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SIMULIRANJE PORTFELJEV Z UPORABO 
OMREŽNIH MODELOV 

 
 

Matjaž Steinbacher 
 
 

POVZETEK 
 
Vprašanje, s katerim se na finančnih trgih srečujejo investitorji in ga tudi rešujejo, je, kako na 
učinkovit način upravljati s premoženjem. V tem procesu pomeni izbor portfelja izbiro med 
mnogimi stohastičnimi alternativami, ki so posameznim agentom na voljo v času. Disertacija 
je ilustracija vedenjske dinamične igre sočasnih potez igralcev v negotovem svetu trgov 
kapitala. Model predstavlja aplikacijo socialnih omrežij v ekonomiji in vsebuje agente in 
njihove preference, vrednostne funkcije, povezave med agenti in nabor akcij za posameznega 
agenta. V modelu se vedenjske finance nanašajo na psihologijo izbora agentov. V igrah 
uporabim tako zaupljive, kot tudi nezaupljive agente. Temeljna metodološka značilnost 
disertacije je ta, da interakcija med agenti privede do kompleksnega vedenja celotne skupine, 
ki ga brez uporabe pristopa, ki vključuje interakcijo med agenti, ni mogoče pojasniti. 
 
V prvem delu (poglavje 5) pokažem, na kakšen način donosi in raven tveganja posameznih 
portfeljev vplivajo na njihov izbor v preprosti igri z dvema vrednostnima papirjema. 
Simulacije izvedem v dveh različnih okoliščinah: najprej z netveganim in tveganim 
vrednostnim papirjem, nato še z dvema tveganima vrednostnima papirjema. Rezultati 
pokažejo, pod katerimi okoliščinami se agenti odločijo za mešane portfelje tveganega in 
netveganega vrednostnega papirja. Simulacije še pokažejo, da je za nemoten potek izbora 
nujno potrebno zagotavljanje likvidnosti. Vključitev šoka v proces izbora pokaže, da v 
kolikor jakost šoka ni premočna, je njegov učinek zgolj kratkoročen. 
 
V drugem delu (poglavja 6-8) razširim osnovni okvir in se lotim iger z mnogoterimi 
alternativami. Četudi imajo agenti v modelu omejeno védenje o donosih vrednostnih 
papirjev, svoje portfelje pa izbirajo na podlagi realiziranih donosov, pa so portfelje kljub 
temu sposobni izbrati skladno s hipotezo učinkovite meje. Nekoliko bolj razpršeni izbor 
nezaupljivih agentov je posledica njihove nezmožnosti igranja načela “zmagovalec pobere 
vse,” četudi so sposobni identificati iste “zmagovalce” kot zaupljivi agenti. Omenjena 
ugotovitev je podprta tako v bikovskem kot tudi medvedjem trendu, četudi v bikovskem 
trendu agenti prevzemajo več tveganja, kar je skladno s teoretičnimi predvidevanji. Agenti 
ne preferirajo preveč razpršenih portfeljev, ampak portfelje dveh vrednostnih papirjev, ki so 
zgrajeni okrog najbolj zaželenega posamičnega vrednostnega papirja. Testi konsistentnosti, 
opravljeni s pomočjo koficienta variacije in metode Monte Carlo, pokažejo, da so najbolj 
konsistentno izbrani bodisi najbolj bodisi najmanj zaželeni portfelji. Ti testi še pokažejo, da so 
zaupljivi agenti bolj konsistentni pri svojih odločitvah kot nezaupljivi agenti. Simulacije z 
novicami so navrgle dve skupini zmagovalnih portfeljev: portfelje iz učinkovite meje oz. iz 
njene okolice, in diverzificirane portfelje, katerih izbor je pozitivno koreliran s številom 
objavljenih nenegativnih novic. 
 
 
Ključne besede: večperiodni izbor portfelja, navidezni finančni trgi, družbena omrežja, razvojne 
omrežne igre, informacije in védenje, komuniciranje, zaupljivost, ocenjevano učenje. 
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Matjaž Steinbacher 
 
 

SUMMARY 
 
The problem that financial agents address and solve is how to manage assets efficiently. This 
involves choosing from different types of stochastic alternatives that are available over time. 
The dissertation is an application of a dynamic behavioral-based and a simultaneous-move 
game in a stochastic environment that is run on a network. The model includes agents and 
their preferences, value functions, relations among agents and the set of actions for each 
agent. The notion of behavioral finance is on the psychology of agents’ decision-making. In 
the games, I use unsuspicious and suspicious agents. A fundamental methodological 
premise of the dissertation is that interaction and information sharing lead to complex 
collective behavior associated with non-linear dynamics, which can only be explanied with 
an interaction-based approach.  
 
In the first part of the simulation games (Chapter 5), I demonstrate how returns and risk 
affect portfolio selection in a very simple two-asset game. Games are simulated under two 
different environments: with riskless and risky asset, and in the environment of two risky 
assets. I present the conditions, under which agents select mixed portfolios. Games of this 
part also demonstrated that preserving liquidity is essential for the selection process to work 
smoothly. It has been demonstrated that one-time shocks affect the selection process in the 
short run but not over the longer run unless the magnitude is very large. 
 
In the second part of Chapters 6-8, I extend the basic framework and consider multiple-asset 
games. Here, I examine the selections in the context of the efficient frontier theory. Although 
agents follow only the returns of the portfolios they have and make decisions based on 
realized returns, it has been demonstrated that they are capable of investing according to the 
efficient frontier hypothesis. The slightly more dispersed selection by suspicious agents is a 
consequence of their slight failure to conduct a “winner takes all” principle, even though 
they identify the same “winners” as unsuspicious agents do. This conclusion is supported in 
both bull and bear markets, except that agents take on more risk in the former, which is 
consistent with the theory. Agents do not prefer excessively diversified portfolios, but two-
asset portfolios with the most desired individual stock in the center. Consistency tests, tested 
by the coefficient of variability and Monte Carlo simulations, demonstrate that agents behave 
the most consistently on the most desired or the least desired choices. In addition, 
unsuspicious agents were more consistent in their selections than suspicious agents were. In 
the presence of news and returns, two groups of portfolios seemed to be the winners. As 
before, the first group consisted from the efficient frontier portfolios, or portfolios from its 
closest neighborhood. The second group of selected portfolios was stimulated by the number 
of non-negative news and included highly diversified portfolios.  
 
 
Keywords: multiperiod portfolio selection, stochastic finance, artificial markets, social networks, 
evolutionary games on networks, information and knowledge, communication, suspiciousness, 
reinforcement learning. 
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Chapter I 
 
 
Introduction 
 
 
1.1 Research motivation 
 
The dissertation examines portfolio selection and relates it to the games on networks. The 
main interest of the research has been to understand portfolio choices of interacting agents 
under a variety of circumstances when prices are uncertain. To examine these issues, I 
conduct a series of simulation-based games that are based on simple behavioral rules and 
local interaction.  
 
Financial markets are inherently occupied with issues that involve time and uncertainty.1 
Securities are traded at date zero, which is certain, and their payoffs are realized at date 1. 
Because any state can occur at date 1, it is uncertain (Arrow 1963, Mandelbrot 1963, 
Campbell et al. 1998).2,3 Much of this uncertainty is related to the informational inefficiency 
that exists even in well-functioning capital markets, and even informationally perfectly 
efficient markets might be expectationally inefficient as agents build different expectations 
(Grossman and Stiglitz 1980, see also Ben-Porath 1997).4 Expectational inefficiency utilizes 
the maxima that cognitive impairments limit investors’ ability to process information, which 
makes human cognition a scarce resource. In practice this means that although three 
investors all observe the same earnings announcement, they may be still induced to trade 
with one another.  
 
The existence of uncertainty is essential to portfolio selection and among the main reasons 
for making a portfolio of different assets, preferably with uncorrelated returns. A portfolio 
rule is an old ideal. In about the fourth century, Rabbi Issac bar Aha proposed the rule, 
according to which “One should always divide his wealth into three parts: a third in land, a 
third in merchandise, and a third ready at hand.” Benartzi and Thaler (2001) examined 
investment patterns of investors when choosing between many social security funds, and 
found that some investors follow such naïve 1/n strategy and divide their contributions 
evenly across the funds offered in the plan. In 1952, Harry Markowitz (1952a) published a 
seminal paper on portfolio selection in which he dealt with questions regarding the 
relationship between risk and return and the selection process, and derived an optimal rule 
according to which agents ought to select portfolios in relation to their risk. Since the early 
contribution of Markowitz, portfolio selection has become an object of immense interest for 
researchers in various sciences. Its first extensions were the capital asset pricing model 
(Sharpe 1964, Lintner 1965a, b), and the arbitrage pricing theory (Ross 1976), which take into 
account the assets’ relation to market risk.  

                                                 
1 I use the terms risk and uncertainty interchangeably, although uncertainty relates to the state in which outcomes 
and related probabilities are not known, while risk relates to the state in which all outcomes and their 
probabilities are known (Knight 1921). Knight suggests that people dislike uncertainty more than risk. 
2 Hamilton (1994) is a good reference on time series analysis, while financial time series is given in Cochrane 
(2005), Duffie (2001), and LeRoy and Werner (2001). 
3 Variability in prices is required for the market to function at all (Milgrom and Stokey 1982). 
4 Random walk theory is used for testing the efficient market hypothesis, in which stock prices reflect all 
information that is publicly known (Fama 1965, Malkiel 1973, 2003). See Stigler (1961), McCall (1970), Akerlof 
(1970), Spence (1973), Shiller (2002), and Hayek (1937, 1945) on the role of information in the economy. 
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Merton (1969, 1971), Brennan, Schwartz and Lagnado (1997), Barberis (2000), Liu (2007) 
considered portfolio selection as a multiperiod choice problem in an uncertain world. 
Barberis found that when stock prices are predictable, agents allocate more assets in stocks 
the longer their horizon. Wachter (2003) demonstrated that as risk aversion approaches 
infinity, the optimal portfolio would consist only of long-term bonds. Constantinides (1986) 
and Lo et al. (2004) considered the portfolio selection process in relation to transaction costs 
and demonstrated that agents accommodate large transaction costs by reducing the 
frequency and volume of trade. Xia (2001) demonstrated that agents who ignore the 
opportunity of market timing could incur very large opportunity costs, so that return 
predictability, even if quite uncertain, is economically valuable. Cocco (2005) examined the 
housing effects on portfolio choice and argued that investments in housing limit financial 
capabilities of people to invest in other assets. Campbell (2000) surveyed the field of asset 
pricing until the millenium. 
 
Along with a substantial literature on the equilibrium-based portfolio selection problem, 
many different computational techniques have been used for solving these optimization 
problems. Some of the more recent literature includes Fernandez and Gomez (2007), who 
applied a method based on neural networks. Crama and Schyns (2003) used a simulated 
annealing algorithm. Chang et al. (2000) compared the results of alternative methods: tabu 
search, genetic algorithm and simulated annealing. Cura (2009) used particle swarm 
optimization approach to portfolio optimization. Doerner et al. (2004) applied an ant colony 
optimization method for solving the portfolio selection problem. Although these 
equilibrium-based models reduced the sensitivity of the portfolio selection to the parameter 
estimates, while being also intuitive and computationally very complex, LeRoy and Werner 
(2001) called them “the placid financial models [that] bear little resemblance to the turbulent 
markets one reads about in the Wall Street Journal.” The chief objection against these models 
is that they do not consider the financial world a complex adaptive system, although it is 
characterized by large number of micro agents who exhibit a non-standard behavior and are 
repeatedly engaged in local interactions thereby producing global consequences (Sornette 
2004). In the dissertation, the notion of such consequences relates to the proportion of agents 
per portfolio. As outlined by Tesfatsion (2006), the only way to model and analyze such 
systems is to let them evolve over time. Once the initial conditions of the system have been 
specified and the behavioral methods (procedures) defined, the model develops over time 
without further intervention from the modeler. Finally, equilibrium-based models regularly 
exclude extremes, or outcomes that seem outliers, in order to obtain reliable statistical 
estimations, in spite of all the effects they produce. In reality, stock markets repeatedly 
switch between periods of relative calm and periods of relative turmoil.  
 
Behavioral approach to finance, or ACE (Agent-Based Computational Economics) finance, 
includes a great part of this micro-structure that was missing in previous models. Rabin 
(1998), Hirshleifer (2001), Barberis and Thaler (2003) and DellaVigna (2009) contain extensive 
surveys of behavioral finance. As argued by DellaVigna, individuals deviate from the 
standard model in three respects: nonstandard preferences, nonstandard beliefs, and 
nonstandard decision making. ACE has evolved in two directions that are intertwined to 
some extent: strictly behavioral and interaction-based. As pointed out by Simon (1955) and 
Kahneman and Tversky (1979) and the subsequent literature on agents’ behavior under 
uncertainty, even minor variations in the framing of a problem may dramatically affect 
agents’ behavior. Another part of the literature focuses on the communication related part, 
dealing with agents and the ways of how they gather and use information. In ACE, agents 
have incomplete and asymmetric information, they belong to social networks and 
communicate with others, they learn and imitate; sometimes they make good judgements, 
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sometimes poor. Following von Neumann and Morgenstern (1953), we distinguish between 
games with complete information and games with incomplete information. In addition, 
communicating investors share news to each other, leading to herding. Herding is one of the 
unavoidable consequences of imitation and is probably the most significant feature of the 
ACE models. Herding in financial markets may be the most generally recognized 
observation that has been highlighted by many (Bikhchandani et al. 1992, Banerjee 1992, Lux 
1995, Shiller 1995, 2002, Scharfstein and Stein 1990).5  
 
Applications of ACE models are abundant. One of the first was a segregation model of 
Schelling (1971). Considering many different classes of networks, Schelling’s model was later 
generalized by Fagiolo et al. (2007). ACE models of financial markets start with Zeeman 
(1974) and Garman (1976). Epstein and Axtell (1996) study a number of different social 
behavior phenomena. Many other ACE models have been proposed: Arifovic (1996), Brock 
and Hommes (1998), Brock and LeBaron (1996), Cont and Bouchaud (2000), Raberto et al. 
(2001), Stauffer and Sornette (1999), Lux and Marchesi (1999), Palmer et al. (1994), Johnson 
(2002), Caldarelli et al. (1997), Sharpe (2007), Kim and Markowitz (1989), Jacobs et al. (2004), 
Frijns et al. (2008), Dieci and Westerhoff (2010). Preis et al. (2006) propose a multi-agent-
based order book model of financial markets where agents post offers to buy and sell stock. 
Rosu (2009) presents a model of an order-driven market where fully strategic, symmetrically 
informed traders dynamically choose between limit and market orders, trading off execution 
price and waiting costs. Samanidou et al. (2007) provide an overview of some agent-based 
models of financial markets. These models are mostly focused on portfolio selection in 
relation to modeling asset pricing. Nagurney and Siokos (1997) present a financial 
equilibrium model in a network structure and provide the equilibrium conditions for the 
optimal portfolio selection.  
 
Based on these developments from different fields, the dissertation is an application of a 
dynamic behavioral-based and a simultaneous-move game in a stochastic environment that 
is run on a network. It includes agents along with their preferences, value functions, relations 
among agents and the set of actions for each agent. In the games, agents are price-taking 
individuals who make decisions autonomously. A number of games on networks have been 
proposed so far, and they can be found in a variety of disciplines. Pastor-Satorras and 
Vespignani (2001) and Chakrabarti et al. (2008) use a network approach to study the spread 
of diseases. Calvo-Armengol and Jackson (2004) applied the network approach into the labor 
market. Allen and Gale (2000) used financial networks to study contagion in financial 
markets that leads to financial crises. Leitner (2005) constructed a contagion model where the 
success of an agent’s investment in a project depends on the investments of other agents an 
agent is linked to. Cohen et al. (2008) used social networks to identify information transfer in 
security markets. Bramoulle and Kranton (2007) analyzed networks in relation to public 
goods. Close to the intuition of my work are Jackson and Yariv (2007) and Galeotti et al. 
(2010), who considered a game where players have to choose in partial ignorance of what 
their neighbors will do or who their neighbors will be. Szabo and Fath (2007) and Jackson 
(2010) provide a review of some of the evolutionary games on networks. 
 
The network I use is similar to that proposed by Watts and Strogatz (1998). In such network 
agents do not interact with all other agents, but only to those to whom they trust. This is a 
                                                 
5 Herding has been observed in the behavior of interacting ants. Kirman (1993) provides a simple stochastic 
formalization of information transmission inspired by macroscopic patterns emerging from experiments with ant 
colonies that have two identical sources of food at their disposal near their nest. In his experiment, a majority of 
the ant population concentrated on exploiting one particular food source, but they switched to the other source 
after a period. 
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realistic assumption for multi-agent systems. Agents use the network as an infrastructure to 
communicate with their peers. Information diffuses over the network by the word-of-mouth, 
as emphasized by Ellison and Fudenberg (1995) and Shiller (2002), and tested by Hong et al. 
(2004, 2005). Information-sharing means that agents base their decisions also on the 
experience of others. Such second-hand recommendations or opinions have always been an 
important piece of information for most of the people in their decision-making process. 
Individual agents are interacting decision makers with incomplete and asymmetric 
information regarding asset returns, portfolios of other agents with whom they do not 
communicate and the network structure. Agents have knowledge only of portfolios they 
possess or are possessed by adjacent agents with whom they communicate. Then, action is 
viewed as a mapping of agents’ knowledge to a decision. Agents make decisions without 
knowing what others have selected. Agents do neither know what those with whom they 
have exchanged information regarding portfolios have selected. Thus, although agents 
interact with each other and share information to each other, it might be said that they make 
decisions in isolation. The objective of agents in the model is to select a portfolio in every 
time period so as to increase their wealth. Because agents in the model possess limited 
computational resources and information on which to base their decisions, a reasonable 
principle for decision making is that of satisfycing and not optimizing. Therefore, their 
decisions might seem to be suboptimal decisions. I should acknowledge that agents do not 
play against each other.  
 
The basic intuition for the selection process comes from Markowitz (1952a). He defined 
portfolio selection as a two-step procedure of the information gathering and expectations 
building, ending in a portfolio formation. Building on the Markowitz framework, the 
selection process in this dissertation is broken down into four stages: the observation of 
returns, the choice of an adjacent agent, the comparison of the two portfolios, and the choice. 
Agents are assumed to base their decisions upon past realizations of their actions and the 
past actions of agents with whom they are cooperating. This makes the learning mechanism 
similar to reinforcement learning in that agents tend to adopt portfolios that have yielded 
high returns in the past, either their own or those of agents with whom they are interacting 
(Ellison 1993, Roth and Erev 1995, Erev and Roth 1998, Camerer and Ho 1999, Bala and 
Goyal 1998). Similarly, Barber and Odean (2008) argue that investors are likely to buy stocks 
that catch their attention. Grinblatt et al. (1995) demonstrated that hedge funds behave in 
such a way, which DeLong et al. (1990a) defined as a “positive-feedback” strategy. Agents 
continually modify their selections, unless they are liquidity agents. Liquidity agents do not 
change their initial alternative. The introduction of liquidity agents into the model follows 
the idea that there is a small fraction of passive investors among the participants on the 
markets. Similarly, Cohen (2009) built a loyalty-based portfolio choice model to explain the 
large portion of employee pension wealth invested in one’s own company stock.  
 
Finally, agents’ decision making as applied in the dissertation is subject to behavioarism. 
This is modeled through the level of agents’ suspiciousness. The salient characteristic of 
suspicious agents is that they might depart from adopting the seemingly most promising 
alternatives. An agent is said to be suspicious if there is a positive probability that to his 
detriment he would deviate from an action that stems from information provided to him by 
his adjacent link. Some reasons for such deviant behavior might be distrust among 
interacting agents at a personal level, or suspiciousness of the data, while agents may 
intentionally choose such a deviant alternative. In addition, it may also depict the presence of 
various types of “errors” in the decision-making process (Selten 1975, Tversky and 
Kahneman 1974). Errors in selection might also be induced by confusion (DellaVigna 2009). 
Whatever its reasons, the introduction of suspiciousness becomes highly significant and also 
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relevant when the difference in the values of two portfolios is very small. Its stochastic 
nature also makes the course of the selection process over time unpredictable. With the 
uncertainty in asset pricing and the uncertainty in the selection itself, portfolio selection, 
although very simple at first, is considered a complex adaptive process.  
 
The remainder of the dissertation is organized as follows. Chapter 2 brings a discussion on 
the portfolio selection and the developments in finance over time. Chapter 3 brings an essay 
on social networks. The basic model is developed in Chapter 4. Chapter 5 provides 
simulations and results of the simple games under different circumstances. Chapters 6-8 
represent a multiple-asset framework under different circumstances. Here, the average-game 
selections and the endgame selections are examined. The dissertation concludes with a final 
discussion and direction for further work. 
 
 
1.2 Objectives and goals 
 
I consider portfolio selection a complex adaptive system in an uncertain financial world, in 
which many individual interacting agents produce the aggregate dynamics. Two features are 
important in building such complexity. First, autonomous agents have incomplete and 
asymmetric information and communicate to each other, which imply herding (Hayek 1937, 
1945, Keynes 1936, Banerjee 1992, 1993, Lux 1995, Scharfstein and Stein 1990, Bikhchandani et 
al. 1992, 1998, Cont and Bouchaud 2000, Shiller 1995, 2002).6 Collective behavior in social 
systems such as ours is not limited by the nearest-neighbor interactions, because local 
imitation might propagate spontaneously into a convergent social behavior with large macro 
effects. The second is induced by the behavioral aspect in agents’ behavior, which is modeled 
through the level of suspiciousness. This makes the behavior of agents sluggish and close to 
heuristic when the difference in the two uncertain alternatives is not large (Kahneman and 
Tversky 1979, Rubinstein 1998, Heath and Tversky 1991, Hirshleifer 2001). The level of 
suspiciousness thus affects the magnitude of herding, which makes it significant for the 
behavior of individual agents and the system.  
 
A fundamental methodological premise of the dissertation is that interaction and 
information sharing lead to complex collective behavior that goes far beyond equilibrium 
closed-form solutions of non-interacting or representative agents (Simon 1955, Aumann and 
Myerson 1988, Schelling 1978, Smith 1976, Axelrod 1984, 1997, Epstein and Axtell 1996, 
Tesfatsion 2006, Hommes 2006, LeBaron 2006, Duffy 2006, Camerer et al. 2005). Specifically, I 
address the following questions. 
 
Q1: How do agents select between risky and riskless portfolios? (Chapter 5) 
The simulation part begins with a simple setting in which a market consists of two types of 
securities: a riskless asset and a risky asset, while agents can also select a combination of the 
two. This is the application of the very basic idea that was explicitly presented by Tobin 
(1958), Arrow (1965) and Pratt (1964), who were the first to consider the portfolio choice 
problem with a single risky security. In fact, in most of the papers that examine portfolio 
choice in a mathematical or computational way as an equilibrium-based problem, the 
economic environment is reduced to one risky and one riskless asset. The general conclusion 
                                                 
6 Smith and Sorensen (2000) note that information cascade occurs when a sequence of individuals ignore their 
private information when making a decision, while herding occurs when a sequence of individuals make an 
identical decision, not necessarily ignoring their private information. In information cascade an idea or action 
becomes widely adopted due to the influence of others, usually neighbors in the network. I do not make such 
distinctions. 
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from this research is that an agent’s willigness to invest in a risky security depends, among 
other things, on its return and risk. Generally, this is also a conclusion of behavioral 
economists who argue that agents prefer returns, but are susceptible to losses (Kahneman 
and Tversky 1979). Benartzi and Thaler (1995) analyzed the static portfolio problem of a loss-
averse investor. They conclude that an investor who is trying to allocate his wealth between 
treasury bills and the stock market, is reluctant to allocate much to stocks, even if the 
expected return on the stock market is set equal to its high historical value. 
 
In games of this part, I am interested in how the mean return and risk influence portfolio 
selection patterns. In particular, I investigate how agents’ decisions are influenced by 
perturbations of both parameters throughout both definition spaces. Each game is run for 
10.000  periods and is repeated 20 times. Endgame decisions are then averaged over these 
repetitions and displayed on heat-map visualizations. 
 
I demonstrate that when both returns and variance are high, agents choose mixed portfolios. 
I also demonstrate that agents also opt for mixed portfolios when the returns of risky 
securities lie in the neighborhood of riskless returns. On the other side, although agents try 
to avoid negative returns if they can choose a riskless alternative with zero return, the 
variance of a risky security gives them the opportunity to earn non-zero returns. In these 
circumstances mixed portfolios were considered a fair choice between risk and return. 
Agents choose riskless portfolios when the mean returns of risky securities are negative 
(bearish market), irrespective of variance. Obviously, variance is considered a negative 
factor. Unsuspicious and suspicious agents demonstrate pretty similar selection patterns. 
Finally, initial proportion of agents with different types of portfolios affects the agents’ final 
decisions in the extreme cases.  
 
Q2: How do agents select between two risky alternatives? (Chapter 5) 
Next, I extend the basic framework and consider the case with two risky stocks of two 
financial institutions, Credit Suisse (CS) and Citigroup (C), while, as before, agents can also 
select a combination of the two. In this part, I use real data and explore the evolution of 
agents’ selections over time, not just their endgame selections, as before. This allows me to 
accurately see how agents react to the changing returns over time. 
 
These games very illustratively reveal a very distinctive feature of interaction-based games – 
herding, which leads to synchronization in the very early stages of the games. This 
conclusion is very intuitive and was proven by Bala and Goyal (1998). Herding proved to be 
fast in the environment of unsuspicious agents who perfectly rebalance their portfolios. 
Consequently, selections of unsuspicious agents were highly consistent as the games were 
repeated. In contrast, suspicious agents do not end in a unanimous decision, while 
suspicious agents are highly inconsistent in their selections. In these games, consistency in 
selections is measured through the correlation coefficients of individual games to the average 
game. 
 
I demonstrate that when the initial proportion of agents with unfavorable portfolios is larger, 
developments in selections are significantly different from the case when this proportion is 
smaller. Under new circumstances, the agents also do not end in a unanimous decision, as 
they did before. 
 
Q3: What is the effect of a one-time shock on portfolio selection? (Chapter 5) 
In the last part of Chapter 5, I include a one-time shock into the portfolio selection process. 
One of the most remarkable emergent properties of natural and social sciences is that they 
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are punctuated by rare large events, which often lead to huge losses (Sornette 2009). Shocks 
are highly relevant for the economy and common to financial world and might be 
characterized as sudden and substantial moves in prices in any direction that are likely to 
change the environment in which agents make decisions. Shocks are very relevant for 
portfolio selection (Merton 1969, 1971). De Bondt and Thaler (1985) showed that investors 
tend to overreact to unexpected and dramatic news events. The question I ask here is how 
sensitive are agents’ selection patterns to a one-time shock of different magnitude over 
different time horizons and under different circumstances. These games included liquidity 
agents. 
 
As argued by Binmore and Samuelson (1994), Binmore et al. (1995), and Kandori et al. (1993), 
so did also the games demonstrate that the short run effects of a shock can not be avoided, 
with the short run of a strong enough shock being especially critical. In the games, a shock 
resulted in the move from a portfolio that was hit by a negative shock into other portfolios, 
while these moves were positively correlated with the magnitude of the shock. In addition, 
these effects were much more intense in the environment of unsuspicious agents. This is an 
implication of overreaction, which is followed by the post-shock recovery processes. The 
effects of a shock on the ultra-long run depend on the extent to which a shock changes 
agents’ behavior, the post-shock activities, and the extent of herding. In the games, the 
recovery was slow. 
 
Q4: Are agents capable of selecting portfolios from the efficient frontier? (Chapters 6-8) 
In the games of Chapters 6-8, I extend the basic framework and examine multiple-asset 
games. Two-asset games are too simplistic, although being very applicable. A multiple-
choice environment increases the extent of an agent’s problem, bringing it closer to reality. 
Specifically, investors are faced with formidable search problem when buying stocks on a 
huge market, because of their limited capabilities of gathering information, while not when 
selling them (Barber and Odean 2008). Merton (1987) argued that due to search and 
monitoring costs investors may limit the number of stocks in their portfolios. 
 
In the multiple-asset games, I examine the selections in the context of the efficient frontier 
theory. The theory states that agents choose portfolios that maximize their return given the 
risk or minimize the risk for the given return (Markowitz 1952a, 1959). These games include 
liquidity agents. As was the case in all other games, agents have limited knowledge about 
asset returns, while means and variances of returns are used as my endpoints in the analysis. 
I use real data on returns. 
 
My objective was not to argue whether agents prefer mean-variance portfolios, but rather to 
examine whether such portfolios can be attained by adaptive agents who interact with each 
other in an uncertain and a dynamic financial world. In addition, selection patterns also 
allow me to assess the level of agents’ risk aversion. 
 
Given the behavior of both types of agents, the results suggest that the riskier the portfolio, 
the more likely it is that agents will avoid it. Unsuspicious agents had much higher abilities 
of selecting winning and losing portfolios than suspicious, while also being much more 
consistent in their behavior. In both cases, under-diversified portfolios were more desired 
than diversified portfolios. Consistency in selection is tested by two different measures: 
coefficient of variation and Monte Carlo simulations. Unsuspicious agents were also much 
more synchronous in their selections than suspicious agents. 
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Q5: Do agents invest differently in “good” times than in “bad” times? (Chapter 7) 
Following the intuition first provided by Kahneman and Tversky (1979), my next objective is 
to test whether agents behave differently when stocks rise than when they fall. The question 
goes beyond variance as a measure of risk, because in a bull market variance depicts 
variability in the uptrend, while in the bear market variability in the downtrend. 
Conclusions from the behavioral finance argue that agents’s value functions are convex for 
losses and concave for gains (Tversky and Kahneman 1991). Besides, Fama and Schwert 
(1977) argued that expected returns on risky securities are higher in bad times. Barberis et al. 
(2001) argued that agents are less prone to taking risk in a bear market, as they first start to 
recognize and then also evaluate it. 
 
The simulation results were consistent with the theory, as agents were much more 
susceptible to variance in a bear than in a bull market. In addition, agents’ decisions were 
highly synchronized in a bear market, reflecting a very strict “winner takes all” scheme. In 
an uptrend, agents slightly departed from choosing efficient frontier portfolios, as higher-
variance portfolios were not avoided so strictly for a given return. However, these portfolios 
lie in the closest neighborhood of the efficient frontier portfolios. Again, unsuspicious agents 
had much higher abilities of selecting winning and losing portfolios than suspicious, while 
also being much more consistent in their behavior. Unsuspicious agents were also much 
more synchronous in their selections than suspicious agents. 
 
Q6: How do news events affect a portfolio selection process? (Chapter 8) 
In the last part of the dissertation, I examine how news events that are related to individual 
stocks affect the portfolio selection process. In the previous chapters agents decided upon 
realized returns, which means that significant news events were considered indirectly 
through market responses, i.e. usually with a time lag of one period.  
 
Chen et al. (1986) argued that stock returns are exposed to systematic economic news. 
Kandel and Pearson (1995) found that public announcements induce shifts in stock returns 
and the volumes. Similarly, Fair (2002) found that most large moves in high-frequency 
Standard and Poor’s (S&P) 500 returns are identified with U.S. macroeconomic news 
announcements. Bernanke et al. (2005) analyzed the impact of unanticipated changes in the 
Federal funds target on equity prices and found that on average over the May 1989 to 
December 2001 sample, a “typical” unanticipated 25 basis point rate cut has been associated 
with a 1.3 percent increase in the S&P 500 composite index. Boyd et al. (2005) examined the 
stock market’s short-run reaction to unemployment news. Andersen et al. (2007) 
characterized the response of U.S., German and British stock, bond and foreign exchange 
markets to real-time U.S. macroeconomic news, and find that equity markets react differently 
to news depending on the stage of the business cycle. Barber and Odean (2008) argued that 
attention-grabbing news events significantlly affect the buying behavior of investors. They 
find that individual investors are net buyers of attention-grabbing stocks, e.g., stocks in the 
news, stocks experiencing high abnormal trading volume, and stocks with extreme one day 
returns. 
 
To an agent, news events that come in irregular intervals appear as multiple shocks. They 
can be positive, neutral or negative. News events provoke a shift into portfolios that are 
subject to positive news and away from those that are subject to negative news. Because 
agents react not only to news but also to the returns that follow the news, negative returns 
that follow positive news may turn agents away from such portfolios, while positive returns 
that follow negative news may make such portfolios more desirable. This means that price 
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reactions to news events are crutial for the behavior of market participants with over- and 
underreaction spurring movements in the opposite direction. 
 
I use real data on both returns and news events. News events are evaluated by a simple and 
intuitive rule. It is assumed that significant news should be followed by shifts in trading 
volumes and also in prices; this same rule was also used by Barber and Odean. 
 
In the presence of news and returns, two groups of portfolios seemed to be the winners. As 
before, the first group consisted from the efficient frontier portfolios, or portfolios from its 
closest neighborhood. The second group was stimulated by the number of non-negative 
news and was comprised of highly diversified portfolios. 
 
 
1.3 Research contribution 
 
The main contribution of the dissertation is methodological; the dissertation is deeply rooted 
in methodological individualism. The complex system approach is applied, which studies 
portfolio selection from the perspective of individual agents and their interaction, and also 
includes a behavioral aspect. Such technique has not been applied, yet. In fact, applications 
of financial games on social networks are extremely rare, although financial markets are 
particularly appealing applications for such an approach (Bonabeau 2002). An agent-based 
approach allows me to examine selection patterns over time under many different 
circumstances and for a broader range of parameter values. Moreover, repetitions of the 
games allow me to assess consistency in agents’ selections as the games repeat. Namely, 
because learning processes do not follow a strictly determined procedure, repetitions of the 
games do not duplicate their history, despite an unchanged learning algorithm (Vriend 
2000). The dissertation thus provides a unique approach not only to portfolio selection but 
also to modeling finance. 
 
New to the agent-based finance research are inclusions of suspicious agents and liquidity 
agents. By using suspicious agents, I introduce a psychological aspect into agents’ decision 
making bringing them closer to reality. By using two types of agents, I am also able to 
compare the behavior of suspicious agents with that of the unsuspicious, both in terms of 
selections and consistency in selections. Liquidity agents are highly significant for the 
selection process, as they prevent the dominated alternatives to die off, even though they are 
dominated only occasionally for some short consecutive time periods. Liquidity agents may 
resemble highly conservative investors or investors who are extremely loyal to the portfolio 
they have.  
 
The games of simulated data are run on the Levy returns, which incarnates the notion that 
extreme events are not exceptional events (Mandelbrot 1963, Fama 1965, Sornette 2009). Real 
data is used in the multiple-asset games, which means that in these parts the dissertation 
contains all the specifics regarding the asset pricing, including over- and underreaction, time 
lags of switching processes, correlation and cointegration between assets, etc. 
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Chapter II 
 
 
Portfolio selection and financial market models 
 
 
2.1 A portfolio  
 
A portfolio is a set of investments. Units of assets might capture savings accounts, equities, 
bonds and other securities, debt and loans, options and derivatives, ETFs, currencies, real 
estate, precious metals and other commodities, etc. These holdings might be positive (long 
position), zero or negative (short position). The set of all possible portfolios from the 
available assets is denoted a portfolio space. Let me first define a portfolio and a mixed 
portfolio.  
 
Let { }1,2, ,J n= …  represents a finite set of units of assets, then portfolio P  is composed of 
the holdings of these n  units of assets. If the number of non-zero holdings is larger than 1 , 
the portfolio is called a mixed portfolio. 
 
The return of a portfolio P

tR  equals the weighted average return of its units of wealth in time 

t . It is defined as 
1

n
P i i
t t t

i
R q R

=

=∑ , with i
tR  representing the return of i-th unit of wealth in time 

t , and i
tq  the proportion of i-th unit in the portfolio in time t . Cumulative proportion of all 

units of wealth of a portfolio should always sum to unity, therefore 
1

1
n

i
t

i
q

=

=∑ . Throughout I 

will be working with returns. The variance of a portfolio is a measure of portfolio risk. 
 
THEOREM 2.1: If 1

tP  and 2
tP  are two portfolios with variances 2

,1Pσ  and 2
,2Pσ , respectively, 

then 1
tP  is strictly riskier than 2

tP , iff 2 2
,1 ,2P Pσ σ> . 

 
THEOREM 2.2: If agents possess all information regarding asset prices, for which the prices 
are common knowledge, and all these assets have different returns, a mixed portfolio is 
never the optimal solution. 
 
Proof: 
Assume there are n  different assets with returns i

tR . Then the return of a portfolio equals to 

the weighted return of assets from the portfolio 
1

n
P i i
t t t

i
R q R

=

=∑ , in which iq  denotes the 

proportion of i -th assets in the portfolio. Then we have 0iq ≥  and 
1

1
n

i

i
q

=

=∑ . When 

maximizing the return of a portfolio, the solution is 1iq =  for the asset with the highest 
return and 0iq =  for all the rest. If more than one asset has the same return, for which 

( ),  1, 2, ,lR l L= … , then any allocation among them for which 
1

1
L

l
l

qR
=

=∑  is the solution to the 

maximization problem, which maximizes P
tR . Q. E. D. 
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2.2 Historical developments of the portfolio theory 
 
 

The early stage 
 
Although the diversification of investments was well-established practice well before 1952, 
portfolio theory starts with the Markowitz’s (1952a) seminal paper Portfolio selection. In the 
paper, Markowitz derived the optimal rule for allocating wealth across risky assets. His 
portfolio selection process is the first mathematical formalization of the diversification idea 
in an uncertain world. In order to reduce risk, Markowitz argued that agents ought to follow 
portfolios in relation to their risk. He introduced the concept of the mean-variance efficient 
portfolio, which represents one of the fundamental concepts of finance. 
 
DEFINITION 2.1: If ,1P

tR  and ,2P
tR  denote returns of portfolios 1

tP  and 2
tP  and ,1P

tσ  and 
,2P

tσ  their variances, then a portfolio 1
tP  is mean-variance efficient iff there is no other 

portfolio 2
tP  with the same variance and higher return, thus ,2 ,1P P

t tR R>  and ,2 ,1P P
t tσ σ= , or 

with the same return and lower variance, thus ,2 ,1P P
t tR R=  and ,2 ,1P P

t tσ σ< . 
 
The definition suggests that to find a mean-variance efficient portfolio, one needs to fix either 
the mean return or the variance, and then choose a portfolio so as to minimize the variance 
or maximize the return. The idea is very straightforward and intuitive, and was awarded a 
Nobel Prize in 1990. It yields two important economic insights. First, it illustrates the effect of 
diversification. Imperfectly correlated assets can be combined into portfolios with preferred 
expected return-risk characteristics. Second, it demonstrates that, once a portfolio is fully 
diversified, higher expected returns can only be achieved by taking on more risk. Roy’s 
(1952) notion is different from that of Markowitz in that Markowitz let an investor to choose 
where on the frontier he would like to be, while Roy put the safety first criterion.  
 
The mean-variance concept and the efficient frontier hypothesis have had a profound impact 
on the modeling in finance. Sharpe (1964) and Lintner (1965a, b) developed the capital asset 
pricing model (CAPM), and Ross (1976) developed the arbitrage pricing theory (APT). 
CAPM and APT link the portfolio selection to the relation between the stocks’ (or a portfolio) 
risk and market risk. Campbell and Vuolteenaho (2004) proposed a version of the CAPM, in 
which investors care more about permanent cash-flow-driven movements (bad beta) than 
about temporary discount-rate-driven movements (good beta) in the aggregate stock market. 
Jorion (2007) proposed a Value-at-Risk method to portfolio selection, which is focused on the 
worst expected loss of a portfolio over target period within a given confidence interval. The 
method is highly used in the banking sector. 
 
A multiperiod perspective of the portfolio problem under uncertainty was provided by 
Merton (1969, 1971). Merton derived the condition under which optimal portfolio decisions 
of long-term investors would not be different from those of short-term investors, which 
occurs when the investment opportunity set remains constant over time, which implies that 
excess returns are not predictable. The second assumption was later omitted by Liu (2007); 
she considered the case with multiple risky assets and predictable returns. Brennan, 
Schwartz and Lagnado (1997) were the first to make the empirical work on portfolio choice 
in the presence of time-varying mean returns. When stock prices are predictable, agents 
allocate more assets in stocks the longer their horizon (Barberis 2000). In addition to this 
conclusion, Wachter (2003) demonstrated that as risk aversion approaches infinity, the 
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optimal portfolio would consist only of long-term bonds. Constantinides (1986) and Lo et al. 
(2004) considered the portfolio selection process in relation to transaction costs, and 
demonstrated that agents accommodate large transaction costs by reducing the frequency 
and volume of trade. Transaction costs thus broaden the area of no transaction towards 
riskless securities and determine the number of securities in a portfolio. These papers all 
build on the Merton model and provide some new closed-form solutions to it. Another 
extension of the Merton model was provided by Bodie et al. (1992), who examined the effect 
of the labor-leisure choice on portfolio decisions over an individual's life cycle. They show 
that labor and investment choices are intimately related. Specifically, they showed that 
exogenous, riskless labor income is equivalent to an implicit holding of riskless assets. The 
ability to vary labor supply ex post induces the individual to assume greater risks in his 
investment portfolio ex ante. Cocco (2005) examined the effects of housing on portfolio choice 
patterns and found that investments in housing limit financial capabilities of people to invest 
in other assets.  
 
Along with different models of portfolio selection, many different computational techniques 
have been used for solving the optimization problems (Judd (1998) provides an overview of 
different computational techniques). Fernandez and Gomez (2007) applied a heuristic 
method based on artificial neural networks in order to trace out the efficient frontier 
associated to the portfolio selection problem. They considered a generalization of the 
standard Markowitz mean-variance model which includes cardinality and bounding 
constraints. These constraints ensure the investment in a given number of different assets 
and limit the amount of capital to be invested in each asset. Crama and Schyns (2003) used a 
simulated annealing algorithm. Chang et al. (2000) considered a problem of finding the 
efficient frontier of data set of up to 225 assets, and examined the solution results of three 
techniques: tabu search, genetic algorithm, and simulated annealing. Cura (2009) applied a 
particle swarm optimization technique to the portfolio optimization problem. Doerner et al. 
(2004) applied an ant colony optimization method, where investors first determine the 
solution space of all efficient portfolios and then interactively explore that space.  
 
 

Behavioral aspect 
 
Dissatisfied with the inability of representative agent models to explain empirical facts, 
behavioral economists pioneered a new approach towards modeling financial markets. 
Behavioral finance is the study of how psychology affects financial decision making and 
financial markets. It suggests that individuals deviate from the standard model in three 
respects: nonstandard preferences, nonstandard beliefs, and nonstandard decision making 
(Rabin 1998, Hirshleifer 2001, Barberis and Thaler 2003, DellaVigna 2009).  
 
Economists have traditionally assumed that agents have stable and coherent preferences, 
and that they rationally maximize those preferences. Kahneman and Tversky (1979) argued 
that agents have non-standard preferences, for which their decisions under uncertainty tend 
to systematically violate the axioms of expected utility theory (see also Kahneman and 
Tversky 1982, Tversky and Kahneman 1991, Camerer et al. 2005). Experimental studies have 
demonstrated that indifference curves of individuals are not independent of the current 
state, but are kinked, and that value functions of individuals are convex for losses and 
concave for gains. This means that a loss is subject to a much bigger decline in satisfaction 
than gains contribute to it. It has been argued that when evaluating gambles, individuals 
consider the cost of the gamble and the possible reward (Kahneman and Tversky 1979), and 
that gambles are valued higher if a small investment can lead to a large reward (Lichtenstein 
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and Slovic 1971, and Tversky et al. 1990). They also found that wealthy individuals consider 
games only in terms of the potential gain and do so without regard to the probability of a 
loss, although individuals tend to avoid even a small probability of suffering huge losses, 
and usually also to avoid uncertain events, that is, those whose probabilities of any 
particular outcome are unknown (Allais 1953, Heath and Tversky 1991). Analogically, 
individuals are much more active on the capital markets they know best (Cooper and 
Kaplanis 1994, Coval and Moskowitz 1999, and Grinblatt and Keloharju 2001). Benartzi and 
Thaler (1995) included a behavioral aspect to the static portfolio problem. They found that a 
loss-averse investor, who is trying to allocate his wealth between treasury bills and the stock 
market, is reluctant to allocate much to stocks, even if the expected return on the stock 
market is set equal to its high historical value. In addition, they (Benartzi and Thaler 2001) 
also found that some investors follow a naïve 1/n rule when choosing between social 
security funds, and evenly distribute their contributions across all funds offered to them.  
 
The next class of a critique relates to the selection part, in particular, to a tradeoff between 
the efficiency and the complexity of alternatives. As argued by Rubinstein (1998), individuals 
prefer alternatives that are as efficient as possible, while also being simple. Agents do not 
only use alternative criteria in their decision making, but, at times, also conflicting. When 
faced with an uncertain decision, agents value those goods that can be lost or given up more 
highly than when the same goods are evaluated as a potential gain (Thaler 1980). Tversky 
and Kahneman (1992) also argue that most people would refuse a gamble with even chances 
of winning or losing, unless the potential gain is twice as much as the potential loss. Ellsberg 
(1961) and Elster (1991) set out the role of emotions in decision making, while Campbell and 
Cochrane (1999) the role of customs and habits. Shefrin and Statman (1985) argue that agents 
might suffer a disposition effect, i.e. the preference for selling winners and holding losers.  
 
The two another behavioral characteristics of agents’ behavior and probably the most robust 
findings in the psychology of judgment are overconfidence about the precision of private 
information and biased self-attribution (Weinstein 1980, Lichtenstein et al. 1982, Griffin and 
Tversky 1992, Odean 1998a, b, Daniel et al. 1998). The combination of them both cause 
asymmetric shifts in agents’ confidence as a function of the efficiency of their past 
investment performance (Thaler and Johnson 1990, Barberis et al. 2001).7 Agents who have 
achieved some consecutive positive results are much more inclined to make risky decisions 
than those who have not. Lakonishok et al. (1994) argued that many times, individuals 
unreasonably and naïvely extrapolate their opinions from past decisions, thus estimating too 
large a prospect for such securities that had experienced large returns in the past. Attribution 
theory states that individuals too greatly attribute to their ability events that confirm the 
validity of their actions, while attributing to external noise the events that disconfirm their 
actions (Bem 1972). In Scheinkman and Xiong (2003), overconfidence leads to heterogeneous 
beliefs, while the resulting fluctuations in the differences of beliefs induce trading, which can 
even be infinite and also produce bubbles.8 Empirical studies found that agents who 
overestimate their abilities and trade very aggressively usually end with losses (Odean 1999, 
Barber and Odean 2000, 2002). Barber and Odean (2001) analyzed gender differences in 
trading, and found that because men are more overconfident than women, they trade much 
more than women and, consequently, by trading more they reduce their returns much more 
than women do. Odean (1998a) pointed out that overconfident investors hold riskier 
portfolios than other investors with the same degree of risk aversion do. In addition, Daniel 

                                                 
7 An experimental study of Fischhoff et al. (1977) found that events that individuals consider as certain happen in 
about 80 percent of cases, while those that are considered as impossible happen in some 20 percent of cases. 
8 Akerlof (1997) argued that there exist subgroups that behave differently than the majority of the population. 
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et al. (1998) demonstrated that the effects of overconfidence are more severe in less liquid 
securities and assets, because such markets are subject to substantial stochastic jumps in 
prices. 
 
Shefrin and Statman (2000) included a behavioral aspect into the Roy’s safety-first criterion 
and developed a model, in which investors choose portfolios by considering expected 
wealth, desire for securities and potential, aspiration levels, and probabilities of achieving 
aspiration levels. BPT thus suggests that investors have variety of motivations in making 
their portfolios. Their model is an optimization-based model, which does not consider the 
selection process as a complex system of interacting agents. Black and Litterman (1992) 
provided an alternative method for incorporating beliefs into portfolio theory. In their 
model, an investor is allowed to combine his views about the outlook for global equities, 
bonds and currencies with the risk premiums generated by the CAPM equilibrium. Pastor 
(2000) proposed a portfolio selection model in which investor’s prior beliefs are centered 
around an asset pricing model. As the degree of skepticism about the model grows, the 
resulting optimal allocation moves away from a combination of benchmark portfolios 
toward the allocation obtained in the data-based approach. Garlappi et al. (2007) extended 
the mean-variance portfolio model to explicitly account for uncertainty about the estimated 
expected returns. In contrast to the Bayesian approach to estimation error, where there is 
only a single prior and the investor is neutral to uncertainty, they allow for multiple priors 
and aversion to uncertainty. 
 
 

Interaction-based approach 
 
In addition to the behavioral approach to portfolio theory, the application of networks and 
the network theory provide formalism for modeling financial markets as complex systems in 
terms of their interdependencies, i.e. when the movement of an entity over space and time is 
critical. “A central property of a complex system is the possible occurrence of coherent large-
scale collective behaviors with a very rich structure, resulting from the repeated nonlinear 
interactions among its constituents,” as is argued by Sornette (2004). Interaction helps agents 
accumulate knowledge that is dispersed among many (Hayek 1937, 1945), while in a 
connection with the behavioral aspect it makes a system complex. 
 
Interacting economic agents are thus able to continually adjust their market moves, buying 
decisions, prices and forecasts to the situation these moves, or decisions, or prices, or 
forecasts together create (Arthur 2006). Dynamic systems exist and change in accordance 
with the environment in which they exist. Behavior creates pattern; and pattern in turn 
influences behavior. New opportunities that occur regularly prevent the system to be in 
optimum or global equilibrium. A significant feature of interacting agents who are able to 
imitate is herding, which is highly significant for financial markets (Bikhchandani et al. 1992, 
Banerjee 1992, Lux 1995, Shiller 1995, Scharfstein and Stein 1990).9 The ability to imitate is 
people’s inborn capacity, which allows them to exploit information possessed by others. 
Keynes (1936) claimed that herding is implied when people do not trust their own 
knowledge and experiences, but rather rely on some external authority. It is not that those 
who herd believe that the “experts” are capable of overcoming the uncertain future, but 
rather that due to their experiences and knowledge they are far more capable of avoiding 

                                                 
9 Herding might induce large macro effects, even stock bubbles and crashes (Lux 1995, Harrison and Kreps 1978, 
Scheinkman and Xiong 2003, Abreu and Brunnermeier 2003, Santos and Woodford 1997, and Kindleberger and 
Aliber 2011). 
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losses. Welch (2000) and Graham (1999) found herding to be very significant among analysts 
and among investment newsletters. Herding might also be provoked by rumors, which link 
herding to interaction and communication. Hong et al. (2004, 2005) explored the effects of 
word-of-mouth information on individuals’ stock market participation and found that local 
networks of “friends” affect their decisions. They argue that investors, who live near each 
other, pass information between themselves by word-of-mouth communication.  
 
In addition, Coval and Moskowitz (1999) argued that geographical proximity influences 
investors’ portfolio choices. Feng and Seasholes (2004) found that in the Chinese stock 
market trades are positively correlated for geographically close investors but negatively for 
distant investors. Colla and Mele (2010) found that for close traders the information sharing 
effect induced by the traders’ linkages dominates the negative correlation effect related to 
each trader standing on the opposite side of the market as a whole. Cohen et al. (2008) used 
social interaction to study the relationship between the portfolio choices of individuals in 
relation to some observable characteristic, such as educational background. They also tried to 
identify information transfer in security markets. Pastor-Satorras and Vespignani (2001) and 
Chakrabarti et al. (2008) used a network approach to study the spread of diseases. Calvo-
Armengol and Jackson (2004) applied the network approach into the labor market. Allen and 
Gale (2000) used financial networks to study contagion in financial markets and the 
emergence of financial crises. Leitner (2005) constructed a model where the success of an 
agent’s investment in a project depends on the investments of other agents this agent is 
linked to. Bramoulle and Kranton (2007) analyzed networks in relation to public goods. 
Close to the intuition of my work are Jackson and Yariv (2007) and Galeotti et al. (2010), who 
considered a game where players have to choose in partial ignorance of what their neighbors 
will do, or who their neighbors will be.10  
 
These behavioral and social features make financial system a complex system, which is 
populated with many dispersed agents who have incomplete and asymmetric information, 
assess situations individually, communicate with each other, make decisions based upon a 
set of rules, and use rule-of-thumb strategies. Individuals deviate from the standard theory 
in each step of the decision making process (DellaVigna 2009). Such system is said to be 
computationally irreducible; an interaction-based approach is not only indispensable for 
studying such system, as it allows us to see how the aggregate outcome is built in the context 
of micro motives, but, on many occasions, the only way to analyze it. ACE modeling can 
easily incorporate all sorts of nonlinear effects and can proceed even if equilibria are 
computationally intractable or non-existent (Tesfatsion 2006). 
 
ACE is similar to laboratory experiments. Gode and Sunder (1993) and LeBaron et al. (1999) 
argued that ACE is capable of isolating and monitoring the effects of individuals’ various 
preferences, such as risk aversion, learning abilities, trust, habits, and similar factors, while 
this is nearly impossible in laboratory experiments. Even though the experimenter controls 
the procedure in laboratory experiments, those who take part in it are aware that they are 
participating in a fictitious circumstance, and are likely to adapt their responses accordingly. 
Such experiments do not necessarily reflect what individuals would do under the same 
circumstances in reality.  
 
 
 

                                                 
10 Szabo and Fath (2007), and Jackson (2010) provide a review of some of the evolutionary games on networks. 
Allen and Babus (2008) review some models of financial networks. 
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2.3 Agents in ACE models 
 
Interaction-based approach is grounded on methodological individualism with agents in the 
center of the model. Macal and North (2010) argued that it is always beneficial to think in 
terms of agents when: 
• there is a natural representation as agents, 
• there are decisions and behaviors that can be defined discretely (with boundaries), 
• it is important that agents adapt and change their behaviors, 
• it is important that agents learn and engage in dynamic strategic behaviors, 
• it is important that agents have dynamic relationships with other agents and that agent 

relationships form and dissolve, 
• it is important that agents form organizations and learning being important at the 

organization level, 
• it is important that agents have a spatial component to their behaviors and interactions, 
• the past is no predictor of the future; when scaling-up to arbitrary levels is important, 
• structural change in a process is a result of the model rather than a model input. 
 
An agent is a simplified and abstract version of a human being – an investor, while a 
multiagent system is a system that contains multiple agents interacting with each other 
and/or with their environments over time. An agent is a target-oriented being who is 
privately oriented and is capable of information gathering, reasoning, adaptation, learning 
and decision making. It is a software agent, who is repeatedly engaged in local interaction. 
 
DEFINITION 2.2: An agent is defined as anything that can perceive its environment through 
sensors and act upon that environment through effectors. (Russell and Norvig 1995) 
 
DEFINITION 2.3: An autonomous agent is a system situated within and as part of an 
environment that senses that environment and acts on it, over time, in pursuit of its own 
agenda and so as to effect what it senses in the future. (Franklin 1997) 
 
In the dissertation, agents make decisions simultaneously and autonomously in every time 
period. Each agent is endowed with simple preferences and adaptive learning rules, is a part 
of a social network and has a set of possible actions. In an artificial world, the goal of an 
agent is to solve a given problem. In the present dissertation, the problem relates to portfolio 
selection and agets solve their problem by searching for information and dealing with 
several constraints. The first constraint relates to bounded knowledge. Agents know neither 
the future stock prices, nor all the other agents in the network, nor the value functions of 
those agents whom they do know. They are capable of neither solving large nor complicated 
mathematical equations. Instead, they learn from their past decisions and also by actions of 
other adjacent agents. Adaptation takes place at the individual level. In addition to 
unsuspicious agents, I also introduce suspicious agents. 
 
DEFINITION 2.4: An agent is said to be suspicious if there is a non-negative probability that 
he will depart from adopting the most promising alternative of the two being compared.  
 
 

The formation of agent’s beliefs 
 
The rule which agents pursue when faced with a selection problem is very simple: an agent 
may either proceed with the alternative he had before or switch to any other alternative. This 
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simple rule is standard in dynamic games. In learning games, agents start with some initial 
belief regarding the relevant data, and after observing the actions of others and the change in 
data, they update their beliefs and behave accordingly in the next period. Such agents learn 
in two ways: by observing their own past actions or by communicating with others. Agents 
then choose such actions that represent their best responses or best actions to the given 
circumstances. They use matching rules such that their perceptions are challenged in relation 
to their expectations (Kahneman and Tversky 1982). The better (worse) the results of 
individual actions or strategies, the higher (smaller) is the probability that such actions and 
strategies will also be used in the future. Such agents, who learn from the past, behave as if 
past decisions are important for the future. Lettau (1997) found that flows to individual 
hedge funds are positively correlated with their past returns. 
 
Different situations spur different learning processes, so there is no single universal learning 
model. There are many ways in which learning processes can be structured, pertinent to a 
different situation (Fudenberg and Levine 1998, Hart and Mas-Colell 2000, Hart 2005, 
Brenner 2006).  
 
However, an agent who observes the actions of others may choose such an action that would 
maximize his utility according to what others have played in the past (Blume 1993, 1995), or 
may simply copy the past decisions of others (Bala and Goyal 1998). In the latter case, agents 
choose the actions and strategies that produced “good” results in the past, while the actions 
and strategies that produced poor results vanish over time. If actions have distinct payoffs 
and agents in the connected network have the same preferences, learning upon information 
sharing converges to a consensus decision in the long run in which all agents end up 
choosing the same action and achieve the same payoff (Levine and Pesendorfer 2007). If 
learning processes do not follow a strictly determined procedure, repetitions of the games 
never duplicate their history exactly, despite an unchanged learning algorithm, and always 
end up with different outcomes (Vriend 2000). Such learning changes the environment in 
which agents gather information, which in turn affects their actions. Below are presented 
those models that have received the most attention in the professional community. 
 
Belief-based models 
In the belief-based models, agents prefer the alternatives and actions that they assume 
represent the best response to the actions of others. One widely used model of learning is 
that of fictitious play and its variants. In this process, agents behave as if they think they are 
facing a stationary, but unknown, distribution of opponents’ strategies and in every period 
select the best response to the expected actions of their opponents (Fudenberg and Levine 
1995, 1998). The process of fictitious play presupposes that players do not try to influence the 
future play of their opponents. To assess the expected actions of others more easily, agents 
might reduce the sample or weight future periods with some probabilities. 
 
Experience weighted attraction – EWA 
In experience-weighted attraction learning, proposed by Camerer and Ho (1999), strategies 
have attractions that reflect initial predispositions, are updated based on payoff experience, 
and determine choice probabilities according to some rule. The key feature is a parameter 
that weights the strength of the hypothetical reinforcement of strategies that were not chosen 
according to the payoff they would have yielded, relative to the reinforcement of chosen 
strategies according to received payoffs. The other key features are two parameters, the first 
being a discount factor of previous attractions and the second experience weight. 
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Regret-matching 
Regret-matching is defined by the following rule (Hart and Mas-Colell 2000): next period 
switch to a different action with a probability that is proportional to the regret for that action, 
where regret is defined as the increase in payoff had such a change always been made in the 
past. Regret is the pain an agent feels when he realizes that he would be better off if he had 
not taken a certain action in the past. For an agent who chose a winning alternative in the 
previous period, the value of the regret is zero, thus, such an agent continues with the same 
alternative. When agents follow a regret-matching rule, their actions are simple and dynamic 
over time, while they directly relate to the development of the game. 
 
Reinforcement learning 
The basic assumption behind reinforcement learning is that actions that lead to rewards 
occur with a higher frequency in the future than actions that cause punishment. According to 
the reinforcement learning method, agents do not form special sorts of beliefs upon which to 
make decisions, but simple copy those past actions that yielded the highest payoffs (Roth 
and Erev 1995, Erev and Roth 1998). Reinforcement learning is not strictly a learning model. 
These models have been used highly successfully in the research of biological evolutionary 
processes, especially in understanding animal behavior. They have also been extensively 
used in the “cheap-talk” or “asking around” communication games of social learning to 
describe the result of some types of “emulation” by economic agents. In these games, agents 
do not learn only from their own experience, but can obtain information and learn from 
other agents. An example of such a dynamic is that of emulation, in which an agent asks 
another what strategy he used and how well it did. Such agents “satisfy” rather than 
“optimize” their payoffs. This learning method is applied in the dissertation, which is an 
illustration of a “cheap talk” model in an uncertain financial world of satisficing and not 
agents.  
 
 
2.4 Artificial market models 
 
Let me conclude this section with some ACE applications in finance. With some early models 
being developed during the 1970s (Zeeman 1974 and Garman 1976), ACE modeling has 
developed further at an impressive pace since the 1990s. Arifovic (1996) used a method of 
genetic algorithm for studying the dynamics of exchange rates. Later on, Brock and Hommes 
(1998) and Brock and LeBaron (1996) extended Arifovic’s model by introducing social 
interaction and the principle of learning from other agents. More sophisticated asset pricing 
models include Kim and Markowitz (1989), Hakansson et al. (1990), Gode and Sunder (1993), 
Tay and Linn (2001), Cont and Bouchaud (2000), Stauffer and Sornette (1999), Lux and 
Marchesi (1999), Palmer et al. (1994), Arthur et al. (1997), Johnson (2002), Caldarelli et al. 
(1997), Levy et al. (2000), Jacobs et al. (2004), Sharpe (2007), Raberto et al. (2001), Hommes 
(2006), Preis et al. (2006), Rosu (2009). A short review of agent-based models of financial 
markets is provided in Samanidou et al. (2007). I will outline some models below. 
 
 

JLMSim (Jacobs et al. 2004) 
 
The JLMSim simulator is a tool that allows its users to model a market by supplying certain 
components. Its core elements are traders with their wealth, different securities and their 
prices, and the request and demand offers of the traders. It is either a general equilibrium 
model in which “mean-variance” agents gradually approach their optimal portfolios from 
the efficient frontier, or an asynchronous dynamic simulator. The simulator allows the 
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modeler to use different types of agents, who differ in their risk aversion, wealth, 
reoptimization frequency, and time at which they reoptimize. In general, the preferences of 
individual agents along with their trading specifics are defined through many exogenous 
variables. 
 
An important factor of the simulator is price, which is set endogeneously according to the 
following procedure. Traders put in their request and demand offers in every time period. 
When placing an offer, they fix the price cap at which they are willing to buy a share. As long 
as market prices are lower than the caps, they buy at the market prices. When all the 
demands and requests are reported to the auctioneer, he ranks the orders from the lowest to 
the highest price, while requested offers are ranged from the highest to the lowest price. 
Thus, every security has its own set of request and demand prices, upon which the trades are 
done. For example, if there is an insufficient supply of stocks at the proposed price, agents 
wait for some time, i.e. day, week, month, and then lift the requested price. The trading 
mechanism lasts until all of the agents reach their efficient frontier portfolios. It is 
determined as the maximum difference between the expected return of a portfolio and the 
variance that is adjusted for an agent’s risk aversion. 
 
 

APSIM (Sharpe 2007) 
 
APSIM (Asset Price and Portfolio Choice Simulator) is a discrete-state, discrete-time equilibrium 
portfolio simulator under complete market hypothesis. Agents in the model trade in order to 
maximize their marginal utility. The salient characteristic of the model is a trade-off between 
consumption and investment. 
 
The model introduces probabilities of different events, upon which agents build a “price-per-
chance” coefficient that measures the relation between the stock price and the probability of 
an event. In the model, agents prefer states with low values of the coefficient, designating a 
preference for low cost per investment. Agents in the model develop their expectations upon 
the CAPM model, while the stock prices are determined through the trading mechanisms, 
which proceed in two stages. First, agents report to an auctioneer their reservation prices at 
which they are willing to trade stocks. The market price is then proposed at the point in 
which there are adequate demand and supply per each individual stock. In the second stage, 
the auctioneer reports the proposed market prices to the agents, who then need to make their 
final offers. The solution of this stage determines the market-clearing price. If the supply 
(demand) of stocks exceeds the demand (supply), then all the sellers (buyers) sell (buy) the 
demanded stocks, while the received quantities of stocks of the buyers (sellers) are 
proportional to the demanded (supplied) stocks of individual agents compared to the 
entirety of demanded (supplied) stocks. By their activities, agents determine the price 
dynamics, while they slowly approach their optimum portfolios and equilibrium. When 
equilibrium is reached and all possess the requested portfolios, agents stop trading. 
 
 

ASM (Palmer et al. 1994, LeBaron et al. 1999, LeBaron 2002, Johnson 2002) 
 
The ASM simulator (Artificial Stock Market) is an artificial stock market simulator that was 
developed at the Santa Fe Institute. The stock market consists of an auctioneer along with an 
arbitrary number of traders. Traders are identical except that each of them individually 
forms his expectations of stock prices over time through an inductive learning process. 
Traders do not have precise knowledge of the fundamental value of the stocks, because the 
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dividends are defined as an AR(1) process with Gaussian white noise. There exists a riskless 
asset in infinite supply and many risky stocks, which are divisible. 
 
At the beginning of each time period, each trader selects a portfolio to maximize his expected 
utility in the next period. Each trader is an inductive learner, for which new rules are 
continually being introduced as to the market conditions. In each time period, each trader 
decides how much of his wealth to invest in the risky stock and how much to invest in the 
riskless asset. Traders do this by generating a (net) demand for a stock as a function of their 
current expectations for the stock’s price and dividend in the next period and the yet-to-be-
determined price of the stock in period t. This demand function is reported to the auctioneer, 
who in turn determines the market-clearing price for the stock and communicates this price 
back to each of the traders. Given this market-clearing price, each trader then goes ahead and 
purchases his corresponding demand. The asset market has a reflexive nature in that prices 
are generated by agents’ expectations as based on their anticipation of the expectations of 
others. 
 
When in interaction with others, traders constantly update their knowledge and use it in 
future decisions (Arthur 1991, 1992, 1994). This is a two-step procedure in which, based upon 
their experience, knowledge, and interaction, agents first form a number of potential 
alternatives, which are then tested as to how well they solve the agent’s decision-making 
problem. The selected alternative is the best solution to the problem. Traders modify their 
forecasting rules, by which they drive out the worst-performing rules and replace them with 
new “offspring” rules that are formed as variants of the retained rules. Traders construct 
new rules using a genetic algorithm, succeeded later by the method of swarms. Tay and Linn 
(2001) introduced a fuzzy logic principle into the learning mechanism of the ASM agents. 
 
 

Order book models 
 
Order book models are models of price formation, and represent the alternative to call 
auctions, in which all participants either have to wait or trade ahead of their desired time, or 
dealer markets, which provide immediacy to all at the same price. Market participants can 
post two types of buy/sell orders. A limit order is an order to trade a certain amount of a 
security at a given price. Limit orders are price-contingent orders to buy (sell) if the price 
falls below (rises above) a prespecified price. The lowest offer is called the ask price, or 
simply ask, and the highest bid is called the bid price, or simply bid. A market order is an 
order to buy/sell a certain quantity of the asset at the best available price in the limit order 
book. When a market order arrives it is matched with the best available price in the limit 
order book, and a trade occurs. A limit order book allows investors to demand immediacy, 
or supply it, according to their choice. Limit and market orders constitute the core of any 
order-driven continuous trading system.  
 
Preis et al. (2006) developed an order book model that aimed to resemble the order book at a 
real exchange. Their market consisted of one asset. In their model, market participants can 
enter limit orders, which are executed at the assigned limit or some better price. If market 
orders have no limit price, these orders are matched immediately at the best available market 
price; at best ask and best bid, respectively. Their matching algorithm for the orders provides 
a price time priority which is usually found for most assets in real markets. The model can 
reproduce some important features of real markets, such as fat tails.  
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Rosu (2009) presented a model of an order-driven market where fully strategic, 
symmetrically informed market participants dynamically choose between limit and market 
orders, trading off execution price and waiting costs. Rosu demonstrated that: higher trading 
activity and higher trading competition cause smaller spreads; market orders lead to a 
temporary price overshooting; buy and sell orders can cluster away from the bid-ask spread; 
bid and ask prices display a comovement effect – after a sell market order moves the bid 
price down, the ask price also falls, by a smaller amount, so the bid-ask spread widens; and 
that when the order book is full, traders may submit quick, or fleeting, limit orders.  
 
In the model of Foucault et al. (2005), a market is populated by strategic traders of varying 
impatience. In equilibrium, patient traders tend to submit limit orders, whereas impatient 
traders submit market orders. The authors offer several testable implications for various 
market quality measures such as spread, trading frequency, market resiliency, and time to 
execution for limit orders.  
 
Bloomfield et al. (2005) proposed a model of informed traders who have superior 
information and liquidity traders who face both large and small liquidity needs. They found 
that liquidity provision changes dramatically over time due to the behavior of the informed 
traders. When trading begins, informed traders are much more likely to take liquidity, 
hitting existing orders so as to profit from their private information. As prices move toward 
true values, the informed traders shift to submitting limit orders. This shift is so pronounced 
that towards the end of the trading period informed traders on average trade more often 
with limit orders than do liquidity traders. Informed traders change their strategies 
depending on the value of their private information. Liquidity traders who need to buy or 
sell a large number of shares tend to use more limit orders early on, but switch to market 
orders in order to meet their targets as the end of the trading period approaches. 
 
 

Other simulators 
 
Zeeman (1974) proposed a heterogeneous-agent model to explain the dynamics between bull 
and bear markets. The model contains two types of traders: fundamentalists, who “know” 
the true value of stocks and buy (sell) them when the prices are below (above) it, and 
chartists who react to market circumstances, following the trend. Zeeman argues that in a 
bull market the proportion of chartists who follow the trend increases, which pushes the 
prices even higher. The uptrend continues until fundamentalists perceive the prices too high 
and start selling. This in turn leads to price drops (bear market), which then reduces the 
proportion of chartists. The downtrend provokes fundamentalists to start buying the stocks, 
which again turns the trend. 
 
DeLong et al. (1990b) proposed a two-asset model with noise traders (naive traders) and 
sophisticated traders. The behavior of noise traders depends on the relative success of their 
past strategies. Noise traders incorrectly believe that they have special information about the 
future price of risky assets. Thus, they use signals from technical analysts, incorrectly believe 
that these signals carry the right information, and then select their portfolios based upon 
these incorrect beliefs. Sophisticated traders exploit the noise traders’ misperceptions and 
buy (sell) when noise traders depress (push up) prices. This contrarian trading strategy 
pushes prices in the direction of the fundamental value but not completely. As 
demonstrated, the proportion of noise traders will oust fundamentalists when the expected 
return of the error term is positive, as is the case of a bull market. In the model, the return of 
a risky asset equals that of a riskless one enlarged by Gaussian error. 
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GASM (Genoa Artificial Stock Market) of Raberto et al. (2001) is an artificial stock exchange 
model for asset pricing with heterogeneous agents who issue buy and sell orders in every 
iteration. The orders follow their preferences and wealth as well as past volatility in prices. 
GASM runs numerous simulations in which agents endowed with a limited amount of cash 
are divided into subpopulations, adopting either chartist, fundamentalist, or random trading 
strategies. The clearing price is set at the intersection of the demand and supply curves. 
 
Lux (1995) and Lux and Marchesi (1999) proposed an asset pricing model that is based on 
social interaction. They use two types of agents, chartists and fundamentalists. The latter sell 
when prices are high and buy when prices are low. The chartists use a combination of 
imitating strategies mixed with that of trend following. Chartists are split in two groups, 
with pessimists (anticipate bear market) and optimists (anticipate bull market). They sell 
(buy) when prices are high (low). Based on common belief and the sensitivity of an agent to 
the changes in common belief chartists traverse among pessimists and optimists. Prices in 
their model are determined through the excess demand for an individual asset and the speed 
of adjustment to it. In the model, chartists buy (sell) when they are optimistic (pessimistic), 
while fundamentalists buy (sell) when the prices are below (above) their fundamental value. 
A market maker sets a price based upon the requests of all. 
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Chapter III 
 
 
Social networks 
 
 
3.1 General graph theoretical concepts 
 
In the dissertation, a network represents a system of interactions among investors and 
symbolizes daily relations and information sharing among them. It depicts an infrastructure 
that is used for information sharing.  
 
Apart from such communication networks, the world around us is full of some other types 
of networks such as the internet, networks of e-mail messages, genome and other biological 
networks, networks of chemical reactions, catalytic networks, networks of metabolic 
processes, protein networks, neural networks, transportation networks, networks of streets 
and villages, social networks and networks of colleagues and friendships, networks of rivers 
and water flows, networks of contacts, networks of viruses, and many other networks.11 
Newman (2003) distinguished four groups of networks: social networks, information (or 
knowledge) networks, technological networks and biological networks. Two representations 
of a network are exhibited in Figure 3.1. 
 

Figure 3.1: Representations of a network 
 

   
  
 (a) protein network (b) road map, Washington DC 
 
Source: Barabasi and Oltvai (2004), maps.google.com. 
 
This chapter aims to provide some insights into the area of social networks. An extensive 
review of network models is given in Wasserman and Faust (1998), Chakrabarti and 
Faloutsos (2006), Jackson (2008). The introductory subsection reviews some basic concepts 
and properties of social networks, while the rest of the chapter presents some network types. 

                                                 
11 Marriage networks have been used to explain the rise of the Medici family in medieval Florence (Padgett and 
Ansell 1993). 
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Graph and subgraph 
 
A graph g  consists of two sets ( )EV , , where { }1 2, , , nV v v v= …  is the set of nodes (or vertex, 
point), and  { }1 2, , , nE e e e= …  is the set of links (or line) among pairs of nodes (Figure 3.2). 
 

Figure 3.2: A graph 
 

  
 
Each link links two nodes, let’s denote them i  and j . There are two possibilities: 
• The order of the nodes is not important – we have an undirected link or edge. We denote 

it by ij . It holds ij ji= . 
• The order of the nodes is important – we have a directed link or arc. We denote it by 

( ),i j . If i j≠  then ( ) ( ), ,i j j i≠ . 
 

The edge ij  allows us to move from i  to j  and also from j  to i ; while the arc ( ),i j  allows us 
to move only from i  to j .   
 
In the case when i j=  the link is called a loop (Figure 3.3). 
 

Figure 3.3: Undirected and directed link and a loop 
 
 
 
  
 
 (a) undirected link (b) directed link (c) loop 
 
• Finite graph is a graph in which the set of links E  and the set of nodes V are finite. 
• Complete graph is a graph in which all nodes are linked with each other. 
• Empty graph is a graph with a non-empty set of vertices V and an empty set of links 

{ }E = . 
• Simple graph is a graph without loops and multiple links. 
• Undirected graph is a graph with only undirected links. 
• Directed graph is a graph with only directed links. 
• Mixed graph is a graph with both undirected and directed. 
• The graph with only one node and no edges is called the trivial graph. 
• With e  we denote the number of links (size of the graph), and with n  the number of 

nodes (order of the graph). 
 

i j i j i 

node 
(point) 

link  
(edge) 



 
  

- 27 - 

A graph describes the structure of a network. To get a network we have to provide 
additional information about the properties of nodes and links. The properties of nodes are 
usually called attributes (label, gender, age, …), and the properties of links are usually called 
weights (frequency of interaction, amount of transfer, …). 
 
The degree ( )k i  of a node i  in the network is equal to the number of links that link it to 
other nodes in the network. 
 
In a network, the degree of an individual node counts the number of links each node has 
(Figure 3.4). Its in-degree, ( )ink i , counts the number of links that enter the node, and out-
degree, ( )outk i , counts the number of links leaving the node.  
 
In undirected networks, the incoming link is also an outgoing link, therefore 

( ) ( ) ( )in outk i k i k i= = . In a graph a node is an isolated node if it is not linked to any other 
node.  A graph in which all nodes have the same degree r is called a r-regular graph. 
 

Figure 3.4: Node degree 
 
 
 
 
 
 (a) undirected links (b) directed links (c) isolated node 
 
In simple undirected graphs, a node degree belongs to the interval ( ) ( )0 1≤ ≤ −k i n ; at one 
extreme the node is linked to every other node in the graph, at the other it is linked to none. 

The average node degree in an undirected graph equals 2ek
n

= ; in a directed graph, the 

average node in/out-degree equals ek
n

= . 

 
In the sequel we shall limit our attention to simple graphs - without loops and multiple links, 
if not explicitly stated differently. 
 
Because a link in an undirected network connects two nodes, the order of the graph is two-

times its size. The maximum size of an undirected graph of order n  is e = 
( )1

2 2
n nn −⎛ ⎞

=⎜ ⎟
⎝ ⎠

, 

and the minimum size is zero. The maximum size of a directed graph is e = ( )1n n − . A graph 
with order 1=n  is both complete and empty. 
 
A convenient way to represent a network is using adjacency matrix A . For a pair of nodes in 
the graph i  and j , we write ( ) 1,i j =A  if i  is linked to j , and ( ) 0,i j =A  otherwise. 
 
A structure ( ),S S Sg V E=  is a subgraph of graph ( ),g V E=  if Vs ⊆V and SE E⊆  and for each 

link from Es both its endnodes belong to Vs. 
 
 

i i i
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Some additional concepts on graphs: 
• A walk is a sequence of nodes and links, starting and ending with nodes, in which each 

node is incident with the links following and preceding it in the sequence. 
• A path is a walk in the graph from a node i  to j  in which all nodes are distinct. 
• A trail is a walk in the graph from a node i  to j  in which all links are distinct. 
• A graph is connected if for every pair of nodes in the graph ( )ji,  there exists a walk from 

node i  to node j . 
• Maximal connected sub-graphs of a graph are called components. 
• A graph is biconnected if it remains connected after the elimination of any single link. 
 
 

Degree distribution 
 
In a graph ( ),g V E= , ( )Pr k  denotes the probability that a random node in the network is of 
degree k . The following distributions are usually used to describe the degree distribution 
(Dorogovtsev and Mendes 2003): 
• Poisson distribution (random graphs), 
• Exponential distribution (growing random graphs), 
• Power law distribution (accelerated growth, preferential attachment), 
• Multifractal distribution (copying models), 
• Discrete distribution described with a table. 
 
 

Distance, eccentricity and diameter 
 
• The distance ( ),L i j  from node i to node j is equal to the length of the shortest path (also 

known as geodesic) from i to j. If there is no path from i to j  then ( ),L i j  = ∞. The average 

distance in the graph L  represents the mean of the distances between the nodes in the 

graph, ( )
1

1 ,
n

i
L L i j

n =
= ∑ . 

• The eccentricity of a node is the largest geodesic distance between the node and any 
other node in the graph, i. e. ( )max ,iEks L i j= . Minimum eccentricity of any node is 1, 

and maximum is ( )1n − . 
• A graph has a diameter D  if every node in the graph can be reached by the maximum 

geodesic distance of a length D . Diameter is the largest eccentricity, ( ),max ,i jD L i j= . A 
graph with at least two components has infinite diameter. 

• The effective diameter D′ (Tauro et al. 2001) is equal to the shortest distance to reach at 
least 90 percent of the pairs of nodes in the graph. 

• The neighborhood of a node i  consists of the set of nodes that are linked with i . 
• The k-neighborhood of a node i  consists of the set of nodes that can be reached from the 

node i  using a geodesics of length  k. 
 
The term “degree of separation” is usually used in the context of diameter (Milgram 1967, 
Travers and Milgram 1969). Social networks usually have small diameters. 
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Cohesive subgroups 
 
Cohesive subgroups within the graphs are subsets of nodes and their links. 
 
A clique is the maximal complete subgraph of three or more nodes of the graph. 
 

Figure 3.5: A clique 
 

  
 
A clique represents a homogenous group of nodes in a graph. The easiest way to 
demonstrate a clique is to use triangles (Figure 3.5). Because cliques may overlap, individual 
nodes might belong to more than one clique, while some might belong to none. By 
definition, there cannot be a clique inside a clique, which would mean that the smaller clique 
was not of maximal size. Thus, the value of a clique, or a clique number, is defined as the 
largest order of a clique. 
 
• L-clique defines the largest subgraph of a graph in which the largest geodesic distance 

between the two arbitrary nodes is at most L. 
• L-clan defines the largest L-clique in which the geodesic distance between the two 

random nodes is no larger than L. 
• L-club is the largest subgraph of a graph in which the distance between the two random 

nodes is at most L. 
• k-plex is a maximal subgraph with Sn  nodes in which a node is adjacent to no fewer than 

Sn k−  nodes in the subgraph. 
• k-core is the largest subgraph in which every node is adjacent to at least k  nodes. 
 
 

Clustering coefficient 
 
The density of a graph refers to the number of nodes in the graph and links between them. 
Density in a graph is equal to the ratio between the number of links of the graph and the 
maximum possible number of links in the graph (see Watts and Strogatz 1998, Wasserman 
and Faust 1998).  
 
If in the graph of order n , ie  denotes the number of links linking the neighbors of node i , 

then the clustering coefficient of node i  is defined as 
( )
2

1
i

i
eC

k k
=

−
. Conventionally, the 

clustering coefficient of a node i  is a ratio between the total number ie  of the edges 

connecting its nearest neighbors and the total number of all ( )1
2

k k −
 possible edges between 

all these nearest neighbors of a node i  (Watts and Strogatz 1998).  
 

triangle 
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The clustering coefficient of a graph is defined as the average clustering coefficients of the 

nodes, 
1

1 n

i
i

C C
n =

= ∑ . The clustering coefficient of fully connected network is equal to 1 . 

 
The clustering coefficient is based on transitivity, and it represents the expected probability 
that a node i  in the graph is linked to node k , if node i  is linked to j  and node j  to node k . 
Loosely speaking, the clustering coefficient tells us whether friends of some subgroup within 
the group are also friends themselves, and how feasible it is that individuals within the 
groups will cooperate among themselves. The value of the coefficient thus represents the 
probability that two members of the group will also be friends with each other. 
 
 

Centrality and prestige 
 
On the micro-level, the behavior of a network depends on the role, influence, and 
importance of single members of larger communities. These factors have been examined 
through the concepts of centrality and prestige12 (Bavelas 1950, Bonacich 1987). Both ideas 
follow the assumption that larger groups have some sort of representatives or leaders who 
are “in charge” of the group and influence the behavior of its members. 
 
Generally, the centrality of nodes is measured as to their reachability, while prestige 
distinguishes among the in-degrees and out-degrees of a node, with in-degree of a node 
representing its prestige. As such, the concept of prestige requires a directed graph, since in 
an undirected graph in-degree, out-degree and degree are equal. 
 
Closeness centrality (CC) focuses on how close a node is to all other nodes in a network. The 
shorter the paths, the more central in the network is the node, and the faster and more 
efficiently it communicates with other nodes (Sabidussi 1966). 
 
Degree centrality (CD) indicates the number of links each node in the graph has relative to 
the number of links other nodes in the graph have (Nieminen 1974). 
 
Betweenness centrality (CB) determines the importance of individual nodes within a 
network by considering the number of geodesics that pass through individual nodes 
(Freeman 1977). A node that lies on the path between two nodes controls the communication 
between the two nodes. Betweenness indicates the number of all the shortest paths in the 
network that pass among individual nodes and is denoted ( )mσ . It was first introduced in 
sociology as a measure of the importance of individuals in a society. The more the shortest 
paths pass through an individual node in the network, the bigger the importance of the 
node. The betweenness coefficient of individual nodes can be used in assessing the flexibility 
of a network, for it denotes the number of shortest paths that will increase if one or more of 
the most important nodes is eliminated from the network (Albert et al. 2000, Newman 2001). 
The minimum value of an index is zero and indicates an isolated node that is not present in 
any shortest path between two nodes in the network. The maximum value of an index of 
( ) ( )1 2

2
n n− −

 indicates the node that is present in every shortest path between any pair of 

the two nodes in the network. 
 

                                                 
12 Some other expressions are used to designate prestige: popularity, status, respect (Wasserman and Faust 1998). 
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Graph connectivity and percolation theory 
 
The connectivity of a graph is related to the question whether individual nodes can be 
reached. An unconnected graph is split into connected subgraphs, also known as 
components. 
 
• A bridge is a link in a graph such that its elimination increases the number of 

components in a graph. 
• An articulation node is a node in a graph such that its elimination increases the number 

of components in a graph. 
• A node-connectivity of a graph, ( )gψ , is equal to the minimal number of nodes of the 

graph that need to be eliminated to disconnect the graph, or to produce a trivial graph. 
• A link-connectivity of a graph, ( )gξ , is equal the minimal number of links of the graph, 

ξ , that need to be eliminated to disconnect the graph, or to leave a trivial graph. 
 
Percolation theory analyzes connectivity in graphs. It presents the critical probability at 
which the two nodes in the graph are still linked to each other. Generally, we distinguish 
between the site percolation (from the point of nodes) and the bond percolation (from the 
point of links). An implication of the theory is that only intentional attacks focused on the 
elimination of some of the most important nodes or links within the network can destroy the 
network (Callaway et al. 2000, Albert et al. 2000). 
 
 

Network stability and Nash equilibrium networks 
 
Social networks bring economic value to the members; benefits on the one side and costs on 
the other (Jackson and Wolinsky 1996). The benefits and costs depend on whether agents are 
directly linked to others or not. Direct links usually bring higher benefits than indirect, 
whose benefits depend on the distance between the nodes in the network, but the costs of 
maintaining them are usually higher. As long as the benefits of indirect connections are 
higher than costs of maintaining direct links, agents have an incentive for using them. 
Although the larger number of direct links usually brings higher utility, having too many 
friends might reduce the utility of an agent due to diminishing returns. 
 
If ( )iu g  and ( )ju g  denote the utility of individuals i and j in the network g, then a network 
g is pairwise stable iff: 

a) for all ( ) ( ),  i iij g u g u g ij∈ ≥ −  then  ( ) ( )j ju g u g ij≥ −  and 

b) for all ( ) ( ),  i iij g u g ij u g∉ + >  then ( ) ( )j ju g ij u g+ < . 
 
If g ij+  ( g ij− ) denote the graph obtained by adding (deleting) a link ij  to (from) the 
existing graph, then the definition implies that in a pairwise stable network no individual 
has an incentive to form or to sever any of the existing links. If a link between two 
individuals is present, then it cannot be that either individual would strictly benefit from 
deleting that link. On the other side, if a link between two individuals is absent, then it 
cannot be that both individuals would benefit from forming that link.  
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Strength of the ties 
 
The last notion relates to the quality (or strength) of the ties. Granovetter defines strong ties 
as direct friendships and weak ties as casual acquaintances. Because individuals with strong 
ties are homogenous, the flow of new information into such a group is bounded. Because 
distant friends and acquaintances are likely not to be known by other members of a clustered 
group, such weak ties prove to be of the greatest significance for the propagation of new 
information into such clustered groups. Weak ties also link different sub-networks of 
networks (Granovetter 1973, Montgomery 1992). 
 
 
3.2 Random graphs (Erdos and Renyi) 
 
A random graph of Erdos-Renyi type consists of a set of nodes V  and the set links E in 
which a link (i,j) is included with the probability p  (Erdos and Renyi 1959). 
 

Figure 3.6: Graphs at different values of p  
 

   
 
 (a) empty graph (b) complete graph (c) random graph 
 
An undirected graph with ( )1, 2, ,V n= …  nodes and the probability of a link p  has 
( )1

2
p n n−

 (expected number) random links (Figure 3.6). For p = 0 , there is an empty graph 

of isolated nodes. For 1=p , there is a complete graph with 
( )1

2
n n−

 nodes, in which every 

single node is linked with each of the rest. For 0 1p< < , we have a family of random graphs 
with the non-zero probability that nodes are linked with each other. For low probabilities of 
p , a graph is low in homogeneity and density. 

 
Since links in a random graph are completely independent, the clustering coefficient depicts 

the probability that two random nodes are linked, therefore kC p
n

= = . As a graph 

approaches infinity in size, the probability that two random nodes are linked tends towards 
zero. When all nodes are linked with each other, the clustering coefficient approaches unity, 

therefore 
( )1

1
nkC

n n
−

= = � . Because the nodes in a random graph are linked with each 

other at random with the probability of a link well below unity, a random graph usually has 
more than one component. 
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3.3 Small world networks (Watts and Strogatz) 
 
Real-world networks are not random in the sense of Erdos and Renyi but rather locally 
clustered (Watts and Strogatz 1998). Small-world networks combine characteristics of regular 
and random graphs, with the former providing local clustering and the latter the effect of a 
small world due to a small number of random “shortcut” links. The shortcut links reflect the 
idea of global friendships among people, while they drastically reduce geodesic paths 
(Milgram 1967, Travers and Milgram 1969). The experiment indicates that not only do the 
shortest paths between individuals exist, but also that individuals are able to find and use 
them (Newman 2003, Kleinberg 2000). 
 

Figure 3.7: Regular network and a small-world network 
 

    
 
 (a) regular network (b) small-world network 
 
The formation of a small-world network is a two-step process (Figure 3.7): 
• The formation of a regular network: proceed with a regular circle network of a size n . 

Every node in the regular network has k  edges to their closest neighbors; half of them 
symmetrical on each side. 

• Rewiring: in such a regular network with the probability p , each node is rewired to a 
randomly selected node from the network. In the rewiring process, loops and multiple 
links are not allowed. Thus, we insert long-range shortcut links into the network and get 
a small-world effect (Watts and Strogatz 1998). 

 
Instead of rewiring, Newman and Watts (1999) begin with a regular lattice to which they add 
random shortcuts, thereby reducing the diameter and retaining local homogeneity. 
 
The introduction of long-range links heavily increases the average connectivity of nodes in 
the graph, while a drastic decrease in the average distance is induced by the probability that 
each randomly rewired link will directly connect some very distant nodes and nodes of their 
immediate neighbors. It has been demonstrated that a small number of such long-range links 
is enough to produce a small-world effect, meaning that the rewiring process does not 
significantly reduce local homogeneity of a network. Watts and Strogatz (1998) and Barrat 
and Weigt (2000) demonstrated that the small-world effect is induced when the rewiring 
probability lies in the neighborhood of 0.1p = . 
 
The average degree in a graph is of order k , while after the process of rewiring, the network 
remains connected. A small-world network keeps a high level of homogeneity, a high 
clustering (local property), and has a small diameter (global property). As only one edge of 
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the link between the two nodes is rewired with the probability p , we get a graph with 
2

pkn
 

long-range links also after the rewiring. With the probability of rewiring approaching unity, 
the network gets less regular and more random. At the limit, as 1p → , the network is 

random, even though each node still has at least 
2
k  links. Since such a network retains 

connectivity, it differs from the Erdos-Renyi type of random graph. 
 

A clustering coefficient is generally defined as ( ) ( ) ( ) ( )
( ) ( )3 33 1

0 1 1
2 2 1

k
C p C p p

k
−

− = −
−

� , and 

approaches 3
4

 as k →∞  and ( ) ( )
( )

3 1
0

2 2 1
k

C
k
−

=
−

 for 0p =  (Barrat and Weigt 2000). For 0>p , 

the two neighboring nodes of i  that were linked for 0p =  are still linked with the probability 

( )31 p− . At small probabilities of rewiring, the clustering coefficient is still in the 

neighborhood of 3
4

. This indicates that the network retains all the characteristics of a locally 

homogenous network. When 1p → , the clustering coefficient approaches zero. Such a 
network retains its connectivity but has no local homogeneity. 
 
Networks pose a problem of navigation (Kleinberg 1999). In the Milgram experiment, people 
were faced with the task of delivering a letter to a particular person. The question was 
whether individuals were able to use their links in order to find the shortest paths, and the 
experiment proved that they are able. In addition, Watts et al. (2002) claimed that agents 
solve navigation problems by looking for some common characteristics among their friends, 
such as occupation, place of living, hobbies. Stephenson and Zelen (1989) added that agents 
choose friends with the highest degrees. 
 
 
3.4 Scale-free networks 
 
In Erdos-Renyi and small-world networks, nodes with degrees significantly higher than 
others do not exist. Yet, some surveys have shown that there are nodes in the World Wide 
Web (WWW) network that are more attractive than others, resulting in them have higher 
degrees (Albert et al. 1999, Broder et al. 2000, Kleinberg et al. 1999). 
 
If x  represents a random variable and λ  is a positive constant, then the distribution of a 
random variable follows a power law iff it has a probability density function of the form 
( )f x x λ−∝ . 

 
Acknowledge that 1λ >  if the “rich get richer” pattern is to be met. The distribution of a 
random variable is said to follow a power law if the frequency of an event decreases to the 
inverse of some exponential degree as the size of the event increases, or when the amount 
one has increases with the amount one already has had (Lotka 1926). When examining the 
number of citations of scholars within Chemical Abstracts, Lotka demonstrated that the 
number of authors is inverse to the square of their published papers. The Pareto law of 
income distribution is another demonstration of a power law distribution. Vilfredo Pareto 
proposed a question as to the number of individuals in a society that have an income higher 
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than x  and found that the probability of an event X x≥  equals the inverse of x , that is 
( )Pr X x x λ−≥ ∝ . This means that a small fraction of a population earns a very high income, 

while the vast majority has a modest one. Experimental studies have found the value of λ  to 
be around 2  and 3 . Barabasi and Albert (1999) showed that the degree distribution in a 
network follows the power law if it is growing following the “preferential attachment.” In 
the present dissertation, lambda is used to demonstrate ranking of selected portfofios, 
thereby being an indicator of the level of synchronization in portfolio selections. For further 
details regarding the mathematical derivations of a scale-free distribution see Mitzenmaher 
(2004), and Newman (2005). 
 
 

Preferential attachment 
 
Barabasi and Albert (1999) posit a network growing process of preferential attachments in 
which newcoming nodes attach to the existing nodes with the probability proportional to the 
node’s degree, implying the “rich get richer” rule. In this process, the age of nodes is 
significant. Because older nodes have had more time to make a larger number of links than 
younger nodes, they are more attractive. Therefore, such process implies correlation in 
degrees, and also age-based homophily. Homophily refers to the state in which people prefer 
to maintain relationships with people who are similar to themselves (Jackson 2008). Barabasi 
and Albert assume that the probability that a new node will attach to node i  in the network 
depends on its relative degree to other nodes. 
 
The rich-get-richer principle neglects the fact that such “endless” link formation is confined 
by at least two factors: the aging of nodes and the cost of linking new nodes to nodes with 
higher degrees. Every individual has only a limited time to work and live, which makes 
aging and physical capabilities far more significant in social networks than in transportation 
or similar networks. Amaral et al. (2000) proposed a network of preferential attachment in 
which existing nodes do not have endless possibilities of accepting new nodes or are limited 
by aging. As nodes get older and have high degrees, the probability that such a node will 
become inactive increases. This represents a deviation from the “winner-takes-all” scheme. 
However, since the probability that an individual node will link to a random node i  in the 
network depends on the age of the node and not just on their degree ik , there is still a chance 
for such a link. In these circumstances, the probability for such a link follows a power law. 
Thereby, the older the node, the smaller the probability for such link formation. 
 
Fitness models assume that every node in a network has some fitness iη  that determines its 
attraction to others (Bianconi and Barabasi 2001, Caldarelli et al. 2002). The fitness of a node 
depends not only on its degree but also on many other factors, with nodes of higher fitness 
being more attractive and having higher degrees. 
 
Flaxman et al. (2004, 2007) proposed a geometric preferential attachment model in which 
nodes in a neighborhood prefer links with nodes from that neighborhood. Dorogovtsev, 
Mendes and Samukhin (2000) proposed a model in which there is a small non-negative 
probability that new nodes link to isolated nodes. Therefore, every node in the network has a 
non-negative probability to be found and to become linked. Pennock et al. (2002) find this 
principle within the sub-groups of the WWW. 
 
 
 



 
  

- 36 - 

Communities 
 
A community is generally considered a set of nodes where each node is “closer” to the other 
nodes within the community than to the nodes outside it. There are numerous definitions of 
communities. The structure of communities often follows homophily and assortativity 
(Schelling 1969, Girvan and Newman 2002, McPherson et al. 2001, Newman and Girvan 
2004, Jackson and Rogers 2005). Homophily is the principle that a contact between similar 
people occurs at a higher rate than that among dissimilar people as to gender, race, ethnicity, 
age, religion, wealth and social status, educational attainment, etc. One form of homophily is 
due solely to opportunity, while the other is due to choice, although the two possibilities are 
often intertwined. Assortativity relates to the state in which nodes with high degrees are 
more attractive to other nodes with high degrees. 
 
 

Copying 
 
Kleinberg et al. (1999) proposed a directed graph of copying models (see also Kumar et al. 
2000 and Newman 2003). Copying refers to the process of incoming nodes replicating some 
links of existing nodes. Copying is a two-stage process in which an incoming node chooses a 
node from the network from which to copy links and then the links to be copied. 
 
In each iteration a node is chosen with some number of k  out-degree links. Then with a 
probability α , these k  links are linked to nodes chosen randomly from the host node. With a 
probability ( )1 α− , links are copied from another node that is chosen randomly. The process 
continues until the links are adjacent. The coefficient α  is called a copying factor. Copying 
models induce a power law distribution in accord with the principle “rich get richer”. 
 
Krapivsky and Redner (2001) proposed a slightly modified copying model, in which an 
incoming node first chooses a random node, and then with some probability link to its 
neighbors thereby approaching its initial preference. Blum et al. (2006) proposed a random 
surfer model, in which an incoming node chooses a node from the network at random, and 
then randomly walks through the links of the host in the network and makes links to visited 
nodes with some probability. 
 
 

Forest fire 
 
Leskovec et al. (2005), Leskovec et al. (2007) and Leskovec (2008) proposed a forest fire 
network growing process. The model is based on the assumption that new nodes attach to a 
network by burning through existing edges in epidemic fashion. 
 
The forest fire model is a three-stage process in which node v  first chooses an ambassador 
node w  at random and forms a link to it and starts to spread through it by using its links; 
selects x  outlinks and y  in-links of w  incidents to nodes that were not yet visited; and 
finally, forms out-links to the visited links, and continues with the stage 2 recursively until 
the out-links are full (the fire dies out). Nodes in the network can only be visited once. 
 
Forest fire models are preferential attachment models that have low diameters and preserve 
local homogeneity. They are capable of capturing the “rich-get-richer” principle but cannot 
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explain the phenomena of orphans. The model assumes that the fire can break out only from 
one core, even though there could have been many (Leskovec et al. 2007).  
 
Similar to the forest fire models are random walk models, in which a node links to a random 
node in the network and then continues the walk by visiting its neighbors and links with 
each node it visits with some positive probability (Vazquez 2001). 
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Chapter IV 
 
 
Portfolio simulator  
 
 
4.1 Basic framework 
 
I start this chapter with a short paragraph on the methodological aspect of network modeling 
in economics and finance in general. Building a network of connections and information 
flows in economics and finance is far different from studying information networks, or 
information flows on the internet, or networks of actors. In latter networks, every step 
someone makes is well documented. For example, it is easy to detect an IP address that hosts 
an internet site, or to find citations or the list of one’s friends on Facebook, or the actors who 
appear in a movie. In all these cases the actions of individuals leave very good traces, but this 
is not the case when someone would like to capture conversation. It is difficult to capture 
communication between people, but even more so to detect the subject of their conversation 
– was it about the weather or financial issues? And, if it was about the latter, questions still 
remain as to whether they exchanged well-known data or private information. Stasser, 
Taylor and Hanna (1989) argue that agents do not reveal their private information to most of 
their professional colleagues, but rather discuss about the public news that is expected to be 
well known. I am thus aware that the efficiency of economic models is far from absolute, be 
they approximations or caricatures, for they hold true only within artificially produced 
circumstances (Gibbard and Varian 1978, Friedman 1953). 
 
The model is discrete-time and discrete-state, is defined over time { }1, 2, 3, ,t T= … , and 
consists of three critical pieces: agents, rules, and securities. Agents are connected in a social 
network and simultaneously and autonomously make decisions in every time period. They 
follow very simple, straightforward, and intuitive behavioral rules, which are implemented 
in four stages, as summarized in Figure 4.1. The model resembles a complex adaptive 
system. 
 

Figure 4.1: Decision-making process 
 
 
 
 
 
 
In the beginning of each period t agents observe − 1t  returns of assets they hold and hence 
the value of their portfolios. Stage 1 is then followed by stage 2 where agents randomly select 
one of their adjacent agents. After the selection is done, each agent compares the − 1t  value 
of his holdings to − 1t  value of the holdings of his selected counterpart. Finally, in the last 
stage, an agent decides whether to continue with his current portfolio or to switch to the 
portfolio of his counterpart. Following the decision, the system proceeds to the next period. 
 
 
 
 

Stage 1 Stage 2 Stage 3 Stage 4 

An agent observes 
the past return of 

his portfolio. 

Adjacent agent is 
selected at random. 

The two portfolios 
are compared. 

An agent makes 
a decision. 
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4.2 Agents and the network 
 
 
4.2.1 Agents 
 
At each time interval there is a constant number of n  agents in the network labeled 

1, 2, 3, ...,i n= . There are 1.000=n  agents in the games of Chapter 5 and 5.000=n  agents in 
the games of Chapters 6-8. Agents in the model follow extremely simple rules; they 
accumulate wealth in time, and each of them faces the following problem (4.1): 
 

( )( )1max t tW
E W + , s. t. 

( ) ( ) ( )1 1t i t i tW A W A R+ ⎡ ⎤= ⋅ + •⎣ ⎦ , ( )0 1iW A =  and 0i
tq ≥  (4.1). 

 
tW  and 1+tW  represent the wealth of an agent i  in time intervals t  and 1t + , and ( )tR •  

denotes the returns of the alternative ( )•  used by an agent in t . Values of portfolios in = 0t  

equal one. I do not allow short sales or borrowings for which 0i
tq ≥ .  

 
Agents are randomly populated over the network, while an initial portfolio is randomly 
assigned to each of them. If not stated differently, games start with equally sized groups of 
agents. In the base case scenario games of chapter subsections 5.2 and 5.3, the proportion of 
agents that prefer riskless portfolios are denoted with u . For a given value of u , games 
always start with equally shared agents among the two subgroups. In chapter subsections 5.3 
and 5.4, u  denotes the fraction of agents that prefer Credit Suisse stocks (CS). 
 
 
4.2.2 Learning mechanism and portfolio selection 
 
Agents in the model are neither omniscient nor ideal; they tend to resemble human behavior. 
They have incomplete and asymmetric information about stock returns and portfolio 
holdings. Agents follow adaptive heuristic behavior that is simple, unsophisticated, 
simplistic, and myopic but that also leads to movement in seemingly “good” directions (Hart 
2005). When choosing among portfolios, agents address the following questions (Rubinstein 
1998): What is feasible? What is desirable? What is the best alternative according to the 
notion of desirability, given the feasibility constraints?  
 
Another assumption of the model is that portfolios are feasible to agents iff agents possess 
them or are possessed by adjacent agents with whom they communicate. This implies the 
rule that only portfolios that are possessed by more than zero agents are kept. 
 
Action is viewed as a mapping of agents’ knowledge to a decision. When solving (4.1), 
agents prefer high returns but face several constraints: incomplete information, the two 
portfolios that they compare in every time period, and the network of adjacent agents. After 
choosing one of the adjacent agents, an agent makes a decision about the portfolio 
formulation. Unless an agent is a liquidity agent, an agent either keeps his current portfolio 
or adopts a portfolio of an interacting agent. The initial portfolios are assigned at random to 
agents in 0t =  with equal probability. 
 



 
  

- 41 - 

Agents are price-takers and make decisions autonomously, which means that there is no 
central, or “top down,” control over individual behavior once the rules are specified and the 
game is run. Agents make their decisions simultaneously without knowing what other 
agents have selected, and they also do not know with whom others have communicated. 
They also do not know what those with whom they have exchanged information regarding 
portfolios have selected. Agents also do not play against each other. Decision making is a 
continous activity, so are also trades. In every time period, agents adopt a decision by which 
they expect to increase the value of their wealth. In the dissertation, agents communicate 
portfolios and returns, while they tend to adopt portfolios that have performed well in the 
past (Roth and Erev 1995, Erev and Roth 1998, DeLong et al. 1990a).13 This is known as 
reinforcement learning. A behavioral aspect is included at this point. It is assumed that 
despite agents’ preference for more rather than less, they do not always choose the better 
portfolio. I denote this behavior by way of levels of suspiciousness. This notion is similar to 
Selten (1975), who argued that errors intervene between the decision to take a certain action 
and the action itself. Some additional arguments for using suspicious agents are provided in 
Chapter 4.4. The level of suspiciousness is given by an exogenous factor that denotes a non-
negative probability that an agent will depart from adopting the most promising portfolio of 
the two being compared. I assume that the worse portfolio has some baseline probability of 
being selected. I capture this by defining the following function: 
 

( ) ( )( ) 1
1 exp[ / ]i jW A W A κ

−
⎡ ⎤℘= + −⎢ ⎥⎣ ⎦

 (4.2) 

 
In every time period t , after choosing one of the adjacent agents j , an agent i  compares his 
accumulated payoff ( )W i  to the payoff of the adjacent agent ( )W j . The coefficient 

( )0, 1κ ∈  depicts the level of suspiciousness in the agent’s decision-making process and 
alters the decision-making rule in the following way. If ran >℘, an agent keeps his portfolio, 
otherwise an agent adopts the portfolio of adjacent agent. Parameter ( )~ 0, 1ran U  is a 
uniformly distributed IID random number.  
 
Thus, decision making depends upon the expected benefit differential ( ) ( )( )W i W j−  and 
the suspiciousness parameter κ . The scheme relates to the preferential attachment model, in 
that agents have a preference to “attach” to popular, the most profitable, portfolios, but may 
fail to get them for different reasons. In general, the lower the κ  the higher is probability 
that an agent adopts the most promising portfolio, and vice versa. This brings the selection 
process closer to reality. I invoke the following theorems. 
 
THEOREM 4.1a: Unsuspicious agent shows absolute preference for portfolios with a higher 
expected return. 
 
Proof: 

Let :℘ →\ \  s.t. ( ) ( ) ( )
1

11 exp ; , ; 0,1i j i jA A A A Aκ κ
−

−⎡ ⎤⎡ ⎤℘ = + − ∈ ∈⎢ ⎥⎣ ⎦⎣ ⎦
\ . Say f  is the 

following continuous mapping on U  and ℘ : 
 

                                                 
13 Asset prices are exogenous by the assumption, irrespective of agents’ decisions, for which they cannot affect 
future prices. 
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( )
( )
( )

; 0, 1
: ; 0, 1

0 ; 0, 1

i

j

A U
f A U

U

⎧ >℘
⎪

<℘⎨
⎪ =℘⎩

 

 
By definition, the fully unsuspicious agent has κ  coefficient set to zero. 
 
As 0κ ↓  and ( )i jA A>  there exists ( ) ( )

0
0 inflim

κ→
℘ = = ℘ . Say we pick Uε ∈  s.t. ε ≤℘. It 

follows that ( ) ( )
0

Pr 0 Pr 1du
ε

ε ε
≤℘

≤℘ = = → >℘ =∫  and ( ), if Aε >℘℘ =  for all i jA A> . In 

these circumstances an unsuspicious agent will always choose iA . 
 
As 0κ ↓  and ( )i jA A<  there exists ( ) ( )

0
1 suplim

κ→
℘ = = ℘ . However, we can always pick 

Uδ ∈  s.t. δ ≥℘ . It follows that ( ) ( )
0

Pr 0 Pr 1du
δ

δ δ
≥℘

≥℘ = = → <℘ =∫  and ( ), jf Aδ <℘℘ =  

for all i jA A<  and an unsuspicious agent will again choose the better alternative, which is 

jA . 

 
The level of suspiciousness κ  has no influence over two equally profitable portfolios as the 
choice between the two is made at random: 0.5℘=  for each [ ]0, 1κ ∈  and ( )i jA A= . If we 

pick Uβ ∈ , s.t. β =℘, it follows that ( )
0.5

0
Pr 0.5 0.5duβ =℘= = =∫ . The result shows up also 

in the close proximity of the two portfolios as ( )lim 0.5
A Aj i→

℘ = . Q.E.D. 

 
THEOREM 4.1b: Unsuspicious and suspicious agents randomly choose among portfolios 
with equal expected returns. 
 
Proof: 
See the last part of the prior proof. 
 
THEOREM 4.2: A strictly suspicious agent shows a relative preference for portfolios with a 
higher expected return. 
 
Proof: 
I keep the setting from the last proof. By definition, a suspicious agent has κ  coefficient set 
to unity. 
 
As per the mapping f  from the previous proof, a suspicious agent holding iA  will start 
showing a relative preference for changing to jA  once 0.5℘> , which is in turn true for all 

i jA A< . Say we pick Uε ∈  s.t. ε <℘. The probability that a suspicious agent does switch to 

a better alternative is then ( ) ( )
0.5

0
Pr 0.5 0.5 0.5, 1du

ε
ε ε ε

>
> = = > → ∈∫ , true for all i jA A< . The 
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probability that he stays with iA  is 1 Pr Prq q= − → < , showing a relative preference for a 
better alternative. 
 
For i jA A> , an agent shows a relative preference to keeping a better alternative once 

0.5℘< , which is in turn true for all i jA A> . Say we pick Uδ ∈  s.t. δ >℘ , the probability 

that a suspicious agent does stay with a better alternative is then 

( ) ( )
0.5

0
0.5 0.5 0.5, 1q du

δ
δ δ δ

>
> = = > → ∈∫ , true for all i jA A> . However, the probability that 

an agent adopts jA  is Pr 1 Prq q= − → < , showing again a relative preference for a better 

alternative. In both cases the agent’s relative preference for a better alternative increases 
exponentially in the return differential of the two, which never falls below .0 5  and never 
reaches unity. Q. E. D. 
 
 
4.2.3 Network 
 
Agents are represented by nodes and their pairwise connections by links. They are 
interdependent; they are linked with each other in a static undirected network. Agents are 
able to gather information only from their own local environment. The actions of each agent 
influence the others, whether directly or indirectly. 
 

Figure 4.2: Network of agents 
 

 
 
The network is finite. I use the Watts and Strogatz (1998) procedure for building the network 
(Figure 4.2).14 It is an undirected network, which exhibits a short average path length and 
high clustering. This is in line with empirical research that found social networks to be 
highly transitive, i.e. people with common friends tend to be friends themselves. High 
clustering preserves group homogeneity. In Chapter 5, there are 1.000n =  agents in the 
network, each of them being initially adjacent to the six closest agents in a ring lattice, three 
on each side. 5.000n =  agents are present in the network throghout Chapters 6-8, each of 
them being initially adjacent to ten closests agents, five on each side. As proposed by Watts 
and Strogatz and Barrat and Weight (2000), I use the rewiring probability 0.1p = . This is 

                                                 
14 The network was displayed in Pajek 1.23, that is available at http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 
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within limits by which the network is highly clustered and has a low diameter. Loops and 
multiple links between agents are not allowed in the network. For node selection, I use a 
random number generator that draws uniformly from a pool of other nodes (Knuth 1981, 
Press et al. 2002). If a randomly selected node is already linked to a node, then the algorithm 
breaks the loop and repeats the link search for another node. The rewiring procedure ends 
when all nodes are considered. Once built, the network remains unchanged. 
 
In every iteration agents are allowed to contact only one of the adjacent agents. I thus assume 
that agents fail to make more contacts on the ultra-short run. The selection process of an 
adjacent agent becomes random, drawing from a uniform distribution of adjacent nodes. I 
thus assume that no agent has any special ability by which he could be able to outperform 
the market perpetually, whereby he would be a desired link. That is why agents have no 
incentive to search for such individuals.15 
 
 
4.3 Securities 
 
Let { }1, ,M m= …  be the set of different assets from which agents can build portfolios 

{ }= 1 , ..., nP P P  whose returns in time period t  are exogenously given as 1 , ..., m
t tR R  and are 

unknown to the agents until the end of stage four. Let j
tR  be the return of the asset j  in time 

t , then j B
tR ∈ℜ  holds for all t  and all j . ℜB  denotes the stochastic nature of returns as any 

of B  returns can occur in every time period to any security. Let 0j
tq ≥ 16 denote the holding 

of an asset j  in time t , then the return of a portfolio is given as the weighted sum of assets 

that form a portfolio, 
1

m
j jS

t t t
j

R q R
=

= ⋅∑ , with 
1

1
m

j
t

j
q

=

=∑ . 

 
Portfolios are valued in relative terms through returns. It is further assumed that all 
securities are infinitesimally divisible and liquid. The latter means that agents can buy or sell 
any quantity of stocks quickly with no price impacts. Many stocks, corporate and sovereign 
bonds, and other assets are relatively illiquid, so reliable transaction data for individual 
bonds are not readily available. Amihud (2002) finds that stock returns are negatively related 
over time to contemporaneous unexpected illiquidity, which more strongly affects small firm 
stocks. Acharya and Pedersen (2005) derive a liquidity-adjusted CAPM and argue that 
investors require a return premium for a security that is illiquid when the market as a whole 
is illiquid; that investors are willing to pay a premium for a security that has a high return 
when the market is illiquid; and investors are willing to pay a premium for a security that is 
liquid when the market is down. Both assumptions are required for agents to be able to 
modify their portfolios perpetually as desired. I assume that there are no additional 
transaction costs or any other trade-related costs that would reduce the returns of the 
portfolios. This assumption is limited by the effects such costs might have on the trading 
policy (Constantinides 1986, Lo et al. 2004). Keim and Madhavan (1998) argue that they 
might even exceed 4% of the portfolio’s value when small quantities are traded.  
 
In the games, agents have three sorts of securities: risk-free securities, such in a combination 
with simulated risky securities, and risky securities (real data). Only portfolios that are 

                                                 
15 The question is whether agents are able to identify the “quality” of their local network, and whether they are 
capable of forming such connections as to find the shortest path and benefit from it. 
16 Agents are allowed to possess non-negative shares of different assets. Short sales are not allowed. 



 
  

- 45 - 

possessed by more than zero agents are kept. An important assumption of the dissertation is 
that agents have incomplete and asymmetric information regarding asset prices. 
 
 
4.4 Discussion 
 
Understanding the behavior of a complex system requires a model that includes behavioral 
and interaction-based aspects. “By incorporating a consideration of how agents interact into 
our models we not only make them more realistic but we also enrich the types of aggregate 
behavior that can occur. However, as soon as we introduce this sort of interaction the notion 
of equilibrium has to be reconsidered, and this is particularly true if we allow for stochastic 
interaction and study the ensuing dynamics.”17 In the dissertation, portfolio selection is 
constructed on an interaction-based basis, where markets are viewed as complex evolving 
systems populated with many bounded rational and autonomous agents who use simple 
rule-of-thumb strategies. It captures both behavioral and interaction-based features. 
 
My motivation in building the model was similar to the idea presented in Markowitz’s 1952 
article. Similar to Markowitz, so could also my model be considered a data-based model. By 
extending the selection process into four stages, my model gets closer to reality and also 
meets the conclusions that investors discuss their portfolios with their colleagues just before 
they execute the trades. In addition, studies also claim that investors do not reveal their 
private information to everyone, but rather discuss only public information with most of 
their colleagues. I also believe that a decision making process has to be structured in a way 
that resembles the non-linear behavior of agents. In the present case, perpetual (daily) 
portfolio rebalancing gives the model a dynamic and a stochastic component; the dynamic 
component is what ACE models require, while a stochastic one brings the model closer to 
reality. 
 
My next objective was to build a simple interaction-based model with a behavioral aspect 
that would be as realistic as possible with as few parameters as possible. The complexity of 
the model (and the results) thus arises from the interactions among the bounded rational 
agents and not because of complex assumptions about individual behavior and the presence 
of many free parameters. According to Axelrod (1997), this should be the main behavioral 
principle of ACE models. 
 
 

The network 
 
A network provides an infrastructure that agents use to communicate with each other. A 
network approach is indispensable for studying the behavior of complex and adaptive 
systems. It provides a useful multidisciplinary tool for exploring models that are 
mathematically intractable. Examples of such issues are path dependency, the effects of 
adaptive versus rational behavior, the consequences of heterogeneity among agents, etc. The 
model is constructed in a way that allows the agents to communicate locally with adjacent 
agents. This makes the network a source of opportunities and constraints to them. Such local 
interactions have often been modeled in the form of interactions with nearest neighbors on a 
grid or lattice. Every agent is a node in the network, and two agents are linked if they share 
with each other their private information regarding their portfolios. 
 
                                                 
17 Kirman (1994). 
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By using an undirected, unweighted, and connected network, I assume that adjacent agents 
only know those to whom they are linked. Undirected links are indispensable, because by 
definition if two agents would like to communicate directly and share information with each 
other, especially information that relates to financial issues, they have to be linked with each 
other and be conscious of the link. This does not mean that interactions have to be “face-to-
face”; they can also be executed via different telecommunication channels that work in an 
undirected fashion.18 I implicitly assume that investors do not discuss their financial issues 
with those they do not know, or on public domains. The distinction between directed and 
undirected networks is not a mere technicality. In particular, when links are necessarily 
reciprocal it will generally be the case that mutual consent is needed to establish and/or 
maintain the link. For example, in order to form a trading partnership, both partners need to 
agree. Most economic applications fall under the reciprocal-link (and mutual-consent) 
framework, and as such undirected networks are indispensable to my analysis. Directed 
networks would suffice, if agents were using public blogs, for example, and announcing 
their holdings regularly there, from which others would be able to obtain the information.  
 
Trust lies at the core of all interactions between the entities that have to operate in uncertain 
and constantly changing environments. To make the copying process successful, agents must 
share genuine information to adjacent agents and not lead them astray. Granovetter (2005) 
argues that social interaction affects the flow and the quality of information. Because much 
information is subtle and is difficult to verify, individuals are more prone to believe those 
they know better. Individuals in social networks trust that their “friends” will accomplish a 
task, whatever it is, in the “right” way irrespective of any additional unrelated incentives 
their “friends” might have. Although there are occasions where it can be taken almost for 
granted that participants communicate honestly with each other, there are occasions where 
honesty is not so straightforward. Talking about financial issues is far different from giving 
an opinion about a restaurant or a movie. As argued by Stasser, Taylor and Hanna (1989), 
agents do not reveal their private information to most of their professional colleagues, with 
whom they rather more frequently discuss information that is public and expected to be well 
known. A “no-information-flow” network of linked agents in which agents would not share 
information with each other is irrelevant for my purposes. 
 
Through the chains of links, agents can also receive information from the agents to which 
they are not directly linked. Such information is inevitable subject to the time lag, from the 
moment the information is “produced” to the moment it is received. Time lags make 
information-sharing less beneficial, with the more distant the connection, the less valuable 
the information. 
 
Agents in the model have two sorts of links (or outputs), the one being agent-to-agent and 
the other broadcast–to-agent. I assume that agent-to-agent links are undirected, while the 
broadcast-to-agent link is strictly directed and goes from the broadcast to an agent. The first 
assumption of an agent-to-agent link is related to trust and in fact implies the second link of 
broadcast-to-agent. Trust (and social) networks are a sort of undirected network, in which a 
mutual agreement is required for the link formation. I assume that investors trust and 
communicate their private information only to a small number of their colleagues, not to 
everyone they might know, let alone a broad public. Therefore, agents in the model do have 
two outputs, a choice of portfolio and a recommendation to their friends. It is just that links 

                                                 
18 Twitter, for instance, does not meet this condition, because it represents a directed relationship between the 
users. Although Facebook requires mutual agreement on individual link formations, it allows the users to follow 
correspondence of their friends with their friends to whom they are not linked. 
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to friends relate to investors with whom they cherish trust. This does not mean that those 
who communicate with each other also share the same views or beliefs. We can imagine that 
investors trust their colleagues in the same firm and also have some friends from other firms 
to whom they trust private information. I should acknowledge that links in the network 
relate to trust, not to acquaintances, and for this reason are undirected. 
 
As argued by Goyal et al. (2006), the notion of small world is a broad one and applies to a 
wide range of social and economic activities. The small-world network has been found it 
among American CEOs of the Fortune 1000 companies (Davis et al. 2003), and investment 
bankers in Canada (Baum et al. 2003). It is a network where most of the agent’s 
acquaintances are with his cluster of friends, with a few located elsewhere in a network. 
Hong et al. (2005) argued that communication processes are significant in financial markets, 
and they found local clustering in selected portfolios. They argued that a local mutual fund 
agent was more likely to buy or sell a particular stock if other agents in the same city were 
buying or selling it. In a number of papers (Cohen 2009, Cohen and Frazzini 2008, Cohen et 
al. 2008), Cohen examined the connection patterns of a business world, and they provide 
some additional arguments in favor of using a network with a small world property. 
 
 

Data and the media 
 
Good forecasts about the mean returns are critical to agents’ selections. Agents in the model 
are opportunists and have limited information regarding the asset prices. Agents get 
information from different sources, but I implicitly assume that the great flux of information 
prevents them for being accurately informed about all economic and financial matters that 
affect to asset pricing. In that different investors read different financial and business 
newspapers, a question is how much these newspapers differ in providing firms’ “standard” 
information, and how much they differ in delivering opinions and other complementary 
issues that do not directly affect decision-making. In addition, there is also a question of how 
to delineate and evaluate the effects of using different media. Due to such, I assume that 
stock returns and relevant news are accurately reported on all major portals, and 
additionally assume that investors have access to the relevant news of the stocks they have. It 
is further assumed that agents act as price takers. In this respect, it is not important whether 
or not prices follow any of the known processes until agents are unable to predict them.  
 
The next question relates to variance. Two views are prevalent; the first being that variance is 
caused by trading itself and the second that it is caused by the arrival of new information. I 
avoid using variance directly for several reasons. It is time- and sample-dependant, with a 
very long time series of data being required to estimate expected returns precisely (Merton 
1980). Different agents may end up choosing different lengths of history or memory in their 
rules for evaluation. Variance measures variation from the mean over time. In a bull market, 
it refers to the variation in returns on the upward sloping curve, which is much more 
appreciated than the variance on the downward sloping curve of a bear market. Extreme 
events such as market bubbles and crashes as well as political decisions might well 
undermine the power of such statistics.19 That the estimated parameters are dependent on 
the policy prevailing at some specific time and not on the entire time horizon is also the 
thrust of the Lucas critique (Lucas 1976). Its policy implications say that the behavior of 
agents is not invariant in the presence of changing market circumstances or policy changes. 

                                                 
19 Kindleberger and Aliber (2011) provide a thorough historical overview of how manias, panics and crashes have 
shaped financial world over time.  



 
  

- 48 - 

The latest financial crisis substantially increased variance and reduced mean returns, which, 
in contrast to predictions of conventional wisdom, many took to be smart buys. The crisis 
created some very attractive investment opportunities (see Barber and Odean (2008) on the 
attention-grabbing stocks). Generally, variance increases during an event period. By using 
monthly U.S. stock market data, Bloom (2009) finds that major shocks temporarily double 
(implied) volatility on average.  
 
It might be objected that communication processes among agents who participate in the 
markets contribute to day-to-day or hour-to-hour price fluctuations (Shiller 2002). For 
instance, Campbell (1991) decomposed stock market movements into two components: one 
is the “news about future returns” component, and the other is the “news about future 
dividends” component. By using real data directly from the market, I do not endogenize the 
returns and do not go into the question of what pushes the prices but use variance indirectly. 
However, the assumption that agents only follow returns and not also variance does not 
restrict their attitude towards risk. They consider risk indirectly through realized returns of 
their alternatives over time. 
 
I avoid using a mathematical calculation based on the distribution function of returns. The 
first reason is because the returns of different stocks do not follow an identical distribution 
over time. Second, even if returns would follow a particular distribution, agents cannot 
know the distribution in advance. Imagine periods zero and one, when only one realization 
is given. Agents cannot know which, if any, distribution will be reflected in the year ahead. 
Finally, even if the function is known, such does not explain daily movements in prices, 
while it also overlooks the possibility that many agents would probably not miss out on 
opportunities to capitalize on daily volatilities. In this way, I avoid proposing an asset-
pricing model that would omit some significant variables involved in describing expected 
returns and stock prices, as well as (auto)correlations in asset returns. Implicitly, I assume a 
trade-related asset pricing, which to a certain extent follows the idea of Campbell et al. 
(1993); their model implies that a stock price decline on a high-volume day is more likely 
than a stock price decline on a low-volume day to be associated with an increase in the 
expected stock return. Even closer to my intuition are Lamoureux and Lastrapes (1990), who 
use daily volume as a proxy for information arrival time and find its significant explanatory 
power regarding the variance of daily returns. Because market prices are used, a market-
clearing mechanism is implicitly considered. 
 
 

Adjacent agent is chosen 
 
In addition to the information that investors can collect from media, they often learn about 
investment opportunities from others. In the model, every investor is connected to a small 
number of other investors with whom he shares his private information, and the assumption 
is that only information-sharing causes a link. An agent with a given number of adjacent 
agents always faces the problem of deciding which of them to contact to reach the desired 
outcome. I assume that agents can only contact one of them in every time period. Following 
the random walk hypothesis,20 I also assume that none is capable of beating the market 
systematically. Agents thus do not have special preferences as to whom to contact; rather 
they choose one of the adjacent agents at random. My next assumption is that individuals are 
not capable of knowing their entire networks of friends, though they might know and be 

                                                 
20 A sequence of random variables follows a random walk if successive price changes are independent, and the 
price changes conform to some probability distribution (Fama 1965, Malkiel 1973). 
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linked to some friends’ friends. In this respect, it is important that they are atomistic and 
being so cannot affect the market. This is required in order to support the assumption of 
random selection and, foremost, to assure the exogeneity of prices. Prices can be exogenous 
only as long as none of the agents have some relevant private information or some special 
ability to outperform the others consistently. If such were present, others would then have 
preference for whom to contact and to build a friendship. However, such agents would 
probably not tolerate such rent seeking regarding their skills. It is thus important that agents 
can neither foresee future returns nor know the mechanics according to which returns 
change over time. Because none of the agents is able to outperform the others, none has an 
incentive to search for such individuals but rather to choose an adjacent one at random. 
Thus, nodes and links are unweighted. Although agents exchange the value of their 
portfolios, implicitly they are also allowed to discuss the prospects of their alternatives. 
 
 

Value function 
 
The simplicity of the value function illustrates the apparent simplicity of the problem that 
agents face: to accumulate wealth. I avoid using the usual representation of consumption-
based utility functions, as in Cochrane (2005), because I consider financial and consumption 
features as two separate issues. In addition, I assume that agents are not capable of solving 
large mathematical formulations in every period, not to mention multi-equation and multi-
period dynamic problems; nor do they behave consistently in time, but accurately respond to 
daily market opportunities. I assume that the behavior of agents is nonlinear and can be 
characterized by thresholds, if-then rules, nonlinear coupling, memory, path-dependence, 
and hysteresis, non-markovian behavior, temporal correlations, including learning and 
adaptation. These assumptions are even more relevant given that information is very 
subjective, never (or extremely rarely) objective, and never available to everyone but is rather 
highly dispered and dynamic.21 This is why portfolio selection cannot be explained through 
differential equations. In addition, at some high frequency level it is reasonable to expect 
consumption and return data to be de-linked. Yet, stock prices are at least affected by 
income, habits, macroeconomic data, sector specific data, firm specific data, etc. Portfolio 
selection is thus taken as a complex process on the macro level, but very simple on the micro 
level. In the model, individuals decide according to realized returns and the wealth they 
have acquired over time, and later also in the combination with news. 
 
 

Reinforcement learning 
 
There is a large literature on observational learning and reinforcement learning mechanisms 
in relation to asset management and portfolio selection (Shiller 2002, Hong et al. 2005, Roth 
and Erev 1995, Erev and Roth 1998). As argued by Duffy (2006), examples of varietes of 
reinforcement learning algorithms in agent-based models are commonplace. Agents in the 
model learn from past returns and communication with adjacent agents, tending to adopt 
those decisions that have worked in the past. To capture this idea, agents in the model are 
likely to copy portfolios of those adjacent agents whose portfolios have been previously 
successful. Although agents have intentions to copy the best-performing portfolios, they are 
constrained by their incomplete and asymmetric information and the specter of their links. 
An intuition here is simple, agents can only copy from those to whom they compare their 

                                                 
21 Many asset-pricing models and models of portfolio selection are built on the assumption that individual 
economic agents efficiently incorporate all information available at the time. 
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portfolios, and they can only compare their portfolios to those to whom they are adjacent. 
This is why the introduction of liquidity agents is so important. 
 
The introduction of communicating agents does not suggest that such agents do not also 
receive information from traditional financial producers and aggregators such as Bloomberg, 
Reuters, Wall Street Journal, and others, each of which distribute information to millions of 
users. Still an open question is how to include blogs and other review-like sites into the 
decision-making process. Neither is this to say that I discount other institutions, educational 
for example, that are set up to communicate and transmit centuries of knowledge and 
experience. I implicitly assume that stock-market participants have some prior knowledge 
about the markets and the rules of the market. This is in line with Hong et al. (2004), who 
argued that participation in financial markets is strongly positively correlated with wealth, 
education, and social participation. Therefore, those who do not feel qualified do not 
participate directly. For those agents who participate, it is important with whom they are 
adjacent because the relationship directly determines the quality of information flow. The 
spectrum of adjacent agents is a necessary but not a sufficient condition for the quality of 
information one receives. Following the intuition of trust, I assume that agents are adjacent 
to a fix number of other agents. I also assume that they can only select and contact one of 
them in each time period. They are not able to receive opinions from more than one agent at 
a given time period of one iteration, while they are also not allowed to forward the news 
they receive to other adjacent agents before the iteration ends. Finally, when the adjacent 
agent is selected, the related agent faces another dilemma: whether to continue the existing 
alternative of the previous time period, or to switch to that which the adjacent agent had in 
the previous time period. There is another group of investors referred to as liquidity agents. 
The introduction of liquidity agents follows the idea that there is a small fraction of passive 
investors among the participants on the markets. These participants might also be 
characterized as loyal investors, as in Cohen (2009). They are introduced in order to keep 
information of every alternative alive. In a world of communicating agents who make 
decisions upon imitation, there is a possibility that every alternative that is dominated for 
some period of time dies off. In a setting such as mine, non-existing alternatives cannot be 
used in the future because they do not have values to which agents would challenge the 
alternatives they possess. 
 
 

Decision making 
 
When micromotives and actions of individual agents induce aggregate results, it is necessary 
to know as much as possible about the decision making of individuals. Well, this is not an 
easy question. It is reasonable to assume that agents certainly have some prior knowledge 
about investing that they have attained at universities and at other educational institutions. It 
is also reasonable to assume that different agents have different experiences, read different 
professional books, journals and newspapers, including occasional newspapers and 
magazines, use different data, follow different news providers, radio and TV stations, use 
different financial equations, have different preferences, communicate with different 
individuals, accidentally hear suggestions from unknown people, etc. Agents are highly 
heterogeneous as regards these issues. Inclusion of some of these above-mentioned factors 
into the model would certainly bring the model closer to reality, but the model would lose 
on the measurability and, consequently, its value. Contributions of these factors are very 
accidental and indeterminate, and their inclusion would also raise the question of how to 
receive adequate and accurate data for so many of them. The additional question is how one 
could measure and distinguish the effects of these different specifics, which definitely exist 
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and are also important. Besides, when using many different subjective variables, we are also 
faced with a causality dilemma. Making a too precise model with too many variables would 
mean making very nice and exact model but very inappropriate on the other hand. Such 
models would thus come at a cost. 
 
To consider for these questions, I put all these important variables into a residual variable 
denoted the level of suspiciousness. It includes the stochastic nature of all the above-
mentioned factors, along with some other factors. It gives the agents a “non-automata” and 
human characteristic. This makes the model a sort of a “dual-process” model, where agents 
contrast their cognition to emotion, or reason to intuition. The level of suspiciousness may 
also relate to “trembling hand perfection”, too small a gain when switching to another 
alternative (even more relevant if transaction costs are present), some intrinsic motivation, 
(dis)trust, temporary mood, or some of the previously mentioned general factors, etc. Thaler 
et al. (1997), for instance, argued that short evaluation periods force investors to make poorer 
decisions. Therefore, the variable, stochastic as it is, includes all the issues for which an 
investor might behave differently than expected, without attempting the difficult if not 
impossible task of singling out or modeling a specific reason for such behavior. How could 
one measure accurately (or daily) such random specifics as mistakes, eureka, daily mood, 
coincidence, even luck, and other random events or coincidental aspects of one’s behavior? 
Many decisions are done spontaneously and people do not even know why they did such.  
 
Therefore, the definition of trust adopted in the dissertation relates not only to agents’ 
reliability in their information sharing but also to the entire psychology of their decision 
making. The use of suspicious agents does not imply that they always make random guesses; 
the larger the level of suspiciousness the more heuristically such agents act, even though 
agents are more inclined towards portfolios that significantly outperform others. In reality, 
there is not always a sharp distinction between unsuspicious and suspicious agents, nor is 
there a fundamental principle according to which agents would always be equally suspicious 
or would make the same decisions, because everyone behaves at least partly suspiciously to 
news, data, and their social network of friends and colleagues. I do not overlook that “do-
nothing” is also a decision that was done. 
 
When agents communicate with each other, communication always takes place before any 
decision is made and before returns are known. Agents can only discuss about the past. In 
addition, agents can only choose between something they have compared and have 
knowledge about, or make a random choice from all alternatives. Agents in the model are 
bereft of the last alternative so they either continue with the alternative they had in the 
previous period or switch to the alternative an adjacent agent had in the previous period. An 
important assumption of this selection stage is that agents do not select individual securities 
but entire portfolios, as proposed by Markowitz. Therefore, when an agent switches to a 
portfolio of an adjacent agent, I implicitly assume that an agent sells all stocks of the current 
portfolio and buys a mix of stocks in the portfolio of an adjacent agent. I further assume that 
agents are subject to no transaction costs when trading and that all stocks are liquid. 
Regarding the question of how (il)liquidity affects stock markets, it has been found that these 
effects are substantial (Amihud 2002, Pastor and Stambaugh 2003, Acharya and Pedersen 
2005). To avoid this question, I use highly liquid stocks. The assumption of no transaction 
costs is used for simplicity, because they lower portfolio returns if applied. The next 
important assumption of the model is that the stocks from which agents make portfolios are 
infinitesimally separable. Without this assumption, agents with the worst-performing 
portfolio after the first iteration would need to bring new money into the game if they 
wanted to buy any other portfolio, by which we could confine the sample set of agents. 
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Chapter V 
 
 
Two-asset portfolio selection 
 
 
5.1 Introduction 
 
Using the basic framework presented in Chapter 4, I start with a series of simple two-asset 
portfolio selection games. I retain the same model parameters and perturb only individual 
parameters per individual chapter, which allows me to extract and sever the effects of 
different variables in agents’ decision making. I then analyze them and compare them with 
each other. These simple two-asset games represent the first step in understanding the 
relation between the returns, risk and the portfolio selection. 
 
The network consists of 1.000n =  agents, each being adjacent to the six closest, with three on 
each side, and rewired with probability 0.1p = . Agents are initially split into four groups. 

SA  represents the proportion of agents who prefer risky portfolios and choose only risky 
securities. SpA  represents the proportion of agents who prefer risky stocks but choose mixed 
portfolio. BpA  represents the proportion of agents who prefer riskless securities and choose 
mixed portfolio, while BA  represents the proportion of agents who prefer riskless securities 
and choose a portfolio with only riskless securities. The proportion of agents that prefer 
riskless portfolios are denoted with u , with B Bpu A A= + . For a given level of u , games 

always start with equally shared agents among the two subgroups, thus B BpA A=  and 

S SpA A+ . According to the general equation (4.1), agents accumulate wealth over time as to 

the (5.1): 
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 (5.1). 

 
tW  and 1+tW  represent the wealth of an agent i  in time intervals t  and 1t + . Values of 

portfolios in = 0t  equal one. Br  and Sr  represent the returns of riskless and risky assets 
respectively over time. i

tq  represents the fraction of assets that agents prefer if choosing a 

mixed portfolio, while the rest, ( 1 i
tq− ), represents the fraction of assets that agents do not 

prefer; that is, an agent who prefers risky stocks, but decides for a mixed portfolio, includes 
i
tq  stocks in his portfolio and ( 1 i

tq− ) of riskless assets. 
 
Each game of simulated data is run for 10.000  periods ( = 10.000T ) to allow for asymptotic 
behavior and is repeated 20 times. The games of real data have a sample size of 2.457 units 
( .2 457T = ). Endgame decisions are then averaged over these repetitions and displayed on 
heat-map visualizations in which color-palettes present the proportion of agents per 
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individual portfolio. Throughout the chapter, I use 0.001κ =  for unsuspicious agents and 
0.5κ =  for suspicious agents. All simulations were executed on the Hewlett Packard laptop 

with Intel Celeron 1.4 GHz processor and 500 MB of RAM. 
 
 
5.1.1 Data 
 
5.1.1.1 Riskless securities 
 
To make the selection process more realistic, I assume that in every time period, the interval 
is set to one day, riskless securities B  bring a constant nominal return of 0.000002=Br , 
corresponding to a yearly return of about 5% . There is an infinite supply of riskless 
securities, while agents cannot affect the prices and subsequently the return. At this point, it 
should be acknowledged that no financial asset can be completely risk free. 
 
 
5.1.1.2 Risky securities (Levy-stable distribution) 
 
In every time period, which resembles a day in the model, risky assets S  bring the return Sr . 
Returns are generated from the Levy-stable distribution (Levy 1925). It allows for large 
fluctuation in returns, which makes it appropriate for modeling high variability. Financial 
time series is characterized by high variability in returns (Mandelbrot 1963, 1967, Fama 1965, 
Mantegna and Stanley 1995, Sornette 2009). In the Levy-stable distribution extreme events 
are not so exceptional events as in the Gaussian.  
 
The Levy-stable distribution is characterized by four parameters: the coefficient of kurtosis 

( ]0, 2α ∈ , the coefficient of skewness [ ]1,1β ∈ − , variance 0σ > , and the coefficient of the 
mean return µ∈\ . α  is also known as the stability index, which describes the concentration 
of the distribution function or the thickness of distribution tails. The smaller its value, the 
thicker the distribution tails. This means that the probability of extreme values occurring is 
higher. By definition, every random variable is uniquely determined only through its 
characteristic function (see Lukacs (1970) for an extensive survey on characteristic functions). 
 
DEFINITION 5.1: Characteristic function of the Levy-stable distribution is of the following 

form: ( )
( )
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Chambers et al. (1976) construct a direct method for simulating random variables, while 
Janicki and Weron (1994), and Weron (2001) provide the following formulas for simulation. 
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Sr Xσ µ= +  (5.2). 
 

V  is a random IID variable within the interval ,
2 2
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
, and W  is a random variable with 

the expected value 1. There is a special case when α = 1 . In this case, the solution is the 
following. 
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. It follows 

 

Sr Xσ βσ σ µ
π

= + +
2 log  (5.3). 

 
When generating Levy returns, I do not use a constant but a random seed, resulting in 
returns being different as the games repeat. Using a random seed is very meaningful for the 
analysis, because this makes results independent of a single random selection that could 
have been more favorable towards one alternative. 
 
One demonstration of Levy returns at the base specification used in the model ( 1.996α = , 

0.0141σ = , 0.0009µ =  and 0.2834β = ) is displayed in Figure 5.1. 
 

Figure 5.1: Simulated Levy returns 
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5.2 Portfolio selection with riskless and risky securities 
 
I start with the simple case, in which there are two types of securities: a risk free and a risky, 
while agents can also select a combination of the two. This is similar to that in Tobin (1958), 
Arrow (1965) and Pratt (1964). In the games of this section, I am interested how the mean 
return and risk influence portfolio selection patterns. In particular, I investigate how agents’ 
decisions are influenced by small perturbations of µ  and σ  (denoted mu and sigma in 
figures). 
 
It is standard in financial literature to assume that agents depart from alternatives as their 
risk increases and returns fall. This suggests that agents require a risk premium, or a reward, 
for bearing risk. The conclusion is consistent with the mean-variance solution. I introduce the 
following theorem. 
 
THEOREM 5.1: If an agent is strictly risk averse then the quantity of risky securities that an 
agent will include in the portfolio is positive or zero, iff the risk premium is positive or zero. 
 
Proof: 
The proof is taken from LeRoy and Werner (2001). If S

tV  presents the value of risky securities 

of a portfolio, then the value of riskless securities of a portfolio equals to P S
t tV V− . Return of 

such a portfolio then equals to ( )P B S B S
t tV R R R V⋅ + −  and the optimal return for an agent is 

given as the solution of ( )( )max P B S B S
t tSVt

E u V R R R V⎡ ⎤⋅ + −⎢ ⎥⎣ ⎦
. 

 
Because P

tV  is strictly positive, any zero holdings of risky securities means strictly positive 

holdings of riskless securities. This means that 0S
tV =  is an interior point of the interval of 

the investment choices. In point 0S
tV = , the derivative of the maximization problem of the 

expected utility equals ( ) ( )P B B
tu V R Rµ′ ⋅ − , with ( )SE Rµ ≡ . Because ( )P B

tu V R′ ⋅  is strictly 

positive, the derivative is positive (zero) iff ( )BRµ −  is strictly positive (zero). Short sales 

and borrowings are not allowed, for which ( )BRµ −  cannot be negative. Q.E.D. 

 
If the risk premium is zero, then any non-zero investment in a risky security has a strictly 
riskier return than the riskless return. It follows from Theorem 5.1 that agents should possess 
only riskless securities. With the specification I use, it follows from equation (5.2) that 
expected returns of risky and riskless securities coincide when .µ = 0 0000253 . 
 
In Figures 5.2a-f, I use heat-map visualizations to present the proportion of agents with 
individual portfolios according to the pairs of µ  (X-axis) and σ  (Y-axis) over entire intervals 

0.05 0.05µ− ≤ ≤  and 0 0.2σ≤ ≤ . A step of 0.01 units is used on the X-axis and of 0.02 units on 
the Y-axis. Heat-map visualization provides a unique opportunity to study portfolio 
selection with regard to perturbations in pairs of variables. Thus, I can easily observe how 
agents move among different alternatives as the variables are perturbed. All three figures in 
the map sum to the red color. Because simulations were done on a slower computer, I was 
not able to make smaller steps and thus lost some “fine-tuning” on truncation error. 
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The 8-color spectrum (Z-axis) presents the proportion of agents per portfolio, extending from 
blue (low value) to red (the highest value). The color spectrum relates to the average 
proportion of agents per portfolio over 20 independent realizations of the games. Other 
variables are constant: α = 1.996 , 0.2834β = , 0.5i

tq = . In addition, = 0.5u . Note: I combined 
fractions of agents with Bp and Sp into one fraction of agents with mixed portfolios. I could 
do that because 0.5i

tq = , which makes Bp and Sp identical. 
 

Figure 5.2: Proportion of unsuspicious and suspicious agents per portfolio 

 
(a) Proportion of unsuspicious agents with S (b) Proportion of suspicious agents with S 

 
(c) Proportion of unsuspicious agents with a 

mixed portfolio 
(d) Proportion of suspicious agents with a mixed 

portfolio 

 
(e) Proportion of unsuspicious agents with B (f) Proportion of suspicious agents with B 
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The figures exhibit some important features of portfolio selection. As suggested, risk and 
returns of a risky security largely affect portfolio selection, with the effect of returns being 
especially highly pronounced. This conclusion can also be supported by Table 5.1, which 
presents the correlation coefficients between the selection of different portfolios and the 
mean return and risk of a risky asset. S/MIX/B in the table signify risky/mixed/riskfree 
portfolios, while UN/SUS signify games with unsuspicious and suspicious agents, 
respectively. The correlation values for the selection of a riskless portfolio show that the 
decision for this portfolio is motivated only by returns.  
 

Table 5.1: The correlation coefficients between the variables 
 

 MU SIGMA 
S_UN 0.749 -0.346 
S_SUS 0.717 -0.360 

MIX_UN 0.326 0.521 
MIX_SUS 0.330 0.433 

B_UN -0.915 0.026 
B_SUS -0.912 0.040 

 
Figures 5.2a,b demonstrate that a risky portfolio is chosen for positive mean returns of a 
risky security; note that a riskless return is close to zero. However, as demonstrated by 
Figures 5.2e,f, agents choose a riskless portfolio when the mean return of a risky security is 
negative. Agents opt for a mixed portfolio under two circumstances: either both mean return 
and risk are high or the mean return of a risky security is slightly perturbed around zero 
(Figures 5.2c,d). The first case, that of both high returns and risk, suggests that agents are 
trying to avoid high risk no matter how large the positive expected returns are, thereby 
contradicting Theorem 5.1. Namely, when µ = 0.05  and σ = 0.2 , the expected return of a 
risky security is = 4.96%Sr  (using Eq. 5.2). Following the mathematical solution, agents were 
expected to opt for a risky portfolio and not a mixed one. However, curvatures in the upper-
right sections of Figures 5.2a,b and 5.2c,d indicate that the probability that agents will choose 
a mixed portfolio increases as risk and return increase. Thus, when risk is high, even high 
expected returns cannot prevent the renouncement of risky portfolios. This means that for 
highly risky though profitable portfolios not all stochastically dominant portfolios are 
chosen. Risk thus carries a negative connotation such that even higher returns do not cushion 
the cost of it. The intuitive explanation for the apparent paradox is simple. As sigma 
increases, more extreme returns are likely to happen, with negative extreme returns causing 
larger losses. Agents respond by avoiding such portfolios. In this situation, a mixed portfolio 
is more profitable choice than a riskless one.  
 
Nontrivial characteristics in agents’ portfolio selection take the flavor of Theorem 5.1 and 
could be partly explained by prospect theory, which proposes that agents’ attitude toward 
gains may be quite different from their attitude toward losses, and by the Nash equilibrium 
concept, according to which not every desirable alternative is ex ante attainable. In the 
second case, agents opt for mixed portfolios in the transition from the two extremes. It is 
surprising that the transition area is wider in the case of unsuspicious agents. This might be 
the consequence of the random evolution of the returns of a risky security; that is, some 
consecutive negative outcomes in the beginning of a game might eliminate a risky portfolio 
from the spectrum of alternatives. Note that unsuspicious agents are very strict regarding 
returns and react strongly to deviations. 
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5.3 Influence of agents’ initial preferences 
 
In the preceding chapter, I started the games with an equal proportion of agents per portfolio 
( 0.5u = ). Here I examine the influence of a different initial proportion of agents per portfolio. 
In a connected network, information should propagate around the network, meaning that 
initial preferences should not affect agents’ behavior except in the extreme cases where 

0u→  or → 1u . However, in a stochastic game setting, in which agents’ decisions are subject 
to stochastic returns over time and of agents’ subjective choices, the initial proportion of 
agents might be relevant. For example, if only one agent possesses a portfolio, and this 
portfolio initially yields a negative return, the contact such an agent makes, and the decision 
he adopts are important for the development of the game. If he contacts someone whose past 
return was very high, it is very likely that he would switch to the alternative of that adjacent 
agent. This would mean that the agent’s initial portfolio would be lost and eliminated from 
the scope of alternatives. On the other hand, if many agents possess a momentarily less 
efficient portfolio, it is likely that this portfolio would not be eliminated, as it is not likely that 
all would contact someone with the momentarily better portfolio, and even if this occurred, 
it is likely that not everyone would choose to switch. To examine these issues, I first conduct 
the simulations as to perturbations of σ  and u  and later also of µ  and u . 
 
 
5.3.1 Initial preferences vs. variance 
 
I first examine how initial preferences in connection to risk affect the portfolio selection. 
Hence, I perturb the games as to the initial proportion of agents with risky portfolios u  and 
the variance σ . Figures 5.3a-f display the results. σ  is plotted on the Y-axis with a step of 
0.02 units on 0 0.2σ≤ ≤  and u  is put on X-axis with the step of 0.1 units on 0 1≤ ≤u . The 
values of other parameters remain unchanged at 1.996α = , 0.2834β = , 0.5i

tq =  and 
10.000t = . The decision for 0.0009µ =  is straightforward, as it coincides with riskless return. 

Yet, riskless return has zero variance.  
 

Figure 5.3: Proportion of unsuspicious and suspicious agents per portfolio 

 
(a) Proportion of unsuspicious agents with S (b) Proportion of suspicious agents with S 
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(c) Proportion of unsuspicious agents with a 

mixed portfolio 
(d) Proportion of suspicious agents with a mixed 

portfolio 

 
(e) Proportion of unsuspicious agents with B (f) Proportion of suspicious agents with B 

 
The plots indicate the averages over 20 independent repetitions of the games and the 
endgame decisions. The 8-color spectrum (Z-axis) presents proportions of agents per 
portfolio, and it extends from blue (low value) to red (the highest value). The figures are 
displayed at the initial values of u , which is not constant throughout the games, varying on 
the interval ( )0, 1 . 
 
The figures indicate that agents respond to variance and much less to initial preferences, 
except for the extreme cases where 0u →  or → 1u . This means that information can 
efficiently propagate over a connected network as predicted. Therefore, even though a very 
small proportion of agents possess a more profitable alternative than others possess, 
information sharing leads to the spread of such an alternative and its dominance over a long 
time period. However, when the proportion of agents with a given portfolio is very small, its 
existence depends on the early returns of a risky security. The figures reveal that the 
“limiting” area is wider for suspicious agents. In between the two one-asset portfolios that 
agents choose, i.e. those involving zero or high risk, agents opt for mixed portfolios, as 
displayed in Figures 5.3c,d. Here, the initial proportion of agents affects which of the two 
alternatives is selected. However, as risk and the proportion of agents not preferring risky 
portfolios increase, the move toward the riskless portfolio also increases (Figure 5.3e,f). 
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5.3.2 Initial preferences vs. mean 
 
I now examine how initial preferences in connection to mean returns affect the portfolio 
selection. Following the same intuition as before, I perturb the games with regard to mean 
returns and the initial proportion of agents per portfolio. µ  is perturbed on the step of 0.01  
units on 0.05 0.05µ− ≤ ≤ , while u  is perturbed on the step of 0.1  units on 0 1u≤ ≤ . The 
values of other variables remain unchanged with 1.996α = , 0.0141σ = , 0.2834β =  and 

0.5i
tq = . 

 
The results displayed in Figures 5.4a-f relate to the averages of the endgame decisions over 
20 independent repetitions of the games. They present the proportion of unsuspicious and 
suspicious agents with a given portfolio. The 8-color spectrum (Z-axis) presents the 
proportion of agents per portfolio. Figures are displayed at initial values of u . 
 

Figure 5.4: Proportion of unsuspicious and suspicious agents per portfolio 

 
(a) Proportion of unsuspicious agents with S (b) Proportion of suspicious agents with S 

 
(c) Proportion of unsuspicious agents with a 

mixed portfolio 
(d) Proportion of suspicious agents with a mixed 

portfolio 
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(e) Proportion of unsuspicious agents with B (f) Proportion of suspicious agents with B 

 
The figures paint consistent and expected pictures of a positive correlation between mean 
returns and the selection of risky portfolios. Despite the fact that two one-asset portfolios 
coincide at .µ = 0 0000253 , both strict portfolios start to dominate far beyond that value: S 
from .µ > 0 02  and B from .µ < −0 02 . Agents also opt for mixed portfolios between these two 
levels. In the neighborhood of .µ = 0 0000253 , tiny differences in initial conditions make vast 
differences in the subsequent behavior of the system.  
 
When =u 0 , which means that the network is populated only with agents that prefer risky 
portfolios, agents opt for a mixed portfolio when .µ < 0 00 , by which they minimize loss. At 
the other extreme, when =u 1 , and there are only agents who prefer riskless portfolios, they 
choose mixed portfolios when .µ > 0 00 , by which they maximize profit. I can thus conclude 
that initial preferences only matter at or near the two extremes, even though such does not 
restrain the abilities of agents to choose the better of given portfolios. Again, suspicious 
agents proved to be much less susceptible to small changes than unsuspicious agents, with 
the bordering color-palettes of suspicious agents being much wider than those of 
unsuspicious agents. 
 
 
5.4 Portfolio selection with two risky securities 
 
In the previous games, I examined how risk, variance and agents’ initial preferences affect 
endgame portfolio decisions. Despite the fact that the results led to some very cogent 
conclusions, nothing has yet been said about the evolution of the selection process. This is 
going to be the focus of this section, in which I explore the evolution of single games over 
time. In the following games of this sequel I will take two risky securities and use real data 
from two financial corporations, Credit Suisse (CS) and Citigroup (C). Following the same 
intuition as before u  now indicates the proportion of agents who prefer Credit Suisse. 
 
Agents still face the same problem as before: to choose one of four portfolios in every time 
period. I simulate the games with unsuspicious agents in which 0.001κ =  and suspicious 
agents in which .0 5κ = . In all cases, reported and analyzed results relate to the average over 
20 independent realizations of the games. 
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5.4.1 Data 
 
In the games of this section, I use daily returns of the two stocks as listed on the New York 
Stock Exchange (NYSE: CS) and (NYSE: C), beginning January 21, 1999 and ending 
November 19, 2008. In both cases returns tR  are computed as relative differences in the 

opening ( O
tP ) and closing ( C

tP ) daily prices 
C O
t t

t O
t

P P
R

P
−

= . The opening price is the first 

price of the first transaction, while the closing price is the last price of the last transaction 
within the business day. NYSE opens at 9.30 and closes at 16.00. In reality, trading is 
characterized by, at least, two features. Firstly, stocks are traded nonsynchronously within 
this time at a high-frequency level. The nonsynchronous effect arises when asset prices are 
taken to be recorded at time intervals of one length when in fact they are recorded at time 
intervals of another length (Campbell et al. 1997). Secondly, stocks are also traded before the 
market opens and after it closes. I take this into consideration by tracking daily data, leveling 
the duration of trading days for the stocks and portfolios I use. The time period is chosen 
arbitrarily, resulting in a sample size of 2457 units ( 2457T = ). Table 5.2 and Figures 5.5 
summarize some statistical properties of the two stocks. In both cases standard deviations 
are computed from the GARCH(1,1) model (Bollerslev et al. 1992). 
 

Table 5.2: Selected statistics of CS and C 
 

 C CS C – 90% CS – 90% 
Mean -0.000098 0.000163 -0.000153 0.000406 
Median 0.000000 0.000000 0.000000 0.000000 
Maximum 0.240268 0.234375 0.036160 0.036084 
Minimum -0.234450 -0.209112 -0.037049 -0.035809 
Std. Dev. 0.023574 0.022851 0.014448 0.015247 
Skewness 0.136186 -0.067226 -0.014188 0.014096 
Kurtosis 16.71533 13.97700 2.941989 2.667758 
1. Quartile -0.010134 -0.010879 -0.008948 -0.009309 
3. Quartile 0.009757 0.012034 0.008557 0.010679 
Observations 2457 2457 2212 2212 

 
The empirical quantile-quantile graph of the returns of the two stocks (Figure 5.5a) and the 
two boxplots (Figure 5.5b) indicate that both stocks are very risky and exhibit some extreme 
returns in both directions. The two rectangles around the mean in Figure 5.5b depict returns 
within the first and the third quartile. This interquartile range represents the middle 50 
percent of returns. This area is slightly wider for CS at 239 bps as compared to C at 199 bps. 
The staples present the borders of inner fences that are defined as the first quartile minus 1.5 
times the interquartile range and the third quartile plus 1.5 times the interquartile range. 
Outliers are displayed beyond the line and present extreme returns. CS has a slightly higher 
mean value and a slightly lower standard deviation than C. On the other hand, C has a 
slightly larger span (274 bps) as compared to CS (243 bps). Ninety percent of all returns are 
placed within -3.59% and 3.61% for CS and -3.70% and 3.62% for C. Despite CS having a 
lower overall standard deviation than C, its standard deviation is higher when considering 
90% of the middle returns (152.47bps / 144.48bps). The leptokurtosis (excessive fourth 
moments) and heavy-tailed features of the data are evident in both cases. Over the entire 
span, C has a return distribution that is skewed to the right, which means it has relatively 
more low values, and CS is skewed to the left, which means it has relatively more high 
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values. However, within 90% of all returns, the opposite is demonstrated with C being 
slightly negatively skewed and CS slightly positively. 
 

Figure 5.5: Returns of CS and C 
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(a) empirical quantile-quantile graph (b) distributions of C and CS returns 
 
The two series are just slightly positively correlated with the correlation coefficient of 0.543, 
which is slightly surprising finding, as both stocks belong to the same sector. 
 
 
5.4.2 Unsuspicious agents 
 

Table 5.3: Proportion of unsuspicious agents per portfolio 
 

t C 
(1) 

Cp 
(2) 

CSp 
(3) 

CS 
(4)  C 

(5) 
Cp 
(6) 

CSp 
(7) 

C 
(8)  Cr 

(9) 
CSr 
(10) 

1 0.254 0.248 0.250 0.248  0.096 0.103 0.403 0.400  0.03165 0.00322 
2 0.445 0.183 0.309 0.062  0.184 0.095 0.563 0.158  0.04198 -0.00321 
3 0.624 0.078 0.289 0.009  0.284 0.051 0.623 0.042  -0.02686 0.01321 
4 0.763 0.025 0.211 0.001  0.399 0.018 0.575 0.009  0.03132 0.00986 
5 0.786 0.020 0.193 0.001  0.417 0.015 0.562 0.006  0.00978 0.02267 
6 0.838 0.009 0.153 0.000  0.469 0.009 0.519 0.003  -0.02752 0.0157 
7 0.857 0.007 0.137 0.000  0.488 0.007 0.504 0.002  -0.02673 -0.01879 
8 0.842 0.009 0.150 0.000  0.460 0.008 0.530 0.002  0.02531 -0.00618 
9 0.839 0.008 0.152 0.000  0.450 0.008 0.541 0.002  -0.02311 -0.00653 
10 0.861 0.006 0.133 0  0.478 0.006 0.514 0.002  -0.00484 -0.00626 
11 0.863 0.006 0.131 0  0.474 0.006 0.518 0.002  -0.00702 -0.00661 
12 0.867 0.006 0.127 0  0.480 0.005 0.514 0.001  -0.03591 -0.01933 
13 0.875 0.005 0.120 0  0.485 0.005 0.509 0.001  0.03499 0.00646 
14 0.870 0.006 0.125 0  0.475 0.005 0.519 0.001  0.02345 0.02633 
15 0.880 0.004 0.116 0  0.497 0.005 0.497 0.001  -0.0325 -0.01596 
16 0.886 0.004 0.110 0  0.505 0.004 0.490 0.001  0.03029 0.02925 
17 0.882 0.004 0.114 0  0.497 0.004 0.498 0.001  -0.00748 0.02039 
18 0.885 0.004 0.111 0  0.499 0.004 0.500 0.001  -0.00215 -0.01362 
19 0.877 0.005 0.118 0  0.469 0.004 0.526 0.001  0.02375 0.00614 
20 0.879 0.005 0.116 0  0.467 0.005 0.527 0.001  0.02319 -0.01251 
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Figures 5.6 and Table 5.3 display the average evolution of individual games over time. In the 
first group of the games .u = 0 5 , while in the second .=u 0 8 . Figure 5.6a and columns 2-4 in 
the table present the proportion of agents with a given portfolio when .u = 0 5 , while Figure 
5.6b and columns 5-8 in the table present the average proportion of agents with a given 
portfolio when .=u 0 8 . Cr in the table presents the returns of C and CSr the returns of CS. In 
both cases .0 3i

tq =  and is constant throughout the games. 
 
Following the simulation results as presented in the table, unsuspicious agents heavily and 
promptly respond to the returns. It is interesting to see that CS turns out to be a strictly 
dominated portfolio from the very beginning of the games, being eliminated after the ninth 
iteration at the latest and after the third iteration at the earliest, which is also the most 
frequent. An upward shift is very extensive even after the first iteration, in which the 
proportion of agents with C increases from 0.25 to 0.43. Consequently, this corresponds to a 
drop of about the same magnitude in the proportion of agents with CS. Yet, 60% of agents 
chose C in the third iteration and 80% in the sixth. At this stage, CS was already eliminated, 
while only about a percent of agents took Cp. This appears to reflect the effect of what might 
be called “unfavorable comparative initial returns.” In this period, the returns of CS were 
either negative when those of C were positive or they were positive but lower than those of 
C. In both repetitions, agents end the games with a unanimous decision for C. 
 

Figure 5.6: Proportion of unsuspicious agents per portfolio 

 
 (a) .u = 0 5  (b) .0 8u =  
 
When comparing Figure 5.6a to 5.6b, we see that when the games were started with a larger 
proportion of agents with the unfavorable portfolios of CS and CSp, the agents did not end 
the games with a unanimous decision of C, as they did before. This may be explained thus: 
when the initial proportion of agents who prefer C and Cp was extremely low, information 
regarding the efficiency of the two portfolios spreads over the network much more slowly 
than in the case when more agents possessed the two dominant portfolios. In my case, this 
slower spread of information was sufficient to interfere with the prevalence of C over others, 
despite its initial “favorable” returns, driving them out as in the case of .u = 0 5 . 
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Figure 5.7: Single-game selections of C against the average game selection of C, .=u 0 8  
 

 
 
The correlation coefficients of individual games to the average game, which in all cases and 
for all portfolios exceed 0.95, reflect that unsuspicious agents were very consistent in their 
behavior; values close to 1 indicate almost perfect positive linear association between the two 
variables. To additionally illustrate the argument, I use scatterplots of the individual game 
selections of C against the average game selection of C (C_avg) for .=u 0 8  (Figure 5.7). The 
X-axes in the figures show the fractions of agents with C averaged over all 20 independent 
realizations of the games, while the Y-axes show fractions of agents with C in single 
realizations of the games. If single-game decisions are highly correlated with the average-
game decision and thus with each other, plots should exhibit diagonal lines from the origin.  
 
The plots exhibit “near” diagonal lines. This is not surprising for .=u 0 5 , where C eliminated 
all other portfolios in the very early stages of the games. Thus, the games are slightly 
sensitive to initial conditions. 
 
 
5.4.2 Suspicious agents 
 
I now apply the games with suspicious agents, who are less likely to select the putatively 
better portfolio. All the developments of the games averaged over 20 independent 
repetitions are displayed in Figure 5.8, with .0 3i

tq =  in both cases. 
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Figure 5.8: Proportion of suspicious agents per portfolio 

 
 (a) .u = 0 5  (b) .0 8u =  
 
Figures 5.9 demonstrate that suspicious agents behave much less consistently and also less 
predictably over time than do unsuspicious agents. In the figures single game selections of C 
are plotted against the average game selection. X-axes in the figure show fractions of agents 
with C averaged over all 20 independent realizations of the games, while Y-axes show 
fractions of agents with C per single realization of the game. Under the independence 
assumption, it is expected that plots of single games in Figure 5.9 would be “close” to 
diagonal lines, as in Figure 5.7.  
 

Figure 5.9: Single-game selections of C against the average-game selection of C, .u = 0 5  
 

 
 
Contrary to those of unsuspicious agents, the plots related to suspicious agents clearly 
exhibit different shapes, reflecting huge inconsistencies in their selection patterns. Their final 
decisions do not converge to a unanimous selection as was the case of unsuspicious agents. 
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Thus, the flavor of chaotic behavior on the level of individual games of suspicious agents can 
be observed, as repetitions of the games never exhibit the same path-developments. At the 
same time, one can see an apparent consistency in selections when these individual games 
are averaged over many repetitions, as in Figures 5.8. 
 
 
5.4.3 The need for liquidity agents 
 
A very distinctive feature of social network games is herding. By definition, herding 
promotes synchronization which means that some (occasionally) unfavorable portfolios are 
driven out of the sample set until there is a single portfolio left. Bala and Goyal (1998) 
showed that as long as agents prefer higher payoffs and learn from their neighbors, all in the 
component settle down to play the same action from some time onwards with probability 
one, regardless of their initial actions. 
 
THEOREM 5.2: There exists a time such that all agents in a component settle down to play 
the same action from that time onward (Bala and Goyal 1998). 
 
Proof: 
The proof is very intuitive and straightforward. Agents prefer an action that brings them the 
highest payoff. Recall that agents are able to switch to the action of their neighbors that 
brings the highest payoff, while they also deliver this information to their neighbors, and so 
on. As long as there exists an action that brings the highest outcome, there is a time after 
which everyone will play this action exclusively with probability one. Q. E. D. 
 
Bala and Goyal also establish the payoff equalization result that, asymptotically, every agent 
from the network must receive a payoff equal to that of an arbitrary agent from the 
component, since otherwise an agent should copy the action of this other agent. I should 
acknowledge that in some cases the convergence time might be quite long. 
 
The simulation games so far were subject to herding and in the cases with unsuspicious 
agents often converged to a unanimous decision. The process of herding is very strong when 
agents perfectly rebalance their portfolios, always choosing the alternative that performed 
best in the past. Such is the case with unsuspicious agents, contrary to the sluggishness of 
suspicious agents. Therefore, if a security experiences poor returns in some consecutive time 
period, even though the period is very short, this might eliminate portfolios that include 
such securities irrespective of their future performances, with the larger the proportion of 
such securities in a portfolio, the higher the probability that such a portfolio will be 
eliminated. In the framework of suspicious agents, synchronization is confined by the 
suspiciousness factor. Suspicious agents do not apply differences in portfolio values to their 
choice criteria as strictly as do unsuspicious agents. Hence, they choose portfolios much 
more arbitrarily than unsuspicious, with the result that they might hold unfavorable 
alternatives as well. In order to prevent synchronization, I introduce liquidity agents into the 
games. They hold their initial portfolio throughout the games, no matter the payoff.  
 
DEFINITION 5.2: A liquidity agent is an agent who never changes his initial portfolio as the 
games proceed. 
 
Some additional arguments for their presence would be the following. They might be 
characterized as conservative or highly persuaded individuals who are either satisfied with 
their portfolios or suffer from inertia or have some intrinsic reasons for their conservative 
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behavior, as argued by Osborne and Rubinstein (1990), and Lord, Ross and Lepper (1979), or 
as loyal investors (Cohen 2009). Such conservative agents are reluctant to search for evidence 
that contradicts their beliefs, and even if they find such evidence, they treat it with excessive 
skepticism. Hirshleifer (2001) argues that processing new information and updating beliefs is 
costly, which might explain an agent’s conservatism. He adds that habits also economize on 
thinking and can play a role in self-regulation strategies. Constantinides (1990) argues that 
habit formation, which reconciles very large (too large) equity premium, might promote an 
agent’s conservatism. I do not endogenize the reasons of agents’ conservatism but take it as 
given. In real markets, not only do conservative individuals appear as liquidity agents but 
also market makers. By quoting sell and buy prices they provide and preserve liquidity. In 
the sequel, the games include liquidity agents. 
 
 
5.5 Portfolio selection with an exogenous shock 
 
In this chapter, I examine the effects of a one-time shock to portfolio selection. It had been 
demonstrated long ago that agents who choose among risky alternatives take into 
consideration shocks to individual alternatives (Merton 1969). Shocks induce consequences 
by which they change the environment in which agents make decisions. Binmore and 
Samuelson (1994) and Binmore, Samuelson and Vaughan (1995) distinguished between 
shock effects in the short run, middle run, long run, and ultra-long run. The system does not 
have many chances to avoid the short-run consequences of a shock. Over the middle run, a 
shock is still perceived but the system starts to restore its usual framework. Over the long 
run, the system is completely back on track, despite the possibility of the continued 
perception of some consequences of the shock. No effect of a shock is perceived in the ultra-
long run. A shock that changes the behavior of agents does leave its tracks over the ultra-
long run, which means that historical factors and chance events push social phenomena to 
new patterns of behavior (Kandori, Mailath and Rob 1993, Sornette 2009). 
 
These games build on the previous game setting of Credit Suisse (CS) and Citigroup (C) but 
include liquidity agents. The liquidity agents are placed into five homogenous groups: 

( ) ( ) ( ) ( ) ( ){ }100,109 , 200, 219 , 400, 419 , 600, 619 , 970, 1000i =  and are assigned a random 
portfolio at the start of each game. As the games repeat, the liquidity agents might possess 
different portfolios and might be adjacent to different agents. A one-time shock is included 
as a one-time reduction in the return of C in 10t = . I simulate the games against different 
magnitudes of a shock: 500 bps, 800 bps, 1000 bps and 3000 bps. 
 

Figure 5.10a: Proportion of unsuspicious agents per portfolio, .=u 0 5  
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 (a) entire game developments (b) first 50 iterations 
 
 

Figure 5.10b: Proportion of unsuspicious agents per portfolio, .=u 0 8  

 

 
 (a) entire game developments (b) first 50 iterations 
 
Only unsuspicious agents with 0.001κ =  are used in this chapter, because suspicious agents 
exhibited atypical behavior. As before .0 3i

tq = . Results are displayed in Figures 5.10a 
( .=u 0 5 ) and 5.10b ( .=u 0 8 ). The results relate to the average developments of the games of 
20 independent repetitions. The upper (bottom) two figures display the fractions of agents 
with C (CSp), with the left figure displaying full developments of the games and the right 
figure the first 50 iterations. The first 50 iterations are displayed to present the short run 
effect of a shock and the course of its short-to-medium-run stabilization. 
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Table 5.4: Proportion of unsuspicious agents per portfolio under different shocks 
 

t C 
(1) 

Cp 
(2) 

CSp 
(3) 

CS 
(4)  C 

(5) 
Cp 
(6) 

CSp 
(7) 

CS 
(8)  Cr 

(9) 
CSr 
(10) 

1 0.258 0.248 0.247 0.247  0.103 0.097 0.397 0.402  0.03165 0.00322 
2 0.428 0.193 0.302 0.077  0.186 0.089 0.541 0.184  0.04198 -0.00321 
3 0.591 0.098 0.280 0.030  0.282 0.051 0.587 0.080  -0.02686 0.01321 
4 0.719 0.046 0.212 0.024  0.388 0.023 0.540 0.049  0.03132 0.00986 
5 0.734 0.043 0.199 0.024  0.404 0.022 0.527 0.048  0.00978 0.02267 
6 0.781 0.034 0.162 0.023  0.449 0.017 0.490 0.043  -0.02752 0.0157 
7 0.796 0.031 0.150 0.023  0.464 0.015 0.478 0.042  -0.02673 -0.01879 
8 0.784 0.034 0.158 0.024  0.437 0.017 0.502 0.044  0.02531 -0.00618 
9 0.780 0.035 0.159 0.026  0.427 0.017 0.510 0.046  -0.02311 -0.00653 

10* 0.799 0.032 0.144 0.025  0.455 0.016 0.486 0.044  -0.00484* -0.00626 
11 0.798 0.033 0.145 0.024  0.453 0.016 0.487 0.044  -0.00702 -0.00661 
12 0.773 0.036 0.163 0.028  0.409 0.018 0.523 0.050  -0.03591 -0.01933 
13 0.758 0.038 0.174 0.029  0.391 0.019 0.536 0.054  0.03499 0.00646 
14 0.737 0.042 0.188 0.032  0.357 0.021 0.563 0.060  0.02345 0.02633 
15 0.742 0.041 0.185 0.032  0.359 0.022 0.561 0.059  -0.0325 -0.01596 
16 0.739 0.043 0.185 0.033  0.350 0.022 0.568 0.060  0.03029 0.02925 
17 0.725 0.048 0.193 0.035  0.329 0.023 0.584 0.064  -0.00748 0.02039 
18 0.720 0.049 0.194 0.037  0.319 0.024 0.590 0.067  -0.00215 -0.01362 
19 0.696 0.054 0.209 0.042  0.294 0.026 0.605 0.075  0.02375 0.00614 
20 0.689 0.057 0.213 0.042  0.283 0.027 0.613 0.077  0.02319 -0.01251 
21 0.693 0.054 0.212 0.041  0.288 0.026 0.611 0.075  0.04946 0.0034 
22 0.712 0.049 0.203 0.037  0.306 0.023 0.603 0.068  -0.0216 0.02186 
23 0.742 0.043 0.184 0.032  0.335 0.022 0.584 0.059  -0.00552 -0.04941 
24 0.731 0.045 0.190 0.034  0.324 0.023 0.592 0.061  0.03784 0.00666 
25 0.751 0.041 0.178 0.030  0.343 0.021 0.580 0.057  0.04229 0.00976 

 
Table 5.4 presents the proportion of agents per portfolio in the first 25 iterations. Columns 1-
4 exhibit the fractions of agents with a given portfolio when .=u 0 5  and columns 5-6 the 
fractions of agents per given portfolio when .=u 0 8 . The last two columns display the 
returns of C and CS over time. An asterisk in the ninth column indicates a shock. 
 
The unsuspicious agents very quickly responded to the shock. The shock started to spread 
over the network to adjacent agents, to adjacent agents of adjacent agents and so on. In most 
cases the proportion of agents with the alternative C shrank by 13-20 percentage points (4th 
row of Table 5.5), which occurred in just 10 intervals after the shock (5th row). Consequently, 
the fractions of agents with other alternatives increased. This period indicates a short run. 
 
The recovery was slow. The pre-shock level of C is reported in the second row. On average, 
for a shock of 500 bps the system restored to the pre-shock level in about 20 intervals after 
the shock (6th row). Following the results, larger shocks needed a longer time to recover. A 
shock of 3000 bps never fully recovered, which means that it would also leave huge 
consequences over the ultra-long run. In addition, the effects of a shock are much larger 
when a smaller fraction of agents possessed an affected portfolio. After a shock of 3000 bps 
portfolio C, which was dominant within a no-shock environment, ended solely with liquidity 
agents. 
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Table 5.5: The effects of different shocks on C 
 

 500 bps 800 bps 1000 bps 3000 bps 
.=u 0 5      

Shock 0.78 0.848 0.789 0.746 
Bottom 0.654 0.708 0.583 0.549 
Difference 0.126 0.14 0.206 0.197 
Bottom – time 21 20 20 21 
Before shock level – time 31 249 334 Never 
After shock min 0.654 0.508 0.583 0.291 
After shock max 0.91 0.926 0.937 0.697 
End fraction of C 0.715 0.508 0.826 0.296 

.=u 0 8      
Shock 0.455 0.458 0.453 0.426 
Bottom 0.283 0.246 0.217 0.164 
Difference 0.172 0.212 0.236 0.262 
Bottom – time 20 20 20 21 
Before shock level – time 203 421 891 Never 
After shock min 0.283 0.246 0.196 0.024 
After shock max 0.773 0.662 0.568 0.326 
End fraction of C 0.438 0.280 0.217 0.024 

 
 
5.6 Some conclusions 
 
I close this section with some brief conclusions, which can be summarized in the following 
lines: 
• Mean return of the risky asset and the risk are two decisive factors of portfolio selection. 
• The selection of a risky portfolio is motivated by positive returns and small variance. 
• Agents choose mixed portfolios under the following two circumstances. In the transition 

from positive to negative mean returns, and when the mean returns of a risky asset and 
the risk are high.  

• The selection of a riskless portfolio is motivated only by the negative returns of a risky 
asset and not the variance. 

• The level of suspiciousness is significant over the course of portfolio selection, with 
unsuspicious agents behaving much more consistently than suspicious agents. 

• Liquidity agents prevent full herding, for which they proved to be indispensable for the 
portfolio selection process to work smoothly. 

• Shocks proved to be significant, with the short run of a strong enough shock being 
especially critical. If the system overcomes the first blow, and if the future returns of 
portfolios hit by the shock are favorable, conditions restore in time.  
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Chapter VI 
 
 
Multiple-asset portfolio selection: the efficient frontier 
hypothesis 
 
 
6.1 Introduction 
 
Two-asset games that have been studied in the previous chapter represent a huge 
simplification of what agents face in reality. There are many kinds of assets in different 
markets, resulting in plenty of opportunities to build very different portfolios. Because of 
this number of stocks, from which investors choose, they are faced with searching problems 
when buying stocks (Barber and Odean 2008). For example, DJIA is an index of 30 stocks, 
Standard&Poors500 is an index of 500 stocks, while more than 3800 stocks are listed on the 
NASDAQ. Most countries worldwide have stock exchanges, with the most important being 
located in the US, Frankfurt, London, Tokyo, Zürich, Paris, Hong Kong, Shanghai, and Sao 
Paulo. There are markets for currencies, commodities, bonds and other kinds of debt, ETFs, 
funds, futures, etc. It is not surpsising that ACE models are often critized for having only a 
small number of assets, often one that is risk-free and the other risky (LeBaron 2006). In this 
chapter, I move to multiple-asset portfolio selection games. 
 
The assumption of the model is that mixed portfolios can only be built out of an equal 
proportion of i  assets from the total number of n  available assets. An agent who makes a 
portfolio out of two stocks can only make a portfolio with equal share of the two stocks, and 
not a portfolio of two thirds of one stock and a third of the other. Therefore, the maximum 
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= = −⎜ ⎟
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∑

1
2 1

n n

i

n
K n

i
 portfolios can be constituted. With two assets available, an 

agent can make three portfolios; with three assets seven different portfolios; with four 15 
portfolios; and with five assets 31, etc. The number of portfolios increases by a factor 2 + 1. 
There are 32.767 different portfolios when 15=n , etc. In reality, agents can put a different 
proportion of assets into their portfolios, with the number of different portfolios approaching 
infinity. In the present case, I study the behavior of unsuspicious and suspicious agents 
when 5=n , which makes a sample set of 31 portfolios.  
 
In the games from now on, I will be focused on the selection patterns according to the 
efficient frontier hypothesis (Markowitz 1952a, 1959). In its original form, this is a bi-criteria 
problem where a reasonable tradeoff between return and risk is considered, and where 
“mean-variance agents” choose their portfolios on the efficient frontier in ( ),µ σ -space with 
minimum risk given the return and maximum return given the risk. 
 
The idea behind the efficient frontier is very intuitive, but it avoids a very simple question as 
to whether agents are able to reach the presumed and desired equilibrium in a complex 
financial world that is characterized by the uncertain stock prices, investors’ preferences, 
limited cognitive abilities and non-standard behavior patterns, and interaction. The question 
is even more relevant in the light of many “profitable” opportunities this stochastic financial 
world offers to investors on a daily and intraday basis. Therefore, my remark does not go to 
the theory as such, because rational agents would certainly prefer minimum risk and 



 
  

- 74 - 

maximum return portfolios. But there is a set of unexplained questions beyond this puzzle 
related to what agents select.  
 
 
6.2 Data 
 
As in the games of previous chapters, agents consider only returns of portfolios they have, 
while means and variances of returns are used as the endpoints in the analysis and not as 
starting-point input variables. 
 
Due to the large number of portfolios, I increase the number of agents to 5000n =  and the 
number of adjacent agents to the ten closest, with five on each side. The probability of 
rewiring remains intact at 0.1=p . Liquidity agents are placed in the following groups: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }700,719 , 1000,1019 , 1200, 1219 , 1500,1519 , 2500, 2519 , 3500, 3519 , 4800, 4819 .i =
Again, I do simulations with unsuspicious ( 0.01κ = ) and suspicious ( 0.1κ = ) agents. With 
these parameter values, suspicious agents are suspicious enough, while they also retain a 
sufficient level of capabilities to select a better of the two alternatives they compare. Such 
suspicious agents do not make blind guesses. 
 
The results are averaged over 30  independent realizations of the games. In the games, I 
consider average-game and endgame decisions. The examination of average-game decisions 
provides information on the desirability of individual portfolios throughout game 
developments, while endgame decisions provide information regarding the portfolios that 
were the most desirable in the end. 
 

Table 6.1: Description of portfolios 
 

S1 AA S12 MSFT-KFT S23 MSFT-XOM-KFT 
S2 MSFT S13 XOM-C S24 MSFT-C-KFT 
S3 XOM S14 XOM-KFT S25 XOM-C-MSFT 
S4 C S15 C-KFT S26 AA-MSFT-XOM-C 
S5 KFT S16 AA-MSFT-XOM S27 AA-MSFT-XOM-KFT 
S6 AA-MSFT S17 AA-MSFT-C S28 AA-MSFT-C-KFT 
S7 AA-XOM S18 AA-MSFT-KFT S29 AA-XOM-C-KFT 
S8 AA-C S19 AA-XOM-C S30 MSFT-XOM-C-KFT 
S9 AA-KFT S20 AA-XOM-MSFT S31 AA-MSFT-XOM-C-KFT 
S10 MSFT-XOM S21 AA-XOM-KFT   
S11 MSFT-C S22 MSFT-XOM-C   

 
I take stocks of five companies from different sectors listed on the Dow Jones Industrial, 
NYSE: C, NYSE: KFT, NYSE: MSFT, NYSE: AA and NYSE: XOM. It must be noticed that 
effective as of June 8, 2009, Citigroup (NYSE: C) was delisted from the index due to 
significant government ownership. It was replaced by its sister insurance company Travelers 
(NYSE: TRV). The data refer to daily returns, which are calculated as the relative difference 
between the opening and closing prices of the work days with opening at 9:30 and closing at 
16:00. As before, I use daily data by which I capture the effects of otherwise nonsynchronous 
trading features of the stocks and portfolios. The entire data set covers the period of January 
2, 2009 to January 21, 2010, making a total number of 264 realizations per stock. The returns 
of the portfolios are calculated as the average returns of its stocks. I assume that mixed 
portfolios are constituted of equal proportions of different stocks. This makes a total number 
of 31 portfolios (Table 6.1). The data set was obtained from Yahoo!Finance financial portal.  
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In the analysis part I use a portfolio beta (Sharpe 1964). Beta is a well-established measure of 
a stock’s risk or a portfolio’s risk against market risk, although there is no agreement on how 
to measure risk adequately. According to beta, the risk of an asset (or portfolio) is measured 
by covariance in the assets’ (or portfolio’s) return with the return of the market. Beta 
measures the part of the asset’s (or portfolio’s) statistical variance that cannot be removed by 
the diversification. Given that the unsystematic risk can be diversified by taking many such 
positions, beta is a measure of a portfolio’s systematic or non-diversifiable risk.22 In general, 
the lower the correlation among security returns, the larger the impact of diversification. The 
degree of portfolio diversification is measured through the coefficient of determination (R-
square coefficient); the closer it is to 1, the better is the diversification. A poorly diversified 
portfolio will have a small value of R-square (0.30 - 0.40), while the corresponding R-square 
value of a well-diversified portfolio would be between 0.85 and 0.95. Statman (1987) argued 
that a well-diversified portfolio should consist of at least 30-40 stocks. Goetzmann and 
Kumar (2008) examined the portfolios of more than 40,000 equity investment accounts from 
a large discount brokerage during a six year period (1991-1996), and showed that a vast 
majority of U.S. investors held under-diversified portfolios. Tobin (1958) proposed a 
diversification involving the purchase of different mutual funds, where the number of funds 
is smaller than the number of individual assets in the portfolio.  
 

Table 6.2: Beta coefficients of portfolios 
 

 Beta 2R  S11 1.513 0.848 S22 1.147 0.897 
S1 1.246 0.574 S12 0.433 0.551 S23 0.426 0.633 
S2 0.551 0.431 S13 1.444 0.835 S24 1.113 0.891 
S3 0.413 0.490 S14 0.364 0.499 S25 1.068 0.871 
S4 2.475 0.753 S15 1.395 0.813 S26 1.171 0.988 
S5 0.314 0.264 S16 0.737 0.732 S27 0.631 0.760 
S6 0.899 0.681 S17 1.424 0.972 S28 1.147 0.992 
S7 0.830 0.670 S18 0.704 0.729 S29 1.112 0.980 
S8 1.861 0.936 S19 1.378 0.965 S30 0.938 0.924 
S9 0.780 0.642 S20 0.658 0.703 S31 1.000 1.000 

S10 0.482 0.587 S21 1.345 0.961    
 
Table 6.2 reports betas for the portfolios and the corresponding 2R . In my case, portfolio S31 
represents a market portfolio because it consists of all available stocks and thus represents 
the highest possible degree to which an agent can diversify risk. This is a poor proxy of the 
real-world market portfolio, which would be a portfolio made of all endowments in the 
world. The choice for a market portfolio S31 would designate a naïve 1/n allocation 
(Benartzi and Thaler 2001). Because S31 represents the market, its variance represents the 
market risk Mσ . With the market risk at hand, I can calculate β  coefficients of portfolios 

simply as ,
i

i i M
M

σ
β ρ

σ
= , where ,i Mρ  is the correlation of portfolio i  to the market portfolio. In 

order to get the required β  coefficients of individual portfolios, I estimate a linear equation 
that expresses returns of individual portfolios as a linear function of the market return. 
Specifically, , , ,i t i i M t i tR Rα β ε= + + , where ,i tε  is the regression error, with ( ), 0i tE ε =  and 

                                                 
22 Using betas does not suggest that riskier (high beta) portfolios should always yield higher returns. Campbell 
and Vuolteenaho (2004) decomposed the beta of a stock into two components; one reflecting news about the 
market’s future cash flows and one reflecting news about the market’s discount rates. By doing that, they defined 
a “good” beta and a “bad” beta, with the good beta defining risky stocks with high returns. 
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( ) 2
,i t iVar ε σ= . Since the market beta of a portfolio is also the slope of the regression of its 

return on the market return, the correct interpretation of beta is that it measures the 
sensitivity of the portfolio’s return to variation in market return. Stocks about as volatile as 
the market willl have a coefficient around 1.0, whereas those less (more) volatile will show 
lower (higher) coefficients. Stocks that move opposite to the market will have negative betas. 
 
Following the betas and the fraction of agents per portfolio, an average beta coefficient of the 

sample is calculated as 
1

1 N

i
iN

β β
=

= ∑ , while a weighted beta is calculated as 
1

1 N

W i i
i

h
N

β β
=
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where ih  represents a fraction of agents with portfolio i , while 
1

1
N

i
i
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which 
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N N

i i
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h q
= =

≠∑ ∑ , a fraction of selected portfolios have to be re-calculated so as to reach the 

required condition 
1

1
N

i
i

h
=

=∑ . Both betas are applicable in assessing the agents’ attitude 

towards risk. 
 
S5 is the lowest beta portfolio (0.314). It is followed by S14 (0.364), S3 (0.413), S23 (0.426), S12 
(0.433) and S10 (0.482). S14 is a combination of S2 and S5, while S23 also includes S3. These 
portfolios have less than half the risk of the market. Portfolios that include Citigroup stocks, 
S4, are placed on the side of the riskiest portfolios, which are S4 (2.475), S8 (1.861), S11 
(1.513), S13 (1.444), S17 (1.424). Figure 6.1 displays mean returns of portfolios (Y-axis) against 
their betas (X-axis). 
 

Figure 6.1: Mean return vs. Beta for portfolios 
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In Chapter 6.2, I analyze the average-game results, while the endgame results of the same 
game realizations are examined in Chapter 6.3. Endgame and average-game results relate to 
the same games, notably the endgame results present the average proportion of agents per 
portfolio of 30 independent repetitions in 264t = , while average-game results present the 
average proportion of agents per portfolio over all 264 time periods and over all 30 
repetitions. The intuition of making two separate analyses comes from the time-dependent 
nature of the portfolio selection process, for which the endgame decisions might not 
adequately reflect game developments. Yet, endgame decisions present the tendency (or a 
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direction) of agents’ behavior. Therefore, to grasp both trends, both aspects should be 
considered. 
 
 
6.3 Average-game decisions 
 
The proportion of unsuspicious agents with selected portfolio averaged over the repetitions 
and time periods as to the mean return and risk, represented by the standard deviation of 
returns, are reported in Table 6.3 and displayed in Figure 6.2.23 Black triangles in the figure 
designate portfolios chosen by less than 1.5% of agents; black circles designate portfolios 
chosen by more than 1.5% but less than 5% of agents; while gray squares designate portfolios 
chosen by more than 5% of agents. The horizontal axis shows portfolio risk, measured by the 
standard deviation of portfolio return; the vertical axis shows expected return. The curve 
depicts the efficient frontier and is apparent. 
 

Table 6.3: Fractions of unsuspicious agents per portfolio in the average-game setting 
 

 Mean Stdev S11 0.23 0.71 S22 0.24 0.53 
S1 0.18 0.25 S12 27.18 7.82 S23 11.07 2.37 
S2 8.78 4.39 S13 0.18 0.47 S24 0.59 1.16 
S3 1.07 0.85 S14 8.24 3.91 S25 0.39 0.82 
S4 0.17 0.59 S15 0.33 1.16 S26 0.20 0.37 
S5 29.48 6.78 S16 0.49 0.56 S27 1.42 0.76 
S6 0.46 0.46 S17 0.20 0.38 S28 0.28 0.54 
S7 0.19 0.26 S18 1.61 1.00 S29 0.24 0.45 
S8 0.15 0.28 S19 0.15 0.29 S30 1.08 0.97 
S9 0.53 0.51 S20 0.75 0.57 S31 0.33 0.50 
S10 3.60 1.32 S21 0.19 0.47    

 
The results provide strong support for the efficient frontier hypothesis of conservative and 
risk-averse agents who are not willing to take high risk. Namely, the chosen portfolios tend 
to be clustered around the efficient frontier and also in the neighborhood of the bifurcation 
point. S5 tops the list with 29.48% of unsuspicious agents. It is followed by S12 (27.18%), S23 
(11.07%), S2 (8.78%) and S14 with an average share of 8.24% of unsuspicious agents. The 
most-preferred portfolio, S5, is a single-asset portfolio of KFT. S12 (MSFT-KFT) is a two-asset 
portfolio made of the most-desired asset S5 and the fourth most-desired portfolio, S2. S23 
(MSFT-XOM-KFT) is a three-asset portfolio of S2, S5 and S3; S3 is the lowest-return asset and 
among the least-desired portfolios. Obviously, KFT was a leading stock in this setting. 
 
From all the portfolios, S14 is the minimum variance (risk) portfolio, while S2 is the highest 
mean portfolio. S3 is the lowest mean portfolio and S4 is the riskiest portfolio, while both 
were strictly avoided in the average-game setting. The two most desired portfolios were 
chosen by 56.66% of unsuspicious agents and the first five by 84.75% of all unsuspicious 
agents. Only liquidity agents selected portfolio S4. 
 
 
 
 
 
                                                 
23 Stdev in Tables 6.3 and 6.4 designate standard deviations of fraction of agents holding certain portfolio, 
averaged over the repetitions of the game. Appendix 1 displays entire development of the game. 
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Figure 6.2: Selected portfolios of unsuspicious agents 
 

 
 
Figure 6.3 shows overshooting in the early phases of the selection process, presumably 
caused by the initial conditions in which all portfolios were equally held. After the peak, the 
desirability of each portfolio started to follow its “equilibrium” path. Overshooting is 
especially evident in the efficient frontier portfolios. Such overreaction to past information is 
consistent with predictions of the behavioral decision theory of Kahneman and Tversky 
(1982). 
 

Figure 6.3: Simulation time-paths 
 

 
 
The average-game decisions of suspicious agents averaged over 30 independent realizations 
are displayed in Figure 6.4. Dashes in the figure present the borders of three clustered 
sections as to the portfolio desirability. 
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Figure 6.4: Selected portfolios of suspicious agents 
 

 
 
Following the figure, selected portfolios can be grouped into three clusters, as represented by 
the dashes. This is not surprising, given that suspicious agents are to a lesser extent able to 
pursue the “winner takes all” scheme. It is then reasonable to expect that proportion of other 
portfolios is accordingly higher, and that the portfolios selected by suspicious agents are 
much more evenly distributed than those of the unsuspicious. On average, suspicious agents 
mostly opted for portfolios S2 (9.87%), S12 (7.94%), S23 (6.47%), S5 (6.40%) and S10 (5.73%), 
all of which are efficient frontier portfolios. Although it appears that suspicious agents are 
willing to bear greater risk than unsuspicious agents, they avoid the risikest portfolios. 
Desirability of portfolios seems to be decreasing with the level of risk. The riskiest portfolio, 
S4, performed the worst. Table 6.4 brings additional results. Appendix 2 displays the entire 
development of the game. 
 

Table 6.4: Fractions of suspicious agents per portfolio in the average-game setting 
 

 Mean Stdev S11 1.37 0.70 S22 2.19 0.66 
S1 1.39 0.79 S12 7.94 1.29 S23 6.47 1.67 
S2 9.87 3.08 S13 0.82 0.50 S24 2.85 0.86 
S3 3.58 2.22 S14 5.14 2.60 S25 1.73 0.64 
S4 0.25 0.53 S15 0.97 0.61 S26 1.93 0.68 
S5 6.40 2.67 S16 4.15 0.99 S27 4.73 0.92 
S6 4.15 1.82 S17 1.14 0.70 S28 2.23 0.77 
S7 2.09 0.53 S18 4.80 1.17 S29 1.66 0.57 
S8 0.49 0.49 S19 1.38 0.63 S30 2.84 0.76 
S9 3.78 1.14 S20 3.41 0.77 S31 3.00 0.88 
S10 5.73 1.53 S21 1.51 0.70    

 
Synchronization patterns of suspicious agents were not so intense as they were with 
unsuspicious agents. The two most-desired portfolios of suspicious agents, S2 and S12, were 
on average chosen by “only” 17.81% of agents, while the first five portfolios accounted for 
“only” 36.41% of the suspicious agents. On the other hand, the five least-desired portfolios 
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were on average chosen by 0.83% of unsuspicious agents and 3.67% of suspicious agents. 
MSFT and KFT were two leading stocks in the setting of suspicious agents. 
 
 

Discussion 
 
One message of the Markowitz model is that portfolio selection is not just picking different 
securities but selection of the right ones according to one’s risk aversion. Risk-averse agents 
differ from risk-seeking agents in that they are motivated by the desire for security, while the 
latter by the desire for potential gain. Given the behavior of both unsuspicious and 
suspicious agents, the results suggest that the riskier the portfolio, the more likely it is that 
agents will avoid it. Namely, the transition from squares to triangles is almost linear in risk. 
The main difference in the behavior of each cohort is that the transition from most desired to 
least desired is very discrete in the case of unsuspicious agents, while much slower in the 
case of suspicious agents. There are barely any black circles in the figure of unsuspicious 
agents, while three sub-sections are evident for suspicious agents. In both cases, portfolios S2 
and S3 demonstrate that agents are capable of selecting high mean portfolios and avoiding 
low risk portfolio, if such a low risk portfolio is also a low mean portfolio. While such is not 
evident for unsuspicious agents who avoid risk, diagonal dashes in the case of suspicious 
agents clearly demonstrate that those agents were more eager to bear risk, yet they required 
higher returns for bearing additional risk. However, the agents did not select high returns 
when the risk was too high, as in the case of S1. Such high-risk-high-returns portfolios were 
also avoided in Chapter 5.2. In addition, the steeper dashes signify that average-game 
decisions were more motivated by variance and less by returns. 
 
Following the figures and the tables, the decisions of unsuspicious agents can be grouped in 
two clusters: five portfolios from the efficient frontier, which were chosen by more than 5% 
of the agents each (S10 can also be added to this group, as it lies on the efficient frontier and 
was chosen by 3.6%), and the rest. From the rest, four portfolios slightly step out: S3 (1.07%), 
S18 (1.61%), S27 (1.42%), S30 (1.08%). S3 is among the least risky portfolios but has the lowest 
return, while S18 and S27 lie very close to the efficient frontier yet are slightly riskier. S1 and 
S6 are both high-return and high-risk portfolios and were avoided by unsuspicious agents. 
 
Selected portfolios of suspicious agents can be grouped into three clusters, as represented by 
the dashes: the six portfolios from the efficient frontier, being chosen by more than 5% of the 
agents; the four least-desired portfolios as chosen by less than a percent (S4, S8, S13 and S15); 
and the portfolios that lie between the two groups. The least-desired portfolios from the 
second group are the riskiest portfolios and also exhibit the lowest returns. Most portfolios of 
the third group are riskier than those of the first group and less risky from those of the 
second. There are three outliers to this apparent linearity-in-risk rule. S1 and S11 are as risky 
as those in the second group, but exhibit higher returns. S3 is among the safest but exhibited 
the lowest return. All three belong to the third group of portfolios. 
 
Because suspicious agents are much more inclined towards riskier portfolios, their weighted 
beta of 0.731 is much higher than that of unsuspicious agents (0.459). Both values are much 
below market risk, which indicates that agents in general behave in a risk-aversive manner 
and are extremely cautious in taking extra risk, even though suspicious agents take slightly 
higher risks than do unsuspicious agents. 
 
The most-desired portfolio of unsuspicious agents, S5, has the smallest beta of only 0.314, 
while the second most desired, S12 has beta of only 0.433. The five most-desired portfolios of 
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unsuspicious agents have an average beta of 0.418 and weighted beta of 0.396. The five most-
desired portfolios of suspicious agents also have small betas on average (0.441), with a 
weighted beta of 0.451. This finding is not surprising as the unsuspicious agents were much 
more capable of selecting “winners”. As “winners” refer to the lowest-beta portfolios, this is 
a logical consequence of the fact that every additional portfolio has a larger beta. On the 
other hand, the ten least-desired portfolios of unsuspicious agents have an average beta of 
1.469 and weighted beta of 1.450, while those of suspicious agents have an average beta of 
1.519 and weighted beta of 1.391. Under both settings, only liquidity agents played portfolio 
S4, which is the portfolio with the largest beta of 2.475. These results show that agents avoid 
having high beta portfolios; obviously, the losses from those portfolios were sufficient to 
deter agents from selecting them. This is an implication of Fama and French (1992), whose 
research did not support the prediction that average stock returns are positively related to 
market betas. The figures also exhibit that a market portfolio, S31 in my case, is not mean-
variance efficient. Either its risk is too large for the given return, or the return is too small for 
the given risk. Clearly, S3 is a bad-beta portfolio. 
 
To see how agents weigh between the risk and returns, I examine three cases. One is S2 
(MSFT) in relation to S6 (AA-MSFT) and S18 (AA-MSFT-KFT). The other is S3 (XOM) in 
relation to S14 (XOM-KFT). The last is S20 (AA-XOM-MSFT) to S23 (MSFT-XOM-KFT). The 
first three portfolios are very similar to each other, and the same is true for the other two 
pairs. 
 
S2 was the portfolio with the highest mean return and a moderate variance. S2 had quite the 
same risk as S18 but a much higher mean return, while it had a mean return very similar to 
S6 but a substantially smaller risk. On average, S2 was chosen by 8.78% of unsuspicious 
agents and 9.87% of suspicious agents, which made it the fourth most-desired portfolio. On 
the other hand, S18 was chosen by no more than 1.61% of unsuspicious agents and 4.80% of 
suspicious agents on average, while S6 was chosen by just 0.46% of unsuspicious and 4.15% 
of suspicious agents. Unsuspicious agents were not willing to give up the additional 
“riskless” return of S2, yet the willingness of suspicious agents towards bearing more risk 
and taking less profit could be noticed in both cases. 
 
S3 was slightly more volatile than S14 but exhibited a significantly lower mean return (in 
fact, the lowest among all portfolios). However, S3 was on the average chosen by 1.07% of 
unsuspicious agents and 3.58% of suspicious agents. On the other hand, S14 was chosen by 
8.24% and 5.14% of unsuspicious and suspicious agents, respectively. 
 
An examination of S23 and S20 revealed the two portfolios to have mean returns very close 
to each other but significantly different variance. Unsuspicious agents largely chose S23 
(11.07%) and left S20 mostly to liquidity agents. Unsuspicious agents required a higher 
premium to hold a riskier portfolio and were not ready to trade larger risk for nothing. 
Contrary to them, suspicious agents were more willing to trade higher risk to the return, as 
3.41% took S20 compared to 6.47% who took S23. 
 
Following these observations, it could be said that when agents select portfolios, they first 
make a sort of the “green-line area” that contains satisfying portfolios in relation to their 
returns and risk. The width of this area depends on the level of agents’ suspiciousness. In 
contrast to unsuspicious agents, who very accurately select portfolios that are more lucrative, 
suspicious agents’ decisions are distributed among many portfolios that are close together. 
The intuition for the behavior of suspicious agents is straightforward. Namely, when two 
suspicious agents compare their outcomes, the probability that they would take a less 
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lucrative portfolio is different from zero. Therefore, when the two returns are close together, 
it is very likely that suspicious agents may select a less lucrative portfolio. As portfolio S3 
indicates, agents may not want to opt for the least risky portfolios that also fail to yield 
satisfactory return, which is also in line with the mean-variance model of Markowitz. 
 
Finally, the coefficient of correlation of , 0.681US Sr =  indicates that in the average-game setting 
the behavior of unsuspicious and suspicious agents exhibits a very similar pattern. 
 
 
6.4 Endgame decisions 
 
Using the same game realizations, I now analyze only the agents’ end-period decisions in 

264t = . The results presented in Figure 6.5 and reported in Table 6.5 relate to the average of 
30 endgame decisions of independent game repetitions.  
 

Figure 6.5: Selected portfolios of unsuspicious agents 
 

 
 
Following the results, we see that unsuspicious agents mostly ended the games with S12 
(36.64%), and S5 (22.02%). These two portfolios were followed by S2 (14.49%) and S23 
(9.91%). S12 is a two-asset portfolio of S5 and S2, and S23 is a three-asset portfolio of S2, S5 
and S3. All of these are low-risk portfolios from the efficient frontier. There are plenty of high 
risk and unprofitable portfolios that were strictly avoided: S4 (0.08%), S13 and S15 (0.10%), 
and S8, S11 and S19 (0.11%). Except for S4 (C) and S19 (a three-asset portfolio of AA-XOM-
C), the rest are two-asset portfolios that include the riskiest stock S4. Because of the riskiness 
of S4, the inclusion of an additional stock cannot reduce the risk sufficiently to make mixed 
alternatives more desirable. The two leading stocks are KFT (S5) and MSFT (S2). The top five 
portfolios were chosen by 86.4% of all unsuspicious agents on average, while on the other 
side, 25 out of 31 possible portfolios were chosen on average by the last decile of agents. This 
indicates a discrepancy between the most- and the least-desired portfolios. The endgame 
decisions of unsuspicious agents may be grouped into three clusters represented by the three 
different symbols in the above figure. Clearly, the transition from the most- to the least-
desired portfolios is very straight with a tiny transition line created by portfolios S10 (3.33%), 
S14 (3.33%), S18 (2.24%) and S27 (1.58%). 
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Table 6.5: Fractions of unsuspicious agents per portfolio in the endgame setting 
 

 Mean Stdev S11 0.11 0.05 S22 0.12 0.08 
S1 0.28 0.21 S12 36.64 5.70 S23 9.91 1.89 
S2 14.49 4.60 S13 0.10 0.03 S24 0.30 0.24 
S3 0.32 0.28 S14 3.33 1.11 S25 0.13 0.1 
S4 0.08 0.04 S15 0.10 0.05 S26 0.18 0.12 
S5 22.02 2.97 S16 0.64 0.66 S27 1.58 0.85 
S6 0.81 0.53 S17 0.21 0.21 S28 0.22 0.17 
S7 0.18 0.16 S18 2.24 0.13 S29 0.14 0.09 
S8 0.11 0.05 S19 0.11 0.06 S30 0.69 0.51 
S9 0.59 0.47 S20 0.66 0.46 S31 0.23 0.24 
S10 3.33 1.23 S21 0.13 0.12    

 
The results for suspicious agents are represented in Figure 6.6 and Table 6.6. Obviously, the 
transition from the most- to the least-desired portfolios of suspicious agents is not discrete, 
but again resembles a fuzzy principle. Selected portfolios can be grouped into three clusters, 
as indicated by the dashes. The first group consists of the most-desired portfolios: S2 
(15.07%), S12 (7.68%), S6 (7.36%) and S18 (6.53%). These are high-return and low-risk 
portfolios. The vast majority of the portfolios belong to the second group of moderate-to-
high return and moderate-to-high-risk portfolios. The third group consists of the least-
desired portfolios: S4 (0.17%), S13 (0.59%) and S15 (0.68%), along with the portfolio S8 
(0.46%), which are low-return and moderate-to-high-risk portfolios. This group also includes 
S3, which is the lowest-return and (almost) the lowest-risk portfolio. The five most 
frequently chosen portfolios were selected on average by 41.6% of all suspicious agents, 
while the last decile of agents was comprised of 11 out of 31 portfolios. Interestingly, the 
decisions of suspicious agents put S5, which was the second-most-desired portfolio of 
unsuspicious agents, in the second group of moderate-to-high return and moderate-to-high-
risk portfolios. 
 

Figure 6.6: Selected portfolios of suspicious agents 
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Table 6.6: Fractions of suspicious agents per portfolio in the endgame setting 
 

 Mean Stdev S11 1.51 1.41 S22 1.97 1.40 
S1 2.28 2.32 S12 7.68 2.43 S23 4.64 2.19 
S2 15.07 5.38 S13 0.59 0.65 S24 2.98 1.74 
S3 0.92 0.66 S14 2.06 0.93 S25 1.09 0.81 
S4 0.17 0.25 S15 0.68 0.67 S26 2.29 1.54 
S5 3.19 1.58 S16 4.96 2.70 S27 4.60 2.42 
S6 7.36 4.41 S17 1.68 1.88 S28 2.83 1.93 
S7 2.07 1.52 S18 6.53 3.43 S29 1.38 0.95 
S8 0.46 0.52 S19 1.48 1.32 S30 2.35 1.84 
S9 4.91 3.24 S20 2.94 1.87 S31 3.53 1.81 
S10 4.11 2.32 S21 1.68 1.55    

 
In their endgame decisions, suspicious agents still prefer the lowest risk portfolios and are 
willing to take on more risk than unsuspicious agents. The same conclusion was reached in 
the average-game setting. In the endgame setting of suspicious agents, the leading stock was 
MSFT (S2). 
 
 

Discussion 
 
The picture of endgame decisions shares many similarities with that of the average-game in 
the main conclusion that the riskier the portfolio, the smaller its desirability. In both cases, 
the transition from the most to the least desired portfolios followed a fuzzy principle. 
However, more gently sloping dashes signify that endgame decisions are more stimulated 
by returns and not so much by risk. The corresponding coefficient of correlation between the 
average-game and the endgame decisions of , .0 943AVG ENDr =  for unsuspicious agents and 

, .0 838AVG ENDr =  for suspicious agents supports this observation. However, there are some 
major differences in the two. Clearly, the transition from the most-desired portfolios to the 
least-desired is diagonal, with high-mean and low-risk portfolios being the most desired, and 
the low-mean and the high-risk portfolios the least desired. 
 
Unsuspicious agents ended the games on average with a weighted beta of 0.467, which is 
much lower than that of suspicious agents 0.778. The five most-desired endgame portfolios 
of unsuspicious agents have a weighted beta of 0.419. This is again much lower than beta of 
the five most-desired portfolios of suspicious agents, which is 0.637. Regarding the least-
desired portfolios, a weighted beta of unsuspicious agents was 1.424 and that of suspicious 
was 1.280. This is a logical consequence of the fact that unsuspicious agents highly disregard 
risky portfolios and do so much more than suspicious agents. Therefore, not only are 
unsuspicious agents more risk averse as the games proceed but also are risk averse in their 
endgame decisions. 
 
The coefficient of correlation between the endgame selections of unsuspicious and suspicious 
agents is , .0 515US Sr = , reflecting a moderate (dis)similarity in the behavior of the two groups. 
The greatest part of this difference does not lie in the selection of winners, but rather in the 
proportion of these winners and by corollary also in that of the “losers”. 
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6.5 Consistency in selection 
 
In this section, I test for consistency in the agents’ portfolio selection.24 In stochastic games in 
which agents make decisions based on interactions with others, it is reasonable to expect that 
in independent game repetitions agents would fail to make identical decisions, despite 
unchanged external conditions.  
 
Particularly, I am interested in the persistence in choices. A consistently chosen portfolio 
should exhibit small variability in its holdings in each time period over independent 
repetitions. I utilize the share of the portfolio holdings as an indicator. I take aggregated data 
of shares of agents per portfolio since I do not collect data on particular portfolios that were 
possessed by individual agents throughout the games.25 I take two different measures: 
coefficient of variation and Monte Carlo simulations. 
 
 
6.5.1 Coefficient of variation 
 
The coefficient of variation (CV) is defined as a ratio between the standard deviation and the 
mean, vc σ µ= . CV values are calculated for each portfolio holding in each time period over 
all 30 independent repetitions of the game. 
 
I am interested in the variability of single time periods, i. e. 1, 2, , 264t = … , as the games 
repeat. I then average the values of CV over all 264  time periods for each portfolio. A 
portfolio whose holdings in each time period over all repetitions are stable should exhibit a 
small CV value. I truncate the bottom line of portfolio holdings to assess the proportion of 
liquidity agents per portfolio. Therefore, if less than 0.5% of agents possess a given portfolio 
in a given time unit, then the value is set to 0.5%. I thus avoid the possibility of high 
variability in the proportion of liquidity agents, which might not have been meaningful. For 
example, if 0.1% of liquidity agents were initially found to possess a given portfolio in the 
first realization of the game and 0.2% in the second, this would signify 100% variability in 
the holdings of liquidity agents. However, in both cases only liquidity agents would possess 
a given portfolio, which would mean that the variability is in fact zero and not a hundred 
percent. Results for unsuspicious (US) and suspicious agents (S) are reported in Table 6.7. 
 

Table 6.7: CVs of unsuspicious and suspicious agents 
 

 US S S11 9.32 75.83 S22 15.88 58.93 
S1 17.47 80.02 S12 24.51 31.05 S23 25.09 38.00 
S2 35.11 34.92 S13 7.77 67.57 S24 42.10 46.93 
S3 52.94 49.12 S14 30.46 39.03 S25 27.52 62.16 
S4 7.06 37.13 S15 10.38 64.04 S26 18.33 57.69 
S5 20.71 34.35 S16 66.47 45.48 S27 52.94 44.01 
S6 37.44 61.10 S17 22.53 80.11 S28 26.59 56.87 
S7 23.16 56.01 S18 57.17 46.22 S29 18.35 57.64 
S8 9.11 59.13 S19 10.86 74.43 S30 58.02 58.44 
S9 53.13 58.68 S20 58.92 50.82 S31 39.93 47.93 
S10 38.82 42.94 S21 13.91 75.67    

                                                 
24 I interchangeably use terms consistence and persistence. 
25 When working with proportions of chosen portfolios, it might be the case that even though the series repeated 
itself, different agents might hold the same portfolios. I do not control for that. 
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As far as unsuspicious agents are concerned, the least-desired portfolios (S4, S13, S8, S11, S15 
and S19) those laying the furthest from the portfolios of the efficient frontier, exhibit the 
smallest average row variability in holdings, that is below or slightly above 10%. This means 
that the average per-period holdings of these portfolios were the most stable within all 
independent repetitions of the game. Such a result is compelling as it indicates that agents 
might be capable of allocating their least-preferred portfolios and that they persistently avoid 
them, at least in such a small market. 
 
It is also compelling to see that agents are slightly more capable of avoiding the least-desired 
portfolios than of allocating those that are the most desired. Namely, the variability of most-
desired portfolios, those from the efficient frontier, S5, S12, S23, S2 and S14, was very similar 
for both groups of agents. Yet it ranged from 20.71% (S5) to 35.11% (S2) for unsuspicious 
agents and from 31.05% (S12) to 39.03% (S14) for suspicious agents. Regarding the most-
desired portfolios of unsuspicious agents, the smallest row variability was exhibited by the 
most desired portfolio S5, followed by the second most S12 (24.51% variability), and then S23 
(25.09%), S14 (30.46%) and S2 (35.11%). However, as reported in Table 7.3, the average 
holdings of S14 (8.24%) and S2 (8.78%) were very close together. 
 
Because the suspicious agents were not as capable as the unsuspicious in selecting winning 
and avoiding losing portfolios, their row variabilities are larger than those of unsuspicious 
agents. However, the smallest row variability was exhibited in portfolios from the efficient 
frontier that were the most-desired, i. e. S12, S5, S2, S23, and S14, as well as the least-desired 
portfolio S4. All of these portfolios are followed by some neighboring portfolios, i. e. S10, 
S27, S16 and S18. This means that suspicious agents are far more capable of being persistent 
regarding the most-desired portfolios and are also able to persistently avoid the least desired 
ones. However, they are not so consistent regarding portfolios that lie in-between. In contrast 
to unsuspicious agents, this result indicates that suspicious agents fail to identify properly 
the least-desired portfolios, and for this reason they may either hold them too long or trade 
them too much. The implication is similar to that identified in Odean (1998). Altogether, the 
unsuspicious agents are more capable of being persistent than suspicious agents, which is 
not surprising. 
 
 
6.5.2 Monte Carlo 
 
Although the analysis of CVs is compelling, it is by no means complete. CV measures the 
“row” dispersion of portfolio holdings in each time period over repetitions. If variability is 
low then the portfolio is said to be persistently chosen. However, the measure has its 
limitations. The use of CV might fail to acknowledge the potential linear dependence of 
game repetitions. To control for this, I now study the persistence of choices by way of an 
analysis of one-period transitions of portfolio selections by using Monte Carlo method.  
 
I employ the six-step procedure of the Monte Carlo method: 

1. Data transformation. 
2. Random choice of one from the 30 repetitions per selected portfolio. 
3. Random choice of one repetition from the next, t+1, period. 
4. Square the difference between (2) and (3). 
5. Sum (4) over 10.000 Monte Carlo runs for every time period. 
6. Report the median of all time-periods. 
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Before running the Monte Carlo, the data had to be transformed because the different initial 
holdings of portfolios over repetitions (initial setting-up was done randomly with a variable 
“seed”) prevented proper inter-period comparability. I used the last time period as the base 
so as to minimize the influence of the initial set-up. The data for each portfolio in every 
repetition of the game is, hence, expressed as a ratio to the value of portfolio holdings in the 
last period of that repetition as 264t tX X X=� . 
 
Starting with the initial time period t , I first set the computer algorithm to choose randomly 
one repetition from all 30 repetitions per selected portfolio (A), and then, irrespective of the 
first selection, one repetition from the next t + 1  time period (B). After the selection of both 
repetitions, I store the value of the portfolio holding under (B), compare its value to the value 
of (A) in time period t + 1  and square the difference. If these portfolio holdings were chosen 
consistently, there should then be no difference between both compared values irrespective 
of the repetition number. I then sum the square differences over all 10.000 runs for every 
time period and finally report the median of all time periods as the “persistence factor” of 
the portfolio.26 The implication is simple, the lower (the larger) the value, the larger (the 
lower) the level of persistence. Table 6.8 reports results of the Monte Carlo. 
 
The idea underlying Monte Carlo is that if a portfolio is chosen consistently over all 
repetitions of the games, then for its transition from one period t  to the next consecutive 
period t + 1  state it should be irrelevant from which of the 30  repetitions of the game 
observations were taken. In perfectly consistent decision making, an agent would always opt 
for the same choice regardless of the transition from one time period to the next being made 
within the same repetition of the game or even within two different repetitions. If in a 
particular case repetitions themselves influenced and affected a different choice, then this 
would indicate that agents failed to have clear preferences regarding such a portfolio. 
 

Table 6.8: Medians of sum of squares of the difference 
 

 US S S11 1310 896429 S22 10378 76915 
S1 2608 3735 S12 39 1468 S23 213 5324 
S2 87 334 S13 325 44102 S24 7712 51176 
S3 804228 489909 S14 4829 79743 S25 12509 36583 
S4 0 816 S15 784 179501 S26 4872 5621 
S5 312 142580 S16 5066 3532 S27 2709 398750 
S6 1645 490 S17 2611 5934 S28 5638 2618 
S7 4269 10603 S18 385 796 S29 3735 56333 
S8 560 11231 S19 623 21631 S30 5657 38936 
S9 3498 1987 S20 2199 86009 S31 5327 31181 

S10 1499 10142 S21 2281 22005    
 
Unsuspicious agents most consistently chose portfolio S4 with a median of 0, which indicates 
a perfect fit. Not only did agents consistently avoid S4, but they did it in the very early stages 
of the games. The S4 portfolio is followed by portfolios S12 and S2, which still exhibited very 
large levels of persistence, and then by portfolios S23 and S5 with a bit lower (still very high) 
persistence levels. The grouping is very similar to that of the CV analysis above with one 
exception. Namely, in the CV analysis portfolio S4 followed the group of the efficient frontier 
portfolios but did not lead the group as in the present case. 

                                                 
26 Median is used instead of the mean to reduce the influence of extreme values. For instance, first few transitions 
exhibit large changes. 



 
  

- 88 - 

The level of persistence of other portfolios decreases with their distance from the most 
consistent portfolios. Portfolios in the above figures found to be in or near the center exhibit 
the lowest levels of consistency. The least consistent portfolio is S3, which is a portfolio from 
the inefficient frontier. 
 
The differences in the suspiciousness factor once again entailed agents altering their 
behavior. Under the new circumstances suspicious agents were ready to bear additional risk, 
being hence more consistent in opting for those portfolios yielding larger returns even 
though being more risky (volatile). These are portfolios S6, S18 or S9. However, it has been 
demonstrated that the behavior of suspicious agents is much less consistent than that of 
unsuspicious agents, implying that suspicious agents in general exhibit much lower 
preference over portfolio choice. 
 
 
6.6 Discussion 
 
Much of what has been said above is displayed in Figure 6.7. The figure plots the 
unsuspicious and suspicious agents’ average-game and endgame selections against the beta 
coefficients of portfolios. Dots in the plots represent different portfolios according to their 
betas (X-axes) and the fraction of agents having selected them (Y-axes). “S” and “U” in the 
plots designate suspicious and unsuspicious agents, respectively; and “AVG” and “END” 
designate average-game and the endgame selection, respectively.  
 

Figure 6.7: Scatter graphs of unsuspicious and suspicious agents’ average-game and endgame 
selections against the beta coefficients of portfolios 
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As regards the unsuspicious agents, the figure clearly presents that they highly prefer less 
risky portfolios. In addition, they are capable of selecting winners, while the suspicious 
agents are not. Some additional results are reported in Table 6.9. The first row of the table 
reports the percentages of agents with the five the most desired portfolios. The second one 
reports the numbers of portfolios (out of 31) that is possessed by the last decile of agents. 



 
  

- 89 - 

Weighted beta row reports the weighted betas of desired portfolios, while the nether two 
report the weighted betas for five the most desired and ten the least desired portfolios. The 
last row reports the lambda values from the power law distribution. 
 

Table 6.9: Overview of results 
 

Unsuspicious agents Suspicious agents  
AVG END AVG END 

Proportion of agents 
Top 5 (%) 84.75 86.40 36.41 41.60 
Least 10% (No./31) 24/31 25/31 10/31 11/31 
 
Weighted beta 0.459 0.467 0.731 0.778 
Top 5 0.396 0.419 0.451 0.637 
Least 10 1.450 1.424 1.391 1.280 

 
Lambda 1.826 2.030 0.838 0.945 

 
In order to illustrate the argument of the table, Figure 6.8 plots the cumulative distributions 
of selected portfolios in the average-game and the endgame settings. The portfolios depicted 
in the figure are numbered in accord with their desirability (descending order) and not as 
defined in Table 6.1. The portfolio selection of the average-game decisions depicts a power-
law distribution of the type y Axλ= , with parameter 1.826λ = −  ( 2 0.97R = ) for unsuspicious 
agents and 0.838λ = −  ( 2 0.75R = ) for suspicious agents. In the endgame setting, the 
corresponding lambda values equal .λ = −2 030  ( 2 0.98R = ) for unsuspicious agents and 

0.945λ = −  ( 2 0.77R = ) for suspicious agents. The power-law exponents were obtained by 
using the least squares method.27 The characteristic of a power law distribution is that most 
agents opt for a small number of portfolios, while a small number of agents choose the vast 
majority of remaining portfolios. High lambda values for unsuspicious agents indicate a 
striking “winner takes all” behavior. On the other hand, lambda values of suspicious agents 
are significantly lower than 1, indicating a substantial deviation from the “rich get richer” 
pattern. The power-law parameters are larger in the endgame setting than in the average-
game setting, which means that a synchronization process was revealed over the course of 
the game, with unanimous decisions being avoided. 
 
The figure reflects a “winner takes all” scheme in the selection process, which is highly 
significant within unsuspicious agents. The top five portfolios of unsuspicious agents were 
chosen by 84.75% of unsuspicious agents, and 24 of all 31 possible portfolios were chosen by 
the last decile of unsuspicious agents on average. Such an outcome is an implication of 
herding, which was highly pronounced in the setting of unsuspicious agents. As was also 
argued by Banerjee (1992), Bikhchandani et al. (1992, 1998) and Lux (1995), herding was 
induced by local communication on the network. In the present case, I would argue that 
absolute herding was prevented by liquidity agents. On the other hand, the top five 
portfolios of suspicious agents accounted for 36.41% of all suspicious agents with the last 
decile of suspicious agents having 10 out of the 31 possible portfolios on average. Suspicious 
agents tended to select portfolios more evenly across the given alternatives. 
 
 

                                                 
27 The correlation coefficient has typically been used as an informal measure of the goodness of fit of a 
distribution to a power law (Chakrabarti and Faloutsos 2006). 
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Figure 6.8: Cumulative distributions of decisions 
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 (a) average-game  (b) endgame 
 
As regards the persistence in selection, the first impression is that the decisions of suspicious 
agents are much less persistent on average than that of unsuspicious agents, as their Monte 
Carlo values are much higher than those of unsuspicious agents, the Monte Carlo test 
revealing the persistence of choices between consecutive time periods. As such, suspicious 
agents appear to make less consistent inter-period transitions. Now, let us say that portfolios 
from the two most consistent groups are designated as consistent, then simulation results 
indicate that unsuspicious agents most consistently opted for the following two types of 
portfolios: those from the efficient frontier, and those the farthest apart from the first group. 
Keep in mind that consistency does not imply desirability as one could also consistently 
avoid adopting any particular alternative. In general, portfolios from the first group were 
mostly desired, while those from the second group were mostly avoided. One exception is 
portfolio S14, which is a part of the efficient frontier but at the same time exhibits a very low 
level of consistency. There is no appealing explanation for this. 
 
Desirability does not concord with the return levels. That is something one would expect, 
since agents weigh returns to risks. For example, portfolios with the largest average returns 
are S2, S6, and S1. From these, S2 was also highly desirable by unsuspicious agents, while the 
other two were not. Their higher average returns evidently had not outweighed their higher 
risks (volatilities). 
 
However, the correlation between the average holding rates of portfolios and the variability 
of their returns is a bit more pronounced and negative, of course, with the coefficient of 
correlation of , 0.44AVG VARr = − . The sign of correlation is as expected – more variability 
attenuates the desirability of the portfolio. Combining both observations, I may conclude that 
when forming their trading strategies unsuspicious agents are more systematically focused 
on the variability (or the risk) of their holdings than their returns. The implication so far is 
instructive, yet surprising in that agents in the model follow returns and not the risk. 
Portfolios of the efficient frontier should be consistently maintained. 
 
Let us look now at the consistency levels of portfolios S10 and S27, both of which can be 
found alongside the efficient frontier portfolios. The above tables show that both of them 
exhibit significantly lower levels of persistence than the efficient frontier portfolios. An 
intuitive explanation for this may be that on average when deciding which portfolio to 
acquire agents opt for the “first best” from the efficient frontier than rather than their closest 
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neighboring portfolios. The profile of portfolio S10 might serve as an indicator corroborating 
my assertion. This is a portfolio that was held on the average by the fifth largest group of all 
agents, 3.6%. I would say that S10 is an example of a portfolio that an agent would not be 
eager to change once owning it, but also one that other agents would not be eager to obtain. 
 
Portfolios from the efficient frontier should be among the most consistently chosen portfolios 
and most of them are with the exception of S14, which overtly breaks this rule. It is indeed 
highly desirable with an average holding rate above 8% as well as among the least variable 
as measured by the CV coefficient. However, its Monte Carlo result implies that agents 
exerted a highly inconsistent trade policy towards it. The portfolio was namely put into the 
last third among all portfolios. Our argumentation for such a portfolio development is as 
follows: even though the portfolio as such yields highly stable returns and has the lowest 
volatility, the returns are very low, fluctuating around a zero mean. Unsuspicious agents, 
who have been shown to weigh returns against volatility, definitely appreciated the 
portfolio’s low volatility and hence made it desirable. However, its lack of promise regarding 
gain prevented it from being persistently desired. 
 
Some portfolios were fairly stable within particular repetitions but highly volatile between 
repetitions. For suspicious agents portfolio S4 is one such example. Higher row volatility on 
the one hand and lower column volatility on the other might indicate that the holding of 
such a portfolio would be stabilized at different levels over time in individual repetitions. 
Stabilization at different levels preserves the row volatility between repetitions but at the 
same time eliminates the column variability. Liquidity agents, who persist on their initial 
portfolios and do not trade them regardless of the returns, would very likely hold such 
portfolios. 
 
The other peculiarity worth noting is portfolio S5 as held by suspicious agents (and to a bit 
lesser extent also portfolio S3 of unsuspicious agents) in that it exhibited the second lowest 
level of row variability but at the same time was among the portfolios with the largest 
between-period variability. The Monte Carlo test indicated that agents did not have any 
consistent preference for the portfolio, while the small row variability suggests that the 
holdings of the portfolio had not stabilized. 
 
Simulation results also indicate that suspicious agents are more eager to possess more risky 
assets than unsuspicious agents. Two such evident examples are portfolios S6 and S18, both 
of which gained regarding average holdings, while the efficient frontier portfolios S5 and S12 
lost a big chunk of their shares. Portfolio S1 remains as one of the least-desired portfolios 
even though exerting the third largest average return. This indicates that suspicious agents 
despite being more risk loving still weigh return against risk. S1 was also among the first 
third of the most consistently chosen portfolios by suspicious agents. 
 
Suspicious agents mostly opted for portfolio S2 with the average share of nearly 10%, which 
is far below the average share of the top portfolio selected by unsuspicious agents (S5), being 
selected by nearly 30% of all unsuspicious agents. Nevertheless, S2 was also the most 
consistently chosen portfolio by suspicious agents, which is an indication of the shift towards 
the more profitable but also the more risky portfolios. The increase in the holding of 
portfolios S6 and S18 is just another implication of change in their behavior. 
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Chapter VII 
 
 
Multiple-asset portfolio selection in a bull and a bear market 
 
 
7.1 Introduction 
 
In the previous chapter, it was demonstrated that agents are capable of choosing portfolios 
from the efficient frontier as predicted by Markowitz, although they were only able to follow 
returns. In addition, agents exhibited a risk-averse behavior, as they chose low-risk portfolios 
that were closer to the bifurcation point. This is an encouraging result. However, the time 
span was chosen arbitrarily and did not contain any significant trend, while history of 
financial markets has shown that stock markets can exhibit very large and persistent moves 
upwards and downwards. On the other side, empirical studies have demonstrated that 
trends are significant for agent’s behavior. Among others, Kahneman and Tversky (1979) 
have argued that agents behave differently in “good” times than in “bad” times. They also 
have argued that agents have convex value functions for losses and concave for gains 
(Tversky and Kahneman 1991). Fama and Schwert (1977) argued that expected returns on 
risky securities are higher in bad times, since people are less willing to hold risky assets at 
such times. To address this issue, I now simulate the portfolio selection games in a bear and 
in a bull market. 
 
 
7.2 Data 
 
There are 5000n =  agents in the market with each of them adjacent to ten closest agents 
(five on each side) and rewired to a randomly selected agent with a probability 0.1=p . 
Again, liquidity agents are placed in the following homogeneous groups: 700-719, 1000-1019, 
1200-1219, 1500-1519, 2500-2519, 3500-3519 and 4800-4819. At the start of each game, a 
random portfolio is assigned to each of them, which they hold throughout the games. 
 

Figure 7.1: Dow Jones Industrial Average 
 

 
Source: Yahoo!Finance. 
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The portfolios are the same 31 as defined in Table 6.1. Again, I utilize the daily closing prices 
of selected stocks on the NYSE as data and calculate the returns as the relative difference 
between the two consecutive days, which also captures after-hours and pre-market trades. 
The time interval starts on September 22, 2008 and ends on January 11, 2010. The data set is 
divided into two sub-periods, bear and bull part (see Figure 7.1). The figure represents the 
development of the DJIA index in the 5-year period from December 18, 2006 to December 12, 
2011. Both trends are clearly present. A bear market (blue area) designates a widespread 
decline in stock prices, while a bull trend (yellow area) signifies an overall rise in prices. I 
was not interested in the reasons for both trends but just took them as they were. The figure 
also exhibits short-term regime reversals within each of the trends. 
 

Table 7.1: Stock returns in a bear and a bull market 
 

 AA C KFT MSFT XOM 
Yield – bear (in %) -78.62 -91.10 -31.91 -34.45 -14.81 
Yield – bull (in %) 185.13 55.79 25.93 86.28 4.97 

 
The bear market started on September 22, 2008 and ended on March 13, 2009, while the bull 
market succeeded it, starting on March 16, 2009 and ending on January 11, 2010. March 14 
and March 15, 2009 were non-trading days. The bear market consisted of 120 intervals and 
the bull market of 209. Table 7.1 reports overall returns for each stock within both sub-
periods, from which large differences in the stock returns in the two sub-periods can be seen. 
The worst investment would have been one dollar invested in C at the beginning of the bear 
market as it ended in only 8.90 cents. In the bull market, a dollar invested in AA produced a 
yield of a dollar and 85.13 cents. XOM was just slightly shaped by the bear market but did 
not exhibit any large positive move in the bull market either. It would lead to only a 14.81% 
loss in the bear market and would produce less than a 5% yield in the bull market. Thus, it 
could be characterized as safe investment. 
 

Table 7.2a: Beta coefficients and R2 of portfolios in a bear trend 
 

 Beta 2R  S11 1.309 0.833 S22 1.114 0.931 
S1 1.205 0.680 S12 0.582 0.733 S23 0.629 0.754 
S2 0.711 0.650 S13 1.316 0.858 S24 1.024 0.892 
S3 0.724 0.615 S14 0.588 0.706 S25 1.028 0.909 
S4 1.907 0.651 S15 1.180 0.769 S26 1.137 0.992 
S5 0.453 0.552 S16 0.880 0.807 S27 0.773 0.831 
S6 0.958 0.794 S17 1.274 0.962 S28 1.069 0.982 
S7 0.965 0.764 S18 0.790 0.830 S29 1.072 0.985 
S8 1.556 0.893 S19 1.279 0.968 S30 0.949 0.955 
S9 0.829 0.769 S20 0.794 0.805 S31 1.000 1.000 
S10 0.718 0.706 S21 1.188 0.937    

 
Beta coefficients of the portfolios and their corresponding coefficients of determination (R-
squares) in both sub-periods are reported in Tables 7.2a,b. They were obtained by the 
method of OLS. A beta coefficient reflects portfolio risk against market risk. It measures the 
correlation between individual and market portfolios. The coefficient of determination 
measures the degree to which an individual portfolio is diversified in relation to the market 
portfolio. Namely, it measures the proportion of individual portfolio variance that is 
explained by market variance. Therefore, the difference up to unity is the proportion of 
portfolio specific risk that could have been diversified. Again, S31 signifies a market 
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portfolio. The data indicate that high (low) beta portfolios remain so irrespective of bull or 
bear, despite there being a higher variability in returns in the bull market. 
 

Table 7.2b: Beta coefficients and R2 of portfolios in a bull trend 
 

 Beta 2R  S11 1.378 0.775 S22 1.063 0.837 
S1 1.461 0.540 S12 0.467 0.484 S23 0.458 0.568 
S2 0.584 0.352 S13 1.303 0.749 S24 1.034 0.830 
S3 0.439 0.385 S14 0.394 0.448 S25 0.985 0.799 
S4 2.167 0.641 S15 1.258 0.719 S26 1.163 0.982 
S5 0.530 0.241 S16 0.828 0.713 S27 0.708 0.753 
S6 1.022 0.655 S17 1.404 0.959 S28 1.140 0.985 
S7 0.950 0.647 S18 0.798 0.715 S29 1.104 0.969 
S8 1.814 0.902 S19 1.355 0.947 S30 0.885 0.873 
S9 0.905 0.624 S20 0.750 0.700 S31 1.000 1.000 
S10 0.511 0.497 S21 1.326 0.937    

 
Figure 7.2 displays mean returns of portfolios (Y-axis) against their betas (X-axis) in the bear 
and the bull markets. As the CAPM model predicts, the bear market exhibits negative beta 
premium and the bull market a positive. This means that low (high) beta portfolios should 
have been the most desired by the agents in the bear (bull) market. I would like to stress that 
both figures are built on daily data and include both pre-hour and after-hour trades. 
Compared to the stocks in the bear market, those in the bull market exhibited smaller 
standard deviations in returns. 
 

Figure 7.2: Mean return vs. Beta for portfolios in a bear and a bull market 
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7.3 Results and discussion 
 
Again, I ran 30 independent repetitions of the games for each sub-period and averaged the 
results. I considered the games of unsuspicious and suspicious agents and, as in the previous 
chapter, examined the average-game and endgame decisions. 
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7.3.1 Bear trend 
 
I first examined the bear trend, which is characterized by large standard deviations and some 
highly negative mean returns. Portfolios that included C and AA, especially S1, S4 and S8, 
were highly risky portfolios with huge variation in returns. On the other hand, portfolios 
with XOM, i.e. S3, S10 and S14, exhibited slightly positive mean returns, while also being of 
small risk. Figure 7.3 plots mean returns of the portfolios (Y-axis) to their standard 
deviations (X-axis).  
 

Figure 7.3: Efficient frontier portfolios – bear  
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As reported in Table 7.3a, unsuspicious (US) and also suspicious agents (S) were capable of 
selecting less risky portfolios that included XOM while avoiding highly risky portfolios of C 
and AA. As in the previous chapter, the average-game setting refers to the average selection 
of agents throughout the games. 
 
Table 7.3a: Fractions of unsuspicious (US) and suspicious (S) agents per portfolio in a bear trend, the 

average-game decisions 
 

 US S S11 2.37 1.82 S22 5.22 3.22 
S1 0.22 0.30 S12 1.21 4.55 S23 5.06 8.37 
S2 2.99 4.76 S13 6.10 2.80 S24 1.23 1.82 
S3 41.97 23.20 S14 5.72 10.28 S25 2.81 2.83 
S4 2.11 1.32 S15 0.92 1.33 S26 0.42 1.16 
S5 0.42 3.81 S16 0.31 1.72 S27 0.31 1.68 
S6 0.23 0.58 S17 0.34 0.62 S28 0.28 0.83 
S7 0.26 0.89 S18 0.21 0.89 S29 0.32 1.01 
S8 0.31 0.47 S19 0.38 0.92 S30 2.97 3.26 
S9 0.18 0.57 S20 0.26 1.51 S31 0.40 1.35 

S10 14.22 11.50 S21 0.27 0.64    
 
Almost 42% of all unsuspicious agents possessed S3 throughout the games. This is not 
surprising in that S3 (a single stock portfolio of XOM) brought the highest average return. 
This portfolio was followed by S10 (14.22%), S14 (5.72%), and S23 (5.06%) that also lie on the 
efficient frontier or in its closest neighborhood, and S13 (6.10%) and S22 (5.22%) which do 
not. These latter two could signify the occurrence of risk seeking in choices when prospects 
are negative, as noted by Markowitz (1952b) and Kahneman and Tversky (1979). This 
indicates that agents attempted to obtain profits on the variance. Risk seeking could also be 
perceived when comparing portfolio S13 to S28, which have similar mean returns, but with 
S13 having a larger variance. S13 was chosen by 6.10% of unsuspicious and 2.80% of 
suspicious agents, while in both cases only liquidity agents chose S28. S4 was clearly the 
worst portfolio and alternative, with the smallest mean and the highest variance, yet on 
average 2.11% of unsuspicious and 1.32% of suspicious agents selected it. 
 
Considering suspicious agents only, the five most desired portfolios were selected by 73.01% 
of all suspicious agents. The selected portfolios of suspicious agents were more evenly 
distributed than those of unsuspicious agents, with S3 (23.20%), S10 (11.50%), S14 (10.28%) 
and S23 (8.37%) from the efficient frontier still being the most desired. 
 
Table 7.3b: Fractions of unsuspicious (US) and suspicious (S) agents per portfolio in a bear trend, the 

endgame decisions 
 

 US S S11 0.10 0.10 S22 0.21 0.59 
S1 0.09 0.11 S12 1.11 4.83 S23 5.97 10.29 
S2 2.47 4.16 S13 0.10 0.24 S24 0.09 0.19 
S3 62.19 37.74 S14 7.14 14.75 S25 0.14 0.48 
S4 0.08 0.09 S15 0.09 0.10 S26 0.09 0.23 
S5 0.38 4.04 S16 0.14 1.12 S27 0.18 1.08 
S6 0.10 0.16 S17 0.09 0.11 S28 0.07 0.13 
S7 0.09 0.30 S18 0.10 0.48 S29 0.08 0.22 
S8 0.09 0.09 S19 0.10 0.14 S30 0.37 0.94 
S9 0.09 0.23 S20 0.14 0.89 S31 0.11 0.32 

S10 17.90 15.74 S21 0.10 0.10    
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As can be seen from Table 7.3b, unsuspicious agents were capable of following the “winner 
takes all” principle, as only four of 31 alternatives were chosen by more than 5% of agents. 
These are S3 (62.19%), S10 (17.90%), S14 (7.14%), and S23 (5.97%). These portfolios accounted 
for 93.20% of all selections by unsuspicious agents, and all the portfolios are from the 
efficient frontier. Of the remaining portfolios, all but S2 (2.47%) and S12 (1.11%) ended with 
liquidity agents. In all four settings, XOM (S3) was the leading stock. The weighted beta of 
unsuspicious agents was 0.842 in the average-game setting and 0.714 in the endgame setting. 
The five most-desired portfolios in the average-game setting have an average (weighted) 
beta of 0.892 (0.789), while the five most desired in the endgame setting have an average 
(weighted) beta of 0.674 (0.706). The high-beta portfolios S13 (1.316) and S22 (1.114), which 
were chosen by 6.1% (2.80%) and 5.2% (3.22%) of unsuspicious (suspicious) agents in the 
average-game setting but ended the games with liquidity agents, produced the great bulk of 
the difference between the betas of the average- and end-game settings. On the other hand, 
both beta values largely depended on S3, which was chosen by almost 42% of agents on 
average and by more than 62% in the end. The ten least-desired portfolios have an average 
(weighted) beta of 0.945 (1.487) in the average game setting and 1.166 (1.160) in the end game 
setting. 
 
The picture is not much different when suspicious agents are examined. They too were 
capable of playing the “winner takes all” strategy and to an exceedingly high degree selected 
the same portfolios as did unsuspicious agents: S3 (37.74%), S10 (15.74%), S14 (14.75%) and 
S23 (10.29%). These four accounted for 78.52% of all selections. The weighted beta of 
suspicious agents was 0.808 in the average-game setting and 0.696 in the endgame setting. 
The five most-desired portfolios in the average-game setting have an average (weighted) 
beta of 0.674 (0.684), while the five most-desired in the endgame setting have an average 
(weighted) beta of 0.648 (0.679). The ten least-desired portfolios of suspicious agents have an 
average (weighted) beta of 1.111 (1.088) in the average game setting and 1.293 (1.257) in the 
end game setting. 
 
Examining the results, it is evident that agents concentrate their endgame decisions in a bear 
trend much more than in a bull market and are able to select low-risk and high-return 
portfolios. This means that agents’ choices were very close to optimal. In addition, selected 
portfolios of suspicious agents were slightly more evenly distributed than that of the 
unsuspicious agents. 
 

Table 7.4: CVs of unsuspicious and suspicious agents 
 

 US S S11 9.43 25.41 S22 29.11 35.97 
S1 0.51 1.68 S12 57.89 40.67 S23 33.74 29.38 
S2 44.51 28.60 S13 21.25 36.61 S24 22.28 35.24 
S3 14.03 16.52 S14 31.61 22.37 S25 27.58 40.86 
S4 8.27 9.48 S15 9.83 20.95 S26 3.52 32.23 
S5 25.37 39.15 S16 3.04 40.57 S27 13.36 41.95 
S6 0.99 22.86 S17 1.76 11.55 S28 2.15 30.41 
S7 0.90 40.90 S18 1.23 45.87 S29 2.46 29.92 
S8 1.28 5.47 S19 1.63 30.55 S30 42.84 34.59 
S9 0.67 29.52 S20 1.96 43.76 S31 4.86 35.52 

S10 24.56 19.29 S21 1.55 17.18    
 
The CV and Monte Carlo tests were used for testing the consistency of selection. Table 7.4 
reports the results for unsuspicious (US) and suspicious agents (S). If less than 0.5% of agents 
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possessed a given portfolio in a given time unit, then the value is set to 0.5%. This was done 
in order to avoid a possible large variability in the holdings of liquidity agents, which might 
not be meaningful. The table clearly reveals that decisions of unsuspicious agents exhibit 
quite a small degree of variability as the games are repeated. This is especially true for the 
least-desired portfolios. This is not surprising given that I truncated the holdings of liquidity 
agents. The most-desired portfolios (S3, S10, S14 and S23) exhibit quite a small variability 
that is not exceeding 34%, although the larger the proportion of agents per portfolio the 
smaller the variability in holdings. The least consistent portfolios were those that either did 
not end with liquidity agents or were not the most desired, such as S2 and S12. This is also 
the reason that the CVs of suspicious agents were higher than those of unsuspicious agents. 
 

Table 7.5: Medians of sum of squares of the difference 
 

 US S S11 117730 177042 S22 2466410 19956 
S1 951 7667 S12 75968 48811 S23 3168 1196 
S2 3575 1333 S13 5585360 54851 S24 478540 485670 
S3 307 340 S14 1408 648 S25 181188 770585 
S4 87687 3282 S15 25602 9103 S26 33154 25409 
S5 58912 1463 S16 28150 7575 S27 69253 1996 
S6 6316 9595 S17 5898 39218 S28 146572 4633220 
S7 5133 1150530 S18 10889 227040 S29 9334 6240 
S8 917 79428 S19 12430 56259 S30 3897070 3884 
S9 1457 621128 S20 933 12366 S31 53111 730177 

S10 846 809 S21 2487 510585    
 
According to the Monte Carlo results from Table 7.5, the most consistently chosen portfolios 
of unsuspicious agents were S3, S10, S8, S20, S1, S14 and S9, while those of suspicious agents 
were S3, S14, S10, S23, S5 and S27. Of these, S3, S10 and S14 were the most-desired portfolios, 
with S23 under the suspicious agents also being so. The least consistent portfolios were those 
whose proportion had either risen or fallen over time (S13, S11, S22, S24, S28, S31, S7 for 
suspicious agents, and S30 for unsuspicious agents). Such portfolios exhibited huge 
differences between the average-game and the endgame analyses. These portfolios were the 
furthest apart from the most consistently chosen portfolios and were found to be in the 
center of Figure 7.2. However, suspicious agents were less consistent in their selection, which 
resulted from their inability to select the “winners” to the same extent as unsuspicious 
agents. 
 
 
7.3.2 Bull trend 
 
I now turn to the bull trend. Following the data, a bull trend was found to have succeeded 
the bear trend. It is characterized by positive shifts in returns. Figure 7.4 displays mean 
returns (Y-axis) to standard deviations (X-axis). The bull trend is characterized by slightly 
higher mean returns and large standard deviations. 
 
Considering single stocks, AA (S1) and MSFT (S2) exhibited the highest mean return, being 
0.50% and 0.30%, respectively. On the other hand, XOM (S3) was on the lower tail with the 
mean return of 0.023%. C (S4) was the riskiest with a standard deviation of 8.65%, and XOM 
(S3) and KFT (S5) were the safest with standard deviations of 7.05%. The shape of the figure 
exhibits a slightly positive correlation between mean and the standard deviation 
( , .0 385MEAN STDEVr = ). 



 
  

- 100 - 

Figure 7.4: Efficient frontier portfolios – bull  
 

 
 
Following Table 7.6a, the most-desired portfolios of unsuspicious agents were S8 (41.70%), 
S17 (13.70%), S4 (11.05%), S21 (7.37%), S19 (6.27%) and S1 (3.36%). Of these, only S1 is from 
the efficient frontier, while S17 is very close to it. S8 clearly lies outside the efficient frontier; 
it is riskier than S6. Generally, desired portfolios lie on the inner side of the imaginary 
hyperbola, which means that in this case the agents selected riskier portfolios. The winning 
portfolios are multiple-stock portfolios. 
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Table 7.6a: Fractions of unsuspicious (US) and suspicious (S) agents per portfolio in a bull trend, the 
average-game decisions 

 
 US S S11 2.83 3.60 S22 0.46 1.36 

S1 3.36 14.91 S12 0.14 0.70 S23 0.15 0.61 
S2 0.13 1.59 S13 0.89 1.51 S24 0.46 1.80 
S3 0.19 0.38 S14 0.17 0.38 S25 0.30 1.05 
S4 11.05 6.11 S15 0.76 1.93 S26 2.09 3.19 
S5 0.17 0.39 S16 0.37 2.18 S27 0.21 1.11 
S6 1.58 6.30 S17 13.70 7.93 S28 2.02 3.61 
S7 0.54 2.20 S18 0.31 2.67 S29 1.13 2.19 
S8 41.70 14.75 S19 6.27 4.15 S30 0.24 0.99 
S9 0.43 3.29 S20 0.22 1.30 S31 0.65 2.18 

S10 0.13 0.75 S21 7.37 4.89    
 
The most-desired endgame decisions of the unsuspicious agents were S8 (50.11%), S17 
(17.37%), S21 (6.37%), S1 (5.66%), and S6 (2.25%) together accounting for 84.83% of all their 
selections (see Table 7.6b). From these only S1 and S6 lie on the efficient frontier, with S17 
being very close to it. In the endgame selections, AA (S1) was the leading stock, and again 
the winning portfolios were multiple-stock portfolios. 
 
Table 7.6b: Fractions of unsuspicious (US) and suspicious (S) agents per portfolio in a bull trend, the 

endgame decisions 
 

 US S S11 2.17 2.77 S22 0.16 0.61 
S1 5.66 24.59 S12 0.09 0.32 S23 0.09 0.26 
S2 0.13 1.79 S13 0.11 0.57 S24 0.20 1.24 
S3 0.11 0.10 S14 0.09 0.12 S25 0.08 0.35 
S4 0.10 3.35 S15 0.17 0.86 S26 1.29 2.43 
S5 0.25 0.15 S16 0.28 1.78 S27 0.13 0.68 
S6 2.25 9.52 S17 17.37 9.16 S28 1.72 3.14 
S7 0.29 1.54 S18 0.26 2.91 S29 0.44 1.40 
S8 50.11 16.77 S19 4.00 2.75 S30 0.09 0.40 
S9 0.43 3.49 S20 0.12 0.69 S31 0.30 1.57 

S10 0.09 0.34 S21 6.37 4.36    
 
The weighted beta of unsuspicious agents during the bull trend was 1.600 in the average-
game setting and 1.610 in the endgame setting. The five most-desired portfolios in the 
average-game setting had an average (weighted) beta of 1.613 (1.712), while the five most-
desired in the endgame setting had an average (weighted) beta of 1.634 (1.692). The ten least-
desired portfolios of the bull trend had an average (weighted) beta of 0.573 (0.596) in the 
average game setting and 0.672 (0.674) in the end game setting. 
 
Suspicious agents were still capable of playing the “winner takes all” strategy and to a very 
high degree selected the same portfolios as unsuspicious agents did. These are S1 (24.59%), 
S8 (16.77%), S6 (9.52%), S17 (9.16%) and S21 (4.36%). These five accounted for 64.38% of all 
their selections. The weighted beta of suspicious agents during the bull trend was 1.317 in 
the average-game setting and 1.346 in the endgame setting. The five most-desired portfolios 
in the average-game setting had an average (weighted) beta of 1.574 (1.587), while five most-
desired in the endgame setting had an average (weighted) beta of 1.405 (1.471). The ten least-
desired portfolios of suspicious agents had an average (weighted) beta of 0.613 (0.677) in the 
average game setting and 0.704 (0.841) in the endgame setting. 
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Table 7.7 shows the average values of CV over all 209 time periods for each portfolio of 
unsuspicious agents (US) and suspicious agents (S). Again, if less than 0.5% of agents 
possessed a given portfolio in a given time unit, the value is set at 0.5%. 
 

Table 7.7: CVs of unsuspicious and suspicious agents 
 

 US S S11 38.35 34.16 S22 12.82 47.88 
S1 31.13 16.89 S12 0.51 40.95 S23 0.47 38.00 
S2 0.24 58.40 S13 14.36 52.08 S24 19.68 55.33 
S3 0.46 11.16 S14 0.45 16.41 S25 1.91 54.43 
S4 20.78 29.79 S15 23.86 48.82 S26 38.56 39.42 
S5 0.43 28.80 S16 12.89 49.96 S27 1.94 50.20 
S6 40.88 27.20 S17 16.07 29.40 S28 46.97 39.52 
S7 20.42 44.99 S18 14.20 45.36 S29 39.70 41.23 
S8 6.61 19.53 S19 28.07 38.15 S30 3.70 42.50 
S9 16.54 39.36 S20 2.13 56.16 S31 27.34 45.73 

S10 0.53 44.87 S21 25.84 31.46    
 
Within unsuspicious agents, portfolios S2, S3, S5, S10, S12, S14, S20, S23, S25, S27 and S30 
exhibited the lowest row variability in the bull trend that was not exceeding 5%. These 
portfolios have the lowest variance, were the least desired, and ended up with the liquidity 
agents (Table 7.6a, Figure 7.2). As can be seen from the table, suspicious agents behave less 
consistently over time. 
 

Table 7.8: Medians of sum of squares of the difference 
 

 US S S11 12463 2998 S22 134300 2182880 
S1 309 265 S12 6615 73898 S23 1328 1703 
S2 5518 1531 S13 78240 100291 S24 152316 4994 
S3 7431 48318 S14 7061 261609 S25 2034 17258 
S4 9291 9250 S15 81889 959069 S26 36027 6402 
S5 4504 103892 S16 450027 8536 S27 33213 22804 
S6 1004 676 S17 313 2668 S28 4606 9460 
S7 12060 37204 S18 13822 1315 S29 17734 3068 
S8 59 812 S19 7387 8894 S30 54837 11137 
S9 48888 5412 S20 35987 25621 S31 3169 6355 

S10 2424 1059915 S21 4927 3654    
 
According to Monte Carlo, unsuspicious and suspicious agents most consistently chose 
portfolio S8 with a median of 59 and 812, respectively, followed by portfolios S1, S6 and S17, 
which still exhibited very high levels of persistence (Table 7.8). These three were the most-
desired portfolios in both the average and the endgame settings. Portfolios S22, S15, S10, S13, 
S14, S16, and S5 exhibit the lowest levels of persistence. These are portfolios with the lowest 
mean returns and the lowest variance, and were among the least desired. Again, the level of 
persistence of other portfolios decreased with their distance from the most consistent 
portfolios. Comparing between the two groups of agents we see that the behavior of the 
suspicious agents was much less consistent than that of the unsuspicious agents, implying 
that suspicious agents in general exhibit much lower preference over portfolios. 
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7.3.3 Discussion 
 
Much of what has been said above is displayed in Figures 7.5-7.6 and Table 7.9. Figure 7.5 
plots the unsuspicious and suspicious agents’ average-game and endgame selections against 
the beta coefficients of portfolios in the bear and the bull trends. As in the previous chapter, 
dots in the plots represent fractions of agents with different portfolios (Y-axes) plotted 
against their betas (X-axes). “S” and “U” in the plots designate suspicious and unsuspicious 
agents, respectively; and “AVG” and “END” designate average-game and the endgame 
selection, respectively. In both trends, figures on the left (right) relate to the unsuspicious 
(suspicious) agents and the upper (bottom) figures to the average-game (endgame) decisions.  
 

Figure 7.5: Scatter graphs of unsuspicious and suspicious agents’ average-game and endgame 
selections against the beta coefficients of portfolios in the bear and the bull markets 
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 (a) bear market  (b) bull market 
 
Figure 7.6 displays the cumulative distributions of unsuspicious and suspicious agents’ 
average-game and endgame selections in the bear and the bull trends. The distribution plots 
set out some interesting features. In all settings of our simple game, agents were capable of 
selecting “winning” portfolios, which, following the figures of the bull and bear trends, lie 
on the efficient frontier or in its closest neighborhood. This is a very powerful conclusion, 
because it suggests that agents make the efficient frontier decisions accurately over time 
while not knowing the entire sample mean and variance statistics. 
 
Agents were particularly selective during the bear trend, where 62.19% of all ended with the 
“winning” portfolio S3, 80% with the first two portfolios, and 95.7% with the first five 
portfolios. It is interesting that the winning portfolio was a one-asset portfolio (XOM), and 
the next two, two-asset portfolios that included XOM and either MSFT and KFT, which were 
the next two least-losing stocks. As for the market portfolio S31, it ended with liquidity 
agents in four of eight settings, with unsuspicious and suspicious agents in the endgame 
setting of the bear trend, with unsuspicious agents in the average-game setting during the 
bear trend, and with suspicious agents in the endgame setting of the bull trend. In the bull 
trend, 0.3% of unsuspicious agents ended with the market portfolio (0.65% in the average-
game setting), while 1.57% of suspicious agents chose it in the average-game setting. In 
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addition, during the bear trend 2.18% of suspicious agents selected it in the average-game 
setting. 
 

Figure 7.6: Cumulative distributions of decisions in a bear and bull market 
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When markets are risky or in a downtrend and agents are trying to avoid risk, it is to be 
expected that they would prefer low-beta portfolios, while preferring slightly higher beta 
portfolios in an up-trend. In an uptrend, beta refers to deviations from the mean on a scale of 
positive returns. Therefore, the weighted beta of endgame settings is much higher during a 
bull trend than during a bear trend (0.714/0.696 in the bear trend and 1.61/1.35 in the bull 
trend for unsuspicious/suspicious agents). The same is true of the average-game settings 
(0.84/0.81 in the bear trend and 1.60/1.32 in the bull trend for unsuspicious/suspicious 
agents). In addition, agents are also much more unanimous in their decisions in the bear 
trend than in the bull trend. Namely, more than 62% of unsuspicious agents selected the 
winning portfolio during the bear trend but far less during the bull trend (50.11%). This 
conclusion might be an implication of the “safety first” principle, which is much more 
relevant in a bear market. It also suggests some flavor of the prospect theory of Kahneman 
and Tversky. This is also consistent with the findings of Barberis et al. (2001) who argued 
that agents are less prone to take risk in a bear markets. In the games, agents’ decisions are 
very consistent in both bull and bear market. 
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Table 7.9: Overview of results in a bear and a bull markets 
 

Unsuspicious agents Suspicious agents  
AVG END AVG END 

Bear Market 
Proportion of agents 
Top 5 (%) 73.23 95.67 57.90 83.35 
Least 10% (No./31) 21/31 28/31 13/31 25/31 
 
Weighted beta 0.842 0.714 0.808 0.696 
Top 5 0.789 0.706 0.684 0.679 
Least 10 1.487 1.160 1.088 1.257 

 
Lambda 1.672 2.017 1.885 2.037 
 
Bull Market 
Proportion of agents 
Top 5 (%) 80.00 84.83 50.01 64.38 
Least 10% (No./31) 23/31 25/31 12/31 17/31 
 
Weighted beta 1.600 1.610 1.317 1.346 
Top 5 1.712 1.692 1.587 1.471 
Least 10 0.600 0.674 0.677 0.841 

 
Lambda 1.820 2.088 1.077 1.883 

 
The computed power law parameter of the average-game setting of the bear trend is 

1.672λ = −  ( 2 0.95R = ) for unsuspicious agents and 1.885λ = −  ( 2 0.83R = ) for suspicious 
agents. In the endgame setting, the corresponding parameters are 2.017λ = −  ( 2 0.91R = ) for 
unsuspicious agents and 2.037λ = −  ( 2 0.97R = ) for suspicious agents. Both power-law 
parameters are much higher in the endgame decisions than in the average-game, which 
indicates that agents gradually approached their desired portfolios as the games proceeded. 
In the endgame settings, both cohorts display a striking “winners take all” scheme. 
 
The power-law parameter of unsuspicious agents in the average-game decisions of the bull 
trend is 1.820λ = −  ( 2 0.98R = ), while it is 1.077λ = −  ( 2 0.89R = ) for suspicious agents; the 
corresponding coefficients of the endgame decisions are 2.088λ = −  ( 2 0.97R = ) for 
unsuspicious and 1.883λ = −  ( 2 0.81R = ) for suspicious agents. Slightly smaller lambda 
values of the bull trend compared to the bear trend indicate agents’ weaker ability to select 
the winning portfolios in the bull trend compared to that in the bear trend. This is especially 
true for the suspicious agents’ average-game decisions in the bull trend, where the “rich get 
richer” pattern is barely met. Again, the endgame decisions of both cohorts exhibit a striking 
“winners takes all” scheme. 
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Chapter VIII 
 
 
Multiple-asset portfolio selection with news 
 
 
8.1 Introduction 
 
In this last part of the dissertation I extend the baseline model by introducing news directly 
into the agents’ decision making functions. Before, news events were present indirectly 
through stock returns, while this extension presumes that news events directly affect agents’ 
buying activities. For instance, if the news is bad, an agent may not be willing to buy. News 
refers to some significant events that should induce price and volume shifts. By definition, 
news in its content is that which was not previously known.  
 
The debate as to whether and how news and public information affects trading activity and 
stock prices continues despite many years of research (see Fama (1998), Campbell (2000), and 
MacKinlay (1997) for a short overview of the topic). Its origins can be traced back at least to 
the dissertation of a French mathematician Louis Bachelier in 1900. The efficient market 
hypothesis, as the name implies, maintains that market prices fully reflect all available 
information. Therefore, when information arises, the news spreads very quickly and is 
incorporated into the prices of securities rapidly and effectively (Fama et al. 1969). 
Samuelson (1965) argued that properly anticipated prices fluctuate randomly. Chen et al. 
(1986) argues that stock returns are exposed to systematic economic news, while Kandel and 
Pearson (1995) argue that shifts in the trading volumes and stock returns occur around 
public announcements. 
 
The post-earnings-announcement drift was first reported by Ball and Brown (1968). Maheu 
and McCurdy (2004) argue that unusual news events cause infrequent large moves in returns 
and occur even though the dates of many standard events, such as earnings reports and 
press releases, are usually anticipated in advance. Nevertheless, many events cannot be 
anticipated. Hong, Lim and Stein (2000) found that negative firm-specific information 
diffuses only gradually across the investing public. This might signify that prices are slow to 
reflect bad public news. More recent work has shown that the average effect of 
announcements is completed very quickly, usually within 20 minutes of the announcement. 
Bernanke et al. (2005) analyze the impact of unanticipated changes in the Federal funds 
target on equity prices. They found that on average over the May 1989 to December 2001 
sample, a “typical” unanticipated 25 basis point rate cut has been associated with a 1.3 
percent increase in the S&P 500 composite index. As they argue, the estimated response 
varies considerably across industries, with the greatest sensitivity observed in cyclical 
industries like construction, and the smallest in mining and utilities. They also argue that 
most of the response of the current excess return on equities can be traced to policy’s impact 
on expected future excess returns. Boyd et al. (2005) focus on equity prices’ response to 
unemployment news and find that on average, an announcement of rising unemployment is 
good news for stocks during economic expansions and bad news during economic 
contractions. Andersen et al. (2007) characterized the real-time interactions among U.S., 
German and British stock, bond and foreign exchange markets in the periods surrounding 
U.S. macroeconomic news announcements, and found that announcement surprises produce 
conditional mean jumps. In particular, bad macroeconomic news has the traditionally-
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expected negative equity market impact during contractions, but a positive impact during 
expansions.  
 
Hong and Stein (1999) argue that different agents receive different pieces of information at 
irregular time intervals and fail to extrapolate news to the future. Barber and Odean (2008) 
argue that agents are much more likely to be net buyers of attention-grabbing stocks, e. g. 
stocks in the news, stocks with extreme one day returns, and stocks experiencing high 
abnormal trading volume. Barber et al. (2001) show that returns of the highest-rated stocks 
are tightly concentrated around the day of the recommendation release, while those of the 
lowest-rated stocks are more widely dispersed over time. Using a representative-agent 
model with standard preferences and biased beliefs, Barberis et al. (1998) found that stock 
prices both underreact and also overreact to given data. As Womack (1996) argues, in the 
presence of underreaction to news, returns that follow are of the opposite sign from what 
they were before the news release as the time from the event passes. Easterwood and Nutt 
(1999) argue that agents underreact to negative news but overreact to positive news. De 
Bondt and Thaler (1985), and Lakonishok et al. (1994) argue that long-term past losers 
outperform long-term past winners over a subsequent of three to five years. To the contrary, 
Jegadeesh and Titman (1993, 2001) argue that over a horizon of three to twelve months past 
winners on average continue to outperform past losers. Moskowitz and Grinblatt (1999) 
indicate that buying stocks from past winning industries and selling that of past losing 
industries might be profitable. However, as Korajczyk and Sadka (2004) pointed out, such 
profits are not robust to trading costs. Cohen and Frazzini (2008) examine the co-movements 
in stock prices within linked firms and find the effect very significant. 
 
The assumption of this chapter is that agents decide according to returns and news. 
Therefore, all the differences in the conclusions as to the base case scenario of Chapter 6 go to 
the news part. I use real data on both returns and news. 
 
 
8.2 The model 
 
The model here is an extension of the multiple-asset portfolio selection model of Chapter 6. 
So, in every time period there is a constant number of 5.000n =  agents, each of whom is 
linked to ten closest agents (five on each side) and rewired with the probability 0.1p = . 
Agents accumulate wealth over time and have to choose from 31 different portfolios as 
presented in Table 6.1. 
 
As in the basic framework, the time period starts on January 2, 2009 and ends on January 21, 
2010, which makes a total number of 264t =  intervals. Agents still face the same problem as 
before, and use a reinforcement learning mechanism. As before, I include the level of 
suspiciousness, which is given by an exogenous factor, reflecting a non-negative probability 
that an agent will depart from adopting the most promising alternative of the two being 
compared. 
 
Apart from the basic framework, I now assume that agents follow not only the returns of 
their stocks and portfolios but also news that is relevant to those stocks and portfolios 
( ,

News
i tR ). News comes in irregular periods and not for all stocks at once, though in reality 

some news might be anticipated and even announced by firms. Because news is announced 
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only for single stocks at specific times and not for entire portfolios, portfolio news 

,
1

1 nNews News
t i t

i
P R

n =
= ∑  is computed as the average news of stocks that are included in a portfolio.  

 
However, when news is announced about stocks that are in agents’ portfolios, I assume that 
agents calculate the portfolio news and then compare the two portfolios. If the reported news 
related to the agent’s portfolio or to that of a selected adjacent agent, the agent always selects 
the portfolio that is subject to more promising news no matter the solution of (4.3). If news is 
announced for only one of the two portfolios and is “negative,” the agent chooses a portfolio 
with no news. If no reported news is related to any of the two compared portfolios, agents 
make decisions in accord with (4.3). Loosely speaking, I consider news to be multiple and 
credible shocks. I implicitly assume that shocks to individual stocks may be correlated. 
 
 
8.3 Data 
 
The initial task in conducting an event study is to select and evaluate the news. In extracting 
the news as few significant events as possible should be lost in the data. A huge amount of 
firm-specific, sector-specific or macroeconomic news arriving within days makes this part of 
the task quite vulnerable to such losses. I followed a simple and intuitive rule, namely that 
significant news should be followed by shifts in trading volumes and also in prices. This is 
similar to Kandel and Pearson (1995) who report on the volume-return shifts around 
earnings announcements, and to Barber and Odean (2008), who infer the reach and impact of 
events by observing their effects on trading volume and returns. 
 
Generally, stocks react strongly to earnings reports, hence I took such as relevant news. The 
main characteristic of the reports is that they provide retrospective information, which does 
not attempt to increase the firm’s value but rather to measure the value and “take a picture” 
of the firm’s position at a given moment in time (Tirole 2006). On the other hand, prospective 
monitoring is a forward-looking activity, in that it attempts to increase a firm’s future value. 
Therefore, events that relate to a firm’s future prospects and thereby could affect the firms’ 
future earnings do seem relevant. Some examples of such are: Alcoa, an aluminium 
producer, being related to the construction sector and aluminium prices; Kraft Foods being 
involved in the Cadbury (UK chocolate maker) deal; oil prices being significant to Exxon 
Mobil’s earnings; Citigroup being very susceptible to news on financial crisis; and Microsoft 
launching Windows 7 in the given period. Generally, such events are complex events, 
consisted of many sub-events, each having a well-formed event structure. 
 
I assume that macroeconomic factors and events, except oil prices, affect companies to the 
same extent. Faccio (2006) demonstrates that the same news can sometimes be good and 
sometimes bad for financial assets. Namely, although political involvement in the economy 
is generally considered very bad for the economic growth and value of firms, it is highly 
positive for preferential or politically-connected firms. Similarly, TARP program and the US 
Treasury injections were considered highly significant and positive actions for the survival of 
Citigroup at one point, for which these actions contributed to a rise in the price of its stock. 
However, the actions were viewed as highly negative a couple of months later, signifying 
that the bank was not sound and strong.  
 
Another aspect of connectedness among firms relates to a lead-lag pattern, where news 
regarding individual firms, e.g. earnings announcements or capital requirements in the 
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banking sector, is used to formulate expectations regarding the related firms. This aspect 
pertains to the correlation or cointegration in stocks, which raises the important question of 
how news about individual stocks affects the returns of other stocks (Cohen and Frazzini 
2008). Namely, firms do not exist in a vacuum, but are linked to each other through many 
types of explicit and implicit relationships. Therefore, shocks to individual firm might be 
contagious. 
 
In addition, options expire every third Friday in a month. As this date approaches, future 
and spot prices of underlying assets converge. In general, call (put) options should always be 
exercised at the expiration date if the stock price is above (below) the strike price. This might 
also affect trading volumes, especially in connection to reported news. Finally, daily stock 
returns also appear as news, and as such are a factor in the phenomenon of news influencing 
prices. 
 
Identification of news events is followed by evaluation (Table 8.1). Here I employ a very 
intuitive and straightforward mechanism by which every piece of news is assigned to one of 
three categories. If the news was followed by a rise in the stock prices, the news is designated 
as positive news and assigned number 1. News is designated as negative news if it was 
followed by a fall in the prices and 1−  is assigned. Neutral news (0) is that which did not 
significantly influence a change in prices. To evaluate the news I used the rule-of-thumb. 
 

Table 8.1: The list of evaluated news of selected stocks 
 

AA KFT MSFT XOM C 
Jan 6 -1 Jan 21 0 Jan 6 -1 Jan 5 -1 Jan 15 -1 
Jan 12 -1 Jan 29 -1 Jan 16 -1 Jan 15 1 Jan 27 1 
Feb 10 -1 Feb 3 -1 Jan 21 -1 Jan 29 1 Feb 19 -1 
Mar 4 -1 Feb 11 1 Feb 2 1 Feb 20 1 Feb 20 1 

Mar 16 0 Feb 25 -1 Feb 24 -1 Feb 26 -1 Feb 26 -1 
Mar 18 1 Mar 17 -1 Mar 9 1 Mar 5 1 Mar 10 1 
Mar 30 1 Mar 27 -1 Mar 20 1 Mar 20 1 Mar 16 1 
Apr 7 1 May 4 1 Mar 30 1 Apr 29 -1 Mar 18 -1 
May 7 -1 Jun 30 1 Apr 23 1 Jun 14 1 Mar 20 1 
May 14 1 Jul 22 1 Jun 16 0 Jun 19 -1 Apr 1 0 
Jun 1 1 Aug 4 0 Jun 18 1 Jul 14 1 Apr 12 1 

Jun 10 1 Sep 4 -1 Jul 8 0 Jul 29 -1 Apr 16 -1 
Jul 8 1 Oct 15 1 Jul 22 1 Aug 18 1 Apr 20 1 

Jul 21 -1 Nov 3 -1 Jul 23 -1 Sep 30 -1 May 5 1 
Aug 18 -1 Nov 13 1 Aug 20 1 Oct 28 -1 May 6 -1 
Sep 14 1 Dec 17 1 Sep 30 -1 Dec 14 -1 May 7 1 
Oct 7 1 Jan 5 1 Oct 14 1 Jan 20 -1 Jul 16 0 

Oct 28 1 Jan 19 -1 Oct 23 1   Jul 27 1 
Dec 1 1   Dec 18 1   Aug 4 -1 

Dec 10 1       Aug 14 1 
Dec 18 1       Aug 26 1 
Jan 11 -1       Sep 14 -1 

        Oct 14 0 
        Dec 14 -1 
        Jan 15 1 

 
I set the time period to a day, by which I avoid to some difficulties in the event studies. This 
allows me to grasp the entire market reaction to the news, including over- or underreactions 
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and stabilization. Both phenomena can be perceived in the data. I also capture the 
phenomena of nonsynchronous trading, which is signified by pre-market and after-market 
trading, as well as tick-by-tick trading at the ultra-high-frequency level. Not all securities are 
traded in equal periods at the ultra-high-frequency level, due to the fact that news comes in 
irregular intervals, frequently before the market opens at 9.30 or after it closes at 16.00; hence 
many securities are also traded beyond those hours. This is especially the case when some 
news is expected to be announced, due to which the spreads between the closing price and 
the next day opening price might be very large. If news was reported before the market 
opened, I considered it news of the previous day, because agents are informed at that time 
and could use the news in their decision that day. This is similar to the suggestion provided 
in Campbell et al. (1997). 
 
The news data was received from different financial newspapers and portals, particularly 
Dow Jones, Bloomberg, Reuters, Wall Street Journal and its MarketWatch subdivision, and 
the Internet portals Yahoo, Google, and others. I also used press releases of the companies. 
Below, I provide brief explanations of selected news events from the table. M in the data 
designates million traded stocks and B billion traded stocks. 
 
 
Alcoa (NYSE: AA) 
 
In an after-hour report of January 6, 2009 Alcoa announced it would slash 13.500 jobs (13% of 
its workforce) by the end of the year as a way to remain competitive during the global 
economic recession. Executives from Alcoa also released their plans to reduce its total 
annualized aluminium production by 18%. Following the news, Alcoa shares opened 9.2% 
below the January 6 close and lost an additional 1.1% during the day on a volume of 35.3M 
shares. 
 
On January 12 after the market close, Alcoa reported that they had missed the fourth-quarter 
consensus earnings expectations by 0.18USD per share. Alcoa reported a loss of 0.28USD per 
share and a 19.1% fall in the year-over-year revenues, ahead of the consensus estimate. 
Executives from Alcoa said its results were impacted by a 35% decline in aluminium prices 
during the quarter and a sharp drop in demand. January 13 volume reached 44.9M and 
shares sank 5.1% from the January 12 close. 
 
On February 10, Alcoa lost 10.7% on a volume of 44.5M shares. During the day, 
Standard&Poor’s cut its rating to BBB-, the lowest investment grade, as falling metal prices 
made it more difficult to renew loans. 
 
In the morning of March 5, Merrill Lynch/Bank of America was out neg. on Alcoa, lowering 
their target price to 3USD from 6USD after reduced earnings outlook. On a volume of 46.8M 
shares, Alcoa lost 15.7%, reaching day low of 5.12USD (17.9% below March 4 close). 
 
In an after-hour report of March 16, Alcoa announced they would cut dividends by 82% to 
lower costs and improve liquidity and warned of a first quarter loss. Following the news, 
March 17 started 11.6% below the March 16 close and reached a volume of 84M. March 19 
saw the rates of two big houses, JP Morgan Chase (raised from neutral to overweigh) and 
Credit Suisse (resumed at outperform). Alcoa shares rose almost 17% on March 19 after JP 
Morgan analyst Michael Gambardella upgraded the stock to overweight from neutral and 
lifted its price target to 12USD from 8USD. Alcoa was heavily traded on March 19 and March 
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20, reaching volumes of 242.2M on March 19 and 106.6M on March 20. The price rallied to an 
intraday high of 8.20 on March 26. Options expired on March 20. 
 
On March 30, Moody’s Investor Service confirmed Alcoa’s Baa3 rating and did not 
downgrade it to junk status, saying that earnings should improve on cost cutting and 
moderate improvements in the sector. Following the news, shares were up 8.4% on the 
March 31 open and gained an additional 1.2% during the day on a volume of 83.4M. 
 
In the after-market earnings report of April 7, Alcoa posted a higher-than-expected first 
quarter loss (0.59USD per share to estimated 0.57USD) with the quarterly year-over-year 
revenues down by 44% as aluminium prices dropped and revenues plunged, still ahead of 
the consensus. Yet, the company also said procurement efficiencies and reduced overhead 
would eliminate more than 2.4 billion USD in annual costs. Shares were flat in premarket 
trading but the volume was high, reaching 75.3M. 
 
On May 7, Australia’s Alumina Ltd, a joint venture partner with Alcoa, forecasted a further 
7% contraction in aluminium demand in the year, mostly in western countries. On the day, 
Alcoa shares were down 10% on a volume of 56.7M traded shares. 
 
In May, options expired on May 15. Alcoa shares reached a volume of 46.1M and a rise in the 
prices. Stocks ended 3.3% above the May 14 close and 5.01% below the Monday, May 18, 
close. 
 
Alcoa completed a divestiture of the wire harness and electrical portion of the EES business 
to Platinum Equity effective June 1, 2009. On June 2, Alcoa increased by 7% on a volume of 
56.7M. A day before, Alcoa had underlined its long-term partnership with Renault on their 
truck segment. On June 11, Alcoa shares rose 6.1% on a volume of 61.9M. I have not noticed 
any special news that had raised the prices and the volume. 
 
After the close of July 8, Alcoa announced in a report that its loss was lower than expected 
(actual loss of 0.26USD per share versus the expected 0.38USD; year-over-year revenues 
were reported to sink 41.4%). The news shifted the opening price of July 9 to 5.6% above the 
closing price of July 8. During the day, the price sank 7.6% on a volume of 93M traded 
shares. The following day, a negative trend turned bullish, with an intraday high of 
14.62USD. 
 
On July 21, Alcoa lost 5.5% on a volume of 46.7M traded shares. No special news was 
reported on the day, except some rumors about the efficiency of China and the US stimulus 
plan. 
 
On August 19, Alcoa declined on a Goldman Sachs downgrade from buy to neutral. The 
brokerage cut its rating on the aluminum stock because it has surged sharply in recent weeks 
and industry conditions could deteriorate. Following the news, August 19 opened 5.2% 
below the August 18 close and ended 1.9% above the opening on a volume of 42.6M. 
 
In partnership with BHP Billiton and Rio Tinto Alcan, Alcoa opened the Juruti Bauxite Mine 
in Brazil on September 15. Alcoa’s share in the investment was estimated at 2.2 billion USD. 
The news was announced before the market opened. Shares of Alcoa rose 7.3% on September 
15 on a volume of 49.8M and additional 3.4% on September 16 on a volume of 45.2M. 
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October 8 was another highly trading day with 120.8M traded shares. Following the after-
close report of October 7, Alcoa posted better-than-expected third quarter earnings (profit of 
0.04USD per share versus estimated loss of 0.09USD). As said, the results were achieved 
through cost cutting and higher aluminium prices. Alcoa had cut its workforce by 30% since 
the economic downturn had begun a year prior. The company’s revenues had also beaten 
expectations. Following the news, October 8 started at 15.01USD, 5.7% above October 7 close, 
yet the price sank to 14.35USD by the day’s close. 
 
Alcoa shares rose after the report that GDP grew at a 3.5% clip in the third quarter of 2009 
and better-than-expected jobless claims were reported. Following the news, Alcoa shares 
were up 9% and the volume reached 44.5M on October 29. In expectation of the report, 
shares had slipped 6.4% on October 28 with a volume of 53.6M. 
 
On December 2, Alcoa gained 5.7%, 6.6% from December 1 close, and volume reached 49.4M. 
 
Alcoa shares added 8.2% on December 11 after an upbeat note from JP Morgan Chase, who 
said that strength in aluminium prices had led them to up their already bullish price target 
on Alcoa. On the day, the volume reached 75.2M. 
 
On December 21, Alcoa shares rallied 7.9% on the news that the company would go into a 
joint venture with a Saudi Arabian mining company to develop an integrated aluminium 
industry in the Kingdom of Saudi Arabia. The volume reached 60.9M traded shares. In 
addition to this news, options expired on December 18 with Alcoa reaching 29.9M. 
 
Finally, a bunch of negative news was reported on January 11, 2010, which was followed by 
volume rising to 76.4M on January 11, and 155.9M on January 12. After-hour reports of 
January 11 posted lower-than-expected fourth quarter earnings (profit of 0.01USD per share 
versus the expected 0.06USD). Huge expectations on the news release reflected in large 
January 11 volume and a rise in price. Not to forget that AA closing price of January 5 was 
16.13USD on a moderate volume, while the January 11 close was 17.45USD. However, after 
the news, January 12 opened at 16.12USD, 7.6% lower than January 11 close and lost an 
additional 3.7% during the day. Alcoa thus lost 11.1% from the January 11 close to the 
January 12 close. 
 
 
Kraft Foods (NYSE: KFT) 
 
On January 12, 2009, Kraft Foods rose 2.7% on a volume of 13.8M. No special news was 
reported before or within the day. 
 
No special news related to Kraft Foods was reported around January 21, 2009, despite the 
volume of 23.9M being significantly above the usual, and the price did not exhibit any 
special shift in any direction. 
 
17.5M Kraft Foods shares were traded on January 30 and Kraft lost 4%. No special news was 
reported before or within the day. However, its earnings report was approaching. 
 
Before the open of February 4, Kraft Foods released a negative fourth quarter earnings report 
that missed consensus expectations by 0.01USD per share and revenues by 4.6% and 
trimmed its outlook for 2009 (EPS down to 1.88USD from earlier guidance of 2.00USD). As 
said, the company was hit by restructuring costs, inventory reductions at grocery retailers, 
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and market-share losses after it raised prices. The price sank from the February 3 close price 
of 28.74USD to 26.09USD; February 4 opened on the news, which was followed by a huge 
volume of 26.4M on February 4 and 14.2M on February 5. However, stock prices remained 
steady in these two days. 
 
Kraft Foods rose 2.8% on February 12 with a volume of 18.1M shares. However, no special 
news was reported in the day. 
 
On February 26, Kraft Foods lost 5.1% in a day on a volume of 11.6M. Kraft Foods volume 
exceeded 17.6M the day before with no major price shift perceived. No special news was 
reported in these days. 
 
On March 18, 19.9M Kraft Foods shares were traded and the price sank 3.9% within the 
trading day. 
 
On March 30, 15.4M Kraft Foods shares were traded and the price sank 3.5% in the day. 
However, March 31 saw an upwards correction of 2.1% on a volume of 14.6M.  
 
Before the open of May 5, there was news that Kraft Foods cut costs and beat first quarter 
profit forecasts; nevertheless a 6.5% year-over-year drop in revenues led to a 5.4% price shift 
from the May 4 close to the May 5 open, and the stock sank an additional 1.4% on May 5 
with a volume of 28.9M. During the day of May 5, shares topped at 26.44USD, which was 
4.6% above its closing price of 25.22USD. The company said they had increased profits by 
bringing prices in line with higher commodity costs, eliminating underperforming product 
lines, and cutting 1.1 billion USD in annual expenses. Increased trading activities continued 
for the next three days, but no major price shifts were perceived. In the report, Kraft Foods 
backed its financial outlook for the year, saying their profit margin would benefit from 
cutting less profitable brands and marketing investments in faster-growing products. 
 
On July 1, Kraft Foods rose 4.3% on a volume of 16.3M. No special news was reported in the 
day. 
 
On July 22, Citigroup analysts upgraded Kraft Foods from hold (neutral) to buy and put the 
price target as 32USD. Following the news, volume increased, reaching 10.2M on July 22, 
13.3M on July 23, and 12.2M on July 24. Kraft Foods stock turned bullish. 
 
In the after-the-close report of August 4, Kraft Foods announced slightly better-than-
expected second quarter earnings, beating expectations by 0.02USD per share. Kraft Foods 
reported an 11% rise in quarterly profit, boosted by increased demand for their products. 
The market was undisturbed by the news; volume was slightly higher and the price 
remained leveled.  
 
There was no news from the company until the weekend of September 6-7, when Kraft 
Foods proposed a take-over purchase of Cadbury. The bid of Kraft Foods was rejected by the 
board of Cadbury on September 8, saying that the proposal “fundamentally undervalues” 
the company and its prospects. A move expected to force Kraft Foods to raise its offer price 
by at least 8 billion USD sank Kraft Foods shares by 6.2%, from 28.10USD of September 4 
close to 26.36USD September 8 open. September 8 saw a huge volume of 43.2M traded shares 
and the price remained even to the opening level. Consequently, the volumes were above 
10M until October 2.  
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In October, options expired on October 16. Kraft Foods shares reached a volume of 19M and 
rose 3.3%. 
 
On November 3, 2009, after the close, Kraft Foods reported that their third quarter earnings 
had beaten the consensus by 0.07USD, while revenues were lower than expected. In a longer 
report the next day, they announced that operating income was up 38.7% year-over-year, 
while the adjusted EPS of at least 1.97USD, up from an earlier forecast of 1.93USD. Kraft’s 
CEO, Irene Rosenfeld, said they were interested in acquiring Cadbury, but that a 
“disciplined approach” would be maintained. This led to an increase in volume to 28.9M on 
November 4, and a price drop from 27.54USD on November 3, to 26.67USD on November 4. 
 
On November 16, 17.5M Kraft Foods shares were traded, and the price jumped 2.7% from 
the Friday close. In November, options expired on November 20 and the volume of Kraft 
Foods reached 11.4M with a rise in the prices. 
 
In December, options expired on December 18. The volume reached 13M with prices going 
up. 
 
January 2010 saw two peaks in the Kraft Foods stock that were propelled by the Cadbury 
deal. On January 5, Kraft Foods sold its North American pizza business to Nestle and used 
the proceeds from the 3.7 billion USD all-cash deal to improve the cash portion of its offer for 
Cadbury. On the same day, Warren Buffett, the largest Kraft Foods shareholder, voted 
against the proposed deal, saying in the news release, “Kraft stock, at its current price of 
27USD is a very expensive “currency” to be used in the transaction.” The day saw a huge 
37.2M in volume and a price shift of 3.2% in early trading and 4.9% from the January 4 close 
price. January 6 was another extremely high trading day for Kraft Foods with a volume of 
40.8M. Although such huge volumes continued into March 2010, January 19 should be 
considered a separate event as it was the day when Cadbury accepted the offer. The day saw 
a volume of 53M and a closing price of 29.41USD. Next two days were again high trading 
days with volumes of more than 29M per day, but the price sank slightly to 28.78USD and 
28.24USD. However, on January 15, American billionaire, William Ackman, said his fund 
acquired 2% of Kraft Foods stocks worth 950 million USD and shared the view with Warren 
Buffett in a statement that Kraft Foods shares were undervalued, for which he proposed 
larger portion of cash in the deal. 
 
 
Microsoft (NYSE: MSFT) 
 
On January 7, 2009, 72.7M Microsoft shares were traded and the price sank 6% from the 
January 6 close. 
 
In January 2009, options expired on January 16 and the volume reached 79.6M. On Monday, 
January 20, shares were down 6.2% on a volume of 89.9M as the second quarter earnings 
report was approaching. 
 
Before the opening bell of January 22, Microsoft reported worse-than-expected second 
quarter earnings and significant contractions in gross margins and net income. Microsoft 
indicated that it could no longer offer quantitative revenue and earnings guidance for the 
balance of its fiscal year due to the volatility of market conditions going forward, as all they 
could do was to consider operating expenses. The first such move was the elimination of 
5000 jobs over the next 18 months. The market strongly responded to the news, with volume 
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increasing to 222.4M on January 22, and 117M on January 23. Additionally, prices sank 6.9% 
from the January 21 close to the January 22 open and an additional 5.2% during the day. 
Shares of Microsoft traded down as much as 11% in the wake of the report. 
 
Microsoft stocks rose 3.8% on a volume of 86.9M on February 3. A positive trend continued 
from the day before. Before the market open of February 3, Microsoft patched its Xbox 360’s 
HDMI issues and a new version of Windows 7. No other news was reported on the day. 
 
Options expired on February 20 and volume reached 69.4M. On Monday, shares were down 
4.4%. 
 
On February 24, Google pledged to support the EU Commission’s case against Microsoft 
over allegations of anti-competitive behavior on the internet-browser market. The same day, 
Microsoft CEO, Steve Ballmer, made the trek to Wall Street to provide analysts with 
Microsoft annual strategic plans, in which he highlighted the need for cost management and 
increased R&D activities. On that day volume reached 122.7M and 105.9M on February 25. 
 
On March 10, 95.2M Microsoft shares were traded, and its price rose 8.8% from the March 9 
close. 
 
March 20 was highly traded with Microsoft reaching 81.7M. Following that day, Monday 
saw a huge increase in price, 7.4%. Options expired on March 20. Steve Ballmer gave a 
speech on Microsoft prospects on the same day. 
 
On March 31, Microsoft rose 5.1% from the March 30 close on a volume of 92.1M shares. 
April 1 was another highly traded day with 96.4M shares traded and the price shift of 5.1%. 
April 2 saw a volume of 99.1M, but the price remained steady. 
 
Options expired on April 17. Volume reached 61.4M and MSFT lost some percents. 
However, Monday saw a drop in price as the earnings announcement was approaching. 
 
Following the April 23, 2009 closing bell, Microsoft announced its third quarter earnings 
results, which met consensus expectations but slightly missed revenue expectations. On this 
day, many more companies reported their earnings for the March quarter, and the better-
than-expected results were considered the first signs that the crises was over and poured 
some optimism onto the markets. Shares rallied in the wake of the report, gaining 10.5% 
from the April 23 close (from 18.92USD to 20.91USD), and continued slightly below 20USD 
in the subsequent days. This was a time when the stock market rallied around the news that 
companies’ losses were lower than expected. The volume of MSFT reached 168.5M. 
 
Options expired on May 15 and Microsoft reached a volume of 61.3M traded stocks with 
prices remaining steady.  
 
On June 19, analysts at Goldman Sachs added Microsoft to their conviction buy list and put 
the rate on buy. They also raised its price target of the stock to 29USD. Analysts at Goldman 
saw the potential for the company’s earnings based on a combination of better revenue 
drivers, improved expense management, and sizeable cash balances. This led the stocks to 
gain 3.1% in the midmorning trade from the June 18 close of 23.50USD to 24.23USD. June 19 
ended at 24.07USD on a volume of 115.5M traded shares. Options expired on June 19. 
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After the closing bell of July 23, Microsoft released a fourth quarter earnings report, which 
failed to impress investors. Microsoft reported a 17% fall in sales, far short of analysts’ 
forecasts, although earnings per share managed to be in line with the forecasts. Microsoft lost 
7.6% from the July 23 closing price of 25.56USD to the July 24 open of 23.61USD. The stock 
reached the day low of 22.81USD and ended at 23.45USD on a volume of 215.1M. The 
optimism was up the day before (July 23), when stocks rose 2.5% on the volume of 106.1M. 
However, July 22 was also the date when Microsoft announced the release of Windows 7 to 
manufacturing. 
 
Options expired on August 21, and Microsoft was highly traded, reaching a volume of 69M. 
Shares were up 2% within the day and 3.1% from Thursday closing’s price. 
 
In September, options expired on September 18 and Microsoft was again heavily traded, 
reaching a volume of 68M. The day did not affect the prices. 
 
On October 1, 76M Microsoft shares were traded, and the price sank 3.3% from September 30 
close. Stocks tumbled after a bigger-than-expected rise in weekly jobless claims and a 
weaker-than-expected reading on manufacturing sparked worries about the pace of the 
economic recovery. 
 
On October 15, 65.6M Microsoft shares were traded with the price increasing by 3.1% during 
the trading day. No special news was reported in the day. 
 
Before the open of October 23, Microsoft released a better-than-expected first quarter 
earnings and revenue report. Both well surpassed the expectations, beating earnings 
consensus expectations by 0.08USD per share. Microsoft was also gliding past revenue 
estimates, even though they were still down 14.2% year-over-year. On the opening bell, 
shares were up 9.8% from the close price of the day before. Yet, it lost 4% during the day on a 
volume of 281.8M. October 26 was still a high volume day (124.1M), in which MSFT gained 
2%. In addition, Windows 7 reached general retail availability on October 22, the news 
having been announced and confirmed on June 2, 2009. 
 
On December 18, the Dow Jones reported that the EU Commission settled with Microsoft 
over the browser antitrust case. In exchange for a legally binding commitment from 
Microsoft to start marketing its rivals’ browsers alongside its own Internet Explorer, the 
Commission agreed to abandon its case against Microsoft without a fine; the being whether 
Microsoft was illegally abusing its dominance in the Internet browser market. Following the 
news, the price shifted 1.7% in a day on the volume of 94.1M. News was awaited from 
December 8. A positive bullish trend continued to December 29. Options also expired on 
December 18. 
 
 
ExxonMobil (NYSE: XOM) 
 
On January 6, 2009, 41.9M Exxon Mobil shares were traded, and the price declined 2.2% 
during the trading day. Following this decline, shares declined an additional 2.6% on 
January 7. There was a debate on January 5, whether Exxon Mobil should acquire another oil 
company. 
 
On January 15, faced with the plunge in oil prices and a decline in domestic oil production, 
senior Venezuelan officials had begun soliciting bids from some foreign oil companies. 



 
  

- 118 - 

Venezuelan president, Hugo Chavez, nationalized oil fields of foreign oil companies in 2007. 
Venezuela is among the countries with the largest oil reserves in the world. January 15 was 
also the third Friday of the month, the time when options expired. Following both news 
reports, ExxonMobil shares rose 2.6% during January 15 on a volume of 55.6M and 
additional 1.9% in January 16 on a volume of 45.5M. 
 
Before the market open of January 30, ExxonMobil reported 0.1USD higher than expected 
fourth quarter earnings, despite a 27.4% year-over-year decrease in revenues and a sharply 
lower quarterly earnings due to the steep drop in the price of crude oil. Following the news, 
the market-opening price of 78.25USD was 1.6% above the January 29 close. However, it fell 
by 2.3% during the day on the volume of 51.9M. 
 
Options expired on February 20. Shares started 1.7% below the Thursday close and the 
volume reached 42.9M. 
 
Before the market open of February 23, Deutsche Bank (its Tokyo-based unit Deutsche 
Securities) lifted Exxon Mobil grade to buy from hold and raised the target price to 80USD 
from 70USD. On February 24, Exxon Mobil reached a volume of 48.9M and the price soared 
4%. However, February 24 ended at the same level as the February 23 open. 
 
On February 27, 64.9M ExxonMobil shares were traded and the price sank 4.3% from the day 
before close (2.7% intraday). Shares fell 4.4% the next day, March 2, on a volume of 54.8M. 
On February 27, it was reported that the ExxonMobil pension deficit, which was the highest 
among the US blue chip companies in 2007, more than doubled in 2008 to above 15 billion 
USD. 
 
In an analyst presentation published on March 5, ExxonMobil Chairman and CEO, Rex 
Tillerson, outlined how the company’s disciplined business approach would continue to pay 
off. One of the points was the plan to spend about 3 more billion USD on capital outlays in 
2009 to bring major projects on line and to meet long-term goals. It was planned that 
increased investments would raise its total production about 2-3% a year over the next five 
years. Tillerson also noted that the company would remain a marginal player in renewable 
energy businesses as long as they relied on tax subsidies to become profitable. On a volume 
of 50.2M, shares lost 5.3% from March 4, and gained 2.9% by the March 6 close on a volume 
of 47.1M. I consider this positive news, because Exxon Mobil shares gained 8.3% until the 
March 10 close on high volumes exceeding 45M per day. 
 
In March, options expired on March 20, and the volume reached 67.3M. Shares lost 3.7% 
during the day. 
 
On March 23, Brent crude oil prices climbed to a four-month high of 52.35USD a barrel, or a 
6.2% increase from the Friday, March 20 price of 49.29USD. Oil stocks had gone along for the 
ride, with ExxonMobil adding 6.7% from the Friday close price, and the volume reached 
51.7M. 
 
In April, options expired on April 17. Shares lost 1.6% on a volume of 32.6M. 
 
Before the market open of April 30, Exxon Mobil announced they had missed first quarter 
earnings forecast by 0.03USD. The report included sharply lower revenues and net profit due 
to a slowdown in global markets and a weaker demand for oil. On the volume of 35.1M, the 
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market responded with a decrease in XOM of 2.9% in the day. However, the following days 
corrected the price close to the April 29 closing level. 
 
In May, options expired on May 15. Shares were not largely affected by the event, as volume 
reached 26.7M. 
 
On June 19, Exxon Mobil lost 1.1% on a volume of 42.8M traded shares as oil slid more than a 
dollar a barrel and gasoline tumbled on speculation that supplies of the motor fuel would 
climb as refineries bolstered output. A barrel was traded at 69.55USD on June 19, well below 
72.04USD from the week before. In the succeeding weeks, a barrel slipped below 60USD. 
Options expired on June 19. 
 
Exxon Mobil shares rose 3.4% from the July 14 close to the July 15 close on the daily volume 
of 29.7M shares. On July 14, Exxon Mobil announced an alliance with a leading biotech 
company, Synthetic Genomics, founded by Craig Venter, to research and develop next-
generation biofuels from photosynthetic algae. 
 
In a report that was released before the market open of July 30, ExxonMobil announced 
sharply lower second-quarter earnings, missing estimated consensus earnings by 0.18USD. 
Lower revenues were also reported, down by 46.1% year-over-year. The global withering 
impact of a recession on oil prices and demand dragged down profits of oil companies. The 
opening price of XOM sank 1.6% from the July 29 closing price. 
 
On August 18, PetroChina signed a liquefied natural gas import deal with Exxon Mobil 
worth an estimated AUD50 billion over the next 20 years from the Gordon project in 
Australia. August 19 it jumped 2.9% on a volume of 28.4M. In addition to the news, options 
in August expired on August 21, and the daily volume reached 26.2M. Monday, August 24, 
saw a 2% increase in the price. On August 19, crude oil prices surged after the US 
government’s weekly report showed a surprise drop in supplies. 
 
September 18 was the third Friday in September, and the volume reached 43.2M. Prices were 
not shaped by much. 
 
Before the market opened on October 29, Exxon Mobil reported third quarter earnings of 
0.98USD per share, 0.05USD lower than the First Call consensus of 1.03USD per share, as 
lower commodity prices and weak product margins had taken a toll on the bottom line. 
Following the news, the day started at 1.7% below the close price of October 28, while the 
day ended 1.9% above the opening price on a volume of 30M. Exxon Mobil shares rose 2.2% 
on October 27, when the company announced that the earnings report would be released in 
two days. 
 
On December 14, Exxon Mobil announced an agreement to acquire XTO Energy, a US 
company involved with natural gas business. An all-stock transaction valued at 41 billion 
USD was announced with a 25% premium to XTO stockholders. The reaction of the market 
was huge. The volume reached to 91.5M and the stock sank 4.3% from the previous day 
close. ExxonMobil shares continued to be highly traded for the rest of the week. 
 
In December, options expired on December 18. The volume was huge, reaching 63M, while 
prices remain even. 
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Finally, Exxon Mobil shares dropped 2.1% on January 21, 2010, on a volume of 39.1M and 
1.8% from the January 19 close to the January 20 close on a January 20 volume of 34.6M. 
 
 
Citigroup (NYSE: C) 
 
Before the market open of January 16, 2009, Citigroup reported worse than expected 
earnings, with an actual loss of 1.72USD per share, which was 0.41USD above consensus 
expectations. The news followed the January 14 news that Citigroup was selling its stake in 
the Smith Barney brokerage business to Morgan Stanley, which had done little to inspire 
confidence since it was being viewed more as a forced sale in a bid to boost the bank’s capital 
position. The reaction from the market was huge. In just four trading days the stock went 
down from the January 13 closing price of 5.90USD to just 2.80USD, the closing price of 
January 20, being a 52.5% decline. Trading volumes jumped significantly in both cases, 
reaching 513.9M on January 14 and 634.8M on January 15. After the loss, Citigroup 
announced that they would realign into two units. Options expired on January 16. 
 
On a January 27 afternoon, Citigroup CEO Vikram Pandit downplayed the notion that 
Citigroup or any other major financial institution would be taken over by the US 
government. Following the news, the stock rose 18.6% on January 28 on a volume of 376M. 
 
Options expired on February 20, and Citigroup ended at 1.95USD and a volume of 617.7M. 
This was 22.3% below the Thursday closing price of 2.51USD. However, the stock gained 
21% over night to the February 21 open. 
 
Before the market open of February 27, Citigroup announced that they had reached a deal 
with the US government under which the government could have control of as much as 36% 
of the bank. As part of the agreement, Citigroup said they would suspend dividends on both 
its common stock and preferred shares. Following the news, shares started at 1.56USD, a 
drop by 36.6% from the day before close of 2.46USD. February 27 reached a huge volume of 
1868.2M and was followed by 1078M on March 2 and additional decrease in the price for 
20% to a day close at 1.20USD. 
 
On March 10, Citigroup shares rose sharply on the bank CEO’s comment that the company 
was profitable in the first two months of 2009 and on his remarks on its capital strength. On 
the day, volume reached 1115.1M and the price went up 38.1%. 
 
On March 16, as expected, Citigroup announced several new directors to its board, in accord 
with an agreement with the US government in exchange for a financial injection. Although 
expected, the news strengthened the commitments between the two parties. Volume reached 
1475.8M and the price was up 30.9% from the day before close. High volumes continued for 
the next three days. 
 
On March 19, Citigroup sank 27.4% within the day on the news that it had filed a registration 
statement with the Securities and Exchange Commission (SEC) in connection with the 
proposed offer of its common stock in exchange for publicly held convertible and non-
convertible preferred and trust preferred securities. This day Citigroup also received 
approval to proceed the exchange from the New York Stock Exchange (NYSE). Besides, 
options expired on March 20. On Monday, March 23, shares started 26.3% above the Friday 
close. 
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Ahead of the FASB (the Financial Accounts Standards Board) April 2 vote on a proposal to 
give banks more leeway on how they should apply mark-to-market accounting standards, 
Citigroup shares gained 10.8% from the April 1 close to the April 2 open. Credit default 
swaps insuring Citigroup’s debt jumped over 700 basis points in the intraday trading of 
April 1. April 2 saw a 7.7% decrease in its price on a volume of 525.9M traded shares. 
 
On April 13, Citigroup was up 20.3% on a volume of 834.7M, and April 14 opened at 
4.22USD, 11.1% above the April 13 close. It ended at 4.01USD per share on a volume of 
1222.3M traded stocks. Citigroup stock boosted on large earnings expectations ahead of 
Friday’s quarterly results release, after Goldman Sachs reported better-than-expected 
quarterly profit as a surge in trading revenue outweighed asset write-downs. Thus, a 2.46 
million call options (call options give buying rights to the shares) and a 1.11 million put 
options (put options give selling rights to the shares) were traded on April 14, relating to 
bullish and bearish bets on the stock. 
 
In the news before the open of April 17, Citigroup reported a 0.16USD lower-than-expected 
first quarter loss per share, as they beat the consensus forecast that expected a loss of 
0.34USD per share. Following the news, shares were up in the premarket trading, yet the 
market closing price was down by 12% from the day’s opening, and volume was 1115.3M. 
Options also expired on this day. 
 
Citigroup shares rose 20% on April 21 on a volume of 709.9M. Citigroup held an annual 
shareholder meeting on April 21. 
 
On May 6, it was announced that Citigroup and some other banks were short on capital. It 
was speculated that Citigroup’s requirement for deeper reserves to offset potential losses 
over the coming two years would be about 5 billion USD. In the afternoon, Tim Geithner, the 
US secretary of finance, said, “All Americans should be confident that these institutions are 
going to be viable institutions going forward.” Citigroup stock rallied after the news, gaining 
10% during the day on the volume of 867M. This was 16.6% higher than May 5 close. 
 
The long-awaited results of stress tests for two banks, Citigroup and Bank of America, were 
publicly released on May 7, and the US government determined that Citigroup should raise 
an additional 5.5 billion USD. During May 7, Citigroup shares sank 13% on a volume of 
1032.4M. However, May 8 started 10% above the May 7 close, after the May 7 afternoon press 
release of Ben Bernanke and Tim Geithner on financial health. It was said that the bank was 
short 5.5 billion USD in capital. However, Citigroup executives said the bank could easily 
cover the shortfall. It is worth mentioning that in expectation of the stress tests, Citigroup 
shares gained 30% from the May 1 close to the May 6 close on moderate volumes. 
 
Before the market open of July 17, Citigroup astonished the markets on the second quarter 
earnings report with a profit of 0.49USD per share, exceeding consensus earnings forecasts 
by 0.86USD per share. However, this included a gain from the Smith Barney sale, which was 
not anticipated in the consensus forecast. Yet, managed revenue without the sale was slightly 
below the consensus. The market responded with a volume well below the average. Options 
expired on July 17. 
 
Before the market open of July 28, Dow Jones reported that Citigroup would issue a 1.25 
billion EUR 10-year bond at a spread of around 385 basis points over mid swaps, and within 
the trading day they also reported that Citigroup had priced a 1.75 billion EUR, 7.375% bond 
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due 2019 in a self-led deal. The day ended in a 10% increase in the price on a volume of 
1037.5M. The three days that followed were also high volume and high volatility days. 
 
August 5 was another high volume day for Citigroup. Before the opening bell, Citigroup 
announced that it had delayed the disclosure of its second quarter account settlement for the 
fiscal year ending December 2009, as it required a longer time to confirm the account 
settlement numerical value. More importantly, as the trading day proceeded Reuters 
reported that Citigroup launched its 2.5 billion USD five-year unsecured notes at 380 basis 
points over US Treasuries. August 5 saw a huge volume of 2674.5M and was followed by 
two more high-volume days. On August 7, Citigroup also started the sale of its Japanese 
telemarketer Bellsystem24, a deal expected to be worth 1.5 billion USD. 
 
Before the market open of August 14, it was reported that Citigroup was upgraded to Buy 
from Underperform at Bank of America and that the old price target of 2.50USD per share 
had been raised up to 5.75USD. The reasons cited were stabilization of some credit quality 
and the removal of the supply overhang of all the new stocks. On the news, Citigroup shares 
were up 2.5% in pre-market trading, but ended back at the level of the August 13 close. 
Volume was 1121.6M. 
 
Options expired on August 21. Citigroup shares were highly traded, reaching a volume of 
1366.8M and a rise of 4.9% from the August 20 close. Monday, August 24, was another 
highly traded day, with a volume of 1202.3M. High volumes continued until August 27 and 
after. 
 
Before the market open of August 27, it was reported that hedge-fund manager John Paulson 
had been quietly buying shares of Citigroup in the past weeks and reached stock holdings of 
2%. Following the news, shares were up 2.2% in pre-market trading and gained an 
additional 6.8% during the day on a volume of 1216M. Following the news, August 28 was 
another high-volume day, 1360M, in which Citigroup shares gained another 3.6% from the 
August 27 close. 
 
On September 15, Citigroup announced they were working on a plan to reduce the US 
government’s 34% stake in the bank that could include a multi-billion equity sale. In the 
afternoon, Dow Jones reported that Citigroup had launched a combined 5 billion USD debt 
offering on September 12, 2009. On September 16, Citigroup announced that they anticipated 
entirely divesting their stake in Morgan Stanley Smith Barney LLC over time. On September 
17 during the trading day, Citigroup launched a 2-billion USD five-year senior notes at a 
spread of 325 basis points over Treasuries. Following this news, volumes reacted sharply, 
ranging from 1154.9M to 1318.9M. The stock sank from 4.52USD (September 14 close) to 
4.12USD (September 15 close), a decrease of 8.8%. Options expired on September 18 and the 
volume reached 1250.7M with the price losing 4.5% in a day. 
 
Before the open of October 15, Citigroup announced 0.11USD smaller loss per share than 
expected for the third quarter. However, Citigroup was still rocked by steep credit losses 
worth 8 billion USD. The market did not react as sharply as it did a couple of times before on 
the news related to Citigroup’s future. Better than expected results were inferior to the 
Goldman Sachs strong earnings performance, which glided past consensus earnings 
estimates with ease. Following the news, the volume of Citigroup reached 834.1M, while the 
price was almost even to the October 14 close. Options expired on October 16, but the 
volume of 411M traded shares was an average one. 
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Citigroup was highly traded in the period of December 14-18. On December 14, Citigroup 
announced they had reached an agreement with the US government on the 20 billion USD 
TARP repayment. Waiting for the US Treasury press report, 1191.1M of Citigroup shares 
were traded on December 16. Later in the day, the US Treasury announced a delay in the 
plan to sell its 5 billion USD Citigroup stocks after the two events occurred. First, a stock that 
the bank offered to potential buyers attracted weak demand and was priced at a much 
lower-than-expected 3.15USD per share; and secondly, a 17 billion USD new-stock deal to 
repay 20 billion USD TARP money. The US Treasury agreed not to sell the stock for 90 days, 
and the next day prolonged the period to 12 months. The market response was huge, 
3772.6M in volume, and a drop in December 17 opening price to the expected price of 
3.15USD. On December 18, 2813.7M shares were traded and the price shifted from 3.26USD 
to 3.40USD. This was close to 3.45 USD of December 16 close. Options expired on December 
18. 
 
Finally, before the market open of January 19, 2010, Citigroup posted a 7.6 billion USD loss in 
the fourth quarter, 0.33USD per share, which was in line with the estimated consensus 
earnings. In a press conference regarding the report release, Vikram Pandit, Citigroup CEO, 
also said that loan performance outside of the United States looked strong, adding to 
investors' perception that the bank was recovering. Markets saw this news with approval 
and the price shifted 6% in the day on the volume of 807.9M. 
 
 
8.4 Results and discussion 
 
The analysis contains the average-game and the endgame proportion of unsuspicious and 
suspicious agents with given portfolios. In all cases, the results are averaged over 30 
independent repetitions of the game. The endgame and the average-game results relate to 
the same games. The endgame results present the average proportion of agents per portfolio 
of 30 independent repetitions in 264t = , while average-game results present the average 
proportion of agents per portfolio over all 264 time periods and over all 30 repetitions. As to 
the news, the more diversified a portfolio is, the more the news is likely to relate to it, but 
this is not the rule. Because most of the news was related to C, portfolios containing it were 
related to the most news. The market portfolio S31 is related to every news event. 
 
 

Unsuspicious agents 
 

Table 8.2: Proportion of unsuspicious agents per portfolio in the average-game (AVG) and the 
endgame (END) settings 

 
 AVG END S11 0.88 0.85 S22 2.67 1.62 
S1 0.68 1.94 S12 7.63 10.43 S23 7.20 3.54 
S2 3.71 8.04 S13 0.85 0.12 S24 5.51 6.62 
S3 0.69 0.12 S14 3.97 0.51 S25 4.98 1.53 
S4 0.84 0.27 S15 2.68 1.33 S26 2.94 3.22 
S5 11.86 3.77 S16 0.94 1.12 S27 3.23 4.53 
S6 2.33 6.55 S17 1.66 3.63 S28 3.06 6.98 
S7 0.73 0.85 S18 2.93 7.65 S29 5.15 3.66 
S8 0.80 1.11 S19 1.05 0.65 S30 8.73 5.01 
S9 1.52 3.56 S20 2.07 1.23 S31 5.09 5.40 
S10 1.90 0.75 S21 1.76 3.44    
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As Table 8.2 reports, the winning average-game portfolios of unsuspicious agents were S5 
(11.86%), S30 (8.73%), S12 (7.63%), and S23 (7.20%), while the winning endgame portfolios 
were S12 (10.43%), S2 (8.04%), S18 (7.65%), S28 (6.98%), S24 (6.62%), and S6 (6.55%).  
 
The weighted beta of 0.822 in the average-game setting and 0.874 in the endgame setting 
indicate that the unsuspicious agents prefer low-risk portfolios. This low-risk preference is 
reflected by the five most-desired portfolios with the weighted beta of 0.597, accounting for 
40.9% of all agents in the average-game setting.28 This group of the most-desired portfolios 
includes some of the lowest beta portfolios: S5 (0.314), S12 (0.433), S23 (0.426). On the other 
hand, the ten least-desired portfolios account for 8.98% of all agents. This is much more than 
in the “no-news” framework of Chapter 6. Again, the least-desired portfolios are high-risk 
portfolios with a weighted beta of 1.246 in the average-game setting. Figure 8.1a displays 
portfolios as to their risk (X-axis) and return (Y-axis). I grouped the most-desired portfolios 
into colored ellipses. 
 

Figure 8.1a: Clusters of unsuspicious agents in the average-game setting 

 
 
As displayed in the figure, two groups of portfolios seem to be the winners in the average-
game setting. As in Chapter 6, the first group consists of portfolios S2, S18, S12, S27, S23, S5 
and S14, which are portfolios from the efficient frontier or from its closest neighborhood. The 
second group is represented by highly diversified portfolios S31, S30, S29, S25, S24 and S26. 
These portfolios exhibit moderate returns and risk levels and were among the least desired 
in the basic framework of Chapter 6. 
 
As in the average-game setting, the endgame portfolios can also be grouped into two clusters 
(Figure 8.1b): portfolios from the efficient frontier and the group of highly diversified 
portfolios. Portfolios from the former are S12 (10.43%), S2 (8.04%), S18 (7.65%), S6 (6.55%), S5 
(3.77%), and S23 (3.54%), while portfolios from the latter are S28 (6.98%), S31 (5.40%), S30 
(5.01%), S27 (4.53%), S29 (3.66%), and S21 (3.44%). They are represented by colored ellipses in 
the figure. 
 
                                                 
28 This is half the proportion of unsuspicious agent selections in the “no-news” setting, where 84.75%  of all chose 
the first five portfolios. 
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Figure 8.1b: Clusters of unsuspicious agents in the endgame setting 
 

 
The endgame portfolios of unsuspicious agents are slightly riskier than the average-game 
portfolios with the weighted beta of 0.874. This is also true for the five most-desired 
portfolios, whose weighted beta is 0.748, while the weighted beta of the ten least-desired 
portfolios reached “only” 1.139. 
 
The final impression is that in the “news-setting” agents selected their portfolios much less 
synchronously than they did in the “no-news” setting of Chapter 6, as 6.35% of all agents 
ended the games with one of the ten least-desired portfolios on average, while 39.7% of 
agents ended the games with the one of the five most desired.  
 
 

Suspicious agents 
 
I now turn to suspicious agents. Note that the assumption of the model is that suspicious 
agents behave suspiciously only with regard to returns and not to news. Therefore, when 
news comes they always choose a portfolio that is subject to better news. In this respect, they 
behave as unsuspicious agents. 
 
Table 8.3: Proportion of suspicious agents per portfolio in the average-game (AVG) and the endgame 

(END) settings 
 

 AVG END S11 1.99 2.14 S22 4.61 1.69 
S1 0.76 1.94 S12 2.47 3.18 S23 2.94 1.19 
S2 1.91 3.87 S13 2.41 0.24 S24 5.52 7.61 
S3 0.70 0.12 S14 1.38 0.27 S25 4.32 0.66 
S4 4.03 1.14 S15 3.90 2.07 S26 4.21 3.28 
S5 3.68 0.36 S16 1.55 2.16 S27 4.57 5.66 
S6 1.53 4.24 S17 3.74 8.80 S28 3.56 7.43 
S7 0.73 0.38 S18 1.51 4.08 S29 5.06 3.08 
S8 2.41 4.87 S19 3.95 2.46 S30 8.71 4.19 
S9 2.72 5.30 S20 2.10 1.59 S31 7.19 6.52 
S10 1.06 0.49 S21 4.81 9.01    
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Table 8.3 demonstrates that the winning average-game portfolios of suspicious agents were 
highly diversified portfolios S30 (8.71%), S31 (7.19%), S24 (5.52%), and S29 (5.06%), while the 
winning endgame portfolios were S21 (9.01%), S17 (8.80%), S24 (7.61%), S28 (7.43%), and S31 
(6.52%). The weighted beta of the average-game setting is 1.070 and 1.080 in the endgame. 
This means that moderate-to-high risk portfolios were preferred to low-risk portfolios. 
 

Figure 8.2a: Clusters of suspicious agents in the average-game setting 
 

 
 
The five most-desired portfolios accounted for 31.3% of all suspicious agents in the average-
game setting. Contrary to the unsuspicious agents, these are moderate-risk portfolios with 
the following reported betas: S30 (0.938), S31 (1), S24 (1.113), S29 (1.112), S21 (1.345); and the 
weighted beta of 1.074. On the other hand, the ten least-desired portfolios were low risk 
portfolios with a weighted beta of 0.800, accounting for 13.12% of all agents. 
 
In the average-game setting, the selection of suspicious agents is highly dispersed. The blue 
ellipse contains four portfolios from the efficient frontier that were selected by a moderate 
proportion of agents: S2 (1.91%), S6 (1.53%), S12 (2.47%), and S18 (1.51%). The second group 
contains two portfolios from the efficient frontier, S5 (3.68%) and S23 (2.94%). The largest is 
the group of highly diversified portfolios that were also the most desirable: S31 (7.19%), S30 
(8.71%), S29 (5.06%), S28 (3.56%), S24 (5.52%), S21 (4.81%), S22 (4.61%), S25 (4.32%); they are 
placed in the middle. The riskiest portfolio S4 was selected by 4.03% of suspicious agents in 
the average-game setting. 
 
Figure 8.2b displays the endgame proportion of unsuspicious agents. I made three clusters 
from their average endgame selections. The first contains four portfolios from the efficient 
frontier, S2 (3.87%), S6 (4.24%), S12 (3.12%), and S18 (4.08%), along with S27 (5.66%), which is 
close to them. The second consists of portfolios S17 (8.80%), and S8 (4.87%), along with S11 
(2.14%), which lies between them. The largest is the group of highly diversified portfolios 
S28 (7.43%), S31 (6.52%), S24 (7.61%), S30 (4.19%), S21 (9.01%), and S26 (3.28%). Yet, the 
riskiest portfolio S4 ended with just 1.14% of all suspicious agents, while S1 was selected by 
only 1.94% of them. After the final iteration, the five most-desired portfolios were chosen by 
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39.4% of suspicious agents on average, while the ten least-desired portfolios were chosen by 
6.43% of them on average. 
 

Figure 8.2b: Clusters of suspicious agents in the endgame setting 
 

 
 
 

Discussion 
 
Because news conveys information to agents, one would expect that an announcement’s 
impact on the market’s valuation of a firm’s equity would depend on the magnitude of the 
unexpected component of the announcement (MacKinlay 1997). Because agents in the model 
always choose a portfolio that is the subject of better news, this might in turn lead to a higher 
desirability for portfolios that are subject to a higher number of positive news events. This is 
generally true but is not the rule, because while agents do withdraw from portfolios that 
exhibit poor returns over time, they also select them when expecting or hearing an 
announcement of positive news. To illustrate the argument: when agents expect a positive 
news announcement, such as an earnings report, they increase the demand for such stocks 
and portfolios and thus shift the price upward. This makes such stocks and portfolios more 
desirable to others and leads to an increase in the proportion of agents with such stocks and 
portfolios prior to the news announcement.  
 
Until this point, the desirability of portfolios is spurred by returns in the expectation of 
positive news, while herding provokes overshooting. The report of positive news puts 
additional pressure on the price and extends overshooting due to herding. However, too 
high expectations turn the returns around, downplaying the effects of positive news and 
provoking herding in the opposite direction away from such portfolios, etc. The same 
intuition might be employed when portfolios are subject to negative news and positive post-
event returns. In this case, a downward overshooting in the selection prior to the negative 
news leads to an increased desirability after positive returns follow, etc. Both phenomena are 
demonstrated in Figure 8.3, which displays the proportion of unsuspicious (UN, green line) 
and suspicious (S, red line) agents with selected portfolios over time. The blue vertical lines 
display the occurrence of news. A significant point here is that the effects of news are not 
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only direct but also indirect through the formation of expectations, which is reflected in the 
level of returns in the days, hours, and minutes prior to the news announcement as well as 
afterwards. 
 

Figure 8.3: Proportion of unsuspicious (UN) and suspicious (S) agents with selected portfolio over 
time 
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Table 8.4 brings an overview of the results. With a weighted beta of 1.080, the endgame 
portfolios of suspicious agents are slightly riskier than the average-game portfolios (1.070). 
However, they both are well above the weighted betas of unsuspicious agents (0.882/0.874). 
In the endgame setting, the five most-preferred portfolios: S21, S17, S24, S28 and S31, reach a 
weighted beta of 1.223, which is much higher than the corresponding beta of the average-
game setting. Yet, the ten least-preferred portfolios of suspicious agents ended on a weighted 
beta of 0.969, which is below the endgame beta of the ten least-preferred portfolios of 
unsuspicious agents (1.139). According to the lambda values, both endgame selections barely 
meet the “rich get richer” pattern of 1λ > , while the average-game selections do not. There is 
no substantial densification in the upper or the lower decile of the selections, because 
portfolios are, to a certain extent, evenly distributed. 
 

Table 8.4: Overview of results 
 

Unsuspicious agents Suspicious agents  
AVG END AVG END 

Proportion of agents 
Top 5 (%) 40.90 39.70 31.30 39.40 
Least 10% (No./31) 11/31 13/31 9/31 12/31 
 
Weighted beta 0.882 0.874 1.070 1.080 
Top 5 0.597 0.784 1.074 1.223 
Least 10 1.246 1.139 0.800 0.969 

 
Lambda 0.910 1.150 0.670 1.110 

 
In addition, Figure 8.4 plots the unsuspicious and suspicious agents’ average-game and 
endgame selection (Y-axes) against the number of non-zero news that were reported per 
individual portfolio (X-axes). Figures on the left (right) relate to the unsuspicious 
(suspicious) agents and the upper (bottom) figures to the average-game (endgame) decisions. 
After some “outliers” are excluded, the figure shows positive correlation patterns between 
the number of news events and the selection of portfolios in all four cases; the proportion of 
agents with a given portfolio generally increases with the number of news events per 
portfolio. This conclusion is in the spirit of Barber and Odean (2008); that being in the news is 
a good thing, and that preferences determine choices after attention has determined the 
choice set. Recall that agents prefer high-yield portfolios. While the relationship is pretty 
straight in the setting of suspicious agents, there are some highly desired portfolios in the 
settings of unsuspicious agents that were subject to a small number of reported news. As 
regards the setting of unsuspicious agents, the introduction of news brings a restructuring of 
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the winning portfolios into two groups: portfolios of the “outliers” from the efficient frontier, 
and highly diversified portfolios. 
 

Figure 8.4: Scatter graphs of unsuspicious and suspicious agents’ average-game and endgame 
selections against the number of news-events 
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As in Chapter 6, the choice for the efficient frontier portfolios was stimulated primarily by 
the returns of portfolios, while that for the group of diversified portfolios was due mostly to 
the number of reported news events. I should acknowledge that the selection process is 
made up of two components: one due to news, and the other due to a change in returns. 
However, when both news and returns are given, agents first consider news and only then 
returns. In addition, much more of the news is related to highly diversified portfolios. Hence, 
this is not to say that the efficient frontier portfolios are not as highly desired as they were in 
the Chapter 6, but rather that their lower proportion is due to the increased desirability of the 
news-related highly diversified portfolios. However, the amount of news does not guarantee 
a portfolio of being selected. One such is S4 (Citigroup) to which much of news was related, 
but was selected by only 0.84% of unsuspicious agents in the average-game setting and only 
0.27% in the endgame setting. Unsuspicious agents were very eager to avoid portfolios that 
were subject to negative news or portfolios that were subject to positive news regarding 
which high pre-news expectations produced an after-news bearish correction. 
 
In the “no-news” settings of Chapter 6, unsuspicious and suspicious agents selected their 
portfolios very similarly because they were capable of distinguishing winners from losers. 
Here, the selections of both cohorts are similar due to the amount of news. Namely, all 
agents in the model considered news unsuspiciously. This is especially true for highly 
diversified portfolios, to which much of the news related. Thence, a great similarity is found 
between unsuspicious and suspicious agents in the selection of highly diversified portfolios, 
which is most specifically obvious in the last three plots of Figure 8.3. 
 
Figure 8.5 displays the plots of the game developments of unsuspicious agents in the 
efficient frontier setting (blue line) versus that in the news-game setting (red line) for selected 
portfolios. Two features can be perceived from the figures. One relates to the efficient 
frontier portfolios that were highly desired in the no-news setting. These portfolios remain 
desired in the games with news. The second relates to highly diversified portfolios, which 
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were mostly avoided in the no-news setting but were desired in the news setting. News-
related agents are much more inclined towards changing their portfolios. In particular, 
positive (negative) news events attract agents’ attention and promote word-of-mouth 
enthusiasm, expectations about the prices, and higher (lower) demands for stocks, all of 
which leads to the rise (fall) in the prices. S4 was not a desired portfolio in any of the cases of 
unsuspicious agents, despite it being subject to many positive and negative news 
announcements and extreme returns. It was highly avoided, indeed. 
 
Figure 8.5: Proportion of unsuspicious agents (UN) with selected portfolio under the efficient frontier 

setting (EF) and the news setting (N) over time 
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Although it is obvious that stock prices respond to news events, it is difficult to identify 
significant news events and match particular events to particular changes in stock prices, 
especially in the light of the enormous number of different news events, whose effects are 
usually highly dispersed throughout the period prior and after the news announcements. 
Thus, it is not only a question how news-events affect to the value of a firm, but foremost 
how they affect to agents’ perceptions, expectations and their responses. Historical 
perspective is full of evidence that news events were often followed by the “excess” reaction 
by the people, including professional brokers (Kindleberger and Aliber 2011). Additional 
issue in this respect might be that the daily interval may be too long, since many events can 
take place in a 24-hour period. Fair (2002) found that most large moves in high-frequency 
S&P500 returns were identified with U.S. macroeconomic news announcements. 
 
In the games, I consider news events and stock returns as two separate variables, but I do 
make an implicit assumption that they are related. Implicitly, I also consider the over- and 
underreactions to news events, as well as the expectations building prior to news 
announcements. It is just that agents do not know the reasons for price shifts that occur prior 
and after an announcement. However, even if agents were capable of predicting the quality 
of information, every opportunity that offers just the slightest chance for speculation is used 
in that way, even by fully informed agents (Ben-Porath (1997) offers a survey on the 
backward induction game with speculation). Such opportunities arise when one just thinks 
that others do not possess all the relevant information, or when one just thinks that others 
think that other thinks (and so on) that one does not possess all the relevant information or 
builds different expectations. Therefore, agents are either convinced that they will be able to 
find someone who will buy shares at a higher price in the future (Scheinkman and Xiong 
2003), or they are incapable of temporarily coordinating their selling strategies (Abreu and 
Brunnermeier 2003). In real markets, news flows are stochastic in both quantity and quality, 
yet unpredictability is also the response of market participants. 
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Chapter IX 
 
 
Concluding comments 
 
 
9.1 Conclusion 
 
The dissertation examines portfolio selection and relates it to the games on networks. The 
main interest of the research has been to understand portfolio choices of interacting agents 
under a variety of circumstances when prices are uncertain. A fundamental methodological 
premise of the dissertation is that information-sharing is essential in agents’ decision-
making, while interaction of bounded rational agents leads to complex collective behavior.  
 
 
Methodology 
 
Network-based approach, which is applied in the dissertation, represents a new approach 
for modeling economic phenomena. It provides a useful multidisciplinary tool for exploring 
models that are mathematically intractable. Examples of such issues are path dependency, 
the effects of adaptive versus rational behavior, the consequences of heterogeneity among 
agents, etc. It is built on three critical pieces: agents, rules and securities. The network of 
agents represents an infrastructure which agents use to interact locally with each other, 
transmit information and make decisions. I use an undirected network, in which a mutual 
consent is needed to form and maintain the link between the two agents.  
 
Dissertation is rooted in a methodological individualism. In the model, agents regularly 
make decisions upon a four-stage process that starts with the observation of past returns of 
one’s portfolio, continues through an agent selection and a comparison of the two portfolios, 
and ends in a decision. Once agents make their decisions, new returns are reported and the 
process repeats.  
 
In the dissertation agents are not omniscient individuals. Agents have incomplete knowledge 
on asset prices, they have friends with whom they, more or less regularly, share their 
knowledge, they also communicate with people they meet occasionally, read newspapers 
and books, gather information, and also have some luck when making decisions. In addition, 
agents are able to use their reason, to learn, build expectations and adjust their behavior to 
market moves. Agents are price-taking individuals who make decisions autonomously. 
 
All these features represent a behavioral aspect which, implicitly or explicitly, is included in 
the model. The notion of behavioral finance is on the psychology of agents’ decision-making. 
Research in cognitive science has provided many arguments to disbelieve in agents’ 
capabilities to making even good, let alone optimal decisions. Behavioral studies suggest that 
agents deviate from the standard model in three respects: nonstandard preferences, 
nonstandard beliefs, and nonstandard decision making. In addition, economic agents 
collaborate with one another, while their decisions are influenced by the behavior of others. 
Given the subjective nature of information and the agents’ cognitive imperfections, selection 
is the outcome of agents’ preferences within constraints, such as the circumstances, limited 
and asymmetric knowledge, expectations, dynamics on the capital markets and luck; a 
synthesis between human cognition and social networks.  
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In the model, agents incorporate a naïve form of reinforcement learning, which has been 
extensively used in the “cheap-talk” or “asking around” communication games of social 
learning. An agent who applies reinforcement learning asks another agent what strategy he 
used and how well it did, and then simply restructures his own portfolio into the one of 
another agent if such portfolio seems better. Face-to-face conversation is important for 
sharing such sensitive information as it is one’s portfolio, when knowing that group 
conversation pools information very poorly and that individuals do not reveal their private 
information to unknown individuals (Stasser et al. 1989). Following this strategy, agents tend 
to possess portfolios that have performed well in the past. Unavoidable consequence of 
imitation is herding, which is one the most generally recognized phenomena in financial 
markets and has been highlighted by many. In the dissertation, herding is very strong when 
agents perfectly rebalance their portfolios, always choosing the alternative that performed 
best in the past. Such is the case with unsuspicious agents, contrary to the sluggishness of 
suspicious agents. The introduction of liquidity agents, i.e. highly conservative or loyal 
agents who never change their initial portfolios, not even in the face of new evidence, into 
the model serves as a cushion to prevent perfect herding that would end in a synchronized 
solution. The games have demonstrated that imitation leads to a power law distribution. 
Namely, copying process reflects the behavior of preferential linking models with agents 
giving preference to profitable alternatives. 
 
Additional aspect of agents’ behaviorism is modeled through the level of agent’s 
suspiciousness. Specifically, agents’ selections are obstructed by the level of their 
suspiciousness. Suspicious agents are prone to making poor decisions, be they intentional or 
accidental. Agents can make errors in their selection or get confused or simply do not trust 
their friends or even make intentional mistakes. Technically, the concept of suspiciousness is 
solved by the random number generator. Whatever its reasons, suspiciousness becomes 
highly significant and also relevant when the difference in the values of two portfolios is 
very small, while its stochastic nature makes the course of the selection process over time 
even more unpredictable. 
 
In the dissertation, complexity of the portfolio selection over time is not induced by a 
complex model, but by interaction of bounded rational agents who regularly make decisions 
upon very simple behavioral rules. Starting from an initially specified system state and the 
rules of conduct, the large number of bounded rational agents is constantly engaged in local 
interactions, thus producing a behavior of the entire group that goes far beyond equilibrium 
closed-form solutions of non-interacting or representative agents. As argued by Tesfatsion 
(2006), the only way to analyze a complex system is to run it and let it evolve over time. 
 
By using very simple behavioral rules and local interaction, the dissertation applies a 
positive decision analysis, addressing the question of which portfolios are selected and not 
which portfolios should be selected. Tversky and Kahneman (1986) argue that normative 
approaches are doomed to failure, because people routinely make choices that are impossible 
to justify on normative grounds, in that they violate dominance or invariance. In the 
dissertation, agents’ decisions are not considered as right or wrong, but as decisions that 
bring them lower or higher payoffs. This represents a methodological novelty that this 
dissertation adds into the portfolio selection literature, which has mostly been normative or 
related to asset pricing. By applying an interaction-based approach, I am not stuck in 
equilibrium, but do not exclude it in the long run, either.  
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Simulations 
 
I conduct two sorts of simulation games: two-asset games and multiple-asset games.  
 
Two-asset games are good to start with, but they represent a huge simplification of the entire 
complexity which agents face in reality. Agent-based models of financial markets have often 
been criticized for having only two assets, a risky and a riskless asset. The number of 
alternatives significantly increases the extent of an agent’s problem. In all settings, games are 
run for several times and average results are reported. Due to the stochastic nature of agents’ 
decision-making, repetitions of the games do not necessarily duplicate their history, despite 
an unchanged learning algorithm and unchanged circumstances. Despite the 
synchronization tendencies, conditions in the markets change faster than information 
propagates around the network. In addition, there is a very small probability that all the 
events needed to get to identical developments will replicate as the games are repeated; with 
an increased number of alternatives this small probability approaches zero.  
 
 
a) Two-asset games 
 
The questions within the setting of the two-asset games (Chapter 5) were the following: how 
do agents select between risky and riskless portfolios; how do agents select between two 
risky alternatives; and what is the effect of a one-time shock on portfolio selection. 
 
The games have shown that when agents, be they unsuspicious or suspicious, choose 
between risky and riskless assets and a combination of the two, risk is highly pronounced. 
Agents choose mixed portfolios when both returns and risk are high, or when the returns of 
risky securities lie in the neighborhood of riskless returns. As returns fall below the lower 
bound of this neighborhood, agents take riskless alternatives for any levels of risk. In mixed 
portfolios riskless securities serve as a security cushion for high risk, while risky securities 
make the zero-return riskless portfolios more profitable. On the other hand, positive returns 
as such do not imply the selection of risky alternatives. As the risk increases, agents start to 
retract from risky portfolios, although a mathematical solution would make risky portfolios a 
better alternative. Obviously, risk is considered a negative factor. An initial proportion of 
agents with different types of portfolios affects the agents’ final decisions in the extreme 
cases. I use heat-map visualizations to present phase-transitions between selections of 
different alternatives. 
 
In the games of two risky stocks, unsuspicious agents were able to choose a winning 
alternative unanimously, while suspicious agents were not. These games were simulated on 
real data of stock returns of two financial corporations. The solution of unsuspicious agents 
appeared to reflect the effect of what might be called unfavorable comparable initial 
conditions. As the initial proportion of agents with the favorable alternative was decreasing, 
unsuspicious agents were unable to select a winning alternative unanimously. In addition, 
selections of unsuspicious agents were highly consistent, while the selections of suspicious 
agents were not. I use a simple consistency test; I plot single game developments to the game 
development averaged over all 20 repetitions. 
 
The games with a one-time shock have demonstrated that shocks affect the agents’ selections 
in the short run but not over the long run unless the magnitude is very large. The effects of a 
shock on the ultra-long run depend on the extent to which a shock changes agents’ behavior, 
the post-shock activities, and the extent of herding. As expected, a shock resulted in the 
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move from portfolios that were hit by a negative shock into other portfolios, while these 
moves were positively correlated with the magnitude of the shock. Subsequent favorable 
returns of a portfolio that was hit by a shock can alleviate the negative consequences of the 
shock, although the recovery was slow. In connection with the unfavorable initial proportion 
of agents with the alternatives that were hit by a shock, the shock can also have long run 
consequences. Especially unsuspicious agents are very sensitive to the shock, while highly 
suspicious agents do not even perceive it. 
 
 
b) Multiple-asset games 
 
In the multiple-asset games of Chapters 6-8, I extend the level of a problem and bring it 
closer to reality. Multiple-asset games are run under three different features: the arbitrarily 
chosen time span (Chapter 6); the bull and the bear trends (Chapter 7); and in the same 
arbitrarily chosen time span as before but with the presence of news events (Chapter 8).  
 
These games are repeated 30 times, while the average-game selections and the endgame 
selections of the same game realizations are examined. Endgame results present the average 
proportion of agents per portfolio of 30 independent repetitions in the last time period, while 
average-game results present the average proportion of agents per portfolio over all time 
periods and over all 30 repetitions. The two separate analyses are required because of the 
time-dependent nature of the portfolio selection process, for which the endgame decisions 
might not adequately reflect game developments. 
 
In the games of Chapter 6, I examine the efficient frontier hypothesis of Harry Markowitz 
(1952a) in an interaction-based environment where portfolio selection is a perpetual activity. 
The hypothesis says that agents choose portfolios that maximize their return given the risk, 
or minimize the risk for the given return. The principal question here was not whether 
agents prefer such portfolios but whether they are capable to reach them in an uncertain 
future. In addition, two different measures were used to test the consistency in selection: the 
coefficient of variation and Monte Carlo. A consistently chosen portfolio should exhibit a 
small variability in its holdings in each time period over independent repetitions of the 
games. The additional question of Chapter 7 was whether agents invest differently in good 
times of a bull trend than in bad times, represented by a bear trend.  
 
The games have demonstrated that agents are capable of investing according to the efficient 
frontier hypothesis and that they behave in a risk-aversive manner. Again, agents consider 
risk as a negative factor, which they try to avoid. The average-game and the endgame 
seletions of unsuspicious agents were highly synchronized with the five most desired 
portfolios being selected by 84.75 percent of agents in an average-game setting and 86.40 
percent of them in an endgame setting. A slightly more dispersed selection of suspicious 
agents is a consequence of their slight failure to perform a “winner takes all” behavior, even 
though they also identify the same “winners” as unsuspicious agents do. This conclusion 
was supported in both bull and bear markets, with the exception that agents take on more 
risk in the bull market. The last conclusion is not surprising. Behavioral studies find that 
agents are less willing to take risk in a domain of losses that is characterized by a bear 
market. Highly preferred portfolios are two-asset portfolios with an additional stock added 
to the most desired one. Additional stocks either sufficiently reduce the risk of a dominant 
single asset or improve its profitability or both, thereby making it more desirable. In a bear 
market, synchronization was huge, as the five (two) most desired portfolios were chosen by 
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95.67 (80.09%) percent of all unsuspicious agents and 83.35 (53.48%) percent of all suspicious 
agents in the endgame setting. 
 
Although the behavior of agents is more risk aversive in a bear market, the selection of 
portfolios S13 and S22 could signify the presence of a reflection effect, i.e. risk seeking in the 
domain of losses, the phenomena that is then followed by loss recognition which leads 
agents to retract from such alternatives. When looking at the figures (Table 7.3a and 7.3b), 
the two portfolios were relatively largely possessed in an average-game setting, but ended 
on liquidity agents in the endgame. Both effects were present only with the unsuspicious 
agents. A reflection effect is a highly important outcome of these simulation games, because 
it presents the pattern that there is a small proportion of agents within the group, who try to 
ride on the risk or are trapped inside the risk until the risk transforms into a loss which 
agents recognize and respond appropriately. The model is thus able to single out this 
phenomenon as an anomaly, which has been documented as such (see Hirshleifer (2001) for 
a discussion). 
 
Consistency tests have demonstrated that unsuspicious agents were much more consistent in 
their selections than suspicious agents. In addition, the most consistently chosen portfolios 
were the most desired and the least desired portfolios. We could say that the latter were 
consistently avoided. Again, this conclusion was supported also in bull and bear markets.  
 
In the last part of the dissertation I extend the baseline model of Chapter 6 by introducing 
news events directly into the agents’ decision making functions. Agents thus decided 
according to returns and news. Therefore, all the differences in the conclusions as to the 
baseline scenario go to the news part. I use real data on both returns and news. I used a rule 
of thumb to extract the news and assumed that significant events should induce price and 
volume shifts. This same rule was also used by Barber and Odean (2008). Following the 
results, the news events have contributed to the portfolio desirability. News events provoke 
a shift into portfolios that are subject to positive news and away from those that are subject 
to negative news. Because agents react not only to news but also to the returns that follow 
the news, negative returns that follow positive news may turn agents away from such 
portfolios, while positive returns that follow negative news may make such portfolios more 
desirable. This means that price reactions to news events are crucial for the behavior of 
market participants with over- and underreaction spurring movements in the opposite 
direction. In the presence of news and returns, two groups of portfolios seemed to be the 
winners. As before, the first group consisted of the efficient frontier portfolios or portfolios 
from its closest neighborhood. The second group was stimulated by the number of non-
negative news and was comprised of highly diversified portfolios. 
 
 
9.2 Future work 
 
The model I use is simple, intuitive and plausible enough – some might even call it rinky-
dinky – but it is by no means exhaustive and can be extended in many directions.  
 
Despite the apparent simplicity of the problem which financial agents face, some open 
questions of how to approach to portfolio selection in an interaction-based setting still 
remain. For instance, how to model asset returns, how to return predictability and 
expectations building, how to best present agent’s problem, how to model agents’ reasoning 
and learning procedures, how to model agents’ reputation in opinion sharing, how to assess 
and evaluate the news, how to consider a delay between the opportunity being noticed and 
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trades being executed, how to select the appropriate network, etc. A more sophisticated 
model would also consider derivatives, such as options, futures, swaps and others 
sophisticated instruments, which are used for managing credit and financial risks. Then, it 
would also consider timing (synchronous versus asynchronous trading), duration, bid-ask 
spreads, trading volumes, short selling, hedging strategies, opinion mining, and taxes in 
relation to different types of securities being subject to different tax rates, etc. 
 
The future of finance theory will to a great extent depend on how successful researchers will 
be in grounding it on a psychological evidence about how people consider uncertainty and 
how they behave under different circumstances when they are faced with uncertainty. A 
specification of how agents form expectations is a crucial component of any model of 
financial markets. Simon (1997) has argued that the future challenge for economists relates to 
the question of how to “receive new kinds of research training, much of it borrowed from 
cognitive psychology and organization theory,” and that they “must learn how to obtain 
data about beliefs, attitudes, and expectations.” In such games, learning is important as it 
determines the ways in which agents acquire information, process data and make decisions. 
As argued by Roth and Erev (1995), this is not just about the learning about the structure of 
the game, but also about the behavior of other agents. In addition, a theory should be 
parsimonious, should explain a range of anomalous patterns in different contexts and 
generate new empirical implications (Daniel et al. 1998).  
 
A survey of Pang and Lee (2008) covers some techniques and approaches in a new research 
field of opinion mining and sentiment analysis. This could bring some new insights on how 
to give information an economic value and benefit from it. 
 
There is no doubt that the games on social networks will be an important part of future 
research in finance as they represent an appropriate instrument for conducting different 
kinds of agent-based experiments that are based on interaction. As argued by Dorogovtsev 
and Mendes (2003), “the world of networks is our inevitable future.” In addition, social 
networks are very robust and applicable to include ideas from behavioral science. 
 
On this trail for better models, the good news is that hardware and software solutions 
develop very fast, and that newly developed simulation techniques could allow for this data 
translation. However, we should not be overly optimistic. The bad news is that no matter 
how good all these improvements are and will be in the future, given the capacity of people 
to communicate, think and adapt, human action will always be a couple steps ahead of the 
conceivable capabilities of researchers and financial economists to model and understand it. 
However, a good researcher will try to do his best. 
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Appendices 
 
Appendix 1: Simulation time-path, efficient frontier setting, 0.01κ =  
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Appendix 2: Simulation time-path, efficient frontier setting, 0.1κ =  
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1 UVOD 
 
Disertacija je v prihodnost usmerjena in na simulacijah temelječa raziskava, ki proučuje izbor 
portfeljev v negotovem svetu trgov kapitala. Osrednji motiv raziskave je skušati razumeti, 
katere portfelje v razmerah negotovosti in pod različnimi okoliščinami izbirajo agenti, ki se 
nahajajo v medsebojni interakciji. Da bi dobil odgovore na zastavljena vprašanja, sem izvedel 
vrsto simulacij, ki temeljijo na preprostih vedenjskih pravilih in interakciji med agenti. 
 
Finančni trgi so inherentno povezani z vprašanji, ki vključujejo čas in negotovost. Z 
vrednostnimi papirji se trguje v času nič, ki je gotovo, medtem ko so donosi realizirani v času 
1, ki je negotovo (Arrow 1963, Milgrom in Stokey 1982, Mandelbrot 1963, Campbell, Lo in 
MacKinlay 1998). Velik del te negotovosti je povezan z informacijsko neučinkovitostjo, ki je 
prisotna tudi v dobro delujočem okolju kapitalskih trgov. Kot poudarita Grossman in Stiglitz 
(1980), pa je tudi okolje, ki je informacijsko popolnoma učinkovito, še vedno lahko 
neučinkovito z vidika pričakovanj; ljudje si na podlagi istih informacij namreč utegnejo 
ustvariti različna pričakovanja (glej tudi Ben-Porath 1997). Neučinkovitost z vidika 
pričakovanj gradi na izhodišču, da so posameznikove umske sposobnosti redka dobrina. 
Torej, četudi bi trije investitorji opazovali iste napovedi, bi še vedno obstajala verjetnost, da 
bodo med seboj trgovali. 
 
Negotovost na trgih je eden osrednjih razlogov za to, da si agenti oblikujejo portfelj, ki je 
sestavljen iz različnih, po možnosti nekoreliranih, enot premoženja, četudi niti popolna 
diverzifikacija ne more povsem odpraviti tveganja. Približno v četrtem stoletju je rabin Issac 
bar Aha predlagal sledeče investicijsko pravilo: “Ljudje bi svoje premoženje morali razdeliti 
na tri dele: tretjino v zemljo, tretjino v trgovino in tretjino na dosegu roke.” Leta 1952 je 
Harry Markowitz (1952a, 1959) objavil prispevek na temo izbora portfeljev, v katerem je 
vprašanje izbora portfelja proučeval glede na odnos med donosom in tveganjem ter podal 
optimalno pravilo, skladno s katerim bi naj agenti oblikovali svoje portfelje glede na raven 
tveganja. Prvi nadgradnji Markowitzeve teorije učinkovite meje sta bili CAPM (Sharpe 1964, 
Lintner 1965a, b) in APT (Ross 1976). 
 
Merton (1969, 1971), Brennan, Schwartz in Lagnado (1997), Barberis (2000) in Liu (2007) 
proučujejo vprašanje izbora portfeljev kot multiperiodni odločitveni problem v negotovem 
svetu. Barberis je pokazal, da agenti večji del svojega premoženja namenjajo v delnice, v 
kolikor so cene delnic predvidljive. Wachter (2003) je pokazala, da v kolikor se pripravljenost 
agentov, da ne sprejemajo tveganih izbir, približuje neskončno, potem je optimalni portfelj 
sestavljen zgolj iz dolgoročnih obveznic. Constantinides (1986) in Lo et al. (2004) proučujeta 
izbor portfelja v odnosu do transakcijskih stroškov in pokažeta, da se agenti na visoke 
transakcijske stroške odzovejo z zmanjšanjem pogostosti in obsega trgovanja. Xia (2001) je 
pokazala, da lahko agenti, ki zanemarjajo priložnosti, ki jim jih ponuja časovna komponenta, 
utrpijo velike oportunitetne stroške, kar daje predvidljivosti donosov, četudi gre za tvegano 
početje, ekonomsko vrednost. Cocco (2005) proučuje učinke nakupa stanovanj na portfeljske 
odločitve posameznikov in ugotavlja, da so ti občutni, saj nakup stanovanj občutno zniža 
finančne zmožnosti ljudi.  
 
Skupaj z obsežnostjo ravnovesnih modelov izbora portfeljev so se pojavljale različne tehnike 
za razreševanje teh optimizacijskih problemov. Nekatere novejše tehnike vsebujejo metodo 
nevronskih mrež (Fernandez in Gomez 2007), metodo simuliranega ohlajanja (Crama in 
Schyns 2003). Chang et al. (2000) primerjajo rezultate več različnih metod: tabu search, 
genetični algoritem in simulirano ohlajanje. Cura (2009) uporabi metodo swarm, Doerner et 
al. (2004) uporabijo metodo kolonije mravel (t. i. ant colony optimization). Četudi so ti 
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ravnovesni modeli dokaj intuitivni in so podali tudi nekatere odgovore glede izbora 
portfeljev v posameznih okoliščinah, pa imajo bore malo skupnega s turbolentnim okoljem, o 
katerem vsakodnevno beremo v časopisu, kot sta se izrazila LeRoy in Werner (2001). Glavna 
kritika zoper te modele se nanaša na to, da ti ne upoštevajo finančnega okolja kot 
kompleksen in prilagodljiv sistem, ki je sestavljen iz množice majhnih agentov, za katere je 
značilno nestandardno vedenje in ki so neprenehoma vpleteni v medsebojno interakcijo, iz 
česar nastajajo globalne posledice (Sornette 2004). V bistvu je edini način, kako modelirati 
takšne sisteme ta, da jih spustimo, da se v času odvijejo sami (Tesfatsion 2006). Končno, 
ravnovesni modeli praviloma sistematično izključujejo ekstremne vrednosti, navkljub vsem 
učinkom, ki jih takšne vrednosti lahko imajo. Dejansko pa se finančni trgi vseskozi prehajajo 
med obdobjem relativnega miru in obdobjem relativnih pretresov. 
 
Vedenjski pristop k financam, oziroma ACE (Agent-Based Computational Economics) finance, 
vsebuje velik del te mikrostrukture, ki v ravnovesnih modelih ni prisotna (Rabin 1998, 
Hirshleifer 2001, Barberis in Thaler 2003 in DellaVigna 2009). Kot pravi DellaVigna, 
posamezniki odstopajo od standardnega modela v treh vidikih: preferenc, prepričanj in 
sprejemanja odločitev. Razvoj ACE je potekal v dveh smereh, ki sta med seboj povezani: 
vedenjski in interakciji. Kot poudarita Simon (1955), Kahneman in Tversky (1979) in 
literatura s področja psihologije, lahko že majhne spremembe pri dojemanju problema pri 
posameznikih drastično vplivajo na njihove odločitve. Drugi vidik se nanaša na interakcijo 
med posamezniki in zajema vprašanje sprejemanja informacij in njihove uporabe. Osnovna 
predpostavka teh modelov je, da imajo posamezni agenti nepopolne in asimetrične 
informacije; da pripadajo posameznim skupinam, znotraj katere komunicirajo; da se v času 
učijo in kopirajo vedenje od drugih; da včasih sprejemajo dobre in včasih slabe odločitve. 
Posamezniki, ki med seboj komunicirajo in si izmenjujejo informacije, s tem privedejo do 
pojava črednega nagona. Čredni nagon je neizbežna posledica imitiranja in je verjetno ena 
najpomembnejših značilnosti finančnih trgov (Bikhchandani et al. 1992, Banerjee 1992, Lux 
1995, Shiller 1995, 2002, Scharfstein in Stein 1990).   
 
V tem času je nastalo ogromno modelov ACE. Eden prvih je Schellingov (1971) model 
segregacije, ki so ga kasneje nadgradili Fagiolo et al. (2007). ACE modeli v financah začenjajo 
z Zeemanom (1974) in Garmanom (1976). Epstein in Axtell (1996) analizirata številne različne 
družbene pojave. Drugi modeli so še: Arifovic (1996), Brock in Hommes (1998), Brock in 
LeBaron (1996), Cont in Bouchaud (2000), Raberto et al. (2001), Stauffer in Sornette (1999), 
Lux in Marchesi (1999), Palmer et al. (1994), Johnson (2002), Caldarelli et al. (1997), Sharpe 
(2007), Kim in Markowitz (1989), Jacobs et al. (2004), Frijns et al. (2008), Dieci in Westerhoff 
(2010). Preis et al. (2006) in Rosu (2009) predstavijo na agentih temelječ model knjige naročil 
(t. i. order book), kjer agenti podajajo svoje nakupne in prodajne zahtevke. Ti modeli so 
praviloma osredotočeni na izbor portfelja v povezavi z modeliranjem cen vrednostnih 
papirjev.  
 
Na podlagi teh dognanj iz različnih področij je disertacija aplikacija vedenjske in na agentih 
temelječe dinamične stohastične omrežne igre, kjer agenti simultano sprejemajo odločitve. 
Disertacija vključuje agente in njihove preference, vrednostne funkcije, povezave med agenti 
in množico potencialnih odločitev za vsakega posameznega agenta. Četudi je uporaba 
omrežnih modelov redka, pa omrežno proučevanje pojavov ni novost. Pastor-Satorras in 
Vespignani (2001) ter Chakrabarti et al. (2008) uporabijo omrežje za proučevanje širjenja 
virusov. Calvo-Armengol in Jackson (2004) uporabijo omrežni pristop pri proučevanju trga 
dela. Allen in Gale (2000) uporabita finančna omrežja za proučevanje kreditnega krča. 
Leitner (2005) predstavi omrežni model, kjer je učinkovitost posameznih projektov odvisna 
od uspešnosti projektov povezanih oseb. Cohen et al. (2008) uporabijo omrežne modele za 
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proučevanje prenosa informacij na trgih vrednostnih papirjev. Bramoulle in Kranton (2007) 
analizirata omrežja v povezavi z javnimi dobrinami. Jackson in Yariv (2007) in Galeotti et al. 
(2010) predstavita omrežno igro, v kateri agenti sprejemajo odločitve, pri tem pa ne vedo 
natančno, kakšne so izbire njihovih sosedov oziroma, kdo so njihovi sosedi. Szabo in Fath 
(2007) in Jackson (2010) predstavita pregled nekaterih evolucijskih omrežnih iger.  
 
Osnovna ideja, na kateri je zgrajena disertacija, prihaja od Markowitza, ki oblikovanje 
portfelja opredeli kot dvofazni postopek zbiranja informacij in oblikovanja pričakovanj, ki se 
zaključi z izborom portfelja (Markowitz 1952a). Za razliko od Markowitzevega koncepta je 
disertacija zgrajena na štirifaznem procesu izbora: opazovanje donosov, izbor enega od 
povezanih agentov, primerjava portfeljev in izbor. V modelu se agenti odločajo za izbor 
posameznega portfelja v vsakem časovnem obdobju, in to na podlagi pretekle donosnosti 
portfelja, ki ga imajo, oziroma portfelja, ki ga ima agent, s katerim primerjajo svoj portfelj. 
 
V disertaciji uporabim omrežje, ki je podobno tistemu, kot ga predlagata Watts in Strogatz 
(1998). V takšnem omrežju agenti ne komunicirajo z vsemi posamezniki v omrežju, ampak le 
s tistimi, ki jim zaupajo. Pri tem jim omrežje služi kot infrastruktura za komunikacijo z 
drugimi agenti. V disertaciji se informacije med agenti po omrežju pretakajo po principu 
osebne komunikacije “od ust do ust” (Ellison in Fudenberg 1995, Shiller 2002, Hong et al. 
2004, 2005). V okolju, za katerega je značilno pretakanje informacij, se agenti ne odločajo 
samo na podlagi svojega znanja in izkušenj, ampak tudi na podlagi znanja in izkušenj vseh 
drugih posameznikov v omrežju. V modelu predpostavljam, da agenti sprejemajo odločitve 
na podlagi uspešnosti njihovih preteklih odločitev in tudi uspešnosti odločitev tistih 
agentov, s katerimi so neposredno povezani. Implicitno to pomeni, da se agenti, četudi z 
rahlim zamikom, odločajo na podlagi pretekle uspešnosti vseh agentov v okolju. Mehanizem 
učenja je tako podoben t. i. metodi ocenjevanega učenja (ang. reinforcement learning). Gre za 
vrsto učenja, ki temelji na opazovanju preteklih realizacij dogodkov, pri čemer agenti v času 
uporabljajo tiste izbire, ki so se v preteklosti izkazale za delujoče in opuščajo tiste, ki se niso 
(Fudenberg in Levine 1998, Hart in Mas-Colell 2000, Hart 2005). V kolikor delujoče odločitve 
niso njihove, jih preprosto prekopirajo od svojih kolegov (Roth in Erev 1995, Erev in Roth 
1998, Camerer in Ho 1999). Grinblatt et al. (1995) so pokazali, da se na tak način vedejo 
vzajemni skladi, kar DeLong et al. (1990a) definirajo kot strategija “pozitivnih povratnih 
informacij.” Agenti tako nenehno spreminjajo svoje portfelje, kar pa ne velja za likvidnostne 
agente. Likvidnostni agenti ne spreminjajo svojih izhodiščnih portfeljev. Njihova vključitev v 
model sledi ideji, da v populaciji obstaja majhen del pasivnih investitorjev. Cohen (2009) 
predstavi model lojalnosti, s katerim pojasni pojav, ko portfelji ljudi vsebujejo vrednostne 
papirje podjetij, v katerih so zaposleni.  
 
Pomemben element disertacije predstavljajo t. i. nezaupljivi agenti. Odločitev za njihovo 
vključitev v model je zelo intuitivna. Ko agenti komunicirajo med seboj, je težko meriti, kako 
močna je takšna medosebna komunikacija. Prav tako je težko meriti, koliko so ljudje pri tem 
iskreni in si med seboj zaupajo. Glavna značilnost nezaupljivih agentov je, da obstaja 
neničelna verjetnost, da med primerjanimi alternativami ne bodo izbrali tiste, ki se zdi boljša. 
Nekateri razlogi za takšno odklonsko vedenje se lahko nanašajo na nezaupanje do drugih 
agentov, do katerega pride na povsem individualni ravni, nezaupljivost do podatkov, bodisi 
posamezni agenti smatrajo, da je razlika med dvema primerjanima alternativama tako 
majhna, da zamenjava ni smiselna. Nezaupljivost se prav tako lahko nanaša na prisotnost 
“napak” v procesu odločanja (Selten 1975, Tversky in Kahneman 1974). Napake v samem 
izboru so lahko tudi posledica zmede (DellaVigna 2009). Uvedba nezaupljivosti postane še 
posebej pomembna v primerih, ko so si vrednosti različnih primerjanih portfeljev med seboj 
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zelo podobne. V takšnih primerih je povsem racionalno pričakovati, da se bodo agenti 
odločali tudi za navidez slabše alternative. 
 
Temeljna metodološka premisa disertacije je, da interakcija med agenti pripelje do zelo 
kompleksnega vedenja na makro ravni, ki bistveno presega ravnovesne matematične rešitve 
modelov reprezentativnih agentov (Simon 1955a, Aumann in Myerson 1988, Schelling 1978, 
Smith 1976, Axelrod 1984, Epstein in Axtell 1996, Tesfatsion 2006, Hommes 2006, LeBaron 
2006, Duffy 2006). Pri izgradnji te kompleksnosti sta pomembni predvsem sledeči dve 
značilnosti. Najprej gre za učinke nepopolnih informacij, ki so razlog za negotovost na trgih 
ter z njim povezana pojava črednega nagona in informacijske kaskade (Hayek 1937, 1945, 
Keynes 1936, Banerjee 1992, 1993, Lux 1995, Scharfstein in Stein 1990, Bikhchandani et al. 
1992, 1998, Cont in Bouchaud 2000, Shiller 2002). Druga pa je povzročena z ravnjo 
(ne)zaupljivosti. Ta povzroči, da se vedenje posameznih agentov približuje hevrističnemu, še 
posebej v primerih, ko so razlike v negotovih alternativah izredno majhne (Kahneman in 
Tversky 1979, Rubinstein 1998, Heath in Tversky 1991, Hirshleifer 2001). 
 
V disertaciji so obravnavana številna pomembna vprašanja v zvezi s tem, kako agenti, ki se 
nahajajo v medsebojni interakciji, pod različnimi okoliščinami izbirajo portfelje. 
 
Q1: Kako agenti izbirajo med tveganimi in netveganimi portfelji? (Poglavje 5) 
Simulacije začnem s preprostim primerom, kjer imajo agenti na voljo en tvegan in en 
netvegani vrednostni papir, izberejo pa lahko tudi kombinacijo med njima. Gre za aplikacijo 
sila preprostega primera, kot so ga predstavili Tobin (1958), Arrow (1965) in Pratt (1964). V 
bistvu je v literaturi, ki se vprašanja izbora portfeljev loteva z uporabo matematičnega 
instrumentarija iskanja ravnovesne točke, takšna aplikacija še vedno najpogostejša. Splošna 
ugotovitev raznih študij je, da agenti pri izboru portfeljev upoštevajo donose in tveganje, pri 
čemer so zelo dovzetni na premijo za tveganje. Takšni pa so v splošnem tudi zaključki 
vedenjskega pristopa.  
 
V teh igrah sem osredotočen na vprašanje, na kakšen način pričakovani donosi in raven 
tveganja vplivajo na izbor portfeljev. Natančneje, v igrah me zanima, kako se odločitve 
agentov spreminjajo s spremembami pričakovanega donosa tveganega vrednostnega papirja 
in variance. Za vsako perturbacijo po posameznih spremenljivkah igre ponovim 20-krat, 
portfelje, ki jih agenti izberejo v zadnji iteraciji v t=10.000 pa povprečim in prikažem na 
vročinskem grafu. 
 
Rezultati iger pokažejo, da je, izbor tveganih portfeljev pozitivno koreliran s povprečnim 
donosom tveganega vrednostnega papirja in negativno z njegovo varianco. Ob tem se še 
pokaže, da se agenti odločajo za mešane portfelje, kadar sta tako pričakovani donos in 
varianca visoka, oziroma, kadar se donosi tveganega vrednostnega papirja nahajajo v okolici 
netveganega donosa. Četudi se agenti izogibajo negativnim donosom, v kolikor lahko 
izberejo netvegano alternativo z ničelnim donosom, pa je varianca tveganega vrednostnega 
papirja tista spremenljivka, ki ustvarja možnosti za dosego pozitivnega donosa. V tem 
primeru se mešani portfelji izkažejo kot ustrezna izbira med tveganimi in netveganimi 
donosi in varianco. Tudi varianca, kot mera za tveganje, ne prispeva k temu, da bi se agenti v 
medvedjem trendu odločali za tvegane portfelje. Izhodiščni delež agentov s posameznim 
portfeljem vpliva na končne odločitve agentov, še posebej v limitnih pogojih. 
 
Q2: Kako se agenti odločajo med dvema tveganima vrednostnima papirjema? (Poglavje 5) 
V naslednjih igrah razširim osnovni okvir in se lotim primera, kjer se agenti odločajo med 
dvema tveganima vrednostnima papirjema dveh finančnih korporacij (CreditSuisse in 
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Citigroup) in kombinacijo med njima. V tem delu uporabim dejanske dnevne donose za obe 
korporaciji, ob tem pa ne analiziram le končnih odločitev agentov, ampak tudi njihov razvoj 
v času. Na tak način lahko spremljam, kako so se odločitve agentov spreminjale glede na 
spreminjanje donosov.  
 
V teh igrah se zelo jasno prikaže ena glavnih značilnosti trgov kapitala – čredni nagon, ki 
privede do sinhronizacije v odločitvah agentov (Bala in Goyal 1998). Čredni nagon se še 
posebej pokaže v okolju zaupljivih agentov, ki so zelo občutljivi na vsakršno majhno razliko 
v primerjanih portfeljih. Posledično so tudi njihove odločitve zelo konsistentne, saj pride do 
sinhronizacije v zelo zgodnjih fazah posameznih iger. Na drugi strani so nezaupljivi agenti 
mnogo manj občutljivi na razlike v portfeljih, zaradi česar njihovi izbori niso konsistentni. V 
teh igrah je konsistentnost merjena kot razmerje med korelacijskim koeficientom posamrznih 
iger glede na povprečje vseh iger. Tudi v teh igrah se pokaže, da izhodiščni delež agentov s 
posameznim portfeljem vpliva na končne odločitve agentov. 
 
Q3: Kakšen je učinek enkratnega šoka na izbor portfeljev? (Poglavje 5) 
V zadnjem delu poglavja 5 v igre dveh tveganih vrednostnih papirjev vključim enkratni šok. 
Kot poudari Sornette (2009), so ekstremni dogodki ena od najprepoznavnejših lastnosti 
naravnih in družbenih ved, ki pogosto vodijo do velikih izgub. Šoki so še posebej relevantni 
tudi v ekonomiji in poznani v finančnem svetu. Označimo jih lahko kot nenadne in občutne 
spremembe v cenah vrednostnih papirjev v katerokoli smer, zaradi česar spreminjajo okolje, 
v katerem agenti sprejemajo odločitve (Merton 1969, 1971). De Bondt in Thaler (1985) 
pokažeta, da agenti pogosto prekomerno reagirajo na takšne dramatične dogodke in 
nepričakovane novice. Vprašanje, ki si ga zastavljam v tem delu, je, kako občutljivi so agenti 
na enkraten šok različnih jakosti. Te igre vključujejo likvidnostne agente. 
 
Skladno z nekaterimi ugotovitvami (Binmore in Samuelson 1994, Binmore et al. 1995 in 
Kandori et al. 1993) se tudi v igrah pokaže, da je kratkoročni učinek šoka neizbežen; še 
posebej močan šok. V igrah se agenti premaknejo stran od alternativ, ki jih je prizadel 
negativni šok in jih zamenjajo s tistimi, ki niso bile prizadete, oziroma so bile prizadete v 
manjši meri, pri čemer so premiki pozitivno korelirani z jakostjo šoka. Šoki manjših jakosti 
ne povzročijo dolgoročnih posledic. Učinki šoka so še posebej vidni v okolju zaupljivih 
agentov. Učinki šoka na ultra dolgi rok so odvisni od ravni, do katere šok spremeni vedenje 
agentov, donosov, ki sledijo šoku in jakosti črednega nagona. V igrah je okrevanje po šoku 
bilo zelo počasno. 
 
Q4: Ali so agenti sposobni izbirati portfelje skladno s teorijo učinkovite meje? (Poglavja 
6-8) 
V poglavjih 6-8 razširim osnovni okvir in se lotim analize iger mnogoterih vrednostnih 
papirjev. Četudi so zelo uporabne, pa so igre dveh vrednostnih papirjev preveč preproste in 
premalo realistične. Uporaba več vrednostnih papirjev drastično poveča jakost problema 
izbora, saj se agenti nahajajo pred problemom iskanja ustreznih informacij (Barber in Odean 
2008). Kot ugotavlja Merton (1987), bi naj ravno zaradi visokih stroškov iskanja, kot 
posledice množice potencialnih alternativ, agenti omejevali število vrednostnih papirjev v 
svojih portfeljih. 
 
V teh igrah analiziram odločitve agentov glede na teorijo učinkovite meje. Teorija učinkovite 
meje govori, da agenti izbirajo takšne portfelje, ki maksimirajo njihov donos pri danem 
tveganju, oziroma minimirajo tveganje pri danem donosu (Markowitz 1952a). Vprašanje, ki 
me zanima, ni, ali agenti preferirajo portfelje iz učinkovite meje, ampak, ali so jih v 
stohastičnem okolju sposobni tudi realizirati. V teh igrah ponovno uporabim likvidnostne 
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agente. Kot v vseh prejšnjih primerih, tako imajo tudi tukaj agenti omejeno vedenje o 
donosih vrednostnih papirjev. V analizi sta povprečna vrednost in varianca uporabljena kot 
končna podatka, ne kot izhodiščna. V vseh primerih uporabim dejanske podatke. Glede na 
izbrane portfelje lahko še ocenim, kakšen je odnos agentov do tveganja. 
 
Glede na rezultate simulacij se pokaže, da bolj kot so tvegani posamezni portfelji, večja je 
verjetnost, da se jim bodo agenti izogibali. Zaupljivi agenti so v mnogo večji meri sposobni 
izbrati zmagovalne in nezaželene portfelje kot nezaupljivi agenti, medtem ko so pri izboru 
tudi bolj konsistentni. V vseh primerih se pokaže, da so manj diverzificirani portfelji mnogo 
bolj zaželeni od bolj diverzificiranih. Konsistentnost v izboru ocenim z uporabo dveh metod: 
koeficientom variacije in z metodo Monte Carlo. Odločitve zaupljivih agentov so mnogo bolj 
sinhronizirane od odločitev nezazupljivih agentov. 
 
Q5: Ali v “dobrih” časih agenti investirajo drugače kot v “slabih” časih? (Poglavje 7) 
Skladno z intuicijo Kahnemana in Tverskega (1979) je moj naslednji cilj testirati, ali so izbrani 
portfelji agentov drugačni v obdobjih, ko cene vrednostnih papirjev rastejo, kot pa v 
obdobjih medvedjega trenda. Vprašanje bistveno presega sporočilnost variance kot mere za 
tveganje, kajti v bikovskem trendu se varianca nanaša na variranje cen v trendu naraščajočih 
cen, medtem ko se v medvedjem trendu nanaša na variranje cen v obdobju padajočih cen. 
Teorija vedenjskih financ pravi, da so vrednostne funkcije agentov konveksne za izgube in 
konkavne za donose (Tversky in Kahneman 1991). Fama in Schwert (1977) pokažeta, da so v 
času medvedjega trenda zahtevani donosi na tvegane vrednostne papirje višji. Ob tem pa 
Barberis et al. (2001) dodajo, da so v medvedjem trendu agenti manj naklonjeni posedovanju 
tveganih vrednostnih papirjev, saj se najprej začno zavedati tveganja, nato pa ga tudi 
ovrednotiti. 
 
Rezultati simulacij so skladni s pričakovanji in pokažejo, da so v medvedjem trendu agenti 
mnogo bolj občutljivi na varianco, kot pa v trendu rasti. Rezultati še pokažejo, da so v 
medvedjem trendu odločitve agentov zelo sinhronizirane, kar se kaže v zelo doslednem 
sledenju koncepta “zmagovalec prejme vse”. V bikovskem trendu se utegnejo agenti 
odmakniti od izbora portfeljev iz učinkovite meje in pri danem donosu izbrati tudi bolj 
tvegane alternative iz bližnje okolice portfeljev iz učinkovite meje. Ponovno se pokaže, da so 
zaupljivi agenti pri svojih odločitvah mnogo bolj konsistentni kot nezaupljivi agenti, ob tem 
pa imajo tudi mnogo večje zmožnosti izbora zmagovalnih portfeljev.  
 
Q6: Kako novice vplivajo na izbor portfeljev? (Poglavje 8) 
V zadnjem delu disertacije se lotim vprašanja, na kakšen način novice, ki se nanašajo na 
posamezune vrednostne papirje, vplivajo na izbor portfeljev. V prejšnjih poglavjih so bile 
novice upoštevane posredno preko cen vrednostnih papirjev, tokrat pa so neposredno.  
 
Chen et al. (1986) poudarijo, da so cene vrednostnih papirjev sistematično predmet nenehnih 
novic o delovanju gospodarstva. Kandel in Pearson (1995) ugotovita, da javne objave 
privedejo do skoka v cenah in trgovalnih količinah. Kot poudari Fair (2002), je večina velikih 
skokov borznih cen delnic S&P500 bila povezana z objavami ameriških makroekonomskih 
podatkov. Bernanke et al. (2005) analizirajo učinke nepričakovanih sprememb ključne 
obrestne mere FEDa na cene vrednostnih papirjev in pokažejo, da je nepričakovano znižanje 
ključne obrestne mere za 25 bazičnih točk privedlo do dviga indeksa S&P500 za 1,3 odstotka. 
Boyd et al. (2005) proučujejo učinke borznega dogajanja glede na objave podatkov o 
nezaposlenosti. Barber in Odean (2008) pojasnita, da pomembne novice drastično vplivajo na 
odločitve investitorjev.  
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Za agenta so novice, ki prihajajo v nerednih intervalih, podobne večkratnim šokom. Novice 
so lahko pozitivne, nevtralne ali negativne. Novice, ki prihajajo v nerednih intervalih, 
povzročijo premike iz portfeljev, ki so predmet negativnih novic, v portfelje, ki so predmet 
pozitivnih novic. Ker pa v modelu agenti ne reagirajo samo na posamezne novice, ampak 
tudi na donose, ki sledijo posameznim novicam, lahko negativni donosi, ki sledijo 
pozitivnim novicam, odvrnejo agente od posedovanja takšnih portfeljev, medtem ko lahko 
pozitivni donosi, ki sledijo negativnim novicam, povišajo privlačnost takšnih portfeljev. To 
pomeni, da so za privlačnost posameznih portfeljev ključni cenovni odzivi na objavo 
posameznih novic.  
 
Pri analizi vpliva novic na izbor portfeljev uporabim dejanske podatke za donose in novice. 
Pri evalvaciji novic uporabim preprosto in intuitivno pravilo. Predpostavim, da objava 
pomembnih novic povzroči skok v trgovalnih volumnih in cenah vrednostnih papirjev; 
omenjeno pravilo uporabita tudi Barber in Odean. 
 
V prisotnosti novic in donosov se kot zmagovalni pokažeta dve skupini portfeljev. Kot v 
predhodnih igrah gre za portfelje iz učinkovite meje, oziroma iz njene ožje okolice. Drugo 
skupino pa tvorijo močno diverzificitrani portfelji, katerih izbor je bil stimuliran s številom 
objavljenih nenegativnih novic. 
 
Glavni prispevek disertacije je metodološki, saj disertacija izhaja iz metodološkega 
individualizma. Pri tem je finančni sisem obravnavan kot kompleksen sistem, ki izbor 
portfelja proučuje preko interakcije med posamezniki, ob tem pa vsebuje elemente 
psihologije. Izbor portfeljev do sedaj še ni bil proučevan na tak način. Tudi sicer so igre na 
družbenih omrežjih dokaj redke, četudi finančni trgi ponujajo ogromno možnosti za njihovo 
aplikacijo (Bonabeau 2002). Na agentih-temelječ pristop mi omogoča, da analiziram 
vedenjske vzorce agentov ob različnih okoliščinah in za velik spekter parametrov. Zmožnost 
ponavljanja iger mi omogoča, da ocenim konsistentnost izbora. Ker proces učenja ne sledi 
strogo določeni proceduri, tudi ponovitve iger ne privedejo do istih rezultatov, četudi 
uporabljamo nespremenjen algoritem učenja (Vriend 2000). Disertacija tako predstavlja nov 
pristop, ki ni uporaben samo za proučevanje izbora portfeljev, ampak tudi za proučevanje 
številnih drugih vprašanj iz področja financ. 
 
Novost je tudi vključitev nezaupljivih in likvidnostnih agentov. Z uporabo nezaupljivih 
agentov dodam v sistem agentovega odločanja psihološki vidik. Obenem lahko tudi 
primerjam odločitve zaupljivih agentov z odločitvami nezaupljivih agentov, in to tako glede 
samega izbora portfeljev, kot tudi ravni konsistentnosti izbora. Likvidnostni agenti so zelo 
pomembni v modelu, saj preprečujejo, da bi manj donosne alternative izpadle iz nabora 
potencialnih odločitev, četudi so manj donosne le za kratek čas. Na nek način so ti agenti 
podobni konzervativnim bodisi lojalnim investitorjem bodisi predstavljajo oblikovalce trga. 
V igrah s simuliranimi donosi je uporabljena Levyjeva porazdelitev, ki predpostavlja, da 
ekstremni dogodki niso tako redki (Mandelbrot 1963, Fama 1965, Sornette 2009). V igrah 
mnogoterih vrednostnih papirjev uporabim dejanske podatke, kar pomeni, da ta del 
disertacije vsebuje vse specifike oblikovanja cen vrednostnih papirjev.  
 
 
2 MODEL 
 
Gre za model v diskretnem času, ki teče na intervalu { }1, 2, ,t T= …  in z diskretnimi stanji, ki 
je sestavljen iz treh kritičnih elementov: agentov, odločitvenih pravil in vrednostnih papirjev. 
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V modelu so agenti med seboj povezani v družbeno omrežje in v vsakem časovnem obdobju 
t  sprejmejo odločitev. Pri tem sledijo zelo preprostim in intuitivnim odločitvenim pravilom, 
ki se izvajajo v štirih fazah (Slika 1). 
 

Slika 1: Proces izbora portfelja 
 
 
 
 
 
 
 
Na začetku vsakega obdobja t  agenti opazujejo donosnosti svojih portfeljev v preteklem 
obdobju 1t −  (Faza 1). V drugi fazi procesa izbora agenti izberejo enega izmed agentov, s 
katerimi so neposredno povezani. Pri tem predpostavim, da je izbor agenta naključen. V 
tretji fazi oba agenta primerjata donosnosti svojih portfeljev v obdobju 1t − . Ko je 
primerjava zaključena, sledi zadnja faza, ko se agent odloči, ali bo tudi v obdobju t  
nadaljeval s portfeljem, ki ga je imel v obdobju 1t − , ali pa bo izbral portfelj svojega kolega. 
Po koncu zadnje faze se sistem prestavi v prvo fazo naslednjega obdobja in proces izbora se 
ponovi in traja vse do obdobja T . V kolikor ni navedeno drugače, se simulacije zaključijo v 

10.000=T . Čas trajanja simulacij z dejanskimi podatki je določen s številom realiziranih 
donosov. 
 
 
2.1 Struktura odločitvenega procesa 
 
Odločitveni proces je zgrajen na komunikaciji med posameznimi agenti, ki s svojimi 
povezavami tvorijo družbeno omrežje (Wasserman in Faust 1998, Chakrabarti in Faloutsos 
2006, Jackson 2008). 
 
Graf g  je urejen par dveh razčlenjenih množic ( ),V E , pri čemer { }1 2, , , nE e e e= …  
predstavlja množico povezav med pari točk ( ),i j , { }1 2, , , nV v v v= …  pa množico med seboj 
povezanih točk. 
 
Graf predstavlja matematično reprezentacijo omrežja. V omrežju imajo posamezne točke 
neko vsebino, bodisi se nanje nanaša neka vrednost bodisi funkcija. V disertaciji uporabim 
neusmerjeno in povezano omrežje, podobno tistemu, kot ga predstavita Watts in Strogatz 
(1998). Glavni značilnosti takšnega omrežja sta, da za vsak par točk ( ),i j  obstaja pot od 
točke i  do točke j , pri čemer je za vzpostavitev povezave med dvema agentoma potrebno 
obojestransko soglasje. Implicitno to pomeni, da je tudi pretok informacij obojestranski. 
Večina ekonomskih stanj sodi v tak okvir obojestranskega formiranja povezav. Osrednji 
značilnosti takšnega omrežja sta, da so povprečne poti med agenti zelo kratke, hkrati pa 
omrežje ohranja lokalno nakopičenost. Slednje pomeni, da obstaja velika verjetnost, da so 
ljudje, ki imajo skupne prijatelje, prijatelji tudi med seboj. Omrežja malega sveta združijo 
lastnosti urejenih in naključnih omrežij. Prve zagotavljajo lokalno nakopičenost, naključna 
omrežja pa s posamičnimi globalnimi povezavami zagotovijo učinek malega sveta. Takšne 
globalne povezave idejno slikajo prijateljstva, ki jih imajo posamezniki zunaj svojega 
lokalnega okolja, prispevajo pa k skrajšanju poti pretakanja informacij po omrežju (Milgram 
1967). 

Faza 1 Faza 2 Faza 3 Faza 4 

Agent prejme 
informacijo o donosu 

svojega portfelja 

Izbor enega 
izmed povezanih 

agentov. 

Agenta primerjata 
donose svojih 

portfeljev. 

Agent sprejme 
odločitev. 
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V vsakem časovnem obdobju je na trgu prisotno konstantno število n  agentov, ki so 
oštevilčeni z 1, 2, 3, ,i n= … . V omrežju lahko agenti komunicirajo samo s tistimi agenti iz 
omrežja, s katerimi so neposredno povezani. V poglavju 5 je v omrežju prisotnih 1000n =  
agentov, vsak med njimi pa je v izhodišču povezan s šestimi najbližjimi agenti v krogu, po 
tremi na vsako stran. V poglavjih 6-8 je v omrežju prisotnih 5000n =  agentov, vsak med 
njimi pa je v izhodišču povezan z desetimi najbližjimi agenti, po petimi na vsako stran. 
Razlog za omejeno število povezav izhaja iz omejenih sposobnosti posameznikov, da 
sklepajo prijateljstva, ki jih dejansko uporabljajo za izmenjavo informacij (Amaral et al. 2000). 
Kot predlagajo Watts in Strogatz ter Barrat in Weight (2000), je v omrežju vsaka povezava z 
naključno izbranim agentom iz omrežja prevezana z verjetnostjo 0.1p = . Obstoj večkratnih 
povezav med agenti ali povezav posameznih agentov s samo seboj ni dovoljen. Ko je 
omrežje zgrajeno, ostaja nespremenjeno do konca tekoče igre. 
 
Agenti v času akumulirajo svoje donose, oziroma vrednost svojega premoženja, pri čemer 
rešujejo sledeči problem: 
 

( )( )1max t tW
E W + , pri čemer velja 

( ) ( ) ( )1 1t i t i tW A W A R+ ⎡ ⎤= ⋅ + •⎣ ⎦ , ( )0 1iW A =  in 0i
tq ≥  (1). 

 

tW  in 1+tW  prikazujeta vrednosti portfelja posameznika i  v času t  in 1t + , ( )tR •  pa donos 

alternative ( )•  v času t . V času = 0t  je vrednost vseh portfeljev enaka ena. 0i
tq ≥  

zagotavlja, da skozi potek igre agenti ne morejo imeti kratkih pozicij, niti se ne morejo 
zadolževati. Agenti tudi ne morejo uporabljati izvedenih finančnih instrumentov, s katerimi 
bi lahko zavarovali svoje pozicije. V simulacijah upoštevamo zakon ene cene, kar pomeni, da 
je cena portfeljev enaka vrednosti enot premoženja, ki sestavljajo portfelj. Začetni portfelji so 
agentom podeljeni naključno z enako verjetnostjo. V kolikor 0i

tq ≥  prikazuje delež 
vrednostnega papirja j  v portfelju v času t , potem je donos portfelja enak tehtanemu 

povprečju donosov vrednostnih papirjev, ki sestavljajo posamezen portfelj 
1

m
j jS

t t t
j

R q R
=

= ⋅∑ . 

Pri tem velja, da je 
1

1
m

j
t

j
q

=

=∑ . 

 
Agenti dobijo podatke o donosih portfeljev, ki jih posedujejo, po koncu vsakega obstoječega 
časovnega obdobja. S tem se ponovno začne prva faza novega obdobja. Drugo fazo 
odločitvenega procesa predstavlja izbor enega izmed povezanih agentov. Implicitna 
predpostavka modela tako je, da agenti niso sposobni v vsakem obdobju kontaktirati večjega 
števila agentov. Ker predpostavim, da nihče med povezanimi agenti nima nekih posebnih 
sposobnosti, ki bi mu omogočale, da bi lahko sistematično premagoval trg, ima vsak agent 
enake možnosti, da je izbran. Po tem, ko agent primerja donosnost svojega portfelja s 
portfeljem izbranega agenta, se odloči, ali obdržati enak portfelj, ali na trgu kupiti portfelj 
izbranega agenta. Za agenta drugi portfelji niso dosegljivi, saj o njih nima informacij. 
 
V odločitvenem procesu se agenti v času vsebolj nagibajo k posedovanju tistih portfeljev, ki 
so se v preteklosti izkazali za donosne (Roth in Erev 1995, Erev in Roth 1998). Gre za 
uporabo t. i. metode ocenjevanega učenja (ang. reinforcement learning), ki je bila pogosto 
proučevana v igrah posnemanja, ki temeljijo na vsakodnevnih komunikaciji med ljudmi in 
njihovemu poizvedovanju. 
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Pomembna elementa modela sta vključitev ravni zaupljivosti med agenti in vključitev 
likvidnostnih agentov. Likvidnostni agenti so v model vključeni v simulacijah v poglavjih    
6-8. Njihova glavna značilnost je ta, da skozi potek igre ne menjujejo svojega izhodiščnega 
portfelja, ne glede na njegovo donosnost v primerjavi z drugimi. Na tak način ohranjajo 
informacije o vseh portfeljih. Likvidnostne agente lahko označimo kot konzervativne ali zelo 
prepričane investitorje, ki so bodisi zadovoljni s svojimi portfelji bodisi imajo kakšne druge 
osebne razloge za svoj konzervativizem. Kot poudari Constantinides (1990), lahko navade 
ljudi drastično dvignejo premijo za posedovanje lastniških vrednostnih papirjev, kar utegne 
spodbujati njihov konzervativizem. V dejanskem svetu kapitalskih trgov niso samo 
konzervativni vlagatelji tisti, ki nastopajo kot likvidnostni agenti, ampak to vlogo igrajo tudi 
vzdrževalci trga. V poglavju 5.5 so likvidnostni agenti postavljeni s sledečih homogenih 
skupinah: ( ) ( ) ( ) ( ) ( ){ }100,109 , 200, 219 , 400, 419 , 600, 619 , 970, 1000i = , v poglavjih 6-8 pa v 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }700,719 , 1000,1019 , 1200, 1219 , 1500, 1519 , 2500, 2519 , 3500, 3519 , 4800, 4819 .i =
Likvidnostnim agentom so portfelji dodeljeni naključno pred začetkom posamične igre. Pri 
ponovitvah iger lahko likvidnostni agenti posedujejo različne portfelje. Četudi likvidnostni 
agenti skozi potek posamičnih iger ne spreminjajo svojih akcij, pa si z drugimi agenti 
izmenjujejo informacije o svojih portfeljih. 
 
Druga značilnost modela je vpeljava t. i. ravni zaupljivosti. Glavna značilnost nezaupljivih 
agentov je, da obstaja neničelna verjetnost, da med primerjanimi alternativami ne bodo 
izbrali tiste, ki je v preteklem obdobju dosegla najvišjo vrednost. Raven zaupljivosti je v 
model postavljena kot eksogena spremenljivka, kar pomeni, da nas razlogi za pojav 
nezaupljivosti ne zanimajo. Raven nezaupljivosti, podana preko spremenljivke ( )0, 1κ ∈ , 
pomeni osrednji element odločitvene funkcije. Ta je podana sledeče: 
 

( ) ( )( ) 1
1 exp[ / ]i jW A W A κ

−
⎡ ⎤℘= + −⎢ ⎥⎣ ⎦

 (2). 

 
V vsakem časovnem obdobju t , agent i  primerja vrednost svojega portfelja ( )W i  z 
vrednostjo portfelja izbranega agenta j , ( )W j . Delovanje odločitvenega procesa je sledeče. 
V kolikor je ran >℘, agent i  ohrani svoj portfelj, v nasprotnem primeru na trgu kupi 
portfelj agenta j . Parameter ( )~ 0, 1ran U  predstavlja naključno število, generirano iz 
enakomerne IID porazdelitve. Kot izhaja iz (2), je odločitev agenta odvisna od razlike v 
vrednostih portfeljev obeh agentov, kot tudi od vrednosti parametra zaupljivosti. V 
splošnem velja, da nižja, kot je vrednost parametra κ , višja je verjetnost, da bo agent izbral 
donosnejši portfelj, in nasprotno. Skozi celotno poglavje 5 postavim vrednost 0.001κ =  za 
zaupljive agente in 0.5κ =  za nezaupljive. V poglavjih 6-8 postavim vrednost 0.01κ =  za 
zaupljive agente in 0.1κ =  za nezaupljive agente. 
 
 
2.2 Podatki 
 
V disertaciji so uporabljene tri vrste vrednostnih papirjev: netvegani, tvegani s simuliranimi 
vrednostmi donosov in tvegani z dejanskimi podatki. Pri simuliranih vrednostih uporabim 
Levyjevo stabilno porazdelitev; Mandelbrot (1963, 1967) je pokazal, da se cene vrednostnih 
papirjev ne gibljejo po Gaussovi porazdelitvi, kot se v ekonomskih modelih pogosto 
domneva, ampak da je njihovo gibanje mnogo bolj kompleksno. Pri dejanskih podatkih 
uporabim podatke zaključnih ( C

tP ) in otvoritvenih ( O
tP ) tečajev delnic iz New York Stock 
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Exchange (NYSE). Otvoritvena cena je cena, ki je bila dosežena pri prvi transakciji, medtem 
ko je zaključna cena zadnja cena delovnega dne newyorške borze. NYSE se odpre ob 9.30 po 
lokalnem času in se zapre ob 16.00 po lokalnem času. Donosi so nato izračunani kot relativna 

sprememba dnevnega tečaja 
C O
t t

t O
t

P P
R

P
−

= . V analizi bikovskega in medvedjega trenda 

uporabim samo zaključne tečaje delnic, s čimer upoštevam tudi trgovanja izven uradnega 
delovnega časa. V mnogih primerih se otvoritveni tečaji po posameznih trgovalnih dneh 
bistveno razlikujejo od zaključnih tečajev. 
 
V poglavjih 5.4 in 5.5 uporabim delnice dveh bančnih korporacij, Credit Suisse (NYSE: CS) in 
Citigroup (NYSE: C). V poglavjih 6-8 uporabim delnice petih korporacij iz petih različnih 
gospodarskih sektorjev: Citigroup (NYSE: C), KraftFoods (NYSE: KFT), Microsoft (NYSE: 
MSFT), Alcoa (NYSE: AA) in ExxonMobil (NYSE: XOM). V vseh primerih je vir podatkov 
finančni portal Yahoo!Finance, dosegljiv na finance.yahoo.com. 
 
V modelu predpostavljam, da so vsi vrednostni papirji neskončno deljivi in popolnoma 
likvidni. Obe predpostavki sta potrebni, v kolikor želimo agentom zagotoviti, da lahko 
skladno s svojim prepričanjem poljubno spreminjajo svoje portfelje v času. Ko se agent odloči 
za prehod na portfelj svojega kolega, implicitno predpostavim, da agent proda vse odvečne 
delnice in na trgu kupi nove. Pri tem predpostavim okolje brez transakcijskih in drugih 
stroškov, ki bi bili povezani s trgovanjem in bi, v kolikor bi do njih prišlo, zniževali 
donosnost posameznih portfeljev. Kot poudarijo Constantinides (1986) in Lo et al. (2004), 
transakcijski stroški vplivajo tako na frekvenco trgovanja, kot tudi na volumen. V poglavjih 
6-8 predpostavim, da so mešani portfelji vedno sestavljeni iz enakih deležev posameznih 
delnic, ki so vljučene v portfelj. 
 
 
3 REZULTATI SIMULACIJ 
 
V igrah dveh vrednostnih papirjev je v okolju prisotnih 1.000n =  agentov, ti pa izbirajo 
bodisi med portfeljem posameznega vrednostnega papirja, ali kombinacijo obeh. Rezultati 
simulacij se nanašajo na povprečne odločitve v dvajsetih med seboj neodvisnih realizacijah 
igre. V teh igrah nas zanimajo le končna stanja v 10.000T = . V primeru simulacij dveh 
tveganih vrednostnih papirjev, delnic finančnih korporacij Credit Suisse in Citigroup, 
analiziram razvoj celotnih iger v času. Pri tem uporabim dejanske podatke o doseženih 
donosih. Tudi v tem primeru se rezultati nanašajo na povprečne razvoje iger dvajsetih med 
seboj neodvisnih ponovitev iger. Čas trajanja posameznih iger je pogojen z izborom 
podatkov in znaša 2457T = . 
 
V poglavjih 6-8 ocenjujem povprečne in končne odločitve agentov, pri čemer naredim 30 
med seboj neodvisnih simulacij posameznih iger. V poglavjih 6 in 8 zajema celoten nabor 
podatkov obdobje od 2. januarja 2009 do 21. januarja 2010, tj. 264T = . Medvedji trend zajema 
obdobje od 22. septembra 2008 do 13 marca 2009, tj. 120T = . Bikovski trend se začne s 
koncem medvedjega trenda, 16. marca 2009, in se konča 11. januarja 2010, tj. 209T = . 14. in 
15. marec sta bila netrgovalna dnevna. 
 
Povprečne odločitve agentov se nanašajo na povprečje povprečne izbire agentov skozi 
celotno časovno obdobje, končne odločitve pa se nanašajo na povprečje končnih odločitev 
agentov. Analiza povprečnih iger daje informacijo o povprečni zaželenosti posameznih 
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portfeljev skozi celoten razvoj simulacij, medtem ko končne odločitve dajejo informacije o 
končni zaželenosti posameznih portfeljev. Oba pogleda se med seboj dopolnjujeta. 
 
 
3.1 Igre dveh vrednostnih papirjev 
 
V prvi igri agenti izbirajo med tveganim in netveganim vrednostnim papirjem ter 
kombinacijo med njima. Končne odločitve agentov prikažem na toplotnih grafikonih. Ti 
pokažejo deleže agentov s posameznimi portfelji glede na pare posameznih spremenljivk. V 
prvem primeru so prikazane odločitve agentov glede na µ  in σ  na intervalih 

0.05 0.05µ− ≤ ≤  in 0 0.2σ≤ ≤ . Pri spremenljivki µ  uporabim korak dolžine 0.01 enote, pri 
spremenljivki σ  pa korak dolžine 0.02 enote. Vrednosti drugih spremenljivk so konstantne 
in imajo sledeče vrednosti: 1.996α = , 0.2834β = , 0.5i

tq = . Začetna vrednost = 0.5u  se v času 
spreminja. Kot dopolnitev simuliram še učinke prvotnih preferenc agentov na njihove 
končne odločitve. To storim tako, da simuliram odločitve agentov glede na perturbacije σ  in 
u  ter µ  in u . V vseh primerih znašata koraka po spremenljivki u  0.1 enote na intervalu 
0 1u≤ ≤ , enako kot v predhodnih simulacijah, pa znašata koraka pri 0.01 in 0.02 enote na 
intervalih 0.05 0.05µ− ≤ ≤  in 0 0.2σ≤ ≤ . 
 
Simulacije iger tveganega in netveganega vrednostnega papirja pokažejo, da donosnost in 
tveganje odločilno vplivata na izbor portfelja, pri čemer je še posebej poudarjen učinek 
donosnosti. Tvegani portfelj je izbran za pozitivne pričakovane donose tveganega 
vrednostnega papirja; donosnost netveganega vrednostnega papirja je skoraj nič. Kot 
prikazuje Tabela 1, je privlačnost tveganega portfelja v negativni korelaciji z varianco. V 
kolikor so pričakovani donosi tveganega vrednostnega papirja negativni, pa netvegani 
portfelj. S/MIX/B se nanašajo na tvegani/mešani/netvegani portfelj, UN in SUS 
predstavljata zaupljive in nezaupljive agente, MU predstavlja pričakovani donos tveganega 
vrednostnega papirja, SIGMA pa varianco. Oba koeficienta se nanašata na Levyjevo 
porazdelitveno funkcijo. Agenti se odločijo za mešani portfelj v dveh primerih. V prvem 
primeru takrat, kadar sta visoka tako pričakovana donosnost tveganega vrednostnega 
papirja, kot tudi njegova varianca. Visoka varianca pomeni pojav mnogo bolj ekstremnih 
dogodkov. Očitno se agenti skušajo za vsako ceno izogniti visokemu tveganju in iščejo 
varnost v razpršenosti. V drugem primeru pa se agenti odločijo za mešani portfelj takrat, ko 
se pričakovani donosi tveganega vrednostnega papirja nahajajo v okolici donosa 
netveganega vrednostnega papirja. Odločitev za netvegani portfelj je pogojena skoraj 
izključno s pričakovanim donosom tveganega vrednostnega papirja. Odločitve agentov so 
tako zelo močno podobne intuiciji teorije obetov. 
 

Tabela 1: Koeficienti korelacije med spremenljivkami 
 

 MU SIGMA 
S_UN 0.749 -0.346 
S_SUS 0.717 -0.360 

MIX_UN 0.326 0.521 
MIX_SUS 0.330 0.433 

B_UN -0.915 0.026 
B_SUS -0.912 0.040 

 
Pri simulacijah iger se pokaže učinek črednega nagona, kot posledica kopiranja portfeljev 
drugih. Čredni nagon povzroči, da manj donosne alternative v času postopoma izginjajo iz 
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spektra alternativ, saj jih uporablja vse manj agentov. Tako lahko že kratkoročna neuspešnost 
posameznih alternativ, ki bi na dolgi rok sicer utegnile biti donosne, eliminira takšne 
alternative iz spektra množice potencialnih. Kot odgovor na pojav črednega nagona v 
nadaljevanju v model vključim t. i. likvidnostne agente, ki v času ne spreminjajo svojih 
alternativ, s čimer ohranjajo informacije o vseh alternativah. 
 
V drugem sklopu simuliram igre dveh tveganih vrednostnih papirjev, Credit Suisse in 
Citigroup. Za razliko od predhodnih iger se tukaj ne posvetim samo končnim izborom, 
ampak celotnemu razvoju odločitev agentov. Pri tem še analiziram, kakšna je konsistentnost 
izbire posameznih agentov. Pokaže se, da so zaupljivi agenti zelo konsistentni pri svojih 
izbirah, medtem ko nezaupljivi agenti niso. 
 
V zadnjem delu šestega poglavja analiziram učinek enkratnega šoka na odločitve agentov. 
Pokaže se, da ima šok zelo velik kratkoročni učinek na odločitve zaupljivih agentov in se 
pokaže z zamikom enega časovnega obdobja po nastanku. Sam učinek šoka nato traja več 
obdobij, šele čez čas pa pride do postopnega umirjanja in vrnitve na stanje pred nastopom 
šoka. Po pričakovanju je učinek šoka bistveno bolj opazen takrat, ko manj agentov poseduje 
alternativo, ki je bila prizadeta s šokom. Nezaupljivi agenti šoka ne zaznajo. 
 
 
3.2 Igre mnogoterih vrednostnih papirjev 
 
Igre dveh vrednostnih papirjev predstavljajo ogromno poenostavitev problema, s katerim se 
agenti srečujejo v dejanskem svetu. Obstoj mnogo različnih vrst premoženja na različnih 
trgih daje agentom izjemno število možnosti za oblikovanje različnih portfeljev. Na primer, 
borzni indeks Dow Jones sestavlja 30 delnic, Standard&Poors500 je indeks 500 delnic, 
medtem ko NASDAQ vsebuje več kot 3800 delnic. V večini držav sveta obstajajo borze 
vrednostnih papirjev, poleg tega obstajajo še trgi valut, obveznic in drugih vrst dolga, blaga, 
izvedenih finančnih instrumentov in drugi trgi. 
 
V kolikor si agenti izmed n  vrednostnih papirjev, ki so jim na voljo, oblikujejo portfelj iz 

enakih delov i  vrednostnih papirjev, potem si lahko oblikujejo ( )
=

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑

1
2 1

n n

i

n
K n

i
 

različnih portfeljev. Na tak način obstoj dveh vrednostnih papirjev daje možnost oblikovanja 
treh portfeljev, treh vrednostnih papirjev 7 različnih portfeljev, pet vrednostnih papirjev 31 
portfeljev in tako naprej. 32.767 različnih portfeljev je mogoče oblikovati, kadar je na trgu 
prisotnih 15 različnih vrednostnih papirjev. Število portfeljev narašča s faktorjem 2 + 1. V 
dejanskem svetu se število možnosti približuje neskončno, saj si lahko agenti oblikujejo 
portfelje iz različnih deležev posameznih enot premoženja. V nadaljevanju analiziram stanje, 
kjer je 5n = . 
 
V prvih igrah uporabim časovni interval, ki ne vsebuje kakšnega posebnega trenda. Skladno 
z rezultati lahko potrdim veljavnost hipoteze o učinkoviti meji, pri čemer se še izkaže, da so 
agenti pri svojih odločitvah zelo nenaklonjeni tveganim portfeljem. Izbrani portfelji so 
namreč zelo nakopičeni okrog učinkovite meje in okolice točke bifurkacije. Podrobnejši 
rezultati so navedeni v Tabeli 2, iz katere še izhaja, da so izbire zaupljivih agentov zelo 
skoncentrirane okrog majhnega števila t. i. zmagovalnih portfeljev, kar še posebej velja za 
njihove končne odločitve. 
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Tabela 2: Pregled rezultatov 
 

 Zaupljivi agenti Nezaupljivi agenti 
 Povprečne Končne Povprečne Končne 

Delež agentov 
Top 5 (%) 84.75 86.40 36.41 41.60 
1. decil (št./31) 24/31 25/31 10/31 11/31 
 
Tehtana beta 0.459 0.467 0.731 0.778 
Top 5 0.396 0.419 0.451 0.637 
Najslabših 10 1.450 1.424 1.391 1.280 

 
Lambda 1.826 2.030 0.838 0.945 

 

Opomba: za posamezne portfelje so koeficienti beta izračunani kot ,
i

i i M
M

σ
β ρ

σ
= , pri čemer 

,i Mρ  označuje korelacijo portfelja i  s tržnim portfeljem. V modelu predstavlja portfelj S31 
tržni portfelj, saj pomeni najvišjo možno mero diversifikacije. Ker S31 predstavlja tržni 
portfelj, njegova varianca predstavlja tržno tveganje Mσ . β  koeficient portfelja i  
izračunamo preko metode OLS, pri čemer uporabimo sledečo enačbo: , , ,i t i i M t i tR Rα β ε= + + , 

kjer je ( ), 0i tE ε =  in ( ) 2
,i t iVar ε σ= . Ko imamo ocenjene beta koeficiente za posamezne 

portfelje, izračunamo vrednost tehtanega beta koeficienta kot 
1

1 N

W i i
i

h
N

β β
=

= ∑ , pri čemer ih  

predstavlja delež agentov s posameznim portfeljem i  in kjer je 
1

1
N

i
i

h
=

=∑ . Za izračun tehtane 

bête podvzorca, kjer velja 
1 1

N N

i i
i i

h q
= =

≠∑ ∑ , je treba delež izbranih portfeljev, za katere 
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1
N

i
i

h
=

=∑ . 

 
V kolikor x  predstavlja naključno spremenljivko in λ  pozitivno konstano, potem je 
porazdelitev slučajne spremenljivke potenčna, če in samo če je njena verjetnostna funkcija 
porazdelitve oblike ( )f x x λ−∝ . 
 
Vrednost koeficienta lambda se nanaša na koeficient potenčne porazdelitve (ang. power law). 
V kolikor velja 1λ > , govorimo o konceptu “bogati postajajo bogatejši.” Porazdelitev 
slučajne spremenljivke je potenčna, v kolikor pogostost pojava upada skladno z obratno 
potenčno stopnjo, medtem ko se velikost pojava povišuje. Oziroma, ko vrednost, ki jo nekdo 
ima, raste z vrednostjo, ki jo je predhodno že imel (Lotka 1926, Simon 1955b). V disertaciji je 
lambda uporabljena za rangiranje izbranih portfeljev in kaže raven sinhronizacije izbranih 
portfeljev. Vrednosti potenčnih eksponentov so izračunane z uporabo metode OLS. 
 
Podrobnejši rezultati so prikazani na Sliki 2, ki prikazuje deleže agentov z izbranimi portfelji 
(Y-os) glede na vrednosti beta koeficientov portfeljev (X-os). Sliki na levi (desni) strani se 
nanašata na zaupljive (nezaupljive) agente, zgornji (spodnji) sliki pa na povprečne 
povprečne (končne) odločitve 30 med seboj neodvisnih ponovitev iger. 
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Slika 2: Razsevni diagrami odločitev agentov glede na beta vrednosti portfeljev 
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Skladno z rezultati lahko združimo odločitve agentov v tri sklope: prvi sklop sestavljajo 
portfelji, ki jih izbere več kot 5% agentov, drugi sklop sestavljajo portfelji, ki jih izbere med 
1.5% in 5% agentov, tretji sklop pa sestavljajo portfelji, ki jih izbere manj kot 1.5% agentov. 
To so praviloma portfelji, ki jih posedujejo zgolj likvidnostni agenti. V prvem sklopu 
najpogosteje izbranih portfeljev so portfelji iz učinkovite meje. Izbrane skupine so negativno 
korelirane z varianco portfeljev. V okolju zaupljivih agentov je prehod iz skupine najbolj 
zaželenih portfeljev v skupino najmanj zaželenih portfeljev zelo oster, medtem ko je pri 
nezaupljivih agentih mnogo bolj postopen. Skladno z vrednostmi lambda je očitno, da pri 
nezaupljivih agentih ne pride do sinhronizacije odločitev, medtem ko pri zaupljivih agentih 
pride do aplikacije koncepta “zmagovalec pobere vse.” 
 
Za analizo konsistentnosti uporabim dve metodi: koeficient variacije in metodo Monte Carlo. 
Izkaže se, da so najbolj konsistentno izbrani portfelji tisti, ki se nahajajo na učinkoviti meji in 
tisti, ki so bili najmanj zaželeni portfelji. V obeh primerih gre za t. i. zmagovalce in 
poražence, torej portfelje, ki so si jih agenti konsistentno izbirali in tiste, ki so se jim agenti 
konsistentno izogibali. 
 
 
3.3 Bikovski in medvedji trend 
 
Četudi se je pokazalo, da agenti preferirajo manj tvegane portfelje, pa se postavlja vprašanje, 
kako posamezni trendi vplivajo na njihove odločitve. Kahneman in Tversky (1979) sta v 
svojem prispevku o teoriji obetov pokazala, da je odnos ljudi do sprejemanja tveganih 
odločitev odvisen od tega, ali gre za negativne ali pozitivne obete. Skladno s to intuicijo je 
moj naslednji cilj testirati hipotezo, da so v obdobjih naraščajočih cen vrednostnih papirjev 
agenti pripravljeni sprejemati bolj tvegane portfelje kot pa v obdobjih medvedjega trenda. 
Vprašanje bistveno presega sporočilnost variance kot mere za tveganje, kajti v bikovskem 
trendu se varianca nanaša na variranje cen v trendu naraščajočih cen, medtem ko se v 
medvedjem trendu nanaša na variranje cen v obdobju padajočih cen.  
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Slika 3: Razsevni diagrami odločitev agentov glede na beta vrednosti portfeljev v medvedjem in 
bikovskem trendu 
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(a) medvedji trend (b) bikovski trend 

 
Rezultati so prikazani na Sliki 3, ki prikazuje deleže agentov z izbranimi portfelji (Y-os) glede 
na vrednosti beta koeficientov portfeljev (X-os), in Tabeli 3. V obeh primerih se slike, ki se 
nahajajo na levi (desni) strani, nanašajo na zaupljive (nezaupljive) agente, medtem ko se 
slike, ki se nahajajo zgoraj (spodaj) nanašajo na povprečne (končne) igre. 
 

Tabela 3: Pregledna tabela rezultatov v medvedjem in bikovskem trendu 
 

 Zaupljivi agenti Nezaupljivi agenti 
 Povprečne Končne Povprečne Končne 

Medvedji trend 
Delež agentov 
Top 5 (%) 73.23 95.67 57.90 83.35 
1. decil (št./31) 21/31 28/31 13/31 25/31 
 
Tehtana beta 0.842 0.714 0.808 0.696 
Top 5 0.789 0.706 0.684 0.679 
Najslabših 10 1.487 1.160 1.088 1.257 
 
Lambda 1.672 2.017 1.885 2.037 
 
Bikovski trend 
Delež agentov 
Top 5 (%) 80.00 84.83 50.01 64.38 
1. decil (št./31) 23/31 25/31 12/31 17/31 
 
Tehtana beta 1.600 1.610 1.317 1.346 
Top 5 1.712 1.692 1.587 1.471 
Najslabših 10 0.600 0.674 0.677 0.841 
 
Lambda 1.820 2.088 1.077 1.883 

 
Rezultati simulacij potrjujejo testirano hipotezo, da se agenti v času rasti borznih tečajev 
vedejo drugače, kot pa v primeru njihovega padanja in da so v primeru bikovskega trenda 
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pripravljeni prevzeti več tveganja. V medvedjem trendu so tehtane vrednosti beta 
koeficientov mnogo nižje od tistih v bikovskem trendu. Povprečne vrednosti koeficienta, 
višje od ena, povedo, da so agenti pogosteje izbirali nadpovprečno tvegane portfelje. V 
medvedjem trendu so odločitve agentov nekoliko bolj sinhronizirane kot pa v bikovskem. V 
obeh primerih so agenti zelo konsistentni pri svojih odločitvah, kar je, glede na visoko 
stopnjo sinhronizacije, skladno s pričakovanji. Koncentracija odločitev je še posebej opazna v 
končnih odločitvah medvedjega trenda, kjer so samo štirje od 31ih portfeljev končali z več 
kot 5% zaupljivimi agenti. Ti portfelji so S3 (62.19%), S10 (17.90%), S14 (7.14%) in S23 (5.97%). 
Med ostalimi pa samo S2 (2.47%) in S12 (1.11%) nista končala pri likvidnostnih agentih. 
Četudi nezaupljivi agenti svojih izbir niso koncentrirali  v tolikšni meri kot zaupljivi agenti, 
pa so kljub temu bili v veliki meri sposobni identificirati iste zmagovalce kot zaupljivi agenti. 
 
Ponovno se je pokazalo, da so bili med vsemi portfelji najpogosteje izbrani portfelji iz 
učinkovite meje oziroma iz njene bližnje okolice. Poleg tega je v medvedjem trendu opazna 
privlačnost portfeljev S13 in S22, ki ne ležita na učinkoviti meji, ampak na notranjem delu 
namišljene hiperbole. Njun izbor lahko pojasnimo preko pojava t. i. iskanja tveganja, kadar 
so obeti negativni, kot pojasni Markowitz (1952b). To pomeni, da posamezni agenti skušajo 
doseči višje donose z uporabo tveganja. 
 
Testi konsistentnosti pokažejo, da so bili najbolj konsistentno izbrani bodisi najbolj zaželeni 
portfelji bodisi najmanj zaželeni portfelji. Med vsemi so bili najmanj konsistentno izbrani tisti 
portfelji, pri katerih imetja se med povprečnimi in končnimi igrami bistveno razlikujejo. 
Najmanj konsistentno izbrani portfelji pa so bili bodisi tisti, ki niso končali samo pri 
likvidnostnih agentih, bodisi tisti, ki med preostalimi niso bili posebej zaželeni. Če 
primerjamo obe skupini agentov, vidimo, da so zaupljivi agenti mnogo bolj konsistentni pri 
svojih odločitvah, kot nezaupljivi agenti. Vedenje agentov je bilo bolj konsistentno v 
medvedjem trendu. 
 
 
3.4 Model z novicami 
 
Nazadnje simuliram še model, kjer se agenti ne odločajo samo na podlagi objavljenih 
donosov delnic, kot v predhodnih simulacijah, ampak tudi na podlagi objavljenih novic. Gre 
za ceteris paribus nadgradnjo simulacij iz poglavja 6, z razliko, da tukaj vključim še novice kot 
dodatno spremenljivko. 
 
V modelu z novicami se postopek izbire od osnovnega modela razlikuje le v tem, da agenta 
med seboj ne primerjata le donosov, ampak tudi novice. Pri tem velja pravilo, da agent 
vedno izbere portfelj, za katerega je objavljena boljša novica. V kolikor za nek portfelj ni 
objave novic, potem je vrednost novice postavljena na nič. Izmed dveh primerjanih portfeljev 
agenti vedno izberejo tistega, za katerega je objavljena boljša novica. Zaželenost portfeljev pa 
ni odvisna samo od objavljenih novic, ampak tudi od vsakokratnih donosov. Četudi lahko 
objava večjega števila pozitivnih novic poveča privlačnost posameznih portfeljev, pa se 
lahko agenti distancirajo od portfeljev, katerih donosi v času niso ustrezno visoki. To še 
posebej velja v luči prevelikega ali premajhnega odziva na objavljene novice, ki se tudi na 
borznem trgu kaže preko dinamike cen. 
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Slika 4: Razsevni diagrami izbranih portfeljev glede na število objavljenih novic za posamezni portfelj 
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Ker novice pomenijo prenos informacij do agentov, MacKinlay (1997) poudari, da je učinek 
objave na ceno delnic odvisen od jakosti nepričakovane komponente novic. Vključitev novic 
privede do dveh skupin “zmagovalnih” portfeljev: prvo sestavljajo portfelji iz učinkovite 
meje, drugo pa portfelji z največjim številom objavljenih novic (Slika 4). Sliki na levi (desni) 
strani se nanašata na zaupljive (nezaupljive) agente, zgornji (spodnji) sliki pa na povprečne 
povprečne (končne) odločitve 30ih med seboj neodvisnih ponovitev iger. 
 

Tabela 4: Pregledna tabela rezultatov v modelu z novicami 
 

 Zaupljivi agenti Nezaupljivi agenti 
 Povprečne Končne Povprečne Končne 
Delež agentov 
Top 5 (%) 40.90 39.70 31.30 39.40 
1. decil (št./31) 11/31 13/31 9/31 12/31 
 
Tehtana beta 0.882 0.874 1.070 1.080 
Top 5 0.597 0.784 1.074 1.223 
Najslabših 10 1.246 1.139 0.800 0.969 
 
Lambda 0.910 1.150 0.670 1.110 

 
V nasprotju s predhodnimi simulacijami pa v modelu z novicami ne pride do sinhronizacije 
odločitev (Tabela 4). To še posebej velja za povprečne odloćitve nezaupljivih in zaupljivih 
agentov; v obeh primerih je 1λ < . 
 
 
5 ZAKLJUČEK 
 
Vprašanje, s katerim se na finančnih trgih srečujejo investitorji in ga tudi rešujejo, je, kako na 
učinkovit način upravljati s premoženjem. V tem procesu pomeni izbor portfelja izbiro med 
mnogimi stohastičnimi alternativami, ki so posameznim agentom na voljo v času. Disertacija 
je ilustracija vedenjske dinamične igre sočasnih potez igralcev v negotovem svetu trgov 
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kapitala. Model predstavlja aplikacijo socialnih omrežij v ekonomiji in vsebuje agente in 
njihove preference, vrednostne funkcije, povezave med agenti in nabor akcij za posameznega 
agenta. V modelu se vedenjske finance nanašajo na psihologijo izbora agentov. V igrah 
uporabim tako zaupljive, kot tudi nezaupljive agente.  
 
Osrednji motiv disertacije je skušati razumeti, na kakšen način zaupljivi in do neke mere 
nezaupljivi agenti, ki se nahajajo v medsebojni interakciji, pod različnimi okoliščinami 
izbirajo svoje portfelje v razmerah negotovih cen vrednostnih papirjev. Temeljna 
metodološka značilnost disertacije je ta, da interakcija med agenti privede do kompleksnega 
vedenja celotne skupine, ki ga brez uporabe pristopa, ki vključuje interakcijo med agenti, ni 
mogoče pojasniti. 
 
V prvem delu simulacij pokažem, na kakšen način donosi in raven tveganja posameznih 
portfeljev vplivajo na njihov izbor v preprosti igri z dvema vrednostnima papirjema. 
Simulacije izvedem v dveh različnih okoliščinah: najprej z netveganim in tveganim 
vrednostnim papirjem, nato še z dvema tveganima vrednostnima papirjema. Rezultati 
pokažejo, pod katerimi okoliščinami se agenti odločijo za mešane portfelje tveganega in 
netveganega vrednostnega papirja. Simulacije še pokažejo, da je za nemoten potek izbora 
nujno potrebno zagotavljanje likvidnosti. Vključitev šoka v proces izbora pokaže, da v 
kolikor jakost šoka ni premočna, je njegov učinek zgolj kratkoročen. 
 
V drugem delu razširim osnovni okvir in se lotim iger z mnogoterimi alternativami. Četudi 
imajo agenti v modelu omejeno védenje o donosih vrednostnih papirjev, svoje portfelje pa 
izbirajo na podlagi realiziranih donosov, pa so portfelje kljub temu sposobni izbrati skladno 
s hipotezo učinkovite meje. Nekoliko bolj razpršeni izbor nezaupljivih agentov je posledica 
njihove nezmožnosti igranja načela “zmagovalec pobere vse,” četudi so sposobni identificati 
iste “zmagovalce” kot zaupljivi agenti. Omenjena ugotovitev je podprta tako v bikovskem 
kot tudi medvedjem trendu, četudi v bikovskem trendu agenti prevzemajo več tveganja, kar 
je skladno s teoretičnimi predvidevanji. Agenti ne preferirajo preveč razpršenih portfeljev, 
ampak portfelje dveh vrednostnih papirjev, ki so zgrajeni okrog najbolj zaželenega 
posamičnega vrednostnega papirja. Testi konsistentnosti, opravljeni s pomočjo koficienta 
variacije in metode Monte Carlo, pokažejo, da so najbolj konsistentno izbrani bodisi najbolj 
bodisi najmanj zaželeni portfelji. Ti testi še pokažejo, da so zaupljivi agenti bolj konsistentni 
pri svojih odločitvah kot nezaupljivi agenti. Simulacije z novicami so navrgle dve skupini 
zmagovalnih portfeljev: portfelje iz učinkovite meje oz. iz njene okolice, in diverzificirane 
portfelje, katerih izbor je pozitivno koreliran s številom objavljenih nenegativnih novic. 
 


