 

Table 59: Domain-Based Random Selection of Sent Invites ............................................ 149 

Table 60: Characteristics of the Sample ............................................................................ 151 

Table 61: Initial Cronbach's Alpha and Variance Extracted ............................................. 155 

Table 62: Initial KMO and Bartlett's Test ......................................................................... 155 

Table 63: Initial Factor Loadings and Communalities ...................................................... 155 

Table 64: Final Cronbach's Alpha and Variance Extracted .............................................. 156 

Table 65: Final KMO and Bartlett's Test .......................................................................... 156 

Table 66: Final Factor Loadings and Communalities ....................................................... 157 

Table 67: Factor Correlation Matrix ................................................................................. 157 

Table 68: CFA Results ...................................................................................................... 158 

Table 69: Inter-Correlations, Assessment of Reliability, and Validity ............................. 159 

Table 70: Pair-Wise Construct Comparison for Discriminant Validity ............................ 159 

Table 71: Heterotrait-Monotrait Ratio .............................................................................. 160 

Table 72: Difference in CLF Regression Weights ............................................................ 161 

Table 73: Assessment of Non-Response Bias Using Independent Samples t-Test ........... 162 

Table 74: Measurement Model Fit Summary ................................................................... 163 

Table 75: Collinearity Statistics ........................................................................................ 164 

Table 76: Firm Age Frequencies ....................................................................................... 164 

Table 77: Firm Size Frequencies ....................................................................................... 165 

Table 78: Industry Sector Frequencies .............................................................................. 165 

Table 79: Country Frequencies ......................................................................................... 166 

Table 80: Correlation Matrix for IV, DV, Mediators and Control Variables ................... 167 

Table 81: Control Variables Loadings .............................................................................. 168 

Table 82: Post-Hoc Structural Equation Modeling Power Analysis Results .................... 168 

Table 83: Structural Model Fit Summary ......................................................................... 170 

Table 84: Results of the Single Mediation Analysis, i.e., Indirect Effects ....................... 171 

Table 85: Summary of Support for the Hypotheses .......................................................... 173 

Table 86: Results of the Serial Multiple-Mediation Analysis, i.e., Serial Indirect Effects 174 

Table 87: Moderation Test Results for BPMM on the Relationship Between AI and OL 177 

Table 88: Moderating impact of BPMM on the Relationship Between OL and BPII ...... 178 

Table 89: The Moderating Impact of DDC on the Relationship Between BPII and BPP 180 

Table 90: Moderated Mediation AI → OL* → DMP → OP ............................................ 181 

Table 91: Moderated Mediation AI → OL* → DMP → BPP → OP .............................. 181 

Table 92: Moderated Mediation AI → OL* → BPP → OP ............................................. 182 

Table 93: Moderated Mediation AI → OL* → BPII* → DMP → OP ............................ 182 

Table 94: Moderated Mediation AI → OL* → BPII* → DMP → BPP → OP ............... 183 

Table 95: Moderated Mediation AI → OL* → BPII* → BPP → OP .............................. 183 

Table 96: Moderated Mediation AI → OL* → BPIR → DMP → OP ............................. 184 



ix 

Table 97: Moderated Mediation AI → OL* → BPIR → DMP → BPP → OP ................ 184 

Table 98: Moderated Mediation AI → OL* → BPIR → BPP → OP .............................. 185 

 

LIST OF FIGURES 

Figure 1: Proposed Research Model .................................................................................... 16 

Figure 2: Common Business Process Design ...................................................................... 26 

Figure 3: Triple-Loop Learning ........................................................................................... 34 

Figure 4: Conceptual and Dimension Attributes ................................................................. 70 

Figure 5: AI Adoption – Latent Construct Measurement Model ........................................ 85 

Figure 6: First-Order Unidimensionality – Initial CFA ...................................................... 92 

Figure 7: First-Order Unidimensionality – Abridged CFA ................................................. 93 

Figure 8: Common Method Variance .................................................................................. 95 

Figure 9: Second-Order Multidimensionality – CFA .......................................................... 95 

Figure 10: First-Order One Factor Alternative Model – CFA ............................................ 96 

Figure 11: Final Second-Order CFA ................................................................................... 98 

Figure 12: The Results of the Test of Nomological Validity .............................................. 99 

Figure 13: The Automation Continuum ............................................................................ 102 

Figure 14: Systematic Literature Review Procedure ......................................................... 105 

Figure 15: CBPA – Latent Construct Measurement Model .............................................. 118 

Figure 16: Initial CFA ....................................................................................................... 123 

Figure 17: Abridged CFA .................................................................................................. 124 

Figure 18: Final CFA ......................................................................................................... 126 

Figure 19: The Results of the Test of Nomological Validity ............................................ 127 

Figure 20: Cook's Distance ................................................................................................ 163 

Figure 21: Structural Model Results .................................................................................. 169 

Figure 22: Total Effect ...................................................................................................... 172 

Figure 23: Structural Model Without Mediators ............................................................... 174 

Figure 24: Structural Model With Moderators .................................................................. 177 

Figure 25: BPMM Dampens the Positive Relationship Between AI and OL ................... 178 

Figure 26: BPMM Dampens the Positive Relationship Between OL and BPII ................ 179 

Figure 27: DDC Strengthens the Positive Relationship Between BPII and BPP .............. 180 

 

LIST OF APPENDICES 

Appendix 1: Daljši povzetek (Extended summary in Slovene language) ............................. 1 

Appendix 2: Supplemental Materials .................................................................................. 21 

Appendix 3: Contextualization procedure ........................................................................... 23 



x 

Appendix 4: Initial Anti-Image Correlation Matrix ............................................................ 24 

Appendix 5: Final Anti-Image Correlation Matrix ............................................................. 25 

Appendix 6: Environment Uncertainty box and whisker plot by Country ......................... 26 

 

LIST OF ABBREVIATIONS 

sl. – Slovene 

AGFI – (sl. prilagojeni indeks skladnost); Adjusted goodness-of-fit index 

AGI – (sl. splošna umetna inteligenca); Artificial General Intelligence 

AI – (sl. umetna inteligenca); Artificial Intelligence Technology 

AIGO – (sl. skupina strokovnjakov za umetno inteligenco pri OECD); OECD's AI Experts 

Group 

ANI – (sl. ozka umetna inteligenca); Artificial Narrow Intelligence 

ASI – (sl. umetna super inteligenca); Artificial Super Intelligence 

AVE – (sl. povprečna izražena variance); Average Variance Extracted 

BA – (sl. poslovna analitika); Business Analytics 

BDA – (sl. analitika velepodatkov); Big Data Analytics 

BI – (sl. poslovna inteligenca); Business Intelligence 

Big Data – (sl. velepodatki); extremely large and complex data sets 

BPA – (sl. avtomatizacija poslovnih procesov); Business Process Automation 

BPI – (sl. inovacije poslovnih procesov); Business Process Innovation 

BPII – (sl. inovacije poslovnih procesov – postopne); Business Process Innovation – 

Incremental 

BPIR – (sl. inovacije poslovnih procesov – radikalne); Business Process Innovation – 

Radical 

BPM – (sl. management poslovnih procesov); Business Process Management 

BPMM – (sl. zrelost managementa poslovnih procesov); BPM Maturity 

BPP – (sl. učinkovitost poslovnih procesov); Business Process Performance 

CA – (sl. kognitivna avtomatizacija); Cognitive Automation 

CBPA – (sl. kognitivna avtomatizacija poslovnih procesov); Cognitive Business Process 

Automation 

CDA – (sl. kognitivna podpora odločanju); Cognitive Decision Assistance 

CE – (sl. kognitivna vključenost); Cognitive Engagement 



xi 

CFA – (sl. potrdilna faktorska analiza); Confirmatory Factor Analysis 

CFI – (sl. primerjalni indeks prileganja); Comparative fit index 

CI – (sl. kognitivni vpogled); Cognitive Insight 

CLF – (sl. skupni latentni faktor); Common Latent Factor 

CMV – (sl. variance skupne metode); Common Method Variance 

CR – (sl. kompozitna zanesljivost); Composite Reliability 

CRM – (sl. upravljanje odnosov s strankami); Customer Relationship Management  

CT – (sl. kognitivne tehnologije); Cognitive Technologies 

CX – (sl. upravljanje uporabniške izkušnje); Customer Experience Management 

DACQ – (sl. pridobivanje in predhodna obdelava podatkov); Data Acquisition and 

Preprocessing 

DCV – (sl. teorija na temelju dinamičnih zmožnosti); Dynamic Capabilities View 

DDC – (sl. podatkovno vodena kultura); Data-Driven Culture 

DL – (sl. globoko učenje); Deep Learning 

DM – (sl. digitalna zrelost); Digital Maturity 

DMP – (sl. učinkovitost odločanja); Decision-Making Performance 

DOI – (sl. teorija širjenja inovacij); The Diffusion of Innovations Theory 

DV – (sl. odvisna spremenljivka); Dependent Variable 

EFA – (sl. pojasnjevalna faktorska analiza); Exploratory Factor Analysis 

GAI – (sl. generativna umetna inteligenca); Generative Artificial Intelligence 

GDPR – (sl. splošna uredba o varstvu podatkov); General Data Protection Regulation 

GFI – (sl. indeks ustreznosti prileganja); Goodness-of-fit index 

GPT – (sl. generativni vnaprej-izurjeni pretvornik); Generative Pre-trained Transformer 

IoT – (sl. internet stvari); Internet of Things  

IPA – (sl. inteligentna avtomatizacija procesov); Intelligent Process Automation 

IS – (sl. informacijski sistem); Information System 

IT – (sl. informacijska tehnologija); Information Technology 

IV – (sl. neodvisna spremenljivka); Independent Variable 

KBV – (sl. pogled temelječ na znanju); Knowledge-based View 

KD – (sl. odkrivanje znanja); Knowledge Discovery 

KiPs – (sl. procesi z visoko intenzivnostjo znanja); Knowledge-intensive Processes 

KM – (sl. upravljanje z znanjem); Knowledge Management 

KMT – (sl. teorija upravljanja z znanjem ); Knowledge Management Theory 

LLM – (sl. veliki jezikovni model); Large Language Model 



xii 

MaxR(H) – (sl. maksimalna statistična zanesljivost); Maximum Reliability 

MIS – (sl. management informacijski sistemi); Management Information Systems 

ML – (sl. strojno učenje); Machine Learning 

MSV – (sl. maksimalne skupne kvadratne variance); Maximum Shared Squared Variance 

NFI – (sl. normiran indeks prileganja); Normed fit index 

NLP – (sl. obdelava naravnega jezika); Natural Language Processing 

NNFI – (sl. nenormiran indeks ujemanja); Non-normed Fit Index 

OC – (sl. organizacijska kultura); Organizational Culture 

OL – (sl. organizacijsko učenje); Organizational Learning 

OP – (sl. uspešnost poslovanja); Organizational Performance 

PCFI – (sl. indeks za primerjalno ustreznost z upoštevanjem parsimonije); Parsimony-

adjusted comparative fit index 

RBV – (sl. teorija na temelju virov); Resource-Based View 

RDBMS – (sl. sistem za upravljanje relacijskih zbirk podatkov); Relational Database 

Management System 

RMSEA – (sl. koren povprečne kvadrirane napake približka); Root mean square error of 

approximation 

RPA – (sl. robotska avtomatizacija procesov); Robotic Process Automation 

SCADA – (sl. nadzor, kontrola, alarmiranje in zbiranje podatkov); Supervisory Control 

And Data Acquisition  

SEM – (sl. modeliranje strukturnih enačb ); Structural Equation Modeling 

SLR – (sl. sistematični pregled literature); Systematic Literature Review 

SRMR – (sl. standardizirani kvadratni koren povprečne kvadratne napake); Standardized 

Root Mean Squared Residual 

TLI – (sl. Tucker-Lewisov indeks ); Tucker-Lewis Index 

TOE – (sl. ogrodje tehnologija-organizacija-okolje); The technology-organization-

environment framework 

VRIN – (sl. vredno, redko, neponovljivo in nenadomestljivo); Valuable, Rare, Inimitable, 

and Non-Substitutable 



1 

1 INTRODUCTION 

While artificial intelligence (AI) technology emerged in the 1960s, it has only recently 

gained traction due to its potential business applications (Warwick, 2013). Vast amounts of 

data (Big Data), cloud computing, data management, programming frameworks, AI models, 

and AI services have contributed to and provided a platform for the resurgence of this 

technology. Over the past several years, organizations have turned to AI to realize business 

value through sustained competitive advantage in intra- and inter-organizational business 

processes (Wamba, 2022). AI has quickly been developed to the point where it can undergo 

transformations that enable intelligent automation and augmentation, creating opportunities 

for ongoing digital innovation (Abbad, Jaber, AlQeisi, & Eletter, 2021). 

1.1 Motivation 

AI technologies have demonstrated immense potential in revolutionizing business 

operations and decision-making, creating new value propositions and customer experiences 

(Mondal, Das, & Vrana, 2023; Trivedi & Patel, 2020). AI has become a key driver of 

innovation and competitive advantage by enhancing efficiency and automation and 

improving the data analysis and predictive capabilities of businesses (Akter, Michael, Uddin, 

McCarthy, & Rahman, 2022; Brem, Giones, & Werle, 2021a; Dash, McMurtrey, Rebman, 

& Kar, 2019; Wamba-Taguimdje, Wamba, Kamdjoug, & Wanko, 2020b). In today’s rapidly 

changing business environment, organizations from a range of industries acknowledge the 

importance of utilizing AI to stay competitive (Peyravi, Nekrošienė, & Lobanova, 2020). AI 

promises to unlock valuable insights from vast data, enabling organizations to make data-

driven decisions and optimize their operations. 

Despite this promise, organizations still struggle to adopt and leverage AI technologies and 

realize performance gains (Fountaine, McCarthy, & Saleh, 2019; Mishra & Pani, 2020). The 

question then arises, “Why do some organizations do so much better than others?” The 

literature on this topic is still underdeveloped, and there is a need for research on the 

underlying relationships through which AI can improve organizational performance 

(Enholm, Papagiannidis, Mikalef, & Krogstie, 2021).  

Although several studies (Table 1) focus on the interaction of individual strategic constructs 

and their impact on AI implementation and its success, there is a gap in the literature and a 

need for studies that confirm the impact of AI on organizational performance through the 

concurrent effects of AI-enabled automation and augmentation. We intend to empirically 

validate the impact of AI on organizational performance and identify the underlying 

mechanisms, mediating factors, and contextual influences that shape this relationship. 

Understanding these interactions provides an initial base for organizational strategy, 

resource allocation, risk management, and informed decisions regarding AI adoption and 

utilization, from developing AI capabilities to deploying end-to-end organizational 



2 

processes to generate and capture the full potential of AI technology in terms of business 

value. 

Gaining insight into AI’s impacts on organizational performance allows organizations to 

develop appropriate frameworks, policies, and practices to maximize the value derived from 

these technologies while minimizing the risks associated with their investments. Empirical 

research on the impact of AI adoption on organizational performance is crucial to guiding 

organizations operating in a dynamic and technology-driven business environment. With 

these findings, organizations can leverage AI more effectively, adapt to changing market 

dynamics, and gain a competitive edge in the era of digital transformation. 

1.2 Purpose of the Study 

This research investigates the new challenges arising from the adoption of AI in business 

operations and focuses on several key aspects. Most importantly, the adoption of AI is highly 

dependent on data and domain knowledge. As Chui (2017) notes, the effectiveness and 

performance of AI systems rely heavily on high-quality data and a comprehensive 

understanding of the specific domain to which they are applied. Obtaining and managing the 

required data and knowledge can pose significant challenges for organizations and may 

hinder the seamless integration of AI into existing processes. Furthermore, there is a notable 

lack of knowledge regarding how to apply AI technologies to business problems. Many 

organizations struggle to understand how AI can be effectively leveraged to solve complex 

business challenges (Mishra & Pani, 2020). The scarcity of expertise in AI implementation 

makes it difficult to align AI initiatives with existing business processes and objectives, often 

leading to uncertainty and presenting a significant obstacle to businesses (Davenport & 

Ronanki, 2018). An investigation of application domains is thus needed to identify use cases 

and guidelines for effectively incorporating AI into business operations. 

Using AI technologies can also significantly impact an organization’s internal decision-

making processes (Davenport & Mahidhar, 2018). AI can transform conventional decision-

making, and these can be augmented and even replaced by automated algorithms and 

predictive models, as Duan, Edwards, and Dwivedi (2019) highlight. Investigating the 

impact of AI on decision-making processes is crucial for organizations to ensure the efficient 

and effective use of AI technologies. In addition, the adaptation of AI technologies is 

significantly influenced by organizational culture (Duan et al., 2019). Understanding how 

the organizational context shapes AI implementation is crucial to developing strategies that 

encourage the acceptance and integration of AI technologies. 

1.3 Formulation of the Research Question 

AI is a distinct kind of technology because it can perform the cognitive tasks usually 

performed by humans (Collins, Dennehy, Conboy, & Mikalef, 2021). AI is built around the 
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idea of an intelligent agent, and although there is no single definition of this technology, we 

understand AI as a simulation of human cognitive functions using intelligent agents. The 

machine is able to perform these functions, exhibiting intelligent human behavior, including 

the ability to perceive, reason, learn, interact, and adapt to changing environments (Russell 

& Norvig, 2020). Intelligent agents are agents that can receive percepts from the 

environment and perform actions; that is, an agent is anything that perceives its environment 

through sensors and acts upon that environment through actuators. Action is what an 

intelligent agent does to change its environment or to achieve its goals (Russell & Norvig, 

2020). In this sense, an agent’s choice of action (behavior) at any given instant depends on 

its built-in knowledge and the observed percept sequence but not on anything not perceived. 

An agent’s behavior is defined by its agent function, which maps any given perception 

sequence to an action and is implemented by an agent (software) program (Russell & Norvig, 

2020). Agents can be classified into two categories: physical entities, such as robots using 

sensors and actuators, and software programs functioning within virtual environments. A 

major objective of AI is to develop and enhance intelligent agents to perform complex tasks 

and interact effectively with humans and their environment. AI is recognized as a general-

purpose technology (Cockburn, Henderson, & Stern, 2018), characterized by pervasiveness, 

inherent potential for technical improvements, and innovational complementarities 

(Bresnahan & Trajtenberg, 1995). 

Despite extensive research on information technology (IT) business value (De Haes, Van 

Grembergen, Joshi, & Huygh, 2020), the literature contains no coherent understanding of 

how AI technologies create business value (Enholm et al., 2021). Existing studies posit that 

the adoption of AI has a partial indirect influence on performance; the relationship is 

mediated by the organizational capabilities of creativity and agility (Chen, Esperança, & 

Wang, 2022; Mikalef & Gupta, 2021; Wamba, 2022). However, these studies do not 

consider the role of business process management (BPM) in AI’s creation of value. BPM is 

recognized as one of the most central and sustainable management approaches (Rosemann, 

De Bruin, & Hueffner, 2004). The structured and strategic approach of BPM complements 

the innovative capabilities of AI (Ng, Chen, Lee, Jiao, & Yang, 2021b), and there have been 

several investigations of AI adoption in a BPM context. Wamba-Taguimdje, Wamba, 

Kamdjoug, and Wanko (2020a) examine the mediating effect of process-oriented dynamic 

capabilities and emphasize the process-level impact on performance (Wamba-Taguimdje et 

al., 2020b). Nevertheless, the ways that AI generates business value, specifically via BPM 

capabilities, have not received sufficient attention (Ahmad & Van Looy, 2020). 

This research adds to the conversation in the literature (Mikalef & Gupta, 2021; Wamba-

Taguimdje et al., 2020a; Wamba, 2022) to answer the overarching research question: “How 

do AI technologies create business value, and what form of business value can be expected?” 

This question is designed to generate dialogue on the specific topic of advancing the concept 

of IT business value. 
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Responding to this question requires a comprehensive understanding of the value-generation 

process at the organizational level. This study considers the relationship between AI 

adoption and organizational performance by identifying the mediating variables that 

positively leverage AI technology. We conduct a comprehensive analysis to highlight the 

outcomes that managers can anticipate as a result of adopting AI in day-to-day business 

operations and how businesses may benefit from AI-enabled automation or augmentation. 

We further the organizational context, moderators, and control variables influencing the 

outcome of AI adoption. 

1.4 Objectives and Contributions 

We address the research question by first comprehensively defining a concept that captures 

all components of AI adoption at an organizational level in the context of BPM. This concept 

is an essential and foundational element supporting and enhancing the efforts to measure the 

impact and value of AI technology.  

Our proposed extended AI business value framework includes AI applications as 

components of AI adoption, mediating organizational capabilities (incorporating the AI-

enabled strategies of automation and augmentation), and the impacts at the process and 

organizational level. Existing studies recognize duality in using AI to augment and automate 

human capabilities to create value (Brynjolfsson & McAfee, 2014; Daugherty & Wilson, 

2018; Davenport & Kirby, 2016; Dellermann, Ebel, Söllner, & Leimeister, 2019; Raisch & 

Krakowski, 2021; Schroder, Constantiou, Tuunainen, & Austin, 2022).  

In this context, automation is the process or system by which a machine takes over a human 

task, and augmentation is the close collaboration between humans and machines to perform 

a task (Raisch & Krakowski, 2021). We include an automation–augmentation perspective to 

explore how the impact of AI adoption on performance is mediated. In addition, we draw 

connections between organizational learning and ambidexterity based on the ability of AI to 

impact the exploration and exploitation of process innovation. (Mishra & Pati, 2020). We 

expect that the specific ability of AI to create intelligent agents capable of self-learning and 

decision-making can produce significant performance gains (Wamba-Taguimdje et al., 

2020b). We deconstruct the outcomes into lower- and higher-order effects to better 

understand how AI can boost performance, representing impacts at the process and 

organizational level. We offer a more detailed understanding of the value-generation process 

by considering the mediating effect of lower-order measures examining operational and 

market performance via process and decision-making performance. 

We contextualize the integrative IT business value model (Melville, Kraemer, & Gurbaxani, 

2004), and examine the impact of AI adoption at the process and organizational levels, 

considering complementary organizational resources and a competitive environment. This 

allows us to bridge the gap between business, AI, and human workers using the concept of 

BPM. The resource-based, dynamic capabilities and knowledge-based views provide an 
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appropriate theoretical basis to identify resources and operational and dynamic AI-enabled 

capabilities that comprise the focal construct of AI adoption. 

We define AI adoption as the implementation1, deployment, and use of AI resources (data, 

AI infrastructure, skills, competencies) in business processes2. An organization’s level of AI 

adoption is measured by its AI-enabled capabilities (components of AI adoption), which 

represent the organization’s ability to mobilize AI resources for specific business needs 

through the implementation, deployment, and use of AI applications, tools, or technologies. 

We conduct exploratory interviews and a literature review and, based on these, 

operationalize and measure the concept of AI adoption and, in turn, assess the impact and 

value of AI technology. 

We follow the guidelines established in MacKenzie, Podsakoff, and Podsakoff (2011); 

Podsakoff, MacKenzie, and Podsakoff (2016) for the concept, scale development, and 

validation commonly used in the management information systems literature. The content 

validity, scale purification, and refinement are based on a pilot study and confirmed by an 

expert panel. In addition, we assess dimensionality, reliability, convergent, discriminant, and 

nomological validity. This conceptualization and measure development procedure is also 

used for cognitive business process automation (CBPA) because there is, as yet, no 

comprehensive model or measurement instrument. Finally, the measures that we develop for 

AI adoption and CBPA are merged with existing measures in a structured questionnaire that 

represents the operationalized research model. The questionnaire is applied in an EU-wide 

research study with a sample of 448 organizations using AI technology in their business 

processes. 

1.5 Outline 

The remainder of the thesis is structured as follows. In Chapter 2, we introduce the 

theoretical basis and elaborate on our hypotheses and the proposed AI business value 

framework. In Chapter 3, we describe the conceptualization procedure and the implications 

of a component-based view of AI adoption and its dimensions. In Chapter 4, we describe the 

procedure by which we conceptualize and operationalize the CBPA construct and the results 

of our analysis. We then present our empirical research methodology (Chapter 5) and our 

results (Chapter 6). Finally, we present our discussion (Chapter 7) and conclusions (Chapter 

                                                 
1 Implementation is the process of taking an idea from concept to reality, whereas deployment is the process 

of putting it into use. The term “use” refers to the actual application or utilization of something by the end user. 
2 An organization can be described as a set of business processes (Melão & Pidd, 2000) representing an 

organization’s core (Willaert, Van den Bergh, Willems, & Deschoolmeester, 2007). Our research is based on 

a process oriented model of IT business value (Mooney, Gurbaxani, & Kraemer, 1996). We theorize that 

organizations derive business value from IT through its impacts on business processes (Kohlbacher, 2010). 

Measuring the level of AI adoption via implementation, deployment, and use in business processes is therefore 

appropriate. 
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8), the study’s theoretical contributions, managerial implications, limitations, and future 

research suggestions. 

2 THEORETICAL BACKGROUND AND HYPOTHESES 

Considering the vast transformative potential of AI (Enholm et al., 2021; Gruetzemacher & 

Whittlestone, 2022), we start from the premise that a multi-theory framework is needed to 

better understand the link between AI and organizational performance. We aim to discern 

the various mechanisms and variables by which this relationship is mediated and moderated. 

The resource-based view serves as the foundation of our study to ensure alignment with prior 

research on AI adoption (as seen in Table 1). We further enrich this framework by 

incorporating insights from the dynamic capability and knowledge-based views. 

Table 1: Selected Empirical Studies on AI and Firm Performance 

Author Scope Theory Findings 

Mikalef et al. (2023) Survey, 168 public 

organizations 

RBV (+) AI capability → Process Automation, 

Cognitive Insight, Cognitive Engagement, 

Organizational performance 

Mikalef and Gupta (2021) Survey, 143 senior US firm 
managers 

RBV, DCV (+) AI capability → Organizational Creativity 
& Organizational performance 

Wamba (2022) Survey, 205 US firm managers RBV, DCV (+) AI assimilation → Organizational agility, 

Customer agility, Firm performance 

Wamba-Taguimdje et al. 

(2020a) 

150 AI-related case studies RBV, DCV (+) AI capability → Process-driven Dynamic 

Capabilities, Firm performance 

Chen, Esperança, et al. (2022) Survey, 394 e-commerce 

entrepreneurs 
 

RBV, DCV 

 

(+) AI capability → Firm creativity, AI 

Management, AI driven decision making, 
Firm Performance 

Rammer, Fernández, and 

Czarnitzki (2022) 

Germany Community 

Innovation Survey (CIS) 2018 

 (+) AI → Innovation Performance 

Bag, Gupta, Kumar, and 
Sivarajah (2021) 

306 senior executives in South 
Africa 

 

KMT (+) Big data powered artificial intelligence → 
Knowledge Management Process, Decision 

Making Style, Firm Performance 

Mishra, Ewing, and Cooper 
(2022) 

10-K data from US firms  (+) AI Focus → Firm Perfromance 

Kim, Park, and Kim (2022) 395 US-listed firms using AI 

between 2000-2018 

 (+) AI adoption → Firm Performance,  

(+) AI adoption → Automation 

Lui, Lee, and Ngai (2022) 62 US-listed firms between 
2015–2019 

 (−) AI adoption announcements → Firm 
market value 

(−) AI adoption announcements → 

Abnormal market returns 

Joseph and Falana (2021) 159 firms from Nigeria  (+) AI → Firm Performance 

Panduro-Ramirez et al. (2022) 80 interviews from the UK  (+) Integrated AI technology → Firm 

Performance and Profitability 

Chetty (2019) Survey, 190 participants from 
South Africa 

RBV (+) AI moderates Big Data Analytics 
Capability → Firm Performance 

Yang (2022) 5,257 Taiwanese companies 

that have filed at least one AI 

patent during the period 2000 - 
2019 

 (+) AI technology → Productivity and 

employment 

Lyu and Liu (2021) US Energy Sector Compustat 

data during the period 2010–
2019 

 (+) AI adoption → Productivity 

Chatterjee, Chaudhuri, 

Kamble, Gupta, and Sivarajah 

(2022) 

62 US-listed firms during the 

period 2015–2019 

DCV (+) Adoption of AI based application → Firm 

performance 

Naz, Ul Haq, and Nasir (2022) Survey, 240 firms from 

Pakistani food manufacturing 

DCV, 

Contingency 

Theory 

(+) Entrepreneurial orientation, Big Data 

Analytics Capabilities, and Artificial 

Intelligence Capabilities → Firm Performance 

Ho, Gan, Jin, and Le (2022) AI-related global Bloomberg 
stock market index from 2019 

to 2020 

 (+) Adoption of AI based applications → 
Sustainable perfromance in challenging 

environments 

   To be continued 
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Table 1: Selected Empirical Studies on AI and Firm Performance (cont.) 

Author Scope Theory Findings 

Jain (2019) An online survey in India, 50 

respondents 

 (+) AI → Manage technology-related 

challenges (+) AI → Economic growth of 

businesses (enhance business operations: 
productivity, operating efficiency, business 

expansion) 

Alekseeva, Gine, Samila, and 

Taska (2020) 

Compustat Online US job 

postings during the period 
2010–2018 

 (+) AI → Sales growth, capital expenditure, 

EBITDA margin, R&D investments (+) AI → 
Total factor productivity 

Babina, Fedyk, He, and 

Hodson (2021) 

Job postings from the US 

during the period 2010–2018 

 (+) AI → Sales growth, product innovation, 

employment, market valuations; control 
variable: larger firms benefit more from AI 

investments 

Fotheringham and Wiles 

(2022) 

Event study on US stock 

market postings during the 

period 2016–2019; 153 

announcements 

Market-based 

Asset Theory 

(+) AI investment announcements (chatbots) 

→ Abnormal stock returns 

Sullivan and Wamba (2022) Survey, 107 business and IT 
executives from UK and France 

DCV, 
Organizational 

Information 

Theory 

(+) AI Use → Firm Resilience, Firm 
Performance 

Note. (+) Positive impact; (−) Negative impact; ( ) No impact. RBV = Resource-Based View. DCV = Dynamic Capabilities View.  
KMT = Knowledge Management Theory. 

 

Source: Own work. 

The resource-based view dominates the strategic management literature (Newbert, 2007; 

Wu, 2010) as a way to explain performance differences among organizations in the same 

industry (Zott, 2003). Accumulating valuable, rare, inimitable, and non-substitutable 

resources (assets, capabilities, organizational processes, organizational attributes, data, 

information, and knowledge) to enhance competitive advantage has become fundamental 

academic and managerial strategic thinking. The resource-based view has been applied 

extensively in past research in the broader information systems domain. It is positioned as a 

central theoretical perspective in understanding how IT resources produce value and enable 

performance gains (Bharadwaj, 2000; Patas, Bartenschlager, & Goeken, 2012; Wade & 

Hulland, 2004). 

The existing research shows that the resource-based view is valuable in measuring 

organizational performance diversity. IT resources are conceptualized in different ways 

(Wade & Hulland, 2004). It is common for IT resource conceptualizations to equate 

potentially heterogeneous investment allocations across organizations by measuring total IT 

intensity (Aral & Weill, 2007). Measuring investments and organizational capabilities is 

crucial to avoid the common mistake of equating resources with capabilities. Organizations 

can better understand the capabilities required and make more informed decisions regarding 

IT investment. We thus understand AI resources as a combination of AI-related IT 

investment allocations (among infrastructure, transactional, informational, and strategic 

assets) and a mutually reinforcing system of competencies and practices. According to Aral 

and Weill (2007), investments in specific IT asset classes will boost performance only if 

aligned with the strategic objective or purpose of the assets. 
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In an increasingly digital business environment, data is one of the key resources that an 

organization must harness to understand its business operations and improve and adapt to 

the environment (Aydiner, Tatoglu, Bayraktar, Zaim, & Delen, 2019). According to Amit 

and Schoemaker (1993), an organization’s resources are its tradable and non-specific assets, 

while its capabilities are the non-tradable organization-specific abilities that it employs to 

integrate, deploy, and utilize resources. It is important to note that, depending on privacy 

regulations, contractual agreements, intellectual property rights, and industry practices, data 

may be tradable or non-tradable and non-specific or specific. Data that are considered 

tradable can be bought, sold, or exchanged between organizations. For example, aggregated 

or anonymized data sets are used for market research, analytics, targeted advertising, or 

machine learning applications. This type of data is typically not tied to any specific 

organization and can be used across applications and industries. 

Other types of data are not tradable or specific. Examples of such data include proprietary 

or confidential data unique to an organization that cannot be shared or traded with others for 

reasons of legality, ethics, or competitiveness, such as customer databases, internal research 

findings, and trade secrets. Therefore, data can serve as a source of competitive advantage; 

legal access to data and access to large volumes of data can be particularly advantageous 

since vast amounts of data are needed to train large AI models. 

AI is primarily concerned with data as a core resource that is exploited and explored through 

AI capabilities and AI-enabled capabilities. AI capabilities (from which additional value is 

derived) and AI-enabled capabilities (that enhance existing capabilities) are how 

organizations create or extend a set of organizational, personal, and AI resources for creating 

and capturing business value from data (Wamba-Taguimdje et al., 2020a). The theoretical 

perspective discussed here has immense significance in our framework since an organization 

wishing to leverage its AI investments (or investment in AI-related IT assets) must first 

identify the AI and AI-enabled capabilities that must be developed. 

The findings in the literature show that the resource-based view serves as an appropriate 

theoretical lens for studying organizations in dynamic and turbulent environments, relying 

on complementarity organizational resources to explain performance variation. Studies that 

apply the resource-based view note that, in addition to the IT assets and competencies 

(technical and managerial skills) needed for AI implementation, deployment, and utilization, 

various complementary organizational resources are also required to leverage investments 

(Mikalef & Gupta, 2021). We draw from Melville et al. (2004), who combine these 

perspectives in an integrative model, arguing that the application of the resource-based view 

enables researchers to construct empirically testable propositions. Subsequent evaluation of 

these propositions advances our understanding of the significance of diverse IT resources 

and their impact on organizational performance. 

Relevant to our study, the resource-based view is used to explain organizational phenomena 

and is an appropriate tool to understand if and how an organization’s parts affect the whole. 
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It also makes a valuable distinction between IT and information systems. The former is asset-

based, while the latter consists of a mix of assets and capabilities concerned with the 

productive use of IT (Wade & Hulland, 2004). 

The resource-based view is an appropriate theoretical foundation for our framework, given 

that our objective is to determine the essential organizational resources (including assets and 

capabilities) that facilitate the successful adoption of AI technology (including 

implementation, deployment, and utilization), which is hypothesized to lead to improved 

performance. 

To expand upon the resource-based theoretical framework, we incorporate the extended 

dynamic capability view (Teece, Pisano, & Shuen, 1997). The dynamic capabilities approach 

is viable for explaining how organizations create and capture business value in a dynamic 

environment. It is one of the most influential theoretical perspectives for understanding the 

foundations of firm-level competitive advantage (Kurtmollaiev, 2020). It emphasizes an 

organization’s ability to sense and seize emerging business opportunities and create, extend, 

and reconfigure its resource base to adapt to shifting market conditions and sustain 

competitive advantage (Teece, 2007). On this view, performance differences across 

organizations within a given industry with a similar resource base (Leemann & Kanbach, 

2022) are explained in terms of differences in dynamic capabilities. The expected outcomes 

include creating and modifying operating routines and significantly improving 

organizational effectiveness (Leemann & Kanbach, 2022; Wamba, 2022). 

Studies taking this approach have classified various organizational capabilities to determine 

the superior level of organizational performance. The categories include ordinary, 

operational, or zero-order capabilities and dynamic or high-order capabilities (Kurtmollaiev, 

2020; Teece, Peteraf, & Leih, 2016). As Wade and Hulland (2004) suggest, IS resources 

may have many of the attributes of dynamic capabilities and might be particularly useful for 

organizations operating in rapidly changing environments. Researchers confirm that 

leveraging IT to enable dynamic capabilities allows organizations to enhance their capacity 

for innovation and streamline their internal processes for agility; these are key components 

of competitive advantage (Mikalef & Pateli, 2016). 

As is the case with IT resources, AI can enable or enhance the underlying processes that 

comprise an organization’s dynamic capabilities and impact its performance (Chen, 

Esperança, et al., 2022; Mikalef, Conboy, & Krogstie, 2021; Mikalef & Gupta, 2021; 

Wamba-Taguimdje et al., 2020a; Wamba, 2022). AI can assist organizations in automating 

their processes. By leveraging insights from previously unattainable data, organizations can 

sense and seize business opportunities, respond to threats, improve engagement with key 

customers, and quickly adapt to internal and external changes in the business environment 

(Bag, Pretorius, Gupta, & Dwivedi, 2021; Davenport & Ronanki, 2018; Mikalef et al., 2021). 

This BPM-focused study explores how AI adoption can optimize operations through 

process-level improvements and by fostering dynamic capabilities. This is achievable using 
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a dynamic capabilities approach as it helps identify the core BPM capabilities that benefit 

from AI. 

We further develop the resource-based theoretical framework by integrating the knowledge-

based view, which reconceptualizes organizations as heterogeneous, knowledge-bearing 

entities (Zheng, Zhang, & Du, 2011). According to Zheng et al. (2011), the fundamental 

function of the organization is to integrate and use knowledge. Organizations’ resource bases 

increasingly consist of knowledge-based assets (i.e., information with an applied 

interpretation process). Knowledge assets underpin all organizational capabilities and core 

competencies, which are understood as fundamental strategic tools for fostering continuous 

innovation (Marr, Schiuma, & Neely, 2004). According to the resource-based view, research 

efforts should target the unique features of intangible resources, particularly knowledge, as 

these are key to achieving a sustainable competitive advantage (Curado & Bontis, 2006). 

Knowledge assets are essential to ensuring that this competitive advantage is sustainable 

since they are difficult to imitate and are the foundation for sustainable differentiation (de 

Camargo Fiorini, Seles, Jabbour, Mariano, & de Sousa Jabbour, 2018; Wiklund & Shepherd, 

2003). 

Knowledge management theory concerns the operational and tactical aspects of managing 

knowledge. Knowledge management is a popular strategy employed by organizations to 

enhance their competitive position. It primarily focuses on organizational design, operational 

principles and processes, and organizational structures, applications, and technologies that 

help knowledge workers leverage their creativity and deliver business value (Abubakar, 

Elrehail, Alatailat, & Elçi, 2019; de Camargo Fiorini et al., 2018).  

de Camargo Fiorini et al. (2018) argue that knowledge management theory (i.e., theories and 

practices for creating, sharing, using, and managing knowledge within organizations) is 

useful in investigating the various aspects of large data adoption that are inherently linked 

to AI. Knowledge management has been significantly affected by technology. For instance, 

IT and AI support knowledge management activities, including database decision support, 

management information, expert, resource planning, and knowledge management (i.e., 

lessons learned) systems (Al Mansoori, Salloum, & Shaalan, 2020; Castaneda, Manrique, & 

Cuellar, 2018). AI and knowledge management are inherently linked, and the extent to which 

AI can play a role in knowledge management is widely discussed (Baskerville & Dulipovici, 

2006). Categories of AI that enhance knowledge management practices include artificial 

neural networks and intelligent agents (Al Mansoori et al., 2020). 

Since IT underpins most knowledge work in organizations, it is helpful to explore the impact 

of AI on knowledge management activities (Sanzogni, Guzman, & Busch, 2017). We 

acknowledge the importance of knowledge and analyze the impact of AI on knowledge 

management by employing the knowledge-based view as a key theoretical lens in developing 

our research framework. 
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Each theory we employ focuses on different aspects of an organization’s resources and 

capabilities. The resource-based view emphasizes the static qualities (i.e., valuable, rare, 

inimitable, and non-substitutable) of resources, the dynamic capabilities view focuses on 

dynamic adaptation capabilities, and the knowledge-based view considers knowledge as an 

essential resource. These theories are complementary rather than mutually exclusive. We 

use a multi-theoretical approach to uncover nuanced relationships that might be overlooked 

when using a single theory, thereby providing a more comprehensive perspective. This 

approach acknowledges the complexity of the current business environment and serves as a 

rich theoretical base from which to examine the impact of AI on performance. This 

integrated approach can lead to more robust, innovative, and relevant research outcomes. 

2.1 AI and Firm Performance 

We understand AI as a simulation of human cognitive functions using intelligent agents. 

According to (Russell & Norvig, 2020), an intelligent agent perceives its environment and 

takes action to achieve goals rationally. This broader definition of AI encompasses the entire 

field of AI and its objective to replicate human cognitive processes. However, when we refer 

to a specific implementation of AI, i.e., AI system, we use the definition: “a machine-based 

system that, for explicit or implicit objectives, infers, from the input it receives, how to 

generate outputs such as predictions, content, recommendations, or decisions that can 

influence physical or virtual environments. Different AI systems vary in their levels of 

autonomy and adaptiveness after deployment.” (OECD, 2024).  

This definition highlights that an AI system is a concrete application designed to perform 

specific tasks by processing inputs to produce valuable outputs. The extent of an AI system's 

autonomy and ability to adapt post-deployment can vary, reflecting the diversity in AI 

applications and their capabilities. Articulated by the OECD’s AI Experts Group, this 

definition has gained broad consensus among experts and it has been accepeted as an 

accurate and comprehensive description of AI by various organizations and governments. 

The concept of AI adoption developed and operationalized for this study, grounded in the 

definition of an AI system, is as follows: the implementation, deployment, and use of AI 

resources (data, AI infrastructure, skills, capabilities) in business processes. The 

development process is described in detail in Chapter 3. 

Researchers have shown that by developing a strong IT capability an organization can 

effectively leverage its IT investments and improve organizational and process performance 

(Santhanam & Hartono, 2003). This idea has been adapted for technologies such as business 

analytics, business intelligence, and Big Data analytics (Krishnamoorthi & Mathew, 2018; 

Mikalef, Krogstie, Pappas, & Pavlou, 2020; Shanks & Bekmamedova, 2012). Recent 

empirical research suggests that AI adoption impacts dynamic capabilities and can improve 

performance (Table 1). 
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These studies position dynamic capabilities as the mediators that link AI and organizational 

performance. Examples of dynamic capabilities include organizational creativity and agility, 

customer agility, process-oriented dynamic capabilities, and innovation (Breznik & D. 

Hisrich, 2014). Other dynamic capabilities relate to Big Data analytics and knowledge 

management processing. These studies describe the dynamic capabilities of an organization 

as its AI-enabled potential to initiate and create frame-breaking change, solve business 

problems based on the disposition to sense opportunities and threats, make timely and 

market-oriented decisions, and change its resource base (Bratnicka & Bratnicki, 2013). 

Other studies consider the direct impact of AI, emphasizing productivity and efficiency as 

outcomes (Alekseeva et al., 2020; Babina et al., 2021; Jain, 2019; Joseph & Falana, 2021; 

Kim et al., 2022; Lui et al., 2022; Lyu & Liu, 2021; Mishra et al., 2022; Panduro-Ramirez 

et al., 2022; Yang, 2022). 

In most existing studies (see Table 1), AI is viewed as an enabler, as technology incorporated 

into a system or process to enhance its capabilities or functionalities. Collectively, these 

studies emphasize AI’s role in improving organizational performance and innovation 

through advanced tools and technologies that augment human abilities, streamline processes, 

and generate insights from large volumes of data (Mikalef & Gupta, 2021; Mikalef et al., 

2023; Panduro-Ramirez et al., 2022). AI enhances efficiency, productivity, and innovation 

across sectors by leveraging data and automation (Joseph & Falana, 2021; Wamba, 2022). 

Additionally, the information-processing capabilities that AI introduces enable 

organizations to adapt or disrupt the market, innovate in their operations and strategies, 

improve decision-making, achieve sustainability, and navigate uncertainties in the supply 

chain (Chatterjee et al., 2022; Jain, 2019; Lui et al., 2022; Sullivan & Wamba, 2022; Wamba-

Taguimdje et al., 2020a). 

By contrast, in “AI-driven” systems or processes, AI plays a central and dominant role in 

decision-making, automation, or optimization. For example, AI-driven recommendation 

engines or chatbots provide real-time personalized recommendations without requiring 

human involvement by analyzing user behaviors and preferences. Several studies offer 

comprehensive insights into how AI can drive organizational performance and effectiveness 

across various dimensions. Mishra et al. (2022) show how AI can directly influence firms’ 

operational performance and efficiency metrics. (Kim et al., 2022) find that AI adoption 

drives firm transformation, affecting value, profit, and operational dynamics. Studies 

consider the direct impact of AI on productivity and employee profiles (Yang, 2022), and its 

transformative effects in the energy sector (Lyu & Liu, 2021) and in manufacturing (Naz et 

al., 2022). 

However, other studies focus on AI as an enabler, emphasizing its impact on Big Data 

analytics. For example, Babina et al. (2021) highlight AI’s transformational effect on 

innovation and economic growth and Fotheringham and Wiles (2022) demonstrate how AI, 

particularly chatbots, impact value across the organization by influencing the response of 
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investors. These studies provide evidence of the importance of AI as a driver of 

organizational change, innovation, and performance improvement. 

AI’s role as a mediator of organizational performance is considered in several studies. Bag, 

Gupta, et al. (2021) find that AI mediates the relationship between Big Data technology and 

knowledge creation in business-to-business marketing, impacting decision-making and 

organizational performance. Similarly, Joseph and Falana (2021) consider AI as a mediator 

in the relationship between technological innovation and performance and find that it 

facilitates improvements in operational efficiency. Chetty (2019) emphasizes that AI 

mediates the relationship between Big Data analytics, organizational capabilities, and 

performance by enabling advanced data analysis. Ho et al. (2022) show that AI mitigates the 

adverse effects of the COVID-19 pandemic on performance, serving as a resilient, crucial 

driver for sustainable performance in challenging environments. Finally, Alekseeva et al. 

(2020) demonstrate that AI skills and expertise within the organization facilitate outcomes, 

such as growth, productivity, and investment decisions. These studies collectively 

underscore AI’s pivotal role as a mediator in shaping the relationships between factors such 

as capabilities, technology adoption, external shocks, and organizational performance, but 

at the same time, underline AI’s role as an enabler. 

Following the literature review, we consider how AI facilitates dynamic capabilities and its 

transformative effects. The transformative changes enabled by AI are often powered by the 

adoption and utilization of AI technologies, which play a central role in driving innovation. 

We posit that AI-specific abilities to create intelligent agents facilitating automation–

augmentation of decision-making and transformation (redesign) of business processes can 

unlock organizational performance gains (Wamba-Taguimdje et al., 2020a). In light of the 

above, we formulate the following hypothesis: 

H1: AI adoption directly positively influences organizational performance. 

Organizations may struggle to leverage AI technologies and realize performance gains 

(Mishra & Pani, 2020). There is also strong evidence that AI investment can reduce a firm’s 

market value (Lui et al., 2022), and is risky for managers, complicating AI adoption 

(considering operational and broader contextual factors). Investors can perceive disruptive 

innovation investments (Lui et al., 2022). Hence, a more complete understanding of the 

value-generation process is necessary to predict outcomes and reduce the investment risk in 

AI adoption. 

2.2 AI Business Value Model 

Empirical studies generally suggest that processes mediate the impact of IT on 

organizational performance (Bhatt & Grover, 2005; Kim, Shin, Kim, & Lee, 2011; 

Krishnamoorthi & Mathew, 2018; Marie Burvill, Jones-Evans, & Rowlands, 2018). We 

adopt the integrative IT business value model (Melville et al., 2004) to study AI adoption in 
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the BPM setting. The model offers a comprehensive perspective on the process of AI 

business value generation and the integration of AI resources, capabilities, business 

processes, process performance, organizational performance, and the external environment.  

Since the model is process-oriented, one of the central focuses of the analysis is business 

processes (Melville et al., 2004; Mooney et al., 1996). Although AI technology broadly 

impacts all business processes, certain types are particularly affected. The analysis especially 

considers knowledge-intensive processes and decision-making processes. After considering 

the scope of the BPM context, we identify several organizational capabilities and align these 

with the IT business value model. 

New digital technologies such as AI have become increasingly important in managing 

business processes (Mendling, Pentland, & Recker, 2020). Prior research (Table 1) shows 

that particular organizational capabilities mediate the impact of AI. While aligning AI and 

AI-enabled capabilities (explored in Sections 3.4.1.4, 3.4.1.5, and 3.4.3) with BPM 

capabilities (Kerpedzhiev, König, Röglinger, & Rosemann, 2020), we identify three 

capabilities: CBPA, organizational learning (OL), and business process innovation (BPI). 

CBPA is aligned with Cognitive Decision Assistance (Advanced Process Automation as per 

Kerpedzhiev et al., 2020), OL with Cognitive Insights, Cognitive Engagement and Cognitive 

Decision Assistance (core element People as per Kerpedzhiev et al., 2020), and BPI with all 

AI adoption subdimensions, and (Agile Process Improvement and Transformational Process 

Improvement as per Kerpedzhiev et al., 2020). 

Cognitive business process automation automation – reducing human interaction in 

operations (Sarker, 2022) – is a strategic BPM capability; it facilitates business 

transformation and productivity improvements (Baier, Lockl, Röglinger, & Weidlich, 2022; 

Engel, Ebel, & Leimeister, 2022; Lacity & Willcocks, 2021). According to (Kerpedzhiev et 

al., 2020) and in line with Cepeda and Vera (2007), it can be considered an operational 

capability (zero-order: geared toward the operational functioning of an organization). It 

allows existing processes to be streamlined via the exploitation of automation technologies 

to assist human participants in performing unstructured tasks and complex decisions or to 

fully automate such tasks and decisions. However, automation allows AI to be leveraged for 

adaptability, that is, the context-aware execution and redesign of business processes, and can 

thus be understood as a dynamic capability (first-order: dedicated to modifying operational 

capabilities). 

The BPM capability framework has several core elements, and in the areas of people and 

culture, for example, learning and knowledge in different fields is essential (Helbin & Van 

Looy, 2021; Kerpedzhiev et al., 2020). Organizational learning can thus also be considered 

a BPM capability. 

Digital transformation using new digital technologies enables organizations to improve and 

innovate business processes (Mendling et al., 2020; Sullivan & Wamba, 2024). Drawing on 
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Kerpedzhiev et al. (2020), this perspective integrates the operational capability of fast, 

iterative, and incremental process improvements (BPII) and the dynamic capability of 

progressive or radical transformational process improvements (BPIR), reflecting an 

ambidextrous innovation view (Belhadi, Mani, Kamble, Khan, & Verma, 2024). 

We expand upon prior research (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Enholm et al., 

2021; Mikalef et al., 2023) and, ensuring adherence to the IT business value model, we 

examine outcomes on the process level, considering business process performance (BPP) 

and decision-making performance (DMP). We then extend the model to organizational 

performance. The individual relationships are presented in Figure 1. 

We follow the guidelines of Hong, Chan, Thong, Chasalow, and Dhillon (2014) on context-

specific theorizing and apply the IT business value-generation process model to the AI 

technology context. As AI resources are a subset of IT resources and share similarities with 

these (Deng, Zhang, He, & Xu, 2023; Deng, Zhang, & Xu, 2023; Mikalef & Gupta, 2021; 

Wamba-Taguimdje et al., 2020b), we can refer to the existing literature on IT resources and 

their impact on business processes. We contextualize the established theory of IT business 

value (Melville et al., 2004) by replacing IT with AI resources following the first level of 

contextualization (Level 1). For the second level of contextualization (Level 2a), we include 

BPM capabilities as antecedents of dependent variables, that is, as mediators, to 

contextualize complementary organization resources. Core components of BPP and 

organizational performance are applied in the context of process and organizational impacts 

(Level 1 contextualization). In addition, we add DMP as an antecedent of the dependent 

variable of BPP (Level 2a). We add contextual variables to capture the competitive and 

macro environment as controls (moderators) as second-level contextualization (Level 2b). 

We also add contextual organizational variables (digital maturity, data-driven culture, BPM 

maturity, and organizational culture) as moderators. A graphical representation of the 

procedure is presented in Appendix 3: Contextualization procedure. We position the 

adoption of AI technology as a central focus of our research. Figure 1 shows the conceptual 

framework and the nexus of the relationships between the main constructs. 

  



16 

Figure 1: Proposed Research Model 

 

 

Source: Own work. 
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process productivity. Next, we theorize about the impact of AI adoption on four dimensions 

of process performance. 

2.3.1 Process Execution Time 

The automation of repetitive tasks mainly impacts process execution time (e.g., transferring 

data for back-office administrative and financial activities, rule-based robotic process 

automation). These tasks are completed faster and with fewer errors, allowing the processing 

of vast amounts of structured and unstructured data (data from documents, electronic 

communication, audio, video or image materials), producing real-time data insights (e.g., 

fraud detection, targeted marketing, actuarial modeling, credit scoring, behavioral anomaly 

detection), and event identification and processing (e.g., anomaly detection and risk 

detection (Davenport & Ronanki, 2018; Plastino & Purdy, 2018; Roeglinger et al., 2018; 

Zasada, 2019). Waiting or idle time is also reduced by automation, releasing resources (e.g., 

relieving employees of repetitive routine tasks) and synchronizing related sub or chained 

processes (e.g., shop floor optimization). 

2.3.2 Operational Costs 

Operational costs are also decreased by automation. It reduces the labor cost in 

manufacturing (e.g., through computer vision-guided robotics) or delivering a service (e.g., 

insurance claim processing, chatbots, virtual assistants, recommendation systems), thereby 

increasing productivity (Bawack, Fosso Wamba, & Carillo, 2019; Schatsky, Muraskin, & 

Gurumurthy, 2014). Typical fixed costs of infrastructure and maintenance are decreased with 

AI-enabled planning, scheduling, and optimization (e.g., resource planning, supply chain 

optimization, and requirement engineering). It allows the detection of anomalies and deviant 

behavior (e.g., proactive incident detection, provider–consumer anomaly detection for 

healthcare systems, threat detection, DevOps monitoring, and smart city applications such 

as traffic, air quality, water distribution, energy consumption). It is also employed for 

predictive maintenance (e.g., digital twin, failure prediction, processing and refining 

maintenance, predictive acoustics maintenance, predictive disaster recovery, smart 

buildings, infrastructure maintenance, and facilities management; see Prieto, 2019; Schatsky 

et al., 2014). Automation of marketing and talent management systems can reduce variable 

costs from sales, supply chain fluctuations, and hires (e.g., demand forecasting, trend 

identification, and candidate screening automation; see Heimbach, Kostyra, & Hinz, 2015; 

Todor, 2016; Tussyadiah, 2020). 

2.3.3 Process Quality 

We examine two aspects of process quality (Dumas et al., 2018). First, with respect to the 

external quality perceived by customers, AI can generate valuable insights from customer-
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related data and support data-driven decision-making about products and services. 

Applications include marketing automation, marketing intelligence, customer relationship 

management, and customer experience management systems (e.g., self-optimizing campaign 

design and management, context-aware marketing, account opening, client onboarding, 

advanced targeting and retargeting; Aydiner, Tatoglu, Bayraktar, Zaim, et al., 2019; Prieto, 

2019).  

Second, internal quality concerns control over execution and variation (Dumas et al., 2018). 

AI-enabled process execution management offers several features, such as analysis, 

prediction, monitoring, control, and optimization (e.g., predictive business process analytics, 

process model and requirement-discovery automation, process mining and monitoring, and 

sensor-enabled process intelligence; Zasada, 2019). 

2.3.4 Flexibility 

In this context, flexibility is the ability to respond to changes and to allow for appropriate 

response times in event-driven business environments; Dumas et al. (2018) distinguish 

runtime and build-time flexibility. The learning aspect of AI technology mainly impacts the 

flexibility of processes. AI systems use inputs to perceive real and/or virtual environments 

and can abstract these perceptions into models through automated analysis. New inputs 

(data) are processed automatically, increasing the model’s scope and accuracy in predictions, 

recommendations, or decisions. Business rules, policies, or other analytical models can be 

mapped to predicted data at runtime to assist decision-making. AI can deal with uncertainty 

when the process being implemented is based on a loosely or partially specified process 

model. The full specification is made during runtime and may be unique to each process 

(Reichert, 2011). At build-time, many processes are only implicit in purpose-built 

documents, digital exhaust, and system logs. Across the entire spectrum, from structured to 

unstructured processes, AI can help capture and codify process specifications to facilitate 

further automation while retaining the requisite flexibility (Hull & Motahari-Nezhad, 2016). 

2.4 Organizational Performance 

The established connection between IT and value generation (Melville et al., 2004; Patas et 

al., 2012; Wade & Hulland, 2004; Wiengarten, Humphreys, Cao, & McHugh, 2013) 

highlights the importance of seamlessly integrating IT into broader organizational and 

information systems to maximize value creation. As discussed in Section 2.1, empirical 

studies indicate a link between the adoption of AI and organizational performance that 

manifests in increased business value and competitive advantage (Bag, Gupta, et al., 2021; 

Bhatnagar, 2020; Kim et al., 2022; Mikalef & Gupta, 2021; Mishra et al., 2022; Wamba-

Taguimdje et al., 2020a; Wamba, 2022). We operationalize organizational performance with 

reference to the organization’s overall productivity, profitability, financial indicators, and 

market performance; the latter refers to the organization’s success in entering and 
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introducing new products or services to the market (Wang, Liang, Zhong, Xue, & Xiao, 

2012). In the following section, we explore how AI impacts key dimensions of 

organizational performance. 

2.4.1 Productivity 

AI can potentially enhance productivity3, and represents a key metric of its economic 

contribution (Yang, 2022). 

Organizational performance is often described as the umbrella term for excellence. It 

includes profitability, productivity, and other non-cost factors of quality, speed, delivery, 

and flexibility (Rogers & Rogers, 1998; Tangen, 2005). In this research, we measure the 

organization’s performance by comparing its productivity gains to those of competitors 

(Section 5.5.9). Non-cost factors are the effectiveness and efficiency of the transformation 

process and are, to some extent, cross-functional. Effectiveness is the degree to which the 

desired results are achieved, and efficiency is how well resources are utilized in the 

transformation process. Based on this, we define productivity growth as the net change in 

output due to efficiency-related and technical changes (Grosskopf, 1993), in this case, the 

introduction of AI. We introduce a BPP variable to obtain a more detailed view of the AI 

value-generation process; this measures the effectiveness and efficiency of the 

transformation process at the process level. 

Existing studies show that AI’s impact on productivity is primarily driven by non-cost 

factors related to efficiency and technical change, such as quality, speed, and flexibility. 

Yang (2022) presents evidence of productivity gains achieved through AI’s transformational 

effect on production methods. AI also allows organizations to identify new ways of 

combining existing technologies (Agrawal et al., 2017). There are examples of the use of AI 

in process management systems in manufacturing to improve input efficiency and analyze 

and adjust equipment performance from sensory data. In automation production 

programming, engineers are being replaced by machine learning and deep learning, which 

have been designed to automatically learn production patterns from data (Brynjolfsson & 

Mitchell, 2017). Computer vision systems are used to reduce error rates or identify defects 

in visual inspection (e.g., image processing for control and measurement systems). They 

expands the robot’s routine machine actions with various hand-eye coordination tasks 

(Levine, Finn, Darrell, & Abbeel, 2016).  

Lyu Lyu and Liu (2021) present evidence that the use of AI technology itself attracts the 

most talented and skilled employees, and, in turn, this high-level workforce positively 

impacts productivity. However, there may be a lag between the deployment of AI technology 

and any productivity gains (Jovanovic & Rousseau, 2005). This may be attributable to 

                                                 
3 We follow Tangen (2005) and define productivity as the ratio of output quantity (i.e., the number of products 

or services provided according to specification) divided by input quantity (i.e., all resources consumed in the 

transformation process). 



20 

adjustment costs, complementary innovations, and organizational changes (Brynjolfsson, 

Rock, & Syverson, 2017). 

2.4.2 Profitability 

Like productivity, profitability4 is a relationship between output and input, specifically, a 

monetary relationship that includes price factors, allowing price recovery (Tangen, 2005). 

In the context of profitability, price recovery refers to an organization’s ability to recover its 

costs and generate profits. Tangen (2005) emphasizes that organizations should combine 

productivity and profitability ratios to clarify the reasons underlying increased profits. 

However, productivity improvement may not have an immediate impact on profits; rather, 

it may impact long-term profitability (Tangen, 2005). Productivity and profitability are 

interdependent but not always correlated. Grünberg (2004) argues that profitability results 

from operational actions and processes and is not a direct contributor to improvements. We 

conclude that AI’s impact on profitability comes mostly from increased productivity and 

improved process-level decision-making. 

According to Panduro-Ramirez et al. (2022), AI’s impact on business decisions and 

profitability are directly linked. The authors recognize that AI applications play a vital role 

by creating information from business operations data, and providing reliable and accurate 

information for decision-making. Alekseeva et al. (2020) present evidence of a positive 

association between AI adoption and changes in sales volume and various productivity 

measures and investments. The main drivers of these changes are AI-enabled marketing 

automation, marketing intelligence, and customer relationship management applications, 

allowing better targeting to attract more customers and allow higher product prices. It can 

also improve the precision of forecasts, facilitating better decision-making and cost 

optimization, for example, reducing the cost of order handling and inventory management. 

Babina et al. (2021) highlight AI investment’s contribution to the growth of sales and market 

valuation through product innovation, reflected in trademarks, product patents, and product 

updates. 

2.4.3 Market Performance 

Researchers present evidence of market-based performance gains created either through new 

products (product innovation) or optimizing business processes (process innovation; Mishra 

& Pani, 2020). Essential AI applications in this field include expert decision support systems 

for new product evaluation projects and knowledge-based systems supporting conceptual 

                                                 
4 Profitability is defined in various studies as the product of productivity and price recovery, where productivity 

represents output quantity per input quantity (Alsyouf, 2007; Grifell-Tatjé & Lovell, 2018; Miller, 1984), while 

Bernolak (1997) and Diewert (2014) state that profitability is the ratio of the value of outputs produced in a 

period to the total cost of producing those outputs. 
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design and group decision-making in concurrent engineering (Rao, Nahm, Shi, Deng, & 

Syamil, 1999). 

Automating manual processes frees up human resources with the potential to engage in 

creative processes, and organizations will be more likely to innovate. Mikalef and Gupta 

(2021) present evidence of AI’s impact on organizational creativity, for example, by 

augmenting ideas using generative design. Generative design utilizes AI technology to 

produce high-performing design alternatives from a singular design idea. Engineers provide 

input data – spatial requirements, materials, manufacturing methods, and cost constraints – 

and generative design takes these to create hundreds of feasible alternatives to the original 

design. The AI tests and learns from each successful and unsuccessful iteration, ultimately 

creating design alternatives. 

2.4.4 Customer Relations 

AI transformation drives improvements in customer relations and the development of new 

products and services. These are closely linked in supporting service transformation through 

innovation and process redesign. Wamba (2022) shows that AI impacts customer 

relationships and experience management. Customer predictive insights allow the 

personalization of offers and services, anticipation and reduction of customer churn, and 

improvement of lead generation and scoring for sales or cross-sales. Extracting customer 

sentiment and identifying trends by deep mining internal and external data (e.g., social 

media) supports and facilitates customer interactions for market intelligence, improved 

customer service, products, and customer experience (Hadjielias, Christofi, Christou, & 

Drotarova, 2022). AI allows companies to better perceive and respond to changes in the 

broader external environment in real time and generate intervention strategies for customer-

related innovative competitive actions and opportunities (Haftor, Climent, & Lundström, 

2021; Liu, Chan, Yang, & Niu, 2018). AI supports evidence-based decisions in marketing, 

product development, and customer relationship management (Chen & Lin, 2021). 

2.5 The Mediating Role of Business Process Performance 

Business processes comprise key business operations that must be managed for business 

growth and success (Mithas, Ramasubbu, & Sambamurthy, 2011). Superior BPP is related 

to the transformation of organizational productivity, which includes individual and 

operational efficiency (i.e., doing things right), customer service efficiency, and 

product/service development (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Tangen, 2005). 

The aggregated outcomes of various processes directly influence the organization’s 

performance (Bhatt & Grover, 2005). Process performance is also measured by operational 

effectiveness (i.e., doing the right things and achieving goals and objectives), which is 

expected to translate into organizational performance (Elbashir, Collier, & Davern, 2008). 
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BPP indicators should thus be aligned with the organization’s goals (Aydiner, Tatoglu, 

Bayraktar, Zaim, et al., 2019; Bisogno, Calabrese, Gastaldi, & Levialdi Ghiron, 2016). 

In Section 2.2, we discuss AI resources as a subset of IT resources, including the hardware, 

software, and data specifically used to implement, train, and run AI applications. The 

existing literature on IT business value establishes that process performance mediates the 

link between IT resources and organizational performance. According to Melville et al. 

(2004), performance comprises business processes and organizational performance. The IT 

business value framework model adopted here separates the operational efficiency of 

specific business processes and overall organizational performance. Prior research on IT 

business value offers a more detailed perspective on the role of BPP in organizational 

performance (Aydiner, Tatoglu, Bayraktar, Zaim, et al., 2019; Elbashir et al., 2008; Gu & 

Jung, 2013; Hernaus, 2012, 2016; Kohlbacher, 2010). Several authors emphasize that the 

benefits of business processes are expected to translate into organizational performance 

(Melville et al., 2004; Tallon, Kraemer, & Gurbaxani, 2000). However, whether 

performance is impacted also depends on other factors, including the scope of the process in 

question, the extent to which it is core to the organization, the organization’s decision-

making process, and its competitive environment (Aydiner, Tatoglu, Bayraktar, & Zaim, 

2019; Dehning & Richardson, 2002; Melville et al., 2004; Subramani, 2004). 

Although several studies demonstrate AI’s direct impact on organizational performance 

(Table 1), it is theorized that AI’s first-order impacts occur at the operational level (Enholm 

et al., 2021; Mikalef et al., 2023; Wamba-Taguimdje et al., 2020b). Key performance 

indicators related to the efficiency and effectiveness of performance improvements at the 

process level are proposed to monitor an organization’s output (Wamba-Taguimdje et al., 

2020b). The second-order impacts of AI are broader and are related to the organization’s 

overall performance, strategy, or structure (Enholm et al., 2021). It is necessary to examine 

AI’s impacts at the process (first-order) and organizational levels (second-order). 

The first-order impact of AI on process efficiency and effectiveness results from its ability 

to automate tasks and enhance human intelligence, thereby increasing process productivity 

indicators such as speed, cost, delivery, quality, and flexibility (Coombs, Hislop, Taneva, & 

Barnard, 2020; Kirchmer & Franz, 2019).  

Automating repetitive routine tasks allows employees to focus on other knowledge-intensive 

activities (Makarius, Mukherjee, Fox, & Fox, 2020). Even so, organizations can achieve 

much more when AI is combined with automation to transform and digitalize operations 

(Tschang & Almirall, 2021). Many organizations report that accurate demand projection and 

forecasting have enabled them to reduce costs, increase revenue, and optimize the use of 

their assets, enhancing the efficiency of research and development (R&D) and lowering 

manufacturing costs. In terms of effectiveness, AI increases the quality of products and 

services (e.g., improves the error rate and lag times with real-time monitoring, eliminates 

waste, lowers process cycle times, optimizes robotics and processes, increases safety by 
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automating risky activities, reduces inventory costs with better supply and demand 

planning). Furthermore, marketing can be automated (e.g., customer targeting, 

demographics, pricing strategies, and branding), the customer experience improved, and the 

organizations’ throughput increased, particularly in manufacturing (i.e., smart 

manufacturing) and supply chain operations (Balasundaram & Venkatagiri, 2020; Finch, 

Goehring, & Marshall, 2017; Tao, Qi, Liu, & Kusiak, 2018). These AI-impacted areas and 

value-creation processes are significant for gaining a competitive advantage by bringing 

innovation to the market more quickly (Dash et al., 2019). In short, wherever a process uses 

digital data, AI can be applied to ensure data are used more effectively and that digital 

operations, products, and services are more efficient. 

AI systems can also enhance human intelligence. Some researchers have adopted the 

augmentation perspective, highlighting how AI can improve personal productivity 

(Agrawal, Gans, & Goldfarb, 2018; Daugherty & Wilson, 2018). AI systems tend to augment 

rather than replace human capabilities by providing assistive systems such as predictive 

analytics or generative AI productivity tools, resulting in improved (human) intelligence 

(Jarrahi, Lutz, & Newlands, 2022; Maedche et al., 2019). 

Although the adaptive organizational capabilities necessary to increase operational 

efficiency can be acquired through AI, organizations must maximize the effectiveness of 

their AI resources to promote strategic flexibility and business value. To realize second-

order impacts requires that AI capabilities be optimized to enable the integration of digital 

transformation alignment (Perifanis & Kitsios, 2023). 

In terms of organizational performance, we position the BPP measure to represent the 

productivity measure’s non-cost factors (i.e., quality, speed, delivery, and flexibility), 

referring to the effectiveness and efficiency of the productivity transformation process, that 

is business processes (Rogers & Rogers, 1998; Tangen, 2005). 

We illustrate this further by considering the well-established balanced scorecard framework 

(Ferreira & Otley, 2009) which is a management system aimed at translating an 

organization’s strategic goals into a set of organizational performance objectives. As we 

separate the internal processes from the overall measurement of organizational performance, 

the mediating role between BPP and organizational performance is revealed (Kaplan, 2009; 

Van Looy & Shafagatova, 2016). We obtain a more detailed view of the impact of AI 

adoption at lower (process) and higher-order (organizational) levels (Enholm et al., 2021). 

Drawing upon these conclusions, we argue that AI resources help organizations create value 

through their direct impact on business processes. IT, and by extension, AI, typically 

provides automated support to business processes and interprocess linkages (Barua, Kriebel, 

& Mukhopadhyay, 1995; Mukhopadhyay & Kekre, 2002; Subramani, 2004). As such, 

research on process-level benefits does more than demonstrate that value is created; it also 

explains how that value is created (Davern & Kauffman, 2000). The second-order impacts 
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of AI at the organizational level are the consequence of the use of AI in operations (Enholm 

et al., 2021). 

Despite the theoretical foundation for the mediating role of BPP, there is limited empirical 

research on the links between AI adoption and organizational performance that includes 

BPP. We thus formulate the following hypothesis. 

H2: Business process performance positively influences organizational performance. 

2.6 The Mediating Effect of Decision-Making Performance 

DMP concerns the efficiency and effectiveness of organizational decision-making. Although 

evidence highlights the direct impact of IT on business-process performance, achieving these 

effects depends on having a robust and efficient decision-making process. IT tools are 

instrumental in aggregating and analyzing data to offer actionable insights (Aydiner, 

Tatoglu, Bayraktar, & Zaim, 2019; Cao, Duan, & Cadden, 2019; Ghasemaghaei, Ebrahimi, 

& Hassanein, 2018). AI extends this capability even further. In AI adoption, DMP allows 

firms to systematically collect, evaluate, and analyze the recommendations of AI systems, 

enhancing decision-making effectiveness (quality) and efficiency (Ashaari, Singh, Abbasi, 

Amran, & Liebana-Cabanillas, 2021). AI systems replace human decision-makers for 

structured or semi-structured decisions (automation) or function as a tool to support 

unstructured decision-making at the process or strategic organizational level (augmentation; 

Duan et al., 2019; Edwards, Duan, & Robins, 2000; Taylor, 2011). Thus, AI-assisted 

decision-making can significantly increase operational efficiency and productivity to 

achieve superior performance (Ashaari et al., 2021; Chatterjee, Rana, Tamilmani, & Sharma, 

2021). We examine the impact of DMP on process and organizational performance. 

2.6.1 Decision-Making Performance and Business Process Performance 

Research on information processing capabilities indicates that organizations proficient in 

data capture and management can integrate insights into their business processes and 

operations, enabling them to make data-driven decisions (Cao et al., 2019; Chen, Preston, & 

Swink, 2015; Günther, Mehrizi, Huysman, & Feldberg, 2017; Kiron, Prentice, & Ferguson, 

2012; LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011). 

Making decisions based on relevant data and metrics enables organizations to identify 

opportunities for process improvement and implement changes that enhance efficiency. 

Decisions based on intuition or without data often fail to address the underlying causes of 

process issues (Korherr, Kanbach, Kraus, & Mikalef, 2022). Effective decision-making can 

streamline processes, eliminate unnecessary steps, and improve overall workflow, resulting 

in faster completion times and reduced costs. Agile decision-making ensures continuous 

process flow and quickly adjusts to market conditions or unforeseen circumstances, essential 
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for sustaining process performance under varying conditions. This capability enables 

organizations to seize opportunities and mitigate risks (Robert Baum & Wally, 2003). Data-

driven decision-making helps optimize resource allocation and utilization, thereby 

enhancing process efficiency (Strauch, Pidun, & zu Knyphausen-Aufsess, 2019). 

Conversely, slow or indecisive decision-making can halt progress. 

Access to accurate, timely information and effective strategies helps decision-makers 

optimize business processes for efficiency and productivity. Well-informed decisions 

minimize errors and delays, enhance overall process quality, and improve customer 

satisfaction (Janssen, Van Der Voort, & Wahyudi, 2017; Litvaj, Ponisciakova, Stancekova, 

Svobodova, & Mrazik, 2022). 

Decisions that promote innovation can improve processes by integrating new technologies 

and methodologies, leading to better process performance and the development of new 

products, services, and processes. The likelihood of innovation success is associated with 

the systematic reduction of decision-making uncertainty as a result of organizational 

information gathering, diffusion, and processing activities (Van Riel, Lemmink, & 

Ouwersloot, 2004). 

To that end, many organizations increasingly utilize data analytics (information processing 

capability) to manage Big Data and to improve their decision-making processes (Fernández 

et al., 2014). Data analytics encompasses a variety of methods and tools, such as predictive 

analytics, statistics, data mining, artificial intelligence, and natural language processing 

(Ghasemaghaei et al., 2018; Russom, 2011). These methods are frequently applied to large 

and sometimes dispersed datasets to derive valuable insights that enhance organizational 

decision-making (Ertemel, 2015). 

Even though making decisions with human actors is complex, it is relatively well 

understood, and incorporating AI into the process adds a whole new layer of complexity 

(Von Krogh, 2018). AI, particularly machine learning, can learn from big data to make 

predictions, but only if the future behaves similarly to the past. The rapid development of AI 

is driven by its potential to facilitate fast, precise, and cost-effective decision-making 

processes, approaching the level of human cognitive capability (Agrawal, Gans, & Goldfarb, 

2019b). Advancements in AI-enabled machine prediction drive machines' ability to perform 

cognitive tasks. Next, we explore the impact of these improved predictions on business 

processes (Shrestha, Ben-Menahem, & Von Krogh, 2019). 

Koehler (2018) adopts an abstraction of AI’s impacts on the main activities in a business 

process (Figure 2). A process uses given data to generate a prediction. The prediction is the 

basis for deciding how a human or intelligent agent will behave in executing a particular 

action. The abstraction is consistent with our definition of the intelligence agent making 

predictions, recommendations, or decisions to influence real or virtual environments 

(OECD, 2019, 2024). The transitions between activities can be automated or partially 
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performed by humans, augmenting human decision-making. Three key AI technologies 

drive optimization and the increased quality and flexibility of business processes: machine 

learning, decision and utility theory, and search algorithms (Koehler, 2018). Deep learning 

(a subset of machine learning) algorithms, in particular, promise benefits for process 

decision-making, for example, by assisting employees with information processing and 

augmenting their analytical capabilities, predictions, or robust patterns using Big Data 

(Shrestha, Krishna, & von Krogh, 2021). Predictions become more valuable when data are 

more widely available and accessible. With the expansion of data availability, it is becoming 

increasingly feasible to make predictions in various tasks (Agrawal et al., 2017). 

Figure 2: Common Business Process Design 

 

 

Source: Adapted from Koehler (2018) 

Common business process design can be illustrated with a simple credit score example. A 

business process is usually triggered by some event, in this case, by a loan application. Data 

drives the business process toward its goal (Hull & Motahari-Nezhad, 2016; Roeglinger et 

al., 2018; Zasada, 2019), the loan approval or denial. Many different data sources are 

integrated, and data are mapped to a model, aggregated, condensed, and analyzed to arrive 

at an interpretation and assessment to predict the credit score. Based on the prediction, a 

decision is made, and one or several actions are taken; when the decision is to approve the 

loan, an account is opened, and the money is transferred. 

Decision-making is critical for superior process performance. Organizations prioritizing 

such capabilities enhance their business process efficiency. AI increases the speed, 

flexibility, and quality (more data sources, better predictions) of the decision-making process 

and, in turn, positively impacts BPP. The following hypothesis offers a more general 

formulation of the relationship: 

H3a: Decision-making performance positively influences business process performance. 

Judgment goes beyond simple prediction in influencing decision-making. Predictions rely 

on clear information to forecast the future, while judgment incorporates intangible factors 

like intuition and experience that are difficult to define. These unquantifiable elements are 

essential for navigating unfamiliar situations. Unlike passive information processing, 
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judgment is an active process demanding thoughtful analysis (Agrawal et al., 2019b). With 

AI automating decision-making, a critical challenge emerges: should it entirely replace 

human judgment (automation) or work alongside it to enhance it (augmentation)? 

2.6.2 Decision-Making Performance and Organizational Performance 

Managers make high-risk decisions in highly unpredictable, ambiguous, time-constrained, 

and emotionally strained contexts (Baron, 2004; Cao, Duan, Edwards, & Dwivedi, 2021; 

Shane & Venkataraman, 2000). At an organizational level, the decision-making process 

involves understanding the trends and patterns in business growth (Amoako, Omari, Kumi, 

Agbemabiase, & Asamoah, 2021; Keding, 2021). Managers use AI-enabled processing 

capabilities to learn and augment their decision-making capacity by gaining insights into 

emerging phenomena, making predictions, and extracting information from Big Data 

(Ghasemaghaei et al., 2018). 

Accurate data are not obtained solely for practical insight; in strategic decision-making, data 

are also important for implementation. Managerial decision-making is primarily knowledge-

based (Wiklund & Shepherd, 2008; Zhang, Liao, & Bellamy, 2020). Therefore, AI-enabled 

knowledge-based information systems (i.e., decision automation systems, knowledge 

engineering and expert systems, and decision support systems) are valuable tools, enabling 

evidence-based decision-making and problem-solving in complex business situations. AI-

based applications are already being implemented in many knowledge-based domains 

(Agrawal, Gans, & Goldfarb, 2019a). Several studies find that AI-based decision-making 

directly impacts organizational performance (Ashaari et al., 2021; Chen, Esperança, et al., 

2022; Keding & Meissner, 2021; Rahman, Hossain, & Fattah, 2021; Yasmin, Tatoglu, Kilic, 

Zaim, & Delen, 2020). We thus propose the following hypothesis: 

H3b: Decision-making performance positively influences organizational performance. 

2.7 Automation–Augmentation: The Relationship Between AI Adoption, 

Cognitive Business Process Automation and Organizational Learning 

Automation and augmentation are two main use cases for AI technology to increase 

performance (Davenport & Kirby, 2016; Enholm et al., 2021; Grønsund & Aanestad, 2020; 

Raisch & Krakowski, 2021; Rouse & Spohrer, 2018; Wilkens, 2020). Automation implies 

that machines take over a human task, and augmentation means that humans work closely 

with machines to perform a task. Automation allows organizations to achieve cost 

efficiencies, establish faster processes, and ensure greater rationality and consistency in 

information processing. Augmentation generates complementary benefits from the mutual 

enhancement of human and machine skills. Integrating automation and augmentation leads 

to additional benefits from synergies between these interdependent activities (Langer & 

Landers, 2021; Raisch & Krakowski, 2021). The benefits of each suggest that the 
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combination of automation and augmentation generates complementary returns that lead to 

increased performance (Grønsund & Aanestad, 2020). 

The literature on management information systems suggests that capabilities mediate the 

impact of IT on performance (Krishnamoorthi & Mathew, 2018; Marie Burvill et al., 2018). 

Each of the mediating factors aids in the development of resources and enhances their 

performance impact. The mediating factors undergo their own developmental process and 

impact performance, albeit indirectly. This is especially likely where automation and 

augmentation are combined; with a higher level of AI adoption and technology exploitation, 

organizations move from augmentation to automation. The mediating factors influence the 

resources and each other (Marie Burvill et al., 2018). Next, we examine automation and 

augmentation with respect to AI-enabled capabilities and how these mediate the impact of 

AI on performance. 

Automation and augmentation are often at either end of the human–machine collaboration 

spectrum (Raisch & Krakowski, 2021). Automation may vary from fully manual (i.e., 

human) to fully automatic (Parasuraman, Sheridan, & Wickens, 2000). A four-stage model 

for applying automation to different functions is proposed by Parasuraman et al. (2000): 1) 

information acquisition, 2) information analysis, 3) decision and action selection, and 4) 

action implementation. The model is consistent with common business process design 

(Agrawal et al., 2017; Koehler, 2018) and is appropriate for examining automation–

augmentation in the BPM setting. 

Automation can be applied on a continuum and extends from low to high automation, that 

is, from fully manual to fully automatic. Across this continuum, automation may augment 

the human performance of a particular task by increasing the capability of humans to 

approach and comprehend a problem and derive appropriate solutions (Grønsund & 

Aanestad, 2020). Von Krogh (2018) theorizes that it is in cases of problem-solving 

(algorithms providing alternative courses of action to resolve a problem) rather than 

decision-making (conclusions reached by the algorithms based on the data available) that 

algorithms appear to augment rather than substitute humans in their tasks. Humans 

outperform machines in dealing with ambiguity, vagueness, and incomplete information; 

they are better at unstructured problem-solving (Pavlou, 2018). Automated decision-making 

is often infeasible in business contexts because there is a need for accountability in decision-

making, and there is considerable decisional uncertainty (Eberhardt, Bilchik, & 

Stojadinovic, 2012). In summary, applied to the BPM context, automation is more suitable 

for structured processes and to augment knowledge-intensive and loosely structured or 

unstructured processes (Di Ciccio, Marrella, & Russo, 2015; Szelagowski & Lupeikiene, 

2020). 
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2.7.1 The Mediating Role of Cognitive Business Process Automation 

Automation is often highlighted as a key characteristic of AI, facilitating higher levels and 

greater scope of business process optimization (Brás, Pereira, & Moro, 2023). Although 

extensive theorization exists regarding process automation and IT (Mooney et al., 1996), the 

specific area of business process automation has not been as thoroughly investigated 

(Aysolmaz, Joshi, & Stubhan, 2023; Engel et al., 2022). IT has the potential to enhance 

operational efficiency through automation. It can also improve effectiveness and reliability 

by integrating processes (Mooney et al., 1996), impacting productivity and profitability 

(Kromann & Sørensen, 2019). AI-powered (enabled and driven) process automation has 

established itself in business operations by employing software agents, commonly known as 

bots. These agents interface with systems to replace human intervention to enhance 

efficiency, cut costs, and mitigate risks (Brás et al., 2023). Intelligent process automation 

started by automating simple tasks (previously performed by humans) or strictly 

transactional processes. With the introduction of AI and cognitive computing, intelligent 

process automation has become more sophisticated, adding new capabilities to handle more 

complex tasks. Complex tasks that require judgment, rule-following, decision-making, and 

navigating unpredictable situations encompass evaluation, reasoning, and compliance with 

probabilistic and deterministic process requirements in dynamic contexts ("IEEE Approved 

Draft Guide to Terms and Concepts in Intelligent Process Automation," 2017; "IEEE Guide 

for Terms and Concepts in Intelligent Process Automation," 2017). 

We distinguish two approaches to automation, which is consistent with the OECD (2019): 

definition of an AI system: 1) Classical AI applies rules-based logic to decide what 

intelligent action to take; 2) Constructed AI uses ML algorithms to discover patterns from 

data (Richardson, 2020; Stuart, 2019). Based on this distinction, intelligent process 

automation (IPA) is a set of new automation technologies (Richardson, 2020; Suri, Elia, 

Arora, & van Hillegersberg, 2019; Williams, Allen, & McDonough, 2018; Zhang, 2019). 

The literature, however, distinguishes between IPA and cognitive automation (Marciniak, 

Moricz, & Baksa, 2020; Ng et al., 2021b; Richardson, 2020; Siderska, 2020; Suri et al., 

2019; Zhang, 2019). Some studies treat these as equivalent (Anagnoste, 2018; Kokina & 

Blanchette, 2019; Naga Lakshmi, Vijayakumar, & Sai Sricharan, 2019; Williams et al., 

2018). 

2.7.1.1 Intelligent Process Automation 

We understand IPA according to the definition given by the IEEE Standards Association 

Working Group for Intelligent Process Automation ("IEEE Approved Draft Guide to Terms 

and Concepts in Intelligent Process Automation," 2017, p. 11), as a broad concept 

encompassing rule-based and inference-based decision-making, that is, “a preconfigured 

software instance that combines business rules, experience-based context determination 

logic, and decision criteria to initiate and execute multiple interrelated human and automated 
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processes in a dynamic context. The goal is to complete the execution of a combination of 

processes, activities, and tasks in one or more unrelated software systems that deliver a result 

or service with minimal or no human intervention.” 

2.7.1.2 Cognitive Automation 

We consider cognitive automation as being at the higher end of the automation spectrum. 

Advances in automation are enabled by AI technology, specifically cognitive technologies, 

and is operationalized by cognitive computing (further detailed in Section 3.2). Technologies 

like machine or deep learning, natural language processing, computer vision, automated 

reasoning, and robotics can perform tasks requiring human intelligence (Viehhauser, 2020; 

Watson, 2017; Zhang, 2019). Cognitive systems can continuously improve by learning from 

past experiences (decisions and outcomes). They can make human-like intelligent decisions 

(Marciniak et al., 2020) and deliver end-to-end automation beyond the rule-based approach 

by combining complementary technologies to augment business processes. We argue that 

adopting the cognitive capabilities of AI (sense, comprehend, act, and learn), as Bawack and 

Wamba (2019) do on a theoretical basis, can enable a higher level of automation. 

2.7.1.3 Cognitive Automation in a BPM Context 

In BPM context, cognitive process automation is the automation of knowledge-intensive 

business processes using cognitive technologies, adapting the definitions in Dwarkanhalli, 

Ananthanarayanan, and Mazumder (2018) and Zasada (2019). The concept is essential in 

understanding the impact of AI adoption on knowledge-intensive business processes. 

Cognitive computing underscores a perspective that combines automation and augmentation 

through innovative problem-solving models. These models aim to replicate human cognitive 

abilities by autonomously reasoning and learning from incomplete structured and 

unstructured contextual data. They also facilitate interactions between humans and machines 

(Hildebrand, Rösl, Auer, & Schieder; Roeglinger et al., 2018). 

Domains well-suited for cognitive computing exhibit high uncertainty and involve 

knowledge-intensive problems with numerous potential solutions (de Almeida Rodrigues 

Gonçalves, Baiao, Santoro, & Guizzardi, 2023; Roeglinger et al., 2018). Focusing AI 

adoption efforts on knowledge-intensive processes, as defined in Section 3.2, allows 

organizations to maximize AI's transformative potential in areas critical for expertise, 

information value, risk management, and innovation. Evaluating AI's impact within these 

contexts helps pinpoint processes where implementation, integration, and deployment are 

most advantageous (i.e., knowledge-intensive business processes). 

According to the AI adoption construct (see Section 3.4.3), the primary AI application 

domains for supporting cognitive automation include Cognitive Insights for AI-driven 

advanced analytics and predictive insights, Cognitive Engagement to enhance human-
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computer interaction, and Cognitive Decision Assistance to enhance decision-making 

processes. These AI application domains align closely with Roeglinger et al. (2018) 

theoretical insights regarding the impact of cognitive computing on business processes. 

According to Kerpedzhiev et al. (2020), CBPA is an operational capability that concerns an 

organization’s ability to perform functional activities using purposefully chosen groups of 

resources (Protogerou, Caloghirou, & Lioukas, 2012; Saunila, Ukko, Rantala, Nasiri, & 

Rantanen, 2020). Wu, Melnyk, and Swink (2012) note that operational capabilities are 

predominantly studied by examining outcomes, including cost, quality, dependability, speed, 

and flexibility. Our model reflects this by positioning operational capabilities as a factor 

mediating the relationship between AI and BPP. As a result, we formulate the following 

hypotheses: 

H4b: Cognitive business process automation mediates the positive impact of AI adoption on 

business process performance. 

Optimized processes benefit most from automation, which allows cost efficiencies, faster 

execution, and greater information-processing rationality and consistency (quality; Ansari, 

Diya, Patil, & Patil, 2019; Berruti, Nixon, Taglioni, & Whiteman, 2017; Forbes Insights, 

2019; Raisch & Krakowski, 2021; Rocha, Lacerda, Veit, Rodrigues, & Dresch, 2017). 

However, some studies are more pessimistic about cognitive automation (Daugherty & 

Wilson, 2018; Raisch & Krakowski, 2021; Rouse & Spohrer, 2018), claiming a real digital 

cognitive mediator (full automation), does not yet exist (Rouse & Spohrer, 2018) and that 

partial automation or augmentation should be prioritized. 

We define cognitive business process automation as the organization’s ability to automate 

knowledge-intensive (unpredictable, non-repeatable, highly flexible, and complex) business 

processes using cognitive technologies; for details on the computational procedure, please 

refer to Chapter 4). The research centers on business process automation that integrates AI 

and cognitive computing capabilities (non-deterministic), distinguishing it from traditional 

rule-based automation (which follows predefined deterministic rules for task execution and 

decision-making). Cognitive Automation (Section 3.2) targets knowledge-intensive 

processes and their associated decision-making processes (Section 4.1.3). These processes, 

more complex and less readily automated than structured ones, are enhanced by cognitive 

capabilities aimed at problem-solving and decision-making. 

We focus on two dimensions: the level of automation (manual, decision support, decision 

selection, supervisory control, or full automation; Sindhgatta, ter Hofstede, & Ghose, 2020a; 

Vagia, Transeth, & Fjerdingen, 2016) and the extent of automation (structured, structured 

with ad hoc exceptions, unstructured with predefined fragments, loosely structured and 

unstructured processes; Di Ciccio et al., 2015; Szelagowski & Lupeikiene, 2020).  

According to the theorizing of Raisch and Krakowski (2021), Daugherty and Wilson (2018), 

and Karan, Safa, and Suh (2021), we can expect a moderate level of automation of the 
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decision and action-selection function and less automation of the action implementation 

function (Parasuraman et al., 2000) for structured and semi-structured processes (Rouse & 

Spohrer, 2018). Considering this, we argue that AI adoption will impact decision-making 

effectiveness and efficiency. We thus formulate the following hypotheses: 

H4a: Cognitive business process automation mediates the positive impact of AI adoption on 

decision-making performance. 

2.7.2 The Mediating Role of Organizational Learning 

Research has shown that organizational learning mediates the impact of IT (e.g., big data 

analytics, industry 4.0 technologies, IT capability) on organizational performance (Al-

Omoush, Garcia-Monleon, & Iglesias, 2024; Bahrami, Kiani, Montazeralfaraj, Zadeh, & 

Zadeh, 2016; Khan, Zhang, & Salik, 2020; Lai, Lin, Lin, Wang, & Huang, 2009; Real, Leal, 

& Roldán, 2006; Tippins & Sohi, 2003; Tortorella, Vergara, Garza-Reyes, & Sawhney, 

2020) and innovation (Husain, Dayan, & Di Benedetto, 2016; Obeso, Hernández-Linares, 

López-Fernández, & Serrano-Bedia, 2020). Given this, we argue that AI capabilities can 

significantly enhance organizational learning, which in turn mediates AI's impact (Robey, 

Boudreau, & Rose, 2000). Machine and deep-learning AI systems can transform knowledge 

resources into new capabilities that facilitate organizational learning by recognizing complex 

patterns and performing analytics (Jarrahi, Kenyon, Brown, Donahue, & Wicher, 2022). For 

example, deep learning models, especially large language models, can analyze unstructured 

text in contracts, invoices, medical documents, and point-of-sales data to flag erroneous 

charges and detect fraud, making audit processes more cost and time-efficient (An, 2024; 

Cruz, 2024; Davenport & Mahidhar, 2018; Feng et al., 2023). 

2.7.2.1 Organizational Learning 

Organizational learning can be understood as “acquiring, creating, integrating, and 

distributing information and knowledge” (Huber, 1991; Templeton, Lewis, & Snyder, 2002; 

Wang & Ellinger, 2011). Several BPM capabilities in the areas of people and culture require 

learning and knowledge in different fields (Helbin & Van Looy, 2021; Kerpedzhiev et al., 

2020), and organizational learning can thus also be considered a BPM capability. Given AI’s 

significant and growing impact on how organizations function and compete, we argue that 

the definition of organizational learning should encompass the creation and utilization of 

knowledge through technology, as suggested by Banasiewicz (2021). Regarding machine 

and deep learning, AI has a high potential to explicate the organizational knowledge base as 

long as that knowledge base is represented in Big Data. Organizational learning is 

institutionalization from practices to routines that define and expand the organizational 

knowledge base (Crossan, Lane, & White, 1999; Wijnhoven, 2022). Where there is a transfer 

from individual behavior (captured in data) to institutionalized organizational practices, it is 

the underlying organizational learning processes that support learning on an individual and 
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organizational level. This process can be characterized as triple-loop learning, which 

involves questioning and modifying the governing variables and the foundations of 

organizational practices. Triple-loop learning is a critical component of organizational 

learning that enables organizations to adapt, improve, and transform at a fundamental level 

(Tosey, Visser, & Saunders, 2012). It connects to organizational learning by providing the 

deepest layer of reflection and change, ensuring that learning processes lead to actual and 

sustainable transformation (Flood & Romm, 2018). Next, using triple-loop learning as a 

theoretical lens, we examine how AI impacts organizational learning's different aspects (i.e., 

distinct learning loops of triple-loop learning). This broader scope helps us better understand 

how AI can enhance organizational learning. 

2.7.2.2 Triple-Loop Learning 

Triple-loop learning is a concept for reflecting on and improving organizational learning 

processes. In this context, organizational learning can be improving (i.e., single-loop 

learning) or introducing innovation (i.e., double-loop learning). Creating knowledge requires 

establishing norms, rules, and conditions (deuteron or institutional learning; Asawo & 

Ogbonda, 2022). These knowledge-creation processes transform intuitive or tacit insights 

into more explicit knowledge that can be integrated into the existing knowledge base 

(Nonaka & Lewin, 1994) and from there, into business operations. Triple-loop learning is a 

powerful tool for organizations to profoundly and meaningfully transform their practices, 

strategies, and values (Asawo & Ogbonda, 2022). 

There are three distinct but interconnected learning loops, building on each other to facilitate 

more profound and transformative change and a willingness to challenge deeply held beliefs. 

Argyris and Schön (1997) identify a typology of learning, which includes single-loop, 

double-loop, and deutero-learning. Organizations can efficiently innovate in dynamic 

environments if they develop a capability to efficiently learn from their resources, increasing 

their competencies and capabilities (Tamayo-Torres, Gutiérrez-Gutiérrez, Llorens-Montes, 

& Martínez-López, 2016). A learning loop in the AI context comprises human and machine 

learning, including single-loop, double-loop, and triple-loop learning, that is, the integration 

of machine learning outcomes with human learning (Seidel, Berente, Lindberg, Lyytinen, & 

Nickerson, 2018). 
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Figure 3: Triple-Loop Learning 

 

 

Source: Adapted from Argyris and Schön (1997) 

Single-loop learning involves identifying and correcting errors in existing strategies or 

actions (Figure 3). This most basic form of learning is focused on fixing problems within the 

current system. Single-loop learning involves incremental improvements in existing ways of 

doing things (Asawo & Ogbonda, 2022). This type of learning occurs within a given frame 

of reference and involves minimum disruptions to the organization’s structures (Easterby-

Smith & Lyles, 2011). Organizations engaged in such learning solve problems by doing 

things differently but not by doing different things (Berthoin Antal & Krebsbach-Gnath, 

1998). This level of learning is unsuitable for a constantly changing business environment 

that requires creativity and radical changes. In the context of AI, reinforcement learning is a 

type of machine learning often associated with single-loop learning in which feedback from 

previous experiences is used to adjust actions and improve performance (e.g., 

recommendation systems, spam filters, image recognition, natural language processing). 

Double-loop learning involves questioning the underlying assumptions and values that 

inform the first loop. In this form of learning, an organization examines its purpose, goals, 

and values and rethinks its underlying assumptions. Instead of refining current skills, the 

organization questions what is being done (Asawo & Ogbonda, 2022). Double-loop learning 

entails doing new things, not merely doing things differently (Berthoin Antal & Krebsbach-

Gnath, 1998) Decisions are based on rethinking existing competencies and methods that 

have proved inadequate and challenging existing knowledge (Eskildsen, Dahlgaard, & 

Norgaard, 1999). A core part of the process is redefining the organization’s governing 

variables to meet new challenges (Figure 3) by questioning, challenging, and changing the 

organization’s frame of reference (Easterby-Smith & Lyles, 2011). Many organizations 

ignore the radical change arising from interrogating the governing variables. Nevertheless, 

double-loop learning is a prerequisite for making informed decisions in a rapidly changing 

and uncertain business environment (Asawo & Ogbonda, 2022). 

Context Assumptions Actions Results

Double-Loop Learning

Single-Loop Learning

Triple-Loop Learning

Are we doing things right? Have we got a 

problem? What went Wrong?

Are we doing the right things? Why are we doing things this way? 

Whould alternative approaches etter align with our goals? 

How do we decide what is right? Is this the best soultion? What haven t I thought of?What 

alternative approaches might better and how can we evaluate their effectiveness?

e.g., Recommendation 

systems, Spam filters, 

Image recognition, Natural 

language processing

e.g., Autonomous drone surveillance, 

Autonomous vehicle safety, Bias detection in 

AI models, Ethical decision-making in 

healthcare, Social media content moderation, 

Financial trading, Customer service chatbots

e.g., Supply chain 

optimization, Marketing 

strategy, Talent 

management, Business 

strategy development, 

Innovation management
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In the AI context, adversarial learning, a type of machine learning is similar to double-loop 

learning in that it involves questioning the underlying assumptions and values that drive the 

development of machine learning models and making changes to address any biases or 

vulnerabilities (e.g., autonomous drone surveillance, autonomous vehicle safety, bias 

detection in AI models, ethical decision-making in healthcare, social media content 

moderation, financial trading, customer service chatbots). 

In triple-loop or deuteron learning, assumptions and values underlying the first two loops 

are questioned and potentially changed through organizational processes and structures. 

Triple-loop learning involves questioning and rethinking the very nature of the organization 

and how it creates and sustains its assumptions and values (Figure 3). A hypercompetitive 

environment requires organizations to move beyond single- and double-loop learning and to 

learn how to learn (Pemberton & Stonehouse, 2000). Organizations must learn about 

previous learning contexts and seek an understanding of past ability or inability, a process 

that results in new strategies for learning (Othman & Hashim, 2003). This learning level is 

required when existing knowledge is no longer adequate to achieve business objectives 

(Eskildsen et al., 1999). The learning process is based on a change in the organization’s 

principles and values and a profound transformation of the organizational action framework. 

In the context of AI, triple-loop learning can be facilitated by using machine learning 

techniques to question underlying assumptions and values that guide the organization’s 

decision-making processes (e.g., supply chain optimization, marketing strategy, talent 

management, business strategy development, innovation management). 

2.7.2.3 Knowledge Creation 

Organizational learning represents a constant effort to create organizational knowledge and 

contributes to an organization’s ability to adapt effectively to changes in its business 

environment (Bohanec, Robnik-Šikonja, & Borštnar, 2017). It can involve developing new, 

incremental knowledge or updates to existing knowledge. We draw on the knowledge-based 

perspective, which implies knowledge can create competitive advantage (Grant, 1996b) and 

impact performance. This perspective directs attention to learning as a core organizational 

action through which knowledge resources are transformed into core competencies (Jarrahi, 

Kenyon, et al., 2022). We argue that implementing new AI capabilities can augment and 

enhance learning and knowledge creation. 

The following are examples of use cases by function. The knowledge creation function is 

useful for forecasting sales probabilities and discovering organization inefficiencies by 

analyzing customer relationship management records. Knowledge storage and retrieval 

capabilities allow for the organization and summarization of legal precedents and the 

retrieval of dispersed nuggets of information for troubleshooting. Knowledge sharing 

includes facilitating feedback and peer review on communication systems and real-time 

smart sharing between marketing channels and the sales pipeline. Examples of the 
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knowledge application function include finding and applying question-answer pairs in online 

manuals to manage service knowledge and provide more human-centred and accessible 

applications of knowledge through chatbots (Jarrahi, Askay, Eshraghi, & Smith, 2022). 

2.7.2.4 Organizational Learning and AI 

The ultimate purpose of organizational learning is to enhance informational efficacy in 

decision-making (Banasiewicz, 2021). To remain competitive in a knowledge-driven 

economy, organizations must develop and deploy robust methods of creating and leveraging 

decision-guiding knowledge (Banasiewicz, 2021; Samek, Wiegand, & Müller, 2017). We 

can exploit AI opportunities, including analytic data techniques and codified knowledge, to 

increase or augment the intelligence of human decision-makers (intelligence amplification). 

These techniques do not replace decision-makers but may help organizations make complex 

decisions through well-designed human-AI system learning interactions (Wijnhoven, 2022). 

Grønsund and Aanestad (2020) and Seidel et al. (2018) emphasize the importance of a 

human-in-the-loop pattern. The work of AI and humans is complementary, with AI 

augmenting the work of auditing (i.e., the generation of ground truth and assessment of the 

algorithmic output against that) and through altering the algorithm and data acquisition 

architecture. Hence, AI has an indirect effect on actual human decisions, which are the 

outcomes of difficult-to-predict individual and organizational learning processes (Schmidt, 

2017) in interactions of human, machine and deep learning – this is the triple-loop learning 

referred to above (Seidel et al., 2018). This interaction can result in incremental single-loop 

improvements or more radical double-loop learning (Wijnhoven, 2022) innovations. These 

considerations lead us to the following hypotheses to test the mediating effect of 

organizational learning on BPP via DMP. 

H5a: Organizational learning mediates the positive impact of AI adoption on decision-

making performance. 

H5b: Organizational learning mediates the positive impact of AI adoption on business 

process performance. 

Some researchers view knowledge management as integral to organizational learning, 

emphasizing its role in leveraging technology to create, share, and apply acquired knowledge 

(Al Mansoori et al., 2020). Modern organizations recognize knowledge management as 

essential for establishing effective structures and optimizing various tasks and processes, 

which can lead to discovering new knowledge. These organizations increasingly seek 

advanced technological capabilities to capture, process, store, and search for information (Al 

Mansoori et al., 2020). 

AI technologies enable organizations to enhance their knowledge management practices (Al 

Mansoori et al., 2020; Jarrahi, Askay, et al., 2022; Taherdoost & Madanchian, 2023; Tsui, 
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Garner, & Staab, 2000). By integrating AI into business processes, organizations improve 

knowledge discovery, capture, sharing, dissemination, accessibility, and retention (Jarrahi, 

Askay, et al., 2022; Taherdoost & Madanchian, 2023). AI enables accelerated and 

personalized learning experiences, automates knowledge updates, predicts future knowledge 

needs, and integrates seamlessly with workflows (Taherdoost & Madanchian, 2023; Tsui et 

al., 2000). These advancements contribute to organizational efficiency, agility, and 

continuous learning (Jarrahi, Askay, et al., 2022; Taherdoost & Madanchian, 2023). 

The adoption of AI, as detailed in Section 3.4.3, underscores its practical application across 

various domains, as substantiated by current literature on knowledge management practices 

(Al Mansoori et al., 2020; Jarrahi, Askay, et al., 2022; Taherdoost & Madanchian, 2023; 

Tsui et al., 2000). These include Cognitive Insights, which fosters predictive analytics 

through self-learning capabilities; Cognitive Decision Assistance, which analyzes 

organizational data for knowledge discovery, harvesting, classification, and organization of 

explicit knowledge; and Cognitive Engagement, which facilitates more accessible and 

human-centered applications of knowledge. 

Organizational learning represents AI’s augmentation potential. We characterize 

organizational learning as the organization’s dynamic capability to integrate, build, or 

reconfigure competencies to address a rapidly changing environment (Eisenhardt & Martin, 

2000). Developing new knowledge derived from organizational learning reduces the 

likelihood that an organization’s competencies will become outdated, allowing it to remain 

dynamic and improve performance (Senge, 1998). 

2.8 Ambidextrous Innovation: Interactions Between AI Adoption and Business 

Process Innovation 

AI plays diverse roles in innovation (Makarius et al., 2020). Beyond its application in AI-

enabled or AI-driven innovations within business processes, AI is an important source of 

innovation, significantly influencing an organization's innovation management and 

capability (Bouschery, Blazevic, & Piller, 2023; Gama & Magistretti, 2023). Recognized as 

a pivotal technology, AI shapes innovation capabilities by enhancing decision-making 

processes through augmentation or automation (Pietronudo, Croidieu, & Schiavone, 2022; 

Raisch & Krakowski, 2021). It also impacts product and service development and fosters 

abductive reasoning5 (Brynjolfsson & Mitchell, 2017; Garbuio & Lin, 2021; Kellogg, 

Valentine, & Christin, 2020). 

The innovation process is changing as a result of the increased implementation of digital 

services and automation coupled with the general transformation to digitized organizations, 

which has made many and varied data sources available (Big Data; Haefner, Wincent, 

                                                 
5 Abductive reasoning is a form of synthetic inference through which meaningful underlying patterns of 

selected phenomena are recognized to comprehend a complex reality and expand scientific knowledge 

(Garbuio & Lin, 2021). 
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Parida, & Gassmann, 2021). We can separate the innovation process into three stages: “1) 

the recognition, discovery, creation, and generation of innovative ideas, opportunities, and 

solutions; 2) the development or exploitation of various ideas, opportunities, and solutions; 

and 3) the evaluation and selection of one or several of the most promising ideas, 

opportunities, and solutions” (Haefner et al., 2021, p. 3). 

AI offers possibilities for addressing two specific innovation barriers. First, AI can be used 

to address information-processing constraints (Williams & Mitchell, 2004) that limit 

information on new opportunities or possible solutions the organization may pursue. Haefner 

et al. (2021) present two AI abilities that help overcome this barrier. First, AI systems can 

extract information from structured and unstructured data, allowing the identification and 

evaluation of far vast amounts of information and its use to develop ideas (e.g., data 

storytelling, performance visualization, metasearch, named entity recognition and 

disambiguation, content discovery, searchable representations, natural language analytics, 

location discovery, movement patterns, target discovery, legal analysis, ontology creating 

and management). Compared to human agents, AI systems can recognize more problems, 

opportunities, and threats that can be used to generate ideas (e.g., predictive modeling and 

analytics, anomaly and deviant behavior detection, marketing intelligence system, predictive 

maintenance). One notable instance involves British Petroleum employing AI for predictive 

maintenance in its oil and gas facilities (Nordal & El‐Thalji, 2021). AI predicts potential 

equipment failures by analyzing data from sensors and equipment logs. This proactive 

approach allows BP to schedule maintenance preemptively, thereby enhancing operational 

efficiency and significantly reducing downtime. 

The second innovation barrier that AI can help overcome is the problem of ineffective or 

limited search routines (Katila & Ahuja, 2002). Organizations generally search for solutions 

in domains related to their existing knowledge base (Posen, Keil, Kim, & Meissner, 2018). 

Consequently, most solutions will be comparatively incremental in their innovative thrust. 

Generating more creative and innovative ideas or opportunities requires that organizations 

be more exploratory and extend their search to new fields and external data sources. AI 

systems can generate, identify, and evaluate more creative/experimental ideas (e.g., 

generative AI, including generative design, drug development, product innovation, protein 

engineering/folding, material discovery, genomics, process mining, context-aware 

marketing). A well-known example is Autodesk's generative design software, which Airbus 

has used to optimize aircraft cabin partitions (Shrestha, Timalsina, Bista, Shrestha, & 

Shakya, 2021). By leveraging AI, the software generated lighter and more efficient designs, 

surpassing traditional methods in innovation and performance. 

According to existing research (Almuslamani, 2022; Calantone, Cavusgil, & Zhao, 2002; 

García-Morales, Jiménez-Barrionuevo, & Gutiérrez-Gutiérrez, 2012; Liao & Wu, 2010; 

Mishra & Pani, 2020; Vasylieva, 2013), organizational learning and its output, 

organizational knowledge, positively impact innovation. Organizational learning prevents 

stagnation and encourages continuous innovation through the renewal and reinvention of 
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technology and production methods (García-Morales et al., 2012). A higher level of 

innovation requires greater critical capacity and skills as well as new and relevant knowledge 

(Senge, 1998). A learning organization increases its innovative capability because this 

learning stance means it is less likely to miss opportunities emerging in market demand. A 

learning organization can anticipate and understand customer needs, has more and better 

state-of-the-art technology, uses that technology to innovate, and has a greater capacity to 

understand competitors’ strengths and weaknesses. The acquisition of relevant knowledge 

depends upon the organization’s internal knowledge base (Salavou & Lioukas, 2003) and on 

the acquisition of external information and knowledge (Chang & Cho, 2008). According to 

March (1991), organizations can exploit extant knowledge and explore how technology, 

such as AI, can be used to generate new knowledge. 

Several studies argue that ambidextrous organizations can balance both strategies and avoid 

overreliance on one (Liu, 2006; O Reilly & Tushman, 2004; Tushman & O'Reilly III, 1996). 

March (1991) and O'Reilly III and Tushman (2011) emphasize the importance of 

organizations simultaneously exploring new domains and exploiting existing ones to survive 

and grow but make it clear that firms frequently have difficulty doing so (Johnson, Laurell, 

Ots, & Sandström, 2022). Most organizations see AI technology as an opportunity to 

explore, and others focus on how AI can boost the efficiency of existing operations (Johnson 

et al., 2022; Zhang, Long, & von Schaewen, 2021). In the BPM context, we expect process 

improvements to result from AI-driven (embedded technology) or AI-enabled innovation. 

The exploitation of existing knowledge domains produces incremental innovation, 

improving business process efficiency, quality, and flexibility; exploration would produce 

radical improvement through new, transformed, or redesigned processes (Norman & 

Verganti, 2014). We argue AI adoption facilitates ambidextrous innovation. We propose 

pairs of hypotheses for incremental and radical innovation as follows: 

H6a: Incremental business process innovation mediates the positive impact of AI adoption 

on decision-making performance. 

H6b: Incremental business process innovation mediates the positive impact of AI adoption 

on business process performance. 

H7a: Radical business process innovation mediates the positive impact of AI adoption on 

decision-making performance. 

H7b: Radical business process innovation mediates the positive impact of AI adoption on 

business process performance. 

Examining AI's impact on innovation within the proposed AI adoption concept framework 

reveals significant potential innovation outcomes. Data Acquisition and Preprocessing 

capabilities are essential to AI-driven innovation management, establishing a solid 

foundation for developing robust AI models and ensuring meticulously prepared, structured, 

and optimized data for AI applications. Cognitive Insights strengthens the capacity for 
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targeted innovation and enhances predictive capabilities, enabling timely interventions and 

continuous improvements in product quality and operational efficiency. Cognitive decision 

assistance automates processes across the innovation lifecycle, from product design to 

manufacturing. It also promotes integrating knowledge and technologies across various 

disciplines, accelerating R&D through generative AI capabilities (Bouschery et al., 2023). 

Cognitive engagement encourages a human-centric approach and enables real-time 

interactions. AI has been shown to boost human innovation in team activities by sparking 

discussion and encouraging divergence in design thinking processes (Bouschery et al., 

2023). Harnessing Cognitive Technologies, AI can efficiently utilize existing IT resources, 

services, and devices. AI's inherent ability to continuously learn and adapt, guided by self-

awareness, interaction inputs, and contextual understanding, markedly enhances its 

effectiveness (Mele, Spena, & Peschiera, 2018). 

2.9 Organizational Learning and Business Process Innovation 

The influence of organizational learning on BPI is well established and there is general 

consensus that knowledge is the key component of the relationship (Aragón-Correa, García-

Morales, & Cordón-Pozo, 2007; García-Morales et al., 2012; Hung, Lien, Yang, Wu, & Kuo, 

2011; Jiménez-Jiménez & Sanz-Valle, 2011; Weerawardena, O'cass, & Julian, 2006). BPI 

draws from the organization’s knowledge base, and organizational learning builds this base 

(Cohen & Levinthal, 1990), supports creativity (Sanchez & Mahoney, 1996; Yli‐Renko, 

Autio, & Sapienza, 2001), generates new knowledge and ideas (Damanpour, 1991; 

Damanpour & Schneider, 2009), facilitates understanding and application of ideas, fosters 

organizational intelligence and, together with the organization’s culture, creates an 

environment for organizational innovation. 

Innovation requires that individuals acquire and share existing knowledge within the 

organization (Jiménez-Jiménez & Sanz-Valle, 2011). Knowledge acquisition depends on 

transforming and exploiting existing knowledge (Salavou & Lioukas, 2003) as well as 

purchasing knowledge from outside sources. Organizational learning enhances the capacity 

of the organization to absorb and assimilate new ideas and apply that external knowledge to 

business operations (Cohen & Levinthal, 1990). The degree of innovation indicates the 

extent to which new knowledge has been incorporated (Dewar & Dutton, 1986; Ettlie, 1983). 

Organizations often underestimate AI's strategic significance, which thrives when machines 

learn autonomously and collaborate with humans. Achieving effective mutual learning at 

scale remains challenging (Jarrahi, Kenyon, et al., 2022). IT facilitates knowledge 

management, while AI redefines how organizations learn and adapt (Ransbotham et al., 

2020). 

We distinguish two distinct dimensions in the context of AI and the proposed relationship 

between organizational learning and process innovation. The first is adaptive learning 

connected to BPII, and the second is generative learning connected to BPIR. These 
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dimensions should be closely and positively connected (Forrester, 2000). The higher the 

degree of innovation, the greater the learning required. 

Adaptive learning aims to improve existing processes and practices using feedback and 

analysis for incremental improvement. Efficiencies and effectiveness are improved by 

learning from past experiences and adjusting existing processes. This form of learning is 

usually reactive, focusing on resolving problems as they arise (Weiner, Helfrich, & 

Hernandez, 2006). 

Generative learning is the process of creating new knowledge and capabilities to adapt to 

changing conditions and innovate. It involves the organization exploring new ideas and 

approaches, taking risks, and challenging existing assumptions about its mission, customers, 

capabilities, or strategy to generate changes in its practices, strategies, and values (Argyris 

& Schön, 1997; Senge, 1998). Such learning is often proactive, with the organization 

identifying new opportunities and developing innovative solutions. Aragón-Correa et al. 

(2007) consider it the most advanced form of organizational learning. Generative learning is 

a fundamental component of radical product and process innovation (Senge, 1998). 

Triple-loop, adaptive, and generative learning are related (Basten & Haamann, 2018; 

Kamya, 2012). Single-loop learning promotes adaptive learning in which problem-solvers 

adjust their behavior and work processes in response to changing events or trends (Weiner 

et al., 2006). The connection between single-loop and adaptive learning lies in their shared 

focus on modifying and improving existing systems and practices. Single-loop learning 

involves incremental adjustments to improve efficiency and effectiveness. Adaptive learning 

involves continuously monitoring and adapting learning strategies in response to changing 

conditions to improve the efficiency and effectiveness of the current system. Double-loop 

learning promotes generative learning, in which problem-solvers work to eliminate problems 

by changing the system’s underlying structure (Smith, 2014; Weiner et al., 2006). The 

connection between these forms of learning lies in their shared focus on questioning and 

challenging existing premises and beliefs. Double-loop learning involves reflecting on the 

assumptions and values that guide decision-making and actions. In contrast, generative 

learning involves exploring ideas and possibilities to create new knowledge and insights. 

AI is revolutionizing innovation processes by automating decision-making, potentially 

leading to partial or complete automation in specific contexts (Brem, Giones, & Werle, 

2021b; Makowski & Kajikawa, 2021). This shift promises to streamline problem-solving 

loops, redirecting human efforts from traditional product and service design to algorithm 

creation and data provisioning (Verganti, Vendraminelli, & Iansiti, 2020). AI plays a crucial 

role in the learning phase of innovation (Hutchinson, 2020), reshaping how companies 

gather and use data to uncover insights and enable new business models. Researchers 

theorize about the role of AI in reinterpreting existing knowledge and promoting new 

approaches to engaging with existing services and products, demonstrating its 

transformative impact on innovation processes (Tekic & Füller, 2023). However, there is a 
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lack of empirical research on whether AI-enabled knowledge acquisition, sharing, and 

utilization (i.e., organizational learning) influence decision-making and process performance 

by facilitating innovation. We propose the following pair of hypotheses to test this impact: 

H8a: Organizational learning positively influences incremental business process 

innovation. 

H8b: Organizational learning positively influences radical business process innovation. 

2.10 Organizational Context 

The organizational context describes the environment in which AI business value is 

generated. The existing literature on IT business value suggests that organizations might gain 

significant performance improvements if IT resources are aligned with other organizational 

factors (Mooney et al., 1996; Wiengarten et al., 2013). Organizational factors are considered 

complementary non-IT resources (Melville et al., 2004). In this study, these factors 

encompass the broader organizational context of AI application in keeping with the model’s 

organizational scope (as discussed in Section 2.2). Based on exploratory interviews and the 

literature review, we identify and include four factors that moderate the relationships studied 

here (defined moderator variables in parenthesis): digital maturity (DM), data-driven culture 

(DDC), BPM maturity (BPMM), and organizational culture (OC). 

2.10.1 Digital Maturity 

The literature offers various definitions of digital maturity (Grooss, Presser, & Tambo, 2022; 

Nwankpa & Roumani, 2016; Schatsky et al., 2014). Based on the definitions by Kane, 

Palmer, Nguyen-Phillips, Kiron, and Buckley (2017) and aligned with Salviotti, Gaur, and 

Pennarola (2019), we understand digital maturity as “the extent of the learned ability to adapt 

to the ongoing digital changes and digital transformation efforts in an appropriate manner.” 

According to previous research, digital maturity correlates with the development of specific 

digital capabilities (Westerman, Bonnet, & McAfee, 2014). Gurumurthy and Schatsky 

(2019) propose a set of digital capabilities, including a flexible infrastructure, a digital talent 

network, business model adaptability, data management, ecosystem engagement, intelligent 

workflows, and a unified customer experience. 

Following, greater digital maturity positively impacts organizational performance (Table 2). 

Nwankpa and Roumani (2016) present empirical evidence of digital maturity being a 

significant mediator between IT capability and organizational performance. We consider it 

necessary to probe the relationships between AI technology and digital maturity, with the 

latter as a moderator since the two are closely related. AI technology relies on digital data 

and computing power and is often seen as a core component of digital transformation, which 

refers to the use of digital technologies to transform business processes, operations, and 
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customer experiences. We expect digital maturity to amplify the impact of AI adoption by 

providing a digital environment in which the extent of AI adoption would be significant. 

Table 2: Selected Empirical Studies on Digital Maturity, Automation, Process and Firm 

Performance 

Author Scope Theory Findings 

Eremina, Lace, and Bistrova 

(2019) 

Official secondary data 

sources for 28 companies: 13 

Estonian, 11 Lithuanian, and 4 
Latvian companies 

 (+) Digital Maturity → Process Automation 

Nwankpa and Roumani 

(2016) 

Survey, 167 CIOs from the US RBV (+) IT capability → Digital Transformation 

→ Innovation and Firm Performance 

Guo and Xu (2021) Official secondary data 

sources from 2010 to 2020 for 

the manufacturing companies 

listed on the A-share market 
of China 

 (+) Digital Transformation → Process-based 

Operating Performance 

Çallı and Çallı (2021) Survey, 119 respondents from 

SMEs in the Marmara Region 

of Turkey 

 (+) Digital Maturity → Firm Performance 

Tsou and Chen (2022) Survey, 227 respondents from 

Taiwanese financial, and 

industrial companies 

 (+) Digital Transformation → Firm 

Performance 

Note. (+) Positive impact; (−) Negative impact; ( ) No impact. RBV = Resource-Based View. 

 

Source: Own work. 

2.10.2 Data-Driven Culture 

A data-driven culture (DDC) is one in which the participants follow a set of behaviors, 

practices, and beliefs that support analytical decision-making (Holsapple, Lee-Post, & 

Pakath, 2014). According to Gupta and George (2016, p. 16) a data-oriented culture is “the 

extent to which organizational members (including top-level executives, middle managers, 

and lower-level employees) make decisions based on the insights extracted from data.” We 

prefer a definition that is more far-reaching and not limited to decision-making. We thus 

adopt the description by Kiron and Shockley (2011, p. 11) of a data-oriented culture as “a 

pattern of behaviors and practices by a group of people who share a belief that having, 

understanding and using certain kinds of data and information plays a critical role in the 

success of their organization.” This aligns with existing empirical studies that position a 

data-oriented culture as a mediator or moderator variable in the relationship between IT 

capabilities and innovation or performance (Table 3). 

Chatterjee, Chaudhuri, and Vrontis (2021) argue that Big Data and related technologies have 

radically changed organizations’ cultural landscape and how they arrive at accurate decision-

making and improve their innovation and performance. Gupta and George (2016) suggest 

that having a data-oriented culture is one of the critical intangible resources that can be used 

to make the best use of data through Big Data capabilities. McAfee, Brynjolfsson, 

Davenport, Patil, and Barton (2012) explain that a culture of decision-making among senior-

level executives being evidence (rather than instinct) based will likely improve business 

performance. A data-driven culture is one characterized by a decision process that 
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emphasizes testing and experimentation, where data outweigh opinions, and failure is 

accepted as long as something is learned from it (Berndtsson, Forsberg, Stein, & Svahn, 

2018). 

Because of the relationship between Big Data and AI (considered in Section 3.1), we expect 

that having a data-driven culture will impact the relationship between AI, innovation, and 

the various performance variables (decision-making, process, and organizational 

performance). 

Table 3: Selected Empirical Studies on Data-Driven Culture, IT and Firm Performance 

Author Scope Theory Findings 

Duan, Cao, and Edwards 

(2020) 

Survey, 218 medium and large 

enterprises in the UK 

Absorptive 

capacity 

theory 

(+) DDC → Innovation → Competitive 

Advantage 

 

Chatterjee, Chaudhuri, et al. 
(2021) 

Survey, 456 respondents from 
69 firms of India's top 1000 

companies 

Absorptive 
capacity 

theory, RBV, 

DCV 

(+) DDC → Product & Process Innovation → 
Firm Performance 

 

Chaudhuri, Chatterjee, 

Vrontis, and Thrassou (2021) 

Survey, 532 respondents from 

29 firms, randomly selected 

from the Bombay Stock 
Exchange 

Absorptive 

capacity 

theory, RBV, 
DCV 

(+) DDC → Product Innovation & Business 

Process Performance → Organizational 

Performance 

Yu, Wong, Chavez, and 

Jacobs (2021) 

Survey, 307 manufacturing 

firms in China 

Organizational 

information 
processing 

theory 

(+) Big Data Analytics Capability → DDC → 

Supply Chain Finance integration 

Karaboga, Zehir, Tatoglu, 

Karaboga, and Bouguerra 
(2022) 

Survey, 432 respondents from 

Turkish firms actively using 
Big Data 

RBV, DCV (+) Big Data Analytics → DDC → Firm 

Performance (operational/financial) 

Agyei-Owusu, Amedofu, 

Asamoah, and Kumi (2021) 

Survey, 123 respondents from 

manufacturing and service 
firms operating in Ghana 

Absorptive 

capacity 
theory, DCV 

(+) DDC → Supply Chain Information 

Sharing / Quality → Customer Development 
→ Firm Performance 

Note. (+) Positive impact; (−) Negative impact; ( ) No impact. RBV = Resource-Based View. DCV = Dynamic Capabilities View.  

DDC = Data-Driven Culture. 

 

Source: Own work. 

2.10.3 Business Process Management Maturity 

Given our focus on BPM, we incorporate BPM maturity as a contextual factor that, 

according to existing studies, should improve process performance (Dijkman, Lammers, & 

De Jong, 2016; McCormack & Johnson, 2001; Škrinjar, Bosilj-Vukšić, & Indihar-

Štemberger, 2008; Škrinjar, Indihar-Štemberger, & Bosilj-Vukšić, 2010; Van Looy, Poels, 

& Snoeck, 2017). 

We propose that the impact of AI is fully mediated by CBPA, organizational learning, and 

business process innovation. As seen in Table 4, we can expect BPM to have a positive effect 

in the relationships between these mediators and BPP. However, researchers and 

practitioners argue that maturity models make organizations rigid and bureaucratic (Adler, 

McGarry, Irion-Talbot, & Binney, 2005; Antoniol, Gradara, & Venturi, 2004; Dijkman et 

al., 2016; Nawrocki, Walter, & Wojciechowski, 2002) negatively affecting innovativeness 

(Herbsleb, Zubrow, Goldenson, Hayes, & Paulk, 1997). The reasoning is that higher BPM 
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maturity implies more strictly defined processes, negatively influencing an organization’s 

potential for finding innovative solutions. In our model, we expect BPM maturity to have 

either a negative or positive impact (Dijkman et al., 2016) on process innovation and, by 

extension, organizational learning. Organizational learning, the output of this learning, and 

organizational knowledge are closely related antecedents of innovation (Jiménez-Jiménez & 

Sanz-Valle, 2011). 

The concept of BPM has evolved. A higher level of maturity presumes business operations 

supported by a portfolio of digital solutions that include digitalization and automation of 

processes, data analytics, AI solutions, and virtual workforce solutions (König, Bein, Nikaj, 

& Weske, 2020; Pinto & dos Santos, 2020; Van Looy, De Backer, & Poels, 2011). 

Accordingly, we can presume higher levels of BPM will positively impact CBPA. 

Table 4: Selected Empirical Studies on BPM Maturity, Innovation, OL and Process 

Performance 

Author Scope Theory Findings 

Loggen and Ravesteyn 

(2022) 

Survey, 55 respondents from 

Dutch housing associations 

 (+) BPMM → Process Performance 

ME de Waal, Maris, and 
Ravesteyn (2017) 

Survey and interviews, 469 
respondents from 

organizations in the 

Netherlands during the period 
2010 to 2015 

 (+) BPMM → Process Performance 

Dijkman et al. (2016) Survey, 120 German and 

Dutch organizations 

 (+) BPMM → Process Performance 

(+) Innovativeness → BPMM 

Pejić Bach, Bosilj Vukšić, 
Suša Vugec, and Stjepić 

(2019) 

Survey, 107 companies from 
Croatia and Slovenia 

 (+) BPM/BI alignment → Process 
Performance 

Janssen and Revesteyn 

(2015) 

Survey, 225 members of the 

Dutch BPM forum and 58 
Portugal commercial 

organizations 

 (+) BPM maturity → BPM Performance 

Ongena and Ravesteyn 
(2020) 

Survey and structured 
interviews, 532 respondents 

from 165 organizations, 

collected in Dutch companies 
over three years (2010, 2013 

and 2017) 

Contingency 
Theory 

(+) IT, Resource, Knowledge → BPM 
maturity → Process Performance 

Pinto and dos Santos (2020) Case study, a global company 

that operates in the energy 
sector and has an operation in 

Portugal 

 (+) BPMM → Process Performance 

Note. (+) Positive impact; (−) Negative impact; ( ) No impact. BPMM = Business Process Management Maturity. 

 

Source: Own work. 

Although digital maturity and BPM maturity are complementary concepts that determine an 

organization's readiness and state of digital transformation, there are some key differences 

that necessitate their separate inclusion in the organizational context (Putra & 

Mahendrawathi, 2024). Compared to digital maturity, which focuses on ongoing digital 

changes and digital transformation efforts, BPM maturity focuses on process management 

capabilities and the organization's ability to manage and improve processes (Van Ee, El 

Attoti, Ravesteyn, & De Waal, 2020). In terms of tools and technologies, digital maturity 

involves a wide range of digital tools (e.g., cloud services, communication and collaboration 
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tools, project management, and sales pipeline management tools, business intelligence 

platforms), and BPMM primarily involves BPM tools, and systems for process modeling, 

execution, automation, and monitoring (e.g., process mining, workflow automation, RPA). 

The scope of impact for digital maturity is broader across various aspects of the organization, 

including customer experience, product development, and overall innovation (as seen in the 

operationalized construct's items, Section 5.5.9). We must also mention the interdependence. 

There is a strong correlation between digital maturity and BPM maturity. As an organization 

becomes more digitally mature, it is typically able to better manage and optimize its business 

processes through digital tools and technologies (Van Ee et al., 2020; Vugec, Stjepić, & 

Vidović, 2018). High digital maturity can enhance BPM maturity by providing advanced 

process automation and improvement tools. Likewise, mature BPM practices can support 

digital initiatives by ensuring that processes are well-managed and optimized for digital 

transformation (Flechsig, Lohmer, Voß, & Lasch, 2022). By developing digital and process 

capabilities, an organization can identify its strengths, weaknesses, and potential for 

optimization, resulting in numerous benefits, including increased productivity, quality, and 

customer service. Assessing both provides a comprehensive view of the organization's 

transformation progress and guides targeted improvement efforts, which can influence AI 

adoption (Silva & Gonçalves, 2022). 

2.10.4 Organizational Culture 

We understand organizational culture as “the values, beliefs, and hidden assumptions that 

organizational members have in common.” We adopt the definition from Rohit and Webster 

Frederick (1989), Miron, Erez, and Naveh (2004), and Cameron and Quinn (2011). 

Organizational culture can be a source of sustained competitive advantage (Barney, 1991), 

and existing research confirms a positive relationship between organizational culture and 

performance (Deal & Kennedy, 1982; Ezirim, Nwibere, & Emecheta, 2010; Peters, 2004; 

Wilkins & Ouchi, 1983). However, organizational culture has distinct dimensions and types. 

Only competitive forms of culture have an impact on organizational performance. According 

to existing research, the impact originates from the direct influence on innovation, 

knowledge management, and organizational learning (Table 5). 

Organizational culture may be characterized by highly motivated employees seeking 

solutions to problems and coordinating through knowledge sharing and cultural values 

(Shivers-Blackwell, 2006). It can significantly stimulate creativity and innovative behavior 

among employees. Innovation can emerge from organizational culture when viewed as a 

core value (Hartmann, 2006). An organization’s culture must promote communication 

among employees and establish links for sharing different viewpoints. Interaction and 

cooperation are essential for diffusing implicit knowledge, transforming tacit into explicit 

knowledge, and transforming individual into organizational knowledge (Song-zheng & 

Xiao-di, 2008). Organizational culture affects innovative behavior in two ways (Martins & 

Terblanche, 2003). First, through socialization, individuals learn how to act and behave. 
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Second, fundamental values, beliefs, and assumptions reflect the organization’s structure, 

policy, management concept, and procedures. 

Knowledge management, which we understand as “organization, creation, sharing and flow 

of knowledge within organizations” (Davenport, 1999; Lin, 2014), is often considered in the 

context of organizational culture. Many researchers and practitioners have concluded that 

knowledge management must facilitate the creation of new knowledge for sustained 

competitive advantage; successfully gaining knowledge in management processes affects 

organizational innovation (Kaklauskas & Kanapeckiene, 2005). Organizational culture may 

be the most influential factor in determining the effectiveness of knowledge management 

initiatives, although it is invisible and intangible (Davenport & Prusak, 1998; Lee & Choi, 

2003). The researchers posited that organizational culture is intimately related to knowledge 

management. Its successful implementation depends on the culture that believes that the 

right organizational culture is essential for knowledge management to generate innovation 

(Abdi et al., 2018; Taleghani & Talebian, 2013). 

Organizational learning has emerged as a capability that allows organizations to face 

changes in turbulent and dynamic environments (Vieira do Nascimento, 2013). Findings in 

the literature show that organizational learning is positively associated with technical 

innovation and that organizational culture can foster organizational learning and 

technological innovation but can also act as a barrier (Sanz-Valle, Naranjo-Valencia, 

Jiménez-Jiménez, & Perez-Caballero, 2011). A culture that encourages change is a critical 

feature in supporting organizational learning. Particularly in competitive environments, an 

organization needs a strong adaptive culture to promote cooperation and learning among its 

employees (Liao, Chang, Hu, & Yueh, 2012). 

Organizational culture and habit positively impact employees’ intention to use AI, whereas 

job insecurity has a negative effect. Perceived self-image and perceived usefulness fully 

mediate the relation between job insecurity and intention to use AI (Dabbous, Aoun Barakat, 

& Merhej Sayegh, 2022), and perceived self-image and usefulness partially mediate the 

relationship between habit and intention to use. 

Organizational learning and process innovation are important concepts in our proposed 

model. Therefore, we include organizational culture or, more specifically, four types of 

organizational culture: adhocracy, hierarchy, clan, and market (Quinn & Cameron, 1999). 

Table 5: Selected Empirical Studies on Organizational Culture, Innovation, 

Organizational Learning and Firm Performance 

Author Scope Theory Findings 

Shahzad, Xiu, and Shahbaz 

(2017) 

Survey, 215 respondents from 

29 software companies in 
Pakistan 

KMT (+) OC → Organizational Innovation 

Performance 

Sanz-Valle et al. (2011) Survey, 451 Spanish 

companies with more than 15 

employees 

 (+) OC: Adhocracy → OL 

(–) OC: Hierarchy → OL 

   To be continued 
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Table 5: Selected Empirical Studies on Organizational Culture, Innovation, 

Organizational Learning and Firm Performance (cont.) 

Author Scope Theory Findings 

Song-zheng and Xiao-di 

(2008) 

Survey, 490 Chinese 

companies 

 (+) OC → Knowledge Integration Capability 

(+) OC → Social Capital 

(+) OC → Organizational Learning 

Uzkurt, Kumar, Semih 
Kimzan, and Eminoğlu 

(2013) 

Survey, 154 respondents from 
the top 15 Turkish banks 

 (+) OC → Incremental Innovation → Firm 
Performance 

(+) OC → Firm Performance 

Nold III (2012) Financial data, “Great Place to 
Work” list of 100 best 

companies publicly traded on 

the US stock exchange during 
the test period 2004 and 2008 

 (+) OC (Trust) → KM → Operational 
Performance 

Boardman, Harden, and 

Martínez (2018) 

Survey, 295 respondents from 

national and global firms 

(manufacturing, finance and 
telecommunication) in Turkey 

 (+) Leadership → OC (Competitive, 

Bureaucratic, Community Culture) → 

Organizational Performance 

Dabbous et al. (2022) Survey, 203 organizations 

from Lebanon 

Technology 

acceptance 
mode, Theory of 

reasoned action 

(+) OC → The intention to use AI 

Sadegh Sharifirad and Ataei 
(2012) 

Survey, 245 respondents from 
six large auto companies in 

Iran 

 (+) OC (Involvement) → Innovation 
Infrastructure 

(+) OC (Adaptability → Innovation 

Propensity and Infrastructure 
 (+) OC (Mission) → Innovation 

Implementation 

Chen, Huang, Liu, Min, and 

Zhou (2018) 

Survey, 183 respondents from 

236 Chinese companies 

Contingency 

theory, 
Configuration 

theory 

(+) OC → Innovation Performance 

Abdi et al. (2018) Survey, 272 respondents, 
companies from Iranian 

automotive industries 

KMT, 
Competitive 

Value 

Framework 

(+) OC → Organizational Innovation 
(+) OC → Organizational Learning 

(+) OC → KM 

Hosseini, Hajipour, 
Kaffashpoor, and Darikandeh 

(2020) 

Survey, 329 respondents from 
Mobarakeh Steel Company 

Transformational 
leadership theory 

(+) Leadership style → OC → OL 

Pérez López, Manuel Montes 
Peón, and José Vázquez 

Ordás (2004) 

Survey, 195 respondents from 
Spanish industrial and service 

sector companies 

 (+) Collaboration Culture → OC → 
Organizational Performance 

Liao et al. (2012) Survey, 449 respondents from 

the top 100 financial 
enterprises in Taiwan 

 (+) OC (Bureaucratic, Innovative, Supportive 

Culture) → KM 
(+) OC (Bureaucratic, Innovative, Supportive 

Culture) → OL → Organizational Innovation 

Raj and Srivastava (2013) Survey, 321 respondents from 
public and private sector 

manufacturing and service 

organizations located in 

various parts of India 

 (+) OC (Clan, Adhocracy, Market) → OL → 
Innovativeness 

Hogan and Coote (2014) Survey, 91 respondents from 

Law firms within a large 
geographic area that included 

the metropolitan hub of 

Sydney, Australia 

 (+) Artefacts of innovation → Innovation 

behaviours → Firm Performance 

Prajogo and McDermott 
(2011) 

Survey, 194 respondents from 
Australian companies 

 (+) OC (Group) → Process Quality, Process 
Innovation 

(+) OC (Developmental) → Product Quality, 

Product Innovation, Process Innovation 
(+) OC (Hierarchical) → Process Quality 

(+) OC (Rational) → Product Quality, 

Process Quality 

Kim and Chang (2018) Competing values framework 

and balanced scorecard, panel 

data with more than 400 
Korean companies 

 (+) OC (Clan, Adhocracy and Market 

Culture) → Performance (HR, Customer and 

Process performance) 

Note. (+) Positive impact; (−) Negative impact; ( ) No impact. OC = Organizational Culture. 

KMT = Knowledge Management Theory. 

 

Source: Own work. 
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Data-driven culture and organizational culture are related but distinct concepts. While 

complementary, especially regarding AI adoption, they have different focuses and 

implications for organizations (Leal-Rodríguez, Sanchís-Pedregosa, Moreno-Moreno, & 

Leal-Millán, 2023; Sadegh Sharifirad & Ataei, 2012). Organizational culture encompasses 

all aspects of an organization's social and psychological environment (Cameron & Quinn, 

2011). Data-driven culture is an aspect of organizational culture that emphasizes the use of 

data (Gupta & George, 2016). More precisely, organizational culture deals with overall 

values and norms, while data-driven culture explicitly addresses how data is used in 

decision-making. Organizations typically exhibit a dominant cultural archetype that defines 

their identity. However, organizational cultures are not monolithic. Multiple microcultures 

within them coexist in a delicate balance between dominant and competing values (Leal-

Rodríguez et al., 2023). A data-driven culture can be a component of the broader 

organizational culture, especially in organizations prioritizing evidence-based practices. An 

organization with a strong data-driven culture might be more adaptable and innovative as it 

relies on data to drive changes and improvements (Chaudhuri et al., 2021). This results in an 

organizational context appropriate for technological innovation adoption, such as AI (Ali 

Taha, Sirkova, & Ferencova, 2016; Chatterjee, Chaudhuri, et al., 2021; Ghafoori, Gupta, 

Merhi, Gupta, & Shore, 2024). Both culture-related concepts are crucial for the success and 

sustainability of modern organizations, with a data-driven culture that often enhances and 

supports the broader organizational culture (Leal-Rodríguez et al., 2023). Their separate 

inclusion in the organizational context is therefore warranted. 

2.11 Brief Overview of Hypotheses 

In total, we formulate the following 14 hypotheses. 

Table 6: Summary of Formulated Hypotheses 

Hypotheses Definition Brief explanation 

H1 AI adoption directly positively influences 

organizational performance. 

The AI-specific ability to create intelligent agents facilitating the 

automation–augmentation of decision-making and transformation 

(improvement and redesign) of business processes can unlock 

considerable OP gains. 

H2 Business process performance positively 

influences organizational performance. 

Business processes encompass the management of key business 

operations that lead to business growth and success. Superior 
business process performance is related to the transformation 

process as part of the organizational productivity dimension, which 

includes individual and operational efficiency (i.e., doing things 
right), customer service efficiency, and product/service 

development. Therefore, the aggregated outcomes of various 

processes directly influence an organization's performance. 

H3a Decision-making performance positively 

influences business process performance. 

Business processes entail various decisions, ranging from routine 

operational choices to strategic planning and resource allocation. 

These decisions affect the process's outcome. Organizations employ 
various IS tools to improve performance and guide business process 

decision-making. AI resources can increase the speed, flexibility, 

and quality (more data sources, better predictions) of the decision-
making process and, in turn, business process performance. 

  To be continued 
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Table 6: Summary of Formulated Hypotheses (cont.) 

Hypotheses Definition Brief explanation 

H3b Decision-making performance positively 

influences organizational performance. 

Organizational decision-making includes high-level decisions that 

shape the organization's overall direction and long-term vision. 

They involve critical choices about market positioning, product 
development, and other initiatives that impact the organization's 

future growth and sustainability. AI-enabled processing capabilities 

can significantly impact strategic decision-making by extracting 
information from Big Data, providing valuable insights, improving 

forecasting accuracy, and facilitating data-driven strategies. 

H4a and H4b Cognitive business process automation 

mediates the positive impact of AI adoption 
on decision-making performance and 

business process performance. 

The ability of an organization to automate complex and knowledge-

intensive business processes (KiPs) using Cognitive technologies 
can significantly enhance the effectiveness and efficiency of both 

DMP and BPP. 

H5a and H5b Organizational learning mediates the 
positive impact of AI adoption on decision-

making performance and business process 

performance. 

AI holds considerable potential to explicate the organizational 
knowledge base provided that it is represented in Big Data. It can 

develop new, incremental knowledge or update existing knowledge. 

Thus, knowledge has the potential to influence decision-making and 
process performance. 

H6a and H6b 

 

 

H7a and H7b 

Incremental business process innovation 

mediates the positive impact of AI adoption 

on decision-making performance and 
business process performance. 

 
Radical business process innovation 

mediates the positive impact of AI adoption 

on decision-making performance and 
business process performance. 

Organizations can significantly enhance decision-making and 

business process performance by integrating AI technology or an 

AI-enabled innovation process. The exploration approach involves 
incremental improvements to existing processes focusing on 

increasing decision-making and business process efficiency and 
effectiveness. In contrast the exploration approach pursues more 

radical or transformative changes enabled or driven by AI. 

H8a 

 

H8b 

Organizational learning positively 

influences incremental business process 

innovation. 
 

Organizational learning positively 

influences radical business process 
innovation. 

Knowledge assets are the foundation for all organizational 

capabilities and core competencies, representing a fundamental 

strategic tool for fostering ongoing innovation. OL prevents 
stagnation and promotes continuous innovation through the renewal 

and reinvention of technology and the transformation of business 

processes. 

 

Source: Own work 

3 COMPONENT-BASED VIEW OF AI ADOPTION6 

Our empirical research requires a concept that captures the main components of AI adoption 

on an organizational level in the BPM context. Drawing from Aydiner, Tatoglu, Bayraktar, 

Zaim, et al. (2019), we understand AI adoption as implementing, deploying, and using AI 

resources (data, AI infrastructure, skills, capabilities) in business processes. The AI 

adoption constructs we identify measure adoption in relation to the antecedents and 

determinants of readiness for adoption, the process of adoption, and adoption intention 

(Alsheibani, Cheung, & Messom, 2018; Chen, 2019; Chetty, 2019; Mikalef & Gupta, 2021). 

Since we could not identify any comprehensive constructs (Bag, Gupta, et al., 2021; Wamba, 

2022), we developed a new construct assessing AI adoption level as an exogenous, 

component-based variable (unlike antecedents or determinants) related to the level of 

deployment and actual use of particular AI applications and technologies. 

                                                 
6 Parts of this chapter were previously published in the BPM 2020 International Workshops (Zebec & Indihar 

Štemberger, 2020). 
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3.1 Big Data and AI 

Digitalization continues to transform services, products, and business processes (Peppard & 

Ward, 2016). With technologies like the Internet of Things, digital representations mediate 

the experience of the real world (Lyytinen, 2022) and enormous quantities of data are 

generated (Big Data). Big Data combines unstructured, semi-structured, or structured data 

collected by organizations. In data-driven business models, data are the key information 

assets (i.e., resources; Hartmann, Zaki, Feldmann, & Neely, 2016) with sufficiently high 

volume, velocity, and variety to require specific technology and analytical methods for its 

transformation into value (De Mauro, Greco, & Grimaldi, 2016; Mashingaidze & 

Backhouse, 2017). Organizations that treat data as a key resource can gain a significant 

advantage over the competition (Kühne & Böhmann, 2019). Organizations thus actively 

look for opportunities to harness Big Data, and managers have always exploited the 

opportunities provided by IT. 

While developments in AI technology have increased opportunities, the issues encountered 

in ensuring successful implementation are no easier to resolve (Peppard & Ward, 2016). AI 

depends on data and domain knowledge, making it challenging to integrate and align with 

existing business processes and their management (Chui, 2017; Mikalef & Gupta, 2021). 

Legacy data mining methodologies, optimized for centralized processing architectures, 

encounter significant challenges when confronted with Big Data’s volume, velocity, and 

variety (Li, Ye, & Zhang, 2022). AI, by contrast, leverages ML algorithms to extract 

valuable insights, automate data management tasks, and introduce novel paradigms for data 

interaction. AI can significantly enhance organizational data literacy by democratizing 

access to data and fostering a data-driven culture (Dubey, Bryde, Dwivedi, Graham, & 

Foropon, 2022). 

3.2 Cognitive Computing and Technologies 

Cognitive computing is a technological approach that allows human–machine collaboration. 

These systems are able to learn at scale, reason with purpose, and interact with humans and 

other intelligent systems. Rather than being explicitly programmed, these systems learn and 

reason based on their interactions with humans and their experiences in the environment 

(Demirkan, Earley, & Harmon, 2017; Hurwitz et al., 2015). Cognitive computing systems 

comprise advanced technologies and algorithms to mimic human cognitive abilities, 

including perception, reasoning, learning, and problem-solving, to understand, interpret, and 

analyze complex data more effectively. All cognitive computing systems are learning 

systems (Noor, 2014). 

Academics and industry have paid considerable attention to cognitive computing due to the 

rapid development of computer software and hardware technologies, Big Data, and AI 

(Chen, Herrera, & Hwang, 2018). Cognitive computing assists humans in decision-making, 

whereas AI-based systems assume that machines (i.e., automation) can make better decisions 
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on their behalf (Gupta, Kar, Baabdullah, & Al-Khowaiter, 2018). Cognitive computing 

systems can be regarded as “more human” AI (Coccoli, Maresca, & Stanganelli, 2016). It 

can be argued that cognitive computing is a subset of AI; anything cognitive is also AI 

(Gupta et al., 2018). Cognitive computing system emulates human reasoning methodologies, 

demonstrating special capabilities in dealing with uncertainties and solving problems 

involving computation. Additionally, it has the ability to make progress and develop by using 

accumulated experiences to learn from past successes and failures (Coccoli et al., 2016); that 

is, a computerized model captures the human thought process and improvises on the basis 

of the mistakes the system makes every time it executes (Modha et al., 2011). This self-

learning mechanism can be beneficial for decision-making by controlling how much data is 

analyzed (Raghavan, Gudivada, Govindaraju, & Rao, 2016). This reduces the shortcomings 

and concerns faced in business data analysis (Hurwitz et al., 2015). 

Despite their similarity, cognitive computing and cognitive technologies are different 

concepts. Cognitive technologies are a broader category that includes the many technologies 

and tools that leverage cognitive capabilities. They are a more comprehensive set that 

includes, for example, AI (natural language processing, machine learning, computer vision, 

speech recognition, and other AI-based techniques), advanced analytics, high-performance 

computing, and cyber-physical systems (Elia & Margherita, 2022). We can also understand 

cognitive technologies as the products of AI that perform tasks that were once the exclusive 

domain of humans (Schatsky et al., 2014). 

To summarize, cognitive computing is a distinct technological approach that falls within the 

broader category of cognitive technologies. Cognitive computing focuses on building 

intelligent systems replicating human cognition. In contrast, cognitive technologies 

encompass a wide range of AI-based tools and techniques that enhance human–machine 

interactions and enable problem-solving. 

We use the term “cognitive” in our construct definitions to emphasize the human–computer 

interaction and the automation–augmentation perspective on AI adoption. To his end, we 

adopt the definition proposed by (Roeglinger et al., 2018, p. 421). “Cognitive computing is 

an umbrella term for new problem-solving models that strive to mimic the cognitive 

capabilities of the human mind by autonomously reasoning and learning based on 

incomplete structured and unstructured contextual data and through natural interactions with 

humans and machines.” 

3.3 AI-Related Technologies 

In this research we refer to business intelligence, business analytics, Big Data analytics, 

knowledge discovery, and data mining as AI-related technologies and rely on theory and 

empirical evidence related to these technologies and concepts. Next, we provide a rationale. 
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3.3.1 Data Analytics 

Although there is no generally accepted unified framework encompassing the fields of BI, 

business analytics, Big Data analytics, data analytics, knowledge discovery, data mining, 

and AI, together they constitute “a cluster of concepts concerned with analyzing massive 

amounts of data” (Dedić & Stanier, 2017). As Holsapple et al. (2014) point out, analytics 

can be categorized as a movement, a collection of practices and technologies, a 

transformation process, a set of capabilities, or a decisional paradigm. However, in the field 

of information systems, analytics are primarily considered in connection to technology and 

decision-making capabilities (Hassan, 2019). The concepts of business intelligence, business 

analytics, Big Data analytics, data analytics, knowledge discovery, data mining, and, to some 

extent, AI all concern data analytics to some degree (it is the lowest common denominator). 

Data analytics is “the process of supporting effective decision-making through analysis of 

the existing data sets using computer systems” (Runkler, 2020, p. 2). Data analytics is a 

multidisciplinary field that encompasses various discourses that affect analytics, including 

computational intelligence, statistics, machine learning, signal theory, pattern recognition, 

machine learning, operations research, predictive analytics, Big Data, knowledge discovery, 

data mining, artificial intelligence, visualization, natural language processing, decision 

support systems, business intelligence, prescriptive analytics, and descriptive analytics 

(Dedić & Stanier, 2017; Hassan, 2019). 

As data analytics developed, different rules came to apply to it than are applicable to 

statistics. There is a move from statistics toward data science (Hassan, 2019) in the form of 

“generalizable knowledge extraction from data.” Dhar (2013) distinguishes between 

statistics and data science: 1) the variety of data, especially the growing volume of 

unstructured data, differs from data traditionally handled by statistics; 2) analyzing the data 

has evolved from traditional statistical inference and causal modeling to integrating, 

interpreting, and making sense of it using tools from computer science, linguistics, 

sociology, and other fields; 3) the shift in focus from testing causal hypotheses to generating 

new hypotheses based on interesting and insightful patterns in the data; and 4) the focus on 

prediction rather than statistical explanatory power. These differences also pertain to the 

distinctions between business intelligence, business analytics, Big Data analytics, data 

analytics, knowledge discovery, data mining, and AI. 

In business, accessing and analyzing data enables organizations to gain valuable insights into 

significant trends and patterns, providing managers with timely and helpful information to 

enhance decision-making. Over the last few years, data-driven approaches like business 

intelligence and business analytics have become indispensable to business operations 

(Vassakis, Petrakis, & Kopanakis, 2018). 
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3.3.2 Business Intelligence 

Business intelligence, the application of data analytics to generate information to support 

business decision-making, has been an important research area for more than two decades 

(Hassan, 2019; Liang & Liu, 2018). Business intelligence is content-free expression and has 

been variously interpreted in the literature. The confusion about business intelligence in the 

literature lies in the flurry of associated acronyms and buzzwords. We understand business 

intelligence as “an umbrella term that combines the methodologies, systems, and 

applications for collecting, preparing, and analyzing data to provide information to help 

decision-makers” (Sharda, Delen, & Turban, 2016, p. 42). As such, “BI systems are data-

driven decision-making systems” (Vassakis et al., 2018, p. 8). Business intelligence 

transforms raw data into information, insight, and meaning for business purposes (Ghavami, 

2019). 

Several authors emphasize that business analytics, Big Data analytics, knowledge discovery, 

data mining, and AI must be integrated into business intelligence, presenting them as the 

advanced potential of artificial intelligence, especially for decision-making (Chen, Li, & 

Wang, 2022). The integration process occurred over three generations of business 

intelligence (Alghamdi & Al-Baity, 2022), and clearly delineating these concepts is difficult 

(Dedić & Stanier, 2017). 

The first generation of business intelligence is mainly understood as the analysis of historical 

and current data, situations, and performance to provide a relevant snapshot using static 

dashboards and reports and allowing decision-makers valuable insights for more informed 

and better decisions (Ghavami, 2019; Sharda et al., 2016). First-generation business 

intelligence works with normalized and complete data, typically arranged in rows and 

columns. The data are structured and assumed to be accurate and typically stored in a data 

warehouse or a data mart. Data that are out of range or outliers are removed before 

processing. Data processing uses simple, descriptive statistics such as mean, mode, and 

possibly trend lines and simple data projections to extrapolate about the future (Ghavami, 

2019). 

Second-generation business intelligence has the ability to perform analytics. By analyzing 

data, organizations can determine the reasons for past events and make predictions based on 

the information extracted (business analytics) as well as gain insight into what happened and 

how (business intelligence part; Bulusu & Abellera, 2020). Both causation and correlation 

must be considered in the analysis. Second-generation business intelligence generates a more 

complete view of business and allows more insightful decisions. 

Third-generation business-intelligence-enabled ecosystems involve the integration of a 

plethora of AI tools and technologies to boost and enhance business intelligence (Bulusu & 

Abellera, 2020)—from data preparation (including data quality) to data integration (via 
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ETL/ELT7 or data virtualization) to data warehousing (including data lakes that act as 

sources to the data warehouse) to data presentation (via data marts, data warehouses, and 

business intelligence dashboards) and data visualization, and from decision support to 

decision-making. 

3.3.3 Business Analytics 

Business analytics has largely replaced previously available computerized decision support 

technologies. Indeed, many practitioners and academics now use the word analytics instead 

of business intelligence (Sharda et al., 2016). The definitions offered for business analytics 

are not very different from those for business intelligence. Generally, two key aspects are 

included: technology and the ability to make informed decisions (Holsapple et al., 2014; 

Power, Heavin, McDermott, & Daly, 2018). 

Davenport and Harris (2017, p. 36) define business analytics as “the extensive use of data, 

statistical and quantitative analysis, explanatory and predictive models, and fact-based 

management to drive decisions and actions” and consider it a subset of business intelligence 

(Hassan, 2019). Predictive analytics is one of the most significant business intelligence 

processes in business analytics. It is intended to support managers in making reasonable 

decisions by predicting future trends based on historical data. Various analytic tools and 

technologies are available to aid in expectations forecasting and strategy simulation. These 

tools involve statistical modeling, mathematical calculations, result simulation, and 

visualization techniques (Chen, Li, et al., 2022). 

Business analytics is essentially the implementation of conventional analytics (Vassakis et 

al., 2018) and involves 1) descriptive8, diagnostic9, or predictive10 analytics, 2) it is 

hypothesis-based, 3) the primary objective is internal decision support and performance 

management, and 4) it is based on structured data. 

In the late 2000s, business analytics became the principal analytical element in business 

intelligence. Thereafter, the terms Big Data and Big Data analytics are used interchangeably 

to describe analytical techniques for data sets that are so large and complex that they require 

advanced storage, management, analysis, and visualization technologies (Vassakis et al., 

2018). 

                                                 
7 ETL/ELT (extract, transform, and load) is extremely important for data integration and warehousing (Sharda 

et al., 2016). 
8 Descriptive analytics (business intelligence or performance reporting) is the provision of historical and current 

data access, offering organizations the ability to alert, explore, and report using internal and external data from 

various sources (Davenport & Harris, 2017). 
9 Diagnostic analytics, also based on historical data, provides insights into the root cause of past outcomes 

(Vassakis et al., 2018). 
10 Predictive analytics uses quantitative techniques (e.g., propensity, segmentation, network analysis, and 

econometric forecasting) and technologies (such as models and rule-based systems) that use past data to predict 

the future (Davenport & Harris, 2017). 
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3.3.4 Big Data Analytics 

Conventional analytics cannot handle vast quantities of data, and Big Data (defined in 

Section 3.1) is too large and complex to be manipulated or managed using standard tools 

and methods. Big Data analytics emerged in response and is commonly understood as “large-

scale analysis and processing of information, encompassing data sets that go beyond the 

capacity of conventional databases” (Chong & Shi, 2015; Dedić & Stanier, 2017; Zakir, 

Seymour, & Berg, 2015). The power of business analytics is that vast amounts of data can 

be streamlined to enhance their value (Vassakis et al., 2018) and that advanced analytics are 

employed that can manage Big Data. Big Data analytics uses various advanced methods of 

data analysis, such as clustering, classification, association rule, and sequential patterns, to 

discover new knowledge. 

Big Data analytics involves the implementation (Vassakis et al., 2018) of 1) predictive and 

prescriptive11 analytics, 2) using machine learning, 3) with the primary objective of driving 

business processes and data-driven products and services, and 4) based on unstructured, 

semi-structured, and structured data. 

3.3.5 Knowledge Discovery and Data Mining 

Knowledge discovery, according to Cortez and Santos (2013), is a branch of AI in which the 

aim is to extract high-level knowledge from complex and voluminous data in a form that is 

useful and understandable (Dedić & Stanier, 2017). Fayyad, Piatetsky-Shapiro, and Smyth 

(1996, p. 82) define knowledge discovery as an “overall process of discovering useful 

knowledge from data.” Knowledge discovery is a high-level concept, which, in addition to 

other methods, includes advanced data analytics to discover or produce new knowledge 

(Hassan, 2019). 

Advanced analytics are utilized for discovery, knowledge creation, assertion, and 

communication of patterns, associations, classifications, and learning from data using 

advanced statistics, AI techniques, machine learning, deep learning, feedback, and natural 

language processing to mine data (Ghavami, 2019). Data Mining is considered a powerful 

approach to developing knowledge from data (Dedić & Stanier, 2017). Data analysis and 

discovery algorithms are utilized to generate models based on existing data. 

Knowledge discovery and data mining concern the implementation of 1) advanced data 

analytics, 2) using natural language programming, classifiers, machine learning, pattern 

recognition, predictive modeling, optimization, and model-based methods, 3) with the 

                                                 
11 Prescriptive analytics involves the use of quantitative techniques (such as optimization) and technologies 

(e.g., models, machine learning, and recommendation engines) to specify optimal behaviors and actions 

(Davenport & Harris, 2017). 
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primary objective of discovering knowledge, insight, and patterns, and learning from data, 

4) based on unstructured, semi-, and structured data (Ghavami, 2019). 

3.3.6 Integration of AI-Based Methods 

AI brings a set of sophisticated algorithms to data analytics for descriptive, diagnostic, 

predictive, and prescriptive analytics (Carlile, Marti, & Delamarter, 2017). AI-based 

methods can automate the analytics cycle for business and facilitate the preparation of data, 

generation of insights, and interpretation. These methods can transform how analysts execute 

and share data insights and how users explore and analyze data in analytics and business 

intelligence platforms (Alghamdi & Al-Baity, 2022). 

AI-based methods refer to techniques and approaches that leverage AI technologies to solve 

problems or perform analytical tasks. These methods typically involve machine and deep 

learning, natural language processing, computer vision, and other AI subfields (Alghamdi & 

Al-Baity, 2022). This degree of analytical capabilities is referred to as intelligent analytics 

and as an intelligence that integrates AI, human intelligence, analytics, data, information, 

knowledge, intelligence, and wisdom using advanced computing to provide intelligent 

services, business, management, and governance (Sun, 2021). 

The most relevant areas of analytics impacted by AI-based methods are the following (Surya, 

2015): 1) data management (AI makes customized suggestions based on machine learning 

and real-time data utilization); 2) patterns management (AI identifies anticipated and 

unanticipated signals, occurrences, and trends quickly and in detail); 3) context management 

(AI facilitates complex computer processes using data, learning subtle variations and 

context-specific distinctions); 4) decision management (AI supports the use of information 

and skills in a dynamic environment, scales key resources, such as Big Data, to address 

business objectives and customer expectations, enhances user experiences, resolves 

consumer complaints, recommends decision options, analyzes and forecasts decision 

outcomes, and tracks output against key metrics); 5) action management (AI analyzes 

activities and associates these with previous decision steps, selects inventoried actions, 

modifies rules and parameters, recommends new actions, and incorporates AI in executing 

tasks); 6) goal management (AI autonomously modifies targets to guide humans, snippets, 

bots, applications, and scalable infrastructures); and 7) risk management (AI supports 

organizations in identifying and responding to potential threats by analyzing incidents, 

trends, system logs, personal input, and cultural behavior, thereby facilitating early detection 

and implementation of appropriate protection measures). 

The growth in AI-based methods is evidenced by the surge in research citations for data 

mining (citation burst in 2012), digital storage (burst in 2013), predictive analytics (burst in 

2014), machine learning (burst in 2015), the distributed computer system (burst in 2016), 

predictive modeling and visualization (burst in 2016), support vector machines (burst in 

2016), regression (burst in 2016), classification algorithms (burst in 2017), neural networks 
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(burst in 2018), random forest (burst in 2018), decision trees (burst in 2018), deep learning 

(burst in 2018), prediction algorithms based time-series (burst in 2019), sentiment analysis 

(burst in 2020), and text mining (burst in 2021; Chen, Li, et al., 2022). 

The use of AI-based methods in business intelligence, Big Data, and data analytics is also 

evident in the surge in research citations for decision-making (citation burst in 2013), 

business process intelligence (burst in 2013), competitive intelligence and competition 

analysis (burst in 2014), enterprise resource management (burst in 2014), administrative 

management (burst in 2015), commerce enhancement (burst in 2015), manufacturing 

development (burst in 2015), sale prediction (burst in 2016), information management (burst 

in 2017), quality management (burst in 2017), knowledge management (burst in 2017), risk 

assessment (burst in 2018), customer satisfaction management (burst in 2018), service 

improvement (burst in 2020), user acceptance development (burst in 2020) and satisfaction 

improvement (burst in 2021; Chen, Li, et al., 2022). 

Intelligent analytics builds on Big Data analytics (Alghamdi & Al-Baity, 2022) and includes 

1) predictive, prescriptive, and real-time advanced analytics; 2) using AI and machine 

learning; 3) with the primary objective of data storytelling, scenario analysis, search-based 

visual analysis, and conversational analytics driven by natural language programming, smart 

discovery and automated insights, accelerated data preparation, and Big Data analytics; and 

4) is based on unstructured, semi-, and structured data. 

Several artifacts of AI implementation overlap with business intelligence, business analytics, 

Big Data analytics, knowledge discovery, data mining, and Big Data implementation. This 

is because of the ultimate relationship between AI and digital transformation; for example, 

implementing AI requires that Big Data be in place (Brock & Von Wangenheim, 2019; 

Gupta & George, 2016). Therefore, the various technologies can be seen as complementary, 

and we expect them to eventually evolve into AI technologies (Metcalf, Askay, & 

Rosenberg, 2019). To summarize, we present data analytics as the factor that links the 

concepts and technologies assessed as complementary and intricately intertwined (Hassan, 

2019). 

3.4 Development of the Concept 

Our development of concepts follows the guidelines in the literature (MacKenzie et al., 2011; 

Podsakoff et al., 2016). The “adoption of AI” is defined in three stages: 

1. possible attributes of the construct are gathered by examining and assembling a set of 

definitions from the literature and in-depth semi-structured interviews, 

2. key potential attributes are compiled to generate a preliminary definition, and 

3. the definition is refined. 
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3.4.1 Literature Identification 

We conduct a thorough review on the literature on information systems from the SCOPUS 

and Web of Science databases to identify existing definitions of AI adoption and 

organiztation-level models. The literature review includes studies defining AI adoption and 

that specify models at the organizational level. Our search yields several empirical studies 

that utilized well-known theories and frameworks such as resource-based view, dynamic 

capability view, knowledge management theory, organizational information theory, the 

diffusion of innovations theory, and the technology-organization-environment framework 

(as presented in Table 7). 

The AI adoption constructs and measurement scales we identify focus on various factors, 

including the antecedents and determinants of adoption readiness, the process of adoption, 

and adoption intention. However, we find that no constructs assessed AI adoption as an 

exogenous, comprehensive, and component-based variable related to the level of 

deployment, actual use, or utilization of specific applications and technologies. Therefore, 

we argue that there is a need to develop a new construct. 

Table 7 summarizes the descriptions and definitions of AI adoption at the organizational 

level, as identified in our literature review. 

Table 7: Studies on AI Adoption at the Firm-Level 

Author Scope Theory Findings 

Mikalef and Gupta (2021) Survey, 143 senior US 

firm managers 

RBV, DCV Determinants of AI Capability. 

 

Tangible resources → Tangible resources are considered 
those that can be sold or bought in a market. 

Human resource → AI-specific technical and business 

skills. 
Intangible resources → Inter-departmental coordination, 

organizational change capacity, and risk proclivity. 

Wamba (2022) Survey, 205 US firm 
managers 

RBV, DCV Indefinite components of AI assimilation → Deployment 
and use of AI tools. 

Wamba-Taguimdje et al. 

(2020a) 

150 AI-related case 

studies 

RBV, DCV Determinants of AI Capability. 

 

AI Management Capability → Ability of an organization 

and its staff to administer or to model intelligent 

behaviour in a computer or technology to create added 

value for the organization’s sustainability. 
 

AI personal Expertise → The professional skills and 
knowledge of AI-related technologies, business functions 

and relational (or interpersonal) domains is required by 

the organization's staff for modeling and/or using 
intelligent behaviour in a computer or technology to 

accomplish the assigned tasks. 

 
AI infrastructure → The composition of all technological 

assets (software, hardware and data, etc.), systems and 

their components, network and telecommunication 
installations and applications necessary to implement an 

AI system capable of performing tasks. 

   To be continued 
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Table 7: Studies on AI Adoption at the Firm-Level (cont.) 

Author Scope Theory Findings 

Chen, Esperança, et al. 

(2022) 

Survey, 394 e-

commerce entrepreneurs 

 

RBV, DCV 

 

Determinants of AI Capability. 

 

Basic → Tangible Resources 
Skills → Human Resources 

Proclivity → Intangible Resources 

Bag, Gupta, et al. (2021) 306 senior executives in 

South Africa 

KMT Determinants of Big data powered AI technology 

 

Mishra et al. (2022) 10-K data from US 

firms 

 Determinants of AI adoption → AI Focus. 

Lyu and Liu (2021) US Energy Sector 

Compustat data during 
the period 2010–2019 

 Antecedents of AI adoption → AI related Job Listings. 

Rammer et al. (2022) Germany Community 

Innovation Survey (CIS) 

2018 

 Combination of determinants and components. 

 

AI development 

 

Breadth of AI us  
 

Experience in AI use 

 
AI methods → Language or text understanding, 

image or pattern recognition, machine learning, and 

knowledge or expert systems. 
AI application areas → Products or services, 

automation of processes, interaction with clients, data 

analysis, and other applications (including R&D). 

Kim et al. (2022) 395 US-listed firms 

using AI between 2000-

2018 

 A limited set of technological components of AI 

adoption → Natural Language Processing, pattern 

recognition, neural network and artificial intelligence. 

Alekseeva et al. (2020) Compustat Online US 
job postings during the 

period 2010–2018 

 Antecedents of AI adoption → Demand for AI-related 
skills in online job postings 

Babina et al. (2021) Job postings from the 
US during the period 

2010–2018 

 Antecedents of AI adoption → AI-related worker 
resume and job posting datasets. 

Sullivan and Wamba 

(2022) 

Survey, 107 business 

and IT executives from 
UK and France 

DCV, 

Organizational 
Information 

Theory 

Determinants of AI adoption. 

 
Coordinating/integration → Assess the value of existing 

resources and integrate them to shape new capabilities.  

Learning → Explore and exploit internal and external 
knowledge.  

Strategic competitive response → Scan the 

environment, identify new opportunities, and assess the 
firm’s competitive response. 

Alsheibani et al. (2018)  TOE AI readiness: factors (determinants) for preparing 

organizations to adopt AI. 
 

Technological readiness → The ability of a firm to adopt 

new technology. 

Organizational readiness → Availability of the needed 

organizational resources for adoption. 

Environmental readiness → How the organization 
perceives external factors to adopt AI. 

Chen (2019) Survey, 289 

telecommunication 
companies 

TOE, DOI The antecedents of AI adoption. 

 
Innovation attribute of AI → Compatibility; Relative 

advantage; Complexity 

Organizational capability → Managerial support; 
Technical capability 

External environment → Government involvement; 

Market uncertainty; Competitive pressure; Vendo 
partnership 

Managerial capability → The ability of managers to 

influence, motivate and enable employees to contribute 
toward the effectiveness and success of the 

organization. 

Note. RBV = Resource-Based View. DCV = Dynamic Capabilities View. KMT = Knowledge Management Theory. 

TOE = The technology-organization-environment framework. DOI = The Diffusion of Innovations Theory. 

 

Source: Own work. 
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We separately examine the concepts of “adoption” and “AI” to develop the definition of AI 

adoption operationalized in this study. Following Podsakoff et al. (2016), for our focal 

construct, we apply multiple techniques to gather potential attributes and produce an 

illustrative set of definitions. We examine dictionary definitions and antonyms and draw 

material from our literature review and in-depth semi-structured interviews with subject-

matter experts and practitioners. 

3.4.1.1 Adoption 

It is well known that IT usage is a key dependent variable in management information 

systems research and that numerous empirical studies examine its determinants (Karahanna, 

Straub, & Chervany, 1999). We must also consider the temporal dimension of the adoption 

process, that is, the sequence of events leading to the initial adoption and continued use of 

an IT innovation. Renaud and Van Biljon (2008) assert that technology adoption is a multi-

phase process that begins with the decision to adopt (the selection, purchase, or commitment 

to use) and ends with “permanent use.” Karahanna et al. (1999, p. 183) distinguish between 

“pre-adoption” and “post-adoption (continued use).” Accordingly, adoption and sustained 

engagement can be treated as distinctive parts of the adoption process (Nadal, Doherty, & 

Sas, 2019). 

It is essential to first distinguish between the acceptance and adoption of technology. 

According to Renaud and Van Biljon (2008), technology adoption is becoming aware of, 

embracing, and utilizing the technology. Rogers (2010) defines adoption as making full use 

of technology and rejection as not accepting the technology. In contrast, technology 

acceptance is an attitude toward technology influenced by various factors. Acceptance refers 

to the willingness to use the technology for the purpose for which it was designed (Wong, 

2016). A distinction is also made between individual and organizational acceptance and 

adoption of technology, that is, between the acceptance and adoption of technology as a 

personal choice and as an organization’s policy (Jeyaraj, Rottman, & Lacity, 2006). 

Several theories and models in the literature address the adoption of technology, including 

the technology acceptance model, the technology acceptance model 2 and the theories of 

diffusion of innovation, reasoned action, and planned behavior, the technology-organization-

environment framework, and the unified theory of acceptance and use of technology (Dube, 

Van Eck, & Zuva, 2020; Taherdoost, 2018). However, the theories and models concern the 

antecedents and determinants of adoption, with actual use positioned as a dependent 

variable. In this study, we position adoption as an independent variable and address post-

adoption (continued use). Rather than antecedents and determinants of adoption, we are 

interested in the component parts of AI adoption, such as the implementation, integration, 

deployment, use, and exploitation of AI applications, tools, and technologies. 

We examine definitions of “adoption” in dictionaries and top journals in the field of 

management information systems to extract common attributes centered on the use of the 
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technology at an organizational level. The common attributes we identify are the following: 

implementation, integration, deployment, use, and exploitation. We discard attributes that 

concern the process of adoption: investment decision, acceptance, selection, planning, and 

configuration. Exemplary definitions are presented in Table 8. 

Table 8: Exemplary Definitions of Adoption from Management Information Systems 

Journals 

Conceptualization of Adoption Author(s) 

“use of computer hardware and software applications to support business 

operations, organizational management, and decision making processes” 

Thong and Yap (1995) 

“a process that includes decision-making, planning, design, implementation, and 

integration with other technologies through which a firm becomes capable of 
using a technology” 

Chan and Mills (2002); Iacovou, Benbasat, and 

Dexter (1995) 

“For these kinds of technologies, the very notion of adoption deserves special 

scrutiny. Should we consider an organization to have "really" adopted when 
senior managers give the goahead? Or would it perhaps be better to wait until 

some threshold level of actual use is reached?” 

Fichman (2000) 

“adoption is the intention to use and the actual use of technology” Venkatesh, Morris, Davis, and Davis (2003) 

“the first use or acceptance of a new technology or new product” Khasawneh (2008) 

“a decision to make full use of a technology as the best course of action 
available” 

Rogers (2010) 

“adoption including selection and configuration, deployment and exploitation” Culnan, McHugh, and Zubillaga (2010) 

“the use and deployment of concepts in different kinds of organizations” Reijers, van Wijk, Mutschler, and Leurs (2010) 

“the decision to accept or invest in a technology” Reijers et al. (2010) 

“adoption and its actual penetration; whether the technology is in place and 

ready for use, and penetration is the degree of actual use” 

Gefen, Ben-Assuli, Stehr, Rosen, and Denekamp 

(2019) 

 

Source: Own work. 

3.4.1.2 Definitions of Artificial Intelligence 

Next, we examine definitions of AI in dictionaries and the information systems literature 

(Table 9). Our analysis shows that some definitions are more precise than others. Some 

emphasize the capacity of computers to mimic human intelligence, while others are more 

precise and focus on the technologies that enable human characteristics to be emulated. 

Table 9: Exemplary Definitions of AI from Management Information Systems Journals 

Conceptualization of Artificial Intelligence Author(s) 

“…science and engineering of making intelligent machines, especially intelligent 

computer programs” 

McCarthy, Minsky, Rochester, and Shannon 

(1955) 

“acts like a human or acts and interprets the world like a human” Russell and Norvig (2020) 

“the theory and development of computer systems (mostly machines) or 

technologies capable of performing tasks that normally require human 

intelligence” 

Bawack and Wamba (2019) 

“set of technologies, machines or systems capable of emulating human 

performance typically by learning to understand complex data that normally 

requires cognition” 

Bawack et al. (2019) 

“… a set of tools and technologies that has the ability to augment and enhance 

organizational performance. This is achieved by creating artificial systems to 

solve complex environmental problems, with "intelligence" being the simulation 
of human-level intelligence.” 

Alsheibani, Messom, and Cheung (2019) 

“a simulation of human intelligence which is processed by machines, especially 

by robotics or computer system” 

Tyagi and Jain (2019) 

 

Source: Own work. 
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There is no single accepted definition of AI. The available definitions are very general, 

focusing on two key attributes: learning and perception. Some definitions emphasize a 

computer’s capacity to mimic human intelligence; others are more precise, defining AI as 

the technologies that simulate human cognitive functions. Many definitions present the idea 

of an intelligent agent as the central unifying theme (Russell & Norvig, 2020). The AI Group 

of Experts at the OECD (OECD, 2019) defined an intelligent agent or AI system as “a 

machine-based system that can, for a given set of human-defined objectives, make 

predictions, recommendations, or decisions influencing real or virtual environments. It does 

so by using machine and/or human-based inputs to 1) perceive real and/or virtual 

environments, 2) abstract such perceptions into models through analysis in an automated 

manner (e.g., with machine learning or manually), and 3) use model inference to formulate 

options for information or action. AI systems are designed to operate with varying levels of 

autonomy.” 

The definition is amended to accommodate the emergence of large language models and 

define the AI system as “a machine-based system that, for explicit or implicit objectives, 

infers, from the input it receives, how to generate outputs such as predictions, content, 

recommendations, or decisions that can influence physical or virtual environments. Different 

AI systems vary in their levels of autonomy and adaptiveness after deployment.” (OECD, 

2024, p. 7). 

We further investigate AI types, features, technologies, and application domains to identify 

more specific characteristics and uncover themes in AI adoption. These categories help us 

develop a concept-centric structure to understand AI adoption, use, and impact. Based on 

the meanings of the categories, we are able to determine AI characteristics, capabilities, 

principles, and technologies that can be used to manage and implement AI. 

3.4.1.3 AI Types 

AI is generally classified into three types, as shown in Table 10. These classifications of AI 

are based on the similarity between AI capabilities and human cognitive abilities. They do 

not capture the application of AI in an organizational context. 
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Table 10: AI Types 

AI type Definition 

Artificial Narrow Intelligence (ANI), 

also referred to as narrow/applied 

“they operate strictly within the confine of the scenarios for which they are programmed” 

(Miailhe & Hodes, 2017) 

 
“application of AI techniques to narrower or specific problems” (Bawack et al., 2019) 

AI, Pragmatic AI, or Weak AI “AI which is specialized in one task.” (Ganji & Karandikar, 2019) 

Artificial General Intelligence (AGI), 

also referred to as general/generalized 
AI, Pure AI or Strong AI 

“… is able to mimic all of the capabilities of the human brain, not just the very narrow ones” 

(Burgess, 2018) 
 

“…an autonomous machine’s ability to perform any intellectual tasks that a human can 

perform. This implies generalizing and abstracting learning across various cognitive 
functions. Transferring learning autonomously and nimbly from one domain to another has 

happened only very embryonically thus far” (Miailhe & Hodes, 2017) 

 
“AI that can perform any/multiple intellectual tasks in a way that matches or surpasses 

human intelligence.” (Bawack et al., 2019) 

 
“AI which seems like a human to some extent, simulating the entire human brain is one of 

the methods of AGI” (Ganji & Karandikar, 2019) 

Artificial Super Intelligence (ASI) “AI which is smarter than humans, this is the future Artificial Intelligence where computers 

start simulating themselves and they will become smarter than humans” (Ganji & 
Karandikar, 2019) 

 

Source: Own work. 

3.4.1.4 AI Capabilities 

AI capabilities represent the potential of AI to perform or develop certain aptitudes. Burgess 

(2018) presents an AI capabilities framework, a set of discrete AI capabilities focusing on 

capturing information and understanding data. Bawack and Wamba (2019) more 

comprehensive framework includes four distinct categories. In Table 11, we present a set of 

definitions. 

Table 11: AI Capabilities 

AI capability Definition Key technologies 

Learn  “ability to leverage algorithms for the interpretation of input data” 

(Bawack & Wamba, 2019) 
 

neural networks, machine learning, deep 

learning, genetic programming, data 
analysis/clustering 

Sense  “ability to process information like images, sound, speech, and text” 

(Bawack & Wamba, 2019) 

 

computer vision, speech recognition, 

biometrics, search, image recognition 

Act “ability to interpret data, make rational decisions and execute them 

automatically ability to leverage algorithms for the interpretation of 

input data” (Bawack & Wamba, 2019) 
 

expert systems, decision support systems, 

robotic process automation, intelligent 

agents, recommendation systems, 
robotics, fuzzy logic systems 

Comprehend “pattern recognition capabilities” (Bawack & Wamba, 2019) 

 
“…the ability of a machine to have conscious awareness of what it is 

doing or thinking (or to act like it does)” (Burgess, 2018) 

natural language processing, text 

analytics, knowledge engineering, pattern 
recognition, ontology creation, 

optimization, prediction, awareness 

 

Source: Own work. 

3.4.1.5 AI Application Domains 

We expect AI to enable or facilitate the transformation or redesign of business processes 

(Bawack et al., 2019). In Table 12, AI is categorized based on business capabilities or 
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application domains rather than technology (Davenport & Ronanki, 2018). Several authors 

(Forbes Insights, 2019; Hull & Motahari-Nezhad, 2016; Roeglinger et al., 2018; Schatsky et 

al., 2014; Watson, 2017) emphasize AI’s vast and versatile potential, which can be applied 

to a wide range of business problems. 

The practical application domains highlight how AI can enhance efficiency, provide deep 

insights, personalize experiences, and support decision-making. Understanding these 

domains helps strategize the implementation of AI technologies to maximize benefits and 

mitigate risks.  

 

Categorizing AI technology use cases using application domains offers insights into how AI 

can impact various aspects of a business. The domains of AI applications share common 

themes, providing a basis for distinguishing AI based on its characteristics within 

organizations. 

Table 12: AI Application Domains 

AI application domain Definition 

Robotics and cognitive automation, 

Enhanced process automation 

“…the automation of digital and physical tasks…”, “…uses cognitive technologies such as 

natural language processing to automate knowledge-intensive processes…” 

Cognitive insights “…algorithms to detect patterns in vast volumes of data and interpret their meaning…”, 
“…employs data science and machine learning to detect critical patterns, make high-quality 

predictions, and support business performance…” 

Cognitive engagement, Cognitive 

interaction 

“…engage employees and customers using natural language processing chatbots, intelligent 

agents, and machine learning…”, “…applies machine learning and advanced analytics to 
make customer interactions dramatically more personalized, relevant, and profitable…” 

Cognitive Decision Support “…decisions based on deep experience and with reference to large volumes of unstructured 

data…”, “…leveraging cognitive computing technologies to process information, generate 
insights, and facilitate decision-making…”, “…aim to augment human decision-making by 

automating certain analytical tasks, surfacing relevant information, and providing decision 

support tailored to the user's needs…” 

 

Source: Own work. 

3.4.1.6 AI Technologies 

We analyze various definitions of specific AI technologies, including biometrics, 

collaborative systems, computer vision, deep learning, expert systems, generative 

adversarial networks, image analysis, image recognition, knowledge engineering, 

knowledge representation, automated reasoning, planning, optimization, verification, logic 

networks, machine learning, natural language generation, nlp, natural language 

understanding, neural networks, ontology creation, pattern recognition, robotic process 

automation (RPA), robotics and smart robotics, speech recognition, text analysis, video 

analysis, and virtual agents. We then extract various AI-specific attributes and organize these 

thematically using the lens of business capabilities or application domains rather than 

technological capabilities (Davenport & Ronanki, 2018): robotics and cognitive automation, 
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enhanced process automation, cognitive insights, cognitive engagement, cognitive 

interaction, and cognitive decision support. 

3.4.2 Exploratory Research 

We follow the guidelines established in the literature (MacKenzie et al., 2011; Podsakoff et 

al., 2016) and supplement the findings from the literature review with expert interviews to 

extract additional definitions and attributes.  

3.4.2.1 Expert selection 

We selected organizations and experts based on their involvement with AI technology or AI-

related projects. Six were approached at the GoDigital 2019 – Data and Artificial 

Intelligence Conference, organized by the Association of Informatics and 

Telecommunications at Slovenia’s Chamber of Commerce and Industry (GoDigital 2019 - 

Data and Artificial Intelligence conference, 2019). Three were identified and contacted via 

LinkedIn. All experts were from Slovenian organizations. 

3.4.2.2 Ethical Considerations 

During exploratory research interviews, informed consent was obtained via a signed form 

before each interview (included in Appendix 2). The informed consent forms included full 

disclosure of the interview process, the benefits of the study, and the confidential nature of 

the data collection process. Participants were provided with a written explanation of the 

informed consent material before they gave written consent. 

3.4.2.3 Insights 

During the nine in-depth semi-structured interviews, we discussed the broader scope of AI 

adoption and the interviewees’ experiences with AI implementation, deployment, and use. 

We align their views on the technology with the conceptual themes we identify (application 

domains); these were the classifications with which experts and practitioners were most 

comfortable. We present the excerpted results in Table 13. 
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Table 13: Main Findings From Expert Interviews 

Findings Theme 

Financial Services; 5,900 employees; Chief Data Officer (CDO) 

AI adoption began within the analytics department, driven by a new business strategy 

emphasizing advanced pattern recognition techniques for customer insights. The 

objectives were to enhance process performance and leverage AI capabilities to boost 
revenue. Recognizing data as a pivotal resource, the organization appointed a CDO to 

oversee data management. As part of the Lean initiative, they prioritize automation to 

optimize business processes and maximize value with reduced human intervention. Their 
focus is on non-deterministic decision processes, such as credit scoring. Furthermore, 

they've integrated AI into their products, including personal finance management and 

automated revenue and expense classification. 

Business insights, Data management, 

Automated decision-making, 

Engagement, AI techniques 

Insurance company; 5,200 employees; Head of the team responsible for developing DWH/BI/AI solutions 

They are integrating chatbots for customer support and deploying advanced AI 

functionalities organization-wide for decision support, such as an automated model for 

detecting insurance policy renewals. Their focus lies on automating and optimizing 

processes and identifying various opportunities for Robotic Process Automation (RPA). 

Additionally, they're in the process of developing a centralized data repository to eradicate 

data silos and are collecting publicly available data from the environment. Following the 
data's availability in the data warehouse, they explore opportunities using Business 

Intelligence and AI techniques. 

Human-computer interaction, 

Decision support, 

AI technology, Data acquisition 

Financial services; 1,010 employees; Head of Analytics Department 

They have implemented a next-best-offer solution for sales representatives. Utilizing 
machine learning and decision trees, the organization employs these techniques primarily 

in marketing. Their main focus lies on propensity to buy and churn management, with AI-
enabled predictive analytics holding the highest value for them. Ensuring high-quality 

data remains a key priority for them. 

Decision support, AI techniques, 
Business insights, Data management 

Multinational tech. company: hardware, middleware, and software; Vendor; 345,900 employees; Technical Consultant/IT architect 

Organizations adopt AI technologies primarily for competitiveness, addressing user 
expectations for more innovative services and products, and optimizing business 

operations. Successful AI integration starts with identifying real business problems rather 

than adopting technology for its own sake. Despite the hype driven by market demands 
and tech corporations, many companies lack a strategic vision, focusing on short-term 

gains. Limited AI applications like chatbots are typical, but comprehensive 

implementations are rare. AI capabilities require leadership support and interdisciplinary 
knowledge, with platforms like IBM Cloud easing infrastructure concerns but raising 

GDPR issues. The future of AI in organizations involves balancing data-driven decisions 

with intuition, viewing machine learning models as valuable intellectual property, and 
anticipating more successful implementations within five years. 

AI techniques, Machine learning, 
Cognitive technologies, Business 

insights, Data management, Data 

acquisition, Data preprocessing, 
Automated decision-making, Decision 

support, Reasoning, Process 

Automation, Cognitive agents, 
Personalization, Context awareness, 

Human-computer interaction, Learning, 

Analytics 

Service provider; Software; 15 employees; Digital Solution Designer 

Specializing in AI project implementation, the organization integrates cloud computing 

for scalable infrastructure, machine learning for predictive modeling, natural language 
processing for customer service enhancement, and computer vision for visual data 

analysis, particularly in manufacturing and logistics. These technologies drive efficiency, 

improve accuracy, and support strategic decision-making, ensuring AI initiatives align 
with broader business goals for competitive advantage. Emphasizing data-driven value 

extraction and leadership support for comprehensive integration across organizations, 

they address varying AI development levels between Europe (strong in research) and the 
US (leading in practical application and startup innovation). They advocate robust cloud 

computing to facilitate scalable AI solutions across sectors, tackling data quality and bias 

through rigorous validation and mitigation strategies to ensure reliable, fair AI outcomes. 

Their approach fosters continuous innovation, effectively empowering clients to optimize 

productivity and competitiveness. 

Machine Learning, Natural Language 

Processing, Computer Vision, Cloud 
Computing, Data Validation, Predictive 

Modeling, AI Algorithms, Data 

Cleansing 

Public security; Government; 279 employees; End-user; Head of Analytics Department 

The organization has been gradually adopting AI technologies amidst significant 
challenges. These include a substantial gap between theoretical knowledge and practical 

application, particularly in the public sector. While efforts to implement advanced 

analytics and AI have been made, progress remains slow due to legislative constraints 
limiting data accessibility, insufficient support and understanding of AI among leadership, 

and a resistant organizational culture. The organization aims to develop a comprehensive 

digital strategy integrating AI, improve data management practices, enhance leadership 
support and understanding, foster an innovative culture, invest in training, address 

legislative hurdles, secure adequate resources, and promote transparency. These steps are 

crucial for overcoming current barriers and leveraging AI to improve operational 
efficiency and service delivery. 

Data Analytics, Business Intelligence, 
Predictive Modeling, Facial 

Recognition, Natural Language 

Processing, Automation, Process 
Optimization, Data Management 

 To be continued 
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Table 13: Main Findings From Expert Interviews (cont.) 

Findings Theme 

Computer and Information Science; Educational Services; 182 employees; Vendor; Head of Visual Cognitive Systems Laboratory 

The organization focuses on AI projects, primarily using machine learning and deep 

learning techniques. They emphasize quality data, recognizing that better data leads to 

better results, and continually refine their models with new data. They address data issues 
by obtaining well-labeled data, refining models with feedback, and collaborating with 

domain experts to minimize bias. Key AI applications include defect detection, cognitive 

task automation, organizational learning, and predictive maintenance. Domain experts 
provide essential insights and aid in development. Challenges include maintaining data 

quality, iterative model development, addressing biases, seamless production integration, 

and resource allocation. Continuous improvement is achieved through iterative 
refinement, data enhancement, feedback loops, and expert collaboration. AI integration 

enhances business processes, leading to consistent, efficient results and better decision-

making. 

Data Quality, Machine Learning, Deep 

Learning, Model Refinement, Defect 

Detection, Cognitive Task Automation, 
AI Integration 

AI Software Vendor; Manufacturing; 10 employees; Vendor; Managing Director 

The organization has been deeply engaged in AI development for over a decade, focusing 

primarily on creating solutions for manufacturing companies to tackle operational 

challenges both locally and globally. They have actively pursued digitalization and the 
integration of AI to boost operational efficiency and scalability. Despite facing challenges 

like the conservative nature of Slovenian businesses and a strong emphasis on cost-

efficiency over technological investment, the organization remains optimistic about AI's 
potential to enhance processes and catalyze revolutionary changes incrementally. They 

stress the importance of fostering AI literacy within companies to leverage data effectively 
and drive competitive advantage through continuous learning and adaptation. 

Transparency in AI models is also highlighted as crucial for building trust and facilitating 

organizational growth. The organization sees AI as pivotal in transforming business 
processes, improving decision-making, and nurturing a culture of innovation and 

efficiency. 

Data management, Decision support, 

Process automation, AI Trust and 

Transparency, Continuous learning, 
Optimization 

Energy company; Energy Services; 4508 employees; Director Business Intelligence 

The adoption of AI has been a gradual and evolving process. Initially, the focus was on 
predictive analytics and the use of neural networks, which began during the academic 

studies of key employees. Early projects included forecasting sales trends and organizing 

sales data to identify customer purchasing patterns. Significant efforts were made as the 
organization progressed to organize databases and predict customer churn using AI. This 

involved creating scoring models to predict which customers might leave and automating 

targeted campaigns to retain them. The organization also faced technical challenges, such 
as ensuring call quality. Collaboration with the Jožef Stefan Institute was crucial in 

advancing AI projects. The interviewee emphasized that successful AI adoption requires a 

mature company culture ready to implement data-driven changes and continuously 
improve models and practices. 

Business insights, Data management, AI 
techniques, Decision support, Process 

automation, Predictive Analytics 

 

Source: Own work. 

3.4.3 Five-Dimensional Conceptualization 

Based on the guidelines proposed in the literature on the development of conceptual 

definitions (MacKenzie et al., 2011; Podsakoff et al., 2016) and using Mrad (2018) as an 

example, we organize the extracted attributes into a smaller set of themes and then 

aggregated these into dimensions. As indicated in Table 14, we organize the attributes (i.e., 

first-Order Attributes) into 17 related themes (i.e., second-order themes) and five dimensions 

(i.e., aggregate dimensions): data acquisition and preprocessing, cognitive insights, 

cognitive engagement, cognitive decision assistance, and cognitive technologies. 
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Table 14: Organizing Attributes Into Common Themes and Dimensions 

First-Order Attributes Second-Order Themes Aggregate Dimensions 

big data, gathering data from the environment, 

storing information, data warehouse/data lake, 

creating knowledge-base 

Data acquisition 

Data Acquisition and Preprocessing 
ensuring data quality, producing new data, 
searching (information extraction), 

representing information 

Data preprocessing 

   

act, predictive and adaptive decision support, 
decision trees, using optimization (problem 

solving and planning) 

Reasoning 

Cognitive Decision Assistance 

automation of intelligent behaviour, 
automation and optimization of processes, 

automated decisions, automation of activities, 

enhanced process performance 

Solving knowledge-intensive problems  

reason, abstracting, acting rationally, 
algorithms that reason, computational 

approach to uncertain inference, constructing 

ontologies from textual domain descriptions, 
generalizing 

Prescriptive Analytics 

performing tasks that require human 

intelligence, using inference engines, using 
knowledge, using reasoning methodologies, 

using rules, solving complex problems, using 

AI techniques aimed at specific problems 

Process automation 

   

intelligent agents, chatbots, simulate 

conversations, simulate nonverbal behaviors 
Cognitive agents 

Cognitive Engagement 
personalized digital characters, 
recommendation systems 

Personalization 

awareness, to perceive and interpret events 

from data, interpret meaning from data 
Context awareness 

Cognitive Insights 
learn from experience, detect patterns, 
understand complex data, produce general 

hypotheses, machine learning 

Learning 

descriptive analytics, diagnostic analytics, 

predictive analytics 
Analytics 

   

simulation of human intelligence, use of 

computational models, deep learning, fuzzy 

logic systems, generative deep learning 
models, genetic programming, intelligent 

behavior, logic-based techniques, neural 

networks 

AI techniques 

Cognitive technologies 
statistical analysis of biological data, 

automated recognition of individuals based on 

their behavioral and biological characteristics 

Biometrics 

speech recognition, natural language 
understanding, natural language generation 

Natural Language Processing  

software robots, AI workers RPA 

physical task automation,  Robotics 

AI-enhanced robots Computer Vision 

 

Source: Own work. 

As depicted in Figure 4, the construct is a multidimensional, second-order construct, 

reflective-reflective type I (Jarvis, MacKenzie, & Podsakoff, 2003). 
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Figure 4: Conceptual and Dimension Attributes 

 
 

Source: Own work. 

In the last stage of the conceptual analysis, we refine each construct definition through 

discussion with subject-matter experts and peers. We then modify the scope of the definition 

and present the refined definition. 

The focal construct is defined as follows: “The implementation, deployment, and use of AI 

resources (data, AI infrastructure, skills, capabilities) in business processes.” We use the 

term “AI resources” for AI-related elements that must be brought together to ensure the 

successful deployment and use of AI technology. Key AI-related elements are scalable 

infrastructure, AI assets (data and trained models), AI skills, domain knowledge, expertise, 

capabilities, partnerships, AI talent, processes, and privacy policies. 

The definition of a construct must incorporate the “property” characterized by the construct 

and the “entity” to which that property relates (MacKenzie et al., 2011). We define the 

property “adoption of AI” as the organization’s ability to develop a set of distinct AI-enabled 

capabilities (the ability to mobilize AI resources to exploit strategic assets and achieve 

innovative changes) through the implementation, deployment, and use of AI applications, 

tools, or technology. The general property type is intrinsic characteristics and applies to the 

entity of an organization (Table 15). 
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Table 15: Factors in Conceptualizing Constructs12 

Nature of construct's conceptual 

domain 

Entity = organization; General property = The organization’s ability to develop a set of distinct AI-
enabled capabilities (the ability to mobilize AI resources to exploit strategic assets and achieve 

innovative changes) through the implementation, deployment, and use of AI applications, tools, or 

technology. 

Common attributes Data-driven: the ability to learn and make decisions from large amounts of data. 

Data processing: the ability to collect and manipulate digital data to produce meaningful 

information. 

Connectivity: the ability to connect with other systems and devices through the internet. 

Intelligent decision making: the ability to make intelligent decisions based on data. 

Human-computer interaction: the ability to interact with humans more naturally and intuitively. 

Unique attributes/characteristics Reasoning: the ability to understand and respond to the context in which it is being used. 

Solving knowledge-intensive problems: the ability to make decisions independently without human 

supervision, based on the data they have been trained on. 

Prescriptive Analytics: the process of using data to determine an optimal course of action. 

Process automation: the ability to provide advanced capabilities like decision-making, pattern 

recognition, and natural language processing to automate processes requiring significant 

knowledge, expertise, and decision-making. 

Cognitive agents: are designed to simulate the cognitive abilities of a human. 

Personalization: the ability to customize products, services, or experiences to meet an individual's 

specific needs and preferences. 

Context awareness: the ability to understand and respond to the context in which it is being used. 

Learning: the ability to learn from large amounts of data and make predictions or decisions based 
on complex patterns in the data or learn through trial and error and improve their performance by 

being rewarded or penalized. 

Generative models: the ability to generate new content, such as text, images, and music, based on 
the data they have been trained on. 

AI techniques: machine, deep, supervised, unsupervised, Reinforcement learning. 

Biometrics: biometrics provide unique identifiers for individuals, such as fingerprints, facial 

features, and iris patterns, and AI can analyze and interpret this biometric data to make decisions or 
predictions. 

Natural Language Processing: the ability to understand and respond to human language. 

RPA) software robots automate repetitive, rule-based tasks typically performed by humans. 

Robotics 

Computer Vision: the ability to interpret and understand visual information, such as images and 
videos. 

Breadth/inclusiveness  It encompasses the various stages (implementation, deployment, and use), capabilities, 

technologies, applications, and tools at the organizational level and supports all business operations. 

Dimensionality Multidimensional 

Stability Stable across cases 

Indicators Reflective-reflective 

Model Reflective-reflective type I (Jarvis et al., 2003); second-order construct 

 

Source: Own work. 

Data are exploited, examined, renewed, or reconfigured through AI-enabled capabilities. We 

argue that, by itself, AI does not constitute a capability. AI becomes part of a capability when 

applied to a problem, and a goal is assigned. Without a goal, there is no evaluative frame of 

reference and, thus, no way to improve performance. In conceptualizing the “adoption of 

artificial intelligence,” we describe the level of adoption through five distinct and 

progressive AI-enabled capabilities (components of AI adoption) conceptualized around 

                                                 
12 The conceptual domain refers to the fundamental essence or scope of the construct. We specify the general 

type of property to which the focal construct refers, e.g., thought, feeling, perception, action, outcome, or 

intrinsic characteristics. The object to which the property applies, e.g., a person, a task, a process, a relationship, 

a dyad, a group/team, a network, an organization, or a culture. The general property of the construct refers to 

the overarching characteristics that define the construct. Common Attributes are the features or characteristics 

that are shared across different instances of the construct. Unique Attributes/Characteristics are the specific 

features that set the construct apart from other constructs. Breadth/Inclusiveness refers to the range or extent 

of the construct's domain. Breadth or inclusiveness indicates the construct is comprehensive, covering various 

aspects, dimensions, or instances. Dimensionality involves the number of underlying dimensions or facets that 

comprise the construct. Stability refers to the consistency or reliability of the construct over time and across 

different situations. 



72 

specific application domains that encompass business problems that technology aims to 

solve and the goals it strives to reach within that context. These capabilities support business 

processes and become integral to an organization’s ability to generate value from data. Next, 

we present the dimensions that we conceptualize.  

3.4.3.1 Data Acquisition and Preprocessing 

Data acquisition and preprocessing is the organization’s ability to extract data from 

structured and unstructured sources, new and legacy systems, and internal and external 

sources and to prepare it for analysis. The three basic routines are data extraction, 

preprocessing, and continuous assurance of data quality. These routines are established to 

deal with Big Data (ever-increasing volume, variety, and velocity of data) from internal and 

external sources. Preprocessing includes consolidation, organization, validation, cleaning, 

transformation, reduction, summarization, labeling, and loading into a data warehouse, data 

lake, NoSQL database, relational database, or other application. High-quality data has 

become a vital business resource and can have a considerable impact on organizational 

performance (Appelbaum, Kogan, Vasarhelyi, & Yan, 2017). We propose measuring this 

dimension by assessing the successful deployment and use of data management applications 

and tools (e.g., information propagation, data warehousing/data lakes, data capturing system, 

Internet of Things/SCADA, content creation, discovery, creation, and computational 

creativity). 

3.4.3.2 Cognitive Insight 

Cognitive insight is the organization’s ability to use AI to detect patterns in data and 

interpret their meaning. This dimension relates to context awareness, learning, and analytics 

themes. AI recognizes patterns or clusters of data otherwise invisible to humans (Burgess, 

2018). It can interpret events and contextualize recognized patterns to derive their true 

meaning. The learning aspect of AI allows for predictions based on past experience (Bawack 

& Wamba, 2019) and, through continuous learning, enables improved insight (Davenport & 

Ronanki, 2018). Cognitive analytics (knowledge representation, inference, reasoning, 

learning and adaptation, hypothesis generation and validation, domain cognitive models, and 

machine or deep learning) offer better results in terms of speed, scale, accuracy, and 

granularity. We propose measuring this dimension by assessing the successful deployment 

and use of AI analytics applications and tools (e.g., predictive sales, churn management, 

fraud detection, and risk management). 

3.4.3.3 Cognitive Engagement 

Cognitive engagement is the organization’s ability to support AI-enhanced human–

computer interaction and collaboration. Engagement consists of several key elements, 
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including understanding, perception of intention, and domain knowledge (Roeglinger et al., 

2018). Understanding encompasses, natural language processing and understanding, 

automated speech recognition, and text-to-speech conversion. Leveraging contextual 

information about humans to develop human-like empathy and communication skills in 

human–computer interactions or collaborative applications involves the perception of 

intention, tone, sentiment, emotional state, environmental conditions, and the strength and 

nature of a person’s relationships (Davenport & Ronanki, 2018). 

All the elements are used to reason through all structured and unstructured data and 

determine the optimal approach for engagement (Kelly, 2015). This allows automated 

interactions to reliably support customers’ activities and prompt their engagement (Klumpp, 

2017; Mele et al., 2018) in customer-facing business processes. Organizations are also 

increasingly using cognitive engagement to interact with employees (to support routine 

activities), augment information, improve knowledge acquisition, exploration, and 

understanding, and support the collaborative formulation of goals and decisions (Davenport 

& Ronanki, 2018). We propose measuring the dimension by assessing the successful 

deployment and use of AI-enabled applications and tools related to user engagement (e.g., 

virtual assistants, chatbots, avatars, and recommendation systems). 

3.4.3.4 Cognitive Decision Assistance 

Cognitive decision assistance is the organization’s ability to use AI in decision-making 

processes. AI technologies and techniques enable AI-assisted decision-making and render 

decision support more intelligent. Some standard abilities descriptive of AI’s capability are 

the acceleration of information flows, predictive and adaptive decision support, automated 

reasoning to solve knowledge-intensive problems, making sense of ambiguous or 

contradictory messages in large data sets, recognizing the relative importance of situational 

elements, responding quickly and successfully to a new situation, and applying knowledge 

to manipulate the environment (Phillips-Wren, 2012). We propose measuring the dimension 

by assessing the successful deployment and use of AI-assisted decision-making applications 

and tools (e.g., AI-enabled decision support systems, expert systems, fuzzy logic systems, 

optimization, and knowledge engineering). 

3.4.3.5 Cognitive Technologies 

Cognitive technologies are the organization’s ability to integrate AI technologies with other 

IT resources, services, and devices. This dimension is isolated for cases where organizations 

do not deploy and use AI in a specific domain as a particular application or tool. The AI-

enabled capability of cognitive technologies is the highest level of AI adoption; AI is not 

merely used but utilized (implying innovation or creative use beyond the intended use). AI 

technologies can radically transform data utilization and processing within existing 

processes of value creation. The ability of AI technology to learn and adapt continuously 
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due to self-awareness, input from those with whom it interacts, and the context in which it 

is embedded amplifies its usefulness (Mele et al., 2018). The cumulative effects can be seen 

in the interactions between the knowledge of the AI-enabled device or service and the 

knowledge and action of humans. We propose measuring this dimension by assessing the 

successful integration of AI technologies in other IT resources, services, and devices. The 

AI technologies most suitable for integration include machine and deep learning, neural 

networks, natural language processing, genetic programming, sensor networks, augmented 

reality, computer vision, speech recognition, and robotic process automation (Zasada, 2019). 

We posit that the dimensions presented impact all forms of business value generation 

(automation, innovation, organizational learning, decision-making), although to a different 

extent. 

3.4.4 AI-Enabled Dynamic Capabilities 

The ability of an organization to adapt to changes in its business environment is rooted in its 

dynamic capabilities (Teece et al., 2016). Compared to regular operational decisions, this 

proactive approach promotes differentiation and establishes the organization’s decision-

making as a dynamic capability (Hossain, Agnihotri, Rushan, Rahman, & Sumi, 2022; 

Steininger, Mikalef, Pateli, & Ortiz-de-Guinea, 2022; Wang & Ahmed, 2007). These 

capabilities are the key to sustainable competitive advantage, implying that dynamic 

capabilities affect performance. However, they do so indirectly by reconfiguring operational 

capabilities to better fit the environment, as argued in proposing our research model (Section 

2.2). 

Organizations increasingly use data and analytics to make better and more informed 

decisions (Hossain et al., 2022). Adopting a data-driven approach allows them to make 

accurate decisions based on data and analytics, with AI at the core, improving their control 

over business operations, marketing planning and implementation, and internal and external 

resource allocation (Martínez-López & Casillas, 2013). In the BPM context, Wamba-

Taguimdje et al. (2020a) argue that the main objective of AI adoption is to solve a problem 

at the level of process or concerning dynamic process-oriented capabilities. The authors 

emphasize four capabilities: 1) modifying organizational processes to enhance integration, 

reducing costs, increasing BI, and avoiding ecosystem and business-line risks; 2) improving 

and optimizing business processes; 3) enhancing the acquisition and assimilation of internal 

and external knowledge; and 4) aligning resources, strategies, and processes with the 

organization’s goals. 

Dynamic capabilities can be broken down into three distinct processes that are focused on 

driving strategic change to sustain competitive advantage (Mikalef et al., 2021). Sensing 

capabilities concern the ability to identify opportunities and threats and seizing capabilities 

refer to the ability to capitalize on new business model designs and strategic investments, 

and transform capabilities to change operational processes or reconfigure existing business 
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models and strategies. Existing studies argue that AI is closely related to dynamic 

capabilities (Drydakis, 2022; Gallego-Gomez & De-Pablos-Heredero, 2020; Gupta, Modgil, 

Choi, Kumar, & Antony, 2023; Hossain et al., 2022; Mikalef et al., 2021; Wamba-Taguimdje 

et al., 2020a; Wang, Lin, & Shao, 2022). To illustrate the relationship between dynamic 

capabilities and the developed concept of a component-based view of AI adoption, we 

compare the capabilities enabled by AI technology with the three distinct dynamic 

capabilities processes. 

3.4.4.1 Sensing 

Sensing describes the assessment of opportunities and needs in and outside the organization. 

Organizations can use the insights allowed by AI to identify opportunities and engage with 

the right customers to understand their needs better. Organizations can use this capability to 

identify profitable market segments to increase market share and profit margins, gain an 

advantage over competitors, and monitor the quality of their products and services, and by 

doing so, improve customer satisfaction, retention, experience, purchases, and risk reduction 

(Drydakis, 2022; Mikalef et al., 2021). 

Data acquisition and preprocessing make it possible to leverage diverse information sources. 

Cognitive insights optimize the identification of themes in unlabeled data, real-time sensing 

of core needs, anomaly and threat detection, forecasting of trends, aggregation of customer 

sentiment, and isolation of faulty features. Cognitive engagement can offer personalized 

services and communication (e.g., chatbots). Cognitive decision assistance enables learning 

to find new solutions (i.e., innovation) and create new knowledge. 

3.4.4.2 Seizing 

Seizing involves an organization’s agile response to market needs, optimizing production 

and marketing processes, resource allocation, cost reduction, fault prevention, and resource 

efficiency, aiming to boost profitability, financial performance, turnover, and market share 

(Teece et al., 2016).  

By leveraging cognitive insights, organizations can utilize aggregated evidence to initiate 

routines and dynamically adjust pricing, resource allocation, investment forecasts, cash flow 

predictions, and competitor behavior analysis in real time through cognitive decision assisted 

knowledge visualization (Basri, 2020; Drydakis, 2022; Hansen & Bøgh, 2021). This fosters 

more effective decision-making, enhancing processes and business models for competitive 

advantage (Mendonça & Andrade, 2018). 
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3.4.4.3 Transforming (Reconfiguration) 

Transforming refers to proactively working to streamline, adapt, and improve operational 

processes based on empirically grounded best practices and maintaining their relevance 

(Teece, 2018).  

Cognitive decision assistance can facilitate organizational transformation through the 

adoption and development of innovative technologies and operational systems and the 

development of new business models and revenue-generating strategies. Based on data 

acquisition and preprocessing, New services based on insight generated using data 

acquisition and preprocessing. Insights can be employed and commercialized, for example, 

in consulting and collaborative activities. Cognitive engagement and technologies increase 

the level of integration in existing organizational processes, producing incremental and more 

extensive innovation. The application of these is expected to bring possibilities for market 

disruption, increased market share, profitability, and sustainabilit (Drydakis, 2022; Mikalef 

et al., 2021). 

3.5 Development of the Measure 

The next step in the process was to generate items that fully represent the conceptual domain. 

3.5.1 Generated Items 

We generated items from the literature review, the theoretical definition of the construct, 

previous academic research, and interviews with experts (MacKenzie et al., 2011).  

Next, we validated the items by analyzing 1,860 AI-related projects (i.e., use cases) from 

businesses and classifying them according to the proposed items. For each use case, all 

utilized AI applications or AI technologies were extracted and then classified according to 

the proposed scale items. The extracted AI applications were later used to describe specific 

scale items in the implemented online questionnaire (see Table 16). Thus, we have ensured 

that the proposed items will address real-world business AI applications. The sources for use 

cases were: 1) a public directory of AI startups from Israel (571 use cases; The AI Hub of 

Israel, 2019); 2) a list of best AI startups in the EU (9 use cases; Thorsen, 2018); 3) a curated 

list of business, industry-specific, and personal AI projects (1,171 use cases; Hänel, 2017); 

4) CB Insights list of top 100 AI projects (100 use cases; CB Insights, 2021); and 5) specific 

AI projects from the tech news (9 use cases; TechCrunch, 2021).  

Some items were modified or merged during the process to capture better a specific set of 

AI applications, tools, or technologies represented by the items. As a result, 28 items were 

generated (see Table 16), delineating the key components of AI adoption. We combined 

them based on similarity and separated them into five distinct groups representing the five 

conceptualized dimensions of the focal construct. 
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Table 16: Items Generated to Measure AI Adoption 

Dimension/Items Source(s) 

Data Acquisition and Preprocessing 

The organization can extract data from structured and unstructured sources, new and legacy systems, and internal and external 

sources and prepare it for analysis. 

1. Data warehousing 
 

A Data Warehouse consists of data extracted from transactional systems or data that consists 

of quantitative metrics with their attributes. The data is cleaned and transformed. It captures 
structured information and organizes it in schemas defined for data warehouse purposes. Data 

warehouse uses a conventional ETL (Extract Transform Load) process (Khine & Wang, 

2018). 

Aydiner, Tatoglu, Bayraktar, and 
Zaim (2019); Prieto (2019) 

2. Data Lake 

 

A Data Lake is a massive data repository based on low-cost technologies that improve an 
organization's capture, refinement, archival, and exploration of raw data. It contains raw 

unstructured or multi-structured data that, for the most part, has unrecognized value for the 

organizations. Data Lakes use the ELT (Extract Load Transform) process (Khine & Wang, 
2018; Stein & Morrison, 2014). 

From interviews 

3. Data Capturing System 

 

(I)IoT; SCADA; Synthetic Data: simulation, data not obtained by measurement; High-quality 
3D scanning; Data as a Service Platform; Biometric device; Sensor networks; (Industrial) 

Control Systems; Video Analysis. 

Aydiner, Tatoglu, Bayraktar, and 

Zaim (2019); Prieto (2019) 

4. Document Management System 
 

Converting Paperwork into Digital Data; collecting, searching and extracting data from 

documents; Document processing; Document Intelligence; Document Life-Cycle 
Management. 

Aydiner, Tatoglu, Bayraktar, and 
Zaim (2019) 

Cognitive Insight 

The organization’s ability to use AI to detect patterns in data and interpret their meaning. 

1. Predictive Modeling and Analytics 
 

Predictive modeling uses a regression model and statistics to predict the probability of an 

outcome and can be applied to any unknown event. Predictive Analytics is extracting 
information from data to predict trends and behavior patterns. It uses present or past 

(historical) data to predict future outcomes and drive better decisions. 

 
Use cases: Credit Scoring Models; Churn Management; Risk Assessment (Compliance and 

governance, Geopolitical, Vendor, Merchant, Nonlinear-dynamic models of credit risk); 

Forecasting (Sales, Traffic, Intensive care unit, Staffing, Resource, Power and Weather, Time 
to Market, Production, Counterterrorism, Operational Efficiencies, Financial, Simulate 

inventory risk, Photovoltaic generation, Stock-Market); Predictive models (Claim 

Development Modeling, Commodities performance, Crypto Environments and Market 
behaviors, Cash Management, Human and Group Behavior, Patient No-Shows, Patient or 

member length of stay, Pedestrian behavior, Project Timelines, Revenues and investment 

outcomes, Predictive Marketing, Sales leads and opportunities, Clinical trial outcomes, 
Hospital-acquired infections, Hospital readmissions, ICU Transfers, Analysis for IT Network 

Management, Customer Lifetime Value, Disaster recovery, Fleet management, Fruit Yield 

Estimation, Manufacturing design, Microbiome Data, Timing intervals, Use cases, 
Propensity to lease, Protein structure, Bad payments, Disease Modeling, Parking 

availability, Predictive Agriculture, Prediction to Recovery, Fraudulent Payment Activity, 
Touchpoint Inventory, Diagnostics and predictive medicine, Capitalizing on Subrogation, 

Drug Development and Repurposing, Maturity in horticulture, Actuarial science, Cooling, 

heating and humidity stabilization, Deal Discovery, Intelligent content management, 
Location Discovery, Movement Patterns, Predictive models in End-to-end solutions, Target 

Discovery, Predictive lead scoring, Biomarkers, Insurance Pricing¸, Exploratory Drilling, 

Customer Engagement Timing); Predictive analytics (End-to-end supply chain visibility and 
transparency, Invoice Funding, Legal analysis, Education planning, Disease Propensity, 

Network Management, Log Analysis, Clinical, Medical, Energy, Drilling, Real Estate 

lucrative opportunities, Sports analysis, Player Projection, Manufacturing). 

Kuhn and Johnson (2013); Tavana, 
Szabat, and Puranam (2016) 

 To be continued 
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Table 16: Items Generated to Measure AI Adoption (cont.) 

Dimension/Items Source(s) 

2. Anomaly and Deviant Behavior Detection 

 

Anomaly detection is a method used to identify unusual patterns that do not conform to 
expected behavior, called outliers. As anomalies in information systems often suggest 

security breaches or violations, anomaly detection has been applied in various industries to 

advance IT safety and detect potential abuse or attacks. 
 

Use cases: Anti-Cheating; Anti-Fraud Detection; Anti-

Misinformation/Disinformation/Misinformation; Quality Control: defect, proactive incident 
detection; Event, Risk, and Compliance Issues Detection; Behavioral Anomaly Detection: 

employee misbehavior, misconduct, malicious chats; Provider-Consumer Anomaly Detection 

for Healthcare Systems; Security: surveillance, vehicle security, security screening, threat 
detection; Safety: traffic, maritime, industrial, personal safety; Accounting: auditing, fund 

valuation errors detection; Structural Health Monitoring; Business Monitoring: incidents 

impacting revenue, supply chain visibility, logistics, price anomalies; DevOps Monitoring; 
Smart City: traffic, air quality, water distribution, energy consumption; Smart Home 

Monitoring; Concealed mineral deposits detection; (I)IoT; Medical profiling and testing. 

Roeglinger et al. (2018) 

3. Marketing Automation 

 
Marketing automation uses software to automate marketing processes such as customer 

segmentation, customer data integration, and campaign management. 

 
Uses cases: Account opening and Client Onboarding; Audience Segmentation; Advanced 

Targeting; Retargeting; Affiliate services; Content Performance Analytics; Cross-Sells/Up-
Sells; Digital advertising; Data-driven marketing; Lead Generation and Scoring; Marketing 

Strategy Reverse Engineering; Self-optimizing campaign design and management; Direct 

Marketing; Multichannel Marketing Attribution; Context-Aware Marketing. 

Heimbach et al. (2015); Todor 

(2016); Tussyadiah (2020) 

4. Marketing Intelligence System 
 

A Market Intelligence system focuses on collecting and processing information from all the 

relevant sources to ascertain the changing trends in the marketing environment. 

 

Use cases: Competitive Intelligence; Demand forecasting; Predictive Market Intelligence; 

Revenue Intelligence; Trends identification; Pricing; Market Segmentation; Market 
simulations; Brand voice; Product Analytics, Predictive Product Assortment; E-Commerce; 

Behavioral analytics; Behavioral Segmentation, Conversion Modeling; Marketing Research; 

Spatial data analytic; Corporate Sponsorship; Technology Scouting; Crowd Sourced Market 
Research. 

Aydiner, Tatoglu, Bayraktar, and 
Zaim (2019) 

5. CRM and CX System 

 
A Customer Relationship Management (CRM) System focuses on the management of 

information about customers. It collects necessary information regarding the customers from 

various channels. It offers insights regarding the sales cycle, performance of marketing 
campaigns, strategies for acquiring customers, and other customer metrics. 

 

Customer Experience Management (CX) drills deeper into customers’ experiences to 
overview their unique perspectives. The CX system aims to collect and manage all those data 

regarding expertise, improve the customer experience further and strengthen loyalty to your 

company. 

 

Use cases: Customer Acquisition; Customer Loyalty (Retention); Customer Support; Know 

your customer (KYC); Account-Based Engagement; Customer Data Enrichment; Identifying 
potential customers; Identify customer preferences; Lifetime Value; Predictive Customer 

Analytics; Real-time segmentation; Sentiment and Emotional Analytics; Audience 

Monetization Optimization; Pipeline Management; Customer Journey Optimization; 
Customer Intelligence; Customer Experience Analysis; Customer Feedback Management; 

Customer Conversation Analytics; Customer Data Visualization as Personas; Customer 

Behavior Modeling, Discovery, and Predictions; Sales Force Automation. 

Prieto (2019) 

6. Predictive Maintenance 

 

Predictive maintenance systems provide insights from regular monitoring of the actual 
mechanical condition, operating efficiency, and other indicators of the operating state. They 

can forecast the trend of performance degradation and estimate when maintenance should be 

performed. 
 

Use cases: Digital Twin; Failure prediction; Processing and Refining Maintenance; Machine 

monitored workflows; Preventing dangerous failures in machinery; Acoustics Predictive 
Maintenance; Predictive disaster recovery; Smart Buildings; Infrastructure Maintenance; 

Facilities management. 

Prieto (2019) 

 To be continued 
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Table 16: Items Generated to Measure AI Adoption (cont.) 

Dimension/Items Source(s) 

7. Cyber and Network Security, Data Privacy 

 

Cyber Security, Network Security, and Data Privacy systems help detect and protect systems, 
networks, personal data, and programs from digital attacks.  

 

Use cases: Anti-virus; Anti-phishing; Threat Detection; Automated risk profiling; Cyber 
Intelligence; Application Security Testing; Data Leakage Prevention; Data Privacy 

Compliance; Endpoint and Device Protection; Attack Surface Reduction; Identity 

Management, Authentication, and Access Control. 

Prieto (2019) 

8. Business Process Intelligence System 
 

Business Process Intelligence systems are used for managing process execution by offering 

several features such as analysis, prediction, monitoring, control, and optimization. They 
include process mining, discovery, conformance checking, predictive analytics, and other 

techniques. 

 
Use cases: Predictive Business Process Analytics; Process Model and Requirement 

Discovery for Automation; Process Mining; Process Monitoring; Sensor-enabled Process 

Intelligence. 

Zasada (2019) 

9. Talent Management System 

 

A talent management system covers the full scope of talent management: recruitment and 
employee onboarding, performance management, learning and development, compensation 

management, and succession planning. 

 
Use cases: Onboarding; Recruit vs Develop; Candidate screening; Stack Ranking; Employee 

Experience Analytics; Employee Attrition; Employee retention; Employee Stress Heatmaps; 

Employee Training; Measuring Employee Emotional Intelligence; Skill mapper; Recruitment 
Analysis; Talent acquisitions and assessment; Personality traits identification. 

Prieto (2019) 

Cognitive Engagement 

The organization’s ability to support AI-enhanced human-computer interaction and collaboration. 

1. Conversational AI 
 

Conversational AI is software agents that can engage in natural conversational interactions 

with humans. 
 

Use cases: Chatbots; Virtual Agent; Personal or Virtual Assistant (Healthcare, Scheduling, 

Traveling, Financial, Medical, Real Estate, Recruitment, Security, Senior Care, Shopping; 
Self-diagnosis); Conversational Voice Interfaces (Voice control, Transcription, Voice 

Routing). 

Davenport and Ronanki (2018); 
Roeglinger et al. (2018) 

2. Personalization and Recommendation System 
 

Personalization and Recommendation systems solve the problem of information overload by 

searching through a large volume of dynamically generated information to provide users with 
personalized content and services. 

 

Use cases: Content, Product, Service Recommendations (Spending, Stock, Loyalty Program 
Usage, Coding, Shopping, Virtual try-on, Interior home designer, Employee Benefit Plans, 

Travel); Content, Product, Service Personalization (Diagnosis and treatment, Investing, 

Marketing, Nutrition, Video Content, Rate Management, Banking, Financial optimization, 
Health, Content Curation, Content Discovery, Content Censoring, Content Targeting); 

Customer Engagement (Gamification, Driver engagement, Account Engagement Platform, 

Employee Engagement Platform); Learning Management System; Website personalization. 

Davenport and Ronanki (2018) 

3. Visualization System: Virtual reality (VR), Augmented reality (AR), Mixed Reality (MR) 

 

Using visual elements like charts, graphs, maps, visual (graphical) objects, their attributes, 
relationships, possible dynamics, and interaction methods, data visualization tools provide an 

accessible way to see and understand trends, outliers, and patterns in data and interact in a 

virtual environment. 
 

Use case: Location Intelligence; Contextual Graph; Data storytelling; Performance 

Visualization (Dashboard, Scorecard); Virtual try-on; Interior home designer; 3D Analytical 
Geometry; 3D Object Recognition; 3D Printing; 3D Modeling; 3D Imaging; AR in Surgery; 

Enhanced Vision Engine; Indoor spatial mapping. 

Dunston and Wang (2005); Farshid, 

Paschen, Eriksson, and Kietzmann 

(2018) 

 To be continued 
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Table 16: Items Generated to Measure AI Adoption (cont.) 

Dimension/Items Source(s) 

4. Content Generation 

 

Automatically Generated Content using artificial intelligence. 
 

Use case: 3D Asset Generation; Design Concepts Generation; AI-Generated Art; Automated 

Web Design; Automated Video Generation; Automated Poll Generation; Automated Text 
Creation: by topic, keywords, social media content, and articles; Content rewriting; Clinical, 

Medical, Financial Document Generator; Text to Video; Self-optimizing emails and subject 

lines; Programmatic Influencer campaigns; Contract Generation; Marketing Content 
Generation; Converting the data into engaging narratives. 

Liu et al. (2020); Suvetha, Swathi, 

Rani, Vinoth, and Suriya (2018) 

5. Search and Discovery 

 

AI-enabled search technology is about finding specific things known or assumed to exist. The 
discovery involves using the search/browse interface to discover the available content. 

 

Use case: Knowledge sharing; Conversational Search; Product, Patent, Contract, 
Accommodations, Site, Social Media, Business, Location-Based, E-commerce, Medical 

Citations, Research Papers, Project Data, Real Estate, Voice conversations, Chemical 

Structure Search Engine; Visual Search; Metasearch engine; NLP & Neuroscience based 
Search; Named Entity Recognition and Disambiguation; Content Discovery; Searchable 

representations; Natural Language Analytics. 

Kelly (2015) 

Cognitive Decision Assistance 
The organization’s ability to use AI in decision-making processes. 

1. Decision Automation System 

 
Decision Automation Systems (also known as Decision Management Systems), unlike 

Decision Support Systems, are focused on decision automation, taking or recommending an 

action. 
 

Use case: Next Best Action; Next Best Offer; Optimization (Customer Service, Drug Delivery 

Optimization, Ad optimization, Floor price, Logistics, Energy, Yield, Assortment, 
Manufacturing, Marketing, Media content and audience analytics, Networks and services, 

Carrier, Inventory, Job Ads, Pricing, Price sensitivity incentive, Promotions, Time, Supply 

Chain, Sales, Spending, Route, Restaurant delivery, Job description, Indoor farming, Process 
Optimization); Programmatic Media; Automated Scheduling; Automated Routing (Call, 

Document, Task, Case, Email); Automated Call Center Staffing, Claims Processing, 

Investment, Procurement, Accounts payable, Mailroom, Payments, Patient/doctor matching, 
Claim Payment, Project staffing, Usage-Based Insurance, Retail stocking, Customs clearance 

process, Crop Management, Travel Management, Contract Approval Process, Regulatory 

reporting, Project report generation, Billing and accounts receivable, Customer Service, 
Warehouse Management, Security, Tax filing and processing; Algorithmic Merchandising, 

Repricing, Trading and Bidding; Dynamic Pricing Precision; Video Content Analytics. 

Taylor (2011) 

2. Knowledge Engineering and Expert Systems 

 
An expert system is designed to help a person make decisions using explicit expert 

knowledge. Such a system is usually semi-detached from an organization’s operational 

environment and not part of a process or transactional environment. 
 

Use case: Knowledge Representation, Reasoning, Ontology Creation and Management; 

Root-cause analysis; Optimization (Manufacturing, Marketing Planning, Patient Treatment 

and Therapy, Patient flow, Maintenance schedules, Photovoltaic Energy, Hydroponic Food 

and Plant Growth, Pricing and Repricing, Warehouse Logistics, Route, Bond Investing); 
Planning (Supply Chain, Gathering and Transportation, Logistics, Flight-ground 

trajectories, Mobility Management); Design (Generative design; Drug Development, Product 

Innovation, Protein engineering, Material Discovery, Genomics); Design compliance; Asset, 
Application Resource, Drone Fleet, Inventory Shipments, Invoice, Recruitment, Traffic 

Congestion, Regulatory and Compliance, Threat Management; Autonomous Software 

Testing. 

Phillips-Wren (2012) 

 To be continued 
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Table 16: Items Generated to Measure AI Adoption (cont.) 

Dimension/Items Source(s) 

3. Decision Support System 

 

Decision Support Systems are focused on helping (supporting) someone make the decision, 
not necessarily on the actions to be taken. 

 

Use case: Actionable analytics and recommendations (Financial, Location-based, 
Underwriting, Coding, Performance, IT Operations, Threat and Risk Mitigation, Operating 

project); Clinical Decision Support (Precision Diagnostics, Therapy and Treatment 

Recommendations, Injury Analysis, Phenotypic Analysis); Decision Intelligence and 
Modeling; Medical Imaging; Geospatial insights; Hyperspectral, Multi-spectral, Acoustic, 

Fluorescent Microscopy Imaging Systems; Management Decision Support Systems (Supply 

Chain, Stakeholder, Medication, Loan, Freight, (Digital) Wealth, Customer Efficiency, 
Contract, Claims, Plant and Crop, Pest and disease, Traffic, Vendor, Supplier, Portfolio, 

End-to-End Productivity, Capital); Marketing Strategy Engineering; Smart Products and 

Manufacturing; Decision Support Systems in Construction (Estimating, Measuring site 
progress, Construction site inspection, Contractor Analysis), Litigation, Investment, Finance, 

Bioengineering. 

Phillips-Wren (2012); Taylor (2011) 

Cognitive Technologies 

The organization’s ability to integrate AI technologies with other IT resources, services, and devices. 

1. Machine learning 

 

Use case: Deep Neural Networks; Neural Networks Neural Networks; Multi-Agent 
Frameworks; Federated, Sequential learning; Optimization and Regularization Methods; 

Logistic Regression Methods; Linear and Non-Linear Methods; Cloud Machine Learning 

Services. 

Bawack et al. (2019); Schatsky et al. 

(2014); Zasada (2019) 

2. Natural Language Processing (NLP) 

 

Use case: Natural Language Understanding (NLU); Natural Language Generation (NLG); 
Text Analytics; Text Mining; Intent Classification; Sentiment Analysis; Summarization of 

textual information; Translation. 

Bawack et al. (2019); Schatsky et al. 

(2014); Zasada (2019) 

3. Audio and Speech Processing 

 
Use case: Speech to text; Text to speech; Language transcription and recognition; Embedded 

voice recognition; Synthetic voice; Voice Analysis. 

Interviews; Bawack et al. (2019); 

Schatsky et al. (2014); Zasada 
(2019) 

4. Planning, scheduling & optimization 
 

Use case: Partial-Order Planning; Requirement Engineering; Stream processing; 

Controlling Multiple UAVs; Software System Integration; Automated Web Services 
Composition; Business Workflow Management; Project Planning. 

Bawack and Wamba (2019); 
Schatsky et al. (2014) 

5. Autonomous Systems & Robotics 

 

Use case: Advanced Driver or Rider Assistance Systems; Autonomous Vehicles and Mobile 
Robots; Autonomous Drone Systems; Autonomous Robotics; Collaborative Industrial 

Robots; Vehicle automation for heavy equipment; Warehouse Logistics Automation; 

Automated Fulfillment Processes; Medical robotics and computer-assisted surgery; 
Autonomous Harvesting, Irrigation, and Pest Detection; Automated Pot-Hole Repair System; 

Automated Photovoltaic Module Cleaning; Automated Waste Recycling;  

Autonomous Navigation. 

Interviews; Bawack and Wamba 

(2019); Schatsky et al. (2014) 

6. Computer Vision 

 

Use case: Image Classification; Image Processing for Control and Measurement Systems; 
Object Recognition; Facial Recognition; Facial Expressions; Scene Understanding; Optical 

character recognition; Motion Analysis; Gesture Control Recognition; Visual Perception. 

Interviews; Bawack et al. (2019); 

Schatsky et al. (2014); Zasada 

(2019) 

7. Rules-based systems 
 

Use case: RPA, Back Office Automation. 

Schatsky et al. (2014); Zasada 
(2019) 

 

Source: Own work. 

3.5.2 Content Validity Assessment of the Items 

Next, we assessed the content adequacy of items, the degree to which created items represent 

the target, and the aspect of the construct (Beck & Gable, 2001). Content validity is based 

on the judgment of experts regarding the content relevancy of the test domains and the 
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representation of items to their domains (MacKenzie et al., 2011). This study evaluated the 

items based on their relevance and representativeness. 

3.5.2.1 Expert Participation 

Invitations were sent to seven experts. Four experts accepted the invitation and participated. 

Two were from academia, and two were from business. 

Participants were given three weeks to complete the review. The instructions explained the 

main objective, the purpose of the study, the target population, and the aim of collecting the 

content rating. The review form consisted of 5 columns. The first column placed the items 

to be evaluated. The second column showed the rating scale of 0 to 4, where the experts were 

expected to rate the item. The third column allows the experts to place their suggestions, 

ideas, opinions, and revisions. The fourth column represented “Is the item well explained?” 

– Yes / No, and the fifth column denoted “Is the item essential to the domain?” – Yes / No. 

The experts were supposed to mark yes or no on both columns.  

3.5.2.2 Expert Rating 

Hellsten (2008) proposed classifying expert ratings using three different approaches: 

descriptive, quantitative, and qualitative. This study focused on two methods: descriptive 

and quantitative. 

3.5.2.3 Descriptive Approach 

• Median: A higher median value of an item relevance rating indicated a more relevant 

item. This study used a rating scale of 0 to 4, and an item with a median value of 2.75 

and above accounted for acceptance (Hellsten, 2008). 

• Item Ambiguity: Each item's ambiguity score has been calculated. Items with lower 

ambiguity scores are desired to indicate a consensus among experts. A range of 3 or more 

between scores (or Rk of 4 or higher) is considered ambiguous. Hence, low ambiguity 

values such as 1, 2, or 3 are acceptable for this study.  

• Agreement Percentage: 80% of experts' agreement is considered acceptable. 

3.5.2.4 Quantitative Approach 

• Content Validity Index (CVI): CVI for each item is the percentage of experts who 

rated the item as 3 or 4 (Lynn, 1986). Polit, Beck, and Owen (2007) observed that the 

CVI value of 1.00 is acceptable for panels of three or four experts, whereas 0.80 was 

considered acceptable for a panel of five experts. 
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• Content Validity Ratio: The CVR range should be -1 to +1. The number was equal to 

zero when half of the experts rated the item as essential (Lawshe, 1975). The minimum 

CVR for each item to be acceptable was 0.99 for a one-tailed test at the 95% 

confidence level, as four experts were used for the study (Lawshe, 1975). 

• Content Validity Coefficient (VIk): An item is highly accepted if the coefficient is 

closer to 1. The coefficient value is compared with a table of right-tail probabilities (p) 

to determine the significant value (Aiken, 1985). For four experts, the significant value 

is V = 0.88 and p = 0.24. 

 

Table 17: Definition of Descriptive and Quantitative methods 

Descriptive 

Approach 

Formula Description 

Median If n is odd, then median (M) = ((n+1) / 2)) 

If n is even, then median (M) =[(n/2) + ((n/2) +1)] / 2. Arrange 

ratings in ascending order and find the rating in the calculated 
median position. 

n = no. of experts 

Item ambiguity (IA) Rk =(Xkjh – Xkjl ) + 1 Xkjh is the item's highest rating; Xkjl is the 

lowest rating. 

Percentage 
Agreement (PA) 

(No. of experts rated “YES” / Tot. no. of experts) * 100  

Quantitative 

Approach 

Formula Description 

Content Validity 
Index 

(CVI) 

(No. of experts who rated 3 or 4 / Tot. no. of experts) CVI is expressed in percentage 

Content Validity 
Ratio 

(CVR) 

(ne – N/2) / (N/2) ne is the no. of experts indicating that the 
item is essential; N is the no. of experts on 

the panel; CVR ranges from -1 to +1 

Content Validity 

Coefficient 
(VIk) 

S / [j (c-1)] S is the sum of sj (sj = rj – lo); rj is the j's 

rating; lo is the lowest category value (0); j 
is the tot. no of experts; c is the no. of 

rating categories (5); sj & rj (j represents 

1,2,3…n experts) 

 

Source: Own work. 

Table 18: Acceptable Measure Values for Content Validity 

Median Item Ambiguity Agreement 

Percentage 

Content Validity 

Index 

Content Validity 

Ratio 

Content Validity 

Coefficient 

2.75+ 1, 2 and 3 80% 75% 0.99 0.88 

 

Source: Own work. 

We applied descriptive and quantitative approaches to determine the content validity of the 

items. Out of six, any item that satisfies less than four methods was deleted, and any item 

that meets more than three methods was retained. Table 17 includes formulas for calculating 

three methods of descriptive approach and three methods of quantitative approach. Table 18 

presents the acceptable values for six methods in this study. The results of the analysis are 

shown in Table 19. Items 16, 23, and 24 were removed due to low IA, CVR, and VIk values. 

Eventually, the final list comprised 25 items and was used for data collection and performing 

Exploratory Factor Analysis. 
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Table 19: Results of the Content Validity Analysis 

# Dimension/Items Median IA AP (%) CVI 

(%) 

CVR VIk Action 

 Data Acquisition and Preprocessing 

1 Data warehousing 4.00 1.00 100.00 100.00 1.00 1.00  

2 Data Lake 4.00 1.00 100.00 100.00 1.00 1.00  

3 Data Capturing System 4.00 1.00 100.00 100.00 1.00 1.00  

4 Document Management System 4.00 1.00 100.00 100.00 1.00 1.00  

 Cognitive Insight 

5 Predictive Modeling and Analytics 4.00 1.00 100.00 100.00 1.00 1.00  

6 Anomaly and Deviant Behavior Detection 4.00 1.00 100.00 100.00 1.00 1.00  

7 Marketing Automation 4.00 2.00 100.00 100.00 0.50 0.94  

8 Marketing Intelligence System 4.00 1.00 100.00 100.00 0.50 1.00  

9 CRM and CX System 3.00 1.00 100.00 100.00 1.00 0.75  

10 Predictive Maintenance  4.00 2.00 100.00 100.00 0.50 0.94  

11 Cyber and Network Security, Data Privacy 4.00 2.00 100.00 100.00 1.00 0.94  

12 Business Process Intelligence System 4.00 1.00 100.00 100.00 1.00 1.00  

13 Talent Management System 4.00 2.00 100.00 100.00 1.00 0.94  

 Cognitive Engagement 

14 Conversational AI 4.00 3.00 100.00 75.00 1.00 0.88  

15 Personalization and Recommendation System 4.00 2.00 100.00 100.00 1.00 0.94  

16 Visualization System: Virtual reality, Augmented 

reality, Mixed Reality  

4.00 4.00 100.00 75.00 0.50 0.81 Exclude 

17 Automatically Generated Content using AI 4.00 1.00 100.00 100.00 1.00 1.00  

18 AI-enabled Search and Discovery 4.00 5.00 100.00 75.00 1.00 0.75  

 Cognitive Decision Assistance 

19 Decision Automation System 4.00 3.00 100.00 75.00 1.00 0.88  

20 Knowledge Engineering and Expert Systems 3.50 3.00 100.00 75.00 1.00 0.81  

21 Decision Support System 4.00 3.00 100.00 75.00 1.00 0.88  

 Cognitive Technologies 

22 Machine learning 4.00 3.00 100.00 75.00 1.00 0.88  

23 Natural Language Processing 4.00 4.00 100.00 75.00 0.50 0.81 Exclude 

24 Audio and Speech Processing 4.00 4.00 100.00 75.00 0.50 0.81 Exclude 

25 Planning, scheduling & optimization 4.00 3.00 100.00 75.00 1.00 0.88  

26 Autonomous Systems & Robotics 4.00 1.00 100.00 100.00 1.00 1.00  

27 Computer Vision 4.00 2.00 100.00 100.00 1.00 0.94  

28 Rules-based systems 4.00 2.00 100.00 100.00 1.00 0.94  

 

Source: Own work. 

3.6 Formal Measurement Model Specification 

The second-order reflective indicator measurement model (Figure 5) captures the expected 

relationships between the generated indicators (Table 16) and the focal construct they are 

intended to represent.  
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Figure 5: AI Adoption – Latent Construct Measurement Model 

 

Source: Own work. 

3.7 Scale Purification and Refinement 

Data was analyzed in three steps. In step 1, we performed a preliminary analysis of the scale 

by Exploratory Factor Analysis (EFA) using the Maximum likelihood and Varimax rotation 

with IBM SPSS Statistics version 26. Step 2 further validated the factor structure using 

Confirmatory Factor Analysis (CFA). For CFA, we used IBM SPSS AMOS version 28. 

3.7.1 Pilot study 

We used a single-source, self-report, cross-sectional design to gather the data for the pilot 

study. The data was collected through a questionnaire survey and distributed electronically. 

The questionnaire was anonymous and in the English language. We sourced the participants 

from LinkedIn. We targeted Chief Experience Officers, senior business managers, IT 

directors and managers, Business Process Architects, BPM Consultants, Business Analysts, 

Chief Process Officers, Chief Digital and Data Officers, and other senior business decision-

makers or people directly involved in executing the organization's AI strategy. We connected 

with 300 individuals and sent direct message invitations. The invites were sent at the start of 

February 2022. 

3.7.1.1 Sample 

The sample of usable questionnaires for the pilot study consisted of 80 EU organizations 

from 23 countries. 42.5% were from Information and communication and Professional, 

scientific, and technical activities. 87.5% had fewer than 50 employees. 81.25% had been in 

business for less than 30 years. 58.75% of revenues are less than 1 million EUR in revenues. 

Most respondents (88.75%) were senior and executive managers and had been at the 

company for, on average, about ten years. According to the information in Table 20, we 

conclude the sample is somewhat representative of the sample frame and the population. 

Data Acquisition 

and Preprocessing
Cognitive Insight

Cognitive 

Engagement

Cognitive Decision 

Assistance

Cognitive 

Technologies

AI adoption

CI1 CI2 CI3 CI4 CI5

CI6 CI7 CI8 CI9

e5 e6 e7 e8 e9

e10 e11 e12 e13

CE1 CE2 CE3 CE4

e14 e15 e16 e17

CDA1 CDA2 CDA3

e18 e19 e20

CT1 CT2 CT3 CT4

e21 e22 e23 e24

CT5

e25

DACQ1 DACQ2 DACQ3 DACQ4

e1 e2 e3 e4



86 

Table 20: Characteristics of the Pilot Study Sample 

Characteristics  Number % 

Respondent's position Senior/executive manager 59 73.75 

 Middle/first line manager 12 15.00 

 

Other: Data Analyst, AI Engineer, Data Engineer, Software 

Developer, IT Specialist, Scientist, Consultant, Statistician 

9 11.25 

Respondent's time at the organization 0 - 2 years 14 17.50 

 3 - 5 years 18 22.50 

 6 - 9 years 15 18.75 

 10 - 14 years 8 10.00 

 More than 14 years 25 31.25 

Organization size Micro: with less than 10 persons employed 30 37.50 

 Small: with 10-49 persons employed 34 42.50 

 Medium-sized: with 50-499 persons employed 10 12.50 

 Large: with 500 or more persons employed 6 7.50 

Organization age (years of operation) < 5 years 16 20.00 

 5 - 10 14 17.50 

 11 - 30 35 43.75 

 31 - 50 5 6.25 

 > 50 10 12.50 

Annual revenue (€) < €10.000 3 3.75 

 €10.000 - €24.999 5 6.25 

 €25.000 - €49.999 2 2.50 

 €50.000 - €99.999 2 2.50 

 €100.000 - €199.999 9 11.25 

 €200.000 - €499.999 12 15.00 

 €500.000 - €599.999 4 5.00 

 €600.000 - €999.999 10 12.50 

 €1 million - €2.5 million 3 3.75 

 €2.5 million - €5 million 9 11.25 

 €5 million - €10 million 5 6.25 

 €10 million - €20 million 1 1.25 

 €20 million - €30 million 2 2.50 

 > €50 million 5 6.25 

 Not sure 8 10.00 

Industry sector Agriculture, forestry, and fishing 6 7.50 

 Manufacturing 5 6.25 

 Electricity, gas, steam, and air conditioning supply 1 1.25 

 Construction 3 3.75 

 

Wholesale and retail trade; repair of motor vehicles and 

motorcycle 

5 6.25 

 Transportation and storage 2 2.50 

 Accommodation and food service activities 1 1.25 

 Information and communication 22 27.50 

 Financial and insurance activities 5 6.25 

 Real estate activities 1 1.25 

 Professional, scientific, and technical activities 12 15.00 

 Administrative and support service activities 1 1.25 

 Education 1 1.25 

 Human health and social work activities 2 2.50 

 Arts, entertainment, and recreation 6 7.50 

 Other service activities 7 8.75 

Country/GEO Austria 4 5.00 

 Belgium 1 1.25 

 Bulgaria 2 2.50 

 Croatia 1 1.25 

 Czech Republic 2 2.50 

 Denmark 2 2.50 

 Finland 1 1.25 

 France 7 8.75 

 Germany 16 20.00 

 Greece 3 3.75 

 Hungary 2 2.50 

 Ireland 6 7.50 

 Italy 9 11.25 

 Lithuania 1 1.25 

 Netherlands 4 5.00 

 Poland 2 2.50 

 Portugal 2 2.50 

  To be continued 
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Table 20: Characteristics of the Pilot Study Sample (cont.) 

Characteristics  Number % 

 Romania 1 1.25 

 Slovakia 1 1.25 

 Slovenia 1 1.25 

 Spain 3 3.75 

 Sweden 1 1.25 

 Norway 1 1.25 

 Switzerland 2 2.50 

 United Kingdom 1 1.25 

 Other 4 5.00 

 

Source: Own work. 

3.7.1.2 Non-Response Bias 

The response and non-response biases were tested in this study using Levene's Homogeneity 

of Variance Tests (Table 21). We compared the responses from early and late respondents 

to our pilot survey and found no statistically significant differences (p > 0.05). Hence, no 

evidence was found for non-response bias. 

Table 21: Assessment of Non-Response Bias Using Independent Samples t-Test 

     Levene’s Test for 

Equality of 

Variances 

t-test for Equality of Means Effect 

Size 

Latent 

Variables 

Response Type N Mean SD F Sig. t df Sig. (2-

tailed) 

Eta 

squared 

AI Early Response 30 2.380 0.881 0.272 0.604 1.815 78.000 0.073 0.0405 

 Late Response 50 2.017 0.856   1.802 59.837 0.077  

CBPA Early Response 30 2.686 0.866 1.212 0.274 2.348 78.000 0.021 0.0660 

 Late Response 50 2.189 0.944   2.400 65.412 0.019  

 

Source: Own work. 

3.7.2 Exploratory Factor Analysis 

We performed EFA using the Maximum Likelihood method with orthogonal rotation type 

Varimax to analyze the factor structure and correlation between items included in the scale. 

The Maximum Likelihood method maximizes differences between factors and provides a 

Model Fit estimate. The same method is used in IBM SPSS AMOS SEM. Therefore, it is 

recommended to use it for EFA (Gaskin, 2021b). Varimax rotation minimizes the number 

of variables with extreme loadings (high or low) on a factor and makes identifying a variable 

with a factor possible. It is a commonly used Orthogonal rotation type. 

3.7.2.1 Scale Purification 

Items “Visualization System: Virtual reality, Augmented reality, Mixed Reality,” “Natural 

Language Processing,” and “Audio and Speech Processing” were removed by assessing 
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content validity (Section 3.5.2). “Cyber and Network Security & Data Privacy" were 

removed due to low communalities (< 0.400), and “Document Management System” due to 

a low value of 0.532 for Corrected Item-Total Correlation as indicated by Reliability 

Analysis. Removing the item increased Cronbach's Alpha (Cronbach, 1951) to a value of 

0.816. Next, cross-loadings with an absolute difference of less than 0.200 were removed 

(Gaskin, 2021b): “Automatically Generated Content using AI,” “Planning, scheduling & 

optimization,” “Rules-based systems,” “Business Process Intelligence System,” “Talent 

Management System”. In line with convergent validity, items with factor loadings below 

0.60 (Gaskin, 2021b) were removed: “Predictive Maintenance” and “AI-enabled Search and 

Discovery.” 

3.7.2.2 Indicators 

Table 22: Indicators, the Results of Scale Purification 

Factor Indicators Scale 

Data Acquisition 

and Preprocessing 

Please identify the relative use of AI applications in your organization. 

DACQ1 

 

Data warehousing 5 points Likert scale; 

Scored as 1 - Never, 2 - 
Rarely, 3 - Sometimes, 4 - 

Very Often, 5 - Always 
DACQ2 Data Lake 

DACQ3 

 

Data Capturing System 

Cognitive Insight Please identify the relative use of AI applications in your organization. 

CI1  Marketing Automation 5 points Likert scale; 

Scored as 1 - Never, 2 - 

Rarely, 3 - Sometimes, 4 - 

Very Often, 5 - Always 

CI2 Marketing Intelligence System 

CI3 CRM and CX System 

Cognitive 

Engagement 

Please identify the relative use of AI applications in your organization. 

CE1 Conversational AI 5 points Likert scale; 

Scored as 1 - Never, 2 - 

Rarely, 3 - Sometimes, 4 - 
Very Often, 5 - Always 

CE2 Personalization and Recommendation System 

CE3 Autonomous Systems & Robotics 

CE4 Computer Vision 

Cognitive Decision 

Assistance 

Please identify the relative use of AI applications in your organization. 

CDA1 Decision Automation System 5 points Likert scale; 
Scored as 1 - Never, 2 - 

Rarely, 3 - Sometimes, 4 - 

Very Often, 5 - Always 

CDA2 Knowledge Engineering and Expert Systems 

CDA3 Decision Support System 

Cognitive 

Technologies 

Please identify the relative use of AI applications in your organization. 

CT1 Predictive Modeling and Analytics 5 points Likert scale; 

Scored as 1 - Never, 2 - 

Rarely, 3 - Sometimes, 4 - 

Very Often, 5 - Always 

CT2 Anomaly and Deviant Behavior Detection 

CT3 Machine learning 

 

Source: Own work. 

3.7.2.3 Scale Refinement 

The results of the abridged 5-factor matrix are provided in the following tables. 
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Table 23: KMO and Bartlett's Test 

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.848 

Bartlett's Test of Sphericity Approx. Chi-Square 834.412 

df 120 

Sig. < 0.001 

 

Source: Own work. 

According to Table 23, the KMO value is above 0.50, indicating that the sampling adequacy 

criteria are met. The Bartlett test of sphericity is statistically significant (p < 0.05), meaning 

that our correlation matrix is statistically different from an identity matrix as desired (Table 

23). Extracted communalities13 are presented in Table 24 and are above 0.40. 

Table 24: Extracted Communalities 

 

Communalities 

Initial Extraction 

DACQ1 0.646 0.767 

DACQ2 0.497 0.517 

DACQ3 0.599 0.593 

CI1 0.738 0.884 

CI2 0.639 0.645 

CI3 0.545 0.515 

CE1 0.504 0.466 

CE2 0.651 0.675 

CE3 0.542 0.677 

CE4 0.649 0.777 

CDA1 0.726 0.764 

CDA2 0.675 0.678 

CDA3 0.807 0.894 

CT1 0.802 0.791 

CT2 0.737 0.706 

CT3 0.722 0.885 

 

Source: Own work. 

The diagonals of the anti-image correlation matrix were all over 0.50 (Table 25). 

 

                                                 
13 Extracted communalities are estimates of the variance in each variable accounted for by the factors in the 

factor solution. Small values indicate variables that do not fit well with the factor solution and should possibly 

be dropped from the analysis. 
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Table 25: Anti-Image Correlation 

 DACQ1 DACQ2 DACQ3 CI1 CI2 CI3 CDA1 CDA2 CDA3 CE1 CE2 CE3 CE4 CT1 CT2 CT3 

DACQ1 0.864 -0.400 -0.410 -0.046 -0.080 -0.108 -0.047 -0.080 -0.005 0.146 0.013 -0.087 -0.001 0.146 -0.259 0.162 

DACQ2 -0.400 0.921 0.030 -0.084 0.033 -6.841E-05 0.053 0.001 -0.132 -0.094 0.067 -0.012 0.025 -0.053 0.035 -0.147 

DACQ3 -0.410 0.030 0.838 -0.113 0.058 0.169 0.061 -0.119 -0.124 -0.240 -0.093 -0.283 0.304 -0.141 0.151 -0.169 

CI1 -0.046 -0.084 -0.113 0.730 -0.565 -0.409 -0.094 0.051 0.351 0.124 -0.293 0.197 0.034 -0.086 0.023 -0.180 

CI2 -0.080 0.033 0.058 -0.565 0.769 0.049 0.156 -0.098 -0.255 -0.158 -0.060 -0.065 -0.040 0.295 -0.130 0.136 

CI3 -0.108 -7E-05 0.169 -0.409 0.049 0.841 -0.036 -0.082 -0.027 -0.263 -0.104 -0.058 0.153 -0.231 0.098 0.067 

CDA1 -0.047 0.053 0.061 -0.094 0.156 -0.036 0.878 -0.192 -0.575 -0.018 -0.093 0.048 -0.045 -0.010 0.134 -0.136 

CDA2 -0.080 0.001 -0.119 0.051 -0.098 -0.082 -0.192 0.941 -0.199 0.146 -0.057 0.096 -0.176 -0.116 0.088 -0.187 

CDA3 -0.005 -0.132 -0.124 0.351 -0.255 -0.027 -0.575 -0.199 0.849 0.071 -0.067 0.135 -0.007 -0.016 -0.213 -0.083 

CE1 0.146 -0.094 -0.240 0.124 -0.158 -0.263 -0.018 0.146 0.071 0.839 -0.204 -0.126 -0.243 0.062 -0.099 0.032 

CE2 0.013 0.067 -0.093 -0.293 -0.060 -0.104 -0.093 -0.057 -0.067 -0.204 0.914 0.051 -0.299 0.130 -0.153 0.087 

CE3 -0.087 -0.012 -0.283 0.197 -0.065 -0.058 0.048 0.096 0.135 -0.126 0.051 0.695 -0.533 -0.071 0.080 -0.083 

CE4 -0.001 0.025 0.304 0.034 -0.040 0.153 -0.045 -0.176 -0.007 -0.243 -0.299 -0.533 0.764 -0.118 0.127 -0.194 

CT1 0.146 -0.053 -0.141 -0.086 0.295 -0.231 -0.010 -0.116 -0.016 0.062 0.130 -0.071 -0.118 0.829 -0.619 0.025 

CT2 -0.259 0.035 0.151 0.023 -0.130 0.098 0.134 0.088 -0.213 -0.099 -0.153 0.080 0.127 -0.619 0.833 -0.404 

CT3 0.162 -0.147 -0.169 -0.180 0.136 0.067 -0.136 -0.187 -0.083 0.032 0.087 -0.083 -0.194 0.025 -0.404 0.909 

 

 

                

 

Source: Own work. 
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The results of the exploratory factor analysis presented in Table 27 show that the solution is 

based on 5 factors, as expected. Initial eigenvalues indicated that the five factors explained 

19.613%, 16.732%, 11.818%, 12.127%, and 9.930% of the variance, respectively. The five-

factor solution explains 70.220% of the total variance with reliability Cronbach's Alpha 

between 0.786 and 0.904 (Table 26). 

Table 26: Reliability Analysis of Factors 

Factor Cronbach's Alpha 

Data Acquisition and Preprocessing (Factor 1) 0.816 

Cognitive Insight (Factor 2) 0.814 

Cognitive Engagement (Factor 3) 0.786 

Cognitive Decision Assistance (Factor 4) 0.904 

Cognitive Technologies (Factor 5) 0.895 

 

Source: Own work. 

The results of the rotated factor matrix are provided in Table 27. Using the Varimax 

orthogonal rotation type, we assume no correlation between factors. Nevertheless, we 

identified several cross-loadings between “Cognitive Engagement” and “Cognitive 

Technologies,” where the difference between loadings was around 0.200. Often, when there 

is a second-order factor in an EFA, the subdimensions of that factor load together instead of 

in separate factors (Gaskin, 2021b). We arranged the items of “CT3 - Anomaly and Deviant 

Behavior Detection” and “CE2 - Personalization and Recommendation System” according 

to Face Validity into factors with lower loading. This is further addressed in CFA analysis. 

All other loadings are higher than 0.50, and the average loading for all factors is over or near 

0.70. Goodness-of-fit Test indicated reasonable model fit (χ2 = 51.030, df = 50, p = 0.433). 

Table 27: 5-Factor Rotated Matrix 

 Factor 

 1 2 3 4 5 

DACQ1 0.756     

DACQ2 0.563     

DACQ3 0.626     

CI1  0.916    

CI2  0.743    

CI3  0.644    

CDA1   0.823   

CDA2   0.691   

CDA3   0.870   

CE1    0.548  

CE2  0.623  0.366  

CE3    0.790  

CE4    0.800  

CT1     0.819 

CT2     0.622 

CT3   0.577  0.436 

 

Source: Own work. 

The results of the EFA show that our factors have a good level of validity. For further 

validation, we used the CFA discussed next. 
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3.7.3 Confirmatory Factor Analysis 

We assessed the model for reliability and convergent validity. The graphical representation 

of the CFA initial model and the final calculated model is followed by results in Table 28. 

3.7.3.1 First-Order Unidimensionality: initial CFA 

The initial CFA model (Figure 6) had a relatively poor model fit: χ2/df = 1.760, GFI = 0.805, 

AGFI = 0.718, TLI = 0.884, CFI = 0.909, RMSEA = 0.098 (p-close = 0.002), and SRMR = 

0.0795 (for the description of Fit Indices, refer to Table 74 or Table 83). 

Figure 6: First-Order Unidimensionality – Initial CFA 

 

 

Source: Own work. 

3.7.3.2 Eliminate Problematic Indicators 

As suggested by MacKenzie et al. (2011), we consider eliminating indicators that have 1) 

nonsignificant loadings on the hypothesized construct; 2) squared completely standardized 

loadings that are less than 0.50; 3) high and significant measurement error covariances with 

other measures. 

All loadings are significant. Item CE3 has a loading lower than 0.50. Based on Modification 

indices indicating the change in the Chi-square of model fit, we identified significant error 

covariances on items CE3 and CE4. We removed the item CE3 as it has a low loading of 

0.386. 

3.7.3.3 First-Order Unidimensionality: Abridged CFA 

The final CFA model (Figure 7) has a good model fit: χ2/df = 1.410, GFI = 0.861, AGFI = 

0.791, TLI = 0.942, CFI = 0.965, RMSEA = 0.072 (p-close = 0.130), and SRMR = 0.0679. 

Based on Hu and Bentler (1999) recommendations, we used the suggested model fit 
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measures cutoff values RMSEA < 0.08, SRMR < 0.08, CFI > 0.90. Consequently, we prefer 

the abridged model to the initially proposed measurement model. 

Figure 7: First-Order Unidimensionality – Abridged CFA 

 
 

Source: Own work. 

3.7.3.4 Assessing the Reliability of the Set of Indicators at the Construct Level 

All items' standardized factor loading was above 0.55, and the Average Variance Extracted 

(AVE) was above 0.50. These indicate good convergent validity (Hair Jr, Sarstedt, Ringle, 

& Gudergan, 2017). Internal consistency reliability (Cronbach, 1951) is higher than 0.70, 

and the index of construct reliability is higher than 0.70 (MacKenzie et al., 2011). Results 

are presented in Table 28. 

Table 28: Factor Loadings, Cronbach's Alpha, Composite Reliability, AVE 

Construct/ 

Indicators 

Standardized 

Factor Loadings 

Cronbach 

Alpha 

Composite 

Reliability (CR) 

AVE Maximum 

shared 

squared 

variance 

(MSV) 

Maximum 

reliability 

MaxR(H) 

DACQ  0.816 0.826 0.614 0.510 0.844 

DACQ1 0.867      

DACQ2 0.736      

DACQ3 0.741      

CI  0.814 0.841 0.641 0.506 0.887 

CI1 0.920      

CI2 0.765      

CI3 0.700      

CE  0.757 0.749 0.514 0.506 0.903 

CE1 0.588      

CE2 0.945      

CE3 (former CE4) 0.552      

CDA  0.904 0.907 0.765 0.627 0.923 

CDA1 0.869      

CDA2 0.817      

CDA3 0.934      

     To be continued 
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Table 28: Factor Loadings, Cronbach's Alpha, Composite Reliability, AVE (cont.) 

Construct/ 

Indicators 

Standardized 

Factor Loadings 
Cronbach 

Alpha 

Composite 

Reliability (CR) 

AVE Maximum 

shared 

squared 

variance 

(MSV) 

Maximum 

reliability 

MaxR(H) 

CT  0.895 0.899 0.749 0.627 0.914 

CT1 0.927      

CT2 0.840      

CT3 0.826      

Model Fit: χ2/df = 1.410, GFI = 0.861, AGFI = 0.791, TLI = 0.942, CFI = 0.956,  

RMSEA = 0.072 (p-close = 0.130), and SRMR = 0.0679 

 

Source: Own work. 

Next, we present the Factor Correlation Matrix with the Square Root of the AVE on the 

diagonal (Table 29). 

Table 29: Factor Correlation Matrix 

 DACQ CI CE CDA CT 

DACQ 0.784     

CI 0.532 0.800    

CE 0.554 0.711 0.717   

CDA 0.678 0.282 0.535 0.875  

CT 0.714 0.384 0.540 0.792 0.865 

 

Source: Own work. 

3.7.3.5 Common Method Variance 

We used a Common Latent Factor (CLF) method to capture the common variance among all 

observed variables in the model (Eichhorn, 2014). As expected for the second-order latent 

construct, 51.552% of the variance is shared between first-order factors. Next, we conducted 

Harman’s single-factor test using CFA. Our single-factor model showed a poor data fit (χ2/df 

= 1.194, GFI = 0.877, AGFI = 0.812, TLI = 0.972, CFI = 0.979, RMSEA = 0.050 (p-close 

= 0.486), SRMR = 0.0663). The results suggest the existence of a second-order latent 

variable. 
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Figure 8: Common Method Variance 

 
 

Source: Own work. 

3.7.3.6 Second-Order Unidimensionality: CFA 

The second-order CFA model (Figure 9) has a good model fit: χ2/df = 1.677, GFI = 0.826, 

AGFI = 0.755, TLI = 0.904, CFI = 0.922, RMSEA = 0.093 (p-close = 0.008), SRMR = 

0.0914. The elevated value of the RMSEA measure is due to the small sample size (Kenny, 

Kaniskan, & McCoach, 2015). 

Figure 9: Second-Order Multidimensionality – CFA 

 
 

Source: Own work. 

All items' standardized factor loading was above 0.60, and AVE for first and second order 

was above 0.50 (MacKenzie et al., 2011). These indicate good convergent validity (Hair Jr 

et al., 2017). Internal consistency reliability (Cronbach, 1951) is higher than 0.70, and the 

index of construct reliability is higher than 0.70 (MacKenzie et al., 2011) at the first-order 

and second-order levels (Table 30). 
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Table 30: Factor Loadings, Cronbach's Alpha, CR, AVE 

Construct/ 

Indicators 

Standardized 

Factor Loadings 

Cronbach 

Alpha 

CR AVE 

AI   0.871 0.583 

DACQ 0.825 0.816 0.825 0.613 

DACQ1 0.858    

DACQ2 0.737    

DACQ3 0.748    

CI 0.494 0.814 0.841 0.642 

CI1 0.938    

CI2 0.752    

CI3 0.694    

CE 0.705 0.757 0.760 0.518 

CE1 0.651    

CE2 0.840    

CE3 0.651    

CDA 0.842 0.904 0.907 0.766 

CDA1 0.874    

CDA2 0.824    

CDA3 0.924    

CT 0.885 0.895 0.899 0.749 

CT1 0.931    

CT2 0.836    

CT3 0.826    

Model Fit: χ2/df = 1.677, GFI = 0.826, AGFI = 0.755, TLI = 0.904, CFI = 0.922,  

RMSEA = 0.093 (p-close = 0.008), SRMR = 0.0914 

 

Source: Own work. 

3.7.3.7 First-Order One Factor Alternative Model 

One factor alternative CFA model (Figure 10) has poor model fit: χ2/df = 3.534, GFI = 0.626, 

AGFI = 0.502, TLI = 0.640, CFI = 0.691, RMSEA = 0.179 (p-close < 0.001), SRMR = 

0.1239. Consequently, we prefer the abridged second-order five-factor model to the 

alternative first-order one-factor model. 

Figure 10: First-Order One Factor Alternative Model – CFA 

 

 

Source: Own work. 

Some items' standardized factor loading was below 0.50, and AVE was below 0.50. These 

indicate poor convergent validity (Hair Jr et al., 2017). Reliability is adequate, internal 

consistency reliability (Cronbach, 1951) is higher than 0.70, and the index of construct 

reliability is higher than 0.70 (MacKenzie et al., 2011). 
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Table 31: Factor Loadings, Cronbach's Alpha, CR, AVE 

Construct/ 

Indicators 

Standardized 

Factor Loadings 

Cronbach 

Alpha 

CR AVE 

AI  0.917 0.914 0.430 

DACQ1 0.675    

DACQ2 0.639    

DACQ3 0.647    

CI1 0.424    

CI2 0.400    

CI3 0.459    

CE1 0.396    

CE2 0.624    

CE3 0.488    

CDA1 0.766    

CDA2 0.806    

CDA3 0.824    

CT1 0.827    

CT2 0.843    

CT3 0.727    

Model Fit: χ2/df = 3.534, GFI = 0.626, AGFI = 0.502, TLI = 0.640, CFI = 0.691,  

RMSEA = 0.179 (p-close < 0.001), SRMR = 0.1239 

 

Source: Own work. 

3.8 Validation 

Validation was performed on the data collected in the main study. The collected and 

processed sample consists of 448 EU organizations. A summary of the characteristics of the 

sample is presented in Table 60. 

3.8.1 Confirmatory Factor Analysis 

The results show that the final CFA model (Figure 11) has a good model fit: χ2/df = 2.753, 

GFI = 0.937, AGFI = 0.909, TLI = 0.948, CFI = 0.959, RMSEA = 0.063 (p-close = 0.016), 

and SRMR = 0.0465. We identified additional significant measurement error covariances 

between items CE2-3 and CT2-3. According to Bollen and Lennox (1991), correlated errors 

are possible among items using similar wordings or appearing near each other on the 

questionnaire. Therefore, we correlated the error terms. 
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Figure 11: Final Second-Order CFA 

  

 

Source: Own work. 

All items' standardized factor loading was above 0.60, and AVE was above 0.530 (Table 

32). These indicate good convergent validity (Hair Jr et al., 2017). Internal consistency 

reliability (Cronbach, 1951) is higher than 0.70, and the index of construct reliability is 

higher than 0.7 (MacKenzie et al., 2011). 

Table 32: Final Second-Order Model Factor Loadings, Cronbach's Alpha, CR, AVE 

Construct/ 

Indicators 

Standardized 

Factor Loadings 

Cronbach 

Alpha 

CR AVE 

AI   0.891 0.625 

DACQ 0.759 0.783 0.791 0.559 

DACQ1 0.703    

DACQ2 0.816    

DACQ3 0.720    

CI 0.595 0.854 0.865 0.686 

CI1 0.882    

CI2 0.911    

CI3 0.670    

CE 0.850 0.704 0.770 0.531 

CE1 0.662    

CE2 0.851    

CE3 0.657    

CDA 0.848 0.864 0.866 0.683 

CDA1 0.805    

CDA2 0.817    

CDA3 0.856    

CT 0.869 0.806 0.836 0.631 

CT1 0.846    

CT2 0.825    

CT3 0.704    

Model Fit: χ2/df = 2.753, GFI = 0.937, AGFI = 0.909, TLI = 0.948, CFI = 0.959,  

RMSEA = 0.063 (p-close = 0.016), and SRMR = 0.0465 

 

Source: Own work. 

3.8.2 Validity, Reliability and Measurement Model Fit 

We assessed the discriminant validity of the construct by testing whether the focal construct 

is less than perfectly correlated with conceptually similar constructs. Results are presented 

in Section 6.4.2. 
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3.8.3 Nomological Validity 

Nomological validity was analyzed through SEM between AI and other constructs 

hypothesized to be in its nomological network (Figure 12). 

Figure 12: The Results of the Test of Nomological Validity 

 
 

Source: Own work. 

The 90% CI values were scrutinized to assess significance (Hair Jr et al., 2017). The results 

provide support for nomological validity. AI is significantly and positively related to CBPA, 

OL, BPII, BPIR, DMP, BPP, and OP (Table 33). 

Table 33: Nomological Validity Analysis 

Path β [90% CI] 

AI → CBPA 0.856 [0.798, 0.901] 

AI → BPIR 0.644 [0.552, 0.725] 

AI → BPII 0.639 [0.563, 0.712] 

AI → OL 0.650 [0.568, 0.733] 

AI → DMP 0.702 [0.618, 0.782] 

AI → BPP 0.652 [0.563, 0.745] 

AI → OP 0.618 [0.522, 0.712] 

 

Source: Own work. 

4 COGNITIVE BUSINESS PROCESS AUTOMATION 

Process automation is recognized as a cornerstone of AI adoption and can produce business 

value (Davenport & Ronanki, 2018; Hull & Motahari-Nezhad, 2016; van der Aalst, Becker, 

et al., 2018; Wamba-Taguimdje et al., 2020b; Zasada, 2019). While automation is often used 

to speed up information flow and provide decision support (Frohm, 2008), automation 

systems lack many human cognitive skills that are now made possible by AI technologies. 

We argue that taking advantage of the cognitive capabilities of AI (to sense, comprehend, 

act, and learn), as presented by Bawack and Wamba (2019), can enable a higher level of 

cognitive automation and broader deployment. 

We conduct a literature review to investigate whether there is a suitable existing model or 

measurement instrument and thus define a new measurement instrument to measure CBPA. 
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4.1 Theoretical Foundations 

CBPA is a promising approach to integrating BPM into cognitive computing technologies. 

The theoretical foundations of CBPA from AI and management science provide the basis 

for a comprehensive understanding of the concept. 

4.1.1 Automation 

The automation concept was defined by D.S. Harder in 1936 while working for the General 

Motors Corporation and is understood as “the transfer of work parts between the machines 

in production efficiency, are now part of the process, without human operation.” (Hitomi, 

1994, p. 122). Three studies are key to understanding the concept. 

1. Diebold (1955) defines automation as “automatic operation or a process of automatically 

making tangible goods,” arguing automation has two meanings: 1) automatic regulation 

by feedback and 2) integration of several machines. 

2. Bright (1958) presents the stages in the development of mechanization and automation. 

3. Drucker (2011) recognizes automation as a conceptual system that extends beyond 

technology. 

 

“Automation” can be considered the abbreviation of “automatization” or “automatic 

operation.” The word is a combination of the Greek “automotos” (self-moving) and Latin 

the Latin “ion” (a state). “Mechanization” is the replacement of human physical labor with 

machines; however, the machine’s operations are controlled by human operators. 

“Automation” replaces the control actions of machines; that is, it is the replacement of 

human physical and mental activities by machines (Hitomi, 1994). We thus rephrase and 

define automation as the optimization of a process with reduced human involvement. Hitomi 

(1994) suggests three types of automation that follow this understanding: 

1. mechanical manufacturing – automatic flow-type production in manufacturing 

industries; 

2. process automation for process and chemical industries – automatic control of 

continuous production in process industries; and 

3. business automation – increase in business efficiency by computers. 

 

Mechanical and process automation are concerned with immediate production processes that 

convert raw materials into products (the flow of materials) and business automation is 

concerned with managing and controlling productive activities (the flow of information). 

The integration of both flows produces enterprise automation (Hitomi, 1994; Parasuraman 

et al., 2000; Zero, 2020). 
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4.1.2 Business Process Automation 

This research is concerned with the automation of information flow and control, specifically 

the automation of business processes in the context of BPM. BPM involves any combination 

of modeling, automation, execution, control, measurement, and optimization of business 

activity flows in support of enterprise goals. It covers systems, employees, customers, and 

partners within and beyond the enterprise boundaries (Romao, Costa, Costa, & Ieee, 2019). 

It is not a domain or method-specific field but continuously enables novel applications 

through technological innovation. New technologies provide automation and carry both 

informational and transformational qualities (van der Aalst, Becker, et al., 2018). This 

construct is concerned with the effects of automation. 

An aspect of BPM that involves automating a business process is business process 

automation, also known as business automation, which is the automation of complex 

business processes, usually through advanced technologies. It is employed to support 

knowledge workers (Romao et al., 2019) and often concerns event-driven, mission-critical, 

core processes. Business automation is pursued to improve the efficiency of business 

processes (in terms of their cost, required resources, and investment) by automating the 

management of relevant information and data, the time spent by team members, and the 

process execution logic (Chakraborti et al., 2020). Tasks in a business process are often 

either manual and performed by human participants or are system-supported and executed 

by software systems (Sindhgatta et al., 2020a). 

4.1.3 Knowledge Intensive Processes 

Sometimes referred to as decision-intensive processes, knowledge-intensive processes or 

“KiPs” help users perform decision-intensive tasks and provide users with guidance relevant 

to the process execution context (Vaculín et al., 2011). Various authors defined 

characteristics: unpredictable, non-repeatable, highly flexible, unstructured, complex, data, 

and knowledge-intensive (Di Ciccio et al., 2015; Gronau & Weber, 2004; Harmon & Trends, 

2010; Marjanovic & Freeze, 2011; Santoro & Baião, 2017). Vaculín et al. (2011, p. 151) 

provide a precise and comprehensive definition that captures the key characteristics from a 

process management perspective: “KiPs are processes whose conduct and execution are 

heavily dependent on knowledge workers performing various interconnected knowledge-

intensive decision-making tasks. KiPs are genuinely knowledge, information, and data-

centric and require substantial flexibility in design and run-time”. 

4.1.4 Augmenting Automation With Decision-Making Capabilities 

Business process automation is a set of business process improvements and tools that help 

the knowledge worker eliminate repetitive, replicable, and routine tasks (Suri et al., 2019) 

through the creation and execution of a process model during runtime. These process models 
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do not necessarily provide the flexibility required to cope with changing operational 

conditions; process designs may only be optimal under certain operating conditions (Kress 

& Seese, 2010). Therefore, conventional levers of rule-based automation are augmented 

(made greater by adding to or increasing) with decision-making capabilities enabled by 

machine learning and other AI technologies. 

Figure 13: The Automation Continuum 

 

 

Source: Adapted from Lacity and Willcocks (2016); Richardson (2020); Willcocks, Hindle, and 

Lacity (2018) 

We distinguish two approaches to the automation of decision-making in business processes 

(see Section 2.7.1). IPA is a broad concept encompassing rule- and inference-based decision-

making; cognitive automation is at the higher end of the automation spectrum or continuum 

(Figure 13). Gartner calls this hyper-automation (Burke et al., 2019, p. 12) “a process in 

which businesses automate as many business and IT processes as possible using tools like 

AI, machine learning, event-driven software, robotic process automation, and other types of 

the decision process and task automation tools.” The greatest benefits of the process 

automation these technologies allow are the optimization of internal business operations, the 

freeing of employees for value-adding tasks, expansion (market/product), and the reduction 

of workforce size (Naga Lakshmi et al., 2019; Richardson, 2020). 

4.1.5 Automation Continuum 

The IPA automation continuum (Figure 13) includes technologies that differ in the role 

played by data, processing, and outcomes, from robotic processes to cognitive automation. 
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Both ends of the continuum use AI to take intelligent actions (Richardson, 2020), which 

involves choosing between two or more actions and having the ability to decide what to do 

instead of performing an automatic and fixed stimulus-response reflex. RPA uses rules-

based logic to determine what action should be taken, and, in cognitive automation, rules-

based logic is replaced with probabilities developed through reinforcement learning. 

4.1.5.1 Robotics Process Automation 

RPA is based on software and algorithms that automate rules-based business processes 

involving routine tasks, structured data, and deterministic, single-correct-answer outcomes.. 

(Aguirre & Rodriguez, 2017; Ivančić, Suša Vugec, & Bosilj Vukšić, 2019; Zhang, 2019). It 

is used to support processes in the middle of the frequency spectrum (between repetitive and 

ad hoc transactional processes) with a high transaction volume and does so by having agents 

(software robots) interact with the different information systems as if they were humans (van 

der Aalst, Becker, et al., 2018). 

4.1.5.2 Cognitive/Smart/Intelligent Robotics Process Automation 

Cognitive/smart/intelligent RPA is expected to produce (and execute) more refined process 

models (Siderska, 2020) by combining robotics process automation with constructed AI, 

including machine learning, Big Data, and data mining. An extension of RPA, it can 

automate rule- and inference-based tasks and process structured and unstructured data with 

deterministic results. Less complex and context-based repetitive work can be automated 

using RPA (Angermann & Hänisch, 2020). Various studies argue that RPA is just one step 

toward more intelligent and cognitive automation (Hofmann, Brunner, & Holschbach, 2020; 

Hull & Motahari-Nezhad, 2016; van der Aalst, Bichler, & Heinzl, 2018). 

4.1.5.3 Cognitive Business Process Automation 

Cognitive automation is the identification, assessment, and application of available ML 

algorithms to leverage domain knowledge and reasoning and further automate ML in a 

manner considered “cognitive.” With cognitive automation, the system performs corrective 

actions driven by knowledge of the underlying analytics tool, iterating its automation 

approaches and algorithms for more extensive analysis and thereby fulfilling its purpose. 

The automation of the cognitive process refines itself. It dynamically generates novel 

hypotheses to assess its existing corpus and other information resources ("IEEE Guide for 

Terms and Concepts in Intelligent Process Automation," 2017). It automates inference-based 

tasks, integrates knowledge from various structured and unstructured data sources, interacts 

with users by natural language or visualization, and generates nondeterministic results (a set 

of likely answers). 
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The literature fails to explore the concept more deeply and concisely. There is thus a need to 

develop and operationalize CBPA and measure the impact of cognitive technologies on 

business process optimization through automation. A detailed conceptual analysis of CBPA 

is presented in the next section; the concept, its attributes, dimensions, and properties are 

identified based on an exploration of the theories of BPM, business process automation, and 

AI. 

4.2 Development of the Concept 

Similar to AI adoption, described in Chapter 3, the definition was developed following the 

relevant guidelines in the literature (MacKenzie et al., 2011; Podsakoff et al., 2016). The 

CBPA definition is developed in three stages: 

1. collection of possible attributes of CBPA by examining and assembling a set of 

definitions from the literature and semi-structured interviews; 

2. compilation of key attributes and generating a preliminary definition; and 

3. refinement of the definition. 

4.2.1 Literature Identification 

Following Okoli (2015), we conduct a literature review to identify existing definitions and 

answer several questions: what defines cognitive process automation, how does cognitive 

automation affect business processes, and how should CBPA be measured? Figure 14 depicts 

the literature review procedure and parameters. We identify 77 sources that define the 

concept of cognitive process automation, its dimensions, and attributes. 
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Figure 14: Systematic Literature Review Procedure 

 
 

Source: Own work. 

We find no constructs measuring CBPA as a dependent variable related to changes in 

organizational automation using AI or cognitive technologies. We define a new, more 

focused concept of CBPA and identify its potential attributes following the 

recommendations in Podsakoff et al. (2016) and using several techniques. We generate an 

illustrative set of definitions of CBPA from dictionaries, a literature review, and in-depth 

semi-structured interviews with subject-matter experts and practitioners. First, we extract 

common attributes from the definitions of business process automation in dictionaries and 

existing studies. We present our summary of these definitions in Table 34. 

Table 34: Main Findings From Dictionaries and Prior Studies on CBPA 

Source Conceptualization of Cognitive Business Process Automation Key attributes 

Hull and Motahari 

Nezhad (2016) 

“Advances in Cognitive Computing will enable new ways of learning and 

enacting processes at both design- and run-time. It will open opportunities 
for new levels of automation and business process support for all types of 

processes including KiPs.” 

Learns and enacts knowledge-

intensive processes with 
Cognitive Computing 

"IEEE Guide for 

Terms and Concepts 
in Intelligent Process 

Automation" 2017) 

“The identification, assessment, and application of available machine 

learning algorithms for the purpose of leveraging domain knowledge and 
reasoning to further automate the machine learning already present in a 

manner that may be thought of as cognitive. With cognitive automation, 

the system performs corrective actions driven by knowledge of the 
underlying analytics tool itself, iterates its own automation approaches and 

algorithms for more expansive or more thorough analysis, and is thereby 

able to fulfill its purpose. The automation of the cognitive process refines 

itself and dynamically generates novel hypotheses that it can likewise 

assess against its existing corpus and other information resources.” 

Leverages domain knowledge 

and reasoning to automate; 
Performs corrective actions 

driven by knowledge of the 

underlying analytics tool; 
Refines itself; Dynamically 

generates novel hypotheses 

  To be continued 

 

Databases: Springerlink, Google Scholar, Scopus, 

IEEExplore, and WOS

Search keywords: ("process automation" AND 

("artificial intelligence" OR "machine learning")) OR 

"cognitive process automation" OR "intelligent 

process automation"

In: title, abstract, full text

  2046 potential sources

Judge sources on abstract and title

Include: source that discuss Process or Intelligent or 

Cognitive Automation, published after year 2000

Exclude: non-English sources, not book chapters, not 

peer-reviewed conference proceedings, not journal articles

  152 sources discussing Process, Intelligent, or Cognitive Automation 

Judge sources on full text

Include: sources that provide insight on one of the research 

questions

  77 sources that answer one of the research questions
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Table 34: Main Findings From Dictionaries and Prior Studies on CBPA (cont.) 

Source Conceptualization of Cognitive Business Process Automation Key attributes 

Williams et al. 

(2018) 

“AI can be combined with RPA to enable new and compelling use cases 

and unlock new levels of value in two primary new ways: (1) Extending 

RPA to areas that were previously unfit for automation; (2) Increasing the 
yield of robotics within a currently enabled process.” 

Extends to areas that were 

previously unfit for automation; 

Increases the yield of robotics 
within a currently enabled 

process 

Kokina and 
Blanchette (2019) 

“More sophisticated RPA evolves into cognitive or intelligent automation 
(IA) that is capable of performing non-routine tasks involving judgment 

based on unstructured data.” 

Performs non-routine tasks 
involving judgment based on 

unstructured data 

Naidu and Vedavathi 
(2019) 

“A deterministic task is an activity or a process which will have a sequence 
of well-defined steps between interaction entities. In such cases, one can 

develop software to automate the manual process by using any of one of 

the technology streams like Custom Development or BPM or RPA, etc. 
The critical component missing in these cases is cognitive nature. 

Cognitive nature means a process involves psychological thinking, sensing 

and understating of the knowledge, attitudes, natural behaviors, linguistics, 
etc.,in order to produce an output or a decision while solving a problem.” 

Automating using 
psychological thinking, sensing, 

and understating of the 

knowledge, attitudes, natural 
behaviors, linguistics 

Zhang (2019) “Cognitive computing is a branch of AI that refers to systems that learn at 

scale, reason with purpose and interact with humans naturally. Cognitive 
computing combines computer science with cognitive science to simulate 

human thought processes in a computerized model and aims to augment 

human capabilities by providing relevant information or recommendations 
to help humans make better decisions.” 

Simulation of human thought 

processes to help humans make 
better decisions 

Suri et al. (2019) “Cognitive Automation is defined in the context of a Machine Learning 

automation framework. While the proposed properties are found to be 
critical to such a system, one could arguably relax some of these or expand 

the notion to include additional desirables. An algorithmic framework will 

be called cognitive if it has the following properties: (1) It integrates 
knowledge from (a) various structured or unstructured sources, (b) past 

experience, and (c) current state, in order to reason with this knowledge as 

well as to adapt over time; (2) It interacts with the user (e.g., by natural 
language or visualization) and reasons based on such interactions; and (3) 

It can generate novel hypotheses and capabilities, and test their 

effectiveness.” 

Automation with Machine 

Learning; Integrates knowledge 
from various structured or 

unstructured sources; Uses past 

experience and current state to 
reason with this knowledge as 

well as to adapt over time; 

Interacts with the user (e.g., by 
natural language or 

visualization) and reasons based 

on such interactions; Generates 
novel hypotheses and 

capabilities, and tests their 

effectiveness 

Etscheid (2019) “Due to the digitization of the public sector processes, the use of modern 
technologies and automation mechanisms is indispensable. Thus, the 

possibilities of using disruptive technologies and their possible effects 

must be investigated. The big data collected by sensors can be 
automatically processed and analyzed using the AI and ML technologies 

to provide real-time decisions. Such system may offer significant 

advantages over “manual” regulation and improve the quality of life in 
cities, yet it poses a number of challenges concerning transparency and 

accountability.” 

Using Big Data, AI and 
Machine Learning technologies 

for automated decision-making 

Chakraborti et al. 
(2020) 

“The convergence of AI, automation and customer data has now seen the 
emergence of a new class of tools, known as intelligent process 

automation. Beyond automating simple repetitive tasks, IPA achieves 

more complex automation by using AI to minimize human-dependent 

training and automating more complex tasks that entail decision making.” 

Ability to automate complex 
tasks that entail decision making 

Rizk et al. (2020) “Business process automation takes a step beyond RPAs to automate 

decision making in business processes. Marella et al. identified the field of 
automated planning as an enabler to more sophisticated business process 

automation. Machine learning is another enabler; deep learning models, 

long short-term memory recurrent neural networks specifically, have also 
been trained to model business processes, a crucial component for more 

advanced automation. Machine learning algorithms like support vector 

machines, shallow neural networks and random forests have been adopt in 
process mining applications.” 

Automates decision-making 

using automated planning, and 
Machine Learning 

Kerpedzhiev et al. 

(2020) 

“Systematic exploitation of automation technologies (e.g., robotic process 

automation, cognitive automation, social robotics, and smart devices) to 
assist human process participants in unstructured tasks and complex 

decisions or to fully automate such tasks and decisions.” 

Assists human process 

participants in unstructured 
tasks and complex decisions; 

Fully automates tasks and 

decisions 

  To be continued 
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Table 34: Main Findings From Dictionaries and Prior Studies on CBPA (cont.) 

Source Conceptualization of Cognitive Business Process Automation Key attributes 

Siderska (2020) “The concept of cognitive automation, combining AI with the automation 

of business processes. Therefore, the combination of RPA with artificial 

intelligence (mainly including machine learning techniques), big data, and 
the data mining concept are foreseen to generate and execute refined 

process models. This is referred to as smart process automation, which is 

a possible extension of RPA.” 

Uses AI for automation of 

business processes; Ability to 

generate and execute refined 
process models 

Marciniak et al. 

(2020) 

“The most recent advancement of automation solutions uses cognitive 

systems or artificial intelligence (AI) technologies. They refer to the use 

of technologies like machine learning (ML) or deep learning (DL), natural 
language processing (NLP), text analytics and sentiment analytics, or/and 

computer vision to perform tasks requiring human intelligence. Cognitive 

systems exceed digitisation, digitalisation and automation in their ability 
to learn from past decisions and outcomes as well as in continuous self-

improvement ability. They can make human-like intelligent decisions. The 

level of automation that deploys cognitive systems is called cognitive or 
intelligent automation. It is able to automate non-standard processes using 

unstructured databases based on artificial intelligence. Cognitive 

automation uses continuous learning and development with the help of 
scenarios and data to handle increasingly complex processes and make 

decisions.” 

Use of cognitive systems or 

artificial intelligence (AI) 

technologies; Ability to learn 
from past decisions and 

outcomes; Ability of continuous 

self-improvement; Can make 
human-like intelligent 

decisions; Automates non-

standard processes using 
unstructured databases based on 

artificial intelligence; Handles 

increasingly complex processes 
and decisions 

Richardson (2020) “Cognitive process automation is capable of performing a variety of tasks 
that were previously considered the sole domain of human knowledge 

workers, processes that require some amount of judgement and decision-

making with uncertainty that can produce highly variable outcomes. As an 
AI increasingly moves towards knowledge-activities, the potential for 

errors and the need to handle exceptions grows.” 

Automates knowledge-
intensive tasks; Automates 

judgment and decision-making 

with an uncertainty that can 
produce highly variable 

outcomes 

Keding (2021) “In the context of strategic management, two main literature streams 
capture the concept of AI and provide different scopes. While early 

publications (1979–2005) understood AI as the underlying technology of 

rule-based expert systems to support and improve strategic decision-
making in a top-down approach, more recent articles about AI in strategic 

management (2015–2019) find their technological foundation in ML 

algorithms that recognize patterns in datasets with the help of statistical 
inferences and possess the potential capability to act autonomously in the 

area of cognitive tasks and process automation.” 

Possesses the potential 
capability to act autonomously 

in the area of cognitive tasks and 

process automation 

Ng et al. (2021b) “The integration of RPA and AI, namely intelligent automation (IA), can 
further expand technological capabilities, technological readiness and 

process automation potential in different engineering and business 

applications. The cognitive decision-making power of IA can overcome 
the challenges of RPA implementation in handling unstructured data, 

computer vision, natural language processing, fuzzy rule-based decision, 

decision analytics, real-time decision and content-aware computing and 
supervise the performance of rules-based RPA. Augmented intelligent 

process automation. In contrast to IPA, AIPA achieves the next level of 

cognitive decision quality to enable a holistic approach to automating 
business workflow and digital processes. The AIPA system must be 

equipped with decision engines with deductive analytics with quick 

judgement, and the cognitive level of AIPA is close to human intelligence. 
Learning from human decisions is also one key feature of AIPA engines.” 

Using the cognitive decision-
making power of IA in handling 

unstructured data and decision-

making. A holistic approach to 
automating business workflow 

and digital processes and 

learning from human decisions. 

 

Source: Own work. 

Table 34 sets out the sources, definitions, and the key attributes inferred from those. We 

include all definitions of automation using AI technology, including intelligent automation 

and cognitive/smart/intelligent RPA. As reported in Table 34, the academic literature does 

not accurately define the concept of CBPA. The existing definitions are not based on a 

detailed conceptualization or a set of attributes. 

As CBPA brings AI or cognitive technologies to process automation (Marciniak et al., 2020; 

Siderska, 2020; Williams et al., 2018), we also examine the underlying definitions of process 

automation. We present the summary of definitions in Table 35. 
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Table 35: Main Findings From Dictionaries and Prior Studies on Process Automation 

Source Conceptualization of Process Automation Key attributes 

"IEEE Guide for 

Terms and Concepts 

in Intelligent Process 
Automation" 2017) 

“Independent machine-managed choreography of the operation of one or 

more digital systems.” 

Machine-managed 

choreography of operations. 

Etscheid (2019) “The term automation originates from the industrial context. Automated 

systems are systems that have the technical ability to work independently. 
On a simple level, these can be everyday things such as vending machines 

for drinks or tickets. According to the definition, automation is the transfer 

of functions from humans to artificial systems.” 

Technical ability to work 

independently; The transfer of 
functions from humans to 

artificial systems. 

Romao et al. (2019) “Business process automation (BPA) is defined as the automation of 

complex business processes and functions beyond conventional data 

manipulation and record-keeping activities, usually through the use of 
advanced technologies. It focuses on “run the business” as opposed to 

“count the business” types of automation efforts and often deals with 

event-driven, missioncritical, core processes. BPA usually supports an 
enterprise’s knowledge workers in satisfying the needs of its many 

constituencies.” 

Automates complex business 

processes; Supports knowledge 

workers. 

Chakraborti et al. 
(2020) 

“Business Process Automation seeks to improve the efficiency of business 
processes in terms of cost, resources and investment through automating 

the management of relevant information and data, the time spent by team 

members, and the execution logic.” 

Improves the efficiency of 
business processes; Manages 

relevant information and data; 

Manages execution logic; 
Manages team members' time. 

Sindhgatta et al. 

(2020a) 

“Business process automation provides the ability to coordinate tasks and 

distribute them to resources (humans or software systems) according to 
certain logical or temporal dependencies.” 

Ability to coordinate tasks and 

distribute them to resources; 
Enforces logical dependencies; 

Enforces temporal 

dependencies. 

Marciniak et al. 
(2020) 

“Automation (or automatization) refers to the use of machines and 
computers to do work that was previously done by people. In many cases, 

automation results in a complete replacement of human presence; in other 

cases, it is only a reduction in human involvement. However, automation 

always requires human labour (as physical and software robots are 

designed, built, set up, maintained, repaired, etc. by individuals). Although 

automation existed before digitisation (it could be entirely mechanical as 
well), in general, the digitisation of activity is not a prerequisite for 

automation, but today a new wave of automation is realized primarily with 

the help of physical and software robots where digitisation is also required 
in all cases. Automation can affect an activity, but it can be extended to an 

entire process, so it can even replace organizational units or organizations 

as well. Automation aims to optimise the operation and reduce costs.” 

The use of machines and 
computers for a reduction in 

human involvement; Aims to 

optimize the operation and 

reduce costs. 

Richardson (2020) “The automation of data processing across multiple systems may sound 

similar to the more established concept of business process automation. 

However, the key difference is that BPA involves software development 
to integrate back-end systems.” 

Data processing across multiple 

systems; Involves software 

development 

Siderska (2020) “The main objectives for business process automation are increasing the 

efficiency and revenue as well as reducing the overhead.” 

Increases efficiency; Reduces 

overhead. 

 

Source: Own work. 

The definitions of process automation set out in Table 35 – the technical ability to work 

independently, machine-managed choreography of operations, reducing human 

involvement, supporting knowledge workers, and optimizing tasks – are similar to the 

definitions for general process and cognitive process automation. The results suggest that 

these features are attributes of CBPA. 

We supplement these findings by extracting additional definitions and attributes from 

interviews with experts, conducted according to established guidelines (MacKenzie et al., 

2011; Podsakoff et al., 2016). The organizations and experts were selected because they 

work with AI or on AI-related projects and are divided into three categories: 

a.) service providers that implement automation and AI solutions, 
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b.) vendors that develop automation solutions that include AI capabilities, 

c.) end-users of automation solutions enabled by AI or Cognitive Services. 

 

Regarding criterion sampling, the interviewees all had extensive experience with analytics, 

AI, and automation and had been involved in the deployment of automation. During the in-

depth semi-structured interviews, we discussed the broader scope of AI as enabling 

automation and their implementation and deployment experiences. Table 36 summarizes the 

key results. 

Table 36: Main Findings From Expert Interviews 

# Organization Expert Findings 

1 Bank; Financial 

Services; 5,900 

employees; End-user 

Chief Data Officer They are dealing with automation in the scope of the Lean initiative and 

improving business processes by creating more value with fewer 

resources. They are automating processes where decisions are not 
deterministic, i.e., Credit Scoring. 

2 Insurance company; 

Financial Services; 
5,200 employees; 

End-user 

Head of the team 

responsible for 
developing Data 

Warehousing, Business 

Intelligence, and AI 
solutions. 

They consider AI a key enabler for process automation and optimization. 

They don't have specific automation strategies or formalized initiatives in 
the BPM domain for Business Process Automation. They consider 

automation a part of optimization efforts. Automation as a core 

orientation when developing new processes is not likely in the short term. 
It is hard to change processes because of the many involved stakeholders. 

They identified several opportunities for using rules-based RPA and are 

integrating Chatbots for customer support. 

3 Bank; Financial 

services; 1,010 

employees; End-user 

Head of Analytics 

Department 

Potential areas for AI automation are the prevention of money laundering, 

risk management, and credit scoring. They don't notice any problems 

with automation or AI replacing manual tasks. Change management is 

usual in the organization. They want to do more real-time (data stream) 

analysis. Most of the automation was done in CRM, with decision trees 

automatically preparing the next-best offers for a specific customer. The 
system gets feedback from the sales department and recalculates the 

models, so the models are self-adopting. They also use a scoring model 

for website behavior to generate leads. 

4 Multinational 

technology company: 

hardware, 
middleware, and 

software; Software; 

345,900 employees; 
Vendor 

Technical Consultant/IT 

architect 

A common aspect of AI adoption is automation. The goal is to reduce 

costs; the highest cost is usually people. Currently, automation projects 

target mostly routine tasks. Resistance to implementation is primarily due 
to concerns about job loss. This makes it challenging to automate 

knowledge-intensive processes. Many deployments are aimed at partial 

automation: decision support; a human makes the decision. The usual 
concerns are full-automation traceability, explainability of automated 

decisions, bias handling, and regular model validations to ensure 

compliance. 

5 Service provider; 

Software; 15 

employees; Service 
provider 

Digital Solution 

Designer 

They mainly observe automation in the context of process bottleneck 

optimization. Most projects are based on RPA or RPA technology in 

conjunction with Cognitive Services. Automating internal processes 
requires much work, high costs, and a willingness to redesign processes. 

They mainly focus on implementing pre-built software solutions, 

especially in marketing, specifically CRM, e.g., conversational interfaces. 
He sees the current state of automation at the decision support level, 

where decision-making is still in the human domain. 

6 Public security; 
Government; 279 

employees; End-user 

Head of Analytics 
Department 

Automated data collection to improve prediction and anomaly detection 
in the formation and movement of criminal organizations. Similarly, 

automate allocating and placing limited human resources to efficiently 

cover a larger geographical area for better road safety coverage. 
However, the amount and quality of data and legal restrictions related to 

personal data protection remain significant barriers to automation 

projects. 

7 Computer and 

Information Science; 

Educational Services; 
182 employees; 

Vendor 

Head of Visual 

Cognitive Systems 

Laboratory 

Previously, we were able to automate routine, rule-based work. Now, we 

can automate data-intensive tasks, mostly involving pattern recognition. 

Tasks where people make data-based decisions can now be fully or 
partially automated. The expert emphasizes the importance of human 

intuition and a cognitive approach to understanding the problem. AI can 

be a great tool, but complex solutions still require a human decision. 
There are significantly more automation opportunities in the industry. 

   To be continued 
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Table 36: Main Findings From Expert Interviews (cont.) 

# Organization Expert Findings 

8 AI Software Vendor; 

Manufacturing; 10 

employees; Vendor 

Managing Director They approach automation with the intention of achieving full automation 

or decision support. Manufacturing companies can collect large amounts 

of processing data using sensors and sensor arrays, allowing automation 
based on machine learning, especially for anomaly detection. Above all, 

these technologies enable better resource allocation and process 

optimization. The optimization result is usually a reduction in the 
required human resources and a significant simplification of the process. 

Changes are also observed in robotics. Previously, the robot had to be 

programmed and usually had one job; now, with machine learning, the 
robot can learn independently. The robot can thus move between jobs and 

adapt its work to the needs, which has a significant impact from an 

economic point of view; e.g., the robot works at one job in the morning 
and another in the afternoon. In terms of automation, manufacturing 

companies have a more significant advantage because they have been 

involved in automation for a long time. Processes are actively managed, 
and automation is an integral part of them. They understand and accept 

automation solutions. A significant factor is also industry benchmarking 

and market pressure to stay competitive. The key to cognitive automation 
implementation is the vast amounts of collected data on the process's 

operation. 

9 Energy company; 
Energy Services; 4508 

employees 

Director Business 
Intelligence 

Automation is carried out mainly in marketing and CRM, where the 
results are quickly visible, especially personalized offers. They see great 

potential in optimizing energy consumption and other resources, where 

consumption optimization can be carried out fully automated, e.g., water 
consumption and heating. They are introducing trading automation, but at 

the stage of partial automation, as there is not enough trust in machine 

learning technology. Given the value of the transaction, they estimate that 
full automation poses too much risk. They point out that this barrier 

makes it possible to achieve a higher degree of automation in engineering 

as trust in technology is elevated. In the business world, it is not. Here, 
they see automation primarily as decision support or automated decision-

making with human confirmation. 

 

Source: Own work. 

All experts describe automation as the result of efforts to optimize processes. All agree that 

AI facilitates the automation of non-deterministic decisions and data-intensive tasks. Expert 

7 emphasizes computer vision for object recognition. Experts 3, 8, and 9 emphasize 

personalization at scale, anomaly detection in manufacturing, and automated trading and 

energy consumption regulation, respectively. In financial services, full automation efforts 

include marketing, specifically customer relationship management, credit scoring, and 

customer support with conversational interfaces. Most other automation projects are at the 

level of decision support or selection. For Expert 4, a lack of codified knowledge or process 

design to develop and train models is the reason for automating knowledge-intensive 

processes. 

Expert 6 sees potential for automation, prediction, anomaly detection, and resource planning 

but emphasizes the importance of data quality and legal restrictions concerning personal data 

protection and data exchange between government agencies. Expert 8 describes the higher 

levels of automation in manufacturing, noting that sensors can gather large amounts of data 

in process execution and automate more complex processes with higher accuracy. Expert 8 

emphasizes robotics opportunities when AI-enhanced robots can learn a task by themselves 

and can be easily repurposed and, more often, increase efficiency. Expert 9 compares 

engineering and business tasks, stating that as trust in technology increases, engineering has 

higher automation potential. Automation of critical business tasks can be at the level of 
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decision support, selection, or supervision and is lower where there is greater risk or higher 

value transactions. Experts 7 and 9 emphasize the importance of intuition in decision-making 

and its lack of cognitive automation in decision-making. 

4.2.2 Compilation of the Key Attributes and Preliminary Definition 

Following Sonenshein, DeCelles, and Dutton (2014), we organize the extracted attributes 

into five related themes and then aggregate these into three dimensions, as indicated in Table 

37: automation, cognitive technologies, and automation scope. 

Table 37: Organizing Attributes Into Common Themes 

Attributes First-Order Categories Second-Order Themes 

Independent machine-managed choreography of operations; 

Reducing human involvement; 

Autonomy  

  Automation 
Increases the yield of robotics; Improves efficiency; Reduces the cost Optimization  

Automating using simulation of human thought processes; Can make 

human-like intelligent decisions; Continuous self-improvement; 

Learn from past decisions and outcomes; Leverages domain 
knowledge and reasoning to automate; Natural interaction with the 

user 

Cognitive capabilities Cognitive technologies 

Extends to areas that were previously unfit for automation; Handles 
increasingly complex processes and decisions 

Complexity  

  Automation scope 

Integrates knowledge from various structured or unstructured sources; 

Learns and enacts knowledge-intensive processes; Supports 

knowledge workers 

Knowledge-intensity  

 

Source: Own work. 

4.2.3 Refinement of the Definition 

Given that CBPA falls within the domain of process automation, we analyze the construct 

in terms of family resemblance, distinguishing it from other constructs in related areas. The 

purpose is to generate underlying conceptual attributes, identify the key attributes for each 

construct, and then identify the shared attributes. We can thus generate a list of attributes 

unique to CBPA and those shared with other constructs in the related area. 

Table 38: Main Findings From Prior Studies on Robotic Process Automation 

Source Conceptualization of Process Automation Key attributes 

"IEEE Guide for Terms and 
Concepts in Intelligent Process 

Automation" 2017), Suri et al. 

(2019), Eikebrokk and Olsen 
(2020) 

A preconfigured software instance that uses business rules and 
predefined activity choreography to complete the autonomous 

execution of a combination of processes, activities, transactions, 

and tasks in one or more unrelated software systems to deliver a 
result or service with human exception management. See also: 

activity, choreography, business rule, process, service, task, 

transaction. 

Uses business rules and 
predefined activity 

choreography to automate; 

Includes human exception 
management. 

Hull and Motahari-Nezhad 

(2016) 

 

Basic Process Automation which focuses on the automation of 

manual tasks through “screen scraping” and application of rules 

engines on structured data.  

Automation of manual tasks; 

Uses screen scraping and 

application of rules engines 

on structured data. 

  To be continued 
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Table 38: Main Findings From Prior Studies on Robotic Process Automation (cont.) 

Source Conceptualization of Process Automation Key attributes 

Aguirre and Rodriguez (2017) 

 

RPA emerges as software-based solution to automate rules-based 

business processes that involve routine tasks, structured data and 

deterministic outcomes. 

Automates rules-based 

business processes; Routine 

tasks, structured data and 
deterministic outcomes. 

van der Aalst, Becker, et al. 

(2018) 

RPA aims to support the middle part of the frequency spectrum 

(between repetitive and ad hoc) by having agents that interact with 
the different information systems as if they were humans. 

Support the middle part of 

the frequency spectrum 
(between repetitive and ad 

hoc) 

Chalmers (2018) 
 

RPA is a fascinating concept, in which a computer program is 
“taught” by a human worker to perform a repetitive software-

based task. Conventional RPA systems might use screenshots, 

optical character recognition, and input device monitoring to 
record and reproduce a simple sequence of actions as they are 

performed by a human worker during their normal workflow.  

Automation of repetitive 
software-based tasks. 

Ivančić et al. (2019) 
 

According to the findings of the preliminary literature overview, 
RPA is defined as the application of specific technology and 

methodologies which is based on software and algorithms aiming 

to automate repetitive human tasks. 

Automation of repetitive 
human tasks. 

Kirchmer and Franz (2019) 
 

RPA is the best fit for repetitive transactional processes with a high 
transaction volume. 

Automation of repetitive 
transactional processes with 

a high transaction volume. 

Kokina and Blanchette (2019) 
 

Tasks that are labour-intensive, repetitive, high volume, rules-
based, and in digital form using multiple systems and structured 

data are strong candidates for automation with RPA. Furthermore, 

tasks that require little human interaction to make decisions or 
tasks that do not require judgment throughout the process tend to 

be easier to automate.  

Automation of labour-
intensive, repetitive, high 

volume, rules-based, digital 

form using multiple systems 
and structured data tasks. 

Maalla (2019) 
 

RPA adopts human-computer interaction layer automation 
technology without affecting the existing IT structure of 

enterprises or organizations. 

Human-computer 
interaction layer automation 

technology. 

Herm et al. (2020) 

 

RPA is a disruptive technology to automate already digital yet 

manual tasks and subprocesses as well as whole business 

processes. In contrast to other process automation technologies, 

RPA only accesses the presentation layer of IT systems and 
imitates human behaviour. 

Accesses the presentation 

layer of IT systems and 

imitates human behaviour. 

Marciniak et al. (2020) 

 

RPA, automation is performed by a bot that mimics human 

workers using software such as ERP systems and can already work 
with semi-structured databases as well. Its operation is not limited 

to a specific IT application but is able to bridge several different 

software environments and databases, thereby integrating many 
fragmented steps of a whole business process. The process 

becomes robotic as the software bot performs the task through the 

user interfaces of IT systems like a human by mimicking the 
human activity step-by-step, but much faster and more accurately. 

Uses bots that mimic human 

workers; Integrates 
fragmented steps of a whole 

business process. 

Martínez-Rojas, Barba, and 

Enríquez (2020) 
 

The term RPA refers to a software paradigm where robots are 

programs which mimic the behavior of human workers interacting 
with information systems (ISs), i.e. sets of components that 

perform actions that solve a particular RPA task. 

Uses bots that mimic human 

workers; Interacts with 
information systems. 

 

Geyer-Klingeberg, Nakladal, 

Baldauf, and Veit (2018) 

RPA is a fast-emerging process automation approach that uses 

software robots to replicate human tasks. 

Uses software robots to 

replicate human tasks. 

Aguirre and Rodriguez (2017) RPA is an automation technology based on software tools that 

could imitate human behavior for repetitive and non-value added 

tasks such as tipping, coping, pasting, extracting, merging and 
moving data from one system to another. 

Software tools that imitate 

human behaviour; 

Automates repetitive and 
non-value added tasks; 

Merging and moving data 

from one system to another. 

Slaby (2012) RPA is the technological imitation of a human worker with the 

goal of automating structured tasks in a fast and cost efficient 

manner. 

Imitation of a human 

worker; Automating 

structured tasks; Fast and 
cost-efficient automation. 

Santos, Pereira, and 

Vasconcelos (2019) 

RPA is only suited for processes that are rule-based, because it is 

executed by a robot that lacks cognitive skills, needing rules in 
order to successfully execute its tasks. If the process contains a lot 

of exceptions, it must be handed to workers, increasing process 

complexity, as robot and human must be synchronized in order 
execute the tasks sequentially without any mistakes. 

Automates rule-based 

processes; Lacks cognitive 
skills; Exceptions are 

handed to workers. 

Quinn and Strauss (2017) Software robots mimic human actions and automate those 

repetitive tasks via existing user interfaces 

It uses software robots that 

mimic human actions; 
Automates repetitive tasks 

via existing user interfaces. 

  To be continued 
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Table 38: Main Findings From Prior Studies on Robotic Process Automation (cont.) 

Source Conceptualization of Process Automation Key attributes 

Lacity and Willcocks (2016) The tools and platforms that deal with structured data, rules-based 

processes, and deterministic outcome 

Automates structured data 

and rules-based processes 

with a deterministic 
outcome. 

Wellmann, Stierle, Dunzer, and 

Matzner (2020) 
 

RPA incorporates different tools and methodologies aiming to 

automate repetitive and structured service tasks that were 
previously performed by humans. 

Automates repetitive and 

structured service tasks. 

Richardson (2020) 

 

RPA focuses on information work and utilises classical AI. Key 

characteristics of an RPA include being highly rule-based, 
standardised and transactional. 

Automates rule-based, 

standardized, and 
transactional tasks. 

Wanner et al. (2020) 

 

RPA builds upon a set of tools that operate virtual robots on the 

user interface of PAIS in a human manner. 

Operates virtual robots on 

the user interface. 

Willcocks (2020) 
 

RPA uses software to automate tasks previously performed by 
humans that use rules to process structured data to produce 

deterministic outcomes. It automates the repetitive, largely 

physical, clerical tasks typical of much office work. 

Automates tasks that use 
rules to process structured 

data to produce deterministic 

outcomes; Automates the 
repetitive, primarily 

physical, clerical tasks 

typical of much office work. 

Note. Definitions for evolved RPA types like Cognitive/Smart/Intelligent RPA are omitted because they are included in the definitions 

of CBPA. 

 

Source: Own work. 

The literature on business process automation classifies general process and RPA as a form 

of IPA. We can thus compare CBPA and differentiate it from these concepts. We examine 

the literature on BPA, process automation, and RPA to combine the key attributes of these. 

We collect definitions and key attributes of each listed concept from the literature. The 

results are presented in Table 39. 

Following the guidelines of Podsakoff et al. (2016), we describe and then compare the 

attributes of CBPA (Table 34) and the attributes of process, business process (Table 35), and 

robotic process (Table 38) automation in an attribute matrix. The results are presented in 

Table 39. 

Table 39: Concepts Shared and Unique Attributes 

Attributes CBPA/CA 

Process 

Automation/ 

BPA 

Cognitive/ 

Smart/ 

Intelligent 

RPA 

RPA 

Automates human-computer interaction layer   ✓ ✓ 

Automates repetitive transactional processes with a high 

transaction volume 

  ✓ ✓ 

Automates rules-based tasks   ✓ ✓ 

Automating using simulation of human thought processes ✓    

Can make human-like intelligent decisions ✓    

Continuous self-improvement ✓    

Deterministic outcomes   ✓ ✓ 

Extends to areas that were previously unfit for automation ✓  ✓  

Handles increasingly complex processes and decisions ✓    

Human exception management   ✓ ✓ 

Improving efficiency ✓ ✓ ✓ ✓ 

Increases the yield of robotics ✓    

Independent machine-managed choreography of operations ✓ ✓ ✓ ✓ 

Integrates different information systems  ✓ ✓ ✓ 

Integrates knowledge from structured sources ✓ ✓ ✓ ✓ 

Integrates knowledge from various structured or unstructured 

sources 

✓  ✓  

   To be continued 
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Table 39: Concepts Shared and Unique Attributes (cont.) 

Attributes CBPA/CA 

Process 

Automation/ 

BPA 

Cognitive/ 

Smart/ 

Intelligent 

RPA 

RPA 

Involves software development ✓ ✓   

Learn from past decisions and outcomes ✓    

Learns and enacts knowledge-intensive processes ✓    

Leverages domain knowledge and reasoning to automate ✓    

Natural interaction with the user ✓  ✓  

Reducing cost ✓ ✓ ✓ ✓ 

Reducing human involvement ✓ ✓ ✓ ✓ 

Supports knowledge workers  ✓ ✓   

It uses bots that mimic human workers   ✓ ✓ 

 

Source: Own work. 

Table 39 illustrates that variants of RPA share attributes related to the ability to process rule-

based tasks using structured data sources. They use software robots to automate the human–

computer interaction and the results are deterministic. 

Cognitive automation and advanced RPA variants also integrate knowledge from 

unstructured data sources, use natural interaction with the user (e.g., conversational 

interfaces), and extend the scope of automation to tasks previously unfit for automation. 

Cognitive and process automation support knowledge workers and involve software 

development. The concepts all have automation properties and are concerned with 

implementing independent machine-managed choreography of operations, reducing human 

involvement to improve efficiency and cost. These are central attributes and are incorporated 

in the definition of CBPA. 

Table 40 summarizes these findings (based on Table 39). 

Table 40: Summary of Shared Attributes Between Concepts 

Concepts Shared attributes 

Cognitive/Smart/Intelligent RPA, RPA Automates human-computer interaction layer; Automates repetitive transactional 
processes with a high transaction volume; Automates rules-based tasks; Deterministic 

outcomes; Human exception management; Uses bots that mimic human workers. 

CBPA/CA, Cognitive/Smart/Intelligent RPA Extends to areas previously unfit for automation; Integrates knowledge from various 
structured or unstructured sources; Natural interaction with the user. 

CBPA/CA, Process Automation/BPA, 

Cognitive/Smart/Intelligent, RPA 

Independent machine-managed choreography of operations; Improving efficiency; 

Integrates knowledge from structured sources; Reducing cost; Reducing human 
involvement. 

Process Automation/BPA, 

Cognitive/Smart/Intelligent, RPA 

Integrates different information systems. 

CBPA/CA, Process Automation/BPA Involves software development; Supports knowledge workers. 

 

Source: Own work. 

During the final stage of the conceptual analysis, we consult subject-matter experts and peers 

to test the definition and solicit feedback. Next, we present the resulting definition. 



115 

4.2.4 Developed definition of the CBPA concept 

We develop a definition of CBPA following the suggestions on conceptual development in 

the literature (MacKenzie et al., 2011; Podsakoff et al., 2016). According to MacKenzie et 

al. (2011), the definition of a construct must incorporate the “property” characterizing the 

concept and the “entity” to which that property relates. We define the property “Cognitive 

Business Process Automation” as the organization’s ability to develop to automate 

knowledge-intensive (unpredictable, non-repeatable, highly flexible, and complex) business 

processes using cognitive technologies. The general property type is intrinsic characteristics 

and applies to the entity of an organization (Table 41).  

Conceptual definition of focal construct: “The automation of knowledge-intensive 

business processes using cognitive technologies.” 

Table 41: Factors of Construct Conceptualization 

Nature of construct's conceptual 

domain 

Entity = organization; General property = The organization's ability to automate knowledge-

intensive (unpredictable, non-repeatable, highly flexible, and complex) business processes using 

cognitive technologies. 

Common attributes Independent machine-managed choreography of operations (Chakraborti et al., 2020; Etscheid, 
2019; "IEEE Guide for Terms and Concepts in Intelligent Process Automation," 2017; Kerpedzhiev 

et al., 2020; Ng et al., 2021b; Sindhgatta et al., 2020a) 

Reducing human involvement (Etscheid, 2019; Marciniak et al., 2020) 

Increases the yield of robotics (Williams et al., 2018) 

Improving efficiency (Chakraborti et al., 2020; Siderska, 2020) 

Reducing cost (Hofmann et al., 2020) 

Can make human-like intelligent decisions (Etscheid, 2019; "IEEE Guide for Terms and Concepts 

in Intelligent Process Automation," 2017; Keding, 2021; Marciniak et al., 2020; Naidu & 
Vedavathi, 2019; Richardson, 2020; Rizk et al., 2020; Siderska, 2020; Suri et al., 2019; Zhang, 

2019) 

Unique attributes/characteristics Learn from past decisions and outcomes ("IEEE Guide for Terms and Concepts in Intelligent 

Process Automation," 2017; Marciniak et al., 2020; Ng et al., 2021b; Suri et al., 2019) 

Natural interaction with the user (Suri et al., 2019) 

Extends to areas that were previously unfit for automation (Williams et al., 2018) 

Handles increasingly complex processes and decisions (Marciniak et al., 2020; Richardson, 2020; 

Romao et al., 2019; Siderska, 2020) 

Integrates knowledge from various structured or unstructured sources (Marciniak et al., 2020; Suri 

et al., 2019) 

Learns and enacts knowledge-intensive processes (Chakraborti et al., 2020; Hull & Motahari-

Nezhad, 2016; Kokina & Blanchette, 2019) 

Supports knowledge workers (Kerpedzhiev et al., 2020; Romao et al., 2019) 

Breadth/inclusiveness  Includes all business processes in an organization (Di Ciccio et al., 2015) 

Dimensionality Unidimensional 

Stability Stable across cases 

Indicators Reflective 

Model Principal factor (reflective model; Jarvis et al., 2003); first-order construct 

 

Source: Own work. 

As shown through the conceptualization process, CBPA is an extension of the conventional 

automation concept using AI technology, specifically with the subset of cognitive 

technologies. These enable the automation of unpredictable, non-repeatable, highly flexible, 

complex, knowledge and data-intensive tasks and processes. Cognitive automation systems 

replace human decision-making and learn from past decisions and outcomes to adapt to 

changing business contexts. They become context-aware and can refine themselves. There 

is an increase in the level by which human involvement in tasks decreases, limited mainly 
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by trust, bias, and risk issues with the technology itself. Next, we propose a set of items to 

measure the level and scope of cognitive automation. 

4.3 Development of the Measure 

The next step was to generate items that fully represent the conceptual domain. We 

developed items from literature reviews, the theoretical definition of the construct, previous 

academic research, interviews with experts, and examination of other measures of the 

construct that already exist (MacKenzie et al., 2011). 

4.3.1 Generated Items 

The interviews and literature review yielded 25 question items concerning Cognitive 

Business Process Automation. We combined them based on similarities and statements made 

in the interviews to produce 14 distinct items (Table 42). 

Table 42: Items Generated to Measure CBPA 

Items Source(s) 

My company incorporates AI or Cognitive technologies and methods to automate 

business processes. 

van der Aalst, Becker, et al. (2018) 

It is difficult to automate processes in my company. Interviews 

Our organization continuously implements business process automation using AI or 
Cognitive technologies. 

Interviews 

Our organization has automated many business processes using AI or Cognitive 

technologies over the past three years. 

Interviews 

What is the relative level of process automation enabled by cognitive technologies in your firm? 

Manual: the automation agent offers no assistance. Sindhgatta et al. (2020a); Vagia et al. 

(2016) Decision Support: the automation agent cannot perform the action but can provide support 

to the human. 

Decision Selection: the automation agent selects and executes one decision with human 
approval. 

Supervisory Control: The automation agent carries out the action; the human may 

intervene if required. 

Full automation: The automation agent carries out the action autonomously. 

What is the extent of automation enabled by cognitive technologies in your firm? 

Structured (static) business processes are automated.  
Highly predictable routine work with low flexibility, process logic is known in advance and definable. 

Di Ciccio et al. (2015); Szelagowski and 

Lupeikiene (2020) 
Structured with ad hoc exceptions, business processes are automated.  
The occurrence of external events and exceptions can make the structure of the process less rigid. 

Unstructured with predefined fragment business processes are automated.  
Flow can be strictly determined only for fragments that refer to explicit, prescriptive procedures. 

Loosely structured business processes are automated.  
A set of possible activities may be known and predefined, but their execution ordering is not entirely foreseeable. 

Unstructured business processes are automated.  
It is not possible to define the flow before execution. 

 

Source: Own work. 

4.3.2 Content Validity Assessment of the Items 

Next, we assessed the content adequacy of items, the degree to which created items represent 

the target, and the aspect of the construct (Beck & Gable, 2001). Content validity is based 

on the judgment of experts regarding the content relevancy of the test domains and the 

representation of items to their domains (MacKenzie et al., 2011). This study evaluated the 
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items based on their relevance and representativeness. The same procedure as in Section 

3.5.2 was used. 

Table 43: Acceptable Measure Values for Content Validity 

Median Item Ambiguity Agreement 

Percentage 

Content Validity 

Index 

Content Validity 

Ratio 

Content Validity 

Coefficient 

2.75+ 1, 2 and 3 80% 75% 0,99 0.88 

 

Source: Own work. 

We applied descriptive and quantitative approaches to determine the content validity of the 

items. Out of six, any item that satisfies less than four methods was deleted, and any item 

that meets more than three methods was retained. Table 43 presents the acceptable values 

for six methods in this study. The results of the analysis are shown in Table 44. Items 1 and 

2 were removed due to having low values for Median, CVI, and VIk. Item 1 had a value that 

was too high for Item Ambiguity. Eventually, the final list comprised 12 items and was used 

for data collection and performing EFA. 

Table 44: Results of the Content Validity Analysis 

# Items Median IA AP 

(%) 

CVI 

(%) 

CVR VIk Action 

1 My company incorporates AI or Cognitive 

technologies and methods to automate 

business processes. 

1.50 4.00 100.00 25.00 1.00 0.50 Exclude 

2 It is difficult to automate processes in my 
company. 

1.50 2.00 100.00 0.00 1.00 0.38 Exclude 

3 Our organization continuously implements 

business process automation using AI or 
Cognitive technologies. 

4.00 3.00 100.00 75.00 1.00 0.88  

4 Our organization has automated many 

business processes using AI or Cognitive 

technologies over the past three years. 

4.00 3.00 100.00 75.00 1.00 0.88  

 What is the relative level of process automation enabled by cognitive technologies in your organization? 

5 Manual: the automation agent offers no 

assistance. 

4.00 2.00 100.00 100.00 1.00 0.94  

6 Decision Support: the automation agent 
cannot perform the action but can provide 

support to the human. 

4.00 2.00 100.00 0.00 1.00 0.94  

7 Decision Selection: the automation agent 

selects one decision and executes it with 
human approval. 

4.00 1.00 100.00 100.00 1.00 1.00  

8 Supervisory Control: The automation agent 

carries out the action; the human may 
intervene if required. 

4.00 2.00 100.00 100.00 1.00 0.94  

9 Full automation: The automation agent 

carries out the action autonomously. 

4.00 2.00 100.00 100.00 1.00 0.94  

 What is the extent of automation enabled by cognitive technologies in your organization? 

10 Structured (static) business processes are 

automated. 

4.00 2.00 100.00 100.00 1.00 0.94  

11 Structured with ad hoc exceptions, business 

processes are automated. 

4.00 2.00 100.00 100.00 1.00 0.94  

12 Unstructured with predefined fragment 

business processes are automated. 

4.00 2.00 100.00 100.00 0.50 0.94  

13 Loosely structured business processes are 

automated. 

4.00 2.00 100.00 100.00 1.00 0.94  

14 Unstructured business processes are 

automated. 

4.00 2.00 100.00 100.00 1.00 0.94  

 

Source: Own work. 
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4.4 Formal Measurement Model Specification 

The reflective indicator measurement model (Figure 15) captures the expected relationships 

between the generated indicators (Table 51) and the focal construct they are intended to 

represent.  

Figure 15: CBPA – Latent Construct Measurement Model 

 
 

Source: Own work. 

4.5 Scale Purification and Refinement 

Similar to Section 3.7, we analyzed the data in three steps. In step 1, we performed a 

preliminary analysis of the scale by EFA. Step 2 consisted of further validating the factor 

structure using CFA. For CFA, we used IBM SPSS AMOS version 28. The sample used in 

the pilot study is described in Section 3.7.1. 

4.5.1 Exploratory Factor Analysis 

EFA, using the maximum likelihood method with Promax rotation, was used for analyzing 

the factor structure and correlation between items included in the scale.  

A weighted average, otherwise known as a weighted mean, was used for Level and Extent 

items representing different values relative to each other. A higher Level or Extent has higher 

values. Weights (values) are presented in Table 51. 
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Table 45: Pattern Matrix for 2-Factor Solution 

Item 

Factor 

1 2 

CBPA1  0.982 

CBPA2  0.942 

LEVEL2w 0.148 0.375 

LEVEL3 w 0.441 0.335 

LEVEL4 w 0.473 0.199 

LEVEL5 w 0.452  

EXTENT1 w 0.280 0.531 

EXTENT2 w 0.321 0.499 

EXTENT3 w 0.773 0.188 

EXTENT4 w 0.881  

EXTENT5 w 0.983 -0.141 

Note. w = Weighted value 

 

Source: Own work. 

All extracted communalities are at or above 0.35, except item Level 1. The diagonals of the 

anti-image correlation matrix were all over 0.50, except for item Level 1. Therefore, item 

Level 1 was removed because of the wording concerning Levels 2 – 5, where Level 1 

measures the state of no intelligent agent support. 2 factors were extracted. However, there 

is a high level of cross-loadings (Table 45), and the Factor Correlation Matrix shows a high 

correlation between factors > 0,70 (Table 46). Therefore, we accepted a 1-factor solution. 

Table 46: Factor Correlation Matrix for 2-Factor Solution 

Factor 1 2 

1 1.000 0,714 

2 0,714 1.000 

 

Source: Own work. 

The results of the abridged 1-factor matrix are provided in the following tables. 

Table 47: KMO and Bartlett's Test 

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.827 

Bartlett's Test of Sphericity Approx. Chi-Square 715.573 

df 55 

Sig. < 0.001 

 

Source: Own work. 

According to Table 47, the KMO value is above 0.50, indicating that sampling adequacy is 

met. The Bartlett test of sphericity is statistically significant (p < 0.05), so it shows that our 

correlation matrix is statistically different from an identity matrix as desired (Table 47). 

Extracted communalities are presented in Table 48 and are above 0.40. Exceptions are Level 

2 and Level 5, which have low communalities, 0.249 and 0.219. We did not remove them as 

they are part of the Level Weighted Average Scale. 
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Table 48: Extracted Communalities 

 

Communalities 

Initial Extraction 

CBPA1 0.828 0.582 

CBPA2 0.797 0.540 

LEVEL2w 0.444 0.249 

LEVEL3w 0.644 0.550 

LEVEL4w 0.703 0.424 

LEVEL5w 0.564 0.219 

EXTENT1w 0.754 0.576 

EXTENT2w 0.748 0.591 

EXTENT3w 0.820 0.808 

EXTENT4w 0.849 0.790 

EXTENT5w 0.791 0.641 

Note. w = Weighted value 

 

Source: Own work. 

The diagonals of the anti-image correlation matrix were all over 0.5 (Table 49). 
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Table 49: Anti-Image Correlation 

 CBPA1 CBPA2 LEVEL 

2w 

LEVEL 

3w 

LEVEL 

4w 

LEVEL 

5w 

EXTENT 

1w 

EXTENT 

2w 

EXTENT 

3w 

EXTENT 

4w 

EXTENT 

5w 

CBPA1 0.756 -0.762 -0.084 0.067 -0.301 0.301 0.039 -0.042 -0.144 -0.362 0.398 

CBPA2 -0.762 0.768 0.087 -0.185 0.228 -0.216 -0.130 -0.042 -0.031 0.339 -0.333 

LEVEL1w -0.084 0.087 0.849 -0.275 -0.274 0.084 -0.209 0.157 -0.148 0.007 0.205 

LEVEL2w 0.067 -0.185 -0.275 0.934 -0.155 -0.193 -0.183 0.113 -0.115 -0.031 -0.047 

LEVEL3w -0.301 0.228 -0.274 -0.155 0.789 -0.575 0.019 -0.152 0.219 0.073 -0.357 

LEVEL4w 0.301 -0.216 0.084 -0.193 -0.575 0.743 0.126 -0.048 -0.135 -0.043 0.141 

EXTENT1w 0.039 -0.130 -0.209 -0.183 0.019 0.126 0.850 -0.659 0.132 -0.176 0.026 

EXTENT2w -0.042 -0.042 0.157 0.113 -0.152 -0.048 -0.659 0.856 -0.233 -0.021 0.108 

EXTENT3w -0.144 -0.031 -0.148 -0.115 0.219 -0.135 0.132 -0.233 0.898 -0.414 -0.296 

EXTENT4w -0.362 0.339 0.007 -0.031 0.073 -0.043 -0.176 -0.021 -0.414 0.841 -0.531 

EXTENT5w 0.398 -0.333 0.205 -0.047 -0.357 0.141 0.026 0.108 -0.296 -0.531 0.791 

Note. w = Weighted value 

 

Source: Own work. 
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The results of the exploratory factor analysis presented in Table 50 show that the solution is 

based on 1 factor, as expected. The one-factor solution explains 54.291% of the total 

variance with Cronbach's Alpha measure for reliability 0.815. 

Table 50: 1-Factor Matrix 

 1-Factor 

CBPA1 0.763 

CBPA2 0.735 

LEVEL1w 0.499 

LEVEL2 w 0.742 

LEVEL3 w 0.651 

LEVEL4 w 0.468 

EXTENT1 w 0.759 

EXTENT2 w 0.769 

EXTENT3 w 0.899 

EXTENT4 w 0.889 

EXTENT5 w 0.801 

Note. w = Weighted value 

 

Source: Own work. 

The results of the EFA show that our factor has a good level of validity. 

Table 51: Generated Indicators 

Factor Indicators Scale 

Cognitive 

Automation 

Utilization 

CBPA1 

 

Our organization continuously implements business process 

automation using AI or Cognitive technologies. 

5-point Likert Scale; 

Scored as 1 - Strongly 
Disagree, 2 – Disagree, 3 – 

Neutral., 4 – Agree, 5 - 

Strongly Agree 

CBPA2 During the past three years, our organization has automated many 
business processes using AI or Cognitive technologies. 

5-point Likert Scale; 
Scored as 1 - Strongly 

Disagree, 2 – Disagree, 3 – 

Neutral., 4 – Agree, 5 - 
Strongly Agree 

Level of 

automation 

What is the relative level of process automation enabled by cognitive technologies in your organization? 

LEVEL  Level of automation (Weighted Average) Calculate Weighted 

Average = LEVEL1 * 0.10 
+ LEVEL2 * 0.2 + 

LEVEL3 * 0.3 + LEVEL4 

* 0.4 

LEVEL1 Manual: the automation agent offers no assistance. 5-point Likert Scale; 

Scored as 1 - Strongly 

Disagree, 2 – Disagree, 3 – 
Neutral., 4 – Agree, 5 - 

Strongly Agree 

LEVEL2 Decision Support: the automation agent cannot perform the action but 

can provide support to the human. 

LEVEL3 Decision Selection: the automation agent selects one decision and 
executes it with human approval. 

LEVEL4 Supervisory Control: The automation agent carries out the action; the 

human may intervene if required. 

LEVEL5 Full automation: The automation agent carries out the action 
autonomously. 

   To be continued 
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Table 51: Generated Indicators (cont.) 

Factor Indicators Scale 

Extent of 

Automation 

What is the extent of automation enabled by cognitive technologies in your organization? 

EXTENT Extent of automation (Weighted Average) Calculate Weighted 

Average = EXTENT1 * 

0.05 + EXTENT2 * 0.15 + 
EXTENT3 * 0.20 + 

EXTENT4 * 0.25 + 

EXTENT5 * 0.35 

EXTENT1 Structured (static) business processes are automated. 5-point Likert Scale; 

Scored as 1 - Strongly 

Disagree, 2 – Disagree, 3 – 
Neutral., 4 – Agree, 5 - 

Strongly Agree 

EXTENT2 Structured with ad hoc exceptions, business processes are automated. 

EXTENT3 Unstructured with predefined fragment business processes is 

automated. 

EXTENT4 Loosely structured business processes are automated. 

EXTENT5 Unstructured business processes are automated. 

 

Source: Own work. 

For further validation, we will discuss the CFA results in the following section. 

4.5.2 Confirmatory Factor Analysis 

We assessed the model for reliability and convergent validity. The graphical representation 

of the CFA initial model and the final calculated model is followed by results in Table 52. 

4.5.2.1 Initial CFA 

The results show that the initial CFA model (Figure 16) had a poor model fit: χ2/df = 5.402, 

GFI = 0.658, AGFI = 0.487, TLI = 0.656, CFI = 0.725, RMSEA = 0.236 (p-close = 0.000), 

and SRMR = 0.0966 (for the description of Fit Indices, refer to Table 74 or Table 83). 

Figure 16: Initial CFA 

 
 

Source: Own work. 
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4.5.2.2 Eliminating Problematic Indicators 

We examined the possibility of removing indicators. Similar to Section 3.7.3.2, we follow 

the recommendations of MacKenzie et al. (2011). 

All loadings are significant and more or near 0.50. Based on Modification indices indicating 

the change in the Chi-square of model fit, we identified large and significant measurement 

error covariances between items CBPA1 and CBPA2. As they are very close in wording, we 

decided to remove CBPA2, as Landis, Edwards, and Cortina (2009) recommended. Also, 

significant measurement error covariances exist between items LEVEL2-3, LEVEL4-5, 

EXTENT1-2, and EXTENT4-5. According to Bollen and Lennox (1991), correlated errors 

are possible among items using similar wordings or appearing near each other on the 

questionnaire. The items LEVEL and EXTENT are related and part of a progressive scale. 

Also, they are meant to be parcelled using Weighted Averages. Therefore, we correlated the 

error terms. 

4.5.2.3 Abridged CFA 

The results show that the abridged CFA model (Figure 17) has a good model fit: χ2/df = 

2.306, GFI = 0.853, AGFI = 0.739, TLI = 0.900, CFI = 0.931, RMSEA = 0.129 (p-close = 

0.001), and SRMR = 0.0737. The elevated value of the RMSEA measure is due to the small 

sample size (Kenny et al., 2015). Consequently, we prefer the abridged model to the initially 

proposed measurement model. 

Figure 17: Abridged CFA 

 
 

Source: Own work. 
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4.5.2.4 Assessing Reliability of the Set of Indicators at the Construct Level 

All items' standardized factor loading was above 0.40, and AVE was above 0.50. These 

indicate good convergent validity (Hair Jr et al., 2017). Internal consistency reliability 

(Cronbach, 1951) is higher than 0,70, and the index of construct reliability is higher than 0,7 

(MacKenzie et al., 2011). Results are presented in Table 52. 

Table 52: Abridged Model Loadings, Cronbach's alpha, CR, AVE 

Construct/ Indicators Standardized Factor 

Loadings 

Cronbach Alpha CR AVE 

CBPA  0.782 0.911 0.519 

CBPA1 0.730    

LEVEL1w 0.465    

LEVEL2w 0.708    

LEVEL3w 0.612    

LEVEL4w 0.432    

EXTENT1w 0.710    

EXTENT2w 0.729    

EXTENT3w 0.927    

EXTENT4w 0.911    

EXTENT5w 0.806    

Model Fit: χ2/df = 2.306, GFI = 0.853, AGFI = 0.739, TLI = 0.900, CFI = 0.931,  

RMSEA = 0.129 (p-close = 0.001), and SRMR = 0.0737 

 

Source: Own work. 

4.6 Validation 

Validation was performed on the data collected in the main study. The collected and 

processed sample consists of 448 EU organizations. A summary of the characteristics of the 

sample is presented in Table 60. 

4.6.1 Confirmatory Factor Analysis 

The results show that the abridged CFA model (Figure 18) has a good model fit: χ2/df = 

2.175, GFI = 0.977, AGFI = 0.948, TLI = 0.981, CFI = 0.990, RMSEA = 0.051 (p-close = 

0.428), and SRMR = 0.0258. We identified additional significant measurement error 

covariances between items LEVEL2-4, LEVEL2-5, LEVEL3-4, LEVEL3-5, EXTENT2-4, 

EXTENT3-4, and EXTENT3-5. According to Bollen and Lennox (1991), correlated errors 

are possible among items using similar wordings or appearing near each other on the 

questionnaire. The items LEVEL and EXTENT are related and part of a progressive scale. 

Also, they are meant to be parcelled using Weighted Averages. Therefore, we correlated the 

error terms. 
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Figure 18: Final CFA 

 
 

Source: Own work. 

All items' standardized factor loading was above 0.46, and AVE was 0.449 (Table 53). These 

indicate good convergent validity (Hair Jr et al., 2017). Internal consistency reliability 

(Cronbach, 1951) is higher than 0.70, and the index of construct reliability is higher than 

0.70 (MacKenzie et al., 2011). 

Table 53: Final Model Factor Loadings, Cronbach's alpha, CR, AVE 

Construct/ Indicators Standardized Factor 

Loadings 

Cronbach Alpha CR AVE 

CBPA  0.753 0.888 0.449 

CBPA1 0.700    

LEVEL1w 0.469    

LEVEL2w 0.602    

LEVEL3w 0.654    

LEVEL4w 0.592    

EXTENT1w 0.666    

EXTENT2w 0.826    

EXTENT3w 0.799    

EXTENT4w 0.705    

EXTENT5w 0.611    

Model Fit: χ2/df = 2.175, GFI = 0.977, AGFI = 0.948, TLI = 0.981, CFI = 0.990,  

RMSEA = 0.051 (p-close = 0.428), and SRMR = 0.0258 

 

Source: Own work. 

4.6.2 Validity, Reliability and Measurement Model Fit 

We assessed the discriminant validity of the construct by testing whether the focal construct 

is less than perfectly correlated with conceptually similar constructs. Results are presented 

in Section 6.4.2. 
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4.6.3 Nomological Validity 

Nomological validity was analyzed through SEM between CBPA and other constructs 

hypothesized to be in its nomological network (Figure 19). 

Figure 19: The Results of the Test of Nomological Validity 

 
 

Source: Own work. 

The 90% CI values were scrutinized to assess significance (Hair Jr et al., 2017). The results 

provide support for nomological validity. CBPA is significantly and positively related to AI, 

OL, BPII, BPIR, DMP, BPP, and OP (Table 54). 

Table 54: Nomological Validity Analysis 

Path β [90% CI] 

CBPA → AI 0.716 [0.650, 0.780] 

CBPA → BPIR 0.724 [0.653, 0.786] 

CBPA → BPII 0.718 [0.657, 0.773] 

CBPA → OL 0.743 [0.680, 0.796] 

CBPA → DMP 0.799 [0.739, 0.849] 

CBPA → BPP 0.757 [0.686, 0.812] 

CBPA → OP 0.704 [0.623, 0.773] 

 

Source: Own work. 

Artificial Intelligence 

adoption

0.716***

Organizational 

Performance

Cognitive Business 

Process Automation

Business Process 

Performance

Decision-Making 

Performance

Business Process 

Innovation – 

Incremental

Business Process 

Innovation – Radical 

Organizational 

Learning



128 

5 RESEARCH DESIGN AND METHODOLOGY 

5.1 Research Design 

We empirically examine the research problem using a single primary data source, self-

reporting, and a cross-sectional design. The data are collected using an anonymous 

questionnaire survey that is distributed electronically. The unit of analysis is the 

organization. 

5.2 Sampling Strategy 

According to Eurostat (2020), there are 27.9 million active companies in the EU-28. The 

survey sampling frame consists of participants from the population of companies in the EU-

27/28 that use AI in their business processes. In 2020, 7% of enterprises in the EU with at 

least ten employees used AI applications (Eurostat, 2022). We estimate the sample frame to 

be 8% (or 2.2 million) active enterprises. We identify a required sample size of 385 with a 

confidence level of 95% and a margin of error of 5% using proportionate country-stratified 

random sampling. 

Table 55: Proportional Country-Stratified Sampling 

Country Share in % 

Belgium 2.14 

Bulgaria 1.07 

Czechia 3.30 

Denmark 0.72 

Germany 8.38 

Estonia 0.29 

Ireland 0.83 

Greece 2.53 

Spain 9.50 

France 13.05 

Croatia 0.56 

Italy 11.51 

Cyprus 0.19 

Latvia 0.35 

Lithuania 0.68 

Luxembourg 0.11 

Hungary 1.97 

Malta 0.12 

Netherlands 4.04 

Austria 1.29 

Poland 6.33 

Portugal 2.88 

Romania 2.30 

Slovenia 0.46 

Slovakia 1.60 

Finland 0.94 

Sweden 2.43 

Norway 0.91 

Switzerland 1.23 

United Kingdom 7.92 

To be continued 
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Table 55: Proportional Country-Stratified Sampling (cont.) 

Country Share in % 

Serbia 1.24 

Turkey 9.14 

Total 100.00 

Note. Based on the number of active companies (Eurostat, 2020)  

 

Source: Own work. 

5.3 Operational Definition of Variables 

We measure the adoption of AI using a five-point Likert scale ranging from 1 (“never”) to 

5 (“always”). The main constructs and moderators – CBPA, BPI, OL, DMP, BPP, OP DDC, 

BPMM, and Environmental Uncertainty – are measured on a five-point scale ranging from 

1 (“strongly disagree”) to 5 (“strongly agree”). DM (digital maturity) is measured on a five-

point scale as follows: 1 (“absence of digital initiatives”), 2 (“planned”), 3 (“just started”), 4 

(“under development”) and 5 (“developed and ongoing”). We measure OC (organizational 

culture) by asking participants to rate their organizational culture by dividing 100 points over 

four alternatives corresponding to the four culture types. 

5.3.1 Main Constructs 

Next, we present the operational definitions of our main research constructs. Specifically, 

we provide clear definitions of the independent and dependent variables, and mediators. 

5.3.1.1 AI Adoption 

Conceptual definition: The implementation, deployment, and use of AI resources (data, AI 

infrastructure, skills, capabilities) in business processes. 

We conceptualize and operationalize the concept of AI adoption (second-order focal 

construct with reflective sub-dimensions and reflective indicators) with five underlying sub-

constructs: data acquisition and processing, cognitive insight, cognitive engagement, 

cognitive decision assistance, and cognitive technologies. Items are generated through the 

literature review, theoretical definitions, interviews with experts, and 1,860 AI-related 

projects from businesses (MacKenzie et al., 2011). The interviews and literature review yield 

28 items representing the key components of AI adoption. After the validation procedure, 

we retain 15 items, three for each sub-construct. 

5.3.1.2 Cognitive Business Process Automation 

Conceptual definition: The automation of knowledge-intensive business processes using 

cognitive technologies. 
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We conceptualize and operationalize CBPA (first-order construct with reflective indicators) 

with items generated from reviews of the literature (Di Ciccio et al., 2015; Sindhgatta et al., 

2020a; Szelagowski & Lupeikiene, 2020; Vagia et al., 2016; van der Aalst, Becker, et al., 

2018), interviews with experts, and existing measures of the construct (MacKenzie et al., 

2011). 

5.3.1.3 Organizational Learning 

Conceptual definition: “The organization’s capability to maintain or improve performance 

through the creation, acquisition, sharing, and utilization of knowledge.” 

Our measure of organizational learning is based on the four items developed by García-

Morales et al. (2012). The unidimensional measure emphasizes an organization’s capability 

to maintain or improve performance and includes a measure of knowledge acquisition, 

sharing, and utilization (DiBella, Nevis, & Gould, 1996). Numerous studies use the scale to 

measure the effect of organizational learning on organizational performance (Birasnav, 

Chaudhary, & Scillitoe, 2019; García-Morales et al., 2012; Kılıç & Uludağ, 2021). The 

measurement scale is only available in English. 

The measurement of the organizational learning construct has high validity. The scale 

development process includes CFA (χ2 = 4.04, RMSEA = 0.05, NFI = 0.99, NNFI = 0.99, 

CFI = 0.99) and reliability testing (Cronbach’s alpha = 0.919). 

5.3.1.4 Business Process Innovation - Incremental 

Conceptual definition: “The organization’s ability to exploit existing processes 

continuously, consistently, gradually, and on a small scale by improving existing 

components and architectures.” 

We adapt the definition and scale from Ng, Rungtusanatham, Zhao, and Lee (2015) to 

measure incremental business process innovation (BPII). The bi-dimensional measure 

emphasizes the duality of process exploitation, which is characterized by refinement, choice, 

efficiency, implementation, and execution (Baum, Li, & Usher, 2000; Benner & Tushman, 

2001; Dixon, Meyer, & Day, 2007), along with the pursuit of first-order learning (March, 

1991). Two subdimensions are “incremental process improvement infrastructure,” which is 

concerned with fostering an atmosphere of improvement, and “incremental process 

improvement tactics,” which are associated with process quality and delivery. The main 

objective of this study is to investigate the influence of AI on business processes, with a 

specific emphasis on the impact of AI on process exploitation, which aligns perfectly with 

our focus. Our scale has been used in studies on business process exploitation, exploration, 

and organizational performance (Helbin, 2019; Vilkas, Stankevice, Duobiene, & Rauleckas, 

2021). 
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The measurement scale is only available in English. The scale development process followed 

the standard recommendations for measurement scale development. The authors reported on 

a check against the content domain, content validity, face validity with subject-matter 

experts, pilot study, convergent validity, reliability, discriminant validity, criterion validity, 

exploratory factor analysis (EFA), and CFA. 

The construct’s measurement has high validity (loadings > 0.55) and reliability (Cronbach’s 

alpha exceeds the suggested value of 0.60; composite reliability greater than 0.72). 

5.3.1.5 Business Process Innovation - Radical 

Conceptual definition: “The organization’s ability to explore new processes by designing 

and implementing radical new processes at a rapid pace and substantial scale, resulting in 

significant and transformative change.” 

We adapt the conceptual definition and the measurement scale from Ng et al. (2015) to 

measure the BPIR construct. The scope captured in the unidimensional measure emphasizes 

activities such as search, variation, risk-taking, experimentation, flexibility, discovery, and 

innovation (Baum et al., 2000; March, 1991). This can lead to second-order learning (March, 

1991) that develops entirely new routines (Dixon et al., 2007). This study examines the 

impact of AI on business processes, particularly in relation to process exploration and the 

potential for significant improvements. As a result, the proposed measure is a suitable fit for 

the study’s objectives. The scale is used in studies on business process exploitation, 

exploration, and organizational performance (Helbin, 2019; Vilkas et al., 2021). The 

measurement scale is only available in English. 

The scale development process follows the standard recommendations for measurement 

scale development reporting on a check against the content domain, content validity, face 

validity with subject-matter experts, pilot study, convergent validity, reliability, discriminant 

validity, criterion validity, EFA and CFA. 

The construct’s measurement has high validity (loadings > 0.55) and reliability (Cronbach’s 

alpha exceeds the suggested value of 0.60; composite reliability greater than 0.72). 

5.3.1.6 Decision-Making Performance 

Conceptual definition: “The efficiency and effectiveness of the decision-making in an 

organization.” 

We measure DMP using six items developed by Aydiner, Tatoglu, Bayraktar, and Zaim 

(2019). They have drawn the construct from previous literature (Gable, Sedera, & Chan, 

2008; Huber, 1990; McLaren, Head, Yuan, & Chan, 2011; Mithas et al., 2011; Tippins & 

Sohi, 2003). The scope captured in the unidimensional measure evaluates the efficiency and 
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effectiveness of the decision-making in an organization. The scale was previously used in 

decision-making and organizational performance studies (Kullenda, 2020; Yoshikuni & 

Dwivedi, 2022; Zelenkov, 2022; Zhang, Zhu, et al., 2021). 

The measurement scale is available only in the English language. 

Measurement of construct DMP has high validity. Aydiner, Tatoglu, Bayraktar, and Zaim 

(2019) report loading > 0.65, reliability (Cronbach’s alpha) 0.85, composite reliability 0.86, 

and AVE > 0.50. 

5.3.1.7 Business Process Performance 

Conceptual definition: “The level of efficiency, quality, and flexibility of business 

processes.” 

We adopt an existing measurement scale as in Bosilj Vukšić, Pejić Bach, Grublješič, Jaklič, 

and Stjepić (2017) and Hernaus (2016) to measure the BPP construct. The scale is based on 

the Devil’s Quadrangle (Dumas et al., 2018), which defines the construct’s dimensions with 

lead indicators of efficiency (time, cost), quality, and flexibility. It was developed utilizing 

items from previous studies about business process orientation (Hernaus, 2012; McCormack 

et al., 2009; Škrinjar et al., 2008; Škrinjar et al., 2010) and Process Performance Index - PPI 

("The Process Performance Index," 2022). We trace the scale development to the original 

study by McCormack McCormack and Johnson (2001). The scale was further refined by 

Škrinjar et al. (2008) and is theoretically based on the balanced scorecard model (Kaplan & 

Norton, 1996). 

All studies utilizing the scale were focused on subjective, qualitative measurement of BPM, 

business process orientation, organizational performance, and process performance in 

organizations, linking BPM and organizational performance (Hernaus, 2012, 2016; Hernaus, 

Škerlavaj, & Dimovski, 2008; Hribar & Mendling, 2014; Kohlbacher, 2010; McCormack et 

al., 2009; McCormack & Johnson, 2001; Miri-Lavassani, 2018; Škrinjar et al., 2008; 

Škrinjar et al., 2010). As this study researches the same broad BPM context as my thesis, 

using the existing refined scale is sensible and justified. The measurement scale is only 

available in English. 

The scale development process follows the standard recommendations for scale 

development reporting on content validity evaluation, pilot studies, sampling and data 

collection, reliability, EFA, and CFA. Construct BPP measurement has high validity 

(loadings higher than 0.8) and reliability (Cronbach’s alpha around 0.9). 
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5.3.1.8 Organizational Performance 

Conceptual definition: “The organization’s operational performance and market 

performance in relation to its competitors, where operational performance refers to 

productivity, profitability, and financial indicators, while market performance refers to 

success in entering new markets and introducing new products or services.” 

We measure organizational performance using an existing measurement scale developed by 

Wang et al. (2012) and adapted from Ravichandran, Lertwongsatien, and Lertwongsatien 

(2005) and Capon, Farley, Lehmann, and Hulbert (1992). This second-order construct 

consists of two first-order reflective constructs: operational performance and market 

performance. The measurement of each first-order construct consists of four items. Each 

item pertains to the extent to which the focal organization exceeds its main competitors in a 

specific area. 

Other studies utilizing the scale are focused on how technology affects organizational 

performance (Bhatti, Santoro, Khan, & Rizzato, 2021; Gupta & George, 2016; Mehandjiev, 

2019; Pinochet, Amorim, Júnior, & de Souza, 2021; Srimarut & Mekhum, 2020; Wamba et 

al., 2017). IT is central to this study, so using the existing scale is sensible and justified. 

Most sampled organizations are predicted to be privately held or state-owned. Our prior 

experience makes gathering unbiased accounting data on an organization’s performance 

challenging. We, therefore, employed arbitrary, self-reported performance measures. 

Research on information systems and strategic management establishes a strong correlation 

between subjective and objective corporate performance metrics (Capon et al., 1992; 

Ravichandran et al., 2005). Additionally, since our sample includes companies from more 

than ten industries, the explicit comparison of the performance of competitors offers a way 

to account for performance variations resulting from industry and strategic group effects 

(Wang et al., 2012). The measurement scale is only available in English. 

Wang et al. (2012) did not report in detail on the scale development process. The authors 

follow Hinkin (1998) scale development process. The face validity of the items is assessed 

by an expert panel of three scholars of information systems, five chief information officers, 

and senior business managers.  

Measurement of the construct has high validity (loadings higher than 0.830). The sub-

dimension of Operational Performance has a Cronbach’s alpha coefficient equal to 0.886, 

composite reliability equal to 0.821, and AVE of 0.537. The Market Performance sub-

dimension has a Cronbach’s alpha coefficient equal to 0.922, composite reliability equal to 

0.929, and AVE of 0.765. The authors also report on the CFA; model fit is adequate: χ2 = 

46.197, df = 19, χ2/df = 2.431, RMSEA = 0.072, NFI = 0.893, CFI = 0.901, TLI = 0.876, 

SRMR = 0.068. 
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5.3.2 Moderators 

This section presents an operational definition of the moderators investigated in this study. 

5.3.2.1 Digital Maturity 

Conceptual definition: “The extent of the learned ability to adapt to ongoing digital changes 

and digital transformation efforts in an appropriate manner.” 

We measure DM using ten items developed by Salviotti et al. (2019). The result is a 

quantitative score expressed by the respondent according to the level of development of 

digital initiatives in the organization. Using a symmetric 5-point Likert scale, each item can 

assume “1” as the lowest value corresponding to the “absence of digital initiatives” in the 

activity performed by the organization. Instead, the highest value, “5,” corresponds to 

“developed and ongoing.” The measure was not often used in the research. However, it was 

only published in 2019. The small number of items was the main reason we used the scale 

to limit the questionnaire length. The measurement scale is only available in English. The 

process of scale development is not reported in detail. EFA and internal reliability are 

reported; Cronbach’s alpha equals 0.826. 

5.3.2.2 Data-Driven Culture 

Conceptual definition: A pattern of behavior and practice by a group of people who share 

a belief that having, understanding, and using certain kinds of data and information plays a 

critical role in the success of their organization. 

We measure whether an organization’s culture is data-driven using five items developed by 

Duan et al. (2020) and based on the existing literature (Davenport, Harris, De Long, & 

Jacobson, 2001; Kiron et al., 2012; Kiron & Shockley, 2011; LaValle et al., 2011). The 

unidimensional measure captures the organizational belief, attitude, and behavior toward 

using insight and information generated from data. The scale is used in studies exploring the 

relationship between a data-driven culture and performance (Almazmomi, Ilmudeen, & 

Qaffas, 2021; Chatterjee, Chaudhuri, et al., 2021; Chaudhuri et al., 2021; Kassies, 2021). 

The measurement scale is available only in English language. The process of scale 

development is not reported in detail. We follow the recommendations in Hair Jr et al. (2017) 

and emphasize high validity. However, data on validity and reliability measures are not 

presented—other research (Almazmomi et al., 2021; Chatterjee, Chaudhuri, et al., 2021) 

utilizing the same scale report high validity and reliability. 
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5.3.2.3 BPM Maturity 

Conceptual definition: “The evaluation of the professionalism of an organization’s 

business processes management.” 

We measure BPM maturity using 15 items developed by Dijkman et al. (2016). They have 

based the construct on the business process maturity model (Weber, Curtis, & Gardiner, 

2008). The measure captures five distinct maturity levels: processes are continuously 

improved (Level 5 – innovating), processes are managed quantitatively to establish 

predictable results (Level 4 – predictable), standardized processes are identified throughout 

the organization (Level 3 - Standardized), management ensures that work within work-units 

can be performed in a repeatable manner (Level 2 – managed), and work is performed in 

inconsistent and ad hoc ways (Level 1 – initial). The measurement scale is only available in 

English. 

The scale development process follows the recommendations of Straub, Boudreau, and 

Gefen (2004). The authors report in detail on a check against the content domain, content 

validity, face validity pilot study, convergent validity, reliability, discriminant validity, 

criterion validity, EFA, and CFA. Measurement of the BPM maturity construct has high 

validity (loadings > 0.77), reliability (Cronbach’s alpha exceeds the suggested value of 0.60; 

composite reliability equal or greater than 0.84), and convergent validity (AVE greater than 

0.57). 

5.3.2.4 Organizational Culture 

Conceptual definition: “The values, beliefs, hidden assumptions, customs, behaviors, and 

artifacts characterize an organization and influence how its members interact with one 

another and external stakeholders.” 

We measure organizational culture using the Organizational Culture Assessment Instrument 

(OCAI), which has been used in over a thousand organizations and effectively predicts 

organizational performance (Cameron & Quinn, 2011). The OCAI consists of six questions 

concerning the following: dominant characteristics, organizational leadership, management 

of employees, organizational glue, strategic emphases, and criteria of success. Each question 

has four alternatives (A=Clan, B=Adhocracy, C=Market, D=Hierarchy). Individuals 

completing the OCAI are asked to divide 100 points among the four alternatives, depending 

on how each alternative is similar to the organization being assessed. Results of the OCAI 

survey are obtained by computing the average response scores for each alternative. We 

examine the resulting cultural dimensions that provide insight into the organization’s 

underlying culture. 

The OCAI is available in 19 different languages. 
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Measurement of the OC construct has high validity. The authors report in detail on reliability 

and convergent and discriminant validity. Numerous researchers have used the instrument 

in studies of many different types of organizations. During their analyses, these studies tested 

the instrument’s reliability and validity (Cameron & Quinn, 2011). 

5.3.3 Control Variables 

Control variables are held constant to eliminate or reduce the influence of alternative 

explanations for the observed relationship between the independent and dependent variables. 

The operational definitions of control variables are presented next. 

5.3.3.1 Firm Age 

Age is measured by the number of years since the organization’s establishment. 

5.3.3.2 Firm Size 

Firm size is measured by the number of employees. 

5.3.3.3 Industry 

We create a variable based on the NACE-R2 1st-level categories (Eurostat, 2008). 

5.3.3.4 Country 

We measure Country variable determined by the organization’s principal place of business 

as the EU-27, including Serbia, Norway, Switzerland, the United Kingdom, and Turkey. 

5.3.3.5 Environmental Uncertainty 

Conceptual definition: “The degree to which a business environment is stable or unstable, 

simple or complex, and concentrated or dispersed.” 

We measure the variable Environmental Uncertainty using eight items proposed by Rowe, 

Besson, and Hemon (2017). The authors develop the construct using the construct in Karimi, 

Somers, and Gupta (2004) which is derived from Miller and Friesen (1983). The construct 

is presented as unidimensional, although it has three components: 1) dynamism (stability vs. 

turbulence), which characterizes the rate of change of innovation in production techniques 

and services as well as in client behavior and needs, 2) heterogeneity (complexity and 

dispersion) of resources and 3) hostility of the environment (Karimi et al., 2004). The scale 

is used in studies examining the relationship between environmental uncertainty and IT 
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(Chang; Liang, Wang, Xue, & Ge, 2017; Zhuang, Zhu, & Sarkis, 2021). The measurement 

scale is only available in English. 

We report convergent validity by assessing factor loadings, internal consistency or CR, and 

AVE. The measurement of the construct has high validity (loadings higher than 0.860). The 

sub-dimension has a Cronbach’s alpha coefficient greater than 0.80, composite reliability 

equal to 0.913, and AVE of 0.827. 

5.4 Instrument 

The survey instrument, a structured online questionnaire, was prepared to measure the 

constructs from the presented model. Based on previous experiences and recommendations 

from Brace (2018), we set and followed the following approach. 

5.4.1 Design 

The key guideline regarding design was one question per page. It has been shown (Van 

Schaik & Ling, 2007) that respondents complete the questionnaire more quickly with a 

single question per page. Next, we avoided horizontal scrolling altogether by using a 

responsive web design. Finally, we only used closed-question styles with strict input 

validation to reduce missing values. The only missing values come when the respondent 

gives up and walks away. To minimize the number of clicks, the selection of options is bound 

to the complete cell area of the matrix. Even if the click of the respondent is not precise, the 

correct option selection is made. This reduces interface user frustrations and increases the 

flow of filling in the questionnaire. 

5.4.2 Accessibility 

The accessibility guidelines (ETSI, 2021; W3C, 2018) we followed ensure the online survey 

is accessible for different user profiles and on various devices (mobile, tablets, PC) and 

optimized for maximum user experience. Dialogues were developed on four core principles 

of accessibility guidelines (W3C, 2018): dialogues must be perceivable, operable, 

understandable, and robust. 

5.4.2.1 Perceivable 

For content to be perceivable, users must be able to perceive that the content exists. We 

achieved this by: 

• clear and descriptive headings, 

• all text is easily resizable, 
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• we used descriptive labels and inline14 instructions, 

• we used simple and consistent (previous-next question) navigation, 

• we provided text alternatives for any non-text content on the page, 

• content is displayed in different ways and different layouts without losing information 

when showing on various devices and 

• when presenting information such as errors while a user fills out a form, we use a 

combination of color and icons so users can easily distinguish the contextual and error 

messages. 

5.4.2.2 Operable 

For a user interface to be operable, users must be able to operate and navigate the site, 

regardless of whether they use a mouse, keyboard, or touchscreen. We accomplished this by 

using: Responsive Design15 and Input Modalities16. 

5.4.2.3 Understandable 

For information to be understandable, users must understand the content on the page and 

how to operate the page. To achieve this, we implemented the following: 

• Call-To-Action17 elements (navigation buttons) with description included, 

• Preserve states between, allowing users to navigate between already filled-in dialogue 

pages, 

• additional explanations for all options of questions, provided in the form of a tooltip18, 

• predictable behavior for all website functions, and 

• input assistance, such as labels on all inputs, appropriate placeholder text, and filter input 

to help users avoid and correct mistakes when filling out forms. 

                                                 
14 Inline content refers to any content within a document or webpage that is formatted to flow within a line of 

text. 
15 Responsive design is a web design approach that enables a website to adapt to the screen size and device 

type of the user. A website designed with responsive design will automatically adjust its layout, content, and 

functionality to provide an optimal viewing experience for users on different devices. 
16 Users should be able to operate inputs with their keyboard on a desktop/laptop as well as with a touch screen 

on a mobile device or tablet. 
17 Call-To-Action elements are graphical or textual prompts that encourage users to take a specific action, such 

as filling out a form. They are designed to be eye-catching and attention-grabbing, using bold colours, 

prominent placement, and persuasive language to persuade users to act. We use Call-To-Action elements in 

the form of navigation buttons, links and popups. 
18 A tooltip is a graphical user interface element that provides additional information about an item when the 

user hovers the cursor over it. 
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5.4.2.4 Robust 

To ensure a website is robust, users must be able to access it on various devices, screen sizes, 

and browsers, including when using assistive technology. We ensure this robustness by 

implementing the following features: 

• adopting the website layout for different devices and screen sizes: mobile, tablets, or 

monitors, 

• cross-browser support, ensuring the website works on all main web browsers (Edge, 

Chrome, Firefox, Safari, and Opera) for at least the two previous versions, 

• validating HTML, CSS, and JavaScript code to ensure the website is free of errors or 

inconsistencies, 

• using secure protocols (automatically redirecting from HTTP to HTTPS URL address) 

to protect user data and ensure a secure connection between the user and the server, 

• implementing error handling and logging mechanisms to detect and diagnose issues on 

the website and 

• implementing caching mechanisms to improve website performance and reduce server 

load. 

5.5 Methodological Assumptions, Limitations, and Delimitations 

The assumptions of the research study, sampling method, and methodology are made before 

the beginning of data collection. The assumptions represent what the researcher expects to 

occur or to be true. Limitations represent constraints that restrict the resolution of the results. 

Delimitations define the scope of the research study and clarify what aspects of the research 

problem will be included or excluded from the study (Simon, 2011). 

5.5.1 Assumptions 

We have considered several assumptions recommended by Verma and Abdel-Salam (2019). 

a.) The assumption was that participants would be willing to respond openly, honestly, and 

accurately to structured questions regarding their experiences with adopting AI 

technology.  

b.) The assumption is that the survey sample is representative of the target population and 

that the results can be generalized to the larger population. 

c.) The assumption is that participants' responses will be kept confidential and that 

individual responses will not be identifiable to anyone outside the research team. 

d.) The assumption is that a sufficient number of participants will respond to the survey to 

obtain meaningful results. 

e.) The assumption is that survey questions are clear and understandable to participants and 

that the meaning of the questions is consistent across participants. 
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f.) The assumption is that survey questions are relevant to the research question and will 

provide meaningful data. 

g.) The assumption is that survey questions are not biased towards any particular response 

and that the survey does not influence the participant's responses. 

h.) The assumption is that the respondents hardly read the instructions in the questionnaire; 

hence, the questions should be framed so that the message can be effectively conveyed 

to the respondents. 

i.) The assumption is that the respondents have prior knowledge of the acronyms and jargon 

used in the survey. 

j.) The assumption is that the respondents will receive the survey's feedback, or at least they 

should be able to see it in the publication. 

k.) The assumption is that there is the least nonresponse error. 

5.5.2 Limitations 

We have considered several limitations that may limit survey results' accuracy, reliability, 

or generalizability. 

a.) Non-response bias can occur when a significant number of survey participants do not 

respond, and the responses of those who do respond may not represent the target 

population. 

b.) Sampling bias can occur when the survey sample is not representative of the target 

population, either because of a sampling method that does not accurately reflect the 

people or because of self-selection bias. 

c.) Social desirability bias can occur when participants provide responses that they believe 

are socially acceptable or desirable rather than reflecting their true thoughts or 

experiences. 

d.) Response bias can occur when participants respond to survey questions in a certain way, 

such as selecting the same response for multiple questions, regardless of their 

experiences or opinions. 

e.) Measurement bias can occur when the survey questions or response options are not valid 

or reliable measures of the measured underlying construct. 

f.) Question-wording bias can occur when survey questions are worded in a way that 

influences participants' responses or misrepresents the underlying measured construct. 

g.) Limited response options can limit the accuracy and depth of participants' responses and 

may not fully capture the complexity of their experiences or opinions. 

h.) Due to participants not answering all questions, incomplete data can limit the analysis 

and interpretation of survey results. This might interfere with the representativeness of 

the sample, mainly if it happened frequently within a study (Coughlan, Cronin, & Ryan, 

2009). 

i.) Poor response rates in self-administered questionnaires: poor response rates can restrict 

the generalization of the findings to the population (Coughlan et al., 2009). 
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Steps were taken to minimize and account for the limitations in the research design and 

analysis, thus increasing the accuracy and generalizability of the findings. 

5.5.3 Delimitations 

We have considered several delimitations. 

a.) Geographic delimitation: we limited the survey to the EU. 

b.) Time delimitation: we limited the survey to a specific period, the year 2022. 

c.) Sample delimitation: we limited the sample to EU organizations using AI in their 

business operations. 

d.) Topic delimitation: we limited the sample to organizations using AI in their processes. 

e.) Instrument delimitation: we limited the survey to include Likert scale closed questions. 

f.) Language delimitation: we limited the survey only to English as validation of the 

instrument for various European languages would not be feasible. Invitations were sent 

in specific languages, according to EU countries. 

g.) Contextual delimitation: no contextual delimitations were set. 

By these delimitations, we clarified the focus and scope of the research. 

5.5.4 Visibility 

The web page was shared on search engines (i.e., listed in site directories, search engine 

indexing allowed via robots.txt, and linking from other already indexed sites) and social sites 

(i.e., LinkedIn, Facebook). We followed the search engine optimization guidelines published 

by Spencer, Enge, and Stricchiola (2022). Although the original plan was to increase 

visibility through search engine ads (e.g., Google AdWords), the response on social media 

sites was substantial enough, eliminating the need for such ads. 

The questionnaire is accessible at the URL address: https://www.aibusinessresearch.eu. 

5.5.5 Content 

We followed the guidelines from Brace (2018) for the design and layout of the questions. 

a.) Ask one question at a time using direct language 

b.) Keep them short and easy to understand 

c.) Speak your respondents’ language 

d.) Explain random questions 

e.) Don’t use leading questions 

f.) Avoid double-barreled questions 

g.) Avoid prestige bias 

h.) Don’t use absolutes 

https://www.aibusinessresearch.eu/
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i.) Don’t mix your question types 

j.) Question sequence: follow a logical order; start with broad and general questions that 

qualify the respondent and introduce the topic, move into more specific questions 

 

After the initial questionnaire test, we reduced the length using shorter scales for OL and 

DM. 

5.5.6 Communication and Navigation 

On the landing page, we outlined the survey’s purpose to respondents and set and advertised 

expectations for the survey duration to 30 minutes.  

The percentage progress indicator is shown throughout the whole questionnaire (all pages). 

To increase the response rate, we split the questionnaire into two parts. The first part included 

demographics and main construct measures. The second part consists of the moderators and 

control variable Environmental Uncertainty. The progress indicator gets reset after the first 

part. After the first part, an additional invite page is displayed to engage respondents in 

completing the questionnaire. Respondents can navigate between questions backward but 

not forward. They can change their responses at any time until they complete the 

questionnaire. 

Direct communication was also provided: respondents can read about the research and 

contact the researcher via LinkedIn and email. 

5.5.7 Engagement: Personalization and Gamification 

The questionnaire is anonymous. However, we personalize the result report. After 

respondents finish the questionnaire, we prepare a PDF preliminary report with personalized 

results (an example included in Appendix 2) on AI maturity (Büschgens, Bausch, & Balkin, 

2013; Jaaksi, Koskinen, & Jalava, 2018; Pringle & Zoller, 2018) of the organization. The 

report is presented as an incentive for respondents to complete the questionnaire. The report 

is sent to the respondent's email address or can be downloaded on the thank you page. 

A motivational message with animation is displayed after every set of content-related pages 

to keep the respondents engaged. Also, we included game design elements (Prott & Ebner, 

2020; Schacht, Keusch, Bergmann, & Morana, 2017), specifically badges and visual 

representations of achievement of completing a questionnaire section. Badges have 

motivational value, allowing the respondents to align themselves with the researcher's goal 

to get a completed questionnaire. They also indicate how the questionnaire is structured and 

present an alternative progress indicator. 
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To prevent respondents from leaving the questionnaire page, we used Exit Intent. An Exit 

Intent is an event in a web browser triggered when the user moves the mouse to the upper 

corner to close the tab or window. When triggered, a message with a modal dialogue and a 

motivational message to complete the questionnaire or resume it later is displayed. 

Also, respondents have options on every questionnaire page to save the location and resume 

later. To continue, they can send the URL to their email address or copy the URL response. 

5.5.8 Privacy and General Data Protection Regulation 

In the published document about privacy and General Data Protection Regulation (GDPR; 

document included in Appendix 2), we justify requests for sensitive information (email 

address) and ensure the respondents about GDPR compliance. The document contains 

information about cookies, personal data, use and storage of data, data processing, transfer 

of data to third parties or countries, data protection, deletion, correction, or access to personal 

and survey data, and contact information in the case of privacy issues. 

Next, we present the complete questionnaire. 

5.5.9 Measurement of Survey-Based Constructs 

The questionnaire is in English language. The online questionnaire was divided into two 

parts to increase the number of fully completed questionnaires and motivate participants. 

The first part focuses on survey-based constructs relevant to the serial multiple-mediation 

model (Table 56), followed by a thank you message and an invitation to continue to the 

second part, which pertains to survey-based constructs relevant to the moderating and control 

variables (Table 57). 

Table 56: Measurement of Survey-Based Constructs (1st Part) 

Construct Items Source(s) 

Artificial Intelligence adoption (AI) Please identify the relative use of AI applications in your 

organization using a 5-points Likert scale (ranging from 1= 

“never” to 5 = “always”). 

Aydiner, Tatoglu, 

Bayraktar, Zaim, et al. 

(2019); Bawack et al. 
(2019); Davenport and 

Ronanki (2018); 

Dunston and Wang 
(2005); Farshid et al. 

(2018); Heimbach et 

al. (2015); Kelly 
(2015); Kuhn and 

Johnson (2013); 
Phillips-Wren (2012); 

Prieto (2019); 

Roeglinger et al. 
(2018); Schatsky et al. 

(2014); Suvetha et al. 

(2018); Tavana et al. 
(2016); Taylor (2011); 

Zasada (2019) 

Data acquisition and processing (DACQ) Data warehousing 

Data Lake 

Data Capturing System 

Cognitive Insight (CI) Marketing Automation 

Marketing Intelligence System 

CRM and CX System 

Cognitive Engagement (CE) Conversational AI 

Personalization and Recommendation System 

Computer Vision 

Cognitive Decision Assistance (CDA) Decision Automation System 

Knowledge Engineering and Expert Systems 

Decision Support System 

Cognitive Technologies (CT) Predictive Modeling and Analytics 

Anomaly and Deviant Behavior Detection 

Machine learning 

  To be continued 
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Table 56: Measurement of Survey-Based Constructs (1st Part) (cont.) 

Construct Items Source(s) 

Cognitive Business Process Automation 

(CBPA) 

What is the relative level & extent of Cognitive/AI 

technologies used in your organization? A 5-points Likert 

scale (1 = “strongly disagree” to 5 = “strongly agree”) 

Di Ciccio et al. 

(2015); Sindhgatta et 

al. (2020a); 
Szelagowski and 

Lupeikiene (2020); 

Vagia et al. (2016); 
van der Aalst, Becker, 

et al. (2018) 

Level Decision Support: the automation agent cannot perform the 
action but can provide support to the human 

Decision Selection: the automation agent selects one decision 

and executes it with human approval 

Supervisory Control: The automation agent carries out the 
action; the human may intervene if required 

Full automation: The automation agent carries out the action 

autonomously 

Extent Structured (static) business processes are automated  

Structured with ad hoc exceptions business processes are 

automated 

Unstructured with predefined fragment business processes are 

automated 

Loosely structured business processes are automated 

Unstructured business processes are automated 

Organizational Learning (OL) Please, indicate to what extent you agree/disagree with the 

following statements using a 5-point Likert scale (1 = 
“strongly disagree”to 5 = “strongly agree”). 

García-Morales et al. 

(2012) 

 Our organization has acquired and used much new and 

relevant knowledge that has provided a competitive advantage 
over the last 3 years. 

Our organization’s members have acquired some critical 

capacities and skills that have provided a competitive 

advantage over the last 3 years. 

Organizational improvements have been influenced 

fundamentally by new knowledge entering our organization 

over the last 3 years. 

Our organization is a learning organization. 

Business Process Innovation – 

Incremental (BPII) 

Please, indicate to what extent you agree/disagree with the 

following statements using a 5-point Likert scale (1 = 

“strongly disagree” to 5 = “strongly agree”). 

Adopted from Ng et 

al. (2015) 

Incremental process improvement I We run process improvement projects on a continual basis. 

We encourage front-line employees to participate in process 

improvement teams.  

We implement process improvement in a gradual way. 

Incremental process improvement II We seek ways to simplify existing processes. 

We continuously reduce process variation, even if it is already 
at an acceptable level. 

Business Process Innovation – Radical 

(BPIR) 

Please indicate to what extent you agree/disagree with the 

following statements using a 5-point Likert scale (1 = 
“strongly disagree” to 5 = "strongly agree”). 

Adopted from Ng et al. 

(2015) 

 When improving, we usually design and implement a totally 

new process. 

We implement radical and newly designed processes. 

Decision-making Performance (DMP) Please indicate to what extent you agree/disagree with the 

following statements using a 5-point Likert scale (1 = 

“strongly disagree” to 5 = “strongly agree”). 

Aydiner, Tatoglu, 

Bayraktar, and Zaim 

(2019) 

Decision efficiency  Our organization has a culture to facilitate long-term strategic 
planning.  

Our organization reduces the time required to make a decision. 

Our organization's organizational intelligence is designed to 

ensure accurate and comprehensive information on time. 

Decision effectiveness (quality) Our organization makes strategic decisions effectively.  

Decisions are more consistent between various departments in 

our organization. 

Our organization communicates the results of organizational-
level analysis to workgroup and/or functional level operations 

to enable effective support for decision-making. 

  To be continued 
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Table 56: Measurement of Survey-Based Constructs (1st Part) (cont.) 

Construct Items Source(s) 

Business Process Performance (BPP) Please indicate to what extent you agree/disagree with the 

following statements using a 5-point Likert scale (1 = “strongly 

disagree” to 5 = “strongly agree”). 

Bosilj Vukšić et al. 

(2017) 

 The efficiency of our processes is high above the average of the 
industry. 

The quality of our processes is well above the average of the 

industry. 

The flexibility of our processes is high above the average of the 
industry. 

Organizational Performance (OP) Please indicate to what extent you agree/disagree with the 

following statements using a 5-point Likert scale (1 = “strongly 
disagree” to 5 = “strongly agree”). 

Wang et al. (2012) 

Operational Performance ... our productivity has exceeded that of our competitors.   

... our profit rate has exceeded that of our competitors.  

... our ROI (return on investment) has exceeded that of our 

competitors. 

... our sales revenue has exceeded that of our competitors. 

Market Performance ... we have entered new markets more quickly than our 

competitors. 

 

... we have introduced new products or services to the market 
faster than our competitors. 

... our level of success with new products or services has been 

higher than our competitors. 

... our market share has exceeded that of our competitors. 

 

Source: Own work. 

Table 57: Measurement of Survey-Based Constructs (2nd Part) 

Construct Items Source(s) 

Digital Maturity (DM) Our organization has initiated or planned digitization 

initiatives, and in which phase are they positioned? 

A 5 points Likert scale (1 = “Absence of digital initiatives”, 2 = 
“Planned”, 3 = “Just started”, 4 = “Under development”, 5 = 

“Developed and ongoing”). 

Salviotti et al. 

(2019) 

 IT Infrastructure 

Human resource management 

Research and Development 

Administration, finance and control 

Procurement 

Inbound logistics 

Operations 

Outbound logistics 

Marketing and sales 

Post-sales services 

Data-Driven Culture (DDC) Please, indicate to what extent you agree/disagree with the 

following statements using a 5 points Likert scale (1 = 

“strongly disagree” to 5 = “strongly agree”). 

Duan et al. (2020) 

 We believe that having, understanding and using data and 

information plays a critical role. 

We are open to new ideas and approaches that challenge current 
practices on the basis of new information. 

We depend on data-based insights to support decision-making. 

We use data-based insights for the creation of new services or 

products. 

Individuals need data to make decisions. 

  To be continued 
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Table 57: Measurement of Survey-Based Constructs (2nd Part) (cont.) 

Construct Items Source(s) 

Business Process Management 

Maturity (BPMM) 

Please, indicate to what extent you agree/disagree with the 

following statements using a 5 points Likert scale (1 = 

“strongly disagree” to 5 = “strongly agree”). 

Dijkman et al. 

(2016) 

Level 1 (Initial) Formal procedures for the execution of processes do not exist in 
our organization. 

If procedures are defined, they are rarely followed  

Everybody executes tasks in their own way; in other words: 

everybody has their own methods. 

Level 2 (Managed) At the beginning of a project, we agree on which methods and 

technology we will use. 

If we make agreements about work methods, they will be 

documented so that they can be executed similarly at another 
time. 

We use planning and management procedures to control our 

projects. 

Level 3 (Standardized) Procedures are standardized for the whole organization. 

Work procedures and objectives are well documented in our 

whole organization. 

Processes are defined such that they will be in the same way by 

different work groups. 

Level 4 (Predictable) Performance is managed statistically (e.g. by measuring KPIs) 

to understand performance and to control variation. 

 

Processes/tasks are managed in such a way that they meet 
agreed-upon performance and quality goals. 

If processes do not perform according to predefined standards, 

they are corrected to meet the quantitative goals. 

Level 5 (Innovating) Our organization understands its critical business issues and 
areas of concern by using feedback from performance 

measurements. 

Our organization sets quantitative improvement goals to 

reorganize processes when perceived as necessary constantly. 

We constantly pilot new ideas and new technologies to improve 

our processes. 

Organizational Culture (OC) Divide 100 points among these four alternatives depending on 

how much each alternative is similar to your organization. Give 
more points to the option that is most similar to your 

organization. 

Cameron and Quinn 

(2011) 

Dominant Characteristics The organization is a very personal place. It is like an extended 
family. People seem to share a lot of themselves. 

The organization is a dynamic and entrepreneurial place. People 

are willing to stick their necks out and take risks. 

The organization is very results oriented. A major concern is 
with getting the job done. People are very competitive and 

achievement-oriented. 

The organization is a very controlled and structured place. 

Formal procedures generally govern what people do. 

Organizational Leadership The leadership in the organization is generally considered to 

exemplify mentoring, facilitating, or nurturing. 

The leadership in the organization is generally considered to 
exemplify entrepreneurship, innovation, or risk-taking. 

The leadership in the organization is generally considered to 

exemplify a no-nonsense, aggressive, results-oriented focus. 

The leadership in the organization is generally considered to 
exemplify coordinating, organizing, or smooth-running 

efficiency. 

Management of Employees The management style in the organization is characterized by 

teamwork, consensus, and participation. 

The management style in the organization is characterized by 

individual risk-taking, innovation, freedom, and uniqueness. 

Hard-driving competitiveness, high demands, and achievement 

characterize the management style in the organization. 

The management style in the organization is characterized by 

the security of employment, conformity, predictability, and 

stability in relationships. 

  To be continued 
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Table 57: Measurement of Survey-Based Constructs (2nd Part) (cont.) 

Construct Items Source(s) 

Organizational Glue The glue that holds the organization together is loyalty and 

mutual trust. Commitment to this organization runs high. 

Cameron and Quinn 

(2011) 

Its commitment to innovation and development is the glue that 

holds the organization together. There is an emphasis on being 
on the cutting edge. 

The glue that holds the organization together emphasises 

achievement and goal accomplishment. 

The glue that holds the organization together is formal rules and 
policies. Maintaining a smooth-running organization is 

important. 

Strategic Emphases The organization emphasizes human development. High trust, 
openness, and participation persist. 

The organization emphasizes acquiring new resources and 

creating new challenges. Trying new things and prospecting for 

opportunities are valued. 

The organization emphasizes competitive actions and 

achievement. Hitting stretch targets and winning in the 

marketplace are dominant. 

The organization emphasizes permanence and stability. 
Efficiency, control and smooth operations are important. 

Criteria of Success The organization defines success based on human resources 

development, teamwork, employee commitment, and concern 
for people. 

 

The organization defines success based on having the most 

unique or newest products. It is a product leader and innovator. 

The organization defines success based on winning in the 
marketplace and outpacing the competition. Competitive 

market leadership is key. 

The organization defines success based on efficiency. 
Dependable delivery, smooth scheduling and low-cost 

production are critical. 

Environmental Uncertainty (EU) Please, indicate to what extent you agree/disagree with the 

following statements using a 5 points Likert scale (1 = 
“strongly disagree” to 5 = “strongly agree”). 

Rowe et al. (2017) 

Environmental dynamism Your competitive environment has become far more 

unpredictable. 

Clients' tastes and preferences in your main economic sectors 
have become far more unstable. 

Your primary sector's innovation rate for new operational 

processes, products, and services has increased considerably. 

Your principal economic sector's downswings and upswings 
have become far more unpredictable. 

Hostility Your competitive environment has become far more hostile. 

Multidimensional competition (prices, supply chain, talent, 

services, image, reputation) threatens your company's survival. 

Heterogeneity Diversity in your production/service methods required to deal 

effectively with your clients has increased considerably. 

The diversity in your marketing tactics required to deal 

effectively with your clients has increased considerably. 

 

Source: Own work. 

5.6 Data Collection 

We use a single-source, self-reporting, cross-sectional design to gather the data used in the 

analysis. The data are collected through an anonymous questionnaire (in English) distributed 

electronically. The participants were identified using the LinkedIn Pro Subscription and 

ZoneFiles.io Active Business Domains by Country Code. 
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5.6.1 LinkedIn Pro Subscription Source 

On LinkedIn, we targeted chief experience officers, senior business managers, IT directors 

and managers, business process architects, BPM consultants, business analysts, chief process 

officers, chief digital and data officers, and other senior business decision-makers or people 

directly involved with executing AI strategy in the organization. We target only individuals 

related to EU organizations using LinkedIn Pro Subscription Search services. Filtering by 

other organization characteristics (size, age, revenue) was unavailable in search services and 

was not necessary according to the sampling frame. Using the LinkedIn profile of the thesis 

author (Aleš Zebec), we sent 1,815 direct connection requests (Table 58). Eventually, we 

connected with 1,400 individuals and sent direct message invitations to participate in 

English. The 1,400 invitations are included in the overall proportional country-stratified 

sampling percentages (Table 55). We could not calculate the response rate or separate the 

responses by this source as the questionnaire is anonymous; we did not include any 

identification data. 

Table 58: LinkedIn Pro Subscription Individual Requests 

Country Num. of 

requests 

Austria 93 

Belgium 95 

Bulgaria 45 

Croatia 49 

Cyprus 58 

Czech Republic 70 

Denmark 261 

Estonia 6 

Finland 93 

France 53 

Germany 111 

Greece 99 

Hungary 33 

Ireland 13 

Italy 148 

Latvia 5 

Lithuania 33 

Luxembourg 8 

Malta 39 

Netherlands 46 

Poland 80 

Portugal 83 

Romania 114 

Serbia 4 

Slovakia 10 

Spain 89 

Sweden 64 

Norway 1 

Switzerland 5 

United Kingdom 3 

Other 4 

Total 1,815 

 

Source: Own work. 

https://www.linkedin.com/in/ale%C5%A1-zebec/
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5.6.2 ZoneFiles.io Source 

From ZoneFiles.io, we compiled a list of domain names for EU countries (.at, .be, .bg, .cy, 

.cz, .de, .dk, .ee, .es, .fi, .fr, .gr, .hr, .hu, .ie, .it, .lt, .lu, .lv, .mt, .nl, .pl, .pt, .ro, .rs, .se, .sk, .tr) 

in addition to .eu, .ai, .io, and .digital. Excluded were domains not having a valid MX record 

(related to a mail server). Invitations were sent to public email addresses of the 

organizational domain names. Table 59 shows a proportional country-stratified sampling of 

randomly selected email invites (domains). Although domains were selected randomly, 

additional randomization comes from the inability to receive emails or rejections (user 

unknown or non-response). Email invitations were sent indiscriminately because we could 

not isolate the sampling frame (organizations adopting AI). Therefore, from 4,324,606 sent 

invites, 8% ~ 345,968 could be considered related to the sampling frame (Section 5.2), i.e., 

the Eurostat (2022) report identified 7% (we used adjusted 8%) of EU organizations use AI 

in their business processes. 

Table 59: Domain-Based Random Selection of Sent Invites 

Domain Public email addresses Invite language Randomly selected 

sent invites 

eu admin, billing, careers, contact, hello, info, partners, press, support English 356.402 

ai contact, hello, info, press, support English 119.590 

io contact, hello, info, press, support English 88.977 

digital info English 27.493 

at info 

 

German 43.900 

English 23.350 

be info English 95.225 

bg info English 14.602 

cy info English 1.524 

cz info English 122.067 

de info German 585.708 

English 499.908 

dk info Danish 52.305 

English 27.761 

ee info English 19.951 

es info English 99.479 

Spanish 95.441 

fi info English 52.405 

fr contact, contact, info, support French 633.601 

English 24 

gr info English 34.922 

hr info English 17.824 

hu info Hungarian 49.517 

English 3.202 

ie info English 54.512 

it amministrazione, info English 73.768 

Italian 170.026 

lt  info English 30.281 

lu  info English 7.936 

lv  info English 13.363 

mt  info English 1.076 

nl  contact, info, planning, sales, secretariaat, service, support English 223.272 

Dutch 171.381 

pl info Polish 98.290 

English 52.586 

pt info English 27.779 

Portuguese 19.590 

ro info English 96.224 

rs info English 18.062 

se info Swedish 93.443 

English 50.414 

   To be continued 



150 

Table 59: Domain-Based Random Selection of Sent Invites (cont). 

Domain Public email addresses Invite language Randomly selected 

sent invites 

sk info Slovak 28.180 

English 1.957 

tr info Turkish 17.604 

English 9.392 

 

Source: Own work. 

5.6.3 Email Invitations 

Email invites (copy included in Appendix 2) were sent in four waves from March 2022 to 

June 2022 at the start of the month. Levene’s test for equality (or homogeneity) of variances 

indicates that there is not a significant difference in terms of homogeneity of variances 

between the early and late responses (details in Section 6.4.6).  

Reminders were sent only to the LinkedIn contacts. Email invites were translated into 12 

different languages and distributed accordingly: Danish, Dutch, French, German, Hungarian, 

Italian, Polish, Portuguese, Slovak, Spanish, Swedish, and Turkish. Due to the invitations 

being sent to public email addresses, we asked the contact person to forward the invite to the 

Business Intelligence, Analytics, or IT department or a specific person like the Chief 

Information Officer, Chief Digital or Data Officers, Head of IT, Business Intelligence, 

Analytics, or AI department, etc. Accordingly, the primary informants of the questionnaires 

submitted were senior, executive, and middle managers since they were most familiar with 

the current state of AI adoption. There were 1,392 questionnaires submitted, of which 448 

were usable, i.e., fully completed. 

5.7 Sample Characteristics 

The collected and processed sample consists of 448 EU organizations19. A summary of the 

sample's characteristics is presented in Table 60. Sample representativeness was accessed 

with business size, industry sector (NACE_R2), years in business (age), and country/GEO. 

According to the information in Table 60, we conclude the sample is representative of the 

sample frame and the population. 76.34% of respondents were senior/executive managers, 

and 18.75% were middle/first-line managers. The remaining 4.91% were engineers or 

consultants. 28.35% were at the organizations longer than 14 years, and 18.75% were present 

for less than two years. The rest were present for more than three years. This indicates the 

respondents had considerable knowledge of the organization's operations due to their tenure. 

The sample characteristics suggest that larger organizations may have more resources and 

                                                 
19 Since the survey was anonymous and compliant with GDPR (Sections 5.5.8 and 5.8), no identifiable data 

was included in the invitations. Consequently, it was not possible to distinguish between participants from 

LinkedIn and ZoneFiles.io. 
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incentives to invest in AI. Still, they face more challenges and complexity in scaling up AI 

across their functions. Kazakova et al. (2020) identify strict standards for data exchange 

(e.g., data protection laws) and lack of access to high-quality private data as major barriers. 

Smaller organizations may have fewer resources and incentives, but they also have more 

flexibility and agility to experiment with AI solutions and leverage cloud-based platforms 

and services. The leverage of cloud-based platforms and services is likely the reason 

(Kazakova et al., 2020) that in our sample, 47.10% were represented by organizations with 

less than ten employees, where 90.5% of the respondents were executive managers. The 

majority of them, 25.1% from IT, 30.8%, 19.9% from services, scientific and technical 

activities (e.g., legal and accounting services, architectural and engineering services, 

technical testing and analysis services, advertising and market research services, scientific 

research and development services, veterinary services, computer programming, and 

consultancy services, translation and interpretation services, photography and graphic design 

services, and consulting and management services). 59.38% of organizations have been in 

business for more than ten years. 40.62% less than ten years and 20.98% less than five years. 

This can be considered a mix of established and relatively new organizations. Similarly, 

55.4% make less than 1 million in revenue and 44.6% more, consistent with the 

organization's size distribution. The number of respondents per country is consistent with 

the Proportional Country-Stratified Sampling percentages used in the study. 

Table 60: Characteristics of the Sample 

Characteristics  Number % 

Respondent's position Senior/executive manager 342 76.34 

 Middle/first line manager 84 18.75 

 

Other: Data Analyst, AI Engineer, Data Engineer, Software 

Developer, IT Specialist, Scientist, Consultant, Statistician 

22 4.91 

Respondent's time at the organization 0 - 2 years 84 18.75 

 3 - 5 years 99 22.10 

 6 - 9 years 80 17.86 

 10 - 14 years 58 12.95 

 More than 14 years 127 28.35 

Organization size Micro: with less than 10 persons employed 211 47.10 

 Small: with 10-49 persons employed 112 25.00 

 Medium-sized: with 50-499 persons employed 79 17.63 

 Large: with 500 or more persons employed 46 10.27 

Organization age (years of operation) < 5 years 94 20.98 

 5 - 10 88 19.64 

 11 - 30 153 34.15 

 31 - 50 60 13.39 

 > 50 53 11.83 

Annual revenue (EUR) < €10.000 32 7.14 

 €10.000 - €24.999 27 6.03 

 €25.000 - €49.999 27 6.03 

 €50.000 - €99.999 21 4.69 

 €100.000 - €199.999 44 9.82 

 €200.000 - €499.999 52 11.61 

 €500.000 - €599.999 13 2.90 

 €600.000 - €999.999 32 7.14 

 €1 million - €2.5 million 43 9.60 

 €2.5 million - €5 million 37 8.26 

 €5 million - €10 million 16 3.57 

 €10 million - €20 million 14 3.13 

 €20 million - €30 million 6 1.34 

 €30 million - €50 million 11 2.46 

 > €50 million 31 6.92 

  To be continued 
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Table 60: Characteristics of the Sample (cont). 

Characteristics  Number % 

 Not sure 42 9.38 

Industry sector Agriculture, forestry and fishing 14 3.13 

 Mining and quarrying 3 0.67 

 Manufacturing 25 5.58 

 Electricity, gas, steam and air conditioning supply 8 1.79 

 

Water supply; sewerage, waste management and remediation 
activities 

4 0.89 

 Construction 13 2.90 

 

Wholesale and retail trade; repair of motor vehicles and 

motorcycles 

25 5.58 

 Transportation and storage 9 2.01 

 Accommodation and food service activities 10 2.23 

 Information and communication 94 20.98 

 Financial and insurance activities 33 7.37 

 Real estate activities 7 1.56 

 Professional, scientific and technical activities 58 12.95 

 Administrative and support service activities 12 2.68 

 Public administration and defence; compulsory social security 11 2.46 

 Education 15 3.35 

 Human health and social work activities 19 4.24 

 Arts, entertainment and recreation 16 3.57 

 Other service activities 72 16.07 

Country/GEO Austria 11 2.46 

 Belgium 9 2.01 

 Bulgaria 8 1.79 

 Croatia 15 3.35 

 Cyprus 2 0.45 

 Czech Republic 16 3.57 

 Denmark 3 0.67 

 Estonia 7 1.56 

 Finland 7 1.56 

 France 31 6.92 

 Germany 96 21.43 

 Greece 12 2.68 

 Hungary 10 2.23 

 Ireland 11 2.46 

 Italy 49 10.94 

 Latvia 1 0.22 

 Luxembourg 2 0.45 

 Malta 3 0.67 

 Netherlands 47 10.49 

 Poland 15 3.35 

 Portugal 8 1.79 

 Romania 6 1.34 

 Serbia 12 2.68 

 Slovakia 13 2.90 

 Slovenia 4 0.89 

 Spain 13 2.90 

 Sweden 4 0.89 

 Norway 2 0.45 

 Switzerland 2 0.45 

 United Kingdom 5 1.12 

 Turkey 7 1.56 

 Other 17 3.79 

 

Source: Own work. 

5.8 Ethical Considerations 

This study complied with the University of Ljubljana, School of Economics and Business) 

research ethics policy ("Code of ethics of the Faculty of Economics of the University of 

Ljubljana," 2012). 
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The survey instrument was anonymous and included a Data Protection Notice. The notice 

explained collecting personal data, storing and processing data, data protection and deletion. 

The notice is included in Appendix 2. The invitation letter (also included in Appendix 2) and 

the introduction page of the survey described the study, including the expected duration and 

the number of pages. Participants could decline participation in the study and withdraw at 

any time during the survey. 

6 ANALYSIS 

The section includes a description and the results of the statistical data analysis. It covers 

various aspects, such as data screening, variable selection, exploratory data analysis, 

confirmatory factor analysis, and structural model evaluation. 

6.1 Case Screening 

We evaluated cases for relevance based on specific criteria and considered issues such as 

missing data, unengaged responses, and outliers. 

6.1.1 Missing Data in Rows 

From 1,392 cases, we removed 933 due to missing data over 20%. 

6.1.2 Unengaged Responses 

Using the STDEV.P function (Calculates standard deviation based on the entire population), 

we removed 8 cases due to being unengaged (they answered somewhat the same to every 

Likert scale item) with values less than 0.45. 

6.1.3 Outliers 

We are not using any continuous variables. Therefore, there are no outliers. 

6.2 Variable Screening 

The section provides results on evaluating data for missing values in columns and skewness 

and kurtosis. 

6.2.1 Missing Data in Columns 

We observed six missing values in the Country/GEO column. We extracted the values from 

resolving public IP addresses of the participants to impute the missing values. 
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6.2.2 Skewness and Kurtosis 

To check the normality, this study applied the statistical method of Skewness and Kurtosis 

(Hair, Black, Babin, & Anderson, 2013; Kline, 2015; Tabachnick & Fidell, 2012). However, 

Tabachnick and Fidell (2012) state that deviation from the normality of Skewness and 

Kurtosis often makes no substantive difference in the analysis when the samples are more 

than 200. Additionally, following an argument of Kline (2015), the absolute value of 

Skewness greater than 3 and a Kurtosis value greater than 10 may indicate a problem, and 

values above 20 may indicate a more severe problem. Hence, it was suggested that the 

absolute value of Skewness and Kurtosis should not be greater than 3 and 10. Based on this 

recommendation, the absolute values of the Skewness and Kurtosis of all the items in this 

study are within the acceptable range of < 3 and < 10, respectively. Skewness values ranged 

from -1.587 to 1.909, and for kurtosis, between -1.549 and 3.712. 

6.3 Exploratory Factor Analysis 

EFA using the Maximum Likelihood method with oblique rotation type Promax was used to 

analyze the factor structure and correlation between items from latent variables. The 

Maximum Likelihood method maximizes differences between factors and provides a Model 

Fit estimate. The same method is used in IBM SPSS AMOS SEM. Therefore, it is 

recommended to use it for EFA (Gaskin, 2021b). We used Promax oblique rotation to assess 

the items for the unique relationship between each factor and the items (removing 

relationships shared by multiple factors) because factor intercorrelations are the norm in 

social sciences (Costello & Osborne, 2005). 

6.3.1 Adequacy and Reliability 

The KMO value is above 0.50, indicating that the sampling adequacy criteria are met (Table 

62). The Bartlett test of sphericity is statistically significant (p < 0.05), showing that our 

correlation matrix is statistically different from an identity matrix as desired. The diagonals 

of the anti-image correlation matrix (Measures of Sampling Adequacy - MSA) were also all 

over 0.50 (Appendix 4). We used composites of first-order latent constructs for the latent 

variables AI, CBPA, BPII, DMP, and OP. All extracted communalities were above 0.40, 

except for AI: CI item (0.331), a first-order composite and is not a candidate for removal. 

The results of the exploratory factor analysis presented in Table 63 show that the solution is 

based on 8 factors, as expected. Initial eigenvalues indicated that the seven factors explained 

67.725% of the total variance with reliability Cronbach's Alpha between 0.744 and 0.890 

(Table 61). Based on the results, no items were removed. 
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Table 61: Initial Cronbach's Alpha and Variance Extracted 

Factor Cronbach's 

Alpha 

Variance 

Extracted 

AI Adoption (AI) 0.842 19.135 

Cognitive Business Process Automation (CBPA) 0.791 2.377 

Organizational Learning (OL) 0.879 16.780 

Business Process Innovation Incremental (BPII) 0.867 9.838 

Business Process Innovation Radical (BPIR) 0.744 3.687 

Decision Making Performance (DMP) 0.890 2.609 

Business Process Performance (BPP) 0.855 10.443 

Organizational Performance (OP) 0.832 2.857 

 

Source: Own work. 

Table 62: Initial KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.913 

Bartlett's Test of Sphericity Approx. Chi-Square 6291.229 

 df 253 

 Sig. 0.000 

 

Source: Own work. 

6.3.2 Convergent Validity 

The results of the rotated factor matrix are provided in Table 63. According to Hair et al. 

(2013), the sufficient factor loading for a sample size of over 350 is 0.30. All loadings exceed 

0.50, except for the CBPA1 item in the CBPA factor (0.316). This item has a significant 

cross-loading of 0.393 on the AI factor; therefore, we removed it. The average loading for 

the factors is over 0.60. 

Table 63: Initial Factor Loadings and Communalities 

  Factor loadings  

Items AI CBPA OL BPII BPIR DMP BPP OP Communalities 

AI: DACQ 0.751        0.487 

AI: CI 0.578        0.331 

AI: CE 0.810        0.597 

AI: CDA 0.745        0.626 

AI: CT 0.838        0.705 

CBPA: CBPA1 0.393a 0.316       0.606 

CBPA: LEVEL  0.868       0.682 

CBPA: EXTENT  0.682       0.618 

OL1   0.814      0.750 

OL2   0.950      0.808 

OL3   0.781      0.623 

OL4   0.524      0.546 

BPII: IPII    1.025     0.978 

BPII: IPIII    0.700     0.634 

BPIR: RAD1     0.484    0.411 

BPIR: RAD2     1.050    1.000 

DMP: EFFC      0.855   0.831 

DMP: EFFT      0.807   0.782 

BPP1       0.718  0.705 

BPP2       1.019  0.878 

BPP3       0.601  0.524 

         To be continued 
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Table 63: Initial Factor Loadings and Communalities (cont.) 

  Factor loadings  

Items AI CBPA OL BPII BPIR DMP BPP OP Communalities 

OP: OPER        0.834 0.796 

OP: MP        0.757 0.663 

 0.686 0.622 0.767 0.862 0.767 0.831 0.779 0.795  

  Average loading per factor  

 

Notes. 

Extraction Method: Maximum Likelihood.  
Rotation Method: Promax (Kappa = 4) with Kaiser Normalization. 
a Cross-loading 

 

 

Source: Own work. 

6.3.3 Reexamining Adequacy, Reliability, and Convergent Validity 

6.3.3.1 Adequacy and Reliability 

The KMO value is above 0.50, indicating that the sampling adequacy criteria are met (Table 

65). The Bartlett test of sphericity is statistically significant (p < 0.05), showing that our 

correlation matrix is statistically different from an identity matrix as desired. The diagonals 

of the anti-image correlation matrix (Measures of Sampling Adequacy – MSA) were also all 

over 0.50 (Appendix 5). The results of the exploratory factor analysis presented in Table 66 

show that the solution is based on 8 factors, as expected. Initial eigenvalues indicated that 

the seven factors explained 68.073% of the total variance with reliability Cronbach's Alpha 

between 0.744 and 0.890 (Table 64). Based on the results, no items were removed. 

Table 64: Final Cronbach's Alpha and Variance Extracted 

Factor Cronbach's 

Alpha 

Variance 

Extracted 

AI Adoption (AI) 0.842 19.622 

Cognitive Business Process Automation (CBPA) 0.776 2.445 

Organizational Learning (OL) 0.879 19.848 

Business Process Innovation Incremental (BPII) 0.867 9.370 

Business Process Innovation Radical (BPIR) 0.744 2.866 

Decision Making Performance (DMP) 0.890 2.683 

Business Process Performance (BPP) 0.855 7.217 

Organizational Performance (OP) 0.832 4.022 

 

Source: Own work. 

Table 65: Final KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.908 

Bartlett's Test of Sphericity Approx. Chi-Square 5893.441 

 df 231 

 Sig. 0.000 

 

Source: Own work. 
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6.3.3.2 Convergent Validity 

The results of the rotated factor matrix are provided in Table 66. According to Hair et al. 

(2013), the sufficient factor loading for a sample with over 350 cases is 0.30. All loadings 

are higher than 0.475. The average loading for the factors is over 0.70.  

Table 66: Final Factor Loadings and Communalities 

  Factor loadings  

Items AI CBPA OL BPII BPIR DMP BPP OP Communalities 

AI: DACQ 0.716        0.493 

AI: CI 0.510        0.319 

AI: CE 0.776        0.609 

AI: CDA 0.717        0.631 

AI: CT 0.813        0.693 

CBPA: LEVEL  0.665       0.530 

CBPA: EXTENT  0.852       0.764 

OL1   0.817      0.750 

OL2   0.950      0.807 

OL3   0.780      0.623 

OL4   0.518      0.544 

BPII: IPII    0.996     0.961 

BPII: IPIII    0.701     0.643 

BPIR: RAD1     0.475    0.415 

BPIR: RAD2     1.042    0.999 

DMP: EFFC      0.846   0.823 

DMP: EFFT      0.815   0.789 

BPP1       0.708  0.702 

BPP2       1.014  0.884 

BPP3       0.591  0.522 

OP: OPER        0.898 0.844 

OP: MP        0.727 0.631 

 0.713 0.758 0.766 0.848 0.759 0.830 0.771 0.812  

  Average loading per factor  

 

Notes. 
Extraction Method: Maximum Likelihood.  

Rotation Method: Promax (Kappa = 4) with Kaiser Normalization. 

 

Source: Own work. 

6.3.4 Discriminant Validity 

To test discriminant validity, we examine the factor correlation matrix. Correlations between 

factors should not exceed 0.70 (Gaskin, 2021b). A correlation greater than 0.70 indicates a 

majority of shared variance. As we can see from the factor correlation matrix in Table 67, 

no factor exceeds the threshold value. 

Table 67: Factor Correlation Matrix 

 AI CBPA OL BPII BPIR DMP BPP OP 

AI 1,000 0,642 0,422 0,447 0,402 0,437 0,406 0,380 

CBPA 0,642 1,000 0,336 0,379 0,442 0,413 0,331 0,354 

OL 0,422 0,336 1,000 0,524 0,488 0,631 0,642 0,528 

BPII 0,447 0,379 0,524 1,000 0,488 0,612 0,468 0,408 

BPIR 0,402 0,442 0,488 0,488 1,000 0,481 0,534 0,450 

DMP 0,437 0,413 0,631 0,612 0,481 1,000 0,604 0,496 

       To be continued 
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Table 67: Factor Correlation Matrix (cont.) 

 AI CBPA OL BPII BPIR DMP BPP OP 

BPP 0,406 0,331 0,642 0,468 0,534 0,604 1,000 0,631 

OP 0,380 0,354 0,528 0,408 0,450 0,496 0,631 1,000 

Note. The extraction method is Maximum Likelihood. Rotation Method: Promax (Kappa = 4) with Kaiser Normalization. 

 

Source: Own work. 

6.4 Confirmatory Factory Analysis 

We used IBM SPSS AMOS version 28 to perform the confirmatory factor analysis using the 

maximum likelihood method. 

6.4.1 Item Parceling 

Following the recommendation on item parceling (Hau & Marsh, 2004; Little, Rhemtulla, 

Gibson, & Schoemann, 2013; Matsunaga, 2008), we parcelled the items of constructs 

pertaining to subdimensions. Table 68 presents the CFA results: 

Table 68: CFA Results 

Construct Item Model SRW AVE CR α 

Artificial Intelligence adoption (AI) DACQ 0.670 0.534 0.849 0.842 

 CI 0.553    

 CE 0.780    

 CDA 0.797    

 CT 0.819    

Cognitive Business Process Automation (CBPA) LEVEL 0.747 0.639 0.779 0.776 

 EXTENT 0.849    

Organizational Learning (OL) OL1 0.857 0.655 0.883 0.879 

 OL2 0.879    

 OL3 0.792    

 OL4 0.698    

Business Process Innovation – Incremental (BPII) IPII 0.912 0.769 0.869 0.867 

 IPIII 0.840    

Business Process Innovation – Radical (BPIR) RAD1 0.710 0.607 0.754 0.744 

 RAD2 0.842    

Decision-making Performance (DMP) EFFT 0.890 0.803 0.891 0.890 

 EFFC 0.902    

Business Process Performance (BPP) BPP1 0.871 0.678 0.862 0.855 

 BPP2 0.878    

 BPP3 0.710    

Organizational Performance (OP) OPER 0.882 0.715 0.834 0.832 

 MP 0.808    

Notes. SRW = Model standardized regression weights are significant at p < 0.0001; AVE = Average variance extracted; 

CR = Composite reliability; α = Cronbach's Alpha 

 

Source: Own work. 

6.4.2 Validity, Reliability, and Measurement Model Fit 

In Table 69, we observed convergent and discriminant validity as evidenced by (convergent 

is AVE above 0.50, the discriminant is the square root of AVE greater than correlations) and 

reliability (the CR value above 0.70). 
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Table 69: Inter-Correlations, Assessment of Reliability, and Validity 

 Construct 1 2 3 4 5 6 7 8 

1 AI 0.731        

2 CBPA 0.705 0.800       

3 OL 0.452 0.366 0.810      

4 BPII 0.476 0.431 0.584 0.877     

5 BPIR 0.469 0.486 0.560 0.584 0.779    

6 DMP 0.499 0.471 0.557 0.682 0.557 0.896   

7 BPP 0.439 0.361 0.616 0.505 0.616 0.643 0.823  

8 OP 0.406 0.355 0.585 0.448 0.516 0.574 0.704 0.846 

 Mean 2.141 2.377 3.651 3.561 2.792 3.350 3.350 3.093 

 Standard Deviation 0.888 0.892 0.926 0.894 0.960 0.844 0.902 0.766 

 α 0.842 0.776 0.879 0.867 0.744 0.890 0.855 0.832 

 CR 0.849 0.779 0.883 0.869 0.754 0.891 0.862 0.834 

 AVE 0.534 0.639 0.655 0.769 0.607 0.803 0.678 0.715 

 MSV 0.497 0.497 0.449 0.465 0.379 0.465 0.496 0.496 

 MaxR(H) 0.868 0.794 0.898 0.880 0.775 0.891 0.883 0.843 

Notes. α = Cronbach’s alpha; CR = Composite Reliability; AVE = Average Variance Extracted; MSV = Maximum Shared 

Variance; MaxR(H) = McDonald Construct Reliability 

 

Source: Own work. 

6.4.3 Pair-Wise Construct Comparison for Discriminant Validity 

In the pair-wise construct comparison method (Anderson & Gerbing, 1988; Bagozzi & 

Phillips, 1982; Bagozzi & Yi, 1988), we separately compare all 21 possible pairs for the 

seven factors. For each pair, the chi-square value of the full model was compared with the 

value of the collapsed model (one pair of constructs was collapsed). Anderson and Gerbing 

(1988) suggested that if the collapsed model is significant and its chi-square value is more 

than the values of the full model by four or more, then the free model reflects a better fit than 

the collapsed one. This indicates that collapsed factors do not measure the same concept and 

hence increase the chi-square value, i.e., collapsed factors are discriminant from each other. 

As shown in  

Table 70, for each possible combination of 28 collapsed models, the chi-square value has 

increased by more than four, hence all factors are discriminant (from each other). 

Table 70: Pair-Wise Construct Comparison for Discriminant Validity 

Model ϰ2 Value (df) Difference 

Original full model 376.758 (181)  

AI → CBPA 563.965 (182) 187.207 

AI → OL 454.38 (182) 77.622 

AI → BPII 459.918 (182) 83.16 

AI → BPIR 448.521 (182) 71.763 

AI → DMP 472.692 (182) 95.934 

AI → BPP 448.407 (182) 71.649 

AI → OP 434.257 (182) 57.499 

CBPA → OL 421.504 (182) 44.746 

CBPA → BPII 438.678 (182) 61.92 

CBPA → BPIR 445.668 (182) 68.91 

CBPA → DMP 453.225 (182) 76.467 

CBPA → BPP 419.66 (182) 42.902 

CBPA → OP 414.765 (182) 38.007 

OL → BPII 506.75 (182) 129.992 

OL → BPIR 485.876 (182) 109.118 

 To be continued 
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Table 70: Pair-Wise Construct Comparison for Discriminant Validity (cont.) 

Model ϰ2 Value (df) Difference 

OL → DMP 575.324 (182) 198.566 

OL → BPP 573.562 (182) 196.804 

OL → OP 510.839 (182) 134.081 

BPII → BPIR 495.613 (182) 118.855 

BPII → DMP 574.9 (182) 198.142 

BPII → BPP 475.864 (182) 99.106 

BPII → OP 449.165 (182) 72.407 

BPIR → DMP 484.893 (182) 108.135 

BPIR → BPP 509.548 (182) 132.79 

BPIR → OP 460.911 (182) 84.153 

DMP → BPP 549.022 (182) 172.264 

DMP → OP 503.368 (182) 126.61 

BPP → OP 578.257 (182) 201.499 

 

Source: Own work. 

6.4.4 Heterotrait-Monotrait Ratio for Assessing Discriminant Validity 

Henseler, Ringle, and Sarstedt (2015) argue Heterotrait–Monotrait ratio (HTMT) is a more 

robust criterion to assess discriminant validity. The HTMT is calculated based on the average 

of the correlations of indicators across latent constructs, measuring different aspects of the 

model relative to the average of the correlations of indicators within the same construct. The 

results presented in Table 71 confirm sufficient discriminant validity, where the threshold of 

0.85 is not exceeded. 

Table 71: Heterotrait-Monotrait Ratio 

 AI CBPA OL BPII BPIR DMP BPP OP 

AI         

CBPA 0.701        

OL 0.450 0.368       

BPII 0.469 0.420 0.582      

BPIR 0.468 0.502 0.552 0.589     

DMP 0.497 0.473 0.702 0.689 0.553    

BPP 0.420 0.360 0.701 0.502 0.612 0.660   

OP 0.432 0.380 0.587 0.445 0.536 0.572 0.700  

 

Source: Own work. 

6.4.5 Common Method Variance 

We conducted Harman’s one-factor test with an unrotated factor solution. The test revealed 

an explained variance of 37.780%, well below the threshold of 50% suggested by Podsakoff, 

MacKenzie, Lee, and Podsakoff (2003). Next, we conducted Harman’s single-factor test 

using CFA. Method biases are assumed to be substantial if the hypothesized model fits the 

data (Malhotra, Kim, & Patil, 2006). Our single-factor model showed a poor data fit (χ2/df 

= 11.214, GFI = 0.621, AGFI = 0.541, TLI = 0.591, CFI = 0.630, RMSEA = 0.151 (p-close 

< 0.001), SRMR = 0.1050), which confirms the nonexistence of Common Method Variance 

(CMV). Finally, we used a CLF test and compared the standardized regression weights of 



161 

all items for models with and without CLF. The differences in these regression weights 

presented in Table 72 were found to be a maximum of 0.153 (< 0.200), which confirmed 

that CMV is not a significant issue in our data (Gaskin, 2021a). 

Table 72: Difference in CLF Regression Weights 

Relations Standardized 

weights 

Standardized 

weights with 

CLF 

Difference 

AI → DACQ 0.670 0.603 0.067 

AI → CI 0.553 0.444 0.109 

AI → CE 0.780 0.684 0.096 

AI → CDA 0.797 0.721 0.076 

AI → CT 0.819 0.768 0.051 

CBPA → LEVEL 0.747 0.643 0.104 

CBPA → EXTENT 0.849 0.763 0.086 

OL → OL1 0.857 0.782 0.075 

OL → OL2 0.879 0.815 0.064 

OL → OL3 0.792 0.72 0.072 

OL → OL4 0.698 0.606 0.092 

BPI → IPII 0.912 0.826 0.086 

BPI → IPIII 0.840 0.740 0.100 

BPR → RAD1 0.710 0.573 0.137 

BPR → RAD2 0.842 0.835 0.007 

DMP → EFFT 0.890 0.773 0.117 

DMP → EFFC 0.902 0.806 0.096 

BPP → BPP1 0.871 0.802 0.069 

BPP → BPP2 0.878 0.793 0.085 

BPP → BPP3 0.710 0.621 0.089 

OP → OPER 0.882 0.777 0.105 

OP → MP 0.808 0.655 0.153 

 

Source: Own work. 

6.4.6 Non-Response Bias 

Non-response bias arises from differences between those who respond and those who do not, 

leading to skewed results that do not accurately represent the target population (Lambert & 

Harrington, 1990; Maitland et al., 2017). We employed Armstrong and Overton (1977) 

extrapolation method based on the assumption that late respondents closely resemble non-

respondents (Pace, 1939). Our sample included 165 early respondents (36%) and 286 late 

respondents (64%). Further, we randomly selected 200 non-responders from 933 incomplete 

cases (Section 6.1.1). 

Following the guidelines of Armstrong and Overton (1977), an independent sample t-test 

(Table 73) was performed to assess the potential presence of non-response bias in this study. 

Levene’s test for equality (or homogeneity) of variances indicates that there is not a 

significant difference in terms of homogeneity of variances between the early and late 

responses for each variable. The p-value of equality of means is statistically nonsignificant 

for all latent constructs, indicating no significant difference in early and late responses 

(Pallant, 2016). Also, the magnitude of the differences in the means (eta squared) for all 

latent constructs is small, < 0.03, acceptable according to Cohen (1988). A comparison of a 

randomly selected group of 200 non-respondents with 451 respondents revealed no 
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significant differences and minimal effect size for any organizational level indicators 

(industry, size, age, revenue). We conclude the usable sample is not affected by non-response 

bias; hence, both early and late respondents of this study represent the same target 

population. 

Table 73: Assessment of Non-Response Bias Using Independent Samples t-Test 

     Levene’s Test for 

Equality of 

Variances 

t-test for Equality of Means Effect 

Size 

Latent 

Variables 

Response Type N Mean SD F Sig. t df Sig. (2-

tailed) 

Eta 

squared 

AI Early Response 165 2.323 0.929 2.273 0.132 3.340 449.000 0.001 0.0242 

 Late Response 286 2.036 0.848   3.260 317.532 0.001  

CBPA Early Response 165 2.542 0.936 0.717 0.398 3.002 449.000 0.003 0.0197 

 Late Response 286 2.282 0.854   2.929 317.081 0.004  

OL Early Response 165 3.779 0.959 0.813 0.368 2.239 449.000 0.026 0.0110 

 Late Response 286 3.577 0.901   2.202 325.160 0.028  

BPII Early Response 165 3.648 0.927 0.001 0.975 1.591 449.000 0.112 0.0056 

 Late Response 286 3.510 0.871   1.565 325.326 0.119  

BPIR Early Response 165 2.906 0.960 0.021 0.884 1.929 449.000 0.054 0.0082 

 Late Response 286 2.726 0.956   1.926 340.807 0.055  

DMP Early Response 165 3.436 0.825 0.009 0.925 1.662 449.000 0.097 0.0061 

 Late Response 286 3.300 0.851   1.676 351.052 0.095  

BPP Early Response 165 3.430 0.908 0.042 0.837 1.432 449.000 0.153 0.0045 

 Late Response 286 3.304 0.896   1.428 338.747 0.154  

OP Early Response 165 3.177 0.748 0.012 0.913 1.788 449.000 0.075 0.0071 

 Late Response 286 3.044 0.774   1.804 351.698 0.072  

           

Industry Respondents 451 11.729 5.065 0.138 0.711 -0.680 649.000 0.496 0.0007 

 Non-respondents 200 12.020 4.936   -0.687 390.570 0.492 0.0007 

Size Respondents 451 2.641 2.100 0.462 0.497 0.371 649.000 0.711 0.0002 

 Non-respondents 200 2.575 2.056   0.374 388.921 0.708 0.0002 

Age Respondents 451 2.754 1.256 0.062 0.804 0.878 649.000 0.380 0.0012 

 Non-respondents 200 2.660 1.266   0.875 378.710 0.382 0.0012 

Revenue Respondents 451 8.029 4.594 1.784 0.182 -1.227 649.000 0.220 0.0023 

 Non-respondents 200 8.515 4.814   -1.205 365.789 0.229 0.0073 

 

Source: Own work. 

6.4.7 Measurement Model Fit 

Table 74 summarizes the results of the measurement model goodness of fit indices. Firstly, 

the Chi-square value of the measurement model is 376.758, with 181 degrees of freedom. 

The Normed Chi-Square value (ratio of Chi-Square to Degrees of Freedom) is acceptable at 

2.082 (Hoe, 2008; Kline, 2015). The GFI value of the measurement model is 0.930 and 

acceptable, according to Hooper, Coughlan, and Mullen (2008). Also, the RMSEA value of 

the model is 0.049, which is between 0.05 and 0.08, and an acceptable fit interval, according 

to Brown (2015); Hu and Bentler (1999). As the last absolute fit index, AGFI is 0.902, 

indicating an acceptable model fit (Hooper et al., 2008). As shown, the incremental fit 

indices of the model (NFI, TLI, and CFI) are in acceptable intervals, according to Hair et al. 

(2013). Lastly, the parsimony-adjusted PCFI value of 0.757 is close to 1 and acceptable for 

the fit index (Byrne, 2016). 
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Table 74: Measurement Model Fit Summary 

Fit Measure Obtained fit Acceptable Fit Interval Reference 

Chi-square (χ2) 376.758 (df = 181)  Brown (2015); Kline (2015) 

Normed Chi-square 2.082 χ2 / df ≤ 3 Good model fit Hoe (2008); Kline (2015) 

Absolute Fit Indices    

Goodness-of-fit index (GFI) 0.930 0.80 < GFI < 0.95 Acceptable 

model fit 

Baumgartner and Homburg 

(1996); Doll, Xia, and Torkzadeh 
(1994); Hooper et al. (2008) 

Root mean square error of 

approximation (RMSEA) 

0.049 (p-close = 0.581) RMSEA < 0.06 Good model fit Brown (2015); Hu and Bentler 

(1999) 

Adjusted goodness-of-fit 
index (AGFI) 

0.902 0.80 < AGFI < 0.95 Acceptable 
model fit 

Baumgartner and Homburg 
(1996); Doll et al. (1994); Hooper 

et al. (2008) 

Standardized Root Mean 
Squared Residual (SRMR) 

0.0349 SRMR < 0.08 Good model fit Hu and Bentler (1999); 
Tabachnick and Fidell (2012) 

Incremental Fit Indices    

Normed fit index (NFI) 0.937 NFI > 0.90 Acceptable model fit Bentler and Bonett (1980) 

Non-normed Fit Index 

(NNFI) or Tucker-Lewis 
Index (TLI) 

0.957 TLI > 0.95 Good model fit Brown (2015); Hoe (2008) 

Comparative fit index (CFI) 0.966 CFI > 0.90 Acceptable model fit Brown (2015); Hoe (2008) 

Parsimony Fit Indices    

Parsimony-Adjusted 
Comparative fit index (PCFI) 

0.757 PCFI ≥ 0.60 is considered to 
indicate an Acceptable model fit 

Byrne (2016); Mulaik et al. 
(1989) 

 

Source: Own work. 

6.5 Structural Models 

6.5.1 Multivariate Assumptions (Outliers, Influentials and Multicollinearity) 

We ran a Cook’s distance analysis to determine if any (multivariate) influential outliers 

existed. In no case did we observe a Cook’s distance greater than 1. Most cases were far less 

than 0.05. We removed 3 cases (case numbers 482, 2310, and 2509) with the Cook’s distance 

over 0.03 (Figure 20). 

Figure 20: Cook's Distance 

 
 

Source: Own work. 
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We examined Variable Inflation Factors (VIF) for all predictors of our dependent variables. 

The analysis reveals the absence of multicollinearity, which is supported by the values of 

the two measures of multicollinearity (Tolerance and VIF). As presented in Table 75, all 

tolerance values are larger than 0.1 (the lowest is 0.437). A VIF value greater than 10 is 

usually problematic. In this respect, the highest in the table is 2.287, which complies with 

the set thresholds (Linton et al., 2020). 

Table 75: Collinearity Statistics 

 Collinearity Statistics 

Independent variables Tolerance VIF 

AI 0.543 1.842 

CBPA 0.618 1.619 

OL 0.480 2.083 

BPII 0.542 1.846 

BPIR 0.609 1.641 

DMP 0.437 2.287 

BPP 0.505 1.981 

Control variables   

Age 0.682 1.466 

Size 0.642 1.558 

Industry 0.951 1.052 

Country 0.952 1.050 

Environmental Uncertainty 0.877 1.140 

 

Source: Own work. 

6.5.2 Control Variables 

We included firm age as a control variable (CV) since prior research indicates that firm age 

can affect both short and long-term performance (Coad, Holm, Krafft, & Quatraro, 2018). 

Firm age was measured by the number of years since the establishment of the firm. New 

organizations comprise those with ages equal to or less than 5 years. Young organizations 

between 5 and 10 years. Middle-age firms include those whose ages vary between 11 and 

30. Mature organizations are the ones whose ages are more than 30 years and over 50 years 

old. Frequencies are presented in Table 76. 

Table 76: Firm Age Frequencies 

Firm age Frequency Percent 

< 5 years (new) 94 21.0 

5 – 10 (young) 88 19.6 

11 – 30 (middle-age) 153 34.2 

31 – 50 (mature) 60 13.4 

> 50 (old) 53 11.8 

Total 448 100.0 

 

Source: Own work. 

Additionally, firm size (number of employees) is a common control variable in IS research 

and was included in this study, as it has also been shown to affect performance (Bhatt & 

Grover, 2005). Organizations are classified into nine categories, presented in Table 77. 
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Table 77: Firm Size Frequencies 

Firm size Frequency Percent 

< 10 211 47.1 

10 - 19 57 12.7 

20 - 49 55 12.3 

50 - 99 36 8.0 

100 - 499 43 9.6 

500 - 999 11 2.5 

1,000 – 4,999 19 4.2 

5,000 – 9,999 5 1.1 

10,000+ 11 2.5 

Total 448 100.0 

 

Source: Own work. 

Additionally, in prior research, the industry sector has been shown to affect performance 

(Mallinguh, Wasike, & Zoltan, 2020; Nielsen & Raswant, 2018). To control for the effect of 

the industry sector, we created a variable based on NACE-R2 1st-level categories, presented 

in Table 78. 

Table 78: Industry Sector Frequencies 

Firm size Frequency Percent 

Agriculture, forestry and fishing 14 3.1 

Mining and quarrying 3 0.7 

Manufacturing 25 5.6 

Electricity, gas, steam and air conditioning supply 8 1.8 

Water supply; sewerage, waste management and remediation activities 4 0.9 

Construction 13 2.9 

Wholesale and retail trade; repair of motor vehicles and motorcycles 25 5.6 

Transportation and storage 9 2.0 

Accommodation and food service activities 10 2.2 

Information and communication 94 21.0 

Financial and insurance activities 33 7.4 

Real estate activities 7 1.6 

Professional, scientific and technical activities 58 12.9 

Administrative and support service activities 12 2.7 

Public administration and defence; compulsory social security 11 2.5 

Education 15 3.3 

Human health and social work activities 19 4.2 

Arts, entertainment and recreation 16 3.6 

Other service activities 72 16.1 

Total 448 100.0 

 

Source: Own work. 

According to Nielsen and Raswant (2018), researchers should include contextual control 

variables in multi-country studies. Results should be interpreted in terms of these contextual 

control variables. Therefore, we had the country as a control variable. It was measured by 

the organization's principal place of business, EU-27, including Serbia, Norway, 

Switzerland, the United Kingdom, Turkey, and others. Frequencies are presented in Table 

79. 
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Table 79: Country Frequencies 

Country Frequency Percent 

Austria 11 2.46 

Belgium 9 2.01 

Bulgaria 8 1.79 

Croatia 15 3.35 

Cyprus 2 0.45 

Czech Republic 16 3.57 

Denmark 3 0.67 

Estonia 7 1.56 

Finland 7 1.56 

France 31 6.92 

Germany 96 21.43 

Greece 12 2.68 

Hungary 10 2.23 

Ireland 11 2.46 

Italy 49 10.94 

Latvia 1 0.22 

Luxembourg 2 0.45 

Malta 3 0.67 

Netherlands 47 10.49 

Poland 15 3.35 

Portugal 8 1.79 

Romania 6 1.34 

Serbia 12 2.68 

Slovakia 13 2.90 

Slovenia 4 0.89 

Spain 13 2.90 

Sweden 4 0.89 

Norway 2 0.45 

Switzerland 2 0.45 

United Kingdom 5 1.12 

Turkey 7 1.56 

Other 17 3.79 

Total 448 100.0 

 

Source: Own work. 

Nielsen and Raswant (2018) posit that multi-country studies are susceptible to omitted 

variable problems due to the complexity of multiple environmental contexts (i.e., political, 

economic, socio-cultural, and institutional). With the rising frequency of environmental 

dynamism and complexity in business operations, firms are operating in environments that 

are becoming increasingly unpredictable (Yu, Wang, & Brouthers, 2016). Therefore, we 

included Environmental Uncertainty as a control variable. The variable was measured with 

a three-dimensional scale (Environmental dynamism, Hostility, Heterogeneity) developed 

by Miller and Friesen (1983) and used in various studies. 

Next, means, standard deviations, and correlations between CVs and all other variables 

(independent, mediator, and dependent variables) are presented in Table 80. VIFs for all 

independent variables, including controls, are shown in Table 75. 
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Table 80: Correlation Matrix for IV, DV, Mediators and Control Variables 

IV Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 

AI 2.144 0.890 1.000             

DV and Mediators 

CBPA 2.386 0.889 0.565** 1.000            

OL 3.650 0.929 0.391** 0.308** 1.000           

BPII 3.566 0.886 0.413** 0.349** 0.523** 1.000          

BPIR 2.792 0.958 0.373** 0.383** 0.459** 0.478** 1.000         

DMP 3.349 0.840 0.436** 0.401** 0.623** 0.610** 0.466** 1.000        

BPP 3.350 0.898 0.362** 0.299** 0.609** 0.453** 0.514** 0.579** 1.000       

OP 3.089 0.758 0.372** 0.318** 0.509** 0.412** 0.437** 0.518** 0.602** 1.000      

Control variables 

Age 2.754 1.259 -0.069 -0.118* -0.200** -0.106* -0.195** -0.178** -0.185** -0.027 1.000     

Size 2.650 2.104 0.122** -0.080 -0.158** -0.049 -0.098* -0.176** -0.195** 0.008 0.524** 1.000    

Industry 11.730 5.062 -0.061 -0.052 -0.036 -0.025 -0.025 -0.083 -0.088 -0.013 -0.020 -0.074 1.000   

Country 15.188 8.040 0.102* 0.086 -0.004 0.069 0.010 0.059 0.083 0.046 -0.107* -0.014 .0059 1.000  

Env. uncerta. 3.208 0.653 0.264** 0.200** 0.217** 0.232** 0.146** 0.187** 0.176** 0.177** 0.034 0.063 -0.155** 0.053 1.000 

Notes: IV = Independent variable; DV = Dependent variable; SD = Standard Deviation; ** Correlation is significant at the 0.01 level; * Correlation is significant at the 

0.05 level 

 

Source: Own work. 
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Control variable Size significantly influences the OP and OL variables. Larger organizations 

had a higher level of OP than smaller firms. However, larger organizations had a lower level 

of OL than smaller firms. Other control variables were found to be nonsignificant and had 

no influence. Control variable loadings are presented in Table 81. 

Table 81: Control Variables Loadings 

Control variable → OP β t-value p-value 

Age 0.063 1.401 0.227 

Size 0.113 2.485 0.022 

Industry 0.049 1.296 0.169 

Country -0.019 -0.498 0.573 

Env. Uncertainty 0.019 0.483 0.655 

Control variable → OL    

Size -0.224 -5.034 < 0.001 

 

Source: Own work. 

6.5.3 Post-hoc Structural Equation Modeling Power Analysis 

We conducted post hoc SEM power analyses using the semPower R-package (Moshagen & 

Erdfelder, 2016) to confirm that the sample size for the structural equation model was 

adequate. Our model is based on an N of 448, 286 degrees of freedom (df), and an RMSEA 

of 0.044. Using an alpha level of 0.05, the power to reject an incorrect model was above 

0.99. 

Table 82: Post-Hoc Structural Equation Modeling Power Analysis Results 

Results Values 

 

F0 0.554 

RMSEA  0.044 

Mc  0.758 

  

df 286 

Num Observations 448 

NCP  247.502 

  

Critical Chi-Square 326.443 

Alpha 0.05 

Beta 9.358695 × 10-10 

Power (1-Beta) > 0.9999 

Implied Alpha/Beta Ratio 5.342625 × 107 

  

 

Source: Own work. 

When power is requested to compare a hypothesized model to the saturated model, the model 

df is given by 𝑑𝑓 = p(p+1)

2
− 𝑞 where p is the number of observed variables, and q is the number 

of free parameters of the hypothesized model. We use 27 observed variables (including 

control variables) and 92 free parameters (40 weights, 17 covariances, and 35 variances) for 

the model. 
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An in-depth tutorial on power analyses in SEM using semPower is also provided in the 

following paper: Jobst, Bader, and Moshagen (2021). 

6.5.4 Hypotheses Testing 

The study examines the structural relationships between the constructs through a path 

analysis by considering the multiple mediating and moderating effects. Path analyses with 

the IBM SPSS AMOS software (Collier, 2020) were used to test the hypotheses in the 

conceptual model. The maximum likelihood method uses the bootstrap (Bootstrap Sample 

= 5,000 with replacement) method to simulate the sampling distributions of the estimated 

parameters selected to calculate the model parameters. The model includes six mediating 

variables (i.e., CBPA, OL, BPII, BPIR, DMP, and BPP) in addition to AI and OP constructs. 

Figure 21: Structural Model Results 

 

Notes. 

+: Standardized regression weights are shown.  

*p<0.05, **p<0.01; ***p<0.001; NS: Not significant. 

 

Source: Own work. 

Structural equation model fit is within the acceptable levels. Table 83 summarizes the results 

of the measurement model goodness of fit values. The results confirm that the model fits the 

data well. 
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Table 83: Structural Model Fit Summary 

Fit Measure Obtained fit Acceptable Fit Interval Reference 

Chi-square (χ2) 535.908 (df=286)  Brown (2015); Kline (2015) 

Normed Chi-square 1.874 χ2 / df ≤ 3 Good model fit Hoe (2008); Kline (2015) 

Absolute Fit Indices    

Goodness-of-fit index (GFI) 0.917 0.80 < GFI < 0.95 Acceptable 

model fit 

Baumgartner and Homburg 

(1996); Doll et al. (1994); Hooper 
et al. (2008) 

Root mean square error of 

approximation (RMSEA) 

0.044 (p-close=0.951) RMSEA < 0.06 Good model fit Brown (2015); Hu and Bentler 

(1999) 

Adjusted goodness-of-fit 
index (AGFI) 

0.891 0.80 < AGFI < 0.95 Acceptable 
model fit 

Baumgartner and Homburg 
(1996); Doll et al. (1994); Hooper 

et al. (2008) 

Standardized Root Mean 
Squared Residual (SRMR) 

0.0443 SRMR < 0.08 Good model fit Hu and Bentler (1999); 
Tabachnick and Fidell (2012) 

Incremental Fit Indices    

Normed fit index (NFI) 0.917 NFI > 0.90 Acceptable model fit Bentler and Bonett (1980) 

Non-normed Fit Index 

(NNFI) or Tucker-Lewis 
Index (TLI) 

0.950 TLI > 0.95 Good model fit Brown (2015); Hoe (2008) 

Comparative fit index (CFI) 0.959 CFI > 0.90 Acceptable model fit Brown (2015); Hoe (2008) 

Parsimony Fit Indices    

Parsimony-Adjusted 
Comparative fit index (PCFI) 

0.781 PCFI ≥ 0.60 is considered to 
indicate an Acceptable model fit 

Byrne (2016); Mulaik et al. (1989) 

 

Source: Own work. 

6.5.4.1 Direct Effects 

H1: AI adoption directly positively influences organizational performance. 

H1 was not supported (β = 0.036, t = 0.691, p > 0.05), indicating that AI has no direct 

association with OP. However, the relationship is significant in the absence of the mediating 

variables. 

H2: Business process performance positively influences organizational performance. 

Support for H2 (β = 0.576, t = 9.488, p < 0.001) is aligned with prior studies that point to 

BPP as the link to OP (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Aydiner, Tatoglu, 

Bayraktar, Zaim, et al., 2019; Melville et al., 2004). 

H3a: Decision-making performance positively influences business process performance. 

H3b: Decision-making performance positively influences organizational performance. 

Support was found for H3a (β = 0.249, t = 3.532, p < 0.001) and H3b (β = 0.244, t = 4.050, 

p < 0.001), confirming the expected impact of DMP on BPP and OP (Aydiner, Tatoglu, 

Bayraktar, & Zaim, 2019; Fredrickson & Mitchell, 1984). 

H8a: OL positively influences BPII. 

H8b: OL positively influences BPIR. 
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Finally, strong support was found for H8a (β = 0.446, t = 8.442, p < 0.001) and H8b (β = 

0.434, t = 7.001, p < 0.001), indicating that OL has a significant direct association with 

process innovation, i.e., BPII and BPIR. 

6.5.4.2 Indirect Effects 

Next, we examine the indirect effects. We used the revised method to assess the indirect 

effect by examining the product of the A path and the B path while controlling for the direct 

impact of the C path (Collier, 2020). Hence, the indirect effect is quantified as the product 

of the unstandardized regression weight of mediation paths, as shown in Table 84 (Collier, 

2020; Hayes, 2018; Taylor, MacKinnon, & Tein, 2008). Since the Sobel test (Sobel, 1982) 

is flawed for this type of test, the more accepted approach in mediation testing is to use a 

bootstrap technique to determine significance (Bootstrap Sample = 5,000 with replacement). 

The full model was run to identify the mediating, indirect effects. According to the results 

in Table 84, CBPA mediates the positive impact of AI adoption on DMP (support for H4a) 

but not on BPP (no support for H4b). Positioned as a key augmentation capability, results in 

Table 84 show OL mediates the positive impact of AI adoption on DMP and BPP (support 

for H5a and H5b). To test the effects of AI on process innovation, two parallel constructs of 

BPII and BPIR were inserted, and relationships were tested. The results in Table 84 show 

that BPII mediates the positive impact of AI adoption on DMP (support for H6a). However, 

BPII does not mediate the path between AI and BPP (no support for H6b). In contrast, BPIR 

does not mediate the impact of AI adoption on DMP (no support for H7a) but does on BPP 

(support for H7b). 

Table 84: Results of the Single Mediation Analysis, i.e., Indirect Effects 

Path Relations Unstandardized 

weights 

Indirect 

effect 

Z-score Mediation 

AI → CBPA → DMP AI → CBPA 0.715 
(0.063) 

  0.104* 
(0.050) 

2.271ξ* Support for H4a, the mediation 

role of CBPA between AI and 
DMP (the direct effect is not 

significant). 

CBPA → DMP 0.146 
(0.063) 

  

AI → CBPA → BPP AI → CBPA 0.715 
(0.063) 

-0.042 
(0.059) 

-0.793ξ No support for H4b. 

CBPA → BPP -0.058 
(0.073) 

AI → OL → DMP AI → OL 0.576 
(0.065) 

     0.185*** 
(0.040) 

5.482ξ*** Support for H5a, the mediation 

role of OL between AI and DMP. 
OL → DMP 0.321 

(0.046) 

AI → OL → BPP AI → OL 0.576 
(0.065) 

     0.190*** 
(0.045) 

4.673ξ*** Support for H5b, the mediation 

role of OL between AI and BPP 
(the direct effect is not significant). OL → BPP 0.330 

(0.060) 

AI → BPII → DMP AI → BPII 0.304 
(0.058) 

    0.106*** 
(0.034) 

4.076ξ*** Support for H6a, the mediation 
role of BPII between AI and DMP. 

BPII → DMP 0.350 
(0.054) 

AI → BPII → BPP AI → BPII 0.304 
(0.058) 

-0.013 
(0.023) 

-0.622ξ No support for H6b. 

BPII → BPP -0.042 
(0.067) 

     To be continued 
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Table 84: Results of the Single Mediation Analysis, i.e., Indirect Effects (cont.) 

Path Relations Unstandardized 

weights 

Indirect 

effect 

Z-score Mediation 

AI → BPIR → DMP AI → BPIR 0.241 
(0.052) 

0.021 
(0.023) 

1.237ξ No support for H7a. 

BPIR → DMP 0.086 
(0.067) 

AI → BPIR → BPP AI → BPIR 0.241 
(0.052) 

     0.099*** 
(0.031) 

3.410ξ*** Support for H7b, the mediation 
role of BPIR between AI and BPP. 

BPIR → BPP 0.413 
(0.082) 

Notes. + Boot Standard errors are indicated within the parentheses. *p<0.05, **p<0.01, ***p<0.001. ξ2-tail z-score =
𝑎∗𝑏

√𝑏2∗𝑆𝐸𝑎2+𝑎2∗𝑆𝐸𝑏2
 

for single mediation effect. 

 

Source: Own work. 

6.5.4.3 Full Mediation 

Without the mediators, the total effect of AI on OP was tested. The relationship is significant, 

and the standardized total effect is 0.418 (t = 6.584, p < 0.001, 95% CI: LL = 0.314 to UL = 

0.521). Model Fitness is χ2/df = 1.719, GFI = 0.977, AGFI = 0.952, TLI = 0.969, CFI = 

0.982, RMSEA = 0.040 (p-close = 0.829), and SRMR = 0.0288. 

Figure 22: Total Effect 

 

 

Note: Standardized effects are presented. ***p<0.001 

 

Source: Own work. 
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The full parallel, serial mediating model was run to identify the mediating effects. The direct 

relationship between AI and OP was nonsignificant (p = 0.541, 95% CI: LL = -0.074 to UL 

= 0.139). Thus, these findings support the full parallel, serial mediating role of CBPA, BPII, 

BPIR, OL, DMP and BPP. 

6.5.4.4 Summary of Hypothesis Testing 

We observe in Table 86 that the distinctive serial (chain) relationships of CBPA, OL, BPII, 

BPIR, DMP, and BPP together establish the link between AI and OP. The nonsignificant 

direct relationship defined by H1 indicates the relationship between AI and OP is fully 

mediated. 

Table 85: Summary of Support for the Hypotheses 

Hypotheses Definition Level of support 

H1 AI adoption directly positively influences organizational performance. Not supported 

H2 Business process performance positively influences organizational performance. Supported 

H3a Decision-making performance positively influences business process performance. Supported 

H3b Decision-making performance positively influences organizational performance. Supported 

H4a Cognitive business process automation mediates the positive impact of AI adoption on decision-
making performance. 

Supported 

H4b Cognitive business process automation mediates the positive impact of AI adoption on business 

process performance. 

Not supported 

H5a Organizational learning mediates the positive impact of AI adoption on decision-making 
performance. 

Supported 

H5b Organizational learning mediates the positive impact of AI adoption on business process 

performance. 

Supported 

H6a Incremental business process innovation mediates the positive impact of AI adoption on decision-
making performance. 

Supported 

H6b Incremental business process innovation mediates the positive impact of AI adoption on business 

process performance. 

Not supported 

H7a Radical business process innovation mediates the positive impact of AI adoption on decision-
making performance. 

Not supported 

H7b Radical business process innovation mediates the positive impact of AI adoption on business 

process performance. 

Supported 

H8a Organizational learning positively influences incremental business process innovation. Supported 

H8b Organizational learning positively influences radical business process innovation. Supported 

 

Source: Own work. 

6.5.5 Testing Additional Paths 

Without the CBPA, OL, BPII, and BPIR mediators, the impact of DMP on BPP and OP is 

positive and significant (Figure 23). However, running the full model shows no significant 

direct effect of AI adoption on DMP. Nevertheless, we can observe in Table 86 that the 

mediating impact of DMP is positive when positioned as a secondary mediator in serial 

multiple-mediation relationships. Therefore, DMP plays a mediating role and is fully 

mediated. 
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Figure 23: Structural Model Without Mediators 

 

 

Notes. 

+: Standardized regression weights are shown.  

*p<0.05, **p<0.01; ***p<0.001; NS: Not significant. 

 

Source: Own work. 

Similarly, excluding the CBPA, OL, BPII, BPIR, and DMP mediators, the impact of AI on 

OP mediated through BPP is positive and significant (Figure 23), but not when running the 

entire model. We can observe in Table 86 that the mediating effect of BPP is positive when 

positioned as a secondary mediator in serial multiple-mediation relationships. Hence, BPP 

plays a mediating role and is fully mediated. 

Table 86: Results of the Serial Multiple-Mediation Analysis, i.e., Serial Indirect Effects 

Path Relations Unstandardized 

weights 

Indirect 

effect 

Z-score Mediation 

AI → CBPA → DMP 
→ OP 

AI → CBPA 0.715 
(0.063) 

 0.022* 
(0.012) 

1.981ξξ* Support for the serial multiple-
mediation role of CBPA and DMP 

between AI and OP. CBPA → DMP 0.146 
(0.063) 

DMP → OP 0.215 
(0.053) 

AI → CBPA → DMP 
→ BPP → OP 

AI → CBPA 0.715 
(0.063) 

 0.013* 
(0.008) 

 Support for the serial multiple-
mediation role of CBPA, DMP, and 

BPP between AI and OP. CBPA → DMP 0.146 
(0.063) 

DMP → BPP 0.278 
(0.079) 

BPP → OP 0.455 
(0.048) 

AI → CBPA → BPP → 

OP 

AI → CBPA 0.715 
(0.063) 

-0.019 
(0.028) 

-0.790ξξ No support. 

CBPA → BPP -0.058 
(0.073) 

BPP → OP 0.455 
(0.048) 

     To be continued 
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Table 86: Results of the Serial Multiple-Mediation Analysis,  

i.e., Serial Indirect Effects (cont.) 

Path Relations Unstandardized 

weights 

Indirect 

effect 

Z-score Mediation 

AI → OL → DMP → 

OP 

AI → OL 0.576 
(0.065) 

   0.040*** 
(0.013) 

3.261ξξ*** Support for the serial multiple-

mediation role of OL and DMP 
between AI and OP. OL → DMP 0.321 

(0.046) 

DMP → OP 0.215 
(0.053) 

AI → OL → DMP → 

BPP → OP 

AI → OL 0.576 
(0.065) 

   0.023** 
(0.010) 

 Support for the serial multiple-

mediation role of OL, DMP, and 
BPP between AI and OP. OL → DMP 0.321 

(0.046) 

DMP → BPP 0.278 
(0.079) 

BPP → OP 0.455 
(0.048) 

AI → OL → BPP → OP AI → OL 0.576 
(0.065) 

    0.086*** 
(0.024) 

4.191ξξ*** Support for the serial multiple-

mediation role of OL and BPP 

between AI and OP. OL → BPP 0.330 
(0.060) 

BPP → OP 0.455 
(0.048) 

AI → OL → BPII → 

DMP → OP 

AI → OL 0.576 
(0.065) 

    0.018*** 
(0.007) 

 Support for the serial multiple-

mediation role of OL, BPII, and 

DMP between AI and OP. OL → BPII 0.407 
(0.048) 

BPII → DMP 0.350 
(0.054) 

DMP → OP 0.215 
(0.053) 

AI → OL → BPII → 
DMP → BPP → OP 

AI → OL 0.576 
(0.065) 

    0.010*** 
(0.005) 

 Support for the serial multiple-
mediation role of OL, BPII, DMP, 

and BPP between AI and OP. OL → BPII 0.407 
(0.048) 

BPII → DMP 0.350 
(0.054) 

DMP → BPP 0.278 
(0.079) 

BPP → OP 0.455 
(0.048) 

AI → OL → BPII → 

BPP → OP 

AI → OL 0.576 
(0.065) 

-0.005 
(0.009) 

 No support. 

OL → BPII 0.407 
(0.048) 

BPII → BPP -0.042 
(0.067) 

BPP → OP 0.455 
(0.048) 

AI → OL → BPIR → 
DMP → OP 

AI → OL 0.576 
(0.065) 

0.003 
(0.004) 

 No support. 

OL → BPIR 0.320 
(0.046) 

BPIR → DMP 0.086 
(0.067) 

DMP → OP 0.215 
(0.053) 

AI → OL → BPIR → 
DMP → BPP → OP 

AI → OL 0.576 
(0.065) 

0.002 
(0.002) 

 No support. 

OL → BPIR 0.320 
(0.046) 

BPIR → DMP 0.086 
(0.067) 

DMP → BPP 0.278 
(0.079) 

BPP → OP 0.455 
(0.048) 

AI → OL → BPIR → 

BPP → OP 

AI → OL 0.576 
(0.065) 

    0.035*** 
(0.010) 

 Support for the serial multiple-

mediation role of OL, BPIR and 

BPP between AI and OP. OL → BPIR 0.320 
(0.046) 

BPIR → BPP 0.413 
(0.082) 

BPP → OP 0.455 
(0.048) 

     To be continued 
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Table 86: Results of the Serial Multiple-Mediation Analysis,  

i.e., Serial Indirect Effects (cont.) 

Path Relations Unstandardized 

weights 

Indirect 

effect 

Z-score Mediation 

AI → BPII → DMP → 

OP 

AI → BPII 0.304 
(0.058) 

    0.023*** 
(0.010) 

2.875ξξ** Support for the serial multiple-

mediation role of BPII and DMP 
between AI and OP. BPII → DMP 0.350 

(0.054) 

DMP → OP 0.215 
(0.053) 

AI → BPII → DMP → 

BPP → OP 

AI → BPII 0.304 
(0.058) 

   0.013***
 

(0.006) 

 Support for the serial multiple-

mediation role of BPII, DMP and 
BPP between AI and OP. BPII → DMP 0.350 

(0.054) 

DMP → BPP 0.278 
(0.079) 

BPP → OP 0.455 
(0.048) 

AI → BPII → BPP → 

OP 

AI → BPII 0.304 
(0.058) 

-0.006 

(0.011) 
-0.621ξξ No support. 

BPII → BPP -0.042 
(0.067) 

BPP → OP 0.455 
(0.048) 

AI → BPIR → DMP → 

OP 

AI → BPIR 0.241 
(0.052) 

0.004 

(0.005) 
1.183ξξ No support. 

BPIR → DMP 0.086 
(0.067) 

DMP → OP 0.215 
(0.053) 

AI → BPIR → DMP → 

BPP → OP 

AI → BPIR 0.241 
(0.052) 

0.003 

(0.003) 
 No support. 

BPIR → DMP 0.086 
(0.067) 

DMP → BPP 0.278 
(0.079) 

BPP → OP 0.455 
(0.048) 

AI → BPIR → BPP → 
OP 

AI → BPIR 0.241 
(0.052) 

    0.045*** 
(0.016) 

3.209ξξ*** Support for the serial multiple-
mediation role of BPIR and BPP 

between AI and OP. BPIR → BPP 0.413 
(0.082) 

BPP → OP 0.455 
(0.048) 

Notes. + Boot Standard errors are indicated within the parentheses. *p<0.05, **p<0.01, ***p<0.001. 

 ξ ξ 2-tail z-score =
𝑎∗𝑏∗𝑐

√𝑎2∗𝑏2∗𝑆𝐸𝑐2+𝑎2∗𝑐2∗𝑆𝐸𝑏2+𝑏2∗𝑐2∗𝑆𝐸𝑎2
 for serial multiple-mediation effect. 

 

Source: Own work. 

6.5.6 Moderated Effects 

We assessed the moderating role of BPM Maturity, Digital Maturity, Data-driven Culture, 

and Organizational Culture (clan, adhocracy, market, hierarchy) on all the hypothesized 

paths between latent variables.  

First, we assessed all the paths using Hayes Process Macro v4.1 Model 1 (IBM SPSS). Next, 

the significant paths were assessed using the mixed model method for testing moderation in 

a structural model (IBM SPSS AMOS), as Collier (2020) recommended. The mixed model 

method includes latent unobservable variables with a model's independent and dependent 

variables but includes a composite moderator variable and a composite interaction term. The 

mixed method approach accounts for the measurement error in the independent and 

dependent variables but fails to run a latent interaction test. Subsequently, it does not account 

for measurement error in the moderator. 
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After excluding the nonsignificant interaction, we next present the significant moderated 

effects. 

Figure 24: Structural Model With Moderators 

 

Model Fitness: χ2/df = 2.052, GFI = 0.900, AGFI = 0.863, TLI = 0.929, CFI = 0.945, 

RMSEA = 0.049 (p-close = 0.688), and SRMR = 0.0493. 

Source: Own work. 

6.5.6.1 Moderating Role of BPM Maturity on the Relationship Between AI Adoption and 

Organizational Learning 

The study assessed the moderating role of BPMM on the relationship between AI and OL. 

The results revealed a negative and significant moderating impact of BPMM on the 

relationship between AI and OL (β = -0.148, t = -3.579, p < 0.001). The moderation analysis 

summary is presented in Table 87. 

Table 87: Moderation Test Results for BPMM on the Relationship Between AI and OL 

Relationship Unstandardized 

weights 
t-value p-value 

AI → OL 0.427 6.736 < 0.001 

BPMM → OL 0.657 8.070 < 0.001 

AI*BPMM → OL -0.248 -3,579 < 0.001 

 

Probing the Interaction of BPMM 

Low level: AI → OL 0.619 6.136 < 0.001 

Mean Level: AI → OL 0.427 6.736 < 0.001 

High level: AI → OL 0.242 3.654 < 0.001 

 

Source: Own work. 

Figure 25 shows the results of a simple slope analysis conducted to better understand the 

nature of the moderating effects. As can be seen, the line is much steeper for Low BPMM, 
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which indicates that at a low level of BPMM, the impact of AI on OL is much stronger 

compared to High BPMM. As the level of BPMM increased, the strength of the relationship 

between AI and OL decreased. 

Figure 25: BPMM Dampens the Positive Relationship Between AI and OL 

  

 

Source: Own work. 

6.5.6.2 Moderating Role of BPM Maturity on the Relationship Between Organizational 

Learning and Business Process Innovation - Incremental 

The study assessed the moderating role of BPMM on the relationship between OL and BPII. 

The results revealed a negative and significant moderating impact of BPMM on the 

relationship between OL and BPII (β = -0.151, t = -3.628, p < 0.001). The moderation 

analysis summary is presented in Table 88. 

Table 88: Moderating impact of BPMM on the Relationship Between OL and BPII 

Relationship Unstandardized 

weights 
t-value p-value 

OL → BPII 0.235 4.764 < 0.001 

BPMM → BPII 0.424 5.394 < 0.001 

OL*BPMM → BPII -0.164 -3,628 < 0.001 

   To be continued 
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Table 88: Moderating impact of BPMM on the Relationship Between OL and BPII (cont.) 

Relationship Unstandardized 

weights 
t-value p-value 

Probing the Interaction of BPMM 

Low level: OL → BPII 0.338 6.818 < 0.001 

Mean Level: OL → BPII 0.235 4.764 < 0.001 

High level: OL → BPII 0.141 2.935 < 0.01 

 

Source: Own work. 

Figure 26 shows the results of a simple slope analysis conducted to better understand the 

nature of the moderating effects. As can be seen, the line is much steeper for Low BPMM, 

and this indicates that at a low level of BPMM, the impact of OL on BPII is much stronger 

compared to High BPMM. As the level of BPMM increased, the strength of the relationship 

between AI and OL decreased. 

Figure 26: BPMM Dampens the Positive Relationship Between OL and BPII 

  

 

Source: Own work. 

6.5.6.3 Moderating Role of Data-Driven Culture on the Relationship Between Incremental 

Business Process Innovation and Business Process Performance 

The study assessed the moderating role of DDC on the relationship between BPII and BPP. 

The results revealed a positive and significant moderating impact of DDC on the relationship 
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between BPII and BPP (β = 0.098, t = 2.422, p < 0.05). The moderation analysis summary 

is presented in Table 89. 

Table 89: The Moderating Impact of DDC on the Relationship Between BPII and BPP 

Relationship Unstandardized 

weights 
t-value p-value 

BPII → BPP 0.004 0.055 = 0.956 

DDC → BPP 0.115 2.335 = 0.020 

BPII*DDC → BPP 0.078 2.422 = 0.015 

 

Probing the Interaction of DDC 

Low level: BPII → BPP -0.084 -1.207 = 0.227 

Mean Level: BPII → BPP 0.004 0.055 = 0.956 

High level: BPII → BPP 0.105 1.525 = 0.127 

 

Source: Own work. 

Figure 27 shows the results of a simple slope analysis conducted to better understand the 

nature of the moderating effects. As can be seen, the line is much steeper for High DDC, 

which indicates that at a high level of DDC, the impact of BPII on BPP is stronger than for 

Low DDC. As the level of DDC increases, the relationship between BPII and BPP 

strengthens, although the relationship stays nonsignificant. 

Figure 27: DDC Strengthens the Positive Relationship Between BPII and BPP 

 

 

Source: Own work. 
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6.5.6.4 Moderated Mediation 

The moderating role of BPMM on the relationships between AI and OL, OL and BPII, and 

BPII and BPP changes the indirect effects. Next, we present the indexes of moderated 

mediation following Collier (2020) recommendations for reporting moderated mediation. 

AI → OL* → DMP → OP 

Table 90: Moderated Mediation AI → OL* → DMP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → DMP 0.332 7.062 

DMP → OP 0.214 4.011 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → DMP → OP 0.038 

(0.805) 

0.030 0.014/0.058 < 0.001 

Probing Moderated Indirect Relationships 

Low Levels of BPMM 0.044 0.020/0.086 < 0.001 

High Levels of BPMM 0.017 0.007/0.038 < 0.001 

Index of Moderated Mediation -0.018 -0.037/-0.007 < 0.001 

Note: * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported.  

The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 

AI → OL* → DMP → BPP → OP 

Table 91: Moderated Mediation AI → OL* → DMP → BPP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → DMP 0.332 7.062 

DMP → BPP 0.258 3.204 

BPP → OP 0.453 9.514 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → DMP → BPP → OP 0.038 

(0.805) 

0.017 0.006/0.036 < 0.003 

Probing Moderated Indirect Relationships 

Low Levels of BPMM 0.025 0.009/0.057 < 0.003 

High Levels of BPMM 0.009 0.002/0.022 < 0.004 

Index of Moderated Mediation -0.010 -0.024/-0.003 < 0.002 

Note: * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported.  
The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 
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AI → OL* → BPP → OP 

Table 92: Moderated Mediation AI → OL* → BPP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPP 0.328 5.292 

BPP → OP 0.453 9.514 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPP → OP 0.038 

(0.805) 

0.064 0.032/0.111 < 0.001 

Probing Moderated Indirect Relationships 

Low Levels of BPMM 0.092 0.045/0.168 < 0.001 

High Levels of BPMM 0.036 0.015/0.072 < 0.001 

Index of Moderated Mediation -0.037 -0.071/-0.015 < 0.001 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. 

The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 

AI → OL* → BPII* → DMP → OP 

Table 93: Moderated Mediation AI → OL* → BPII* → DMP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPII 0.235 4.764 

BPII → DMP  0.376 7.115 

DMP → OP 0.214 4.011 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

BPMM → BPII 0.424 5.394 

OL*BPMM → BPII -0.164 -3.628 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPII* → DMP → OP 0.038 
(0.805) 

0.008 0.003/0.019 < 0.001 

Probing Moderated Indirect Relationships 

Low Levels of BPMM 0.016 0.007/0.037 < 0.001 

High Levels of BPMM 0.003 0.001/0.009 < 0.009 

Index of Moderated Mediation 0.003 0.001/0.008 < 0.001 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. 

The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 
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AI → OL* → BPII* → DMP → BPP → OP 

Table 94: Moderated Mediation AI → OL* → BPII* → DMP → BPP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPII 0.235 4.764 

BPII → DMP 0.376 7.115 

DMP → BPP 0.258 3.204 

BPP → OP 0.453 9.514 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

BPMM → BPII 0.424 5.394 

OL*BPMM → BPII -0.164 -3.628 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPII* → DMP → BPP → OP 0.038 
(0.805) 

0.004 0.001/0.012 < 0.002 

Probing Moderated Indirect Relationships 

Low Levels of BPMM  0.009 0.003/0.025 < 0.002 

High Levels of BPMM  0.001 0.000/0.005 < 0.014 

Index of Moderated Mediation  0.002 0.000/0.005 < 0.002 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. 

The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 

AI → OL* → BPII* → BPP → OP 

Table 95: Moderated Mediation AI → OL* → BPII* → BPP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPII 0.235 4.764 

BPII → BPP 0.004 0.055 

BPP → OP 0.453 9.514 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

BPMM → BPII 0.424 5.394 

OL*BPMM → BPII -0.164 -3.628 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPII* → BPP → OP 0.038 

(0.805) 

-0.000 -0.008/0.007 > 0.05 

Probing Moderated Indirect Relationships 

Low Levels of BPMM  -0.008 -0.030/0.006 > 0.05 

High Levels of BPMM  0.002 -0.001/0.008 > 0.05 

Index of Moderated Mediation  0.000 -0.003/0.003 > 0.05 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. 
The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 
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AI → OL* → BPIR → DMP → OP 

Table 96: Moderated Mediation AI → OL* → BPIR → DMP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPIR 0.329 7.132 

BPIR → DMP  0.053 0,832 

DMP → OP 0.214 4.011 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

Effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPIR → DMP → OP 0.038 

(0.805) 

0.002 -0.003/0.008 > 0.05 

Probing Moderated Indirect Relationships 

Low Levels of BPMM  0.003 -0.004/0.012 > 0.05 

High Levels of BPMM  0.001 -0.002/0.005 > 0.05 

Index of Moderated Mediation  -0.001 -0.005/0.001 > 0.05 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. The value in parentheses 

is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 

AI → OL* → BPIR → DMP → BPP → OP 

Table 97: Moderated Mediation AI → OL* → BPIR → DMP → BPP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPIR 0.329 7.132 

BPIR → DMP 0.053 0,832 

DMP → BPP 0.258 3.204 

BPP → OP 0.453 9.514 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPIR → DMP → BPP → OP 0.038 
(0.805) 

0.001 -0.001/0.005 > 0.05 

Probing Moderated Indirect Relationships 

Low Levels of BPMM  0.001 -0.002/0.008 > 0.05 

High Levels of BPMM  0.000 -0.001/0.003 > 0.05 

Index of Moderated Mediation  -0.001 -0.003/0.001 > 0.05 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. 

The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 
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AI → OL* → BPIR → BPP → OP 

Table 98: Moderated Mediation AI → OL* → BPIR → BPP → OP 

Direct relationships Unstandardized 

weights 

t-values 

AI → OL 0.427 6.736 

OL → BPIR 0.329 7.132 

BPIR → BPP 0.394 5.003 

BPP → OP 0.453 9.514 

BPMM → OL 0.657 8.070 

AI*BPMM → OL -0.248 -3.579 

  

Moderated Indirect Relationship Direct 

Effect 

Indirect 

effect 

Confidence 

Interval 

Low/High 

p-value 

AI → OL* → BPIR → BPP → OP 0.038 

(0.805) 

0.025 0.013/0.046 < 0.001 

Probing Moderated Indirect Relationships 

Low Levels of BPMM  0.038 0.019/0.071 < 0.001 

High Levels of BPMM  0.014 0.006/0.030 < 0.001 

Index of Moderated Mediation  -0.015 -0.030/-0.007 < 0.001 

Notes. * = The construct of BPMM moderates the indirect effect. Unstandardized coefficients are reported. 

The value in parentheses is t- value. Bootstrap Sample = 5,000 with replacement. 

 

Source: Own work. 

7 DISCUSSION 

Although AI has been around since the 1960s, it has reemerged as a key technology in 

realizing performance and competitive advantage (Davenport & Ronanki, 2018). This study 

was primarily motivated by managers’ and academics’ renewed interest in the business value 

of AI. There is much theoretical discussion on its business value potential. However, the 

scholarly literature has lagged in its examination of the value-generation process and 

empirically verifying if and under what conditions the AI investments perform. 

This study is built on the resource-based view and dynamic capability view, contextualized 

by the integrative IT business value model, and incorporates the knowledge management 

perspective and recent research on AI business value. 

The proposed serial multiple-mediation model proves that multiple constructs can be linked 

in series to obtain the desired output. The results generally confirm the existence of full serial 

multiple-mediations in the proposed framework, highlighting the relationship between AI 

resources, BPM capabilities, and organizational performance. This chapter examines these 

results and discusses how AI affects performance. 

7.1 Answering the Research Question 

This study investigates the relationship of the proposed serial multiple-mediation AI 

business value model with AI as the independent variable (as defined in Section 2.2). We 

test how several mediating and moderating variables affect the relationship between AI 
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adoption and organizational performance. Our overarching research question, formulated in 

line with these objectives, is as follows: How do AI technologies create business value, and 

what form of business value is expected? Although previous studies examine the relationship 

between AI and firm performance (Table 1), there is no comprehensive assessment of the 

value-generation process. 

This study’s theoretical framework and background are based on a review of existing 

literature on IT business value and AI. The findings from the literature review are 

supplemented with interviews (Section 3.4.2). The broader scope of AI adoption was 

discussed in nine in-depth semi-structured interviews, and the interviewees shared their 

experiences with AI implementation, deployment, use, and impact. Based on the findings, 

we propose a serial multiple-mediation model where multiple constructs are linked serially 

to explain the impact of AI on performance. Several relevant mediating variables are 

proposed (defined variable in parenthesis): cognitive business process automation (CBPA), 

business process innovation (BPI), organizational learning (OL), decision-making 

performance (DMP), and business process performance (BPP). Additionally, we include the 

constructs of digital maturity (DM), data-driven culture (DDC), BPM maturity (BPMM), and 

organizational culture (OC) to account for organizational context and Environmental 

Uncertainty in the competitive environment. 

We empirically examine the research question utilizing a survey design. In addition to the 

literature review and exploratory interviews, we conceptualize and operationalize the 

concepts of AI adoption and CBPA and merge these with the existing measures in a 

structured questionnaire. After the pilot run and the refinement procedures, we employ the 

questionnaire in the main survey to collect data; we use a single primary data source, self-

reporting, and cross-sectional design. The analysis is performed on a data sample of 448 

cases of EU organizations utilizing AI in their business processes. We answer the subsidiary 

research questions by testing the proposed hypotheses. 

7.1.1 AI Adoption Impact on Organizational Performance 

Does AI adoption have a direct positive influence on organizational performance? 

This sub-question is intended to identify if there is a relationship between AI and 

organizational performance. As this study is based on a survey, the respondent’s opinions of 

the relationship are examined using structural equation modeling (SEM). This represents the 

reexamination of the base proposition of the AI business value model established by previous 

research (Table 1). Establishing the causal link between these two variables confirms that 

AI business value generation is an important area for consideration in the academic 

literature. 

Big Data has become ubiquitous in the business environment and is now classified as a factor 

of production (Chetty, 2019; Manyika et al., 2011). The accellerated growth and low storage 
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costs have led organizations to focus on AI technology to extract value from Big Data. AI-

enabled data processing facilitates new IT capabilities that directly or indirectly impact the 

operational and dynamic capabilities by automating or augmenting them, resulting in 

improved decision-making and process performance. We examine these IT capabilities 

using five distinct sub-dimension of AI adoption. 

7.1.1.1 Results for Five Distinct Sub-Dimensions of AI Adoption 

This study outlines AI adoption using five distinct sub-dimensions, the components of AI 

adoption. By maximizing market and operational efficiencies, businesses can achieve 

superior performance. The AI-enabled capabilities of automation and augmentation are 

grounded in the resource-based, dynamic capabilities, and knowledge-based views. They are 

expected to increase competitive advantage and firm performance. According to the 

resource-based view, organizations can produce sustained competitive advantage when the 

resources they deploy are valuable, rare, inimitable, and non-substitutable. On the dynamic 

capabilities view, there is a recognition of the organization’s ability to adapt to changing 

business environments and effectively manage its resources to sustain a competitive 

advantage over time. The knowledge-based view emphasizes the role of knowledge and 

knowledge management in creating and sustaining competitive advantage for firms. 

The measurement of the AI-adoption latent construct is based on a Likert-scale-derived 

research survey. Therefore, the mean can be used as an acceptable measure of central 

tendency. The mean value for AI adoption is 2.144, with a standard deviation of 0.890. We 

employ a five-point Likert scale, and this mean value is low, indicating that, overall, the 

respondents view their organization’s AI adoption as lacking. In the business context, this 

implies that the organizations in this study are underdeveloped in their adoption of AI 

technologies and solutions. They nevertheless adopt and leverage AI technologies and 

realize performance gains (Mishra & Pani, 2020). These results reflect management’s 

continuing difficulty leveraging technologies to gain a competitive edge. 

The second-order AI-adoption construct is positively and moderately correlated with DDC 

(r = 0.430, p < 0.001),20 DM (r = 0.445, p < 0.001), and BPMM (r = 0.377, p < 0.001). This 

implies an organizational environment with more extensive and higher-level informatization 

and digitalization, a more structured approach, and active data-driven management of 

business operations. The only culture type correlated with the latent construct (r = 0.135, p = 

0.004), Adhocracy Culture, focuses on innovation and creativity. This indicates 

organizations should strive to achieve a culture of innovation and creativity to efficiently 

and successfully leverage AI technologies. As shown by the correlation with Environmental 

Uncertainty (r = 0.264, p < 0.001), organizations in more competitive and unstable business 

                                                 
20 Pearson correlation (significance, two-tailed) is a statistical measure of the linear relationship between two 

continuous variables. It measures the degree to which two variables are related and the direction of that 

relationship. 
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environments tend to achieve a higher level of adoption. The correlation with Country (r = 

0.102, p = 0.030) suggests differences in levels of adoption dependent on the EU country. 

The following discussion on AI adoption sub-dimensions offers a more detailed view. 

The sub-dimension of data acquisition and preprocessing (DACQ) has a mean value of 2.354 

with a standard deviation of 1.188, meaning responses are spread out and diverse. We 

employ a five-point Likert scale, and the mean value can thus be considered moderate. Only 

13.6% of the organizations rated highly on this measure. Respondents overwhelmingly view 

their organizations as inadequate in data acquisition and preprocessing, attributing this to the 

ineffective leveraging of Big Data, an essential resource in the resource-based view. As a 

result, other sub-dimensions that build on this may also have lower values. Interestingly, 

there is a negative correlation between DACQ and Clan Culture (r = −0.095, p = 0.045); a 

culture focused on collaboration and teamwork will hinder AI adoption efforts. 

In contrast, Market Culture, which focuses on competition and achieving measurable goals, 

will reinforce AI adoption (r = 0.094, p = 0.48). DACQ positively correlates with Firm Size 

(r = 0.176, p < 0.001), indicating higher adoption rates for larger organizations. It is plausible 

that larger organizations have more data and resources, including finances, expertise, and 

technology infrastructure, and tend to generate more data than smaller ones, as indicated by 

Interview 1. However, competitiveness and industry trends do not seem influential as Firm 

Size is not correlated with Environmental Uncertainty, which measures competitiveness and 

trends in the business environment. 

DDC (r = 0.284–0.428, p < 0.001), DM (r = 0.307– 0.393, p < 0.001), and BPMM (r = 0.274–

0.326, p < 0.001) all have a positive correlation with the sub-dimensions. Achieving a higher 

level and extent of AI adoption requires a greater focus on data and analytics, digital 

initiatives, and the management of business processes. 

Although we expect Environmental Uncertainty to have an inhibitory effect (e.g., increased 

operational risks, financial risks, and hindering endogenous financing) on technological 

adoption (Chen, Wang, et al., 2022; Choon-Ling, Hock-Hai, Tan, & Kwok-Kee, 2004; Deng, 

Fang, Tian, & Luo, 2022), when environmental uncertainty rises, organizations will increase 

R&D activities, investment, and improve their ability to innovate to be more agile and 

responsive to new trends and technologies (Sun, Yu, Zhang, & Zhang, 2022). We can infer 

that a positive correlation responds to highly competitive industries or rapidly changing 

markets. 

Cognitive Insight (CI), “the ability to use AI to detect patterns in data and interpret their 

meaning,” is closely related to the dynamic capabilities of sensing and seizing opportunities 

in response to changing markets and the technological conditions represented by Big Data 

(see Section 3.4.4). It has a low mean value of 2.200 with a standard deviation of 1.196; 

responses are thus spread out. Only 11.2% of the organizations rated highly. The results 

suggest that the organizations are passing up potential benefits and insights. The results for 
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DACQ indicate that insufficient resources and data quality issues could influence the results. 

Also, resistance to change and, by extension, lack of awareness or understanding could 

hinder the adoption of AI. The moderate correlation (r = 0.393, p < 0.001) of CI with DM 

partially confirms this assumption. Interestingly, the sub-dimension does not significantly 

correlate with any culture type. Like DACQ, CI is positively correlated with Firm Size (r = 

0.127, p = 0.007), indicating higher adoption rates for larger organizations. 

Cognitive Engagement (CE), “the ability to support AI-enhanced human–computer 

interaction and collaboration,” has the lowest mean in the study, with a value of 1.887 and a 

standard deviation of 0.985. Only 5.1% of the organizations rated highly. No specific reasons 

for the lower value are discernable from the results. The CE sub-dimension is moderately 

correlated with DM (r = 0.382, p < 0.001) and has the highest correlation, although it is still 

low, with Country (r = 0.115, p = 0.015), suggesting that there could be a language barrier. 

We speculate this could be because of the limited number of EU languages supported by AI 

systems (e.g., chatbots, virtual assistants, recommendation systems, NLP tools). The country 

variable is not correlated with any other control or contextual variable that would indicate a 

lack of infrastructure, limited resources, environmental uncertainty, cultural barriers, or low 

digital maturity. A negative correlation between CE and Hierarchy Culture (r = −0.104, p = 

0.024), which is focused on structure and stability, shows this culture hinders integration 

efforts. 

In decision-making processes, the ability to use AI, known as cognitive decision assistance 

(CDA), has a low mean value of 1.960 with a standard deviation of 1.111, indicating the 

responses are more spread out. Only 8.9% of the organizations rated highly. This sub-

dimension has a moderate correlation with DDC (r = 0.318, p < 0.001), DM (r = 0.342, p < 

0.001), and BPMM (r = 0.313, p < 0.001). A positive correlation with Adhocracy Culture (r 

= 0.198, p < 0.001) indicates that a culture focused on innovation and creativity will ensure 

higher AI adoption. Interestingly, the sub-dimension negatively correlates with Firm Age (r 

= −0.115, p = 0.015), indicating lower adoption rates for older organizations. We can only 

speculate, but reasons for this could include legacy systems, infrastructural limitations, 

resistance to change, higher risk aversion, and poor data quality. Older organizations may 

face more significant challenges integrating AI technologies into their existing IT 

infrastructure and operations. There may be cultural resistance to change, and older 

organizations may be more risk-averse, making them slower to adopt new technologies. This 

risk aversion may be the result of the fear of disrupting existing operations or a desire to 

avoid costly mistakes. AI systems require high-quality data to work effectively. Older 

organizations may have legacy data systems that are not optimized for AI, resulting in poor 

data quality. This can make it harder to implement AI-assisted decision-making systems. 

This scenario was confirmed during Interviews 1 and 3. 

Cognitive technologies (CT), “the ability to integrate AI technologies with other IT 

resources, services, and devices,” have a low to moderate mean value of 2.319 with a 

standard deviation of 1.184; responses are more spread out. Only 14.7% of the organizations 
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rated highly. AI technologies moderately correlate with DM (r = 0.330, p < 0.001) and 

BPMM (r = 0.326, p < 0.001) integration. It has the highest correlation with Environmental 

Uncertainty (r = 0.221, p < 0.001) and DDC (r = 0.428, p < 0.001) from all sub-dimensions. 

A positive correlation with Adhocracy Culture (r = 0.198, p < 0.001) indicates that a culture 

focused on innovation and creativity will facilitate greater integration of AI technologies. 

By contrast, a negative correlation between CT and Hierarchy Culture (r = −0.107, p = 

0.024), which is a culture focused on structure and stability, will hinder integration efforts. 

As with cognitive decision assistance, the CT sub-dimension negatively correlates with Firm 

Age (r = −0.122, p = 0.010), indicating lower adoption rates for older organizations. The 

negative correlation with Hierarchy Culture could imply a siloed organizational structure 

where business units operate with limited communication or collaboration. There is limited 

knowledge sharing, a lack of coordination, and reduced agility in such a structure, hindering 

the organization’s ability to work effectively and efficiently and presenting a barrier to the 

adoption of new technologies and approaches, including AI. The siloed organizational 

structure (Hierarchy Culture) could also be linked to Firm Age as they are positively 

correlated (r = 0.283, p < 0.001). 

7.1.1.2 The Relationship Between AI Adoption and Organizational Performance 

We test the proposed relationship between AI and organizational performance using SEM. 

The relationship is significant without the mediators, and the standardized total effect is 

0.418. This indicates that there is a positive relationship between AI adoption and 

organizational performance, where an increase in AI adoption increases MP and OP. This 

finding (direction and approximate value) aligns with several studies on AI and firm 

performance presented in Table 1. The variation in data and the sample population can 

explain the measurable differences in the findings. 

The standardized weights of the AI adoption sub-dimension are high, and range between 

0.633 and 0.850, and the proportion of variance explained (R2) ranges between 0.401 and 

0.722. Similarly, standardized weights of the organizational performance sub-dimensions of 

the MP (β = 0.856) and OP (β = 0.827) are high. The proportion of variance explained by 

the latent variables is as follows: R2 = 0.732 for MP and R2 = 0.684 for OP. 

However, the relatively small proportion of variance explained by OP (R2 = 0.194) indicates 

that this effect could be mediated. Including mediators in the analysis makes the relationship 

insignificant, showing that it is indeed fully mediated by the proposed variables (Section 2.2) 

and, therefore, does not positively and directly influence organizational performance. 

7.1.2 Business Process Performance Impact on Organizational Performance 

Does BPP positively influence organizational performance?  
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According to Kaplan and Norton (1996), organizations need to balance financial and non-

financial indicators to link performance measures to strategy and build competitive 

advantage (Hegazy, Hegazy, & Eldeeb, 2022). Kaplan and Norton (1996) introduce the 

balanced scorecard approach, a widely accepted framework that measures and links 

performance according to four perspectives: customer, financial, internal business, and 

learning and growth. Isolating internal processes from overall organizational performance 

metrics reveals their mediating role. Therefore, we argue that BPP mediates the impact of 

AI adoption on organizational performance as AI adoption results in more efficient, flexible, 

and better-quality processes. The separation allows a more detailed view of the value-

generation process, as suggested by Melville et al. (2004) IT value-generation model. 

Enholm et al. (2021) propose that in the context of AI adoption, performace measures should 

be separated at the process and organizational level. However, empirical studies on AI and 

firm performance do not present BPP as a mediating factor (Table 1). 

The analysis confirms that BPP positively influences organizational performance (β = 0.576, 

t = 9.488, p < 0.001). The results at the construct level show the impact of AI adoption comes 

in the form of improved process efficiency (β = 0.871, p < 0.001) and quality (β = 0.875, p 

< 0.001), and slightly less comes in the form of enhanced flexibility of processes (β = 0.709, 

p < 0.001). While AI adoption excels at streamlining existing processes and boosting 

efficiency and output quality, its impact on process flexibility might be less pronounced. AI 

is often designed to optimize specific tasks, prioritizing efficiency and accuracy. Enhancing 

flexibility usually involves trade-offs between efficiency and quality. The focus on 

efficiency and quality can limit its ability to adapt to unexpected situations or changing 

requirements. Moreover, current AI may lack the general reasoning necessary to understand 

complex process changes, and its effectiveness relies heavily on training data representative 

of all process variations. The results indicate that AI has the most significant impact on 

process quality (β = 0.875, p < 0.001). From a theoretical perspective, several potential 

reasons can be inferred. AI effectively automates repetitive tasks accurately, minimizing 

errors and process variability. In most exploratory interviews, this emerged as the primary 

rationale for adopting AI. Moreover, AI supports ongoing process quality enhancement and 

maintenance through continuous monitoring and optimization. By continuously learning 

from data, AI systems can propose process enhancements or adjustments, improving 

outcomes and ultimately contributing to higher process quality. This assertion aligns with 

findings from the British Petroleum case study (Section 2.8). We conclude that value is 

realized at the operational level through enhanced execution of processes achieved by 

improving information speed, scale, granularity, and accuracy. These results are consistent 

with prior studies on IT business value that position BPP as a mediator of the impact on 

organizational performance (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Aydiner, Tatoglu, 

Bayraktar, Zaim, et al., 2019; Melville et al., 2004). 
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However, BPP is positioned as a secondary mediator in the serial multiple-mediation 

relationships in the proposed model because the direct relationship between AI adoption and 

BPP is insignificant and is clearly mediated. 

Additionally, BPP has a mean value of 3.350 with a standard deviation of 0.897, which 

indicates a moderate level of process performance. As expected, BPP is positively correlated 

with BPMM (r = 0.488, p < 0.001), indicating efforts to manage processes are related to BPP. 

The variables DDC (r = 0.438, p < 0.001) and DM (r = 0.299, p < 0.001) are also positively 

correlated with BPP, implying organizations use data to continuously monitor, analyze and 

improve the performance of business processes. A positive correlation of BPP with 

Adhocracy Culture (r = 0.276, p < 0.001) indicates that, in the AI context, a culture focused 

on innovation and creativity reinforces BPP. A negative correlation with Hierarchy Culture 

(r = −0.146, p = 0.002), which is focused on structure and stability, implies lower BPP. Also, 

BPP is negatively correlated with the Firm Size (r = −0.195, p < 0.001) and Firm Age (r = 

−0.185, p < 0.001), indicating that the performance of business processes in larger and older 

organizations will be lower. A possible reason for this could be a lack of innovation; growing 

and aging companies may focus more on maintaining their existing business than innovating. 

Over time, a lack of innovation can lead to a decline in performance. The negative correlation 

between Radical Innovation and Firm Size (r = −0.098, p = 0.037) and Age (r = −0.195, p < 

0.001) and between Incremental Innovation and Age (r = −0.106, p = 0.025) confirms this 

assertion. 

7.1.3 Decision-Making Performance Impact Business Processes and Organizational 

Performance 

Does DMP positively influence BPP and organizational performance? 

AI systems’ enhancement of decision-making effectiveness (quality) and efficiency are 

expected. We measure the impact on decision-making at the process level and position DMP 

as an essential mediator linking AI adoption to BPP and organizational performance. The 

link to BPP is intended to confirm the impact of AI-enabled decision-making at the level of 

operational processes. At the same time, the link to organizational performance demonstrates 

the implications at the strategic level. 

The results of the SEM analysis show AI adoption has a significant impact on decision-

making in terms of operational processes (β = 0.249, t = 3.532, p < 0.001). The impact is 

also evident at the strategic level (β = 0.244, t = 4.050, p < 0.001), directly impacting the 

organization’s performance (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Fredrickson & 

Mitchell, 1984) and not mediated through BPP. Fredrickson and Mitchell (1984) theorize 

that in an unstable environment, there is a negative relationship between DMP and 

performance, but this is a positive relationship in a stable environment. The results show a 

positive relationship between DMP and organizational performance. Therefore, we can 

presume organizations operate in a stable business environment. Indeed, the Environmental 
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Uncertainty variable, measured on a 5-point Likert scale, has a mean of 3,208 with a standard 

deviation of 0.654, indicating a reasonably stable business environment and confirming 

Aydiner, Tatoglu, Bayraktar, and Zaim (2019) and Fredrickson and Mitchell (1984). 

The structural model results confirm that DMP plays a critical mediating role in the impact 

of AI adoption on BPP. Specifically, DMP fully mediates the effects of CBPA and BPII, 

with additional partial mediation of OL. DMP exhibits a positive correlation with BPP 

indicators, with the most substantial influence on process efficiency (r = 0.534, p < 0.001) 

and the least on process flexibility. These findings underscore DMP's pivotal role as a 

determinant of process efficiency, directly affecting the smoothness and effectiveness of 

operations, including speed, coordination, and resource allocation (Majumdar, 2014). 

DMP has a mean value of 3.348 with a standard deviation of 0.840, indicating a moderate 

level of decision-making performance. The correlation of organizational context with DMP 

is similar to that with BPP, indicating the factors are interrelated and mutually reinforcing. 

DMP is positively correlated with BPMM (r = 0.589, p < 0.001), indicating that efforts to 

manage processes improve decision-making. DDC (r = 0.515, p < 0.001) and DM (r = 0.349, 

p < 0.001) are also positively correlated with DMP, implying an organizational approach 

that emphasizes the use of data to make informed decisions. A positive correlation between 

DMP and Adhocracy Culture (r = 0.247, p < 0.001) indicates that a culture focused on 

innovation and creativity will have better decision-making. A negative correlation with 

Hierarchy Culture (r = −0.180, p < 0.001), which is focused on structure and stability, 

implies that decision-making performance is lower in these cultures. Also, DMP is 

negatively correlated with the Firm Size (r = −0.176, p < 0.001) and Firm Age (r = −0.178, 

p < 0.001), indicating larger and older organizations will have lower DMP. Larger and older 

organizations may have more complex organizational structures and decision-making 

processes, making effective and efficient decision-making challenging, as indicated by 

Interview 1 in the exploratory research phase. 

We conclude that DMP positively influences operational processes and organizational 

performance. Thus, enhanced decision-making through the use of AI technologies is an 

important performance indicator of AI business value operationally and strategically. 

7.1.4 The Mediating Role of Cognitive Business Process Automation 

Does CBPA mediate the positive impact of AI adoption on DMP and BPP? 

As part of our automation–augmentation perspective, we position CBPA as an operational 

capability, that is, “an organization’s ability to perform functional activities using 

purposefully chosen groups of resources.” CBPA measured the impact of AI adoption on 

cognitive business process automation, which goes beyond rule-based automation by 

integrating AI and cognitive computing capabilities. This approach distinguishes AI's impact 

from other automation technologies. It emphasizes the cognitive approach that facilitates 
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human-machine collaboration, thereby contributing to a perspective of AI adoption focused 

on automation and augmentation. 

The measurement centers on processes that require substantial knowledge and decision-

making, qualities that align closely with AI's capabilities and are particularly suitable for 

automation. There is a significant overlap between knowledge-intensive and decision-

making business processes (see Section 4.1.3). These processes are more complex and less 

automatable than purely structured processes. The objective was to determine if cognitive 

technologies create business value through their ability to automate these processes. 

Although no universally accepted classification system neatly separates all business 

processes, we incorporated two common approaches that combine knowledge-intensive and 

decision-making processes. 1) Process complexity categorizes processes based on their level 

of complexity, with knowledge-intensive and decision-making processes typically falling 

under more complex categories. Measurement of process complexity involved assessing 

how cognitive technologies enable automation across structured and unstructured business 

processes. 2) Process automation suitability classifies processes based on their potential level 

for automation. Knowledge-intensive and decision-making processes often require human 

intervention and are less easily automated. The assessment of process automation suitability 

involved evaluating the spectrum of automation enabled by cognitive technologies, spanning 

from manual to fully automated processes. 

Process complexity is more helpful in analyzing process efficiency, while automation 

suitability is better for identifying opportunities for technology adoption (Di Ciccio et al., 

2015; Szelagowski & Lupeikiene, 2020; Vagia et al., 2016; Zhou, Zhang, Chen, & Liu, 

2023). In this context, the results show that CBPA has a mean value of 2.385 with a standard 

deviation of 0.889, which indicates a moderate level and extent of cognitive business process 

automation. As regards the sub-dimensions, the Level variable has a mean value of 2.499 

with a standard deviation of 0.994, meaning responses are more spread out and diverse. The 

result indicates a moderate level of automation, specifically, with respect to decision 

selection, the automation agent selects one decision and executes it with human approval. 

The Extent variable has a mean value of 2.271 with a standard deviation of 0.979, meaning 

responses are spread out and diverse. The result indicates the extent of automation is low 

and is centered on structured business processes with ad hoc exceptions and unstructured 

business processes with predefined fragments (i.e., structured and semi-structured). The 

finding of a moderate level of automation is in line with Raisch and Krakowski (2021), 

Daugherty and Wilson (2018), and Karan et al. (2021). 

The structural model analysis shows that AI adoption significantly and strongly affects 

CBPA (β = 0.697, t = 11.306, p < 0.001). However, CBPA has no significant direct effect on 

BPP in terms of the efficiency of execution or scalability to full automation, where an agent 

acts autonomously. In contrast, it has an (expected) significant and direct effect on DMP (β 

= 0.146, t = 2.313, p = 0.021). Thus, automation efforts aim to improve decision-making 
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efficiency and effectiveness at the augmentation end of the human–machine collaboration 

spectrum, corresponding to a moderate level of automation. The human-in-the-loop system 

supports a wide extent of augmented processes ranging from structured to semi-structured 

processes when execution relies entirely or partially on human judgment. 

These results support the arguments by Brynjolfsson and McAfee (2014), Daugherty and 

Wilson (2018), Davenport and Kirby (2016), and Raisch and Krakowski (2021) that 

organizations should prioritize augmentation. Raisch and Krakowski (2021) explain that 

automation instills a logic of formal or procedural rationality, and they emphasize the 

importance of following formal procedures and rules in decision-making. This conflicts with 

the logic of substantive rationality, and it is thus important to consider the broader context 

and implications of decisions to achieve results consistent with organizational goals and 

values. While procedural rationality can help to ensure consistency and fairness in decision-

making, it concerns only the efficiency or effectiveness of decision-making and not the 

implications of the decisions made. Therefore, it should be bound by human judgment as a 

real digital cognitive mediator does not yet exist (Rouse & Spohrer, 2018). This explanation 

is consistent with the results obtained. 

Regarding the role of mediation, the direct effect of AI adoption on BPP and DMP is 

insignificant. Thus, we conclude that CBPA indeed mediates the impact of AI adoption on 

DMP, albeit partially. The proportion of variance in the latent variable (R2 = 0.486) is above 

moderate, indicating that a large proportion of the variation in the CBPA variable is 

explained by the independent variable of AI adoption, suggesting a strong relationship. 

Automating routine tasks and reducing errors and variability can contribute to BPM maturity 

(BPMM) by freeing human resources for more complex and value-added activities (van der 

Aalst, La Rosa, & Santoro, 2016) and we thus expect the correlation between CBPA and 

BPMM (r = 0.396, p < 0.001); DDC (r = 0.354, p < 0.001) and DM (r = 0.277, p < 0.001) 

also positively correlate with CBPA. This finding implies an organizational approach (via 

BPM, data-driven culture, and digital transformation) to automation that emphasizes the use 

of data to make informed decisions. A positive correlation between CBPA and Adhocracy 

Culture (r = 0.170, p < 0.001) indicates that a culture focused on innovation and creativity 

is likely to engage in more automation. The negative correlation between CBPA and 

Hierarchy Culture (r = −0.113, p = 0.017) shows that such a culture, which is focused on 

structure and stability, hinders automation. Also, CBPA is negatively correlated with Firm 

Age (r = −0.118, p < 0.012), indicating older organizations are unwilling or have difficulty 

implementing automation systems. We identify two reasons for this in the exploratory 

interviews: organizations may have legacy systems that are not easily compatible with new 

technologies (Interview 1) or are resistant to change in a cultural sense (Interviews 1 and 3). 

The positive correlation with Environmental Uncertainty (r = 0.200, p < 0.001), 

organizations in more competitive and unstable business environments are more willing to 

automate. 
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Overall, CBPA does not have a significant direct effect on BPP but has a significant direct 

impact on DMP, indicating that organizations lean more toward augmenting than automating 

business processes. 

7.1.5 The Mediating Role of Organizational Learning 

Does OL mediate the positive impact of AI adoption on DMP and BPP? 

Organizational learning (OL) is positioned as an essential mediator of AI adoption and 

represents the augmentation potential of AI (in our automation–augmentation perspective). 

AI can explicate the organizational knowledge base, provided that it is represented in Big 

Data, by developing new, incremental knowledge or updating existing knowledge. 

Consistent with the dynamic capabilities view, AI integrates, builds, or reconfigures 

competencies to address rapidly changing environments (Eisenhardt & Martin, 2000). 

Organizational competencies can remain dynamic, allowing the organization to become 

more efficient by developing new knowledge through organizational learning (Senge, 1998). 

OL is rated at a moderate to high level (mode value is 4.0) on the 5-point Likert scale, with 

a mean value of 3.650 and a standard deviation of 0.982. These results confirm that 

organizational learning has an important role in organizations adopting AI. 

The structural model analysis shows that AI adoption significantly and strongly affects OL 

(β = 0.488, t = 8.910, p < 0.001). Next, OL has a significant direct effect on DMP (β = 0.371, 

t = 6.905, p < 0.001) and BPP (β = 0.341, t = 5.541, p < 0.001). These findings confirm the 

impact of AI adoption that takes place by increasing the organization’s capabilities in 

acquiring, creating, integrating, and distributing information and knowledge. As already 

established, AI does not directly impact DMP and BPP (the direct relationships are 

insignificant), and organizations prefer augmentation, leaving humans in the loop of 

decision-making. In this manner, AI indirectly affects human decisions through complex 

learning processes that are difficult to predict (Schmidt, 2017). This interaction can result in 

incremental single-loop improvements or more radical double-loop learning (Wijnhoven, 

2022) innovations. A positive correlation between OL and the efficiency of process 

performance indicates that it can directly impact BPP (r = 0.537, p < 0.001). Also, by 

learning new processes and techniques, employees can produce higher quality (r = 0.553, 

p < 0.001) and more flexible (r = 0.519, p < 0.001) processes; organizational learning can 

promote a culture of innovation and creativity, leading to new ideas and processes that 

improve process performance. These results highlight OL's significant impact on process 

quality. From theory, OL promotes knowledge sharing and disseminating best practices. 

Successful methods proven effective in one area can be applied across the organization, 

enhancing overall process quality (Armistead, 1999). Analyzing both past failures and 

successes in process execution enables organizations to manage process risks proactively. 

OL also deepens understanding of customer needs and preferences, facilitating continuous 
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process improvement aligned with market demands and enhancing competitiveness, thus 

increasing overall quality (Migdadi, 2022). 

Regarding the mediating role of organizational learning, the direct effect of AI adoption on 

BPP and DMP is insignificant, and we conclude that OL partially mediates this impact. 

Despite not indicating a good fit (R2 is 0.286), OL is confirmed as one of four mediators of 

AI adoption. 

OL positively correlates with BPMM (r = 0.519, p < 0.001). Organization learning and BPM 

maturity are closely related concepts (Jamali, 2006); they both involve continuous 

improvement and adaptation. DDC (r = 0.505, p < 0.001) and DM (r = 0.302, p < 0.001) also 

positively correlate with OL due to digital technologies being essential for the capture and 

analysis of data, communication and collaboration, and remaining agile and adaptable. 

Organizational learning is important in various models of digital maturity (Ruel, Rowlands, 

& Njoku, 2020; Teichert, 2019). A positive correlation between OL and Adhocracy Culture 

(r = 0.255, p < 0.001) indicates that a culture focused on innovation and creativity is 

recommended for successful AI adoption. A negative correlation between OL and Hierarchy 

Culture (r = −0.242, p < 0.001), focused on structure and stability, presents a hindrance. 

In addition, OL is negatively correlated with Firm Size (r = −0.158, p < 0.001) and Firm Age 

(r = −0.200, p < 0.001), indicating larger and older organizations are less successful at 

organizational learning. Some evidence suggests that learning may be negatively correlated 

with the size and age of the organization. This is because more extensive and older 

organizations tend to have more established routines, processes, and procedures that can 

impede learning and innovation. There is also some qualitative evidence (Interviews 1, 2, 3, 

and 9) to suggest that OL may be negatively correlated with Firm Size and Firm Age. Again, 

we observe a positive correlation with Environmental Uncertainty (r = 0.200, p < 0.001) 

since organizations in more competitive and unstable business environments are more 

inclined to focus on organizational learning for the purposes of innovation (Chang, Tang, 

Cheng, & Chen, 2022). The results regarding the control variables confirm that Firm Size 

negatively impacts OL (β = −0.224, t = −5.034, p < 0.001); this confirms the findings from 

Jiménez-Jiménez and Sanz-Valle (2011) and Jansen, Van Den Bosch, and Volberda (2005). 

The SEM moderation analysis shows that BPMM negatively moderates the relationship 

between AI adoption and OL (β = −0.148, t = −3.579, p < 0.001). A higher BPMM implies 

more strictly defined processes, which negatively influence the organization’s learning 

potential. Several studies show that higher BPM maturity may make organizations inflexible 

and bureaucratic (Adler et al., 2005; Antoniol et al., 2004; Nawrocki et al., 2002). This view 

suggests that higher BPM maturity has a negative impact on organizational learning and 

innovation, as noted by (Herbsleb et al., 1997). During exploratory interviews (Interviews 

1, 2, 3, and 9), several potential explanations were offered. These include resistance to 

change and a lack of experimentation, where a focus on efficiency and standardization may 

discourage experimentation and risk-taking, which are important for learning and 
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innovation. Organizations may have a limited scope, as BPM practices optimize existing 

processes. They may fail to explore new possibilities or alternatives or have a narrow focus, 

as BPM maturity can emphasize process improvement rather than broader organizational 

goals and objectives. Organizations may have a myopic view of their performance, limiting 

their ability to learn and grow. 

In conclusion, organizational learning mediates the positive impact of AI adoption on DMP 

and BPP. According to the results, such learning is one of the most effective ways to extract 

business value from AI, improving the performance of knowledge-intensive processes and 

enhancing the efficiency of decision making, preventing unnecessary trial-and-error, and 

increasing the effectiveness and speed of decision-making. 

7.1.6 The Mediating Role of Incremental Business Process Innovation 

Does BPII mediate the positive impact of AI adoption on DMP and BPP? 

From the automation–augmentation perspective BPII is employed to examine the 

incremental transformational effects of AI adoption. We incorporate an ambidextrous 

approach, recognizing the importance of organizations exploring new domains and 

simultaneously exploiting those already in place to survive and grow (March, 1991; O'Reilly 

III & Tushman, 2011). Thus, we distinguish between incremental and radical transformation 

effects. Adopting the knowledge-based perspective, we see innovation as a way for 

organizations to leverage their knowledge assets to create new products or services, improve 

processes, and find new ways to deliver value. As regards improvement, organizations are 

using embedded AI technology or an AI-enabled innovation process to search for solutions 

in knowledge domains related to their existing knowledge base. This generates 

comparatively incremental solutions in innovation since they rely very closely on existing 

knowledge. 

Considering that BPII is normally distributed, the mean is a good indicator of central 

tendency. On the 5-point Likert scale, BPII is rated at a moderate to high level (mode = 4.0), 

with a mean value of 3.565 and a standard deviation of 0.886. Among the respondents, 

41.5% claimed that their organizations pursue continuous process improvements. 

The structural model analysis shows that AI adoption significantly and positively affects 

BPII (β = 0.282, t = 5.285, p < 0.001). Next, BPII directly affects DMP (β = 0.369, t = 6.474, 

p < 0.001). However, the relationship with BPP is insignificant. This suggests incremental 

improvements are primarily related to AI-assisted decision-making that has less of a direct 

impact on process performance. Based on the result for CBPA, that organizations are leaning 

toward augmentation rather than automation, augmentation primarily impacts the decision-

making processes of a human-in-the-loop system. This would explain why most AI-enabled 

incremental process improvements manifest in improved DMP. Therefore, DMP fully 

mediates the impact of BPII on BPP. 



199 

As established above, the direct effect of AI adoption on DMP is insignificant. Indicating a 

moderate fit (the proportion of variance R2 is 0.396), BPII is confirmed to be one of four 

mediators of AI adoption. Thus, we conclude that BPII partially mediates the impact of AI 

adoption on DMP. BPII positively correlates with BPMM (r = 0.545, p < 0.001).  

BPM consolidates several objectives and methodologies, one being process innovation 

(Rosemann et al., 2004). The concepts of process innovation and BPM maturity are 

inherently related. Dijkman et al. (2016) demonstrate that a higher level of innovation is 

associated with greater BPM maturity. Having a data-driven culture has a significant impact 

on an organization’s data-driven-innovation capabilities that are enhanced by applying 

advanced information and communication technology (Chatterjee, Chaudhuri, et al., 2021). 

The positive correlation between DDC (r = 0.514, p < 0.001) and DM (r = 0.307, p < 0.001) 

is therefore expected. The SEM moderation analysis shows that DDC moderates the 

relationship between BPII and BPP (β = 0.078, t = 2.422, p = 0.015). Although the 

moderation is significant and positive, the resulting relationship between BPII and BPP 

remains insignificant. A positive correlation between BPII and Clan Culture (r = 0.103, p = 

0.030), which is a culture characterized by a high degree of flexibility and a high degree of 

internal focus, is probably the result of the view that incremental improvements draw from 

the existing knowledge base, focusing on the internal environment. A positive correlation 

between BPII and Adhocracy Culture (r = 0.122, p < 0.010) is expected; this entrepreneurial 

culture emphasizes creativity, innovation, and risk-taking. A negative correlation with 

Hierarchy Culture (r = −0.145, p < 0.001) shows that this culture, which is focused on 

structure and stability, is incompatible with innovation (Cameron & Quinn, 2011). 

BPII negatively correlates with Firm Age (r = −0.106, p < 0.025), indicating older 

organizations are less innovative. Coad, Segarra, and Teruel (2016) explain that older 

organizations undertake incremental innovation along established, less risky trajectories. 

Again, we observe a positive correlation with Environmental Uncertainty (r = 0.200, p < 

0.001) because organizations in more competitive and unstable business environments are 

more likely to focus on innovation (Chang et al., 2022). 

Accordingly, incremental innovations do not have a significant direct impact on BPP but do 

have a significant direct effect on DMP, indicating that they are primarily focused on 

decision-making. 

7.1.7 The Mediating Role of Radical Business Process Innovation 

Does BPIR mediate the positive impact of AI adoption on DMP and BPP? 

The ambidextrous approach to innovation includes radical improvements (BPIR) as the 

counterpart to the incremental improvements just considered. This involves exploring new 

domains as sources of innovation (March, 1991; O'Reilly III & Tushman, 2011). To generate 
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more creative and innovative ideas or opportunities, organizations must be more exploratory 

and reach beyond existing knowledge domains to new fields and external data sources and. 

AI systems can generate, identify, and evaluate more creative and experimental ideas. 

Analyzing large datasets of existing ideas, patterns, and trends can generate new ideas using 

algorithms and ML techniques. Automatically identifying and classifying existing ideas and 

concepts makes analyzing and comparing them easier. Potential ideas can be evaluated based 

on various criteria such as novelty, feasibility, and market demand. In addition, new and 

more innovative concepts can be generated by combining and refining existing ideas. As 

such, these radical improvements in business processes, also known as business process 

redesign or reengineering, complements incremental improvement in our automation–

augmentation framework and allows us to examine the radical, more substantial 

transformational effects of AI adoption.  

The mean value of BPIR indicates the central tendency, given that BPIR (like BPII) has a 

normal distribution. On the 5-point Likert scale, BPIR is rated at a moderate level (mode = 

4.0), with a mean value of 2.792 and a standard deviation of 0.957. Only 6.5% of respondents 

reported that their organizations implement new and radical processes to improve. 

According to the analysis of the structural model, the adoption of AI has a significant and 

positive impact on BPIR (β = 0.276, t = 4.644, p < 0.001), which is comparable in strength 

to its effect on BPII. Unlike BPII, BPIR significantly and directly affects BPP (β = 0.316, t 

= 5.042, p < 0.001) but not DMP. The relationship between BPIR and DMP is insignificant. 

This suggests radical improvements are primarily because the use of AI to design new 

processes or redesign existing process has the most impact on the efficiency, effectiveness, 

and flexibility of business processes (Al-Anqoudi, Al-Hamdani, Al-Badawi, & Hedjam, 

2021; Cao & Jiang, 2022; Jurksiene & Pundziene, 2016). The correlation results with the 

indicators of process performance demonstrate these radical improvements significantly 

impact process quality (r = 0.485, p < 0.001), closely followed by efficiency (r = 0.477, p < 

0.001), and with a lesser impact on flexibility (r = 0.397, p < 0.001). These radical 

improvements elevate process quality by eliminating inefficiencies and incorporating 

advanced technologies to enhance accuracy and compliance. Section 7.1.2 examines AI's 

influence on quality, currently identified as a primary driver for adopting AI. Arguably, this 

is an effect of AI adoption being on an automation–augmentation spectrum, where 

augmentation results in incremental improvements related to decision-making and 

automation implies a redesign of processes, thus having a more comprehensive impact on 

process performance, as suggested by Al-Anqoudi et al. (2021). 

The direct impact of AI adoption on BPP is insignificant. The proportion of variance R2 for 

BPIR is 0.377. According to the results, it is one of four important mediators of AI adoption. 

Thus, we conclude that BPIR partially mediates the impact of AI adoption on BPP. 

BPIR is positively correlated with BPMM (r = 0.458, p < 0.001). As established, the concepts 

of process innovation, process redesign, and BPM maturity are interrelated and mutually 
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reinforcing. The positive correlation with DDC (r = 0.514, p < 0.001) and DM (r = 0.307, p 

< 0.001) is also expected, as having a data-driven culture highly influences an organization’s 

data-driven innovation (Chatterjee, Chaudhuri, et al., 2021). Like BPII, BPIR is positively 

correlated with Adhocracy Culture (r = 0.218, p < 0.001) is expected as this type of culture 

emphasizes creativity, innovation, and risk-taking. A negative correlation with Hierarchy 

Culture (r = −0.145, p < 0.001), a culture focused on structure and stability, is incompatible 

with innovation (Cameron & Quinn, 2011). 

BPIR negatively correlates with Firm Size (r = −0.098, p < 0.037) and Firm Age (r = −0.195, 

p < 0.001), indicating larger and older organizations are less successful at radical innovation. 

Despite some studies indicating that firm size and age do not significantly affect innovation 

(Cheng & Huizingh, 2014; Ritala, Olander, Michailova, & Husted, 2015; Stam, 2009). 

Chandy and Tellis (2000) suggest that larger organizations may not be as likely to engage in 

radical innovation because of inertia. In this context, the theory of inertia posits that 

established systems and organizations tend to resist change and prefer to maintain their 

current state. Ritala et al. (2015) emphasize that age affects innovation novelty; younger 

organizations produce more novel outcomes, as Henderson and Clark (1990) suggest. Again, 

we observe a positive correlation between BPII and Environmental Uncertainty (r = 0.146, 

p < 0.001) because organizations in more competitive and unstable business environments 

are more likely to focus on innovation (Chang et al., 2022). 

In summary, radical innovations do not significantly impact the process of decision-making 

but significantly impact process performance. The results confirm that AI facilitates radical 

innovations through process redesign, significantly affecting business process efficiency, 

effectiveness, and flexibility. 

7.1.8 Organizational Learning Impact on Business Process Innovation 

Does OL positively influence BPII and BPIR? 

Organizational learning (OL) can help an organization identify areas for improvement in 

existing processes and develop ideas for incremental improvements, drawing from their 

existing knowledge base. Over time, a company can refine and optimize its processes by 

continuously learning from experience and feedback. Organizational learning can also lead 

to radical process innovations as other knowledge domains are explored and new knowledge 

generated, encouraging experimentation and risk-taking (Sheng & Chien, 2016). 

Organizations with a culture that supports continuous learning and improvement are more 

likely to explore innovative approaches to problem solving and process optimization. This 

can produce radical process innovations that fundamentally transform business operations 

(Zhao, Li, & Liu, 2016). The impact of organizational learning on innovation is well 

established (Aragón-Correa et al., 2007; García-Morales et al., 2012; Hung et al., 2011; 

Jiménez-Jiménez & Sanz-Valle, 2011; Weerawardena et al., 2006). However, there is 

limited empirical research on whether AI-enabled knowledge acquisition, sharing, and 
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utilization (i.e., organizational learning) influence process performance by facilitating 

innovation. In order to investigate the ambidexterity of innovation, incremental and radical 

process innovations are examined separately. 

The structural model analysis shows that OL significantly impacts BPII (β = 0.446, t = 8.442, 

p < 0.001) and BPIR (β = 0.434, t = 7.001, p < 0.001). These results validate the impact of 

OL via increased AI-enabled knowledge capabilities on process innovation. 

We confirm OL’s mediating role (Table 84) between AI adoption and BPP. The results 

confirm OL is a partial mediator (AI also impacts BPII and BPIR directly) between AI 

adoption and BPII and BPIR (Table 86). Thus, OL is positioned as the primary mediator in 

a series of mediations that connect AI adoption and organizational performance. In 

conclusion, OL is an essential facilitator in generating AI business value. 

The SEM moderation analysis shows that BPMM negatively moderates the relationship 

between OL and BPII (β = −0.164, t = -3.628, p < 0.001). A mature BPM environment may 

focus on maintaining stability and efficiency at the expense of innovation and learning 

(Dijkman et al., 2016). This explains the negative moderating effect of the relationship 

between OL and BPII. However, BPMM does not impact the relationship between OL and 

BPIR. It is worth noting that radical process innovation often requires the organization to 

make significant changes and depart from existing processes and practices. Radical process 

improvement is a set of activities often decoupled from existing processes (i.e., R&D 

activities). In contrast, incremental process innovation focuses on minor improvements to 

existing processes. Therefore, it is conceivable that BPMM may not affect BPIR. 

Additionally, Dijkman et al. (2016) point out that there is a possible negative relationship 

between innovativeness and BPM maturity, with more innovative organizations having 

lower BPM maturity levels, indicative of smaller organizations. This is consistent with our 

finding of a negative correlation between BPMM and Firm Size (r = −0.145, p = 0.002). 

These findings confirm OL has a positive impact on incremental and radical BPI. 

Organizational learning promotes continuous improvement of processes, products, and 

services, leading to increased competitiveness. Organizations that foster a culture of learning 

and innovation can stay ahead of the curve and adapt to environmental uncertainty. 

7.2 Additional Findings 

The study’s empirical findings affirm that cognitive business process automation–

augmentation, organizational learning, and incremental process improvements are vital 

mediators in enhancing DMP through AI adoption. Furthermore, organizational learning and 

radical process improvements significantly boost BPP. AI-enabled capabilities should 

positively leverage decision-making processes and ambidextrous process transformation to 

yield business value. Critical management activities involved in pursuing business goals 

include improving decision-making, overcoming inertia, and implementing innovation and 
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change. Next, we discuss automation–augmentation in the context of paradox theory and 

ambidextrous innovation. 

7.2.1 Automation–augmentation 

As theorized by Raisch and Krakowski (2021), there is no empirical evidence that fully AI-

enabled automation directly impacts process performance, demonstrating that AI adoption 

augments and improves decision-making processes. Notably, decision-making is fully 

mediated by CBPA (β = 0.23, t = 2.313, p = 0.021), BPII (β = 0.23, t = 6.474, p < 0.001), 

and OL (β = 0.23, t = 6.905, p < 0.001), based on two inherent characteristics of AI, decision-

making and knowledge engineering. Automating business processes using AI does not 

necessarily produce immediate performance improvements. 

AI can thus enhance and complement rather than replace human capabilities and skills. 

According to Raisch and Krakowski (2021), the augmentation approach can lead to superior 

performance. However, they acknowledge that augmentation cannot be easily separated 

from automation, as both concepts involve trade-offs and tensions. Therefore, they suggest 

using a paradox perspective to understand and manage the complex dynamics of AI 

adoption. Paradox theory suggests that the concepts of automation and augmentation are 

interdependent and paradoxical; they can coexist and change over time (Waldman, Putnam, 

Miron-Spektor, & Siegel, 2019). 

Based on the results (Section 7.1.4), we agree organizations must adopt a broader perspective 

that balances automation and augmentation to leverage the potential of AI while mitigating 

its challenges (Raisch & Krakowski, 2021). Paradox theory prescribes the use of 

management strategies such as acceptance (acknowledging and embracing the existence of 

paradoxical tensions), differentiation (creating clear boundaries and distinctions between 

paradoxical poles such as automation and augmentation), integration (making connections 

and synergies between the paradoxical poles, such as automation and augmentation), or 

transcendence (moving beyond the paradoxical poles, by creating a new perspective or 

reality that transcends their contradictions; Schad, Lewis, Raisch, & Smith, 2016; Smith & 

Lewis, 2011). 

The main difference between the paradox theory perspective and ambidextrous design 

(Section 2.8) is that the former treats the exploration-exploitation conflict as a paradoxical 

tension that needs to be embraced and balanced, while ambidextrous design views these as 

a trade-off (structural and temporal) that needs to be separated and coordinated. The paradox 

perspective offers a more comprehensive and dynamic way to manage multiple demands, 

while ambidextrous design provides a more pragmatic and static view of how to achieve 

organizational performance (Papachroni, Heracleous, & Paroutis, 2015). 

We conclude that viewing automation–augmentation from the lens of paradox theory enables 

us to move beyond separation-oriented prescriptions toward synthesis and track how the 
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concepts dynamically relate over time. After all, automation–augmentation is a spectrum 

(Section 2.7.1) and empirical research in this area can more closely and pragmatically track 

practice using this approach. 

7.2.2 Ambidextrous Innovation 

March (1991) presents the concept of ambidexterity in the context of organizational learning. 

An organization must possess exploratory and exploitative capabilities to achieve 

sustainable competitive advantage (March, 1991). Ambidextrous innovation theory has been 

widely used to explain the mechanisms of managerial capability, organizational 

performance, and competitive advantage (Chen & Yu, 2022). 

Cao, Gedajlovic, and Zhang (2009) present two dimensions of ambidexterity: balanced and 

combined. The first prioritizes a balance between exploration and exploitation as these 

compete for scarce resources and are incompatible (March, 1991). They represent different 

competencies and processes and require distinct systems and cultures (Heirati, O’Cass, & 

Sok, 2017; Wei, Yi, & Yuan, 2011). The second dimension conceptualizes exploitation and 

exploration as distinct and separable modes of activity, and organizations can engage in both 

concurrently (Gibson & Birkinshaw, 2004; Soto-Acosta, Popa, & Martinez-Conesa, 2018), 

with results depending on their combination and interaction. 

Another approach to organizational design presents sequential, structural, contextual, and 

hybrid ambidexterity. These were developed to resolve the tensions and contradictions 

associated with executing exploitation and exploration and achieve combined effects 

(Martin, Keller, & Fortwengel, 2019; O'Reilly III & Tushman, 2013; Raisch, Birkinshaw, 

Probst, & Tushman, 2009). Sequential ambidexterity shifts the organization’s strategic focus 

from exploitation and exploration and back again over time (Boumgarden, Nickerson, & 

Zenger, 2012). Structural ambidexterity assigns separate departments in an organization as 

responsible for either exploitation or exploration (O’Reilly III & Tushman, 2008). 

Contextual ambidexterity establishes a specific context to enable all organizational members 

to oscillate between exploitation and exploration situationally (Martin et al., 2019). Hybrid 

ambidexterity is an approach that combines units engaged in explorative and exploitative 

ambidexterity with units engaged in contextual ambidexterity (Niewöhner et al., 2021). 

He and Wong (2004) propose a mix of ambidextrous innovation strategies. First, 

organizations prioritize developing exploratory or exploitative innovation according to their 

situation. However, the effect is dominated by the balance or gap. Second, organizations 

simultaneously implement exploratory and exploitative innovation, making them 

orthogonal, interactive, and complementary (Soto-Acosta et al., 2018). Both are independent 

but can also be substitutes or complements. 

According to O Reilly and Tushman (2004), organizations with ambidextrous structures are 

much more likely to develop breakthrough processes than those with other organizational 
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structures while sustaining or improving their business models. Their innovation strategies 

balance the rapidly changing market environment by effectively balancing incremental and 

radical innovations (Teece, 2014). Consequently, such organizations proactively implement 

continuous innovation strategies (Lee & Trimi, 2018). Ma, Jia, and Wang (2022) 

demonstrate that digital transformation (i.e., the adoption of IT) positively impacts 

ambidextrous innovation, a mediator between technological adaptation and organizational 

performance. Applying this to AI adoption, we ask the following question: Does AI facilitate 

ambidextrous innovation? 

Grover, Purvis, and Segars (2007) present empirical evidence that IT can enable 

ambidextrous innovation. Their findings show that the configuration of organizational 

components appropriate for radical innovation is diametrically opposed to the configuration 

appropriate for incremental innovation; these configurations can successfully be bound 

within the same organization to exploit efficiencies and explore opportunities. Consistent 

with these findings, we present evidence (Sections 7.1.6, 7.1.7, and 7.1.8) that AI adoption 

similarly impacts incremental and radical innovation – presenting itself as a suitable 

technology to build a proper ambidextrous set-up and drive and balance exploration and 

exploitation of knowledge and technology. The impact of AI adoption on BPII (β = 0.282, t 

= 5.285, p < 0.001) and BPIR (β = 0.276, t = 4.644, p < 0.001) is direct and positive. Next, 

the following results confirm incremental improvements impact DMP (β = 0.369, t = 6.474, 

p < 0.001), while radical improvements offer significant BPP improvements (β = 0.316, t = 

5.042, p < 0.001). 

According to the knowledge-based view, reusing existing knowledge is a key part of 

exploitative innovation, while exploratory innovation requires that existing and new 

knowledge is recombined (Li, Li, & Zhou, 2022). Organizations expand their knowledge 

base by acquiring external knowledge (Liao & Tsai, 2019) that will complement additional 

knowledge and may not come from internal knowledge heterogeneity and facilitate 

organizations’ participation in ambidextrous innovation (Rosenkopf & Almeida, 2003). The 

ability to effectively use external knowledge largely depends on the prior level of 

knowledge, as it increases absorptive capacity (Jansen, Van Den Bosch, & Volberda, 2006). 

However, not all knowledge supports ambidextrous innovation. Excessive external 

knowledge heterogeneity leads to information overload, and excessive internal knowledge 

heterogeneity increases complexity, hinders coordination, and raises R&D costs, weakening 

the organization’s innovation capability (Cohen & Levinthal, 1990; Grant, 1996a). For 

ambidextrous innovation, organizations must be able to combine, process, and apply the 

knowledge and technology acquired to better utilize their technological knowledge base (Li, 

Li, et al., 2022). The knowledge-based impact is tested with the organizational variable. 

Results show OL has a direct and positive impact on BPII (β = 0.446, t = 8.442, p < 0.001) 

and BPIR (β = 0.434, t = 7.001, p < 0.001). This is consistent with the knowledge perspective, 

in terms of which AI facilitates the acquisition, creation, integration, and distribution of 

information and knowledge. 



206 

Chen and Yu (2022) present empirical evidence that exploratory and exploitative 

innovations significantly restrain organizational obsolescence (i.e., organizational 

performance declines with age). Environmental turbulence negatively moderates the 

relationship between exploratory innovation and organizational obsolescence. Similarly, 

Buccieri, Javalgi, and Cavusgil (2020) explain how environmental dynamism positively 

moderates the relationship between international entrepreneurial culture and ambidextrous 

innovation. In applying these findings to our research model, we expect that Environmental 

Uncertainty will impact AI adoption, BPII, BPIR, and OL. The results show that AI adoption, 

OL, BPII and BPIR do correlate positively with Environmental Uncertainty (r = 0.146 - 

0.264, p < 0.001). However, when we test for the moderation effect of Environmental 

Uncertainty in the proposed model, we cannot confirm any significant impact. Examining 

the box and whiskers plot of the mean values for Environmental Uncertainty separated by 

Country (Appendix 6), we observe that the ratings are consistently between 3.0 and 4.0 

(mean between 2.804 and 3.812, with a standard deviation between 0.088 and 1.149), 

indicating moderate levels of environmental uncertainty across all countries. A causal 

moderation effect is also unlikely to be significant since there is too little variance. 

The literature identifies organizational culture as an essential determinant of ambidextrous 

innovation. Niewöhner et al. (2021) state that an ambidextrous innovation culture should 

include norms such as openness, autonomy, initiative, and willingness to take risks. It should 

be loose because the design of these values can be varied according to the type of innovation 

desired. Grover et al. (2007) argue that entrepreneurial culture is needed where there is risk-

taking and experimentation that could not exist in a centralized organization (Tushman & 

O'Reilly III, 1996). However, simultaneous exploitation requires a delicate balance between 

size, autonomy, teamwork, speed, exploitation, and experimentation (Grover et al., 2007). 

Examining the proposed organizational context, the results are consistent with the 

ambidextrous innovation culture. Incremental process improvement is more likely in a 

culture that combines the characteristics of clan and adhocracy culture (Section 7.1.6) ); that 

is, it is characterized by a high degree of flexibility, internal focus, teamwork, collaboration, 

creativity, innovation, and risk-taking. Having an internal focus is a characteristic of 

exploitation and incremental improvement, focusing on the internal environment and 

building on existing knowledge. In contrast, radical process improvements primarily require 

creativity, innovation, and risk-taking (Section 7.1.7). Incremental and radical improvements 

are not possible with rigid structures and stability, characteristics incompatible with 

innovation (Cameron & Quinn, 2011). These findings make a significant contribution to the 

emerging literature on AI-enabled innovation. 

7.3 Distinguishing AI from IT – Unique Contributions and Business Value 

In Section 2.2, we established that AI resources represent a subset of IT resources (Deng, 

Zhang, He, et al., 2023; Deng, Zhang, & Xu, 2023; Mikalef & Gupta, 2021; Wamba-
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Taguimdje et al., 2020b). Authors in the context of the academic research fields distinguish 

and separate IT and AI; however, in the context of business value research, AI is usually 

considered a subset of IT (Engel et al., 2022; Jakšič & Marinč, 2019; Koo & Le, 2024; 

Mikalef et al., 2019; Mikalef & Gupta, 2021; Perifanis & Kitsios, 2023; Spring, 

Faulconbridge, & Sarwar, 2022). AI relies on and extends the capabilities provided by IT 

infrastructure and services. While IT covers a broad range of technologies (i.e., hardware, 

software, databases, networks, and various information systems) and practices for managing 

and processing information, AI focuses on developing systems that can perform intelligent 

tasks (i.e., machine learning, natural language processing, computer vision, and robotics), 

making it a specialized but integral part of the IT landscape. Comparing AI with the 

dimensions of IT business value (Mooney et al., 1996), it aligns very well, as automational, 

informational, and transformational effects are key AI impacts at the process level (Wamba-

Taguimdje et al., 2020b). Accordingly, we developed the proposed AI business value model 

by contextualizing the integrative IT business value model (Melville et al., 2004). Therefore, 

we expect similar relationships between constructs and their impact on organizational 

performance. 

Recent studies on IT business value have shown that the productivity paradox was only a 

temporary problem pertaining to time and measurement (Kohli & Grover, 2008). 

Furthermore, the complementary relationship between IT and value is now well-established. 

IT technology and software tools must be integrated into a business value-creation process, 

working synergistically with various organizational and information systems factors 

(Melville et al., 2004; Wade & Hulland, 2004) to create value for an organization. 

Comparable to IT (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Kohli & Grover, 2008), AI 

does not directly impact organizational performance but is part of a business value-creating 

process. The direct impact of AI adoption on organizational performance, with a 

standardized total effect of 0.418 and organizational performance explaining a relatively 

small proportion of variance (R2 = 0.194), suggests that AI's influence is moderated. 

Similar to other forms of capital, IT creates value through productivity. Value can manifest 

itself in process improvements, profitability, or consumer benefits (Kohli & Grover, 2008) 

and at different levels (e.g., individual, process, or organization). It has been recognized that 

more significant IT usage at a lower level (e.g., individual) could be aggregated to the 

organizational level and serve as a mediator between IT investment and organizational value 

(Devaraj & Kohli, 2003). A single organization executes numerous business processes to 

achieve its business goals, providing opportunities for applying IT to improve processes and 

organizational performance (Melville et al., 2004). The impact of IT capabilities on business-

process performance has been studied extensively in the literature. Many IT studies have 

indicated that successful IT infrastructure investments generate substantial changes within 

business processes, leading to superior performance (Aydiner, Tatoglu, Bayraktar, & Zaim, 

2019). Hence, the impact of AI adoption was expected to be mediated by process-related 

capabilities and other organizational factors. Our empirically validated AI business value 
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research model is process-oriented (Melville et al., 2004; Mooney et al., 1996) and operates 

under the same premise as IT, where AI business value is generated at the process level 

(Elbashir et al., 2008). Simultaneously, a significant and direct relationship (β = 0.174, t = 

3.382, p < 0.01) exists between business processes and AI adoption, influencing both 

tangible and intangible organizational performance, aligning with findings in IT business 

value research (Aydiner, Tatoglu, Bayraktar, Zaim, et al., 2019; Sun, Strang, & Firmin, 

2017). 

Despite these claims about the direct effect of IT and AI capabilities on business-process 

performance, these effects may not be realized without a solid and effective decision-making 

process. IT decision support systems and business intelligence tools have provided 

organizations with the information to make informed decisions. These tools aggregate and 

analyze data to present actionable insights (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; 

Ghasemaghaei et al., 2018). AI takes this a step further with advanced predictive analytics 

and prescriptive analytics. AI can predict future trends based on past data and suggest 

optimal actions to achieve desired outcomes, providing a more dynamic and proactive 

decision-making support system (Phillips-Wren, 2012; Sachan, Yang, Xu, Benavides, & Li, 

2020). IT business value research has positioned decision-making as a process-level effect, 

demonstrating it significantly impacts business process performance and organizational 

performance (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Cao et al., 2019; Sidorova, 2019). 

Comparing the decision-making impact of our AI business value research model and the 

results in IT business value research (Alzghoul, Khaddam, Abousweilem, Irtaimeh, & 

Alshaar, 2024; Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Cao et al., 2019; Djalic, Nikolic, 

Bakator, & Erceg, 2021; Khaddam, Alzghoul, Abusweilem, & Abousweilem, 2023), we can 

see the results are similar with two exceptions. First, in IT business value research, the impact 

on BPP is direct; however, when introducing the DMP variable, the impact is fully mediated 

(Aydiner, Tatoglu, Bayraktar, & Zaim, 2019). This suggests that technologies like big data 

analytics explicitly influence decision-making. Conversely, AI affects both process 

performance and decision-making, indicating the presence of additional mediators between 

AI and BPP. In this context, we present BPIR and OL. Second, several IT business value 

authors confirm the direct impact of DMP on organizational performance (Alzghoul et al., 

2024; Cao et al., 2019; Djalic et al., 2021; Khaddam et al., 2023), however when presenting 

BPP in the research model, DMP is fully mediated (Aydiner, Tatoglu, Bayraktar, & Zaim, 

2019), despite the positive impact been previously theorized by Fredrickson and Mitchell 

(1984). Conversely, AI impacts organizational performance through DMP (β = 0.241, t = 

4.097, p < 0.001) and BPP (β = 0.562, t = 9.382, p < 0.001) simultaneously. The high and 

positive impact of DMP on BPP is very similar in IT and our (AI business value) research 

model BPP (β = 0.560, t = 10.192, p < 0.001). We can conclude that AI impacts DMP, which 

impacts performance at the process level and strategic decision-making at the organizational 

level. Nonetheless, it must be noted that we found only one IT business value research article 

referencing decision-making and process performance in the research model (Aydiner, 
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Tatoglu, Bayraktar, & Zaim, 2019) and one for AI business value, where DPM is the only 

mediator (Chen, Esperança, et al., 2022). 

While prior research has extensively theorized on process automation and IT (Mooney et al., 

1996), automation of business processes is somewhat under-researched (Aysolmaz et al., 

2023; Engel et al., 2022). IT can improve the efficiency of operational processes through 

automation or enhance their effectiveness and reliability by linking them (Mooney et al., 

1996), affecting productivity and profitability (Kromann & Sørensen, 2019). Even though 

few empirical studies support this hypothesis, we can infer that it is valid by examining 

research focusing on barriers and success factors where digitalization and alignment with IT 

are identified as key factors (Moreira, Mamede, & Santos, 2024). Automation is often 

highlighted as a key characteristic of AI, facilitating higher levels and greater scope of 

business process optimization. We examine CBPA results and find that AI impacts 

automation the most (β = 0.697, t = 11.306, p < 0.001). However, there is no significant 

impact of CBPA on BPP, but there is on DMP (β = 0.146, t = 2.313, p = 0.021). These results 

suggest an augmentation level of automation focused on decision-making. Automation, 

therefore, does not directly impact BPP in terms of efficiency, quality, and flexibility via 

decision-making performance. Research on IT business value highlights that high 

exploitative business process IT capabilities indicate significant support for business 

processes through task automation and data integration. Companies that overemphasize 

exploitative business process IT capabilities, i.e., investing heavily in task automation and 

data integration, may become overly dependent on existing business process 

implementations (Heckmann, 2015). The study's results indicate that the same applies to AI-

enabled automation; no significant impact on BPP suggests that AI-enabled automation is 

viewed as an exploitation toolset. 

Research on IT business value has shown that organizational learning is essential in 

moderating how IT (such as big data analytics, industry 4.0 technologies, and IT capability) 

influences organizational performance (Al-Omoush et al., 2024; Bahrami et al., 2016; Khan 

et al., 2020; Lai et al., 2009; Real et al., 2006; Tippins & Sohi, 2003; Tortorella et al., 2020) 

and innovation (Husain et al., 2016; Obeso et al., 2020; Saide & Sheng, 2020). Moreover, 

by showing that the knowledge acquired through organizational learning can mediate the 

effect of IT competency on organizational performance, the authors provide evidence that 

the usefulness of an organization's resources varies with changes in organizational 

knowledge (Real et al., 2006; Tippins & Sohi, 2003). Next, IT-enabled organizational 

learning has been acknowledged as a vital enabler of knowledge creation and innovation 

adoption (Al-Omoush et al., 2024; Ma, Peng, & Shi, 2008; Migdadi, 2022). Organizations 

with higher organizational learning intensity seem to be more efficient in balancing 

exploitative (incremental) and exploratory (radical) innovations in an ambidextrous manner 

(Nguyen, Shen, & Le, 2022). Research also indicates that knowledge drives innovation in 

organizations with high absorptive capacity and learning capabilities (Costa & Monteiro, 

2016). In the context of IT business value, the positive impact of knowledge on the 
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performance of knowledge-intensive processes has been studied extensively (Armistead, 

1999; Yoshikuni & Albertin, 2020). Also, research established IT-enabled organizational 

learning's impact on decision-making processes, where most of the effect is expected at the 

selection decision-making phase (i.e., in which the best solution is chosen) (Nicolas, 2004) 

and knowledge sharing (Gui, Lei, & Le, 2022; Mohammed & Jalal, 2011; Shahmoradi, 

Safadari, & Jimma, 2017). 

Comparing the study results to IT business value research shows that AI's relationships and 

impacts on organizational learning are similar to those of conventional IT. There is a 

significant impact of AI adoption on OL (β = 0.488, t = 8.910, p < 0.001) and OL impacts 

BPII (β = 0.446, t = 8.442, p < 0.001), BPIR (β = 0.434, t = 7.001, p < 0.001), DMP (β = 

0.371, t = 6.905, p < 0.001) and BPP (β = 0.341, t = 5.541, p < 0.001). However, the intensity 

of AI's impact on OL is higher than that of conventional IT (Ma et al., 2008). Accordingly, 

the impact of OL on BPII and BPIR is higher with AI (Gui et al., 2022; Migdadi, 2022; 

Nguyen et al., 2022). Interestingly, the OL's impact on BPP is lower (Ma et al., 2008; 

Yoshikuni & Albertin, 2020). However, when removing DMP as the mediating variable, the 

impact intensity on BPP (β = 0.440, t = 7.747, p < 0.001) is very similar to that of 

conventional IT. We conclude that DMP partially mediates the impact of OL on DMP. In 

the context of IT business value, it is theorized that the impact on DMP comes at the selection 

decision-making phase (Nicolas, 2004). We observe similar results for AI, where the level 

of cognitive process automation is at the level of decision selection (see Section 7.1.4). These 

findings confirm that organizational learning affects business process performance and 

decision-making processes through knowledge-intensive processes, and this is true for both 

AI and conventional IT. 

Overall, AI has a greater impact on knowledge management than other forms of information 

technology due to its distinctive capabilities and advantages (Jarrahi, Askay, et al., 2022). 

AI, especially natural language processing (e.g., large language models), automates 

knowledge extraction and organization from diverse sources like documents, emails, and 

social media, aiding rapid identification and structuring of relevant knowledge assets. AI-

powered search engines enhance retrieval accuracy by understanding query context, 

surpassing conventional keyword-based methods. AI fosters knowledge sharing by 

identifying experts, facilitating connections, and enabling seamless collaboration, which is 

necessary for breaking down departmental barriers and promoting a culture of knowledge 

exchange. AI systems continuously learn from interactions and feedback, adapting 

knowledge management processes to ensure ongoing relevance and improvement. 

The impact of information technology on innovation has been well established in the 

literature on IT business value (Chen, Wang, Nevo, Benitez-Amado, & Kou, 2015; Koo & 

Le, 2024; Shehzad, Zhang, Alam, & Cao, 2022; van de Wetering & Besuyen, 2021; Van de 

Wetering, Mikalef, & Helms, 2017). Several studies have shown that IT can impact 

incremental and radical innovation activities separately (Mikalef, 2016; van de Wetering & 

Besuyen, 2021; Van de Wetering et al., 2017), as well as facilitate ambidextrous innovation 
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(Lee, Dwivedi, Tan, Ooi, & Wong, 2023; Liao, Hu, & Wei, 2023; Yoshikuni, Dwivedi, & 

Dwivedi, 2024). The SEM analysis shows that adopting AI, like IT, significantly and 

positively impacts both BPII (β = 0.282, t = 5.285, p < 0.001) and BPIR (β = 0.276, t = 4.644, 

p < 0.001) process innovation. These impacts are similar in magnitude and, as with IT, 

slightly more pronounced for incremental than radical innovation (Shehzad et al., 2022; van 

de Wetering & Besuyen, 2021). Additionally, research on IT business value indicates that 

IT-enabled capabilities are more crucial for young organizations to develop innovative 

capabilities than established ones. The analysis confirms a similar negative correlation 

between organizational age and both incremental and radical business process innovation 

(Section 6.5.2). IT business value studies show that combining incremental and radical 

process innovation (ambidexterity) leads to better business process performance (Arif & 

Hasan, 2021; Heckmann & Maedche, 2018). This is especially true when BPM practices are 

also implemented (Ferraris, Monge, & Mueller, 2018). Like IT, AI-enabled incremental and 

radical process innovations significantly impact business performance. Interestingly, while 

AI-driven incremental process innovations do not directly impact business process 

performance, they are mediated through DMP (β = 0.369, t = 6.474, p < 0.001). In contrast, 

AI-driven BPIR have a direct impact on BPP (β = 0.276, t = 4.644, p < 0.001) and are not 

mediated by DMP. This indicates that incremental improvements are mainly related to AI-

assisted decision-making with a lesser direct impact on process performance, whereas 

radical improvements, driven by AI to design or redesign processes, significantly enhance 

the efficiency, effectiveness, and flexibility of business processes. 

In summary, IT and AI contribute to business value through similar relationships, although 

they exhibit some differences. IT excels at streamlining current processes and infrastructure, 

while AI unlocks transformative change through data analysis, automation, and 

groundbreaking innovation. AI's impact on learning, knowledge management, and process 

innovation surpasses conventional IT, fostering incremental improvements and radical 

breakthroughs in decision-making and business processes. 

7.4 The Impact of Large Language Models and Generative Pre-trained 

Transformer Technology 

Large Language Models (LLM) are at the forefront of AI advancement. They refer to a 

family of highly complex neural network models with numerous parameters specialized in 

natural language processing (i.e., the development of algorithms and models that enable 

computers to understand, interpret, and generate human language).  

LLMs are considered a subset of AI designed to understand and generate human language 

(Naveed et al., 2023). The OECD (2024) definition of AI systems used in the study 

(presented in Section 2.1) is inclusive and was updated to include “explicit and implicit 

objective,” which refers to advancements in AI capabilities, specifically GPT-enabled 

LLMs. 
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LLMs were first brought to public attention with ChatGPT and GPT-4, two LLMs developed 

based on Generative Pre-trained Transformer (GPT), a compelling LLM architecture by 

OpenAI (Radford, Narasimhan, Salimans, & Sutskever, 2018). GPT is based on the 

Transformer architecture described in the seminal article Wasvami (Vaswani et al., 2017). 

This architecture utilizes self-attention mechanisms to process and generate text sequences, 

making it highly efficient and effective for natural language processing tasks. 

GPT-based LLMs have quickly gained widespread interest and surprised almost every 

industry sector with their superior performance in analysis and communication. This 

superior performance refers to their exceptional abilities in understanding, processing, and 

generating human language. They excel in text comprehension, data insights, and problem-

solving, as well as in natural language generation, conversational abilities, and multilingual 

capabilities. Moreover, these models are now expanding their reach from text to audio and 

video, demonstrating their versatility and broadening their impact across different media 

formats (Han, Hou, & Sun, 2023). 

Data collection for this study concluded in June 2022, prior to the introduction of ChatGPT 

in November 2022. We argue that the measurement scale remains valid and effectively 

captures the adoption of LLM and GPT; however, we would anticipate higher levels of 

adoption due to ChatGPT's introduction. Next, we discuss managerial perspectives today 

when LLM and GPT are gaining traction in business. 

7.4.1 Managerial Perspectives Today 

Artificial Intelligence is a broad field that encompasses various technologies and 

applications, including machine learning, robotics, computer vision, natural language 

processing, and more. When asked about AI, managers may have a broader range of 

associations and understandings. Discussions around AI might evoke broader technological 

trends and strategic implications, including automation, ethical considerations, workforce 

impact, and innovation potential. 

LLMs are AI models used in various applications (e.g., chatbots, virtual assistants, 

automated content generation, contextual search functions) focused on understanding and 

generating human-like text. Managers may have a narrower and more focused understanding 

of LLMs, mainly if they are familiar with their applications in tasks like text generation, and 

natural language understanding. 

The term GPT specifically refers to a series of well-known models developed by OpenAI21 

(e.g., GPT-3, GPT-4). Managers familiar with AI might be more likely to recognize GPT 

than LLM if they have followed AI advancements (Aggarwal, 2023). 

                                                 
21 OpenAI, https://www.openai.com  

https://www.openai.com/
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Regarding business implications, managers might consider AI's impact on their business 

operations, including process automation, data analysis, decision-making, and strategic 

planning. While LLMs can specifically enhance communication, customer interactions, 

marketing, content creation, and internal knowledge management (Arman & Lamiyar, 2023; 

George & George, 2023; Reinkemeyer, 2024). 

Overall, the differences in results depend on the manager's understanding of AI and LLMs. 

While there is expected to be an overlap in the responses due to the intrinsic relationship 

between AI and LLMs, the specificity of LLMs as a subset of AI technologies will likely 

lead to different emphases in managers' perspectives. They might provide more focused and 

nuanced insights related to LLM and GPT applications when asked about LLMs compared 

to the broader topic of AI needed for this study. Hence, the narrower scope of LLMs would 

make the results far more specific, excluding several other AI applications for business 

operations, and the findings would be much less generalizable. 

7.4.2 Shifting Focus of AI Applications 

Hypothesizing LLMs and GPT as AI subsets included in the measurement scale of AI 

adoption, we argue repeating the measurements today would yield different results. Public 

perception of LLMs, GPT, generative AI, and AI underwent a significant transformation. 

The focus of AI applications is shifting. 

Over time, after the research data was collected, advancements and understanding of AI 

grew significantly. OpenAI's ChatGPT22 is, first and foremost, a productivity tool widely 

accessible to individuals. For many people, including managers, this has been the first use 

case for AI technology. The capabilities demonstrated with ChatGPT expanded the 

understanding and potential of AI technologies and applications. As witnessed by startup 

investments (Burtsev, Reeves, & Job, 2024) and many more published use cases, public 

interest in the technology reduced the AI knowledge gap. It positively affected AI 

investment, deployment, and use (TechCrunch, 2021). The amount of AI-related research 

has increased (Movva et al., 2024; Ruiz-Real, Uribe-Toril, Torres, & De Pablo, 2021). 

Numerous LLM implementations are cloud-based or open-source, simplifying and 

accelerating implementation and deployment while also increasing accessibility for 

developers (Noyan, 2023).  

Managers might have a limited understanding of AI in general. However, the term LLM, 

being more specific, might prompt them to recall related AI concepts they know, resulting 

in a somewhat different response. Note that GPT is a prominent LLM but it's not the only 

one. Other LLMs from various companies have varying capabilities (Ruiz-Real et al., 2021). 

                                                 
22 ChatGPT, https://openai.com/chatgpt/ 

https://openai.com/chatgpt/
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So, if a manager is asked explicitly about LLM, they might focus on the text-centric 

capabilities offered by this type of AI.  

The hype cycle23 suggests that new technologies undergo a cycle of inflated expectations 

followed by disillusionment before reaching a plateau of productivity (Dedehayir & Steinert, 

2016). AI might be further along this cycle (Khandabattu & Jaffri, 2024), leading to less 

specific or enthusiastic responses from managers than the newer terms of LLM and GPT.  

As AI matures, applications are moving beyond basic automation towards tasks requiring 

language understanding and generation. Managers might be considering a new phase or 

evolution in technology beyond AI, represented by LLM. This could indicate a shift in 

industry trends where LLM technologies are becoming more prominent or gaining traction, 

influencing strategic decisions and investments by companies. Managers who understand 

the capabilities and limitations of LLMs will be better positioned to discuss AI (Burtsev et 

al., 2024). 

There is a growing concern about some AI systems' “black box” nature (e.g., fully automated 

loan approval process that must be highly transparent). LLMs, with their focus on language 

processing, offer a potential path toward more transparent and explainable AI, which could 

be a crucial aspect of higher acceptance by managers and, ultimately, AI adoption (Singh, 

Inala, Galley, Caruana, & Gao, 2024). 

With LLMs, AI's ethical and societal implications became more tangible (Movva et al., 

2024; Pankajakshan, Biswal, Govindarajulu, & Gressel, 2024). AI models like GPT raise 

ethical concerns about bias, misinformation, and manipulation (Jiao, Afroogh, Xu, & 

Phillips, 2024; Zhang, Sharma, Du, & Liu, 2024). The societal impact of deploying such 

powerful language models could presumably negatively impact the managers' responses. 

During the data-gathering phase of this study, several potential participants informally 

reached out to voice their concerns about ethical AI and refused to participate. Conversely, 

LLMs could signify a focus on ensuring AI systems strictly comply with legal standards and 

ethical guidelines. 

Managers might be interested in practical applications and case studies where LLM 

technologies have demonstrated superior performance in addressing critical business 

challenges compared to conventional AI approaches. However, LLMs currently do not 

surpass the performance of conventional AI tools in specialized domains (e.g., financial 

modeling and analysis, supply chain optimization, time-series forecasting, expert systems, 

and rule-based reasoning). This suggests that the capabilities and limitations of LLMs 

compared to conventional AI tools would be an important consideration for managers 

(Burtsev et al., 2024). 

                                                 
23 The Gartner Hype Cycle is a graphical representation developed by the research and advisory firm Gartner, 

which showcases the maturity, adoption, and social application of specific technologies over time. 
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Efficient LLM inference also presents challenges, as LLM deployments often use complex 

and power-hungry AI accelerators (like GPUs, TPUs, IPUs; Stojkovic, Choukse, Zhang, 

Goiri, & Torrellas, 2024). This suggests that managers could consider the efficiency and 

cost-effectiveness of LLM deployment. 

Limited practical applications and adoption highlight that while LLMs have remarkable 

capabilities, their direct use in practical applications and their ability to replace conventional 

AI tools requires further experimental validation (Cheung, 2024; Fahland, Fournier, 

Limonad, Skarbovsky, & Swevels, 2024). Therefore, managers could consider LLMs' 

practical applicability and adoption in specific business domains. 

With AI tools currently emphasizing augmentation (see Section 7.1.4) and a human in the 

loop, prompt engineering and human-AI interaction considerations indicate that the quality 

of the mutual learning between the human and the generative AI improves with well-

structured prompts and constructive feedback. This suggests that the skills and techniques 

required for effectively leveraging LLMs, such as prompt engineering, would be relevant for 

managers to consider (Pitkäranta & Pitkäranta, 2024). 

As LLM-based generative AI products become more prevalent, managers have started 

testing and planning to incorporate these technologies into their businesses' ongoing 

management to enhance their development as learning organizations (Earley, 2023). This 

implies that the organizational and strategic implications of adopting LLMs are important 

for managers. 

Essentially, the hypothetical transition from AI to LLM would produce different outcomes. 

This could involve various theoretical discussions about the scope of AI and LLM and 

considerations regarding perception, awareness, familiarity, business implications, and the 

evolving focus of AI applications. 

7.4.3 Measuring Deployment Across Technologies and Paradigms 

The broad scope of AI was considered when conceptualizing and operationalizing the AI 

adoption construct. We assessed AI adoption level as an exogenous, component-based 

variable (unlike antecedents or determinants) related to the deployment and actual use of 

particular AI applications and technologies (Chapter 3). The construct encompasses a wide 

space of AI applications. Although it does not reference LLMs explicitly, it includes natural 

language processing technology and several LLM applications in application domains (see 

use cases in Table 16, Cognitive Engagement and Technologies). This approach made 

measuring AI deployment and use more applicable to business environments. We did not 

discriminate between symbolic and connectionist approaches to AI (Babbar, Yadav, Singhal, 

& Sharma, 2018). We included applications of both symbolic AI (based on rules and logic) 

and connectionist AI (based on neural networks and statistical learning). LLMs and GPTs 

fall under the connectionist paradigm. 
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8 CONCLUSION 

Big Data and AI technology are at the forefront of IT investment, although the mechanisms 

and conditions producing business value remain largely unexplored in empirical research. 

Recent studies highlight the need to employ relevant mediating variables to understand the 

relationship between AI resources, capabilities, and organizational performance. This study 

adds to the discussion on AI business value. The study’s novelty is that it considers the 

combined mediating effects of CBPA, OL, BPI, DMP, and BPP in the relationship between 

AI adoption and organizational performance. The results confirm the proposed serial 

multiple-mediation research model and establish a full serial mediation effect. Additionally, 

we confirm the theorized central mechanism of business value generation through AI-

enabled automation, augmentation, and innovation capabilities. The results have several 

theoretical and managerial implications. 

8.1 Theoretical Contributions 

In line with the existing literature on AI and performance, this study builds on the theoretical 

framework of the resource-based and dynamic capabilities approaches. We consider the 

ability of AI to extend the knowledge base and draw on the knowledge-based perspective, 

which treats knowledge as an important source of competitive advantage (Grant, 1996b). 

Although there is a rich theoretical discussion about AI’s potential to generate business 

value, few large-scale empirical studies back up this assertion. This study addresses this 

issue and considers if and through what mechanisms AI adoption can result in any 

measurable business value. Aiming for a structured approach, we study the adoption of AI 

in the setting of BPM, focusing on operational and dynamic capabilities developed to 

manage and improve business processes. Thus, we adapt the integrative model of IT business 

value (Melville et al., 2004) to analyze the impact of AI adoption at the process and 

organizational levels. Several aspects of this study contribute to the literature on AI business 

value. 

First, we present an alternative concept of AI adoption to capture a more accurate and 

generalizable view of AI’s impact on organizational performance. We introduce an 

exogenous, component-based variable related to the level of deployment, actual use, or 

utilization of specific AI applications and technologies. We thus do not consider the 

antecedents and determinants of readiness for adoption, the process of adoption, and 

adoption intention. We followed a systematic approach and executed a component-based 

conceptualization, as recommended by Podsakoff et al. (2016). The procedure included 

examining definitions and antonyms from dictionaries, a comprehensive literature review, 

and in-depth semi-structured interviews with subject-matter experts and practitioners. We 

further investigated AI types, features, technologies, and application domains to identify 

more specific characteristics and uncover conceptual themes of AI adoption. 
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We used the lens of business capabilities or application domains rather than technological 

capabilities to organize the extracted characteristics. Based on the example of Sonenshein et 

al. (2014), we impose a higher level of business capabilities by aggregating the key 

characteristics into five distinct dimensions. We rely on the resource-based and dynamic 

capabilities views to identify AI resources for the AI-related elements that must be brought 

together to ensure the successful deployment and use of AI technology. These resources are 

the organization’s ability to develop a set of distinct AI-enabled capabilities (the ability to 

mobilize AI resources to exploit strategic assets and achieve innovative changes) through 

implementing AI applications, tools, or technology. We refined the conceptual definition of 

the construct by discussing it with subject-matter experts and peers. 

Second, we applied the methodical approach of MacKenzie et al. (2011) to operationalize 

the concept of AI adoption. We generated items from the literature review, the theoretical 

definition of the construct, interviews with experts, and a review of 1,860 AI-related projects 

from business and academia. We combine these based on their similarity into five distinct 

groups representing the five dimensions of the focal construct: Data acquisition and 

preprocessing, cognitive insights, cognitive engagement, cognitive decision assistance, and 

cognitive technologies. A four-member expert panel made an assessment of content validity. 

Scale purification and refinement were conducted based on the results of a pilot study. 

Reliability and validity were assessed in the main empirical study, producing a robust AI 

adoption measure. 

Third, this study extends the emerging literature on AI by providing a nomological network 

that links AI adoption to organizational performance. While previous research has assumed 

a direct impact of AI adoption on performance (Kim et al., 2022; Mikalef & Gupta, 2021; 

Mishra et al., 2022; Wamba, 2022), our results confirm that the effect on organizational 

performance is indirect and contingent upon dynamic, operational capabilities, decision-

making, and process performance. It is among the first studies to draw on the automation 

and augmentation perspective to assess the impact of AI adoption on organizational 

performance through the mediation effects of cognitive business process automation, 

innovation, and organizational learning. A further point about the capabilities built on 

automation and augmentation aspects of AI technology is that they should impact decision-

making and business processes to improve the performance of these and the overall 

organizational performance. The serial multiple-mediation model developed in this study 

contributes to resource-based, dynamic capabilities and knowledge perspectives by 

examining the relevant mediating variables in the relationship between AI technology and 

organizational performance. We recognize this as a notable contribution to the emerging 

literature on AI business value. 

Fourth, positioning automation as an important mediator, we conceptualized and 

operationalized the CBPA concept. In measuring the level and extent of automation in the 

BPM context, we recognize CBPA as the organization’s ability to automate knowledge-

intensive (unpredictable, non-repeatable, highly flexible, and complex) business processes 
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using cognitive technologies. This is a notable addition to the AI literature (Berente, Gu, 

Recker, & Santhanam, 2021; Rai, Constantinides, & Sarker, 2019; Raisch & Krakowski, 

2021), and scholars have called for an exploration of how the emergence of automation and 

augmentation in management leads to action and change. 

Fifth, in a large-scale EU study, we empirically demonstrate the positive impact of AI 

adoption on performance. The study’s empirical results validate the proposed serial multiple-

mediation model, and we can conclude that BPM capabilities, that is, cognitive business 

process automation–augmentation, organizational learning, and incremental and radical 

process improvements, are important predictors for boosting DMP and BPP. The findings 

show organizations can generate and capture business value by implementing AI in end-to-

end organizational processes. We demonstrate that automation and augmentation (dual AI 

applications or use) are interdependent. Resulting from the operational capabilities of 

automation and incremental improvements of business processes, as well as the dynamic 

capabilities of organizational learning and radical process improvements, AI extends the 

existing knowledge base and demonstrates an inherent innovation effect. The results confirm 

that AI technology exhibits characteristics of exploitation and exploration stemming from 

an expanded knowledge base and the technology itself. This allows organizations to pursue 

ambidextrous strategies and sustain competitive performance gains. 

Lastly, we include the organizational context to establish how AI business value is generated. 

Organizations can achieve significant performance improvements by aligning IT resources 

with additional organizational factors (Mooney et al., 1996; Wiengarten et al., 2013). In this 

study, we represent the organizational context via digital transformation factors as 

moderation variables for BPMM, DDC, DM, and OC. In addition, we include factors that 

may influence the relationship between the independent and dependent variables. In addition 

to firm age, size, industry, and country, we introduce environmental uncertainty to account 

for the increasing frequency of environmental dynamism and complexity in business. 

Summarizing, we have adapted the established IT business value model using context-

specific theorizing to the context of AI technology. Pursuing a complex nomological 

framework, we include several perspectives on realizing business value from AI 

investments, thus enriching the emerging literature on AI. We follow several avenues, 

identifying AI-related resources and operational and dynamic capabilities that mediate the 

impact of AI and support our perspective on the automation–augmentation spectrum. 

Knowledge-related and transformational characteristics of AI enable the exploitation and 

exploration of information and knowledge more efficiently, allowing organizations to 

compete in mature markets and develop new products and services for emerging markets 

simultaneously; this is also referred to as organizational ambidexterity. In light of the 

ongoing digital transformation of organizations, AI is a wide-reaching and promising 

capability that needs constant exploration by the information systems community. 
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8.2 Managerial Implications 

Organizations have difficulties leveraging AI technologies and extracting business value. 

Furthermore, AI is highly dependent on data and domain knowledge, making it hard to 

integrate and align with existing business processes (Chui, 2017). From a management 

perspective, the findings provide essential insights for organizations planning to invest in 

AI-enabled business value projects. The results outline the five distinct AI-related business 

application capabilities or application domains that organizations should develop to impact 

organizational performance. 

1) A highly developed data acquisition and preprocessing capability is the foundation for 

successful AI projects. The capability is crucial for extracting data (from business 

operations, SCADA/the Internet of Things, documents, and external sources) for 

exploitation and exploration (data warehousing and data lakes). Organizations must 

understand their data to extract value and trust its quality. These factors are tied to a 

higher level of DDC. 

2) The extraction and interpretation of insights is most linked to AI-enabled predictive 

modeling, anomaly detection in marketing, customer relationships, and customer 

experiences. 

3) The capability to support AI-enhanced human–computer interaction and collaboration 

with customers and employees via chatbots, virtual assistants, computer vision 

applications (e.g., Virtual try-on, Interior home designer), and recommendation systems 

with higher levels of AI-enabled personalization (e.g., sentiment analysis, intent 

classification, content curation, discovery, sensors, and targeting). 

4) The capability to augment or automate decision-making processes via AI-enabled 

decision automation systems (e.g., next best action, next best offer, automated 

scheduling, automated routing), knowledge engineering and expert systems (e.g., 

generative design, drug development, product innovation, protein engineering, material 

discovery, genomics, marketing strategy engineering), and decision support systems 

(e.g., actionable analytics and recommendations, clinical decision support, decision 

intelligence, and modeling). 

5) The capability to integrate AI technologies with existing IT resources, services, and 

devices (e.g., predictive modeling and analytics, anomaly and deviant behavior 

detection, machine learning, and deep learning). 

The research is framed in a BPM setting so managers can easily align the findings with the 

BPM structures in their organization. The results confirm the proposed full serial multiple-

mediation model, meaning AI adoption impacts OP indirectly. Managers should thus adopt 

AI in end-to-end organizational processes to generate and capture AI technology’s full 

business value potential. 

The findings show managers can expect the greatest impact in the form of enhanced process 

efficiency and quality and slightly less in the flexibility of processes. At the operational level, 
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value is seen in increased speed, scale, granularity, and accuracy of information processing 

(e.g., error and problem detection, full or partial automation, improved information flow, 

predicting the opportunities for economies of scale, finding alternative uses of resources, 

saving costs, achieving higher labor productivity, and determining new distribution 

channels). We considered DMP a separate construct with an essential role in linking AI 

adoption to BPP. Our findings show a substantial impact of AI adoption on decision-making, 

enhancing quality, speed, and effectiveness (e.g., faster knowledge extraction and 

propagation) at the operational process and strategic level, thus directly impacting 

organization performance. Fredrickson and Mitchell (1984) note that there is a negative 

relationship between DMP and performance in an unstable environment, but a positive 

relationship is expected in a stable environment. The results confirm that DMP mediates the 

link between AI capabilities and performance. However, the results cannot confirm the 

direction of the relationship as the control variable, Environmental Uncertainty, had no 

significant effect. 

The results pertaining to automation and augmentation show that for overall, automation 

takes place at the level of supervision and decision support for structured and unstructured 

processes. Consequently, CBPA does not directly affect BPP in terms of execution 

efficiency or scalability. In contrast, it is expected to have a significant direct effect on DMP. 

The impact of AI adoption can be observed at the augmentation end of the human–machine 

collaboration spectrum in the form of more efficient and effective decision-making. The 

preference for human-in-the-loop systems explains the support for a wide extent of 

augmented processes ranging from structured to unstructured processes when execution 

relies on full or partial human judgment. The findings corroborate the combined advice of 

Brynjolfsson and McAfee (2014), Daugherty and Wilson (2018), Davenport and Kirby 

(2016), and Raisch and Krakowski (2021) that managers should prioritize augmentation, 

which they relate to superior performance. 

We verified the knowledge perspective using organizational learning as a mediator. The 

results confirm the impact of AI adoption via the increased knowledge capabilities involved 

in acquiring, creating, integrating, and distributing information and knowledge. It 

significantly impacts DMP, BPP (via knowledge-intensive processes), and process 

innovation. We find this learning partially mediates the direct impact of AI adoption on 

innovation. Interestingly, the effects are the same for incremental and radical process 

innovation. This suggests AI is a technology that can simultaneously enable and drive the 

exploitation and exploration of process innovation. These findings could help managers 

achieve the otherwise elusive ambidextrous organization (through the process of AI 

adoption) that outperforms other organizational types (Benner & Tushman, 2001; O'Reilly 

III & Tushman, 2011; Tushman & O'Reilly III, 1996). 

The transformational effects of AI adoption were confirmed using incremental and radical 

process improvement as mediators. Our findings indicate that AI adoption mediated by 

incremental process improvements significantly impacts DMP, not BPP. In contrast, AI 
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adoption is mediated by radical process improvements (new or redesigned processes), 

directly affecting BPP, not DMP. These findings are in line with existing research on process 

innovation (Cao & Jiang, 2022; Jurksiene & Pundziene, 2016). This suggests incremental 

improvements are mostly related to AI-assisted decision-making, which has a lower impact 

on performance than radical improvements; in the latter, AI is used to design new or redesign 

an existing process, having the most impact on efficiency, effectiveness, and flexibility of 

business processes. Organizations should thus prioritize AI knowledge and skill 

development so that employees can effectively drive incremental and radical improvements 

using AI tools. 

In our examination of the organizational context, only BPMM and DDC have a limited 

moderating effect. As previously theorized (Section 2.10.3), a higher BPMM implies more 

strictly defined processes, negatively influencing an organization’s potential for finding 

innovative solutions. Findings confirm that BPMM significantly dampens the relationship 

between AI and OL and OL and BPII. In contrast, DDC positively influences the relationship 

between BPII and BPP. However, the mediation relationship between BPII and BPP remains 

insignificant. According to several empirical studies (Table 3), DDC should have a positive 

effect. Despite this, we find that the level of DDC is very high in all cases; thus, we cannot 

detect a significant moderating effect. 

The same applies to DM. Interestingly, the clan, adhocracy, market, and hierarchy cultures 

had no moderating effect. A scenario where OC may not affect AI adoption is when the 

organization has a culture of innovation and adoption of technology. In such cases, the 

organization may already be open to adopting new technologies, and the culture may support 

experimentation and risk-taking. Indeed, most most organizations in the study have clan 

(37.92%) or adhocracy (23.45%) cultures. An adhocracy culture is closely related to 

innovation and is characterized by a flexible and dynamic work environment that values 

innovation, experimentation, and risk-taking. In a clan culture, collaboration, teamwork, and 

employee empowerment are emphasized, which can create an environment conducive to 

innovation (Quinn & Cameron, 1999). Organizations with this culture may be more likely 

to adopt AI technologies without significant resistance or barriers. 

We examine control variables to exclude potential influencing factors and find that only firm 

size significantly impacts organizational performance and learning variables. As expected, 

larger organizations (De Mel, McKenzie, & Woodruff, 2009; Hall & Jones, 1999; Pervan & 

Višić, 2012) had better performance than smaller organizations. However, larger 

organizations had a lower level of organizational learning than smaller organizations. These 

results are consistent with findings from Jiménez-Jiménez and Sanz-Valle (2011) and Jansen 

et al. (2005). The age, industry, and country in which firms are based had no impact. 

Finally, the findings invite managers to recognize the need for a structured approach to AI 

deployment in end-to-end organizational processes. This underscores the importance of 

prioritizing AI knowledge and employee skill development. Managers should consider the 
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five proposed AI application domains and consider cognitive business process automation, 

innovation, and organizational learning as central BPM capabilities for AI business value 

generation before expecting any measurable gains in organizational performance. 

8.3 Limitations and Recommendations for Future Research 

This research offers valuable insights and important empirical findings, although caution 

should be exercised when interpreting the results. First, we use a cross-sectional survey to 

validate the proposed research model. Self-reporting bias and endogeneity issues are typical 

limitations of this research design (Jordan & Troth, 2020). Future studies could employ a 

longitudinal approach to ascertain the differences before and after AI adoption. The case 

study research design would resolve endogeneity issues but would not contribute to the 

generalizability of the findings. As the study relies on perceptual performance measures 

only, some objective measures should be used in future studies to improve the accuracy of 

the results. Although, objective measures for wide-scale empirical research are hard to 

obtain. 

Second, the study relies on a single respondent from each organization. Future studies could 

consider more than one respondent or different data sources from a specific organization to 

triangulate a more reliable measure. Employees from other organizational units exhibit 

distinct behaviors and understanding of AI-related capabilities. This would also help to 

overcome common method bias problems of relationship inflation between constructs. 

Third, using the EU for the survey setting hinders the generalizability of the findings. The 

policies, strategy, and funding of AI initiatives in the EU differ from those in the US or 

China, which are key players in AI technology development (Dixon, 2022). Future research 

in different settings may provide interesting observations by allowing comparison. Research 

collaboration with the US and other countries highly involved in the researched topics may 

also provide greater access to data. 

Fourth, because of the already complex research model and the length of the related 

questionnaire, the scope and level of detail regarding measuring the constructs were limited. 

Several topics were identified that could be explored further. Analyzing the impact on 

specific loops in the triple loop learning concept will uncover if AI is indeed an organization 

transforming (i.e., context and assumptions changing) technology. The impact of AI on 

knowledge visualization (e.g., summarization capability of large language models), creating, 

searching, and distribution—and the effect of AI productivity tools on an individual level. 

Fifth, the study employed methods to establish the validity of the findings (see Sections 3.8 

and 4.6). The study's credibility depends on the accuracy and reliability of the collected data. 

However, the complex nature of AI adoption and subjective interpretations of AI 

applications, such as participants' struggles with technical terminology, might have 

influenced the conclusions. To address this, we provided illustrative use cases and inline or 
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tooltip descriptions in the online questionnaire to clarify the scale items. Despite efforts to 

ensure the credibility of sample cases (see Sections 5.5.2, 6.1.2, 6.4.5, and 6.4.6), potential 

biases or errors may have impacted the results. 

Sixth, several validation steps were executed during the AI adoption construct development 

to optimize the measurement scale and make it most generalizable. Despite efforts to ensure 

the study's reproducibility, the unique qualitative context and conditions (e.g., the current 

state of technology) in which the research was conducted may impede replicating the 

findings in different settings, timespans, or populations. The following paragraph discusses 

a specific applicable example. 

Seventh, large language models (LLM) and Generative Pre-Trained Transformers (GPT) 

emerged. Technological advances may produce different results over time in the rapidly 

changing field of AI and business value studies. While LLM and GPT broadly refer to AI, 

both could offer a more focused and practical perspective in discussions related to AI 

adoption, mainly when the context involves language processing and textual analysis 

applications. Different terminology choices could influence how participants perceive the 

relevance, applicability, and potential benefits of adopting such technologies in their 

organizations. However, as indicated by the interviews, managers may have varying degrees 

of familiarity with AI depending on their industry, role, and exposure to technological 

advancements. Many might have a general understanding of AI and its implications but may 

not be as familiar with the specifics of LLM and GPT. Participants specifically interested in 

or responsible for tasks involving text analysis, content generation, or customer interaction 

through written communication may find LLM and GPT more relevant and understandable 

(dependent on the industry). As a result, AI responses are likely to be more informed and 

broader than LLM or GPT responses, which might be narrower or less detailed. AI is a broad 

term that encompasses a wide range of technologies and applications. Therefore, it must be 

noted that LLM, GPT, and Generative AI (i.e., computational techniques that are capable of 

generating seemingly new, meaningful content such as text, images, or audio from training 

data; Feuerriegel, Hartmann, Janiesch, & Zschech, 2024) are AI technologies and used in 

various AI applications (e.g., chatbots and virtual assistants, content creation, drug creation, 

language translation, summarization tools, coding assistance, legal assistance, customer 

Interaction, etc.). As indicated by the interviews, the majority of participants from business 

are more familiar with AI applications than specific technologies. The operationalization of 

the AI adoption construct took this into account. Generated scale items were generated 

around AI application domains and included use cases to better illustrate the applications 

referenced. Although this mitigates the emergence of new AI technologies, it must be 

acknowledged that ChatGPT, developed by OpenAI, popularized and increased the adoption 

of AI. Data collection for this study was finished in June 2022, and ChatGPT was introduced 

in November 2022. We are confident the measurement scale would still be valid and capture 

the adoption of LLM and GPT; however, we expect the adoption levels to be higher. 
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Lastly, organizations may use AI algorithms for particular roles, implying new design 

requirements like transparency and predictability. AI algorithms may no longer execute in 

predictable contexts, which requires new safety assurances and the engineering of artificial 

ethical considerations. Therefore, future research should examine the social implications and 

the ethical and moral issues surrounding AI and its use. 

8.4 Reproducibility and Transparency of Research 

Accuracy, reproducibility, and transparency are essential for robust, credible, and ethical 

research (Christensen & Soderberg, 2016). We have addressed several related issues, 

including publication bias, motivated reasoning, data sharing, workflow management, 

formal policies, open research access, and reporting of research contributions. 

Publication bias is pervasive in scientific research, and studies with positive results are more 

likely to be published than those with null or negative results (Christensen & Soderberg, 

2016). We mitigate these risks by including a pre-analysis plan in the form of a dissertation 

proposal. Hence, we can confirm prediction integrity (i.e., the successful prediction may be 

granted a special status in elevating confidence in the theory on which the prediction is 

based) and all negative results are included.  

The unintentional bias we considered was primarily related to motivated reasoning, which 

can occur without intention because we are more likely to believe that our hypothesis is true, 

accepting it uncritically when it is confirmed and scrutinizing it when it is not. We reduced 

the impact of motivated reasoning by acknowledging its impact and consciously countering 

biased information processing (Christensen & Soderberg, 2016). We employed various 

strategies to reduce motivated reasoning, including the use of various sources of information, 

particularly articles that value evidence-based reasoning, peer review, and extensive 

discussion. 

All code and workflows (i.e., data, code, organization, and documentation) have been 

included for reproducibility (Chapters 3, 4, 6, and Appendix 2). All complex decisions 

regarding the research project are argued to avoid ambiguous and possibly arbitrary 

decisions (Christensen & Soderberg, 2016; Freese, Rauf, & Voelkel, 2022). 

In addition to code, the data are made available to make replication theoretically possible 

(Christensen & Miguel, 2020). As concerns about privacy and confidentiality have grown in 

recent years (Freese et al., 2022), we have ensured that the research complies with formal 

policies, that is, the university’s code of ethics (Ljubljana, 2009) and the European Union 

General Data Protection Regulation regarding privacy and confidentiality when conducting 

interviews and collecting data (Section 5.5.8). 

New software and computational improvements have made it possible to replicate and share 

data more easily (Christensen & Miguel, 2020). To reduce computational issues, we have 
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included a detailed description (i.e., version, suite, libraries) of tools, software packages, and 

programming code (Appendix 2). 

Research accessibility was prioritized, ensuring broad dissemination. The thesis will be 

publicly available via COBISS (Institute of Information Science, 2024), and the journal 

article will be published under an open-access license. All persons involved were credited 

based on the Project CRediT-developed taxonomy (The Niso CRediT Standing Committee, 

2012). 

We considered transparency in qualitative research, specifically interviews. In terms of data 

verification, we separated first- and second-order information, establishing the reliability of 

the participants (Section 3.4.2), and we based the categorization scheme on the established 

framework (Section 3.4.1.6) to ensure it accurately reflects the patterns or themes present in 

the raw data (Freese et al., 2022). 

When working within a null hypothesis testing framework, the power of a study and the 

probability of rejecting the null hypothesis when it is false is extremely important 

(Christensen & Miguel, 2020). We analyzed the SEM results using the post-hoc SEM power 

analysis, ensuring the value exceeded the 90% threshold (Section 6.5.3). For greater detail 

of the decisions made in the analysis (Christensen & Miguel, 2020), a statistical model 

uncertainty is presented. Each model in the space of plausible models (Section 6.5) was 

assigned a probability of being true based on researcher priors and goodness of fit criteria. 

The degrees of freedom refer to fishing for statistical significance within a study. This issue 

is known as data mining: the manipulation or repeated searching through statistical or 

regression models unknowingly (or deliberately) until significance is obtained (Christensen 

& Soderberg, 2016). This risk was mitigated with a pre-analysis plan (i.e., dissertation 

proposal) that included or assumed the main outcome measures (identifying which are 

primary and which are secondary), the precise composition of any groups used for mean 

effects analysis, the subgroups analyzed, the direction of expected impact, the primary 

specification for the analysis, a description of the sample to be used, key data sources, a 

description of hypotheses to be tested and multiple hypothesis tests, details of how variables 

will be constructed, a preliminary structural model, the rules for terminating data collection 

before data collection begins (related to predefined sample size), a report on eliminated 

observations (Section 6.1), statistical specification and the timestamp for verification 

(Christensen & Miguel, 2020). 

Since there are no formal social science reporting standards in economics (Christensen & 

Miguel, 2020; Christensen & Soderberg, 2016), our results were presented in full in a format 

commonly used in related research. 

This thesis includes a repository containing an electronic copy of this thesis and all of the 

supplementary files described in Appendix 2. 
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Appendix 1: Daljši povzetek (Extended summary in Slovene language) 

POVEZAVA MED PRIVZEMANJEM UMETNE INTELIGENCE IN 

USPEŠNOSTJO POSLOVANJA ORGANIZACIJE 

1 UVOD 

Čeprav se je tehnologija umetne inteligence (v nadaljevanju UI) pojavila že v 60. letih 

prejšnjega stoletja, je šele v zadnjem času pridobila na veljavi zaradi svojih potencialnih 

poslovnih aplikacij. UI razumemo kot simulacijo človeških kognitivnih funkcij s pomočjo 

inteligentnih agentov (Russel & Norvig, 2016). Velike količine strukturiranih in 

nestrukturiranih podatkov (velepodatki), računalništvo v oblaku, management podatkov, 

programska ogrodja in storitve UI so prispevali k novemu valu razvoja, ki zagotavlja lahko 

dostopno platformo za privzemanje tehnologije UI. V zadnjih letih se organizacije vse 

pogosteje obračajo k UI, da bi s trajno konkurenčno prednostjo povečale poslovno vrednost 

(Krakowski, Luger, & Raisch, 2023). UI se je hitro razvila do te mere, da lahko sproži 

transformacije, ki omogočajo inteligentno avtomatizacijo in avgmentacijo ter ustvarjajo 

priložnosti za kontinuirane digitalne inovacije (Abbad et al., 2021). Organizacije pa se še 

vedno soočajo s težavami pri privzemanju in uporabi tehnologij UI za doseganje večje 

učinkovitosti (Mishra & Pani, 2020). 

Kljub obsežnim raziskavam o poslovni vrednosti informacijske tehnologije (v nadaljevanju 

IT) (De Haes et al., 2020) za tehnologije UI še vedno manjka koherentno razumevanje, kako 

ustvarjajo poslovno vrednost (Enholm et al., 2021). Predhodne raziskave nakazujejo delni 

mediacijski vpliv privzemanja UI na uspešnost poslovanja prek organizacijskih 

zmogljivosti, kreativnosti in agilnosti (Chen, Esperança, et al., 2022; Mikalef & Gupta, 

2021; Wamba, 2022), vendar te študije ne upoštevajo vloge poslovnih procesov. 

Management poslovnih procesov (v nadaljevanju MPP) je priznan kot eden od osrednjih in 

trajnostnih pristopov v managementu (Rosemann et al., 2004). Njegov strukturiran in 

strateški pristop dopolnjuje inovativne zmožnosti UI (Ng, Chen, Lee, Jiao, & Yang, 2021a), 

kar spodbuja raziskave privzemanja UI v kontekstu MPP. Wamba-Taguimdje et al. (2020a) 

so proučevali mediacijski učinek procesno usmerjenih dinamičnih zmogljivosti in poudarili 

vpliv na procesni ravni (Wamba-Taguimdje et al., 2020b), vendar ustvarjanje poslovne 

vrednosti z UI, še posebej prek zmogljivosti MPP, ni deležno dovolj pozornosti (Ahmad & 

Van Looy, 2020). Ta raziskava si prizadeva prispevati k obstoječemu dialogu z obravnavo 

raziskovalnega vprašanja »Kako tehnologije umetne inteligence ustvarjajo poslovno 

vrednost in kakšno obliko poslovne vrednosti lahko pričakujemo?«. V ta namen je potrebno 

celostno razumevanje procesa ustvarjanja poslovne vrednosti UI. 

Predlagano razširjeno ogrodje poslovne vrednosti UI (angl. AI Business Value Framework) 

vključuje z UI omogočene zmogljivosti kot komponente privzemanja UI, mediacijske 

zmogljivosti MPP ter izide na procesni ravni in ravni organizacije. Dvojnost uporabe UI za 
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avtomatizacijo in avgmentacijo človeških zmogljivosti za ustvarjanje vrednosti je že 

prepoznana (Raisch & Krakowski, 2021). Perspektiva avtomatizacije in avgmentacije je 

integrirana z uvedbo koncepta kognitivne avtomatizacije poslovnih procesov (v 

nadaljevanju KAPP) kot mediatorja. Visok potencial UI za inovacije, tj. inovacijska 

ambideksternost, je vključen s postopnimi (v nadaljevanju IPPP) in radikalnimi izboljšavami 

poslovnih procesov (v nadaljevanju IPPR). Poleg tega vzpostavljamo povezave med 

organizacijskim učenjem (v nadaljevanju OU) in inovacijsko ambideksternostjo na podlagi 

zmožnosti UI vplivati na raziskovanje in izkoriščanje procesnih inovacij (Mishra & Pati, 

2020). Za boljše razumevanje, kako UI lahko vodi do uspešnosti poslovanja, smo izide 

razgradili na nižje in višje učinke, ki predstavljajo ločene vplive na ravni procesa in 

organizacije. Ob upoštevanju mediacijskega učinka ukrepov nižjega reda preučujemo tržno 

in operativno uspešnost prek učinkovitosti izvajanja procesov (v nadaljevanju UPP) in 

učinkovitost odločanja (v nadaljevanju UO). To privede do podrobnejšega razumevanja 

procesa ustvarjanja poslovne vrednosti UI. 

Konceptualizirali in operacionalizirali smo komponentno zasnovan pogled na privzemanje 

UI in KAPP. Oba sta bistvena in temeljna elementa pri naših prizadevanjih za merjenje 

vpliva in poslovne vrednosti UI. Sledili smo smernicam Podsakoff et al. (2016) za razvoj in 

validacijo koncepta ter merske lestvice. Izdelani merski lestvici za oba koncepta sta bili 

združenimi z obstoječimi lestvicami v strukturiranem vprašalniku, ki predstavlja 

operacionalizirani raziskovalni model. Sestavljen anketni vprašalnik je bil uporabljen v 

raziskavi na ravni Evropske unije (v nadaljevanju EU), ki je zajemala vzorec 448 organizacij, 

ki v svojih poslovnih procesih uporabljajo tehnologije UI. 

Preostanek povzetka disertacije je strukturiran, kot sledi. Naslednji razdelek predstavi 

teoretično osnovo raziskovalnih hipotez in predlaganega modela poslovne vrednosti UI. 

Tretji razdelek opisuje raziskovalne metode, nato sledijo rezultati raziskave. Na koncu so 

podani razprava in sklepi skupaj z znanstvenimi prispevki, praktičnimi vplivi, omejitvami in 

predlogi za nadaljnje raziskave. 

2 TEORETIČNA IZHODIŠČA IN HIPOTEZE 

Za uskladitev te študije z obstoječimi raziskavami (Tabela 1) o privzemanju UI smo kot 

teoretični okvir izbrali teorijo na temelju virov (TTV). Pretekle raziskave na širšem področju 

informacijskih sistemov (v nadaljevanju IS) so TTV obsežno uporabljale in ga postavile kot 

osrednjo teoretično perspektivo za razumevanje, kako viri IS ustvarjajo vrednost in 

organizacijam omogočajo doseganje boljših poslovnih rezultatov (Patas et al., 2012). 

Pri prehodu na vse bolj digitalno poslovno okolje so podatki eden od ključnih virov 

organizacije, skozi katere dojema in razume lastno poslovanje, ga izboljšuje in se prilagaja 

okolju (Aydiner, Tatoglu, Bayraktar, Zaim, et al., 2019). UI izkorišča podatke kot jedrni vir 

in prek zmogljivosti, omogočenih z UI, izboljšuje učinkovitost in uspešnost poslovanja. Za 
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poslovno okolje sta značilni vse večja dinamika in kompleksnost (Wu, 2010). 

Organizacijske zmogljivosti imajo ključno vlogo pri soočanju organizacij z nepredvidljivim 

poslovnim okoljem, zato smo v analizi uporabili teorijo na temelju dinamičnih zmožnosti 

(TTDZ) (Lin & Wu, 2014). Wade and Hulland (2004) trdita, da imajo viri IS lahko številne 

značilnosti dinamičnih zmožnosti in so zato lahko še posebej koristni za organizacije v hitro 

spreminjajočem se okolju. Posledično dojemamo TTV in TTDZ kot ustrezen teoretični okvir 

te študije. 

2.1 Umetna inteligenca in uspešnost poslovanja 

V tej raziskavi razumemo UI kot simulacijo človeških kognitivnih funkcij z uporabo 

inteligentnih agentov ali sistemov UI, tj. sistem, temelječ na strojni opremi, ki za dosego 

eksplicitnih in implicitnih ciljev na podlagi vhodnih podatkov sklepa, kako ustvariti 

rezultate, kot so napovedi, vsebina, priporočila ali odločitve, ki lahko vplivajo na fizično ali 

virtualno okolje. Sistemi umetne inteligence se razlikujejo glede na stopnjo avtonomije in 

prilagodljivosti po njihovi uvedbi (OECD, 2024). 

Raziskovalci so dokazali, da lahko organizacija učinkovito izkoristi svoje naložbe v IT z 

razvojem močne IT-zmogljivosti za izboljšanje učinkovitosti procesov in uspešnosti 

poslovanja (Santhanam & Hartono, 2003). Nedavne empirične raziskave kažejo, da uvedba 

UI vpliva na organizacijske zmogljivosti in izboljša uspešnost poslovanja (Tabela 1). 

Predvidevamo, da lahko specifična sposobnost UI za ustvarjanje inteligentnih agentov, ki 

omogočajo avtomatizacijo in avgmentacijo procesov odločanja ter transformacijo 

(izboljšanje in preoblikovanje) poslovnih procesov, privede to znatnega povečanja poslovne 

uspešnosti. To nas vodi do formulacije naslednje hipoteze: 

H1: Privzemanje UI neposredno pozitivno vpliva na uspešnost poslovanja. 

Lui et al. (2022) opozarjajo, da morajo organizacije zaradi zahtevnosti projektov 

privzemanja UI razmisliti, kako bo njihova naložba v UI vplivala na njihovo poslovno 

vrednost. Za predvidevanje pričakovanih izidov in zmanjšanje povezanega tveganja zato 

potrebujemo celostno razumevanje procesa ustvarjanja vrednosti UI. 

Tabela 1: Izbrane empirične raziskave o umetni inteligenci in uspešnosti poslovanja 

Avtor Obseg Teorija Ugotovitve 

Mikalef et al. (2023) Vprašalnik, 168 javnih 

organizacij 

TTV (+) Zmogljivost UI → avtomatizacija 

procesov, kognitivni vpogled, kognitivna 
vključenost, uspešnost poslovanja 

Mikalef and Gupta (2021) Vprašalnik, 143 višjih vodilnih 

delavcev ameriških podjetij 

TTV, TTDZ (+) Zmogljivost UI → organizacijska 

ustvarjalnost in uspešnost poslovanja 

Wamba (2022) Vprašalnik, 205 vodilnih 
delavcev ameriških podjetij 

TTV, TTDZ (+) Asimilacija UI → organizacijska agilnost, 
agilnost kupcev, uspešnost poslovanja 

Wamba-Taguimdje et al. 

(2020a) 

150 študij primerov, povezanih 

z UI 

TTV, TTDZ (+) Zmogljivost UI → procesno vodene 

dinamične zmogljivosti, uspešnost poslovanja 

Chen, Esperança, et al. (2022) Vprašalnik, 394 podjetnikov s 
področja e-trgovanja 

 

TTV, TTDZ  (+) Zmogljivost UI → ustvarjalnost podjetja, 
upravljanje z UI, UI vodeno odločanje, 

uspešnost poslovanja 

   Se nadaljuje 
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Tabela 1: Izbrane empirične raziskave o umetni inteligenci in uspešnosti poslovanja (nad.) 

Avtor Obseg Teorija Ugotovitve 

Rammer et al. (2022) Nemška raziskava o inovacijah, 

2018 

 (+) UI → učinkovitost inovacij 

Bag, Gupta, et al. (2021) 306 izvršnih direktorjev iz 

Južne Afrike  

TUZ (+) UI, podprta z velepodatki → proces 

upravljanja z znanjem, slog odločanja, 
uspešnost poslovanja 

Mishra et al. (2022) Podatki 10-K iz ameriških 

podjetij 

 (+) Usmerjenost v UI → uspešnost poslovanja 

Kim et al. (2022) 395 podjetij iz ZDA, ki 
uporabljajo UI (med letoma 

2000 in 2018) 

 (+) Privzemanje UI → uspešnost poslovanja,  
(+) Privzemanje UI → avtomatizacija 

Lui et al. (2022) 62 podjetij iz ZDA (med letoma 
2015 in 2019) 

 (−) Objave glede privzemanja UI → tržna 
vrednost podjetja  

(−) Objave glede privzemanja UI → 

nenavadni tržni donosi 

Joseph and Falana (2021) 159 podjetij iz Nigerije  (+) UI → uspešnost poslovanja 

Panduro-Ramirez et al. (2022) 80 intervjujev iz Velike 

Britanije 

 (+) Integrirana tehnologija UI → uspešnost 

poslovanja in donosnost 

Chetty (2019) Vprašalnik, 190 respondentov 

iz Južne Afrike 

TTV (+) UI moderirana zmogljivost analitike 

velepodatkov → uspešnost poslovanja 

Yang (2022) 5.257 tajvanskih podjetij, ki so 

v obdobju od leta 2000 do leta 

2019 vložila vsaj en patent na 
področju UI 

 (+) Tehnologija UI → produktivnost in 

zaposlovanje 

Lyu and Liu (2021) Compustat podatki o sektorju 

energije v ZDA v obdobju 
2010–2019 

 (+) Privzemanje UI → produktivnost 

Chatterjee et al. (2022) 62 ameriških podjetij v obdobju 

2015–2019 

TTDZ (+) Privzemanje aplikacij na osnovi UI → 

uspešnost poslovanja 

Naz et al. (2022) Vprašalnik, 240 pakistanskih 
podjetij s področja proizvodnje 

hrane 

TTDZ, KT (+) Podjetniška usmerjenost, zmogljivosti 
analitike velepodatkov in zmogljivosti UI → 

uspešnost poslovanja 

Ho et al. (2022) Bloombergov svetovni borzni 

indeks, povezan z UI, od leta 
2019 do 2020 

 (+) Privzemanje aplikacij na osnovi UI → 

trajnostna poslovna uspešnost v zahtevnih 
okoljih 

Jain (2019) Spletna anketa v Indiji; 50 

respondentov 

 (+) UI → upravljanje tehnoloških izzivov (+) 

UI → gospodarska rast (izboljšanje 
poslovanja: produktivnost, učinkovitost 

poslovanja, rast) 

Alekseeva et al. (2020) Compustatu Online objave 

delovnih mest v ZDA v 
obdobju 2010–2018 

 (+) UI → rast prodaje, kapitalske naložbe, 

EBITDA-marža, naložbe v raziskave in razvoj 
(+) UI → skupna faktorska produktivnost 

Babina et al. (2021) Objave delovnih mest iz ZDA v 

obdobju 2010–2018 

 (+) UI → rast prodaje, inovacije izdelkov, 

zaposlovanje, tržne ocene; kontrolna 
spremenljivka: večja podjetja imajo več koristi 

od naložb v UI 

Fotheringham and Wiles 

(2022) 

Analiza dogodkov na 

ameriškem borznem trgu 
(2016–2019; 153 objav) 

TTS (+) Objave o naložbah v UI (klepetalni roboti) 

→ nenavadni donosi delnic 

Sullivan and Wamba (2022) Vprašalnik, 107 poslovodnih in 

IT direktorjev iz Velike 
Britanije in Francije 

TTDZ, TOI (+) Uporaba UI → odpornost organizacije, 

uspešnost poslovanja 

Opomba. (+) pozitiven učinek; (−) negativen vpliv; ( ) brez vpliva; TUZ = teorija upravljanja z znanjem; KT = kontingenčna teorija; 

TTS = teorija tržnih sredstev; TOI = teorija organizacijskih informacij. 

 

Vir: lastno delo. 

2.2 Model poslovne vrednosti umetne inteligence 

Naša uvodna raziskava in obstoječe raziskave o poslovni vrednosti IT (Schryen, 2013) so 

potrdile, da lahko usklajevanje privzemanja UI s poslovnimi procesi privede do znatnih 

izboljšav uspešnosti poslovanja. Skladno s tem smo izhajali iz integrativnega modela 

poslovne vrednosti IT (Melville et al., 2004) za proučevanje privzemanja UI v okolju MPP. 

Model ponuja ustrezno celostno perspektivo procesa ustvarjanja poslovne vrednosti UI, ki 
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vključuje vire UI, zmogljivosti MPP, poslovne procese, učinkovitost procesov, uspešnost 

poslovanja (UP) in zunanje okolje. 

Obstoječe raziskave (Tabela 1) so pokazale, da je vpliv UI mediiran preko določenih 

organizacijskih zmogljivosti. Z uskladitvijo virov UI z zmogljivostmi MPP (Kerpedzhiev et 

al., 2020) smo identificirali tri: KAPP, organizacijsko učenje in inovacije poslovnih 

procesov (v nadaljevanju IPP), tj. ambideksterni pogled na inovacije, ki združuje operativno 

zmogljivost postopnih izboljšav procesov in dinamično zmogljivost radikalnih izboljšav 

procesov. V skladu z modelom poslovne vrednosti IT proučujemo izide na procesni ravni z 

učinkovitostjo poslovnih procesov in učinkovitostjo odločanja ter tako model razširimo na 

raven organizacijskega delovanja oziroma uspešnosti poslovanja. Posamezne povezave so 

predstavljene v nadaljevanju. 

Sledili smo smernicam Hong et al. (2014) o kontekstualno specifičnem teoretiziranju za 

preslikavo modela ustvarjanja poslovne vrednosti IT v kontekst tehnologije UI. Privzemanje 

UI je osrednji fokus naše raziskave. Slika 1 prikazuje konceptualni model, ki prikazuje 

stičišče med glavnimi konstrukti. 

Slika 1: Predlagani raziskovalni model 

 
 

Vir: lastno delo. 

2.3 Komponentni pogled na privzemanje umetne inteligence 

Opirajoč se na delo Aydiner, Tatoglu, Bayraktar, Zaim, et al. (2019) opišemo uvajanje UI 

kot implementacijo, uvedbo in uporabo virov UI (podatkov, infrastrukture UI, znanja, 

Uspešnost

 poslovanja (UP)

Proces ustvarjanja poslovne vrednosti UI

Organizacija

Konkurenčno okolje

Kontrolne 

spremenljivke: 

starost, velikost, 

Industrija/sektor, 

država,

negotovost okolja.

Učinki na 

procesni ravni

Učinki na 

organizacijski ravni
Zmogljivosti MPP

Privzemanje UI

(UI)

Viri UI
Kognitivna 

avtomatizacija 

poslovnih procesov 

(KAPP)

Inovacije poslovnih 

procesov – postopne 

(IPPP)

Učinkovitost 

poslovnih procesov

(UPP)

Učinkovitost 

odločanja (UO)

Inovacije poslovnih 

procesov – radikalne 

(IPPR)

Organizacijsko 

učenje (OU)

+H8a

+H6b

+H1

+H8b

+H7a

+H3a

+H2

+H3b

Avtomatizacija - avgmentacijaPodatki, zmogljivosti UI in UI 

omogočene zmogljivosti
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kompetenc). Raven privzemanja se meri z razvojem zmogljivosti, ki temeljijo na UI 

(komponente privzemanja UI). Te zmogljivosti predstavljajo sposobnost mobilizacije virov 

UI za specifične poslovne potrebe skozi implementacijo, uvedbo in uporabo aplikacij, orodij 

ali tehnologij UI. Ta perspektiva poudarja operativni vidik UI in ne raziskuje dejavnikov, ki 

prispevajo k njenemu razvoju ali vplivajo na uvajanje (kot so predhodniki ali determinante). 

S sprejetjem pogleda na osnovi komponent raziskovalci in strokovnjaki analizirajo 

oprijemljive dejavnike, ki zahtevajo učinkovito rabo v realnih kontekstih. To je način, ki 

zagotavlja bolj transparenten in akademski pogled (natančnost in specifičnost, empirično 

proučevanje, tehnološke vidike, aplikativno usmerjeno analizo) na razumevanje praktičnih 

posledic in vpliva UI na različnih področjih. Konceptualizacija privzemanja UI opredeljuje 

pet progresivnih ravni zmogljivosti UI, ki podpirajo poslovne procese in prispevajo k 

ustvarjanju poslovne vrednosti na osnovi podatkov organizacije. 

Pridobivanje in predhodna obdelava podatkov: obsegata manipulacijo velepodatkov 

(angl. Big Data): »Sposobnost organizacije, da pridobi podatke iz strukturiranih in 

nestrukturiranih virov, novih in obstoječih sistemov ter notranjih in zunanjih virov ter jih 

pripravi za analizo.« 

Kognitivni vpogled: »Sposobnost organizacije, da uporabi UI za odkrivanje vzorcev v 

podatkih in razlaganje njihovega pomena.« Ta dimenzija je konceptualizirana okoli tematik 

razumevanja konteksta, učenja in analitike. 

Kognitivna vključenost: »Sposobnost organizacije, da uporabi z UI izboljšano človeško-

računalniško interakcijo in sodelovanje.« Vključenost je sestavljena iz več ključnih 

elementov, vključno z razumevanjem, zaznavanjem namena in domenskim znanjem (Russel 

& Norvig, 2016). Ta sposobnost omogoča avtomatizirane interakcije, ki podpirajo delo 

uporabnikov in spodbujajo njihovo sodelovanje (Mele et al., 2018) v poslovnih procesih, 

usmerjenih k naročniku ali zaposlenim. 

Kognitivna podpora odločanju: »Sposobnost organizacije, da uporabi UI v procesih 

odločanja.« Tehnologije UI olajšajo sprejemanje odločitev in ponujajo bolj inteligentno 

podporo odločanju. 

Kognitivne tehnologije: »Sposobnost organizacije, da integrira tehnologije UI z drugimi 

IT-viri, storitvami in napravami.« To dimenzijo smo izolirali za organizacije, ki ne uvajajo 

in uporabljajo UI zgolj na specifičnem aplikativnem področju kot določen program ali 

orodje. Zmogljivost kognitivnih tehnologij predstavlja najvišjo raven uvajanja, ko UI globje 

integriramo s poslovnimi procesi (to pomeni inovativno ali ustvarjalno uporabo UI zunaj 

njene prvotno predvidene rabe). 
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2.4 Mediacijska vloga učinkovitosti poslovnih procesov 

Melville et al. (2004) uspešnost definirajo kot zmogljivost poslovnih procesov kot tudi 

uspešnost poslovanja. Model poslovne vrednosti IT ločuje operativno učinkovitost 

poslovnih procesov od splošne uspešnosti poslovanja, pri čemer naj bi nekateri rezultati 

poslovnih procesov vplivale na uspešnost poslovanja organizacije (Tallon et al., 2000). Na 

podlagi njihovega zaključka sklepamo, da viri UI organizacijam pomagajo ustvarjati 

poslovno vrednost prek vpliva na poslovne procese. Za proučevanje vpliva UI na UPP 

primerjamo značilnosti poslovne vrednosti UI: hitrost, obseg, granularnost, učenje 

(natančnost napovedovanja), reševanje problemov in odločanje (Tallon et al., 2000) s 

ključnimi kazalniki učinkovitosti procesov (čas, strošek), uspešnosti (kakovost) in prožnosti 

(Dumas et al., 2018). 

H2: Učinkovitost poslovnih procesov pozitivno vpliva na uspešnost poslovanja. 

2.5 Učinkovitost odločanja 

UO je sposobnost organizacije za učinkovito in uspešno sprejemanje odločitev. Sistemi UI 

se uporabljajo za nadomeščanje človeških odločevalcev pri strukturiranih ali delno 

strukturiranih odločitvah (avtomatizacija) ali kot orodje za podporo pri odločanju za 

nestrukturirane odločitve na procesni ali strateški organizacijski ravni (avgmentacija) (Duan 

et al., 2019). Odločanje, podprto z UI, lahko znatno poveča operativno učinkovitost in 

produktivnost za doseganje boljših poslovnih rezultatov (Ashaari et al., 2021). Poslovni 

procesi vključujejo številne odločitve, ki neposredno vplivajo na uspešnost (Ghattas, Soffer, 

& Peleg, 2014), pri čemer vplivajo na različne vidike, vključno z učinkovitostjo in 

prožnostjo. Komponente odločanja v poslovnem procesu imajo ključno vlogo pri doseganju 

ciljev procesa in pomembno prispevajo h končnem rezultatu (Raghu & Vinze, 2007). 

Učinkovit proces odločanja usmerja poslovne procese k uvajanju novih izdelkov in storitev 

ter jih povezuje z nastajajočimi tehnologijami (Robert Baum & Wally, 2003). Učinkovito 

odločanje spodbuja inovativnost z razvijanjem ekonomije obsega in sinergij znanja v 

različnih organizacijskih kombinacijah ter omogoča izkoriščanje priložnosti v dinamičnih 

okoljih (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019). Povezava je bolj formalno navedena 

v naslednji hipotezi: 

H3a: Učinkovitost odločanja pozitivno vpliva na učinkovitost poslovnih procesov. 

Proces odločanja na organizacijski ravni vključuje razumevanje trendov in vzorcev v 

poslovni rasti (Keding, 2021). Natančne informacije se ne pridobivajo samo za operativno 

odločanje, temveč tudi za uporabo pri strateškem poslovnem odločanju. UO temelji 

predvsem na znanju (Wiklund & Shepherd, 2008). Tako postanejo IS upravljanja znanja, 

podprti z UI (tj. inženiring znanja in ekspertni sistemi, sistemi za podporo odločanju), 

pomembna orodja, ki omogočajo odločanje na podlagi dejstev (angl. evidence-based) in 

reševanje problemov v kompleksnih poslovnih situacijah. Številni avtorji trdijo, da 
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odločanje na podlagi UI (angl. AI-based) neposredno vpliva na poslovno uspešnost (Ashaari 

et al., 2021; Chen, Esperança, et al., 2022; Rahman et al., 2021). To nas vodi k naslednji 

hipotezi: 

H3b: Učinkovitost odločanja pozitivno vpliva na uspešnost poslovanja. 

2.6 Avtomatizacija in avgmentacija 

Z vidika učinkovitosti poslovanja predstavljata avtomatizacija in avgmentacija dva glavna 

primera uporabe v privzemanju UI (Enholm et al., 2021; Raisch & Krakowski, 2021). 

Avtomatizacija pomeni, da strojna oprema prevzame človeško nalogo; avgmentacija 

pomeni, da ljudje tesno sodelujejo s stroji pri opravljanju naloge. Oba koncepta se nahajata 

na nasprotnih koncih spektra sodelovanja človek-stroj (Raisch & Krakowski, 2021). 

Avtomatizacija sega od popolnoma ročne (tj. človeške) do popolnoma avtomatske 

(Parasuraman et al., 2000). 

Avtomatizacija omogoča organizacijam doseganje stroškovne učinkovitosti, vzpostavljanje 

hitrejših procesov ter zagotavljanje večje racionalnosti in doslednosti pri obdelavi 

informacij. Nasprotno pa avgmentacija ponuja dopolnilne prednosti iz vzajemne krepitve 

človeških spretnosti in strojnih zmožnosti. Integriranje avtomatizacije in avgmentacije vodi 

do dodatnih sinergij med tema medsebojno odvisnima dejavnostma (Raisch & Krakowski, 

2021). Raznolike prednosti kažejo, da kombinacija avtomatizacije in avgmentacije ustvarja 

komplementarne učinke, ki povečajo učinkovitost (Grønsund & Aanestad, 2020). 

Prilagojeno po Dwarkanhalli et al. (2018) ter Zasada (2019) definiramo koncept KAPP kot 

avtomatizacijo procesov, ki temeljijo na znanju (angl. the automation of knowledge-

intensive processes). Koncept je bistven za razumevanje vpliva uvedbe UI. KAPP je 

operativna zmogljivost, torej sposobnost organizacije, da izvaja funkcionalne dejavnosti s 

pomočjo namensko izbranih skupin virov (Saunila et al., 2020). Wu et al. (2012) navajajo, 

da se operativne zmogljivosti večinoma preučujejo z vidika izidov, vključno s stroški, 

kakovostjo, zanesljivostjo, hitrostjo in prožnostjo. Optimizirani procesi imajo največ koristi 

od avtomatizacije s stroškovno učinkovitostjo, hitrejšo izvedbo ter večjo racionalnostjo in 

doslednostjo pri obdelavi informacij (kakovost) (Ansari et al., 2019; Berruti et al., 2017; 

Rocha et al., 2017). Nekateri avtorji pa vztrajajo z bolj pesimističnimi pogledi na kognitivno 

avtomatizacijo (Daugherty & Wilson, 2018; Raisch & Krakowski, 2021). Trdijo, da pravi 

digitalni kognitivni mediator (popolna avtomatizacija) še ne obstaja (Rouse & Spohrer, 

2018), kar pomeni, da je treba dati prednost delni avtomatizaciji ali avgmentaciji. Za 

preučitev vpliva avtomatizacije definiramo splošno značilnost koncepta kot »sposobnost 

organizacije, da avtomatizira poslovne procese, ki temeljijo na znanju (nepredvidljivi, 

neponovljivi, visoko prilagodljivi, kompleksni), da simulira delo z znanjem in aktivnosti 

sodelovanja.« Osredotočimo se na dve dimenziji: raven avtomatizacije (ročna, podpora 

odločanju, izbira odločitev, nadzorna kontrola, popolna avtomatizacija) (Sindhgatta, ter 

Hofstede, & Ghose, 2020b; Vagia et al., 2016) in obseg avtomatizacije (strukturirani, 
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strukturirani z ad hoc izjemami, nestrukturirani z vnaprej določenimi fragmenti, prosto 

strukturirani in nestrukturirani procesi) (Di Ciccio et al., 2015; Szelagowski & Lupeikiene, 

2020). Glede na teoretiziranje Raisch and Krakowski (2021) ter Karan et al. (2021) lahko 

pri višji ravni avtomatizacije pričakujemo večji vpliv na odločanje in manjšega na 

učinkovitost procesov. Glede na to lahko domnevamo vpliv na UO in UPP. Tako oblikujemo 

naslednji hipotezi: 

H4a: Kognitivna avtomatizacija poslovnih procesov je mediator med pozitivnim vplivom 

privzemanja UI in učinkovitostjo odločanja. 

H4b: Kognitivna avtomatizacija poslovnih procesov je mediator med pozitivnim vplivom 

privzemanja UI in učinkovitostjo poslovnih procesov. 

2.7 Organizacijsko učenje 

OU predstavlja stalno prizadevanje za ustvarjanje organizacijskega znanja. Poleg tega 

prispeva k sposobnosti organizacije, da se učinkovito prilagodi spremembam v poslovnem 

okolju (Bohanec et al., 2017). Razvije lahko novo, postopno znanje ali posodobi obstoječe 

znanje. OU razumemo kot pridobivanje, ustvarjanje, integriranje in distribucijo informacij 

in znanja (Templeton et al., 2002; Wang & Ellinger, 2011). Učenje in znanje sta bistvena za 

več zmogljivosti MPP, predvsem za področje »zaposleni in kultura« (Helbin & Van Looy, 

2021; Kerpedzhiev et al., 2020). Posledično lahko OU razumemo kot zmogljivost MPP. 

Hitro razvijajoča se vloga in vrednost tehnologije UI za delovanje in konkurenčnost 

organizacije nas usmerjata k vključitvi ustvarjanja in uporabe znanja na podlagi tehnologije 

v definicijo organizacijskega učenja (Banasiewicz, 2021). UI ima znaten potencial za 

razjasnitev organizacijske baze znanja, če je ta predstavljena v velepodatkih. Sistemi UI, ki 

temeljijo na strojnem in globokem učenju, lahko prepoznajo zapletene vzorce in izvajajo 

analize, kar jim omogoča preoblikovanje virov znanja v nove zmogljivosti, ki olajšajo proces 

učenja znotraj organizacije (Jarrahi, Kenyon, et al., 2022). 

Končni namen OU je izboljšati informacijsko učinkovitost odločanja (Banasiewicz, 2021). 

Da bi organizacije ostale konkurenčne v gospodarstvu, ki temelji na znanju, morajo razviti 

in uporabiti robustne načine za ustvarjanje in izkoriščanje znanja, ki usmerja poslovne 

odločitve (Banasiewicz, 2021). Za avgmentacijo lahko izkoristimo priložnosti, ki jih ponuja 

UI, vključno s tehnikami analitičnih podatkov inkodificiranim znanjem za povečanje 

inteligence človeških odločevalcev (okrepitev inteligence). Čeprav te tehnike ne 

nadomestijo odločevalcev, lahko pomagajo pri sprejemanju kompleksnih odločitev s 

pomočjo dobro zasnovanih interakcij učenja med človekom in sistemom UI (Wijnhoven, 

2022). Ti premisleki nas vodijo do naslednjih hipotez za preizkus mediacijskega učinka OU 

prek UO na UPP. 
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H5a: Organizacijsko učenje je mediator med pozitivnim vplivom privzemanja UI in 

učinkovitostjo odločanja. 

H5b: Organizacijsko učenje je mediator med pozitivnim vplivom privzemanja UI in 

učinkovitostjo poslovnih procesov. 

OU predstavlja avgmentacijski potencial UI. OU opredelimo kot dinamično zmogljivost, saj 

integrira, gradi ali preoblikuje kompetence in tako omogoča prilagajanje hitro 

spreminjajočemu se poslovnem okolju (Eisenhardt & Martin, 2000). Razvoj novega znanja, 

pridobljenega z OU, zmanjša verjetnost, da bodo kompetence organizacije zakrnele, in 

omogoča, da ostanejo dinamične in podpirajo povečanje uspešnosti poslovanja (Senge, 

1998). 

2.8 Ambideksterna inovativnost in organizacijsko učenje 

Proces inoviranja se, skupaj s splošno preobrazbo v digitalizirana podjetja, spreminja zaradi 

povečane implementacije digitalnih storitev in avtomatizacije (Helbin & Van Looy, 2021). 

UI ponuja možnosti za reševanje dveh specifičnih ovir pri inovacijah. Prva je omejitev pri 

obdelavi informacij, ki organizaciji omejuje dostop do novih poslovnih priložnosti ali 

možnih rešitev (Williams & Mitchell, 2004). Haefner et al. (2021) predstavljajo dve 

zmogljivosti UI, ki ju lahko uporabimo za premagovanje te ovire. Sistemi UI lahko pridobijo 

informacije iz velepodatkov, prepoznajo in ocenijo bistveno več informacij, jih uporabijo za 

razvoj idej (npr. pripovedovanje zgodb na podlagi podatkov, vizualizacija uspešnosti, 

metaiskanje, prepoznavanje imenovanih entitet) ter prepoznajo več težav, priložnosti in 

groženj, ki se lahko uporabijo za ustvarjanje novih idej (npr. napovedno modeliranje in 

analitika, odkrivanje anomalij in odklonskega vedenja, napovedno vzdrževanje). Druga 

ovira izvira iz neučinkovitih ali lokalnih rutinskih iskanj (Katila & Ahuja, 2002), pri katerih 

organizacije na splošno iščejo rešitve v domenah znanja, povezanih z njihovo obstoječo bazo 

znanja (Posen et al., 2018). Posledično bo večina rešitev primerjalno postopnih v svojem 

inovativnem prizadevanju, saj se zelo tesno opirajo na obstoječe znanje. Da bi organizacije 

ustvarile bolj kreativne in inovativne ideje ali priložnosti, morajo razširiti svoje iskanje zunaj 

obstoječih domen znanja na nova področja in zunanje vire podatkov ter biti bolj 

raziskovalne. Sistemi UI lahko ustvarijo, identificirajo in ocenijo bolj kreativne/raziskovalne 

ideje (npr. generativna UI – generativno oblikovanje, inženiring proteinov, odkrivanje 

materialov, rudarjenje procesov). 

Raziskovalci trdijo, da lahko ambidekstralne organizacije uravnotežijo obe strategiji 

(izkoriščanje in raziskovanje) in se izognejo težavi prevelikega zanašanja na eno strategijo 

(Aljumah, Nuseir, & Alam, 2021; Benner & Tushman, 2015). Čeprav O'Reilly III in 

Tushman (2011) poudarjata pomembnost raziskovanja novih področij in hkratnega 

izkoriščanja obstoječih za preživetje ter rast organizacije, je jasno tudi, da imajo organizacije 

s tem pogosto težave (Johnson et al., 2022). Večina organizacij vidi v tehnologiji UI 

priložnost za raziskovanje, druge pa se osredotočajo na sposobnost UI, da poveča 
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učinkovitost trenutnih operacij (Johnson et al., 2022). V kontekstu MPP pričakujemo 

izboljšanje procesov s pomočjo vgrajene tehnologije UI ali s pomočjo UI procesa inovacij. 

Izkoriščanje se nanaša na postopne inovacije (v nadaljevanju IPPP), ki povečajo 

učinkovitost, kakovost in prožnost poslovnih procesov. Nasprotno pa raziskovanje stremi k 

radikalnemu izboljšanju (v nadaljevanju IPPR) s pomočjo novih, transformiranih ali 

preoblikovanih procesov (Norman & Verganti, 2014). Na podlagi tega trdimo, da 

privzemanje UI omogoča ambidekstralno inovativnost. Za preverjanje trditve predlagamo 

dva para hipotez za postopno in radikalno inovativnost: 

H6a: Postopne inovacije poslovnih procesov so mediator med pozitivnim vplivom uvedbe 

UI in učinkovitostjo odločanja. 

H6b: Postopne inovacije poslovnih procesov so mediator med pozitivnim vplivom uvedbe 

UI in učinkovitostjo poslovnih procesov. 

H7a: Radikalne inovacije poslovnih procesov so mediator med pozitivnim vplivom uvedbe 

UI in učinkovitostjo odločanja. 

H7b: Radikalne inovacije poslovnih procesov so mediator med pozitivnim vplivom uvedbe 

UI in učinkovitostjo poslovnih procesov. 

Raziskave kažejo, da OU in njegov rezultat, organizacijsko znanje, prispevata k inovacijam 

(Almuslamani, 2022). OU preprečuje stagniranje in spodbuja stalne inovacije z 

obnavljanjem in odkrivanjem novih zmogljivosti tehnologij ter proizvodnih metod (García-

Morales et al., 2012). Višja raven inovacij zahteva večjo kritično sposobnost, nove spretnosti 

in relevantno znanje (Senge, 1998). Po March (1991) lahko organizacija izkoristi obstoječe 

znanje in raziskuje načine uporabe tehnologije, kot je UI, za ustvarjanje novega znanja. 

Kljub temu je malo empiričnih dokazov o tem, ali pridobivanje, distribucija in izkoriščanje 

znanja s pomočjo UI vplivata na učinkovitost procesov s spodbujanjem inovacij. Predlagamo 

hipoteze za preizkus vpliva: 

H8a: Organizacijsko učenje pozitivno vpliva na postopne inovacije poslovnih procesov. 

H8b: Organizacijsko učenje pozitivno vpliva na radikalne inovacije poslovnih procesov. 

3 POSTOPEK IZVEDBE EMPIRIČNE RAZISKAVE 

3.1 Raziskovalni pristop 

Za empirično preučitev raziskovalnega problema smo uporabili anketni vprašalnik. 

Uporabili smo en sam primarni vir podatkov, zasnovan na samoporočanju respondentov, ki 

predstavlja prečni prerez (časovno) stanja uporabe UI v organizacijah. Podatke smo zbrali z 

anonimnim anketnim vprašalnikom v angleškem jeziku, ki je bil distribuiran elektronsko 
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(prek spleta). Organizacija je obravnavana kot analitična enota. Zasnovo, merilne lestvice in 

vprašalnik smo razvili v skladu s smernicami MacKenzie et al. (2011) ter Brace (2018). 

3.2 Zbiranje podatkov in vzorec 

Po podatkih (Eurostat, 2022) je leta 2020 v EU 7 % podjetij uporabljalo aplikacije UI. 

Ocenili smo, da okvir vzorca znaša 8 % aktivnih podjetij, tj. 2,2 milijona podjetij. Z 95 % 

zanesljivostjo in 5 % napako vzorčenja smo določili 385 respondentov kot minimalno 

velikost vzorca. Uporabili smo sorazmerno naključno vzorčenje, stratificirano po državah. 

Respondente smo pridobili preko LinkedIn Pro in preko podatkov o aktivnih poslovnih 

domenah po kodah države iz ZoneFiles.io. Ciljna skupina so bili višji managerji in drugi 

višji odločevalci ali zaposleni, ki so neposredno vključeni v izvajanje strategije UI v 

organizaciji. Vabila smo poslali po e-pošti v štirih valovih od marca 2022 do junija 2022 ob 

začetkih mesecev. 

Zbran in obdelan vzorec je vključeval 448 organizacij v EU. Reprezentativnost vzorca smo 

preverili glede na velikost podjetja, panogo, leta poslovanja (starost) in državo. Respondenti 

so bili večinoma izvršni direktorji (76,34 %) ali srednji managerji (18,75 %) predvsem iz 

srednje velikih organizacij (89,73 %). Večinoma delujejo v informacijskem in 

telekomunikacijskem sektorju, storitvah (20,98 %), znanstveno-tehničnih dejavnostih (29,02 

%), finančnih in zavarovalnih dejavnostih (7,37 %) ter predelovalni dejavnosti (5,58 %). 

40,63 % organizacij je bilo mlajših, 25,22 % pa zrelih, skoraj polovica iz Nemčije (21,43 

%), Italije (10,94 %), Nizozemske (10,49 %) in Francije (6,92 %). 

3.3 Merjenje spremenljivk 

Privzemanje UI smo operacionalizirali s petimi temeljnimi podkonstrukti: pridobivanje in 

predhodna obdelava podatkov, kognitivni vpogled, kognitivna vključenost, kognitivna 

podpora odločanju in kognitivne tehnologije. Konstrukt, izpeljan iz konceptualne definicije, 

je večdimenzionalni drugostopenjski konstrukt reflektivno-reflektivnega tipa I (Jarvis et al., 

2003). Kazalniki so bili zasnovani na podlagi pregleda literature, intervjujev s strokovnjaki 

in pregleda 1.860 projektov iz podjetij, povezanih z UI (MacKenzie et al., 2011). KAPP 

(prvostopenjski konstrukt z reflektivnimi kazalniki) smo operacionalizirali s kazalniki, ki 

izhajajo iz pregleda literature (Di Ciccio et al., 2015; Vagia et al., 2016), intervjujev s 

strokovnjaki in s proučevanjem drugih že obstoječih meritev tega konstrukta. Pri 

specifikaciji modelov, ocenjevanju lestvic, izpopolnjevanju in ocenjevanju smo upoštevali 

smernice MacKenzie et al. (2011). Za preostale konstrukte raziskovalnega modela smo 

prilagodili obstoječe merilne lestvice: IPP (Ng et al., 2015), OU (García-Morales et al., 

2012), UO (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019), UPP (Bosilj Vukšić et al., 2017; 

Dumas et al., 2018; Hernaus, 2016) in UP (Wang et al., 2012). 



13 

Specifične značilnosti organizacij smo preverili s štirimi kontrolnimi spremenljivkami: 

starostjo organizacije, velikostjo, panogo in državo. Spremenljivka panoge je temeljila na 

kategorijah 1. stopnje šifranta NACE-R2. Državo je določal primarni sedež organizacije po 

EU-27. Nielsen and Raswant (2018) trdita, da so večdržavne študije dovzetne za težave 

izpuščenih spremenljivk zaradi kompleksnosti več okoljskih kontekstov (tj. političnega, 

gospodarskega, sociokulturnega, institucionalnega), zato smo kot kontrolno spremenljivko 

vključili negotovost okolja in jo izmerili z osmimi kazalniki, ki jih predlagajo Rowe et al. 

(2017). 

4 ANALIZA PODATKOV IN REZULTATI 

Za izvedbo konfirmatorne faktorske analize (v nadaljevanju KFA) in analize poti (tj. 

preizkušanje hipotez v konceptualnem modelu) smo uporabili program AMOS, različica 28, 

z metodo največje verjetnosti (angl. Maximum Likelihood Method). 

4.1 Ocena merilnega modela ter zanesljivost in veljavnost konstruktov 

Za preizkus veljavnosti merilnega modela smo izvedli KFA. Prileganje modela je bilo 

ustrezno. Vse faktorske uteži so bile značilne (p < 0,001). 

Enorazsežnost konstruktov smo merili s Cronbachovim alfa koeficientom. Ocenjena 

zanesljivost je presegala mejno vrednost 0,70 (Hair et al., 2013; Hancock & Mueller, 2001). 

Ocena kompozitne zanesljivosti je pokazala, da so vrednosti skladne z mejno vrednostjo 

0,70 (Fornell & Larcker, 1981). 

Konvergentna veljavnost je bila preverjena s povprečno izvlečeno varianco (angl. Average 

Variance Extracted), katere vrednosti so bile znotraj priporočene mejne vrednosti 0,50. 

Diskriminantna veljavnost je bila potrjena za vse konstrukte, kjer je bila največja deljena 

varianca (angl. Maximum Shared Variance) nižja od povprečne izvlečene variance (Hair et 

al., 2013). Diskriminantno veljavnost smo dodatno potrdili z razmerjem heterotrait-

monotrait (Henseler et al., 2015), kjer meja 0,85 ni bila presežena. 

Faktorji inflacije spremenljivk so potrdili odsotnost multikolinearnosti vseh napovednih 

kazalnikov odvisnih spremenljivk. Rezultati so bili nižji od mejne vrednosti 10. Vrednosti 

tolerance so bile večje od 0,1 (Linton et al., 2020). 

4.2 Analiza strukturnega modela in testiranje hipotez 

Za testiranje hipotez konceptualnega modela smo izvedli analizo poti ob upoštevanju več 

mediacijskih učinkov (Collier, 2020). Naknadna analiza moči vzorca s programom 
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semPower (Moshagen & Erdfelder, 2016) je potrdila, da je vzorec primeren za analizo. 

Rezultate analize prikazuje Figure 21. 

Slika 2: Rezultati analize strukturnega modela 

 

+: Standardizirane regresijske uteži. 

*p < 0.05, **p < 0.01; ***p < 0.001; SN = Statistično neznačilno. 

 

Vir: lastno delo. 

Pregled neposrednih učinkov (Figure 21) ne kaže podpore za H1 (β = 0,036, t = 0,691, p > 

0,05), kar kaže, da privzemanje UI nima neposredne povezave z UP, vendar pa je razmerje 

statistično značilno v odsotnosti mediacijskih spremenljivk s skupnim učinkom 0.418 (t = 

,584, p < 0,001, 95 % CI: LL = 0,314 to UL = 0,521). Nasprotno je potrditev H2 (β = 0,576, 

t = 9,488, p < 0,001) skladna s predhodnimi raziskavami, ki kažejo mediacijsko vlogo UPP 

kot povezavo UP (Aydiner, Tatoglu, Bayraktar, & Zaim, 2019; Melville et al., 2004). 

Potrditev hipotez H3a (β = 0,249, t = 3,532, p < 0,001) in H3b (β = 0,244, t = 4,050, p < 

0,001) utemeljuje pričakovani vpliv UO na UPP in UP (Aydiner, Tatoglu, Bayraktar, & 

Zaim, 2019; Fredrickson & Mitchell, 1984). Potrditev hipotez H8a (β = 0,446, t = 8,442, p 

< 0,001) in H8b (β = 0,434, t = 7,001, p < 0,001) razkriva, da ima OU pomembno neposredno 

povezavo z inovacijami procesov, tj. IPPP in IPPR. 

Za identifikacijo mediacijskih učinkov je bil analiziran celoten model. Glede na rezultate v 

tabeli 3 je KAPP mediator med pozitivnim vplivom privzemanja UI in UO (podpora za H4a), 

ne pa na UPP (ni podpore za H4b). Rezultati v Table 84 kažejo, da je OU mediator med 

pozitivnim vplivom privzemanja UI na UO in UPP (podpora za H5a in H5b). Za testiranje 

učinkov UI na inovacije procesov sta bila vstavljena dva vzporedna konstrukta IPPP in IPPR. 

Rezultati v Table 84 kažejo, da je IPPP mediator med pozitivnim vplivom privzemanja UI 

in OU (podpora za H6a), vendar pa IPPP ni mediator med UI in UPP (ni podpore za H6b). 

Nasprotno IPPR ni mediator privzemanja UI in UO (ni podpore za H7a), mediira vpliv na 

UPP (podpora za H7b). 
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Tabela 2: Rezultati analize posamezne mediacije, tj. mediacijski učinki 

Pot Relacije Nestandardizirane 

uteži 

Učinek Z-ocena Mediacija 

UI → KAPP → UO UI → KAPP 0,715 
(0,063) 

  0,104* 
(0,050) 

2,271ξ* Podpora za H4a 

KAPP → UO 0,146 
(0,063) 

  

UI → KAPP → UPP UI → KAPP 0,715 
(0,063) 

–0,042 
(0,059) 

–0,713ξ Ni podpore za H4b 

KAPP → UPP –0,058 
(0,073) 

UI → OU → UO UI → OU 0,576 
(0,065) 

     0,185*** 
(0,040) 

5,482ξ*** Podpora za H5a 

OU → UO 0,321 
(0,046) 

UI → OU → UPP UI → OU 0,576 
(0,065) 

     0,190*** 
(0,045) 

4,673ξ*** Podpora za H5b 

OU → UPP 0,330 
(0,060) 

UI → IPPP → UO UI → IPPP 0,304 
(0,058) 

    0,106*** 
(0,034) 

4,076ξ*** Podpora za H6a 

IPPP → UO 0,350 
(0,054) 

UI → IPPP → UPP UI → IPPP 0,304 
(0,058) 

–0,013 
(0,023) 

–0,622ξ Ni podpore za H6b 

IPPP → UPP –0,042 
(0,067) 

UI → IPPR → UO UI → IPPR 0,241 
(0,052) 

0,021 
(0,023) 

1,237ξ Ni podpore za H7a 

IPPR → UO 0,086 
(0,067) 

UI → IPPR → UPP UI → IPPR 0,241 
(0,052) 

     0,099*** 
(0,031) 

3,410ξ*** Podpora za H7b 

IPPR → UPP 0,413 
(0,082) 

+ Standardne napake pri zagonu so navedene v oklepajih. *p < 0,05, **p < 0,01, ***p < 0,001. ξ2-repna Z-ocena =
𝑎∗𝑏

√𝑏2∗𝑆𝐸𝑎2+𝑎2∗𝑆𝐸𝑏2
 za 

enkratni mediacijski učinek. ~ Neposredni učinek ni statistično značilen. 

 

Vir: lastno delo. 

Brez mediatorjev KAPP, OU, IPPP in IPPR je vpliv UO na UPP in UP pozitiven in 

statistično značilen, vendar pa analiza celotnega modela ne razkrije pomembnega 

neposrednega vpliva privzemanja UI na UO. Kljub temu lahko v Table 86 opazimo, da je 

posredni vpliv OU pozitiven, ko je postavljen kot sekundarni mediator v zaporednih 

razmerjih večkratne mediacije. UO ima torej mediacijsko vlogo in je v celoti mediiran. 

Podobno je vpliv UI na UP, mediiran s strani UPP, pozitiven in statistično značilen, če 

izključimo mediatorje KPPA, OU, IPPP, IPPR in UO. To ne velja pri analizi celotnega 

modela. V Table 86 lahko opazimo, da je mediacijski učinek UPP pozitiven, ko je postavljen 

kot sekundarni mediator v zaporednih razmerjih večkratne mediacije. UPP ima mediacijsko 

vlogo in je v celoti mediirana. 
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Tabela 3: Rezultati analize zaporedne večkratne mediacije, tj. zaporedni mediacijski učinki 

Pot Relacije Nestandardizirane 

uteži 

Učinek Z-ocena 

UI → KAPP → UO → UP UI → KAPP 0,715 
(0,063) 

 0,022* 
(0,012) 

1,981ξξ* 

KAPP → UO 0,146 
(0,063) 

UO → UP 0,215 
(0,053) 

UI → KAPP → UO → UPP → UP UI → KAPP 0,715 
(0,063) 

 0,013* 
(0,008) 

 

KAPP → UO 0,146 
(0,063) 

UO → UPP 0,278 
(0,079) 

UPP → UP 0,455 
(0,048) 

UI → OU → UO → UP UI → OU 0,576 
(0,065) 

   0,040*** 
(0,013) 

3,261ξξ*** 

OU → UO 0,321 
(0,046) 

UO → UP 0,215 
(0,053) 

UI → OU → UO → UPP → UP UI → OU 0,576 
(0,065) 

   0,023** 
(0,010) 

 

OU → UO 0,321 
(0,046) 

UO → UPP 0,278 

(0,079) 

UPP → UP 0,455 
(0,048) 

UI → OU → UPP → UP UI → OU 0,576 
(0,065) 

   0,086*** 
(0,024) 

4,191ξξ*** 

OU → UPP 0,330 
(0,060) 

UPP → OP 0,455 
(0,048) 

UI → IPPP → UO → OP UI → IPPP 0,304 
(0,058) 

    0,023*** 
(0,010) 

2,875ξξ** 

IPPP → UO 0,350 
(0,054) 

UO → UP 0,215 
(0,053) 

UI → IPPP → UO → UPP → UP UI → IPPP 0,304 
(0,058) 

   0,013***
 

(0,006) 

 

IPPP → UO 0,350 
(0,054) 

UO → UPP 0,278 
(0,079) 

UPP → UP 0,455 
(0,048) 

UI → IPPR → UPP → UP UI → IPPR 0,241 
(0,052) 

    0,045*** 
(0,016) 

3,209ξξ*** 

IPPR → UPP 0,413 
(0,082) 

UPP → UP 0,455 
(0,048) 

+ Standardne napake pri zagonu so navedene v oklepajih. *p < 0,05, **p < 0,01, ***p < 0,001. ξ ξ 2-repna Z-ocena =
𝑎∗𝑏∗𝑐

√𝑎2∗𝑏2∗𝑆𝐸𝑐2+𝑎2∗𝑐2∗𝑆𝐸𝑏2+𝑏2∗𝑐2∗𝑆𝐸𝑎2
 za učinek zaporedne večkratne mediacije. 

 

Vir: lastno delo. 

Iz Table 86 je razvidno, da posamezne zaporedne (verižne) relacije KAPP, OU, IPPP, IPPR, 

UO in UPP vzpostavljajo povezavo med UI in UP. Statistično neznačilno neposredno 

razmerje, ki ga določa H1, kaže, da je razmerje med UI in UP v celoti mediirano. 

Pri kontrolnih spremenljivkah le velikost organizacije pomembno vpliva na spremenljivki 

UP in OU. Večje organizacije dosegajo višjo raven uspešnosti kot manjše. Nasprotno pa je 

OU v večjih organizacijah na nižji ravni. Druge kontrolne spremenljivke niso bile statistično 

značilne. 
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4.3 Moderirani učinki 

Preučili smo moderacijsko vlogo zrelosti managementa poslovnih procesov (ZMPP), 

digitalne zrelosti, podatkovno vodene kulture (PVK) in organizacijske kulture (klanovska, 

adhokracija, tržna, hierarhična) na vseh konceptualnih poteh med latentnimi 

spremenljivkami. Po izključitvi nepomembnih interakcij predstavljamo značilne moderirane 

učinke. 

Študija je ocenila vlogo ZMPP kot moderatorja na povezavi med UI in OU, kjer so rezultati 

pokazali statistično značilen negativen vpliv ZMPP (β = –0,148, t = –3,579, p < 0,001). 

Podobno tudi za povezavo med OU in IPPP, kjer so rezultati pokazali statistično značilen 

negativen vpliv ZMPP (β = –0,151, t = –3,628, p < 0,001). 

Rezultati so potrdili vlogo PUK kot moderatorja na povezavi med IPPP in UPP. Razkrili so 

tudi statistično značilen pozitiven vpliv (β = 0,098, t = 2,422, p < 0,05). 

5 RAZPRAVA IN SKLEPI 

Čeprav sta tehnologiji velepodatkov in UI v ospredju IT-investicij, mehanizmi in pogoji, ki 

ustvarjajo poslovno vrednost, v empiričnih raziskavah na splošno ostajajo neraziskani. 

Nedavne raziskave poudarjajo potrebo po napredku z uporabo ustreznih mediacijskih 

spremenljivk za razumevanje razmerja med viri UI, zmogljivostmi MPP in UP. 

5.1 Razprava in teoretični prispevki 

Na podlagi uveljavljenega modela poslovne vrednosti IT smo z uporabo kontekstualnega 

teoretiziranja model preslikali v kontekst tehnologije UI. Z uporabo kompleksnega 

nomološkega ogrodja smo vključili več perspektiv za ustvarjanje poslovne vrednosti iz 

investicij v UI, s čimer smo obogatili nastajajočo literaturo o UI. 

Najprej predstavimo alternativni koncept privzemanja UI, da bi zajeli bolj natančen in 

splošno veljaven pogled vpliva UI na UP. Eksogena, komponentno zasnovana 

spremenljivka, je povezana z ravnijo implementacije, dejanske uporabe ali izkoriščanjem 

specifičnih aplikacij in tehnologij UI. V nadaljevanju ta študija razširja razvijajočo se 

literaturo o UI s tem, da ponuja nomološko mrežo, ki povezuje privzemanje UI z UP. 

Medtem ko predhodne raziskave domnevajo delni mediacijski vpliv privzemanja UI na 

uspešnost poslovanja, mediiran s strani organizacijskih zmogljivosti, povezanih s 

kreativnostjo in agilnostjo (Kim et al., 2022; Mikalef & Gupta, 2021; Mishra et al., 2022; 

Wamba, 2022), naše ugotovitve potrjujejo, da je ta vpliv odvisen od zmogljivosti MPP, UO 

in UPP. S postavitvijo avtomatizacije, kot pomembnega mediatorja, smo konceptualizirali 

in operacionalizirali koncept KAPP. V kontekstu MPP z merjenjem ravni in obsega 

avtomatizacije razumemo sposobnost organizacije za avtomatizacijo poslovnih procesov, ki 
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temeljijo na znanju. Nazadnje smo z obsežno raziskavo organizacij iz EU empirično dokazali 

pozitiven vpliv privzemanja UI na uspešnost poslovanja. 

Različni avtorji (Raisch & Krakowski, 2021) teoretizirajo, da je popolna avtomatizacija 

kompleksnih procesov odločanja zaradi tehničnih in socialnih omejitev zahtevna. Naši 

rezultati kažejo, da privzemanje UI v resnici večinoma vodi k avgmentaciji in izboljšanju 

procesov odločanja. Predvsem je odločanje v celoti odvisno od avtomatizacije procesov in 

organizacijskega učenja, dveh inherentnih značilnosti UI, odločanja in inženiringa znanja. 

Ugotovitve kažejo, da privzemanje UI enako vpliva na postopno in radikalno inovacijo, zato 

je primerno za vzpostavitev uravnotežene in ambidekstralne postavitve za spodbujanje 

raziskovanja in izkoriščanja znanja ter tehnologije. Kot je splošno priznano v literaturi, naši 

empirični dokazi potrjujejo, da postopne izboljšave vplivajo na učinkovitost odločanja, 

radikalne izboljšave pa bistveno povečajo učinkovitost procesov. 

5.2 Ključni prispevki za prakso 

Rezultati poudarjajo pet različnih zmogljivosti UI, ki vplivajo na poslovanje:  

• Visoko razvita zmogljivost pridobivanja in predobdelave podatkov je temelj za uspešne 

projekte UI.  

• Pridobivanje in interpretacija vpogledov (angl. insights) sta predvsem povezana z 

napovednim modeliranjem, ki temelji na UI.  

• Sposobnost UI omogočene podpore interakcij med človekom in računalnikom za 

napredno sodelovanje s strankami in zaposlenimi.  

• Sposobnost avgmentacije in avtomatizacije procesov odločanja prek sistemov za 

avtomatizacijo odločanjam omogočenih z UI, inženiringa znanja, ekspertnih sistemov in 

sistemov za podporo odločanju.  

• Sposobnost integracije tehnologij UI z obstoječimi IT-viri, storitvami in napravami. 

Rezultati so potrdili predlagani polni zaporedni model večkratne mediacije, kar pomeni, da 

privzemanje UI posredno vpliva na UP. Managerji lahko pričakujejo največji vpliv na 

učinkovitost in kakovost procesov, čeprav nekoliko manj na prilagodljivost procesov. Na 

operativni ravni se vrednost kaže v povečani učinkovitosti izvajanja procesov prek hitrosti, 

obsega, natančnosti in podrobnosti obdelave informacij. UO smo obravnavali kot ločen 

konstrukt in njegovo vlogo mediatorja med privzemanjem UI in UPP. Ugotovitve kažejo, da 

UI bistveno vpliva na odločanje, izboljšuje kakovost, hitrost in učinkovitost (na primer, 

hitrejše pridobivanje in distribucija znanja) v operativnih procesih in na strateški ravni ter 

tako neposredno vpliva na UP. 

Glede dileme avtomatizacija ali avgmentacija je bilo ugotovljeno, da je splošno stanje 

avtomatizacije poslovnih procesov v organizacijah na nadzorni in podporni ravni odločanja 

za strukturirane in nestrukturirane procese. To pomeni, da čeprav KAPP nima pomembnega 

neposrednega vpliva na UPP glede učinkovitosti izvajanja ali razširljivosti, ima v nasprotju 
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s tem pričakovano pomemben neposreden vpliv na UO. Vpliv privzemanja UI je viden 

predvsem na koncu spektra sodelovanja med človekom in računalnikom (avgmentacija) v 

obliki bolj učinkovitega odločanja. 

Preučili smo vpliv UI na znanje v organizaciji z mediatorjem OU. Rezultati potrjujejo vpliv 

prek UI omogočenih in povečanih zmogljivosti managementa znanja na UO, UPP (prek 

procesov, ki temeljijo na znanju) in IPP. Ugotavljamo, da je OU mediator med 

privzemanjem UI in postopno ter radikalno IPP. To bi lahko nakazovalo, da je UI posebna 

tehnologija, ki lahko hkrati omogoča in spodbuja izkoriščanje ter raziskovanje inovacij v 

procesih, kar managerjem pomaga doseči izmuzljivo ambidekstralno organizacijo (prek 

procesa privzemanja UI) – ta pa glede učinkovitosti in uspešnosti poslovanja presega druge 

organizacijske tipe (O'Reilly III & Tushman, 2011). 

Transformativni učinki privzemanja UI so ugotovljeni z mediatorjem postopnih izboljšav 

procesov, ki pomembno vpliva na UO, medtem ko radikalne izboljšave procesov neposredno 

vplivajo na UPP. Ugotovitve so v skladu z obstoječimi raziskavami o inovacijah procesov 

(Cao & Jiang, 2022), kar kaže, da so postopne izboljšave večinoma povezane z odločanjem 

s pomočjo UI in imajo manjši vpliv na učinkovitost kot radikalne izboljšave, kjer se UI 

uporablja za zasnovo novih ali preoblikovanje obstoječih procesov, kar ima največji vpliv 

na učinkovitost izvajanja procesov. Tako bi morale organizacije dati prednost razvoju znanja 

in spretnosti na področju UI, da bi zaposleni lahko učinkovito spodbujali postopne in 

radikalne izboljšave s pomočjo orodij UI. 

Nazadnje predstavljene ugotovitve kažejo potrebo, da se managerji odločijo za strukturiran 

pristop k širšemu privzemanju UI, vključujoč vse organizacijske procese. Managerji naj 

upoštevajo pet predlaganih zmogljivosti, omogočenih z UI, in obravnavajo avtomatizacijo 

procesov, inovacije in organizacijsko učenje kot ključne sposobnosti MPP za ustvarjanje 

poslovne vrednosti iz UI, preden lahko pričakujejo merljivo povečanje uspešnosti 

poslovanja. 

5.3 Omejitve raziskave in smernice prihodnjega raziskovanja 

Raziskava ni brez omejitev. Za potrditev predlaganega raziskovalnega modela smo uporabili 

presečno raziskavo. Za to raziskovalno zasnovo so značilne omejitve, kot sta pristranskost 

pri samoocenjevanju in samoporočanju ter endogenost (Jordan & Troth, 2020). V nadaljnjih 

raziskavah bi lahko razmislili o longitudinalnem pristopu, da bi ugotovili razlike pred in po 

privzemanju UI. Po drugi strani bi raziskava s študijami primerov lahko rešila vprašanja 

endogenosti, vendar to ne bi prispevalo k posploševanju ugotovitev. Ker raziskava temelji 

le na merjenju zaznane učinkovitosti in uspešnosti, bi bilo priporočljivo v nadaljnjih 

raziskavah uporabiti tudi nekatere objektivne kazalnike za izboljšanje natančnosti rezultatov. 

Pridobivanje objektivnih meritev za široko zastavljeno raziskavo je sicer zahtevno. Dodatna 

omejitev raziskave je, da se opira na enega samega respondenta iz vsake organizacije. Za 

triangulacijo bolj zanesljivih meritev bi lahko uporabili več respondentov ali različne vire 



20 

podatkov iz določene organizacije. Nazadnje, v organizacijah se lahko vloge zapolnijo z 

algoritmi UI, kar nakazuje nove zahteve glede preglednosti in predvidljivosti pri izvajanju. 

Algoritmi UI morda ne bodo več delovali v predvidljivih kontekstih, kar zahteva 

zagotavljanje varnosti in inženiring etičnih premislekov glede UI. Prihodnje raziskave bi 

zato morale proučiti socialne posledice ter etične in moralne dileme, povezane z UI in njeno 

uporabo. 
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Appendix 2: Supplemental Materials 

# Filename Description 

1 Zebec (2023) Data Sample80.sav The pilot study data for AI adoption and CBPA 

validation. The sample size is 80. SPSS Statistics data 

file. 

2 Zebec (2023) CBPA First-Order Initial Formal Measurement Model 
Sample80.amw 

CBPA first-order initial formal measurement model. 
Data source: pilot study data. AMOS syntax file. 

3 Zebec (2023) CBPA First-Order Abridged Formal Measurement 

Model Sample80.amw 

CBPA first-order abridged formal measurement 

model. Data source: pilot study data. AMOS syntax 
file. 

4 Zebec (2023) Data Sample451 Remove3.sav Main study data. The sample size is 451. Includes later 

removed cases 482, 2310, and 2509. SPSS Statistics 

data file. 

5 Zebec (2023) Data Sample451 Remove3 NonResponse200.sav The main study data. The sample size is 651 (451 valid 

cases and 200 nonresponse cases). Includes later 

removed cases 482, 2310, 2509. SPSS Statistics data 

file. 

6 Zebec (2023) Data Sample448.sav The main study data. The sample size is 448. SPSS 

Statistics data file. 

7 Zebec (2023) Data Sample448 NonResponse200.sav The main study data. The sample size is 648 (448 valid 
cases and 200 nonresponse cases). SPSS Statistics data 

file. 

8 Zebec (2023) CBPA First-Order Final Formal Measurement Model 

Sample448.amw 

CBPA first-order final formal measurement model. 

Data source: main study data. AMOS syntax file. 

9 Zebec (2023) CBPA First-Order Final Formal Measurement Model 

Nomological Validity Sample448.amw 

CBPA first-order nomological validity model. Data 

source: main study data. AMOS syntax file. 

10 Zebec (2023) AI Adoption Second-Order Formal Measurement Model 
Sample80.amw 

AI adoption second-order initial formal measurement 
model. Data source: pilot study data. AMOS syntax 

file. 

11 Zebec (2023) AI Adoption First-Order Initial Formal Measurement 

Model Sample80.amw 

AI adoption first-order initial formal measurement 

model. Data source: pilot study data. AMOS syntax 
file. 

12 Zebec (2023) AI Adoption First-Order Abridged Formal Measurement 

Model Sample80.amw 

AI adoption first-order abridged formal measurement 

model. Data source: pilot study data. AMOS syntax 
file. 

13 Zebec (2023) AI Adoption First-Order Abridged Formal Measurement 

Model CMV Sample80.amw 

AI adoption first-order abridged formal measurement 

model with common method variance test. Data 

source: pilot study data. AMOS syntax file. 

14 Zebec (2023) AI Adoption Second-Order Formal Measurement Model 

Sample 80.amw 

AI adoption second-order formal measurement model. 

Data source: pilot study data. AMOS syntax file. 

15 Zebec (2023) AI Adoption Formal Measurement Model final One-

Factor CMV Sample80.amw 

AI adoption one-factor formal measurement model. 

Data source: pilot study data. AMOS syntax file. 

16 Zebec (2023) AI Adoption Second-Order Formal Measurement Model 

Sample448.amw 

AI adoption second-order final formal measurement 

model. Data source: main study data. AMOS syntax 

file. 

17 Zebec (2023) AI Adoption Second-Order Formal Measurement Model 
Nomological Validity Sample448.amw 

AI adoption second-order nomological validity. Data 
source: main study data. AMOS syntax file. 

18 Zebec (2023) Formal Measurement Model.amw Formal measurement model. Data ource: main study 

data; N = 451. AMOS syntax file. 

19 Zebec (2023) Formal Measurement Model Common Latent 

Factor.amw 

Formal measurement model with common latent 

factor test. Data source: main study data; N = 451. 

AMOS syntax file. 

20 Zebec (2023) Formal Measurement Model Harman Single Factor.amw Formal measurement model with Harman single factor 
test. Data source: main study data; N = 451. AMOS 

syntax file. 

21 Zebec (2023) Structural Model With Controls.amw Structural model with controls. Data source: Main 
study data; N = 448. AMOS syntax file. 

22 Zebec (2023) Structural Model Total Effect With Controls.amw Structural model total effect with controls. Data 

source: main study data; N = 448. AMOS syntax file. 

23 Zebec (2023) Structural Model Without Mediators With Controls.amw Structural model without mediators and with controls. 
Data source: main study data; N = 448. AMOS syntax 

file. 

24 Zebec (2023) Structural Model With Moderators With Controls 

Mean.amw 

Structural model with moderators (mean) and with 

controls. Data source: main study data; N = 448. 
AMOS syntax file. 

25 Zebec (2023) Structural Model With Moderators With Controls 

Low.amw 

Structural model with moderators (low) and with 

controls. Data source: main study data; N = 448. 
AMOS syntax file. 

26 Zebec (2023) Structural Model With Moderators With Controls 

High.amw 

Structural model with moderators (high) and with 

controls. Data source: main study data; N = 448. 

AMOS syntax file. 
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27 Zebec (2023) Assessment Report.pdf An example of a preliminary assessment report with 
personalized results. 

28 Zebec (2023) GDPR.pdf Privacy and GDPR compliance statement for the 

questionnaire. An explanation of how the respondent's 
data will be collected, stored, and used, including any 

third-party processors with access the data. 

29 Zebec (2023) Informed Consent.pdf Informed consent form from conducted interviews. 

30 Zebec (2023) Semi-Structured Interview Guide.xlsx The semi-structured interview guide. 

31 Zebec (2023) Invitation Letter.pdf The survey invitation letter. 

Supplemental materials are available at https://www.buyitc.si/documents/supplemental_materials.zip (password AIBusinessValue). 

 

Source: Own work. 

  

https://www.buyitc.si/documents/supplemental_materials.zip
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Appendix 3: Contextualization procedure 

 

 

Source: Own work. 

 

  

Organizational 

Performance (OP)

AI Business Value-Generation Process

Organisation

Competitive Environment

Controls: 

Firm Age, Size, 

Industry sector, 

Country,

Environmental 

Uncertainty

Process-Level 

Impact

Organizational-Level 

Impact

BPM Capabilities

Artificial Intelligence 

adoption (AI)

Business Process 

Automation (BPA)

Business Process 

Innovation – 

Incremental (BPII)

Business Process 

Performance (BPP)

Decision-Making 

Performance (DMP)

Business Process 

Innovation – Radical 

(BPIR)

Organizational 

Learning (OL)

+H8a

+H6b

+H1

+H8b

+H7a

+H3a

+H2

+H3b

Automation-Augmentation

AI Resources

Data, AI Capabilites & 

AI-enabled Capabilities

M
elville, N

., et a
l. (2

0
0
4
). "R

e
view

: In
fo

rm
a

tio
n

 T
ech

n
o
lo

g
y
 a

n
d
 O

rg
a
n

iza
tio

n
a

l P
erfo

rm
a
n

ce: A
n

 In
teg

ra
tive M

o
d
el o

f IT
 B

u
sin

ess V
a
lu

e." M
IS

 

Q
u

a
rterly

 2
8
(2

): 2
8
3

-3
2

2
.

5 AI-enabled capabilities = components

AI applications, tools, or 
technology

Level 1: Contextualize 

established theories by adding 

or removing core constructs

Level 2a: Incorporate contextual factors as 

antecedents of core constructs or dependent 

variables

Level 2b: Incorporating 

contextual factors as 

moderators of relationships

Level 1: Contextualize 

established theories by adding 

or removing core constructs

Level 1: Contextualize 

established theories by adding 

or removing core constructs

Orgnaizational context as

moderators:

Digital Maturity

Data-driven Culture

BPM Maturity

Organizational Culture

Level 2b: Incorporating 

contextual factors as 

moderators of relationships

Level 2a: Incorporate 

contextual factors as 

antecedents of core 

constructs or dependent 

variables



24 

Appendix 4: Initial Anti-Image Correlation Matrix 

 DACQ CI CE CDA CT CBPA1 LEVEL EXTENT OL1 OL2 OL3 OL4 IPII IPIII RAD1 RAD2 EFFC EFFT BPP1 BPP2 BPP3 OPER MP 

DACQ 0.926a -0.165 -0.068 -0.114 -0.281 -0.041 -0.094 0.070 -0.049 -0.009 0.074 -0.029 -0.093 0.016 0.038 0.078 0.056 -0.027 -0.082 0.012 0.105 -0.002 -0.036 

CI -0.165 0.906a -0.303 -0.073 0.111 -0.144 0.139 -0.089 -0.002 -0.017 0.031 0.008 0.013 -0.031 -0.022 0.007 0.006 -0.008 0.039 0.004 -0.009 -0.031 -0.102 

CE -0.068 -0.303 0.920a -0.237 -0.271 0.043 -0.073 -0.098 -0.010 0.040 -0.025 -0.068 0.023 0.001 0.068 -0.067 0.025 0.005 0.003 0.012 -0.009 -0.057 0.045 

CDA -0.114 -0.073 -0.237 0.939a -0.270 -0.077 -0.028 -0.105 0.050 -0.009 -0.066 0.112 0.008 0.025 -0.142 0.055 -0.078 -0.055 -0.047 0.021 0.021 0.033 0.005 

CT -0.281 0.111 -0.271 -0.270 0.918a -0.268 0.016 -0.014 -0.071 0.017 -0.001 -0.049 -0.032 0.033 0.000 -0.038 0.049 -0.037 0.049 -0.085 0.024 -0.002 0.035 

CBPA1 -0.041 -0.144 0.043 -0.077 -0.268 0.939a -0.256 -0.121 -0.046 -0.052 0.052 0.055 -0.108 -0.005 0.110 -0.124 -0.147 0.100 0.001 -0.063 -0.021 0.010 0.026 

LEVEL -0.094 0.139 -0.073 -0.028 0.016 -0.256 0.882a -0.425 -0.022 0.017 -0.041 0.056 0.088 -0.059 -0.072 0.060 0.053 -0.080 0.058 0.003 -0.064 0.017 -0.073 

EXTENT 0.070 -0.089 -0.098 -0.105 -0.014 -0.121 -0.425 0.911a -0.022 0.033 0.028 0.003 -0.084 0.050 -0.093 -0.020 -0.036 -0.025 -0.087 0.059 0.070 0.090 -0.081 

OL1 -0.049 -0.002 -0.010 0.050 -0.071 -0.046 -0.022 -0.022 0.932a -0.479 -0.241 0.005 -0.100 0.052 -0.049 0.025 -0.010 0.026 -0.007 -0.094 0.018 -0.043 -0.053 

OL2 -0.009 -0.017 0.040 -0.009 0.017 -0.052 0.017 0.033 -0.479 0.910a -0.269 -0.227 0.043 -0.026 -0.030 -0.024 0.024 -0.039 -0.098 0.127 -0.119 -0.075 0.058 

OL3 0.074 0.031 -0.025 -0.066 -0.001 0.052 -0.041 0.028 -0.241 -0.269 0.938a -0.192 -0.053 0.048 0.113 -0.137 0.004 -0.056 0.047 -0.037 0.002 0.038 -0.099 

OL4 -0.029 0.008 -0.068 0.112 -0.049 0.055 0.056 0.003 0.005 -0.227 -0.192 0.948a -0.014 -0.089 0.006 0.039 -0.104 -0.141 0.062 -0.126 -0.071 0.073 -0.007 

IPII -0.093 0.013 0.023 0.008 -0.032 -0.108 0.088 -0.084 -0.100 0.043 -0.053 -0.014 0.893a -0.625 -0.116 0.017 -0.022 -0.077 0.018 -0.083 0.065 0.034 -0.002 

IPIII 0.016 -0.031 0.001 0.025 0.033 -0.005 -0.059 0.050 0.052 -0.026 0.048 -0.089 -0.625 0.873a 0.015 -0.114 -0.052 -0.088 -0.027 0.086 -0.022 -0.114 0.081 

RAD1 0.038 -0.022 0.068 -0.142 0.000 0.110 -0.072 -0.093 -0.049 -0.030 0.113 0.006 -0.116 0.015 0.880a -0.461 -0.021 0.038 0.116 -0.082 -0.048 -0.074 -0.031 

RAD2 0.078 0.007 -0.067 0.055 -0.038 -0.124 0.060 -0.020 0.025 -0.024 -0.137 0.039 0.017 -0.114 -0.461 0.911a 0.005 -0.034 -0.165 -0.018 0.005 0.092 -0.077 

EFFC 0.056 0.006 0.025 -0.078 0.049 -0.147 0.053 -0.036 -0.010 0.024 0.004 -0.104 -0.022 -0.052 -0.021 0.005 0.907a -0.600 -0.137 0.079 -0.131 -0.147 0.055 

EFFT -0.027 -0.008 0.005 -0.055 -0.037 0.100 -0.080 -0.025 0.026 -0.039 -0.056 -0.141 -0.077 -0.088 0.038 -0.034 -0.600 0.912a 0.051 -0.038 0.008 0.052 -0.074 

BPP1 -0.082 0.039 0.003 -0.047 0.049 0.001 0.058 -0.087 -0.007 -0.098 0.047 0.062 0.018 -0.027 0.116 -0.165 -0.137 0.051 0.914a -0.514 -0.135 -0.100 -0.076 

BPP2 0.012 0.004 0.012 0.021 -0.085 -0.063 0.003 0.059 -0.094 0.127 -0.037 -0.126 -0.083 0.086 -0.082 -0.018 0.079 -0.038 -0.514 0.900a -0.295 -0.166 0.060 

BPP3 0.105 -0.009 -0.009 0.021 0.024 -0.021 -0.064 0.070 0.018 -0.119 0.002 -0.071 0.065 -0.022 -0.048 0.005 -0.131 0.008 -0.135 -0.295 0.944a 0.061 -0.079 

OPER -0.002 -0.031 -0.057 0.033 -0.002 0.010 0.017 0.090 -0.043 -0.075 0.038 0.073 0.034 -0.114 -0.074 0.092 -0.147 0.052 -0.100 -0.166 0.061 0.886a -0.565 

MP -0.036 -0.102 0.045 0.005 0.035 0.026 -0.073 -0.081 -0.053 0.058 -0.099 -0.007 -0.002 0.081 -0.031 -0.077 0.055 -0.074 -0.076 0.060 -0.079 -0.565 0.888a 

Note: a. Measures of Sampling Adequacy 

 

Source: Own work. 
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Appendix 5: Final Anti-Image Correlation Matrix 

 DACQ CI CE CDA CT LEVEL EXTENT OL1 OL2 OL3 OL4 IPII IPIII RAD1 RAD2 EFFC EFFT BPP1 BPP2 BPP3 OPER MP 

DACQ 0.913a -0.172 -0.067 -0.117 -0.303 -0.108 0.066 -0.051 -0.012 0.077 -0.027 -0.098 0.016 0.043 0.073 0.050 -0.023 -0.082 0.009 0.104 -0.002 -0.035 

CI -0.172 0.911a -0.300 -0.085 0.075 0.107 -0.109 -0.009 -0.025 0.039 0.016 -0.003 -0.032 -0.006 -0.011 -0.015 0.006 0.040 -0.005 -0.012 -0.030 -0.099 

CE -0.067 -0.300 0.916a -0.235 -0.270 -0.064 -0.094 -0.008 0.043 -0.027 -0.070 0.028 0.001 0.064 -0.063 0.031 0.001 0.003 0.015 -0.008 -0.058 0.044 

CDA -0.117 -0.085 -0.235 0.928a -0.302 -0.049 -0.115 0.047 -0.014 -0.062 0.117 0.000 0.024 -0.135 0.046 -0.091 -0.047 -0.047 0.016 0.020 0.034 0.007 

CT -0.303 0.075 -0.270 -0.302 0.917a -0.057 -0.049 -0.086 0.003 0.014 -0.035 -0.063 0.033 0.031 -0.075 0.010 -0.011 0.051 -0.106 0.019 0.001 0.043 

LEVEL -0.108 0.107 -0.064 -0.049 -0.057 0.880a -0.476 -0.035 0.004 -0.028 0.073 0.063 -0.063 -0.046 0.029 0.016 -0.056 0.061 -0.014 -0.072 0.020 -0.069 

EXTENT 0.066 -0.109 -0.094 -0.115 -0.049 -0.476 0.889a -0.028 0.026 0.034 0.009 -0.098 0.050 -0.081 -0.035 -0.055 -0.013 -0.087 0.052 0.068 0.092 -0.078 

OL1 -0.051 -0.009 -0.008 0.047 -0.086 -0.035 -0.028 0.929a -0.482 -0.239 0.007 -0.106 0.052 -0.044 0.019 -0.017 0.030 -0.007 -0.097 0.017 -0.042 -0.052 

OL2 -0.012 -0.025 0.043 -0.014 0.003 0.004 0.026 -0.482 0.908a -0.267 -0.225 0.037 -0.027 -0.024 -0.031 0.016 -0.034 -0.098 0.124 -0.121 -0.074 0.059 

OL3 0.077 0.039 -0.027 -0.062 0.014 -0.028 0.034 -0.239 -0.267 0.937a -0.195 -0.048 0.048 0.108 -0.132 0.012 -0.062 0.047 -0.034 0.003 0.038 -0.100 

OL4 -0.027 0.016 -0.070 0.117 -0.035 0.073 0.009 0.007 -0.225 -0.195 0.946a -0.008 -0.089 0.000 0.046 -0.097 -0.148 0.062 -0.123 -0.070 0.072 -0.009 

IPII -0.098 -0.003 0.028 0.000 -0.063 0.063 -0.098 -0.106 0.037 -0.048 -0.008 0.889a -0.630 -0.106 0.003 -0.039 -0.067 0.018 -0.090 0.063 0.036 0.000 

IPIII 0.016 -0.032 0.001 0.024 0.033 -0.063 0.050 0.052 -0.027 0.048 -0.089 -0.630 0.867a 0.016 -0.115 -0.053 -0.088 -0.027 0.086 -0.022 -0.114 0.081 

RAD1 0.043 -0.006 0.064 -0.135 0.031 -0.046 -0.081 -0.044 -0.024 0.108 0.000 -0.106 0.016 0.886a -0.453 -0.005 0.027 0.117 -0.075 -0.046 -0.075 -0.034 

RAD2 0.073 -0.011 -0.063 0.046 -0.075 0.029 -0.035 0.019 -0.031 -0.132 0.046 0.003 -0.115 -0.453 0.912a -0.014 -0.022 -0.166 -0.026 0.002 0.094 -0.074 

EFFC 0.050 -0.015 0.031 -0.091 0.010 0.016 -0.055 -0.017 0.016 0.012 -0.097 -0.039 -0.053 -0.005 -0.014 0.908a -0.594 -0.138 0.071 -0.136 -0.147 0.060 

EFFT -0.023 0.006 0.001 -0.047 -0.011 -0.056 -0.013 0.030 -0.034 -0.062 -0.148 -0.067 -0.088 0.027 -0.022 -0.594 0.913a 0.051 -0.032 0.010 0.051 -0.077 

BPP1 -0.082 0.040 0.003 -0.047 0.051 0.061 -0.087 -0.007 -0.098 0.047 0.062 0.018 -0.027 0.117 -0.166 -0.138 0.051 0.911a -0.515 -0.135 -0.100 -0.076 

BPP2 0.009 -0.005 0.015 0.016 -0.106 -0.014 0.052 -0.097 0.124 -0.034 -0.123 -0.090 0.086 -0.075 -0.026 0.071 -0.032 -0.515 0.896a -0.297 -0.166 0.062 

BPP3 0.104 -0.012 -0.008 0.020 0.019 -0.072 0.068 0.017 -0.121 0.003 -0.070 0.063 -0.022 -0.046 0.002 -0.136 0.010 -0.135 -0.297 0.942a 0.061 -0.078 

OPER -0.002 -0.030 -0.058 0.034 0.001 0.020 0.092 -0.042 -0.074 0.038 0.072 0.036 -0.114 -0.075 0.094 -0.147 0.051 -0.100 -0.166 0.061 0.882a -0.565 

MP -0.035 -0.099 0.044 0.007 0.043 -0.069 -0.078 -0.052 0.059 -0.100 -0.009 0.000 0.081 -0.034 -0.074 0.060 -0.077 -0.076 0.062 -0.078 -0.565 0.884a 

Note: a. Measures of Sampling Adequacy 

 

Source: Own work. 
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Appendix 6: Environment Uncertainty box and whisker plot by Country 

 
Source: Own work. 


