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MODELS AND SOLUTION ALGORITHMS FOR THE RIDE-MATCHING
PROBLEM: FACILITATING THE MATCHING PROCESS IN RIDESHARING
SYSTEMS

ABSTRACT

In ridesharing, individuals with matching itineraries and schedules share a ride in a per-
sonal vehicle. The driver and rider(s) typically share the associated costs so that each ben-
efits from the shared ride. In addition, drivers may save time because they are able to use
high-occupancy vehicle lanes reserved for the exclusive use of vehicles with two or more
occupants, while riders may appreciate that they do not need to drive or even own a vehicle.

Ridesharing can significantly reduce the number of cars needed to satisfy the mobility needs
of participants and, thus, reduce congestion and other externalities related to heavy traffic
when people rely on individual transportation to satisfy their mobility needs. Such chal-
lenges arise in a myriad of urban areas around the world. Ridesharing appears as an inter-
esting measure since it may result in significant effects without large investments.

Ridesharing services on the market range from simple online bulletin boards to complex
systems that can be accessed through web and mobile applications offering automated
matching, routing, and payment. In this thesis, we focus on systems that offer automated
matching of drivers and riders within an urban area. The service provider receives a large
number of rideshare offers and requests from its users. Riders looking for rideshare oppor-
tunities need to be matched with drivers who are offering rides and the resulting trips need
to be scheduled. Time windows and other restrictions imposed by the system or the users
need to be respected.

In ridesharing, each driver has a specific itinerary and is willing to pick up and drop off
riders en route. To accommodate the riders, the driver has to make a detour and make
extra stops. The length of the detour and the number of extra stops depend on the driver’s
willingness to extend his trip time. Limited flexibility in system participants’ itineraries and
schedules is a major challenge in ridesharing. It may result in many drivers and riders not
finding a match.

In the first chapter of the thesis, we conduct a study to quantify the impact of different
types of participants’ flexibility on the performance of a ridesharing system. Our results
consistently show that small increases in flexibility, e.g. in terms of desired departure time
or maximum detour time, can significantly increase the expected matching rate, especially
when the number of trip announcements in the system is small. The results clearly demon-
strate the impact of participant flexibility on the performance of a ridesharing system (in
terms of the matching rate achieved). In order for dynamic ridesharing to work, drivers and
riders need to be flexible in their departure and arrival times but, most importantly, drivers
need to be flexible in terms of the detour they are willing to make. The main contributions
are that we introduce and define three different types of participant flexibility that are rel-
evant in the dynamic ridesharing context, i.e. matching flexibility, detour flexibility, and
scheduling flexibility. We quantify the impact of these types of flexibility on system per-
formance and investigate the level of additional flexibility that is required to improve the
effectiveness of a rideshare system.

In the second chapter of the thesis, we investigate the potential benefits of introducing
meeting points in a ridesharing system. With meeting points, riders can be picked up and



dropped off either at their origin and destination or at a meeting point that is within a cer-
tain distance from their origin or destination. The increased flexibility results in additional
feasible matches between drivers and riders, and allows a driver to be matched with multi-
ple riders without increasing the number of stops the driver needs to make. We design and
implement an algorithm that optimally matches drivers and riders in large-scale ridesharing
systems with meeting points. We perform an extensive simulation study to assess the ben-
efits of meeting points. We show that the introduction of meeting points in a ridesharing
system can substantially improve a number of critical performance metrics, i.e. percentage
of matched riders, percentage of matched participants, and mileage savings.

In the third chapter, we investigate the potential of integrating mass transit and ridesharing
to offer fast and affordable transfers to/from transit stations to a large number of residents
in suburban areas. We examine some of the options of implementing such a system and
the associated ride-matching problems and evaluate the possible synergies that can arise as
a result of integration by performing a large number of computational experiments. Our
simulation framework captures the main characteristics of many real-world transit settings
and quantifies the benefits of integrating ridesharing and public transit. The results show
that the integration of a ridesharing system and a public transit system can significantly
enhance mobility, increase the use of public transport, and reduce the negative externalities
associated with car travel. We found that driver willingness to pick up and drop off more
than one rider is critical to the system’s performance.

In chapter four, we study how to identify feasible driver-rider matches more efficiently.
This can have an important effect on the total runtime of the algorithm because, typically,
only a very small fraction of the possible matches are feasible, meaning it is possible to
do much better if we do not have to fully evaluate all pairs. We exploit two ideas: (1)
direct drive times from origin to destination can be used to efficiently identify those riders
who have sufficiently small drive times to be matched with a particular driver; and (2) rider
time windows can be stored in a memory structure that allows one to find riders with time
windows that overlap with the time window of a driver in sub-linear time. We develop and
test a data structure that combines optimizations (1) and (2) and test its performance.

In chapter five, we present a new mixed-integer linear programming model for the single
driver—multiple rider matching problem that arises in certain types of ridesharing systems.
The model we devise allows users to opt for driver or rider roles or, alternatively, to let the
model determine what is best. If there is no match for a rider or a driver, the model is capable
of adding this opportunity cost to the objective function value. The model minimizes the
cost of all the trips that have to be performed to move the users from their origin to their
destination. We perform simulations on different instances constructed based on ridesharing
practice between Slovenia’s two largest cities and comment on the results.

We hope that the insights generated by this thesis will constitute a valuable contribution to
the extant body of knowledge on ridesharing systems and their operation and that they will
inform ridesharing system providers on how to design applications, matching algorithms
and incentive schemes as well as form alliances with other systems such as public transport
agencies and bike-sharing system providers.

Keywords: Ridesharing; Sustainable mobility; Discrete optimization; Simulation



MODELI IN ALGORITMI ZA OBLIKOVANJE PREVOZNIH SKUPIN V
SISTEMIH DELJENJA PREVOZA: LAJSANJE PROCESA ISKANJA UJEMAN]

IZVLECEK

Deljenje prevoza je druzbeni pojav, pri katerem si posamezniki z ujemajocimi se prevoznimi
potrebami delijo eno vozilo in celotno pot ali nekatere dele svojih poti opravijo skupaj.
Voznik vozila ima doloeno pot in je v zameno za povracilo stroSkov prevoza pripravljen
po poti pobirati ter odlagati sopotnike.

Koristi deljenja prevoza za posameznike so niZji stroski transporta, moZnost uporabe pasov
za vozila z ve¢ potniki (t. i. pasovi HOV v ZDA) in manjSa utrujenost sopotnikov. V
primerih, ko sopotniki nimajo osebnega vozila, lahko govorimo tudi o skrajSanem casu
potovanja v primerjavi z javnim transportom.

Z deljenjem prevozov se lahko pomembno zmanjSa Stevilo osebnih vozil, ki so potrebna
za zadovoljitev potreb posameznikov po mobilnosti. Zlasti v regijah, v katerih mobilnost
posameznikov temelji na uporabi osebnih vozil, je z deljenjem prevozov mogoce zniZati
Stevilo vozil v prometu in s tem razbremeniti prometno omrezje. Deljenje prevozov ima
lahko torej pozitivne uCinke na promet in okolje v smislu zmanjSevanja pojavnosti gnece
ter zastojev v prometu.

S pojavom interneta in mobilnih tehnologij so se pojavile raznovrstne, napredne oblike del-
jenja prevoza. Danes obstaja Sirok spekter razli¢nih sistemov: od preprostejSih e-oglasnih
desk za deljenje prevoza do bolj kompleksnih storitev, do katerih se lahko dostopa preko
spletnih in mobilnih aplikacij in ki ponujajo avtomatsko tvorjenje skupin, nacrtovanje poti
ter elektronska placila. V tej disertaciji se osredotoCamo na napredne sisteme, ki omogocajo
deljenje prevozov preko pametnih telefonov in drugih sodobnih naprav ter avtomatsko
povezujejo voznike in potnike, tj. tvorijo prevozne skupine.

Vsak voznik, ki ponuja prevoz v sistemu za deljenje prevoza, ima doloceno pot. Da bi
nasSel sopotnike, s katerimi bi si delil stroSke prevoza, je pripravljen narediti nekaj dodatnih
postankov, potrebnih za vstop v vozilo in izstop iz njega. Pogosto mora voznik napraviti
tudi obvoz in se s tem pribliZati izvoru ter cilju posameznega potnika. Najvecja dolZina
obvoza in Stevilo dodatnih postankov sta odvisna od voznikove pripravljenosti, da podaljSa
potovalni ¢as. Omejena pripravljenost voznikov za izvedbo dodatnih postankov in daljSih
obvozov zelo oteZuje deljenje prevozov. Ce je voznik nefleksibilen, je namre izredno tezko
najti ustreznega sopotnika. Posledica tega je lahko, da velikega deleza voznikov in potnikov,
ki bi sicer Zeleli sodelovati v sistemu, ni mogoce povezati.

Ta disertacije je osredotoCena na lajSanje procesa iskanja ujemanj v sistemih deljenja pre-
voza. V ta namen smo zasnovali in preizkusili ve€ razli¢nih modelov, algoritmov ter meh-
anizmov, ki bi lahko zagotovili visoko verjetnost ujemanja za uporabnike (maksimizacija
Stevila ujemanj). Opravili smo veliko Stevilo simulacij, na podlagi katerih je moZno sklepati

o pomembnih lastnostnih sistemov za deljenje prevoza in tudi o potencialnih u¢inkih dolo¢enih
strateSkih odloCitev upravljavca sistema (npr. integracija sistema deljenja prevoza s siste-
mom javnega transporta ali vklju€itev nabornih tock v sistem deljenja prevoza).

V prvem poglavju disertacije prouc¢ujemo vpliv fleksibilnosti uporabnikov sistema deljenja
prevoza na Stevilo ujemanj med vozniki in potniki, ki jih je moZno vzpostaviti. Ta vpliv
smo proucili tako, da smo zgradili posebno simulacijsko okolje, ki simulira sistem deljenja
prevoza, v katerem se en voznik lahko poveZe z najve¢ enim potnikom. Definirali smo tri



tipe fleksibilnosti, ki igrajo pomembno vlogo pri dinami¢nem deljenju prevozov, in skozi
veliko Stevilo simulacij kvantificirali vpliv posamicnega tipa fleksibilnosti na Stevilo moZnih
ujemanj. Naredili smo tudi simulacijo, pri kateri smo proucili, koliko dodatne fleksibilnosti
(in katere) je potrebno, da se odstotek povezanih uporabnikov poveca za dolocen odstotek.

V drugem poglavju razvijemo nov model za tvorjenje prevoznih skupin, ki vsebuje naborne
tocke. Do zdaj so modeli v literaturi predpostavljali, da potniki vstopajo in izstopajo v
vozilo oz. iz njega na svojih dejanskih izvorih ter ponorih. Kakorkoli, ta predpostavka je
precej omejujoca, saj se mora samo ena stran prilagajati drugi. Z vkljucitvijo standardnih
nabornih mest v sistem je omogoceno, da se potnik iz svojega izvora premakne na najugod-
nejSe naborno mesto oz. da se z doloCene ugodne naborne tocke pomakne proti svojemu
ponoru z razliénimi transportnimi modalitetami. TakSne naborne tocke se uporabljajo v
veliko sistemih deljenja prevozov, vendar $e niso bile omenjene oz. uporabljene v opti-
mizacijski literaturi. Algoritem, ki smo ga zasnovali za reSitev tega problema, skusa op-
timirati ujemanja z vidika dveh kriterijev: maksimiranje Stevila uparjenih uporabnikov in
maksimiranje Stevila prihranjenih prevozenih kilometrov v celotnem sistemu.

V tretjem poglavju predstavljamo nov model in algoritem za tvorjenje prevoznih skupin, ki
omogoca integracijo s sistemom javnega transporta. Na ta nacin je omogoceno, da voznik
potnika zapelje na njegovo kon¢no destinacijo ali pa ga zapelje na postajo javnega trans-
porta, od koder se z vlakom, avtobusom ali drugim prevoznim sredstvom pelje do svoje
koncne destinacije. Sistem poskuSa sinhronizirati poti voznikov in potnikov z urnikom
javnega transporta ter upoSteva veliko Stevilo omejitev glede preferenc voznikov in potnikov
(najhitrejsi cas odhoda, najpoznejsi ¢as prihoda, najdaljSe trajanje poti ipd.). Podobno kot
v prejSnjem poglavju tudi v tem algoritem, ki smo ga zasnovali za reSitev problema, skusa
optimirati ujemanja z vidika dveh kriterijev: maksimiranje Stevila uparjenih uporabnikov
in maksimiranje Stevila prihranjenih prevoZenih kilometrov v celotnem sistemu.

V Cetrtem poglavju predstavljamo krajSo metodoloSko diskusijo na temo generiranja vseh
dopustnih ujemanj med vozniki in potniki. Predstavljamo, kako je mogoce izkoristiti last-
nosti problema za izboljSanje ucinkovitosti metode generiranja vseh dopustnih ujeman;.
Informacije o najkrajSem moZnem trajanju poti posamicnega potnika in voznika izkoris-
timo pri grajenju podatkovne strukture, katere namen je omogociti u¢inkovito poizvedbo o
tem, kateri potniki so potencialno dopustni za doti¢nega voznika.

V zadnjem, petem poglavju predstavimo matemati¢ni model za tvorjenje prevoznih skupin
v sistemih za deljenje prevoza, ki omogoca, da posami¢nega voznika poveZemo z vecjim
Stevilom potnikov. Gre za model, ki je primeren za deljenje prevoza med vec¢jimi mesti.
Model tudi dopusca, da se uporabnik ne opredeli glede vloge in mu jo sistem sam doloci na
podlagi razmerja med ponudbo ter povpraSevanjem. Predstavimo tudi rutino za predproce-
siranje problema. Izvedemo nekaj manjsih simulacij.

Upamo, da bodo metode, dognanja in rezultati, predstavljeni v tej disertaciji, koristno
prispevali k boljSemu razumevanju, upravljanju ter delovanju sistemov za deljenje prevoza.
Zlasti upamo, da bodo rezultati simulacij upravljavce sistemov za deljenje prevoza spod-
budili k uvedbi raznovrstnih spodbud oz. motivacijskih shem za voznike in potnike ter k
proucitvi moznosti integracije z javnim transportom in drugimi sistemi, kot so npr. sistemi
deljenja koles.

Kljuéne besede: deljenje prevozov; trajnostna mobilnost; diskretna optimizacija; simu-
lacija.
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INTRODUCTION

Background

Ridesharing refers to collaborative transportation in which individuals with matching itineraries
and schedules as well as other preferences ride together so as to save costs (Furuhata et al.,
2013). The driver of the car has a specific itinerary and is willing to pick up and drop off
other passengers (riders) en route in exchange for remuneration. The driver’s route may

be fixed or may be adapted to the pickup and drop-off locations of riders. Apart from cost
reimbursement, other arrangements such as taking turns driving are also possible.

Ridesharing is also known as: carpooling, car-sharing, ride-sharing, lift-sharing, or cov-
oiturage. Some terms tend to be used for specific arrangements, e.g. carpooling, but the
literature and practice is inconsistent on this. We will use the general term ridesharing and
study models relevant to a wide variety of types, most notably real-time ridesharing (Agatz
etal., 2011) and carpooling (e.g. Yan and Chen (2011a)).

The Internet and, more recently, mobile technologies have given rise to new, enhanced
forms of ridesharing. These range from simple bulletin boards to complex services that
can be accessed through web and smartphone applications and offer automated matching,
routing, and payment. In this thesis, we focus on systems that offer automated matching of
drivers and riders within an urban area. An example of a provider offering such a service is
Flinc (https://flinc.org).

The key benefits of ridesharing for the participants are lower transport costs, the possibility
of using high-occupancy lanes (where applicable), as well as reduced fatigue and travel
times on the part of the riders. (Time savings are possible for riders who do not own cars
and would otherwise use public transport.) Riders may also appreciate that they do not need
to drive or even own a vehicle.

For the U.S.A., Jacobson and King (2009) estimated that introducing one additional pas-
senger in every 100 vehicles could lead to annual savings of 0.80—0.82 billion gallons of
gasoline. While these estimates are rough and hypothetical, they do underline the potential
environmental benefits of such systems.

Ridesharing can significantly reduce the number of cars needed to satisfy the mobility needs
of participants and, thus, lower congestion and other externalities related to heavy traffic
when people rely on individual transportation to satisfy their mobility needs. It will, at
the same time, also reduce the need for parking space, which is becoming an increasingly
scarce and expensive commodity in most urban areas. (Congestion and parking are inter-
related as searching for a parking space prolongs the driving time and can thus contribute
to congestion.) Challenges related to high congestion and limited parking space arise in
a myriad of urban areas around the world. In the U.S.A., for instance, urban congestion
is an acute problem with far-reaching consequences. It is estimated that the cost of extra
time and fuel in 498 urban areas in the U.S.A. in 2011 alone was roughly USD 121 bil-
lion. Congestion in the U.S.A. is expected to grow in the foreseeable future in spite of the
planned measures to curb it (Schrank et al., 2012). In this context, ridesharing appears as
an interesting possibility since it may result in significant effects without large investments.



Motivation for the research

Experience of practitioners and academics alike suggests that the design and operation of
dynamic ridesharing systems is challenging and requires a thorough understanding of the
behavior of such systems in different circumstances. The studies by Kamar and Horvitz
(2009a), Kleiner et al. (2011), and Agatz et al. (2011) identify important challenges in
(dynamic) ridesharing from an organizational and system-design perspective. They also
propose different solution approaches to solve problems related to the matching of riders
and drivers and the determination of payments to drivers.

In ridesharing, each driver has a specific itinerary and is willing to pick up and drop off
riders en route. To accommodate the riders, the driver has to make a detour and make
extra stops. The length of the detour and the number of extra stops depend on the driver’s
willingness to extend his trip time. This distinguishes genuine ridesharing from services in
which the drivers act as de facto taxicab drivers, e.g. Uber (https://www.uber.com). The
level of service in such systems may be higher due to the flexibility of the drivers, but this
comes at a higher cost to the rider compared to genuine ridesharing. With the exception of
shared taxi services, such services also do not necessarily reduce congestion.

Settings with very low density (e.g. recently launched ridesharing services, off-peak hours,
rural areas) suffer from the so-called chicken-and-egg problem (Furuhata et al., 2013),
where demand for trips is insufficient to attract sufficient supply and vice-versa. Such a
situation may lead to stagnation or an implosion in the number of users. To overcome such
a situation, the ridesharing system has to be designed well and must employ an effective
matching algorithm to ensure the largest possible number of participants is matched and
the system has satisfied users. Only users who have been successfully matched and have
had a positive experience can be expected to continue to use the service and promote the
ridesharing service to others. Thus, a high matching rate is a critical success factor for a
ridesharing service.

That being said, ridesharing systems also have to minimize the effort and inconvenience for
the participants. One way to achieve this is to restrict the number of riders per trip to at
most one rider. In a single rider match, at most one pickup and drop off take place during
a driver’s trip. This minimizes the inconvenience of the driver and also makes it easy to
divide the trip costs between rider and driver.

Agatz et al. (2011) simulate the launching of a real-time ridesharing application in the
Metropolitan Area of Atlanta. They find that such systems hold important potential and
that it is theoretically possible to introduce and sustain them. However, they also underline
that overcoming the launch phase and growing a user base is extremely difficult if users
are discouraged by not finding matches and thus stop announcing trips. They conclude it
is important to match as many participants as possible and to provide incentives so that
participants continue announcing trips even though they are not always matched. In the
simulations, approximately 15 to 40 percent of riders and drivers remained unmatched (de-
pending on the setting of the simulation). The simulations also showed that the ratio of
matched participants predominantly depends on the distribution density of announced trips
in space and time.

The motivation of this thesis can be broken down into the following points:



e ridesharing systems can have important environmental and societal benefits — they
may help mitigate important transport challenges such as congestion and are thus
worthwhile studying;

e there are strong indications on the part of both practitioners and researchers that
ridesharing systems are challenging to operate — newly launched ridesharing services
may quickly fail if not designed carefully; and

e it is clear from the literature that there is a lack of theoretical understanding and
knowledge about the behavior of ridesharing systems and of the effects that individual
participants’ preferences may have on the functioning of a ridesharing system as a
whole.

We hope the insights generated by this thesis will constitute a valuable contribution to the
extant body of knowledge on ridesharing systems and their operation and that they will
inform ridesharing system providers on how to design applications, matching algorithms
and incentive schemes as well as form alliances with other systems such as public transport
agencies and bike-sharing system providers.

Overview of the research area

While research on the sociological, psychological, and economic aspects of ridesharing in
the transport context dates back to the 1970s (Bell, 1978; Dumas and Dobson, 1979), the
first two important studies on the optimization of ride-matching in ridesharing systems only
appeared in 2004 (Baldacci et al., 2004; Calvo et al., 2004). We have been able to identify
a wide variety of papers dealing with this topic, which mainly build on research about
other related optimization problems such as pickup and delivery problems (especially the
dial-a-ride problem), the set cover problem, network flow problems or, more generally,
combinatorial optimization and graph theory.

Ride-matching models are abstractions of matching problems faced by ridesharing providers.
The models and solution algorithms used assign riders to drivers in a way that is optimal
or close-to-optimal with respect to the system objective(s). The prevailing ride-matching
optimization models in the literature are single-objective models. The common objective of
these models is to minimize vehicle driving distance savings (the amount of vehicle driving
distance that is saved by sharing rides among ridesharing participants), to minimize trip
costs or the weighted sum of system costs which may be made up of trip costs, different
time costs, different penalties etc. (e.g. Agatz et al. (2011); Baldacci et al. (2004); Calvo
et al. (2004); Yan and Chen (2011b)). In contrast, Herbawi and Weber (2012c) developed
several multi-objective models which consider the total distance of vehicles’ trips, total time
of vehicles’ trips, total time of riders’ trips, and the number of matched riders’ requests.

The constraints imposed on the matching, the information assumed to be available as well
as many other details vary from study to study. One reason for this is that one may conceive
a ridesharing system in many ways. Indeed, across the globe, these systems differ in many
respects depending on a local or national context, prevalent transport patterns in the region
and many other factors. Further, there are several segments or niches of ridesharing (see
Furuhata et al. (2013)).



As far as solution algorithms are concerned, many approaches have been developed. They
range from exact approaches (Agatz et al. (2011); Baldacci et al. (2004); Bruglieri et al.
(2011); Yan and Chen (2011b)) through to metaheuristic methods for more complex, multi-
objective problems like evolutionary algorithms, e.g. NSGAII (Non-dominated Sorting
Genetic Algorithm II), SPEA?2 (Strength Pareto Evolutionary Algorithm 2) in Herbawi and
Weber (2012c¢), and swarm optimization, e.g. bee colony optimization in Teodorovic and
Dell’ Orco (2008), as well as dedicated heuristics, e.g. in Calvo et al. (2004) and Yan and
Chen (2011b).

For a more comprehensive overview of the ridesharing, carpooling, and other closely related
literature, we refer the reader to two recent and complementary reviews: Furuhata et al.
(2013) provide a thorough overview of the ridesharing and carpooling literature. They also
describe the state of the art of contemporary ridesharing systems and discuss some of the
key challenges to any wider adoption of ridesharing. Agatz et al. (2012), on the other hand,
provides an overview of the optimization challenges in dynamic ridesharing and surveys
some closely related optimization problems and models in the literature. Both studies also
provide an overview and different classifications of the various types of ridesharing systems
encountered in practice. Important dimensions include the dynamics of the system and
the number of riders and drivers who are involved in a rideshare match. The advance of
Internet-enabled mobile technology makes it possible to consider more dynamic ridesharing
systems in which riders and drivers announce non-recurring trips on short notice (Agatz
et al., 2011; Amey, 2011). In traditional carpooling, people travel together on recurring
trips for a particular purpose, often for traveling to work, see (Baldacci et al., 2004) and
(Calvo et al., 2004).

Agatz et al. (2011) represent the single rider, single driver rideshare matching problem by
a max-weight bipartite matching problem. They explore different approaches to matching
drivers and riders in real-time and investigate the impact of various service characteristics
of the system. Their study shows that the success of a ridesharing system strongly depends
on the participation density, e.g. the number of participants per square mile, and that a
minimum participation density is required to ensure a stable system (in which participants
do not leave the system because they repeatedly fail to find a match). Wang et al. (2014)
extend this analysis by investigating the trade-off between matchings that are optimal for the
system as a whole and matchings that are optimal for each participant in the system. They
introduce the concept of stable matches in the ridesharing setting. Lee and Savelsbergh
(2015) consider the employment of a small number of dedicated drivers to serve riders who
would otherwise remain unmatched. The aim is to guarantee a certain service level (i.e. a
fraction of the riders who are matched), thereby ensuring a stable system.

Another way to increase the number of riders who find a match is to allow riders to transfer
between different drivers, i.e. to allow a rider to travel with more than one driver to reach
his destination. Herbawi and Weber (2011c) consider a multi-hop ridesharing problem in
which drivers do not deviate from their routes and time schedules. As such, the drivers’
rideshare offers form the transportation network for the rider, who has to find a route that
minimizes the costs, time, and number of transfers. Drews and Luxen (2013) extend this
work by also allowing reasonable detours and time deviations for the drivers. While rider
transfers might be acceptable to a driver, they are inconvenient for a rider as they may
involve waiting times between rides and they increase the risk of something going wrong
during the execution.



A different strand of research explores the potential benefits of using auction-based ap-
proaches in the ridesharing context. For instance, Kleiner et al. (2011) show that in the case
where each driver may drive with a maximum of one rider, the use of a modified Vickrey
auction may outperform an exact optimization algorithm in terms of the average matching
probability. The advantage of a Vickrey auction is that a rider may value a certain ride at
more than the ride’s cost, which typically only covers a fraction of the actual costs. Since
he may be ready to pay more to the driver, this may induce the driver to make a bigger
detour, increasing the likelihood of finding a match. Likewise, Kamar and Horvitz (2009a)
as well as Nguyen (2013) studied auction-based cost allocation mechanisms in combina-
tion with standard optimization algorithms. They found the mechanisms they devised to be
superior to simpler cost allocation schemes. The results of these three studies are largely
incomparable with each other and also with other researchers’ results chiefly because dif-
ferent datasets are used and different types of information are assumed to be available in
the studies. In addition, e.g. Nguyen (2013) works on a special problem concerning sharing
rides in taxis, which is quite distinct from normal ridesharing.

A recurring topic in the literature is how to build a critical mass of users in a ridesharing
system. When a ridesharing application is initially launched, the number of users is low
and it is difficult to find matches. Kamar and Horvitz (2009b) showed that the number
of feasible solutions (matches) for a single user depends strongly on the total number of
active users. Therefore, in the initial stage the chance of finding a ride at a specific time for
a specific origin-destination (O-D) pair is small. This is also true of certain O-D pairs at
specific times in mature services. The inability to find a match, especially several times in
a row, may drive a user away from the system and is therefore a serious issue that needs to
be addressed.

It is difficult to estimate the approximate number of users required for a ridesharing system
to work well. We were unable to identify any thorough studies regarding this. This number
will primarily depend on the distribution of the origins and destinations of the drivers and
riders in the transport network, their departure and arrival time windows and other prefer-
ences, although many other important factors could also be considered. In all probability,
the only practical assessment method is simulation.

Agatz et al. (2011) also conducts experiments to observe the effects of variations in depar-
ture time flexibility, the time flexibility of drivers, and the time flexibility of riders. The
general conclusion is that additional flexibility can have important positive effects on the
matching rate, but mostly when the initial flexibility is low. Diminishing returns to scale
were observed for all types of flexibility. In both studies, these experiments were performed
for a single setting and a single density level by examining a few different parameter values
only.

Several papers investigate shared taxi or ridesharing services in which multiple riders can
be served on a single trip. Since this involves deciding the sequence of the pickups and
drop-offs of the riders, it is more computationally challenging than solving a single rider,
single driver setting. Wang et al. (2016) consider a pickup and delivery problem in which
a driver can use HOV lanes and/or receives toll savings when traveling with a certain num-
ber of passengers. They provide an integer programming formulation and present a Tabu
search heuristic. Their results show that it can be beneficial to make detours to pick up
(additional) passengers and be able to use HOV lanes when the time savings on HOV lanes
are significant. Hosni et al. (2014) consider the problem of assigning passengers to shared



taxis. They formulate a mixed integer programming model and present a Lagrangian de-
composition approach as well as two heuristics to solve the problem. Xu et al. (2015a,b),
on the other hand, study the interaction between ridesharing and traffic congestion at an
aggregate system level. They focus on modeling whether or not travelers will participate in
ridesharing given certain congestion conditions and financial incentives.

Research agenda

The overarching research agenda of this thesis is the design and exploration of theoretical
approaches to improve the functioning of ridesharing systems. It can be viewed as a natural
continuation of the body of work originally started by Niels Agatz, Alan Erera, Xing Wang,
and Martin Savelsbergh.

The first important pillar in this body of knowledge is a simulation study of a ridesharing
system in Metro Atlanta (Agatz et al., 2011). This research paper established an important
share of the terminology and concepts we use throughout this study and highlighted many
of the issues that are inherent to ridesharing systems (and especially dynamic rideshar-
ing systems). It also proposed a simple and effective solution approach to solve single
driver—single rider ridesharing problems. The review paper that was published in roughly
the same period provides an overview of the optimization challenges in dynamic ridesharing
and represents a point of reference for future research on this topic (Agatz et al., 2012).

This was followed by a research paper on stable matching in the dynamic ridesharing con-
text (Wang et al., 2014) and a research paper that considered the employment of a small
number of dedicated drivers to serve riders who would otherwise remain unmatched (Lee
and Savelsbergh, 2015). Both papers can be seen as complementary to the work presented
in this thesis as they deal with the same underlying question, namely, how to make rideshar-
ing systems perform better.

Research topics and objectives

This thesis investigates three relevant and interrelated main topics. Below, we shortly de-
scribe each one and present the main research objectives regarding it. Each topic is de-
scribed and discussed in detail in the body of the thesis.

The first research topic is the examination of the impact of participants’ flexibility on the
performance of a single-driver, single-rider ridesharing system. The research objectives for
this research topic are as follows:

e to identify and define types of participant flexibility that are relevant in the dynamic
ridesharing context;

e to quantify the impact of these types of flexibility on system performance by con-
ducting an extensive computational study; and

e to investigate the level of additional flexibility required to improve the effectiveness
of a rideshare system.



The second research topic entails the examination of the potential benefits of introducing
meeting points in a ridesharing system. The research objectives for this research topic are
as follows:

e to design and implement an algorithm that optimally matches drivers and riders in
large-scale ridesharing systems;

e to perform an extensive simulation study in order to understand how meeting points
affect the number of matched participants as well as the system-wide driving distance
savings; and

e to perform sensitivity analysis for a wide range of potential factors to understand the
robustness of the effects of introducing meeting points into a ridesharing system.

The third and last research topic is the examination of the potential benefits of integrating
ridesharing and public transit. The research objectives for this research topic are as follows:

e to design and implement an algorithm to optimally create single or multi-modal
rideshare matches;

e to conduct an extensive simulation study to quantify the benefits of integrating rideshar-
ing and public transit; and

e to perform sensitivity analysis for a wide range of potential factors to understand the
robustness of the observed effects.

In Chapters 4 and 5, we present several methods and models that are a bi-product of the
research undertaken in the framework of the first three research topics and can be seen as
complementary to the methods and results presented in the rest of the thesis.

Description of the research methodology

The research presented in this thesis can be classified as axiomatic. This type of research
is primarily driven by an (idealized) model of reality. In this class of research, the primary
concern of the researcher is to obtain solutions within the defined model and make sure
that these solutions provide insights into the structure of the problem as defined within the
model. Axiomatic research produces knowledge about the behavior of certain variables
in the model, based on assumptions about the behavior of other variables in the model.
It may also produce knowledge about how to manipulate certain variables in the model,
assuming desired behavior of other variables in the model, and assuming knowledge about
the behavior of still other variables in the model. Formal methods are used to produce
this knowledge. These formal methods are developed in other scientific branches, mainly
mathematics, statistics and computer science (Bertrand and Fransoo, 2002).

This thesis is preoccupied with: (1) developing normative mathematical models to solve
different planning problems that arise in ridesharing; (2) developing, implementing, and
testing exact optimization methods to solve these planning problems; and (3) developing
simulation frameworks to gain insights into the behavior of the elaborated ridesharing sys-
tem model in order to inform researchers and practitioners about the potential behavior of
real-life systems.



This research is thus predominantly normative in nature as it seeks to find an optimal so-
lution for newly defined problems as well as compare various strategies for addressing a
specific problem. However, as far as the explanation of the characteristics of the model is
concerned the analysis of the models is clearly descriptive.

The planning problems mentioned above are in fact optimization problems in which the
objective is to find an optimal solution (values of a set of decision variables that yield
the minimum or maximum value of the objective function). A different set of solution
methods and a different simulation framework was built to address each of the three main
optimization problems (and research topics). In addition, a fourth mathematical model and
solution method was developed and tested, which is presented in Chapter 5.

All frameworks were built using the Python programming language. Mathematical opti-
mization problems, most of which are integer programs (IP), were solved by using either
the Python Cplex API or (in one case) the Cplex graphical user interface and the Opti-
mization Programming Language [OPL]. Some parts of the solution methods were also
implemented using Cython and the C programming language (to obtain significantly faster
implementations).

The algorithms and simulation frameworks were conceived, developed, and tested over
periods of several months. Several hundred parameters, statistics, graphs, and solution
outputs (the itinerary for each participant) were produced and examined in order to assure
that the end results are correct. Once a simulation framework was thoroughly tested and
validated, simulations were carried out which all comprised several runs of randomized
instances. Some of the datasets were built using our own methodology and others were
built based on approaches from previous studies (Agatz et al., 2011). The details of each
simulation study can be found in the main body of the thesis.

Limitations

We have already pointed out that ridesharing system can be conceived in many ways. A
multitude of different settings is possible and there is a range of different theoretical match-
ing rules and constraints. Ridesharing systems vary in many respects depending on a local
or national context, prevalent transport patterns in the region and many other factors. Fur-
ther, there are several segments or niches of ridesharing (see Furuhata et al. (2013)).

Each chapter in this thesis very precisely defines what is the exact setting it models and
studies. The findings need to be interpreted with these limitations and constraints in mind
and must not be over-generalized. Unfortunately, the result of ridesharing studies are largely
incomparable with each other because different datasets are used and different types of
information are assumed to be available. This is understandable given this is a relatively
recent topic and that ridesharing systems as such are also a relatively new phenomenon.

Organization of the dissertation

We start the introduction by presenting the background and motivation for this research.
We continue by providing an overview of the research area, defining the research agenda
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as well as the research objective and scope of the thesis. We also describe the research
methodology, discuss the limitations and present the structure of the dissertation.

In Chapter 1, we conduct a computational study to quantify the impact of different types
of participants’ flexibility on the performance of a single driver—single rider ridesharing
system with the aim of providing the basis for the design of information campaigns and
incentives schemes aimed at increasing the performance and success of ridesharing systems.

In Chapter 2, we investigate the potential benefits of introducing meeting points in a rideshar-
ing system. With meeting points, riders can be picked up and dropped off either at their
origin and destination or at a meeting point that is within a certain distance from their ori-
gin or destination. We design and implement an algorithm that optimally matches drivers
and riders in large-scale ridesharing systems with meeting points and perform an extensive
simulation study in order to understand how meeting points affect the number of matched
participants as well as the system-wide driving distance savings.

In Chapter 3, we examine the potential benefits of integrating ridesharing and public transit.
Ridesharing and public transit can, in fact, complement each other. On one hand, rideshar-
ing can serve as a feeder system that connects less densely populated areas to public transit.
On the other hand, the public transport system can extend the reach of ridesharing and re-
duce drivers’ detours. As such, it may help to overcome incompatibilities in the itineraries
of drivers and riders and facilitate the matching process. We present a solution approach to
optimally create single or multi-modal rideshare matches, and we conduct an extensive nu-
merical study on artificial instances that capture the main characteristics of many real-world
transit settings and quantify the benefits of integrating ridesharing and public transit.

In Chapter 4, we study how to identify feasible driver-rider matches more efficiently. This
can have an important effect on the total runtime of the algorithm because, typically, only
a very small fraction of the possible matches are feasible, meaning it is possible to do
much better if we do not have to fully evaluate all pairs. We exploit two ideas: (1) direct
drive times from origin to destination can be used to efficiently identify those riders who
have sufficiently small drive times to be matched with a particular driver; and (2) rider
time windows can be stored in a memory structure that allows one to find riders with time
windows that overlap with the time window of a driver in sub-linear time. We develop and
test a data structure that combines optimizations (1) and (2) and test its performance.

In Chapter 5, we present a new mixed-integer linear programming model for the single
driver-multiple rider matching problem that arises in certain types of ridesharing systems.
The model we devise allows users to opt for driver or rider roles or, alternatively, to let the
model determine what is best. If there is no match for a rider or a driver, the model is capable
of adding this opportunity cost to the objective function value. The model minimizes the
cost of all the trips that have to be performed to move the users from their origin to their
destination nodes. We perform simulations on different instances constructed based on the
ridesharing practice between Slovenia’s two largest cities and comment on the results.

In the conclusion, we provide a summary of the most important insights and discuss the
practical and theoretical contributions of the thesis. We finish the main body of the thesis
with concluding remarks and a discussion of potential topics for future research.
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1 MAKING DYNAMIC RIDE-SHARING WORK: THE
IMPACT OF DRIVER AND RIDER FLEXIBILITY

1.1 Introduction

Establishing matches on short notice requires a centralized system that automatically and
efficiently matches riders and drivers based on their trip information. Several dynamic
ride-sharing providers, such as Flinc and Carma, offer such a centralized matching service.
Participants announce their trips to the system via a mobile or web app. The system then
matches drivers and riders and assists the driver with his trip, i.e., provides navigation in-
formation. Flinc, for example, is fully integrated in the NAVIGON app so that drivers can
easily offer a ride while navigating to their destination. The system guides a matched driver
to the rider’s pickup and drop-off location.

Successfully matching riders and drivers on short notice requires a sufficiently large num-
ber of participants (Kamar and Horvitz, 2009a; Agatz et al., 2011). Several studies and
pilot programs have examined the use of incentives to attract more people to a ride-sharing
systems in order to reach a critical mass (see e.g. Epperson (2015)). However, few, if any,
studies consider the use of incentives to increase the effectiveness of ride-sharing systems
by rewarding participants for being more flexible. When a participant accepts to be more
flexible in his departure time, for example, it is more likely that a match can be found. To
employ incentives that encourage flexibility effectively, a ride-share provider needs to un-
derstand when additional flexibility is most beneficial and what type of flexibility is most
beneficial for the system. Creating that understanding is the focus of this chapter.

The main contributions of this chapter can be summarized as follows: (i) We introduce
and define three different types of participant flexibility that are relevant in the context
of dynamic ride-sharing, i.e., matching flexibility, detour flexibility, and scheduling flexi-
bility; (ii)) We quantify the impact of these types of flexibility on system performance by
conducting an extensive computational study; and (ii1) We investigate the required level of
additional flexibility that is required to improve the effectiveness of a ride-share system.
While previous studies have looked at some aspects of participant flexibility in isolation,
this is the first study to explicitly and extensively investigate the interaction between system
density, level of flexibility, and type of flexibility.

We focus on dynamic ride-sharing systems that automatically generate matches between a
single driver and a single rider, since this is the setting that is prevalent in today’s market.
Our efforts can also be viewed as an important and necessary first step in studying the
value of flexibility in more complex ride-sharing systems with multi-rider matches and/or
transfers. Our findings are relevant to ride-share providers, to public authorities that are
considering to use dynamic ride-sharing to address road congestion, and to academics in
this emerging field of research.

A few of the key findings are that (1) when the number of trip announcements in the system
is small, participants need to be flexible in their departure times to find a match, (2) the
extent to which drivers are willing to make detours is critical to the success of a ride-sharing
system, and (3) the flexibility required to be matched can vary significantly for system

This chapter is based on Stiglic et al. (2016b).
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participants. The insights generated can stimulate and facilitate the design of incentive
schemes that encourage and/or compensate participants to accept less desirable matches in
order to improve overall system performance. We note that in our numerical experiments,
we assume that all announcements for the day are known in advance, which means that the
matching rate obtained provides an upper bound on the matching rate that can be obtained in
a dynamic setting. Earlier studies (e.g., Agatz et al. (2011)) have shown that because rides
are announced shortly before their departure, the upper bound is quite tight and thus that
the matching rates should be representative of what can be expected in dynamic settings.

The remainder of this chapter is organized as follows. In Section 2, we introduce the work-
ings of a dynamic ride-sharing system, we define the types of participant flexibility, and
discuss the potential role of incentives in dynamic ride-sharing systems. In Section 3, we
describe the generation of the instances used in our computational study. In Sections 4 to 6,
we motivate and discuss the computational experiments conducted and present the results.
We conclude with a summary of findings and recommendations in Section 7.

1.2 A dynamic ride-sharing system

We study a dynamic ride-sharing system which receives a set of ride-share announcements
S over time. Each trip announcement s € S has an origin location oy and a destination
location d;. We distinguish between trip announcements of riders searching for rides R C S
and drivers offering rides D C §. We denote the distance from location i to j with d;; and
the travel time between the two locations by 7;;. The service time associated with the pick
up and drop-off of a rider is indicated by 7. This value reflects the time necessary to make a
stop, e.g., getting in and out of the car, validation of the identity of the rider and the driver.

We assume that drivers that are not matched, drive to their destination alone. We do not
make any specific assumptions on the behavior of unmatched riders, i.e., they may use
their own car, public transportation or a taxi to reach their destination. Announcements are
submitted to the system at announcement time a; and have a latest possible arrival time at
their destination /;. A driver i who is not matched at his latest possible departure time /;
- 1,, 4, Will drive to his destination alone. We do not allow en route matching so a match
needs to be established before the driver departs.

We assume that the primary system objective is to maximize the number of matched par-
ticipants. The number of successfully matched participants is critical for the long-term
sustainability of a ride-sharing service, since people who are (regularly) disappointed may
stop using the system. As in Agatz et al. (2011), we formulate the problem as a bipartite
matching problem. We create a node for each driver i € D and rider j € R and add an edge
between i and j if the match is feasible, i.e. acceptable for the participants. We let the bi-
nary decision variable x;; indicate whether the edge (i, j) is in an optimal matching (x;; = 1)
or not (x;; = 0). Let F be the set of feasible matches. Then, the single rider, single driver
matching problem that maximizes the number of matches can be formulated as follows:
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max 21 = Z Xij (11)

(i.))€F
subject to Y x;j<1 VjeR (1.2)
ieD,(i,j)eF
Y x;<1 VieD (1.3)
JER (i.])€F
xij€{0,1}, V(i,j)eF (1.4)

Objective function 1.1 maximizes the number of matches. Constraints 1.2 and 1.3 assure
that each driver and each rider is only included in at most one match in an optimal matching.
To obtain a matching that maximizes the driving distance savings, the objective should be
replaced by zo = }.(; j)er cijXij- We use a hierarchical optimization approach in which we
first maximize the number of matches z; and subsequently maximize the system-wide ve-
hicle miles savings z> (ensuring that the number of matches does not decrease by including
the constraint Z(,-J)E}: Xij > 21)-

To determine the set of feasible matches F, we impose several constraints, mostly related
to participants’ preferences. One such constraint is that only matches for which there are
distance savings are allowed. That is, for a driver i matched to a rider j, the difference
between the joint individual direct distances and the total distance of the driver in the match
needs to be positive, i.e., do,g; — dojo; — dd‘,-d,- > (. The reason to impose this constraint is
that we assume that trip costs are proportional to the distance traveled and therefore it is
only possible to save costs if a match has positive distance savings.

We assume that the departure times of participants are somewhat flexible and that an an-
nouncement s has an earliest possible departure time e; with e; <[y —1, 4. We detail the
different types of time flexibility below.

1.2.1 Matching Flexibility

Matching flexibility refers to the willingness of participants to depart earlier or later in order
for a match to be found. The matching flexibility f; of a trip s is the difference between
the latest arrival time /; and the earliest departure time e; minus the direct travel time from
origin to destination, i.e., f; = (I — es) —1,,4,. For simplicity, we assume that all participants
specify an earliest departure time and that a greater matching flexibility is associated with
a later latest arrival time.

For a given driver i € D and rider j € R, we can determine the matching flexibility that
is required to make a match between them time feasible. The earliest departure time e/
of the driver is given by max(e;,a;). That is, the driver can drive towards the origin of
the rider only after his earliest departure time and after the rider has announced his trip.
This implies that the earliest pickup time ez. of rider j is equal to max(e{ +100;5€ ;) with
an associated earliest arrival time at the rider’s destination of l;'- = eg- +15a, + 7. Hence,

the minimum matching flexibility f} required from rider j to be matched with driver i is

e’j — e+ 7. Furthermore, driver i arrives at his destination at time [; = e’j +10,d; +1a;a,+ T
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Hence, the minimum matching flexibility fl-j required from driver i to be matched with rider
jis ll.J — (ei+15,4,). A match between driver i and rider j is time feasible if fj’: < fj and if

<.

1.2.2 Scheduling Flexibility

Scheduling flexibility refers to the time available for a match to be found. The scheduling
flexibility of a trip s € S is the difference between the latest departure time [y — 1, 4, and the
announcement time az. In the period between its announcement time and its latest depar-
ture time, a trip announcement can be matched. If no match has been found at the latest
departure time the trip announcement leaves the system without a match. The scheduling
flexibility of announcement s is composed of two parts: the matching flexibility (f;) and the
announcement lead-time (e, — ay).

For a specific match between driver i € D and rider j € R, the latest commitment time is
equal to min(l; — ld;d;, lj) — loid; —loj0; — T- This allows the driver to pick up and drop off
the rider while respecting both the rider’s and its own latest arrival time.

Figure 1.1 provides an example of the time line of a trip announcement with a lead-time of
15 minutes, i.e., this means the participant is able to leave at the earliest 15 minutes from
now. Furthermore, the participant wants to arrive at its destination location within one hour
from now. With a direct travel time of 30 minutes this implies a matching flexibility of 15
minutes and a scheduling flexibility of 30 minutes.

lead-time matching flex. to.d, = 30
a; =0 e =15 ly—1p, =30 Iy = 60 t
scheduling flex.

Figure 1.1: Scheduling and matching flexibility for announcement s € S

1.2.3 Detour Flexibility

Detour flexibility is the willingness of drivers to make a detour in order to accommodate
riders, i.e., the increase in trip duration drivers are willing to accept to pick up and drop off
a rider. We assume the detour flexibility &; of driver i € D is a function of the duration of
his direct trip, i.e., 6; = ¢ flod; + T, Where cy is the detour flexibility parameter and where
T, as usual, is the service time. The detour duration for driver i € D serving rider j € R is
toi,Oj + toﬂ,-,dj + tdj7d,- +T 1o, d;-

1.2.4 Cost-sharing and incentives

People typically participate in ride-sharing to save money by sharing variable trip costs such
as fuel, tolls, and parking. When a match is established, the ride-share provider typically
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(and automatically) assesses a trip fee to the rider, takes a commission, and compensates the
driver. To increase the effectiveness of a ride-sharing system, i.e., establish more matches,
the fees and compensations could be made dependent on a participant’s flexibility. When
participants join a ride-sharing service, for example, they may be asked to select a level of
time flexibility with fees and compensations depending on the chosen level of time flex-
ibility. More dynamic schemes may adjust fees and compensations based on the number
of requests and offers in the system (as is done, for example, with Uber Surge pricing).
The ultimate dynamic incentive scheme targets specific participants to enable a particular
match. Of course, simply providing ride-sharing system participants with suggestions on
how to improve their likelihood of finding a match may already increase the effectiveness
of the system.

1.3 Generation of instances

To evaluate the impact of participant flexibility for different levels of system density, we
generate sets of trip announcements of different size. We create the trip timing information
for each announcement as follows. For each trip, we draw the earliest departure time from
a truncated normal distribution with mean p and standard deviation o, truncated at 20 to
model a typical travel peak. We calculate the earliest arrival time by adding the direct travel
time to the earliest departure time. Computational results reported in the body of the chapter
are for instances generated with the standard deviation of departure time set to 30 minutes.
In Appendix C, we report results for instances generated with smaller and larger standard
deviations. For each trip announcement, we determine whether it represents a driver or a
rider by flipping a coin, i.e., an announcement is equally likely to be a driver or a rider. In
Section 1.4.7, we explore the impact of different driver-to-rider ratios.

1.3.1 Geography I: Corridor instances

In this set of instances, we focus on ride-sharing in a specific corridor, e.g., people living
in a suburban residential area commuting to work in the center of an urban area. Several
ride-share providers specifically focus their efforts on promoting their services in a specific
corridor, as a corridor is typically characterized by high traffic densities and related traffic
congestion. Since people traveling in a specific corridor have similar routes this simplifies
the effort to find a match. Ride-share provider Carma participated in pilot programs focused
on the heavily-congested State Route 520 corridor in Seattle, Washington and two tollways
in Austin, Texas.

For analytical and presentational convenience, we work with a stylized corridor that is de-
fined by a highway that provides a direct connection between the periphery and the urban
center. We consider trips within a rectangle of 20 by 6 miles (see Figure 1.2). Destina-
tion locations for trips are drawn from a square with sides of 6 miles that is located at
the east side of the rectangle (lightly shaded in Figure 1.2). More specifically, we create
five non-overlapping circular areas (representing commercial centers) with a diameter of 1
mile within the square. Each of these circles contains 15% of the commuter destinations,
while 25% of the commuter destinations can be anywhere in A (uniformly distributed in the
square). Origin locations are drawn uniformly from the rectangle to the west of the square.
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Since people may not consider ride-sharing on very short trips, we use rejection sampling
to ensure that the direct trip distance is more than 1 mile for riders and more than 2 miles
for drivers.

The corridor has a 20-mile east-west highway that splits the rectangle into a southern and
northern half, with ramps at every mile. We assume that the average travel speed on the
highway is 50 miles per hour (v, = 50) and 20 miles (v; = 20) per hour on the service
streets. We assume that participants take the shortest (least-time) of two routes to go from
their origin to their destination: (1) the shortest route using service streets only and (2)
the shortest route using a combination of service streets and the highway. We approxi-
mate travel times using Manhattan distances and we assume that when a participant uses
the highway, he uses the on-ramp closest to his origin and the off-ramp closest to his
destination. Thus, the duration of the shortest route using the highway is computed as
t(pr,p2) = a1l = 2l [/va+ (| i ] — x|+ [x2] —x2] 4 |y1 = yo[+[y2 = yo[) /vi. See Fig-
ure 1.2 for an illustration of the corridor and of how travel times are computed. We note
that this way of computing travel times means that the triangle inequality will not always
hold. However, we have found the impact of this to be negligible.

origins destinations

ey !

Vh

=] ]

Figure 1.2: Tllustration of the corridor and the travel time computations for paths that use the highway (1) and
paths that do not (2)

1.3.2 Geography II: Urban area instances

The second set of instances represents shorter, more spontaneous trips related to family and
personal errands, shopping, as well as social and recreational activities. We model an urban
area in the form of a square with sides of 6 miles. All origin and destination locations
are generated uniformly randomly within this square. We calculate travel times based on
Euclidean distances with a 30% uplift and a travel speed of 20 miles per hour. As before,
we use rejection sampling to ensure that the airline distance between origin and destination
locations is more than 1 mile for riders and more than 2 miles for drivers.

1.3.3 Base case setting

In all experiments, unless stated otherwise, we assume that all trips are announced 30 min-
utes before their earliest departure time. In the default setting, we assume participants are
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ready to postpone their arrival time by 20 minutes. Hence, the base case matching flexibil-
ity is 20 minutes and the base case scheduling flexibility is 50 minutes. The service time T
is set to 2 minutes and the value of the detour flexibility parameter c is set to 0.25, which
means that we assume that drivers are willing to extend their trip duration by 2 minutes
plus 25% of their direct trip duration. This limits the maximum detour duration of trips to
approximately 12 minutes in corridor instances and 10 minutes in urban area instances.

Figure 1.3 shows the resulting distributions of trip durations for the two geographies. We
see that urban area trips are shorter and that the distribution is skewed to the right because
we do not consider very short trips. The jump between 5 and 10 minutes is due to the rule
that the airline distance between origin and destination locations is more than 1 mile for
riders and more than 2 miles for drivers.

Relative frequency (%)
Relative frequency (%)

10 15 20 25 30 35 40 45 10 15 20 25 30 35 40 45
Trip duration (min) Trip duration (min)

(a) Corridor trips (b) Urban area trips

Figure 1.3: Distributions of trip durations for 10,000 randomly generated trip announcements

1.4 Numerical results

In this section, we present the results of several computational experiments that seek to
quantify the impact of density and participant flexibility on ride-sharing system perfor-
mance, i.e., on the matching rate.

In all experiments, as in Agatz et al. (2011), we match the drivers and riders by solving
a bipartite matching problem. We use a hierarchical optimization approach in which we
first maximize the number of matches and subsequently maximize the system-wide vehicle
miles savings for this maximum cardinality matching. When solving an instance, we as-
sume we have perfect information, i.e., we know all the announcements for the day. The
matching rate obtained therefore provides an upper bound on the matching rate that would
be obtained in a dynamic setting. Previous research (Agatz et al., 2011; Wang et al., 2014)
has shown that due to the short announcement times and limited flexibility, the difference
in performance between a dynamic rolling horizon setting and a perfect-information setting
is relatively small. Consequently, we are confident that our computational study provides
meaningful insights.
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The simulation framework is implemented in Python 2.7. The match generation module is
implemented in C. We use CPLEX 12.6 to solve the matching problems. All results, unless
stated otherwise, are averages over 20 runs. Section 1.4.9 provides more information about
the variability observed in the results across the 20 runs.

1.4.1 Description of experimental framework

Hereunder, we provide a description and the pseudocode (Algorithm 1) of the experimental
framework that was used to obtain the results that are displayed in Section 1.4.2 in Figure
1.4, in Section 1.4.3 in Figure 1.7, as well as in Section 1.4.5 in Figure 1.10.

We adopt an incremental computational approach that allows us to carry out the experi-
ments in an efficient way. For each replication of an experiment, we randomly generate a
large set of trip announcements A. We then repeatedly draw a random subset of trip an-
nouncements without replacement from A and add them to our sample S to be used as part
of the experiment. For each subset of trips that is added to the sample, we identify all fea-
sible matches involving a trip in the new subset and add these new matches to the set of
all matches M. Furthermore, we maintain the matches in M in non-decreasing order of the
flexibility required from the rider and the driver. As a consequence, we can easily identify
those matches that correspond to a certain level of trip density and that require a certain
level of participants’ matching flexibility.

Algorithm 1: Outline of system-wide flexibility experiments

Randomly generate a set of trip announcements A ;
Set a value k by which we will increment the sample size ;
Set a range F' of flexibility values which we wish to inspect ;
Initialize empty sample S ;
Initialize empty container of feasible matches M ;
Initialize empty results list R ;
while size(A) > k do
Pop & trips from A and append to S ;
Determine all new feasible matches propagated by the k new trips ;
Add all new matches to M ;
Initialize optimization ;
for fqux in F do
Add all matches with f < f,,, to optimization ;
Solve optimization problem and determine matching rate r and distance
savings s ;
Append (size(S), finax, (1,5)) tOR ;
end
end
Return R ;

1.4.2 The impact of matching flexibility

In this section, we investigate the impact of the matching flexibility on the matching rate
at various system densities. In the experiments, we assume that each trip has the same
system-wide matching flexibility. We compute the average matching rates for various levels
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of system density (between 500 and 5000 trip announcements) and matching flexibilities
(between 5 and 60 minutes).

Figure 1.4 presents the average matching rates for both corridor and urban area instances,
where a lighter color is associated with a higher matching rate. The results show, as ex-
pected, that for a given level of matching flexibility, the average matching rate increases
with the number of trips in the system, but that the (marginal) increases diminish. We also
see that additional density is more beneficial at low matching flexibilities and more flexi-
bility is more beneficial at low densities. For example, Figure 1.4a shows that increasing
the matching flexibility from 10 to 30 minutes results in an increase of 20 percentage points
(p-p.) of the average matching rate with 1,000 trips and less than a 15 p.p. increase with
5,000 trips.

Matching rates (%, averaged over 20 independent runs) Matching rates (%, averaged over 20 independent runs)
5000 759 | 83.6 | 87.2 | 89.3 | 90.6 | 91.6 | 922 | 929 | 93.2 | 93.6 | 93.9 5000 70.7 | 77.1 | 80.9 | 83.1 | 849 | 858 | 86.6 | 87.1 | 87.4 | 87.7 | 88.1
4500 744 | 823 | 863 | 88.6 | 89.9 | 91.1 | 91.9 | 92.4 | 929 | 932 | 934 4500 69.2 | 75.8 | 79.8 | 82.2 | 84.0 | 85.1 | 86.0 | 86.6 | 87.1 | 87.4 | 87.7
4000 724 | 809 | 85.0 | 87.6 | 89.2 | 90.2 | 91.1 | 91.8 | 92.2 | 92.6 | 92.9 4000 67.8 | 747 | 78.7 | 81.4 | 832 | 84.4 | 854 | 86.1 | 86.6 | 86.9 | 87.1
£ 3500 70.7 | 79.4 | 83.8 | 86.6 | 88.1 | 89.4 | 90.3 | 90.9 | 91.6 | 91.9 | 92.3 £ 3500 659 | 72.9 | 774 | 80.1 | 82.1 | 83.4 | 84.5 | 85.1 | 85.6 | 86.1 | 86.6
2 3000 68.2 | 774 | 82.1 | 84.9 | 86.9 | 88.1 | 89.1 | 89.9 | 90.6 | 90.9 | 91.4 2 3000 |Rek 63.6 | 709 | 754 | 78.4 | 80.3 | 81.7 | 82.8 | 83.6 | 84.2 | 84.8 | 85.1
£ £
s s
E 2500 653 | 749 | 80.0 | 83.2 | 85.1 | 86.6 | 87.8 | 88.5 | 89.2 | 89.9 | 90.1 E 2500 60.9 | 684 | 73.1 | 763 | 784 | 79.9 | 81.1 | 82.1 | 82.8 | 83.4 | 83.8
g g
2 2000 61.6 | 71.6 | 76.9 | 80.3 | 82.6 | 84.2 | 85.5 | 86.5 | 87.1 | 87.7 | 88.2 2 2000 575 | 652 | 69.9 | 73.1 | 754 | 77.2 | 78.6 | 79.5 | 80.4 | 80.9 | 81.4
z z
1500 56.8 | 67.3 | 732 | 76.8 | 79.2 | 81.1 | 82.6 | 83.6 | 843 | 85.1 | 85.6 1500 529 | 609 | 66.1 | 69.6 | 71.9 | 73.9 | 755 | 76.4 | 71.5 | 782 | 78.8
1000 49.8 | 60.5 | 66.8 | 70.9 | 73.9 | 76.1 | 77.6 | 78.7 | 79.7 | 80.4 | 80.9 1000 55.0 | 60.2 | 63.8 | 66.6 | 68.6 | 70.2 | 71.6 | 72.8 | 73.5 | 74.1
500 488 | 552 | 59.6 | 62.8 | 65.1 | 66.9 | 684 | 70.1 | 71.1 | 71.9 500 49.1 | 53.1 | 559 | 584 | 60.1 | 61.3 | 624 | 63.4 | 64.1
5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60
Matching flexibility (min) Matching flexibility (min)
(a) Corridor trips (b) Urban area trips

Figure 1.4: Average matching rates for different combinations of system-wide matching flexibility and system
density

The results suggest that low system-wide matching flexibility of 5 minutes heavily limits
the ability of the system to establish matches. That is, even at the highest system density
(5,000 trips) the average matching rate is only 30.2% at a matching flexibility of 5 minutes.
The reason for this is that low matching flexibilities only allow matches between trips with
very similar time schedules and travel paths. That is, departure times have to be almost
perfectly aligned to allow a match and, more importantly, there is limited time for driver
detours. Both effects limit the number of ride-sharing opportunities and consequently also
the number of matches that are established.

A higher matching flexibility, on the other hand, can make up for a lack of density. For
example, a matching flexibility of 30 minutes results in matching rates of 55.9% on average
at the lowest density (with urban area trips). However, while our results point to the fact
that moderate levels of matching flexibility are very beneficial, the system does not gain
much if participants increase their matching flexibility beyond 30-40 minutes.

We see that the matching rates are generally higher for the corridor instances (Figure 1.4a)
than for the urban area instances (Figure 1.4b). When interpreting differences between
corridor and urban area instances, it is important to realize that the corridor setting covers
a larger area than the urban area setting (20 by 6 miles versus 6 by 6 miles) and, therefore,
the system density in terms of origins and destinations per square mile is not identical for
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the same number of trip announcements. Also, there is only one prevailing trip direction in
the corridor, whereas trip directions are random in the urban area. Finally, destinations in
the corridor instances are more clustered.

Another difference between corridor and urban area instances is that trips are somewhat
longer in the corridor instances, which implies that drivers have more detour flexibility
(which is proportional to the trip length). The latter explains why the advantage of corridor
instances over urban area instances disappears at a very low matching flexibility as this
limits the detour flexibility. The impact of (indirectly) limiting detour flexibility becomes
clear when we examine Figure 1.5, which shows the distribution of detour durations for a
corridor and an urban area instance with 3,000 trip announcements.

Relative frequency (%)
Relative frequency (%)

6 8 14 0 6 8
Detour duration (min) Detour duration (min)

(a) Corridor trips (b) Urban area trips

Figure 1.5: Distributions of detour durations for feasible matches in an instance with 3,000 trip announce-
ments

To provide more insight into the flexibility that is actually used, Figure 1.6 shows the re-
quired matching flexibility for drivers and riders in a corridor instance with 1,000 trips for
different system-wide matching flexibilities. The figure shows a different pattern for drivers
than for riders. To understand these differences, it is important to realize that riders do not
have to perform detours and, consequently, their matching flexibility only represents the
‘waiting time’ from departing later than their earliest departure time. For drivers, the actual
matching flexibility captures this waiting time and their potential detours.

Approximately 45% of the riders can potentially be picked up at their earliest departure
time, which implies that only 2 minutes of matching flexibility is required. The required
matching flexibility of the remaining 55% of riders is spread relatively uniformly across
the range of values. Detour durations range from 2 to 12 minutes, and the “humps” at the
start of the distributions indicate that most drivers too depart at or shortly after their earliest
departure time with the remaining drivers spread relatively uniformly across the range of
values.

Our results show that it may be difficult to achieve high matching rates in a ride-sharing
system if participants are not willing or able to accept a matching flexibility of at least 15
to 20 minutes. The results also show that matching flexibility is especially critical when
the number of trip announcements is low. A related insight is that the “critical mass”, i.e.,
the number of trip announcements at which a ride-sharing system becomes sustainable,

20



Relative frequency (%)
Relative frequency (%)
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Figure 1.6: Distributions of the required matching flexibility for different levels of system-wide matching
flexibilities

depends strongly on the matching flexibility of the participants. For example, we see in
Figure 1.4a that a 90% matching rate can be achieved with 2,500 trips and a matching
flexibility of 60 minutes. On the other hand, with a matching flexibility of 30 minutes, a
matching rate of 90% can only be expected with 5000 trips.

1.4.3 The impact of detour flexibility

In this section, we present the results of an experiment designed to quantify the effects of
detour flexibility on system performance. Similar to the previous section, we compute the
matching rates for various levels of system density (between 500 and 5000 trip announce-
ments) and vary the system-wide detour flexibility (between 5% and 50%) for a fixed match-
ing flexibility of 20 minutes for all participants. Figure 1.7 presents the average matching
rate for both corridor and urban area instances. The results show, again, that for a given
level of detour flexibility, the average matching rate increases with the number of trips in
the system, but that the marginal increases diminish. It is also apparent that additional den-
sity has a greater impact on the matching rate when the detour flexibility is small. (Note
that differences between the base case results in Figure 1.4 (fourth column) and Figure 1.7
(fifth column) are due to randomness.)

We observe large gaps between settings with high and low detour flexibility: Apparently, the
willingness of drivers to increase their trip duration by a higher percentage can increase the
matching rate substantially. It also appears that increasing detour flexibility from moderate
values of 25% to higher values of, e.g., 50%, results in significant increases in the matching
rate even at high system density (e.g. 8-10 p.p. with 5000 corridor trips).

To provide more insight into the actual detours, Figure 1.8 plots histograms of detour du-
rations for all matches in the optimal solutions with a detour flexibility of 25% and 50%,
respectively. We see that the detours increase with the overall detour flexibility. However,
the detours generally appear reasonable from the perspective of the required inconvenience
of the drivers. While there are more matches with detours between 7 and 10 minutes at a
detour flexibility of 50%, there are few matches, i.e. < 5%, that have a detour of more than
10 minutes. This suggests that the most important impact of greater system-wide detour
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Figure 1.7: Results for different combinations of system-wide detour flexibility and system density

flexibility comes from the fact that many drivers increase their detour by only a few min-
utes. If a provider can find a reward scheme to make all of the drivers accept these detours,
than a matching rate of 89.4% can be expected with only 1,000 participants.

Relative frequency (%)
Relative frequency (%)

8 10 12 14 8

Detour duration (min) Detour duration (min)
(a) 25% detour flexibility (b) 50% detour flexibility

Figure 1.8: Distributions of detour durations in optimal solution for an urban area instance with 1,000 trip
announcements based on 20 independent random runs

1.4.4 The impact of scheduling flexibility

In this section, we present the results of an experiment designed to analyze an important part
of the impact of system-wide scheduling flexibility on the system matching rate. In contrast
to the previous experiments, we only consider the urban area instances (the effect is the
same for the corridor instances). Moreover, we only consider two levels of system density:
500 and 2,000 trips and vary the announcement lead-time between O and 30 minutes and
the matching flexibility between from O to 30 minutes. Recall from Section 1.2.2 that we
define the scheduling flexibility as the sum of the matching flexibility and announcement
lead-time.
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Our simulation framework does not allow us to simulate the entire effect of the different
values of announcement lead-times and matching flexibility. It allows us to identify situa-
tions in which the driver needs to leave his or her origin before the earliest departure time
of the rider for the match to be feasible. Announcement lead-time plays an important role
in all such cases. On the other hand, we do not take into account the inefficiencies that may
appear in a dynamic match commitment process. These are due to the need to commit early,
which means that some potential matches that appear in the optimization after the match is
already committed are not considered. This is expected to have the biggest negative effect
on the matching rate when both matching flexibility and scheduling flexibility are small.
We know from previous studies ((Agatz et al., 2011), (Wang et al., 2014)) that the impact
is negligible for moderate values of matching flexibility.

Average matching rates (%, based on 20 independent runs) Average matching rates (%, based on 20 independent runs)
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Figure 1.9: Results for different combinations of system-wide matching flexibility and system-wide an-
nouncement lead-time for urban area instances

Figure 1.9 shows that the announcement lead-time only makes a difference at relatively low
matching flexibilities. For example, with 10 minutes matching flexibility, the difference in
performance between a setting with no lead-time and a setting with a 30 minute lead-time,
on average, 1s less than 10 p.p. and 8 p.p. for 500 and 2,000 trip announcements, respec-
tively, and with a 15 minutes matching flexibility, the difference in performance between a
setting with no lead-time and a setting with a 30 minute lead-time is less than 5 p.p. and 2
p.p- for 500 and 2,000 trip announcements, respectively.

The results show that a combination of short lead-times (< 5 min) and small matching
flexibilities (< 10 min) severely limits the functioning of a ride-sharing system. Note that
in a practical dynamic setting the performance is likely to be even worse because there is
little time to establish the matches. Our results also suggest that announcement lead-time
does not significantly affect the matching rate, on average, if the matching flexibility is
sufficiently high.

1.4.5 The impact of density

The results thus far show that low matching flexibility and small lead-times have a negative
effect on the matching rate. This suggests that highly dynamic, “on-the-fly” ride-sharing
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systems may not be feasible in practice. In this section, we investigate whether higher
densities make such a truly on-demand transportation system feasible by increasing the
number of trips in increments of 1,000 up to 20,000. For the most dynamic setting, with
a system-wide matching-flexibility of 5 minutes, we also examine settings with shorter
announcement lead times of 0 and 5 minutes, respectively. These settings represent an even
more responsive system, where participants announce their trips at the moment they want
to depart.
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Figure 1.10: Matching rates for different highly dynamic and high density ride-sharing systems

The results in Figure 1.10 indicate that even with a large number of trips, high matching
rates (> 60%) are not achieved in the most dynamic settings. With matching flexibilities
of 10 and 15 minutes, much higher matching rates can be achieved. Importantly, we ob-
serve that the difference between an announcement lead time of 5 and 30 minutes, with
a 5-minute matching flexibility, is quite small. At the same time, the setting with no an-
nouncement lead time performs much worse, suggesting that a moderate lead time of 5-10
minutes is certainly necessary. Note that the reason that a company like Uber can operate
effectively with little or no announcement lead time is that it operates with (a large number
of) dedicated drivers.

These findings have clear implications for providers: in the start-up phase of a ride-sharing
system, when densities are small, it is beneficial to focus on attracting participants that have
some flexibility in their schedule. Also, providers might consider designing their system
in a way that encourages participants to be flexible, possibly even providing incentives
to increase flexibility. The more flexible a participant will be, the better. As the system
grows, matching participants becomes easier. However, our results suggest that moderate
levels of matching flexibility are necessary for ride-sharing to work effectively even at high
densities. Finally, our results suggest that highly dynamic, on-demand ride-sharing systems,
with a pick-up service guarantee of 5 minutes or less, cannot work well even with very high
participation rates.

1.4.6 The impact of trip characteristics

In this section, we investigate the effect that different trip characteristics have on the like-
lihood of finding a match. In particular, we consider the impact of trip duration, earliest
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departure time, and proximity to the highway for corridor instances.

We generate and solve 3,000 random corridor instances with 1,000 trip announcements,
with all parameters set to base case values. We do not generate the five random non-
overlapping circular areas in the destination square — destination locations are drawn from
the destination square uniformly randomly. We also reject and replace (the few) trip an-
nouncements with trips that are shorter than 5 minutes and longer than 40 minutes. These
two small modification of the procedure detailed in Section 1.3.1 were made for presenta-
tional convenience.

For each trip announcement in each random run, we register the role, earliest departure
time, trip duration, origin and destination location coordinates, and whether it was matched
in the optimal solution. We use the aggregated information from all the 3,000 random runs
to visualize average matching probabilities in three different heat maps.

The first heat map has departure time on the x-axis and trip duration on the y-axis. The
second one represents the area where origin locations are drawn from and the third repre-
sents the area where destination locations are drawn from. Each cell provides information
about the average matching probability for trip announcements with certain trip character-
istics (e.g. trip duration between 20 and 22 minutes and departure time between 7:30 and
7:35). The heat maps do not provide estimates of matching probabilities for individual trip
announcements. These may be much greater or smaller depending on other determinants
that are not captured in a particular figure.

Figure 1.11 shows the average matching probability for different earliest departure times
and trip durations for both rider and driver announcements. Consistent with the results
of Agatz et al. (2011), we observe that longer trip durations are associated with higher
matching rates for drivers. For example, drivers with trips of more than 35 minutes have
a matching rate of 90-95%, while drivers with trips of less than 15 minutes only have a
matching rate of less than 30%. The opposite is true for the riders; riders with short trips
are more likely to find a match. However, the differences in matching rates between riders
with short trips and riders with long trips is not as pronounced as for drivers. As expected,
we also see that it is easier to match participants that depart close to the mean of the earliest
departure time distribution (slightly before the mean for drivers and slightly after the mean
for riders). Those participants that can only depart relatively late are hardest to match
(which is intuitive, since a departure time can only be shifted forward).

A different perspective is provided in Figure 1.12 and 1.13, which show the average match-
ing probabilities for drivers and riders in a corridor instance based on their origin locations
(to the left) and destination locations (to the right). Label O on the vertical axis marks the
position of the highway and the other labels on the vertical axis mark the distance to the
highway; label O on the horizontal axis marks the position of the border between the origin
locations area and the destination locations area and the other labels on the horizontal axis
mark the distance to this border.

The heat maps confirm what we expected: drivers with longer trips have a higher chance of
being matched (both in terms of distance from origin to area with destinations and distance
from destination to area with origins) and riders that have easy access to the highway have a
higher chance of being matched (both in terms of origin locations and destination locations).
Due to the presence of highway ramps, a clear pattern with periodicity of 1 mile, is apparent
in each of the four figures.
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Figure 1.11: Matching probabilities for combinations of departure time and trip duration (based on 3,000
runs)
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Figure 1.12: Matching probability for specific origin and specific destination locations for drivers (based on
3,000 runs)

Riders, but especially drivers, with origin locations closer to the area with destination loca-
tions have a smaller chance of being matched. These drivers have shorter trips on average
and thus also shorter maximum detour duration. Consequently, it is harder to match them,
which results in matching probabilities below 30% towards the far right of the origin area.
The matching probabilities for riders in the same area are much higher than that, especially
around the highway. This is because drivers with origins to the left pass by and may pick
them up by making a detour from the highway. However, we see that the further riders are
from the highway, the less likely this is to happen. Such riders can still be matched in local
matches (with drivers that have their origin close to the rider’s origin).

The results for the destination area are a mirror image of those in the origin area - especially
for the drivers. Drivers with destinations on the far left are hardest to match and those with
a destination on the far right are easiest to match. This result is intuitive since those with
destinations on the far right potentially pass close by a large number of rider destinations.
For the riders, we see that those with destinations towards the upper, lower, or right border
of the destination area are hardest to match and those that are close to the highway are easy
to match.
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Figure 1.13: Matching probability for specific origin and specific destination locations for riders (based on
3,000 runs)

While the above results are hardly surprising, they highlight the importance of trip charac-
teristics in the chance of finding a match. The origin and destination location characteristics
that lead to a high chance of being matched are almost diametrically opposed for drivers
and riders. This suggests that a ride-share provider might encourage a participant to flip his
role (from driver to rider or vice versa) if his chances of being matched with his preferred
role are small.

1.4.7 The impact of the driver-to-rider ratio

In the experiments discussed above, the instances had approximately equal numbers of
drivers and riders. To assess the impact of different driver-to-rider ratios on system perfor-
mance, we conduct a series of experiments using corridor instances with 1000 participants
with different driver-to-rider ratios. In particular, we examine driver-to-rider ratios 2:1, 1:2,
and 1:1. To be able to evaluate the interaction of the driver-to-rider ratio with the different
types of flexibility, we also vary the matching flexibility and the detour flexibility in the
experiments. The results can be found in Table 1.1, where we show the matching rates for
the drivers and the riders, respectively.
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Driver-rider ratio 1:2 1:1 2:1
Matching flex. I0min 20min 30 min | 10 min 20 min 30 min | I0 min 20 min 30 min

Drivers
Detour flex.: 0.15 || 41.34 5828 68.07 | 31.57 46.27 52.83 | 20.71 29.84 33.77
Detour flex.: 0.25 || 62.96 83.00% 89.30 | 49.98 66.72% 73.56 | 31.74 39.62*% 41.99
Detour flex.: 0.35 || 71.23  93.17 96.97 | 59.25 7821 84.71 | 37.54 44.82 45.74
-41.66 -24.72 -1493 | -35.15 -2045 -13.89 | -1891 -9.78 -5.85
Diff. (p.p.) ** -20.04 - +6.30 | -16.74 - +6.84 | -7.88 - +2.37
-11.77 +10.17 +13.97 | -747 +11.49 +17.99 | -2.08 +520 +6.12

Riders
Detour flex.: 0.15 || 20.91 2954 34.03 | 32.24 46.92 53.23 | 42.14 59.22 67.19
Detour flex.: 0.25 || 32.12 42.78% 45.10 | 50.57 66.51* 73.15 | 63.40 79.46% 84.21
Detour flex.: 0.35 || 3548 46.12 47.70 | 59.45 79.91 8501 | 76.06 89.20 92.58
-21.87 -13.24 -8.75 | -34.27 -19.59 -13.28 | -37.32 -20.24 -12.27
Diff. (p.p.) ** -10.66 - +2.32 | -16.06 - +6.64 | -16.06 - +4.75
-730 +334  +492 | -7.06 +13.40 +1850 | -3.40 +9.74 +13.12

* Matching rate for default flexibility parameter values.

** Differences to default case in percentage points.

Table 1.1: Average matching rates for drivers and riders (in %) for different driver-to-rider ratios and different combinations of system-wide matching flexibility and system-
wide detour flexibility (based on 20 independent runs)



As expected, we observe different matching rates for drivers and riders in the unbalanced
scenarios. Relatively more participants of the smaller group are matched and relatively
fewer participants of the larger group are matched. Moreover, we see that both the match-
ing and the detour flexibility have a noticeable impact on the performance, with detour
flexibility being more important than matching flexibility, as there are positive entries only
in the lower right below the diagonal for changes from the base case. Examining the dif-
ferences from the base case also reveals that additional flexibility has a larger impact when
the driver-to-rider ratio is 1:1. For example, an increase in the matching flexibility from
20 to 30 minutes and in the detour flexibility from 0.25 to 0.35 increase the driver and
rider matching rates by 17.99% and 18.50%, respectively, for driver-to-rider ratio 1:1, but
only by 13.97% and 4.92%, respectively, for driver-to-rider ratio 1:2 and only by 6.12%
and 13.12%, respectively, for driver-to-rider ratio 2:1. It is also interesting to observe that
a surplus of riders appears to be better for the performance of the system than a surplus
of drivers, with a driver and rider matching rate of 83.00% and 42.78%, respectively, for
driver-to-rider ratio 1:2 and of 39.62% and 79.46%, respectively, for driver-to-rider ratio
2:1 in the base case.

Since the maximum number of possible matches is determined by the minimum of the
number of drivers and the number of riders, it is clear that an imbalance in the number of
drivers and riders is undesirable. Our experiments have shown that an imbalance in the
number of drivers and riders also reduces the value of additional flexibility. Thus, it is
important for ride-share providers to explore avenues (e.g., incentive schemes) that results
in a driver-to-rider ratio close to 1:1.

1.4.8 Impact of variability in departure times

In this section, we present the results of computational experiments using corridor instances,
but generated with a standard deviation in departure times of 15 and 60 minutes. The results
are shown in Figures 1.14a and 1.14b, respectively. (The results for the base case, i.e., with
a standard deviation of 30, can be found in Figure 1.4a.)
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Figure 1.14: Average matching rates for different combinations of system-wide matching flexibility and sys-
tem density
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Comparing the results from the three different departure time distributions, 1.e., (1) 6 = 15
resulting in a range of 60, (2) o = 30 resulting in a range of 120, and (3) o = 60 resulting in
arange of 240, we see, not surprisingly, that the earliest departure time distribution impacts
the matching rate, especially for low levels of matching flexibility, but that the trends are
similar: (1) for a given level of matching flexibility, the average matching rate increases
with the number of trips in the system, but the (marginal) increases diminish, and (2) an
increase in the number of trips in the system is more beneficial at low levels of matching
flexibility and an increase in matching flexibility of more beneficial with a smaller number
of trips in the system. In all cases, we see that a very low level of matching flexibility
severely limits the ability of the system to establish matches.

Looking at the results in more detail, we see that the value of ¢ has an impact on the level
of matching flexibility above which we see little marginal improvement. For example, with
2,500 participant announcements in the system, the difference between the matching rates
with 30 and 60 minutes of matching flexibility is 1.4 p.p. for 6 = 15, 7.9 p.p. for o = 30,
and 15.0 p.p. for o = 60.

1.4.9 Variability in results

Hereunder, we briefly discuss the variability in our results. We look at how sample size
influences the distribution of sample matching rates. To analyze this, we fix scheduling
flexibility to 20 minutes and perform 100 runs in which we increase the sample size from
100 to 2,000 participants in increments of 100. We visualize the results in the box and
whisker plot depicted in Figure 1.15. The whiskers’ caps represent the first and the ninety-
ninth percentile. Outliers are marked with stars.
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Figure 1.15: Results of System-wide Matching flexibility experiment: Variability in results
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With 100 participants, we may expect a matching rate of a little under 30%, but the outcome
is quite uncertain, since the values stemming from different random runs range between 5%
and 45%. With 1,000 participants, the outcome is more predictable, with a mean value of
approximately 66%, and both the minimum and the maximum value within approximately
+ 8%. The variance continues to slowly decrease with increasing sample size. We also
examined histograms for individual sample sizes and did not find any noteworthy abnor-
malities. It seems reasonable to assume these matching rates are normally distributed and
that the variance falls with sample size.

This analysis also has some implications for ride-share providers: High variability in per-
formance may be expected when the number of participants is small (up to + 15 p.p. with
100 participants) and substantial variability may be expected even with 2,000 participants

(app. £ 6 p.p.).

1.5 Matching the unmatched

As discussed in the introduction, the primary purpose of our investigation is to generate
insights that ride-share providers can use to decide if, and if so how, to use incentives to
increase matching rates. Our approach in this section is different from the approach taken
in the previous sections: we start from the set of matches obtained using default flexibility
parameter settings and investigate strategies aimed at increasing the number of matched
participants. This leads to a better understanding of the type of flexibility that should be
targeted to increase the effectiveness of a ride-sharing system.

For a given instance, we start by determining the matching rate when the default values
of the flexibility parameters are used. Next, we establish the additional flexibility that is
required to increase the matching rate by a certain number of p.p. (i.e., the increase in the
default flexibility parameter values required to achieve the desired increase in matching rate
on a participant by participant basis). We analyze the additional flexibility required in terms
of the number of drivers and riders that need to be more flexible, in what way these drivers
and riders need to be more flexible, and how much more flexible they need to be.

More specifically, we determine the matching rate M with default detour and matching
flexibility parameters, i.e., cy = 0.25 and f; = 20, and establish the additional flexibility
that is required to increase the matching rate from M to M’. That is, we determine a set of
drivers and riders that will experience a detour or matching flexibility that is higher than
the default (or both) in order to be able to increase the matching rate to M’. We set the
maximum acceptable detour and matching flexibility to ¢y = 0.5 and f; = 60, respectively.

To establish the minimum additional flexibility required to increase the matching rate by a
given number of percentage points, we consider two objectives: (1) minimizing the number
of participants required to be more flexible, and (2) minimizing the total number of minutes
of additional flexibility required. This is accomplished by enumerating all feasible matches
of drivers and riders, i.e., those with a matching flexibility less than 60 minutes, detour
flexibility less than 0.5, and positive distance savings, and assigning a weight (or penalty)
to each match based on the deviation from the default flexibility parameters. For example,
if a rider in a match needs to depart 30 minutes after his earliest departure time, then 10
minutes is included in the weight of that match when we are minimizing the total number
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of minutes of additional flexibility (because the default matching flexibility is 20 minutes)
and a weight of one is assigned to that match when we are minimizing the number of
participants that need to be more flexible.

Our default optimization approach is to solve a side-constrained minimum weight matching
problem, where the side constraint forces the matching rate to be at least a given percentage
(Objective (1)). However, because there may be many alternative optimal solutions when
the objective is to minimize the number of participants that need to be more flexible, we
solve a subsequent side-constrained minimum weight matching problem in which we have
two side constraints, one forcing a matching rate and one limiting the number of partici-
pants that need to increase their flexibility, and where the weight of a match represents the
additional minutes of flexibility required (Objective (2)). We also report results when the
order of objectives in the objective hierarchy is reversed, i.e., first optimize with respect to
Objective (2) and then with respect to Objective (1).

Figure 1.16 presents the results of an experiment in which we examine how much addi-
tional flexibility is required to increase the matching rate obtained with default flexibility
parameter values for a corridor instance with 1000 trip announcements. The results rep-
resent averages over 10 such instances. The average matching rate with default flexibility
parameters is 66%. More specifically, Figure 1.16 shows how much additional flexibility
is required to match up to 200 additional participants in increments of 10. Figures 1.16(a)
and 1.16(b) show the (average) number of drivers and riders that need to increase their
base flexibility when using the two objective hierarchies. Figure 1.16(c) displays the aver-
age number of additional minutes of flexibility required per participant with the error bars
denoting the 95% confidence interval.

The results show that up to one hundred additional matches can be created by increasing the
base flexibility of a relative small number of participants by only a few minutes. Especially
when we minimize the number of participants that need to become more flexible (Figure
1.16(a)) typically only one participant has to become more flexible to create an additional
match between two participants. More importantly, we see that primarily drivers have to
become more flexible to enable new matches. As expected, the results for the two objective
hierarchies illustrate that there are different ways to facilitate additional matches, i.e., fewer
participants with larger deviations or more participants with smaller deviations.

Next, we look at the type of additional flexibility that is required to increase the number
of matches from 345 (the number of matches obtained with default flexibility parameter
values) to 445 for a corridor instance with 1000 trip announcements where we minimize
the number of participants required to be more flexible. Figure 1.17 shows, for each of the
128 participants that need to be more flexible, how and by how much they need to be more
flexible. More specifically, we report for all participants involved in matches involving
additional flexibility, the breakdown of their used flexibility, i.e., the service time 7, the
waiting time at their origin, any additional waiting time at their origin (in excess of the
default matching flexibility), the detour time, and any additional detour time (in excess of
the default detour flexibility). The latter two values only apply to drivers.
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The results show that in almost all matches that require additional flexibility, additional
driver detour flexibility is required. Additional matching flexibility is required in only 23
matches. Fewer than 10 matches do not require any additional flexibility on the part of the
driver. Hence, driver flexibility plays a fundamental role in establishing additional matches.
Maybe most importantly, we see that the additional detour and waiting time required tends
to be small, rarely more than a few minutes. More than 20 minutes of additional matching
flexibility is used in fewer than 10 matches.

We continue by considering a setting in which only drivers can increase their base flexibility
and a setting where only riders can increase their base flexibility. These two settings serve
to evaluate the relative importance of the drivers versus the riders in establishing additional
matches. We repeat our first experiment from the beginning of this section (results displayed
in Figure 1.16). We use the default objective hierarchy. Again, we attempt to increase the
number of matched participants from 10 to 200. The important difference with our previous
experiment is that in the settings we examine here, it is not always possible to increase the
number of matched participants up to 200. We track for each setting and each of the 10
instances when this happens.

Figure 1.19 shows the results for the case when only drivers increase their base flexibility
and Figure 1.18 shows the results for the case when only riders increase their base flexibility.
In both figures, the left pane visualizes the relationship between the number of additionally
matched participants and the number of participants that use additional flexibility for each
of the three settings. The right pane visualizes the relationship between the number of ad-
ditionally matched participants and the average additional flexibility in minutes per match.
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Figure 1.18: Analysis of the number of participants with deviation from base case flexibility that are necessary
to match between 10 and 200 additional participants in a corridor instance with 1000 participants (Based on
10 independent runs)

When only riders are considered, we see that it is only possible to increase the number
of matched participants by up to 90 in the best case. For several instances, no more than
70 additional participants can be matched. Furthermore, we see that, on average, a lot
more additional flexibility has to be used to achieve these increases (up to 20 minutes of
additional matching flexibility on average). This demonstrates that while it may help in
certain cases that a rider is ready to accept a (much) later departure/arrival time, this alone

35



is not an effective strategy of increasing the system matching rate. It also appears that much
more matching flexibility has to be used on average than in the case of drivers.
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Figure 1.19: Analysis of total additional flexibility in minutes that is necessary to match between 10 and 200
additional participants in a corridor instance with 1000 participants (Based on 10 independent runs)

When only drivers are considered, there is hardly any difference to the setting with flexible
riders and drivers. This is understandable since riders played a very marginal role in that
setting. It is possible to achieve an increase in the number of matched participants of up
to 200 in all of the 10 instances. Interestingly, there is also no significant impact on the
average additional flexibility in minutes per match or on the number of participants that
use additional flexibility, even for an increase of 200 participants (compared to 1.16). This

demonstrates that the same outcomes can be expected even if only the drivers are more
flexible.

So far, we have assumed that, in principle, the flexibility of all participants in an instance
can be increased — even the flexibility of those participants that can be matched with default
flexibility parameters. In practice, this may not be possible or desirable. In our final exper-
iment, we investigate the effects of a policy that does not allow a degrading in the quality
of matches for participants that can matched with default flexibility parameters. (This is
accomplished by fixing participants that can be matched with default flexibility parameters
in the matching and by not considering matches that require these participants to increase
their flexibility in subsequent optimizations.)

We see that with fixed default case matches, it is not possible to increase the number of
matched participants beyond 170. In certain instances, even an increase beyond 110 addi-
tionally matched participants is not possible. Interestingly, the number of participants that
need to use additional flexibility is very similar to case (a). However, much more addi-
tional flexibility has to be used on average compared to (a), especially for increases above
50 participants. This points to the fact that is a bad idea to split the matching problem into
a tranche of matches that can be established with base case flexibility and another tranche
within which lower quality matches are established. Such a strategy does guarantee that a
a group of users benefits from high quality matches, but this comes at the expense of the
other group of users that is much worse off.

The results of this section have important implications. In terms of the additional flexibility

36



200 T T
Inst. 1 e®e Inst.6
Inst. 2 <44q Inst. 7

<<« Inst.3 4®¢ Inst. 8

xXx Inst. 4 **4% Inst. 9

1501 ywy mnst5  mew Inst1of

20

Number of participants with additional flexibility
Average additional flexibility (min)
S
T

: : : »
100 S T SR T 10| SO, SRR e I T
‘ ‘ . Sy : .
L« . + &g °
: LR * 4§
T 28 2 ] S T
: Y & 3 3 * > 3 [}
: 4 : : % :
* : °
* * # . e
L i ° ®
e ‘é ee
olL® ; ‘ ; olu ¥ ! ‘ ‘
0 50 100 150 200 0 50 100 150 200
Number of additionally matched participants Number of additionally matched participants

Figure 1.20: Analysis of total additional flexibility in minutes taht is necessary to match between 10 and 200
additional participants in a corridor instance with 1000 participants (Based on 10 independent runs)

in minutes that is needed, it is typically easiest to establish (additional) matches by trying to
make drivers accept longer detours. Our results show that, often, relatively small increases
in the detour flexibility of a specific driver can make a match feasible. On the other hand,
while there are cases when postponing the departure of a rider can help, this is not very
effective on average.

1.6 Using financial incentives for drivers

In the previous sections, we have demonstrated that it is typically easiest to ensure a high
matching rate in a ridesharing system by motivating drivers to accept longer detours. In
this final section, we present a model and an experiment that explicitly considers payments
by the riders and remuneration for the drivers. We present a ride-matching model that can
provide financial incentives to drivers who are willing to accept longer detours.

We consider the business model that is used by many ridesharing providers (e.g. Car.ma,
Split.us, BlaBlaCar.com): The system pools all payments made by the riders, takes an
arbitrary commission for its services (e.g. 1%) and redistributes the rest to the drivers.
We proceed by explaining the assumptions of our model and introduce several additional
parameters that were not used in the previous sections.

In this section, we allow matches with negative distance savings. That is, for driver i € D
matched to rider j € R, the difference between the joint individual direct distances and the
total distance of the driver in the match can be negative. We relax this constraint because
we want to try to match as many riders as possible. Note that such matches may still be
beneficial from a transportation policy point of view since a matched rider will not need to
use his own vehicle, which may free up parking space in the city center or another area with
limited parking space availability.

Riders pay a base fare p” that is fixed for each ride. In addition, each rider pays a variable
fare per ride-share mile p”. Drivers are remunerated according to several rules. Each driver
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receives a variable fare per mile for the shared part of his trip (this is the part of the trip
in which the driver and rider ride together). We denote this fare as f*. Driver detours are
treated separately. The rationale for treating a driver detour differently than the shared part
of the trip is that driver detours are inconvenient for the drivers and undesirable from a
transportation policy perspective. It is thus desirable to minimize them. We compute the
detour distance 51-‘5. for driver i € D serving rider j € R as do, o, + do_,,dj + dd_ndi —d,, 4.- The
driver is remunerated with the full officially allowed standard mileage rate for this part of the
trip. We denote this rate per mile as f”. The driver also needs to extend his trip duration by
the detour duration — each driver is given remuneration that is proportional to the duration of
the detour. We denote this last component as f*. The detour duration for driver i € D serving
rider j € R, which we denote as S;j is defined as 75, 0, + lo;d; +1d;d; + T — 1o, 4, For each
match in the set of feasible matches F', we compute the remuneration for driver i associated
with this match and denote it as r;;, where r;; = f°d,, 4, + 55- f"+&/;f" and the payment by
rider j is denoted as p;;, where p;; = P+ p'dy, 4;- Finally, we assume the system operator
may choose to take a commission from the sum of the gathered payments from the riders
in the form of a fixed percentage. Alternatively, he may choose to add his own funds to the
sum of gathered payments in order to pay for driver detours and increase the matching rate.
The former case may be feasible in a mature ridesharing service while the latter case could
be used to facilitate the matching process in the launch phase of a ridesharing system. We
define a coefficient O., where a value of 0.99 indicates a 1% commission and a value of
1.01 indicates that the operator adds 1% to the total sum of driver payments in an attempt
to increase the system matching rate.

As in the previous experiments, we match the drivers and riders by solving a bipartite
matching problem. We use one optimization phase in which we maximize the number
of matches. We add an additional, market balancing constraint to the optimization model
presented in expressions (1.1) — (1.4). This constraint assures that the sum of rider payments
multiplied by the operator coefficient is greater than or equal to the total remuneration paid
to drivers:

Y xijrij < Y, Oclxijpij) (1.5)

(i,j)eF (i,j)eF

For this final experiment, we use a more realistic setting based on the travel demand model
for the metropolitan Atlanta region. The instance generation methodology is explained in
detail in Chapter 2, Section 2.5.1. The only difference is that we do not use meeting points
in this particular experiment. Table 1.2 summarizes our assumptions and the parameter
values used.

We perform the experiment as follows. We generate random rideshare instances with the
parameter values described in the above table. For these instances, we first compute the
results for the base case in which we respect all constraints that relate to rider and driver
flexibility. We solve a hierarchical optimization model as defined in Section 1.2 and do not
consider the market balancing constraint in the base case. We then relax the assumption
that the constraints regarding driver detour and matching flexibility need to be respected
and solve the optimization model with the market balancing constraint (1.5). Table 1.3
compares the metrics obtained for the default model and the model that uses driver incen-
tives.
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Table 1.2: Assumptions of experiment

Trip pattern:

Number of participants:

Number of drivers:

Number of riders:

Driving speed:

Detour flexibility:

Matching flexibility:

Scheduling flexibility:

Service time:

Base rider fare — p”:

Variable rider fare — p":

Driving cost remuneration for shared trip — f*:
Driving cost remuneration for detour — f”:
Driver variable detour remuneration — f*:
Operator coefficient — O,:

suburb to center
2854

1450

1404

20 mi/h

0.25

20 min

30 min

2 min

USD 1

USD 0.5 per mile
USD 0.15 per mile
USD 0.5 per mile
USD 0.25 per minute
1.0

Table 1.3: Results of experiment with financial incentives for drivers

Default Incentives
Matching rate (%) 61.03 70.02
Total mileage savings 5107.87  5523.77
Number of matches with violation 0 201
Average detour distance (mi) 1.08 1.16
Average detour time (min) 8.32 8.62
Average rideshare length (mi) 7.01 6.74
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As can be seen, it was possible to increase the matching rate by approximately 9 p.p. by
using incentives for drivers. This increase was possible because the constraints that relate
to the driver detour and matching flexibility were violated in 201 matches, representing
roughly 20% of all established matches. The two scatter plots in Figure 1.21 provide us
with more information about the change that occurred between the default case and the
case with incentives. Each scatter diagram maps all matches included in the optimization
(black dots) and all matches in the optimal solution (red dots) according to the cost of the
driver detour associated with a match in USD (i.e. the remuneration the system provides to
the driver for the detour) and the value of the match in USD (i.e. the total price the rider
pays for the ride associated with a match).
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Figure 1.21: Scatter diagram mapping all matches included in the optimization (black dots) and all matches
in the optimal solution (red dots) according to the remuneration for the driver detour associated with a match
(in USD) and according to the value of the match (in USD)

The 45-degree red line represents the limit between matches for which the total payment
by the rider is greater than the cost of the driver detour (upper left corner) and matches for
which the total payment by the rider is less than the cost of the driver detour (bottom right
corner). The scatter diagrams very clearly demonstrate the difference between the default
case and the case with driver incentives. It shows that employing incentives and the market
balancing constraint redistributes the value of matches: It uses high net values of certain
matches to subsidize less attractive matches and thereby increases the matching rate. In
this section, we have presented a ride-matching model with financial incentives for drivers.
Our results indicate there is a potential to increase the matching rate in a ridesharing system
by using such incentives for drivers to increase their detour. We note that more research
is needed to establish the implications and viability of such a scheme in the context of
ridesharing.

1.7 Conclusion

Our computational study clearly demonstrates (and quantifies) the impact of participant
flexibility on the performance of a single-driver, single-rider ride-sharing system (in terms
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of the matching rate achieved). The study shows that participant flexibility plays a key role
in easing the matching process, especially in systems with low participation rates.

In order for dynamic ride-sharing to work, drivers and riders need to be flexible in terms of
departure and arrival times (at least 10 to 15 minutes depending on origin and destination
locations), but, most importantly, drivers need to be flexible in terms of the detour that they
are willing to make.

We hope that the insights generated by our study can be used by ride-sharing system
providers to design effective incentive schemes to increase system performance, where we
interpret the term incentive scheme broadly, e.g., meaning anything from providing a par-
ticipant with information on the likelihood of being matched or on the increase in likelihood
of being matched when the participant’s flexibility is increased by a certain amount, all the
way to providing monetary benefits to participants that increase their flexibility.
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2 THE BENEFITS OF MEETING POINTS IN
RIDESHARING SYSTEMS

2.1 Introduction

As has been demonstrated in Chapter 1, limited flexibility in the participants’ itineraries
and schedules is a major challenge in ride-sharing. It may result in many drivers and riders
not finding a match. In this chapter, we investigate the benefits of introducing meeting
points to take advantage of any flexibility on the part of the riders. Meeting points allow
the construction of routes with smaller detours, while maintaining a satisfactory level of
service for the riders. Riders may be picked up and dropped off at meeting points that are
within an acceptable distance from their origin or destination. (A pick up or drop off can,
of course, still take place at the rider’s origin and destination as well.) By exploiting the
rider flexibility, more matches may be found. Furthermore, meeting points allow a driver to
be matched with multiple riders without increasing the number of stops on the driver’s trip.

Consider the example depicted in Figure 2.1 with driver d1 and rider r1 and two meeting
points m1 and m2, where the number above an arc represents the time it takes to travel
between the nodes, and where the driver is willing to accept an increase in trip time of at

most five minutes.
15
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Figure 2.1: Rider (grey) and Driver (white) traveling from Origin (circle) to Destination (square) via Meeting
Points

Without the use of meeting points, a match between d1 and r1 is not feasible because the
required increase in trip time (6 min) exceeds the driver’s limit. If, however, the rider is
willing to walk 5 minutes to and from a meeting point, a feasible match between d1 and
rl is possible, because d1 has to make a smaller detour. (The rider’s trip will be 9 minutes
longer than if he drove by himself, but he will loose no time finding a parking space and he
will not be using his own car.)

Note that the savings in driving distance in the example above is about 37% (where the
savings in driving distance is obtained by comparing the driving distance when both par-
ticipants drive by themselves to the driving distance when they are matched, i.e., 30 versus
19 in the example above). It is customary to consider a match distance feasible if there is a
positive driving distance savings and also to measure the value or benefit of a match by the

This chapter is based on Stiglic et al. (2015a).
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driving distance savings. Capturing the value of a match in this way may not be perfect, but
it is pragmatic. Not all riders for which no match can be found will drive themselves. Some
may ask a friend to drive them or use public transportation; others may not undertake the
planned trip at all. Ride-sharing has the potential to provide increased mobility to those that
do not own their own vehicle, but it is hard to capture and quantify this benefit. Therefore,
we, as has been done in previous studies, focus on driving distance savings.

Meeting points can also result in more matches because they allow a driver to be matched
with multiple riders without extra stops. Consider the example depicted in Figure 2.2 with
driver d1 and riders r1 and r2 and two meeting points m1 and m2, where the number above
an arc represents the distance between the nodes. (As before, the dashed lines represent
walking of riders to and from meeting points.)

® =
v r

Figure 2.2: Riders (grey) and Driver (white) traveling from Origin (circle) to Destination (square) via Meeting
Points

None of the matches between d1 and r1 and d1 and r2 (with or without a pickup at m1
and/or a drop-off at m2) leads to positive savings in driving distance. However, a multi-
rider match between driver d1 and riders r1 and r2 (with a pickup at m1 and a drop-off at
m2) does lead to positive driving distance savings (15 versus 13).

In the setting we consider in this chapter, a driver can be matched with multiple riders,
as long as the capacity of his vehicle is not exceeded, and the riders are picked up at the
same meeting point at the same time and dropped off at the same meeting point (at the
same time). Allowing only one pickup and one drop-off point per shared ride ensures that
the trips are easy to execute and minimize the inconvenience for the driver; additional stops
and detours increase the inconvenience for participants and the risk of complications arising
during execution. Multi-rider matches may have other, harder to quantify, benefits: waiting
for aride and sharing a ride as a group may increase the feeling of safety and social cohesion
and might thereby improve the image of ride-sharing.

The viability of introducing meeting points in a ride-sharing system may depend on a vari-
ety of circumstances, e.g., the availability of safe locations for meeting points, the prevailing
weather conditions, and the cultural attitudes towards transportation. In many suburban ar-
eas in the U.S., for example, it may be difficult to find safe locations within easy walking
distance from a person’s home. In regions where adverse weather conditions occur fre-
quently, the prospect of having to wait outside for a pickup may not be appealing. In places
where people are used to live and commute in climate controlled environments, it may be
difficult to overcome initial reluctance towards walking to meeting points. However, meet-
ing points are already an integral component of some existing ride-sharing systems, e.g.,
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slugging or casual carpooling, where passengers form (slug) lines at specific locations and
wait for rides (the incentive to pick up riders is typically that it allows drivers to use faster
HOV lanes and/or share the cost of tolls), and long-distance ride-sharing, which tends to
be scheduled in advance and has less restrictive requirements regarding meeting place and
time. The locations that can be used for meeting points varies by region or country. For
instance, in Slovenia, bus stops and gas stations are commonly used as meeting points.
However, the use of bus stops may be perceived as unsafe and inappropriate in many parts
of the US (or may even be illegal). It is conceivable that neighborhood pools, fast food
restaurants, or coffee shops can act as meeting points in the US. Park & ride facilities and
entrances to well-known institutions/buildings are additional options.

In this chapter, we discuss the design and implementation of an algorithm that optimally
matches drivers and riders (based on an extension of the traditional bipartite matching for-
mulation) in large-scale ride-sharing systems with meeting points. We perform an exten-
sive simulation study (based on real-world traffic patterns) to assess the benefits of meeting
points. The results demonstrate that meeting points can significantly increase the number
of matched participants as well as the system-wide driving distance savings.

The chapter is organized as follows. In Section 2, we provide an overview of related liter-
ature and explain how we build upon it. In Section 3, we introduce notation and a mathe-
matical model of the ride-share optimization problem with meeting points. In Section 4, we
detail the solution approach we have developed for this optimization problem. In Section 5,
we motivate and discuss the simulation study we have conducted and we present and ana-
lyze its results. Finally, in Section 6, we summarize the key findings and suggest directions
for future research.

2.2 Related literature

Agatz et al. (2011) represent the single rider, single driver ride-share matching problem
by a max-weight bipartite matching problem. They explore different approaches to match
drivers and riders in real-time and investigate the impact of different service characteristics
of the system. Their study shows that the success of a ride-sharing system strongly depends
on the participation density, e.g., the number of participants per square mile, and that a
minimum participation density is required to ensure a stable system (in which participants
do not leave the system because they repeatedly fail to find a match). Wang et al. (2014)
extend this analysis by investigating the trade-off between matchings that are optimal for
the system as a whole and matchings that are optimal for each of the participants in the
system. They introduce the concept of stable matches in the ride-sharing setting. Lee and
Savelsbergh (2015) consider the employment of a small number of dedicated drivers to
serve riders that would otherwise remain unmatched. The aim is to guarantee a certain
service level (i.e., fraction of riders that is matched) thereby ensuring a stable system.

Another way to increase the number of riders that find a match is to allow riders to transfer
between different drivers, i.e., allowing a rider to travel with more than one driver to reach
his destination. Herbawi and Weber (2011c) consider a multi-hop ride-sharing problem in
which drivers do not deviate from their routes and time schedules. As such, the drivers’
ride-share offers form the transportation network for the rider, who has to find a route
that minimizes costs, time, and number of transfers. Drews and Luxen (2013) extend this
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work by also allowing reasonable detours and time deviations for the drivers. While rider
transfers might be acceptable to a driver, they are inconvenient for a rider as they may
involve waiting times between rides and they increase the risk of anything going wrong
during execution.

In contrast to the existing work, we explicitly consider a setting in which riders are willing
to walk to and from meeting points to facilitate easy pick up and drop off. We are aware of
only one paper that considers meeting points in a related context. Kaan and Olinick (2013)
consider vanpooling, in which up to 15 people share a van to travel to a common location.
The commuters in the vanpool drive to a park-and-ride location and then ride together to
a final location. The authors consider the problem of assigning commuters and vans to
park-and-ride locations, and present a mixed integer programming formulation and several
heuristics for its solution. The main difference with our setting is that, in the end, the vans
provide scheduled transportation. The setting is also simpler in that all riders travel to one
common final location.

The use of pickup locations is not unique to the ride-share setting. It is prevalent in the
school bus transportation in which students in urban areas are assumed to walk to a bus
stop from their homes to take the bus to school. The selection of bus stops and the as-
signment of students to bus stops is a subproblem in the school bus routing problem that is
related to our work. While several papers address the school bus routing problem, only few
papers explicitly consider the selection of bus stops (Park and Kim, 2010). Some recent
papers have integrated the selection of bus stops with the bus route generation using both
exact (Riera-Ledesma and Salazar-Gonzalez, 2013) and heuristic methods (Schittekat et al.,
2013).

Ride-sharing, especially when incorporating meeting points, requires the coordination of
rider and driver itineraries. This is related to the area of routing problems with synchro-
nization constraints. This line of research deals primarily with vehicle routing problems in
which more than one vehicle may be required to fulfill certain tasks. For a recent review,
see Drexl (2012). In general, vehicle routing problems with synchronization constraints are
difficult to solve so heuristics are most commonly used, see for example Goel and Meisel
(2013) and Meisel and Kopfer (2014).

The ride-sharing setting we consider has a simple routing structure, because we allow the
drivers to make only one pickup and one drop-off. The number of feasible driver-rider
matches is also relatively small due to capacity and time constraints. As a consequence, we
can enumerate the feasible routes and represent the problem of optimally routing drivers as
a matching problem. This allows us to use an exact approach to solve even large instances
of the ride-share problem to optimality.

The research that is, potentially, the most relevant to our own also considers ride-sharing
with meeting points, but focuses on how to find the best meeting points once a match
between a driver and a rider has been established (Aissat and Oulamara (2014)). This is
especially relevant in case of matching a driver and a rider for recurring trips. The authors
place no restrictions on the locations of the pickup and drop-off points relative to the origin
and destination, respectively, of the rider’s trip and, thus, make no assumptions on how the
rider might reach the pickup point and on how the rider might reach the destination.
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2.3 Problem Definition

We are provided with a set of trip announcements S. With each trip announcement s €
S is associated, an origin location oy and a destination location d; as well as an earliest
departure time e and a latest arrival time /;. We assume the departure times of participants
are somewhat flexible so that the difference /; — e, is greater than the travel time from origin
to destination. The set of announcements S can be partitioned into D C S, the set of trip
announcements by the drivers, and R C S, the set of trip announcements by the riders. Each
driver i € D also specifies a maximum trip duration 7;, which implies the extra time the
driver has available to accommodate a ride-share, and a vehicle capacity C;, which gives
the maximum number of people the driver’s vehicle can accommodate. Each rider j € R
also specifies a maximum distance m; that he is willing to walk to and from a meeting point.
(For presentational convenience, we will sometimes also use 0; and d; to indicate the origin
and destination of a driver i and 0 and d; to indicate the origin and destination of a rider j.)

We denote the distance from location i to j with d;; and the travel time between the two
locations by f;;. Furthermore, we denote the set of meeting point locations that can be
reached by at least one rider by M. The set of feasible pickup meeting points for rider j is
Mj.’ = {k EM | dio; < m j}, and the set of feasible drop-off meeting points for rider j is

de = {k EM | dra; <m j}. We introduce the concept of a meeting point arc a to denote a
combination of a pickup point and a drop-off point. The set of feasible meeting point arcs
for rider jis Aj:= {(k,I) | k€ ojUMf, le deM;l}. Thus, each rider j can be picked up
at his origin o; or a meeting point in Mf and dropped off at his destination d; or a meeting

point in Mj-l . Let A =UJ;cgA;. Finally, we denote the service time at each meeting point
m € M by 1, i.e., the time needed to get into and out of the vehicle at a pick up or drop-off
meeting point.

2.3.1 Definition of a Feasible Match

A match is defined as a combination of driver i € D, a set of riders J C R, and a meeting
point arc a € A. Hence, it can be defined by a triplet (i,/,a). Note that since we do not
allow more than one pick-up and one drop-off, in a feasible match (i,J,a), we must have
a € (\jesA;. Furthermore, a feasible match implies a unique route for the driver and for
every rider. A feasible match (i,J,a) must also have |J| 4+ 1 < C; and must satisfy the time
constraints of the participants. A match is time feasible if it is possible for all participants
to traverse the meeting point arc a at the same time, while respecting the earliest departure
times from their origins and the latest arrival times at their destinations and, for the driver,
the maximum ride time.

In order to check the time feasibility of a match (i,J,a), with a = (k,[), we construct an
implied time window at k for each participant in the match. We denote the implied time
window for a participant p (either i or j € J) at k by [ef,,lf,], where e;‘, = ep + 1,1 and
11’§ =l —(n+tu+7u+ fld,,)- To check the time feasibility of the match, the intersection of

the implied time windows has to be non-empty, which implies that we must have

; )
j J

max( ajxek ef) < min(
€ J

inlj, 1) 2.1)
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When the above inequality holds, max(max je; e’]‘., eX) is the earliest time, and min(min jc; lf, 1%)
is the latest time, at which the shared ride can depart from meeting point k. The maximum

ride time for the driver is satisfied, if

tok + T+t + T +11g, < T;. 2.2)

A match between driver i and riders in J on meeting point arc a = (k,[) has an associated
driving distance savings of 0(; j ;)

O(i.(k 1)) = dod; — (doge + di +dia;) + ; (doa; — (dojk +dia;))- (2.3)
J

A match (i,J,a) is considered distance feasible when O(iJa) > 0. Note the walking dis-
tances are taken into account in (2.3) to break ties when two or more arcs have similar
savings.

2.3.2 Matching Problem

The single rider, single driver ride-share matching problem can naturally be formulated as
a maximum weight bipartite matching problem (Agatz et al. (2011)). We extend this for-
mulation to the single driver, multiple rider ride-share matching problem. We note that the
formulation introduced below can represent a variety of ride-share matching problems in
which a driver can be matched with multiple riders, because the identification of feasible
matches and the associated routing is handled in a subproblem. By accommodating sin-
gle driver, multiple riders matches the formulation becomes a maximum weight bipartite
matching problem with side constraints, which, in theory, is no longer solvable in polyno-
mial time, but still solves extremely fast in practice. We note too that maximizing system-
wide driving distance savings does not guarantee that a maximum number of participants
is matched. Consider, for example, the situation depicted in Figure 2.3 with drivers d1 and
d2 and riders r1 and r2 and two meeting points m1 and m2, where the number above an arc
represents the distance between the nodes.

“

N

@ —m]
v r

Figure 2.3: Riders (grey) and Drivers (white) traveling from Origin (circle) to Destination (square) via Meet-
ing Points

The maximum driving distance savings is achieved when either d1 or d2 is matched with
both r1 and r2 (and, thus, one of the drivers will not be matched). By matching driver d1
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with rider r1 and driver d2 with rider r2, all system participants are matched, but with lower
driving distance savings (6 vs 4).

As in Agatz et al. (2011), we create a node for each driver i € D and each rider j € R and
an edge connecting node i and j if there is a feasible match between driver i and rider j. In
addition, we introduce nodes that represent a set of riders J, e.g., a pair of riders, a triple
of riders, etc., and introduce an edge connecting driver i € D and set of riders J, if there is
a feasible match between driver i and the set of riders in J. Each edge e has two weights
associated with it: number of participants in the match v,, and maximum driving distance
savings 0,. Note that a particular combination of a driver and a set of riders may have more
than one feasible match because there may exist more than one feasible meeting point arc.
However, we are clearly only interested in the one with the highest driving distance savings.
Figure 2.4 illustrates the bipartite graph for an example with two drivers and two riders. The
numbers above the edges denote the number of participants in the match and the associated
distance savings. In this example, the match between driver d2 and rider r1 and the match
between driver d2 and rider pair (r1,r2) are not feasible. The optimal solution is to match
driver d1 with rider r1 and driver d2 with rider 2 for a total distance savings of 18.

()

3,14)

Figure 2.4: Bipartite graph with two drivers (d1 and d2) and two riders (r1 and r2)

2,11)

Let E represent the set of all edges in the bipartite graph and let the binary decision variable
x, for edge e € E indicate whether the edge is in an optimal matching (x, = 1) or not (x, = 0).
Furthermore, let E; and E; represent the set of edges in E associated with driver i and rider
J» respectively. Then, the single driver, multiple riders ride-share matching problem with
the objective of maximizing the number of matched participants can be formulated as the
following integer program:

maxz; = Y Vex, 2.4)
eckE

subject to
Y x.<1 VieD, (2.5)
eck;
Y xe<1 VjeR, (2.6)
eGEj
x. €{0,1} Ve€kE. 2.7)
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Objective function (2.4) maximizes the number of matched participants. Constraints (2.5)
and (2.6) assure that each driver and each rider is only included in at most one match in an
optimal matching, respectively.

To obtain a matching that maximizes the driving distance savings, the objective should be
replaced by

maxzp; = Z OcXe. (2.8)

ecE

Since both objectives, i.e., maximizing the number of matches and maximizing the driv-
ing distance savings, are relevant in the ride-sharing context, we take both objectives into
account in a hierarchical fashion, where we consider z; as the primary objective and z as
the secondary objective. We first solve (2.4) subject to (2.5) - (2.7). Let z] be the number
of matched participants. We then solve (2.8) subject to (2.5) - (2.7) plus the additional
constraint ), g VeXe > zj. This type of hierarchical approach is known in the literature as
lexicographical goal programming (Ignizio (1976)).

Finally, we observe that it is possible to extend the model with a set of participants with
flexible roles F similar to Agatz et al. (2011). The nodes corresponding to flexible partici-
pants may appear on either side of the bipartition, but can never be connected with an edge.
The model can be extended by introducing sets E ¢ representing edges in E associated with
flexible participants and adding another set of constraints ) g Xe < 1,VfeF.

2.4 Solution Approach

When the number of participants and of meeting points is large, it can become computa-
tionally prohibitive to determine the time and cost feasible single matches (especially since
multi-rider matches have to be considered as well). Therefore, we have implemented this
component of the solution approach carefully and efficiently. For expository purposes, we
assume that the locations are in a Euclidean plane, that distances are Euclidean, and that
traveling (either walking or driving) occurs at a constant speed. However, most of these
assumptions can relatively easily be relaxed so as to cover more realistic settings.

2.4.1 Determining Feasible Meeting Points for a Rider

We store the set of meeting points in a k — d tree (Bentley (1990)). K —d trees support
Euclidean distance nearest neighbor search, n nearest neighbors search, and fixed-radius
near neighbor search in logarithmic time. We use the k — d tree to efficiently find, for each
rider j, the meeting points within a radius m; from the rider’s origin o; and the rider’s
destination d.
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2.4.2 Determining Time and Cost Feasible Matches

Our approach for determining time and cost feasible matches critically depends on the fol-
lowing observation.

Observation 1. A match between a driver i and a set of riders J C R with |J| > 2 is time
feasible if the match between driver i and subset of riders J' C J is time feasible for all
J CJ.

Hence, for a match of one driver and two riders to be time feasible, the match of the driver
with each of these two riders must be time feasible as well. Similarly, for a match of one
driver and three riders to be time feasible, the match of the driver with each of the possible
pairs of riders must be time feasible as well. And so forth.

It is not necessarily the case that in a distance feasible match between one driver and two
riders, the matches between the driver and the individual riders are distance feasible as well
(recall Figure 2.2). In fact, one of the benefits of meeting points is that this does not have
to be the case.

A Basic Algorithm

The basic algorithm considers drivers one by one and finds all time and cost feasible
matches for that driver. A straightforward enumeration algorithm with run time complexity
O(nmk) finds all feasible single-rider matches, where n is the number of drivers, m is the
number of riders, and k is the average number of feasible meeting point arcs per rider.

It follows from Observation 1 that only riders that could feasibly be matched with a driver
have to be considered when constructing matches with two riders for that driver. Further-
more, we only need to start from pairs of riders that could feasibly be matched with a driver
when constructing matches with three riders for that driver, and so forth. This realization
is important because, typically, a driver can be feasibly matched with only a small fraction
of the riders. Furthermore, not all pairs of feasible single-rider matches result in feasible
two-rider matches, etc. This greatly reduces the number of combinations of riders that have
to be considered when determining all feasible matches for a driver.

We thus construct feasible matches for a driver i recursively. We first find all feasible
matches involving only one rider, then find all matches involving two riders, etc., up to the
available capacity C;. If a time and distance feasible match is found, an edge e is added to
the ride-share matching problem with associated coefficients o, and Vv,.

A Refined Algorithm

By exploiting the structure of the problem and the characteristics of an instance, it is typi-
cally possible to significantly reduce the number of driver, rider pairs that are (fully) eval-
uated. Rider time windows are stored in a memory structure, which allows us to find the
riders with time windows that overlap with the time window of a driver in sub-linear time.
We have further enhanced this refinement by developing a method that reduces the size of
the time windows stored in the memory structure by considering the minimum required
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overlap in the time window of a rider and a driver (related to the time a driver and a rider
will spend travelling together in a feasible match). The details are given in Appendix 4.

Next, we use the locations of the origin and destination and the time window of a driver
and a rider to recognize that there cannot be a feasible match without considering meeting
point arcs explicitly. The idea is similar to the logic employed to determine the feasibility
of a match (i,J,a), but rather than using a meeting point arc, we calculate an implied time
window considering origin and destination information only - not the actual pickup and
drop-off points. The implied time window for the driver is calculated assuming that the
rider is picked up and dropped off on the boundary of his walking range, i.e., on the two
circles around o and d; in Figure 2.5.

__ nymax
0j loja; — 21 dj
[ TEREERR ® | TEPPREY .
__ 4max __ ¢max
lojo; —1j I toud; ]tdjdi I
0; 'di

Figure 2.5: Detecting infeasibility of a match between driver i and rider j without considering meeting point
arcs

Furthermore, we assume that the rider travels to the boundary of his walking range at driving
speed. If there is no feasible match under that assumption, then there is no feasible match
when the rider is walking.

Let t}”“x denote the time needed to drive distance d}-"“x , which is the longest distance a rider
is willing to walk to and from a meeting point. Driver i cannot pick up rider j before ¢} =
ei+ (to.0 = t;””’“x ) and he cannot pick up rider j after I/ =, — tosd; — tdid; + 3t}7mx if he wishes
to arrive to d; in time. We can assume rider j cannot be picked up before e’j =ej+ t;?"’x and
after I, = 1j —1,,4; +17“". If max(e;,e;) > min(l},/;), then there cannot be a feasible match
between driver i and rider j. From Figure 2.5, it is also clear that there cannot be a feasible

match between driver i and rider j if (t5,0; —7'*%) + (tp,a; — 217") + (ta;a, — 17) > T

Only when the two checks above indicate that there may be a feasible match between a
driver i and a rider j, we examine the matches of driver i and rider j for each meeting point
arc (k,l) where k € Mj.’ and [ € M;’. If a time and distance feasible match is found, an edge
e 1s added to the ride-share matching problem with associated coefficients o, and V,.

The last refinement is based on the following observation.

Observation 2. A match between a driver and a set of riders can only be feasible if the
driver and the riders have at least one meeting point arc in common.

In the basic algorithm, we store, for each feasible match of & riders, all time feasible meeting
point arcs, i.e., not only the time feasible meeting point arc that resulted in the maximum
driving distance savings. These meeting points arcs are used to construct matches with k+ 1
riders. Observation 2 shows that only meeting point arcs that are time feasible for at least
k+ 1 riders are relevant. Hence, to construct matches with k + 1 riders, we iterate over the
meeting point arcs with feasible matches involving k riders, rather than over the feasible
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matches with k riders, and construct all feasible matches with k£ + 1 riders on a meeting
point arc, using the riders that are part of k-rider matches on that particular meeting point
arc.

We provide the pseudocode for this solution approach in Algorithm 2.

Algorithm 2: Refined Feasible Match Generation

build k — d tree with meeting points ;
build interval container with rider time windows ;
for each rider do
‘ query k — d tree and store feasible meeting point arcs ;
end
for each driver do
query interval container to obtain time compatible riders ;
for each time compatible rider do
if driver and rider spatially compatible then
for each rider meeting point arc do
if match driver, rider, meeting point arc is time feasible then
store meeting point arc ;
compute driving distance savings ;
if driving distance savings > best match driving distance savings
then
update best match driving distance savings ;
update best match ;
end
end
end
end
if best match driving distance savings > 0 then
append best match to match list ;
append rider to feasible rider list ;

end

end

if number of feasible riders > 1 then

fork=2,....C;—1do

Retrieve meeting point arcs ;

Remove meeting point arcs that are feasible for less than & riders ;

if driving distance savings > 0 then
\ append match to match list ;

end

end

end

end

return match list ;
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2.5 A Computational Study

In this section, we report the results of an extensive computational study conducted to assess
the benefits of the introduction of meeting points in different ride-sharing environments.

2.5.1 Generation of Ride-share Data Sets

Similar to Agatz (2011), we use the travel demand model for the metropolitan Atlanta re-
gion, developed by the Atlanta Regional Commission, as the basis for generating daily
vehicle trips between different travel analysis zones (TAZs) within the region (the area
covered by a TAZ is 4.1 square miles on average). For a subset of TAZs within the city
of Atlanta, 229 to be precise, we generate five random streams of trips as follows. Each
TAZ is a possible origin and a possible destination for a trip. For each origin-destination
pair, we calculate an expected number of daily trip announcements by multiplying the aver-
age number of single-occupancy home-based work vehicle trips with a fixed percentage of
vehicle-trips that we assume might consider participating in a ride-sharing system. Then for
each pair, we determine the number of actual trip announcements using a Poisson random
variable with expected value equal to the computed expected number of trips based on a
participation rate of around 5.5%. For each trip announcement, we generate the origin and
destination points within a fixed radius of 1.1 mile around the center of the travel analysis
zone based on a uniform distribution. Each trip announcement is equally likely to be a rider
announcement or a driver announcement. The minimum distance of a ride-share trip is 4
miles, i.e. we only consider trips between origins and destinations that are at least 4 miles
apart. For each TAZ, we also randomly generate 4 meeting points around its center within
a fixed radius of 1.1 mile.

Trip timing information is not available from the travel demand model. Therefore, we create
the time windows for each announcement as follows. For each trip, we draw the earliest
departure time from a normal distribution with mean 7:30 a.m. and standard deviation
of half an hour to model a typical travel peak and calculate the earliest arrival time by
adding the direct travel time to the earliest departure time. Subsequently, we calculate
the latest departure (arrival) time by adding fixed time flexibility to the earliest departure
(arrival) time. We assume the fixed time flexibility to be 30 minutes for all participants. The
difference between the latest arrival time and earliest departure time is hence equal to the
sum of the direct travel time from origin to destination and the fixed time flexibility. (Note
that this means that we are investigating a morning commute.)

The travel distances between all points are computed using the haversine formula (which
computes the great circle distance between two points) with a 30% uplift. To compute travel
times, we assume a driving speed of 15 miles per hour (we are considering an urban area).
For each driver i € D, we define a limit on the total duration of his trip 7; = ¢,, 4, + min(4 +
Cflex “to;.d;» 20). Coefficient c s,y is the driver flexibility parameter - our assumption about
how the willingness of the drivers to make detours depends on their original trip duration
(fixed at 0.25 in base case - see below). The maximum trip duration for driver i is thus
defined as his original trip duration plus an additional time that positively depends on his
original trip duration. We assume that each driver that wishes to participate in ridesharing is
always ready to extend his trip by at least 4 minutes, which is the time associated with one
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pick-up and one drop-off operation. We also assume that drivers are not willing to extend
their original trips by more than 20 minutes, irrespective of their original trip length.

We assume a walking speed of 4 feet per second (LaPlante and Kaeser, 2004). The max-
imum walking distance for the rider to or from a meeting point is 0.5 miles, which corre-
sponds to 11 minutes of walking at this speed. In addition, we impose the constraint that the
total walk time cannot exceed the total time in a ride-share trip for a rider. In other words,
the time that is spent walking in a trip must not exceed the time that is spent in the vehicle.
This constraint can be manipulated by adjusting the rider flexibility parameter (assumed
1.0) which is the maximum ratio of the travel time to and from a meeting point to the time
spent in the shared ride. (This additional restriction is enforced when searching for feasible
meeting point arcs in the k — d tree for each rider j € R.)

A rider may be picked up at a meeting point or at his origin and dropped off at a meeting
point or at his destination. A match involving two or more riders always starts and ends at a
meeting point. Irrespective of the pickup or drop-off location, we always assume a service
time per stop of 2 minutes. Each driver has a capacity of 3 spare seats. We limit ourselves
to matches with no more than three riders, since this is the number of free seats in a typical
sedan if the driver is driving alone. Also, back benches in most personal vehicles typically
cannot accommodate three adults without compromising comfort.

The characteristics of the base case instances are summarized in Table 2.1.

Table 2.1: Characteristics of the base case instances

Trip pattern: suburb to center
Avg. number of participants: 2849.4
Avg. number of drivers: 1425.8
Avg. number of riders: 1423.6
Avg. trip distance for driver: 7.58 mi
Avg. trip distance for rider: 7.64 mi
Avg. trip duration for driver: 30.34 min
Avg. trip duration for rider: 30.56 min
Max. distance to a meeting point: 0.5 mi
Travel (walk) speed to/from meeting point: | 4 ft/s
Max. walk time to meeting point: 11 min
Driving speed: 15 mi/h
Rider flexibility parameter: 1.0
Driver flexibility parameter: 0.25
Maximum flexibility of driver: 20 min
Vehicle capacity: 3 seats

2.5.2 Performance

Both the algorithm for generating feasible matches and the simulation framework are im-
plemented in Python 2.7. CPLEX 12.6 is used for solving matching problems.

The base case instances solve in less than 150 seconds on a quad-core 15-3360M machine
with 4GB of RAM. CPLEX solves the two integer programs (recall that we employ hi-
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erarchical optimization) in a few seconds in all settings; virtually all the time for these
instances is spent generating feasible matches. Instances with increased rider flexibility
(Section 2.5.5) and increased participant density (Section 2.5.6) take more time, up to 10
minutes in a few cases, because the number of feasible matches increases.

These run times suggest that the algorithm is appropriate for use in practice. The instances
used in our computational study represent trip announcements accumulated over several
hours. In practice, in a dynamic setting, instances with a much smaller set of driver and
rider announcements have to be solved at any one time. Furthermore, instead of having to
generate a set of matches from scratch for each optimization, the existing set of matches has
to be updated given any new information that has become available (e.g., matches involving
certain riders and drivers have to be deleted and new matches involving riders and drivers
that have just announced their trips have to be generated). This will be a matter of seconds
rather than minutes. Performance wise, we expect to see similar results in a dynamic setting
(albeit somewhat worse). For an environment without meeting points, Wang et al. (2014)
have shown that the gap between a dynamic rolling horizon solution and a static benchmark
is quite small. The gap will likely increase somewhat in an environment with meeting
points, because some of the matches have to be committed to earlier (i.e., at the time that
the rider has to start walking towards the meeting point).

2.5.3 Experiments

The main aim of this research is to analyze and quantify the benefits that meeting points can
bring to a ride-sharing system. The solution approach that has been implemented provides
a good basis for this, because it not only provides an optimal set of matches (for different
objectives), but also furnishes the set of all feasible matches. We use the instance data and
the set of feasible matches to compute and evaluate a number of metrics that provide insight
into the quality of the optimal matching. In all the experiments, we either use the base case
setting or a setting in which one of the characteristics is changed in order to assess the
sensitivity of an optimal matching to this characteristic.

We evaluate and compare solutions using the following metrics: (1) the matching rate for
participants, i.e., the fraction of participants that are matched, (2) the matching rate for
drivers, i.e., the fraction of drivers that are matched, (3) the matching rate for riders, i.e.,
the fraction of riders that are matched, (4) the mileage savings, i.e., the relative mileage
savings — system-wide vehicle-miles savings as a fraction of system-wide vehicle-miles
when all participants drive alone, (5) the driver trip time increase, i.e., the average relative
increase in the trip time of a driver — driver trip time increase as a fraction of original trip
time, (6) the rider trip time increase, 1.e., the average relative increase in the trip time of a
rider — rider trip time increase as a fraction of original trip time, and (7) the walking time,
i.e., the average walking time for a matched rider with a match that involves at least one
meeting point.

2.5.4 Benefits of Meeting Points

As mentioned above, this research focuses on analyzing and quantifying the benefits of
meeting points in a ride-sharing system. In Table 2.2, we compare the solution for the base

56



case setting without meeting points to the solutions for the base case settings with 1,2 and
4 meetings points per TAZ, averaged over 5 randomly generated instances. The different
meeting point densities represent the variation in the number of appropriate meeting points
in different practical settings. To gain further insight, we also report statistics for two ad-
ditional settings: in the first setting (labeled 4*), there are 4 meeting points per TAZ, but
only single rider — single driver matches are allowed, and in the second setting (labeled
4*%) there are 4 meeting points per TAZ, but only rider — driver matches using the closest
meeting point to a rider’s origin and destination are allowed. This reflects a setting in which
the riders specify a particular meeting point upfront.

Table 2.2: Results for different numbers of meeting points and types of matches

0 1 2 4 e g%

System:
Matching rate (%) 68.00 71.14 7290 74.83 | 74.13 69.71
Mileage savings (%) 27.39 28.36 2893 29.63 | 29.24 27.59
Drivers:
Matching rate (%) 67.96 7093 72.45 74.08 | 74.08 69.65
Trip time increase (%) | 25.45 25.98 2631 2641 | 26.19 25.77
Riders:
Matching rate (%) 68.11 71.43 7343 75.65| 7426 69.84
Trip time increase (%) | 13.09 19.27 2274 26.54 | 16.43 16.42
Walk time (min:sec) - 8:06 828 8:56 | 8:45 5:06

We see that the introduction of meeting points results in a substantial increase in the num-
ber of participants matched (our primary objective) as well as in the mileage savings (our
secondary objective). The matching rate increases by 6.8% when there are 4 meeting points
per TAZ. The matching rate increase is slightly larger for riders than for drivers, because of
matches involving more than one rider. The average trip time for matched drivers increases
less than one percent (from 25.45% to 26.41%), but, as expected, the average trip time
for matched riders increases noticeably, by slightly more than 12 percent (from 13.09% to
26.54%). This increase is due to the walking that is required for certain riders to or/and
from a meeting point; on average the total walking time is between 8 and 9 minutes, which
corresponds to a distance of about 0.4 miles. Riders with a match involving a pickup meet-
ing point need to plan and execute their trips more carefully so as to ensure that they arrive
at the meeting point in time. This may be considered an inconvenience, but, on the other
hand, the service level (in terms of the chance of being matched) improves significantly.
The results also suggest that most of the benefits can be achieved with single rider — single
driver matches (4*) and that it is essential to consider all meeting points within range of a
rider’s origin or destination (4**).

The meeting points in the instances used in these experiments are drawn uniform randomly
from a circle with radius 1.1 mile around the center of a TAZ. To assess the impact of
the choice of meeting points in the case when there are 4 meeting points per TAZ, we
performed the same experiments, but now with each of the 4 meeting points drawn uniform
randomly from one of the quadrants of the circle, i.e., ensuring that the 4 meeting points
are geographically spread out. In these experiments, there was a very slight increase in the
observed matching rates. Because the differences were so small, we only use the original
(more conservative) instances in the remaining experiments.
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Figure 2.6 shows the number of single, double, and triple rider matches in the optimal
solution for different numbers of meeting points.
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Figure 2.6: Number of single, double, and triple matches for different numbers of meeting points

We see that the number of participants in matches with two or three riders is quite small,
2.5% and 0.2%, respectively, of the total number of matched participants when there are 4
meeting points per TAZ. This suggests that the primary benefit of the introduction of meet-
ing points is an increase in the number of single rider — single driver matching opportunities
(rather than being able to create multiple rider — single driver matches). However, to some
extent, this result may be a consequence of our choice of objective hierarchy: maximizing
the number of matched participants followed by maximizing the mileage savings. When
the number of drivers and riders in the system is roughly the same (as in our base case
instances), it is more desirable to have single rider — single driver matches. That is, if it is
possible to match two riders with the same driver, but it is also possible to match the two
riders with different drivers, then the latter option is preferred as it results in four matched
participants while the former results in only three matched participants.

Next, we examine the use of meeting points in more detail. In Figure 2.7, we show how
many of the matches in the optimal solution use two meeting points, only a pick-up meeting
point, only a drop-off meeting point, or no meeting points at all.
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Figure 2.7: Use of meeting points in matches for different numbers of meeting points
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As expected, the fraction of matches involving meeting points increases as the number of
meeting points per TAZ increases. The fact that the fraction of matches that use only a
drop-off point is much larger than the fraction of matches that use only a pickup point is a
consequence of the fact that the instances represent trips during a morning commute with
destinations mostly in the center of Metro Atlanta, which has a higher concentration of
TAZs (each covering a smaller geographic area) and consequently a higher concentration
of meeting points.

Table 2.3 provides further information regarding the matches in an optimal solution.

Table 2.3: Charateristics of the matchings in the optimal solution in terms of their use of meeting points for
different numbers of meeting points

0 1 2 4 4% 4x*
No meeting points used (%) 100.00 73.31 60.38 47.57 | 48.72 76.98
Higher mileage savings (%) - 23.26 35.13 47.77 | 4745 20.17
Feasible because of meeting points (%) - 12.75 19.40 25.30 | 2475 7.47
- Detour became feasible (%) - 11.89 18.14 2341 22.75 6.77
- Time windows became feasible (%) - 1.58 2.17 3.20 3.23 0.84
- Mileage savings became positive (%) - - - - - -

Specifically, we report the fraction of matches in the optimal solution that did not involve a
meeting point, the fraction of matches in the optimal solution for which the mileage savings
are higher because of the use of meeting points, and the fraction of matches in the optimal
solution that would have been infeasible if it were not for the use of meeting points. For the
latter set, we also identify the reason(s) that the use of meeting points resulted in a feasible
match, i.e., the driver detour would have been infeasible without the use of meeting points,
the participants’ time windows would have been incompatible without the use of meeting
points, the distance savings would have been negative without the use of meeting points.
Note that a match can be counted in several categories, e.g., a match that is feasible because
of the use of meeting points, could have been detour infeasible and time window infeasible.
Note that all matches involving multiple riders are (by definition) feasible because of the
use of meeting points and, for simplicity, all such matches are considered to have resulted
in higher mileage savings.

We observe that when there are 4 meeting points per TAZ, the fraction of matches in the
optimal solution that do not use meeting points is a little less than 50% and the fraction of
matchings that would have been infeasible without meeting points is a little more than 25%.
Furthermore, the use of meeting points makes matches feasible predominantly because it
allows a smaller detour for the driver (only in a few cases, it makes rider and driver time
windows compatible).

The fact that the fraction of matches in the optimal solution that do not use meeting points
is close to 50% suggests that a more careful selection of meeting point locations may result
in larger mileage savings. (Recall that meeting points have been selected randomly within
a TAZ in these instances.)

Finally, in Table 2.4, we take a look at the number of additional feasible matching options
generated by the introduction of meeting points. We show the number of riders (or pairs of
riders or triples of riders) with at least one feasible match and the total number of feasible
matches.
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Table 2.4: Analysis of the number of feasible matches for different numbers of meeting points

0 1 2 4 4% 4
Single riders with feasible match 1290.6  1302.6 13084 1316.0 | 1316.0 1302.0
Number of single rider matches 20253.0 22940.6 24297.0 25836.0 | 25836.0 21565.0
Fairs of riders with feasible match - 9.8 28.6 534 - 0.6
Number of rider pair matches - 145.4 481.2 994.6 - 9.0
Triples of riders with feasible match - - 0.8 24 - -
Number of triple rider matches - - 10.8 28.6 - -

Without meeting points, approximately 90.6% of the riders have at least one feasible match.
With meeting points, this fraction increases to approximately 92.5%. We see too that as the
number of meeting points increases, the number of feasible matches grows steadily. There
are about 27.5% more feasible matches for riders when there are 4 meeting points per TAZ.
Not surprisingly, the increases are even more pronounced for matches involving pairs and
triples of riders. This demonstrates that to increase the number of multi-rider matches, it
will be critical to have a large number of carefully located meeting points.

In our results tables, we report averages across the five instances. While there was some
variability among the five instance, the effects we were hoping to quantify proved stable
across the five instances. Tables 2.5 and 2.6 provide detailed information with confidence
intervals for the main results reported in this section. We see that the differences between
the scenarios were indeed very stable across the five replications.

Table 2.5: Matching rates for the 5 base case instances

Meeting point density Change
0 1 2 4 0-4
Instance 1 | 67.47 7136 73.24 7547 | +8.00
Instance 2 | 68.22 71.51 73.49 75.16 | +6.94
Instance 3 | 65.99 68.71 70.00 72.20 | +6.21
Instance 4 | 67.00 70.24 71.88 74.13 | +7.13
Instance 5 | 71.30 73.88 7591 77.20 | +5.90
Average 68.00 71.14 7290 74.83 | +6.84
CI195%) | 1.77 1.66 191 1.61 0.72

Table 2.6: Vehicle miles savings for the 5 base case instances

Meeting point density Change
0 1 2 4 0-4
Instance 1 | 27.45 28.64 29.19 29.79 | +2.34
Instance 2 | 27.70 28.65 29.20 2993 | +2.23
Instance 3 | 26.41 27.32 27.84 28.53 | +2.12
Instance 4 | 27.30 28.32 2897 29.75 | +2.45
Instance 5 | 28.10 28.89 29.45 30.15| +2.05
Average 27.39 2836 28.93 29.63 | +2.24
CI(95%) | 055 054 0.55 0.56 0.14
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2.5.5 Impact of Time Flexibility

In this section, we study the impact of the time flexibility of the participants on the perfor-
mance of the system and the benefits of meeting points. We vary the time flexibility of the
drivers, the time flexibility of the riders, and the flexibility in participants’ departure times.

In the base case, we consider a driver time flexibility of 25% of the original trip time (¢ fjex =
0.25). This time flexibility ¢ ¢, refers to the maximum extra trip time the drivers are willing
to accept to serve one or more riders. Furthermore, all participants are assumed to have 30
minutes of flexibility in their trip departure time. To assess the impact of the time flexibility
on the performance of a ride-sharing system, we evaluate the system performance when
the time flexibility is lower, i.e., cfox = 0.15, and when the time flexibility is higher, i.e.,
Cfrex = 0.35. We note that extra trip time for drivers (and extra trip time for riders) always
includes the service time incurred at a pick-up and a drop-off location. The results of these
experiments are found in Table 2.7.

Table 2.7: Effects of driver time flexibility

Cflex = 0.15 Cflex = 0.25 Cflex = 0.35
0 4 0 4 0 4

System:
Matching rate (%) 56.68 64.96 | 68.00 74.83 | 75.41 82.11
Mileage savings (%) 23.70 26.65 | 27.39 29.63 | 29.23 30.89
Drivers:
Matching rate (%) 56.66 64.27 | 67.96 74.08 | 75.36 81.19
Trip time increase (%) | 19.35 20.66 | 25.45 26.41 | 30.65 32.31
Riders:
Matching rate (%) 56.77 65.71 | 68.11 75.65 | 75.54 83.11
Trip time increase (%) | 13.09 25.01 | 13.09 26.54 | 13.09 27.91
Walk time (min:sec) - 8:52 - 8:56 - 9:08

We see that the willingness of drivers to accept a larger extra trip time has a substantial
effect on the matching rate and the mileage savings. We also see that the negative impact of
a decrease in time flexibility is larger than the positive impact of an increase, which suggests
that there will be diminishing returns from increasing time flexibility. We observe too that
the benefit of meeting points is negatively correlated with the time flexibility of the drivers.
That is, the difference in participant matching rates is highest for the most constrained case
(8.28%) and smallest for the least constrained case (6.70%). This points to the fact that
meeting points are most valuable when drivers are reluctant to add extra time to their trip
(e.g., on their way to work in the morning).

In the next set of experiments, we vary the time flexibility of the riders. In particular, we
vary the travel speed and the travel range of the riders, i.e., the time it takes a rider to reach
a meeting point and the distance a rider is willing to travel to reach a meeting point. Such
an increase may be possible if riders use other modes of transportation instead of walking
to get to a meeting point, e.g. using a (folding) bike, public transport, riding with a member
of their household, etc. We increase the speed from the speed of walking (4 ft/s) to the
speed of a cyclist (12 ft/s), and we increase the allowable range for the meeting points from
0.5 (base case) to 0.75 miles. Note that we maintain the assumption that the total travel
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time to and from a meeting point cannot exceed the time spent in the shared ride. We report
selected results for this experiment in Table 2.8.

Table 2.8: Effects of rider time flexibility

Travel speed to meeting point - Low High
Maximum distance to meeting point (mi) - 0.5 0.75 0.5 0.75
System:

Matching rate (%) 68.00 | 74.83 79.84 | 76.17 83.84
Mileage savings (%) 27.39 | 29.63 31.32 | 30.01 32.14
Drivers:

Matching rate (%) 67.96 | 74.08 77.72 | 75.14 81.5
Trip time increase (%) 2545 | 2641 28.02 | 26.85 27.33
Riders:

Matching rate (%) 68.11 | 75.65 82.02 | 77.26 86.22
Trip time increase (%) 13.09 | 26.54 38.78 | 16.88 21.27
Trip time to/from m. point (min:sec) - 8:56 13:13 | 3:11  5:56
Trip distance to/from m. point (mi) - 040 0.59 | 043 0.70

We see that the willingness to consider more distant meeting points combined with the
ability to get to a meeting point faster than by walking can greatly increase system perfor-
mance. The matching rates are much higher and also the number of feasible double and
triple matches increases significantly. It is important to observe that only increasing the
walking range results in improved system performance.

If we examine the structure of the optimal matchings in the most flexible scenario in more
detail, we find that 74.47% of the matches use meeting points, compared to 52.4% in the
base case (see Figure 2.7). Also, we find that 45.11% of these matches would be detour-
infeasible without the meeting points, compared to 23.41% in the base case (see Table 2.3).

These findings stress the importance of encouraging riders to consider more distant meeting
points and of encouraging drivers to accept longer detours. A ride-sharing service may
investigate the benefits of incentive payments to riders and drivers that are willing to be
more flexible as a way to increase the matching rate and the mileage savings.

Finally, we perform an experiment in which we vary the flexibility in the departure time for
all participants (30 minutes in base case). We evaluate a scenario with lower flexibility (20

minutes) and a scenario with higher flexibility (40 minutes). The results are given in Table
2.9.

Similar to the driver detour and rider walking time flexibility, we see that departure time
flexibility has an important positive effect on the observed matching rates. However, as
with the driver flexibility, we see diminishing returns from increasing the flexibility of the
departure time. We also note that the benefits of meeting points are higher when participants
are more flexible in their departure times (as seen by the difference between the matching
rates with and without meeting points). The reason for this is that the meeting points create
more matches that are detour-feasible while additional departure time flexibility creates
more matches that are time-feasible.
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Table 2.9: Effects of flexibility in departure time

20min 30min 40min
0 4 0 4 0 4

System:
Matching rate (%) 61.27 67.07 | 68.00 74.83 | 71.75 79.21
Mileage savings (%) 2421 26.03 | 27.39 29.63 | 29.25 31.6
Drivers:
Matching rate (%) 61.24 66.88 | 67.96 74.08 | 71.71 78.05
Trip time increase (%) | 24.59 25.37 | 25.45 26.41 | 25.81 27.18
Riders:
Matching rate (%) 61.37 67.33 | 68.11 75.65 | 71.86 80.43
Trip time increase (%) | 13.09 23.92 | 13.09 26.54 | 13.09 27.95
Walk time (min:sec) - 8:11 - 8:56 - 9:14

2.5.6 Effect of Trip Patterns and Density

In this section, we study the effect of the number of participants in the system and their trip
patterns on the system performance. Table 2.10 gives an overview of the characteristics of
the instances that we generated for this purpose.

Table 2.10: Characteristics of instances with different trip patterns and densities

drivers : riders
1:1 2:2 1:2 2:1 1:1¢

Trip pattern default default default default corridor
Avg. number of participants 2849.4 5578.6 42724 42724 25944
Avg. number of drivers 1425.8 2777.8 1425.8 28452 12954
Avg. number of riders 1423.6 2800.8 2846.6 1427.2 1299.0

Avg. trip distance for driver (mi) 7.58 7.60 7.58 7.59 9.36
Avg. trip distance for rider (mi) 7.64 7.62 7.64 7.68 9.35
Avg. trip duration for driver (min) | 30.34  30.39 30.34 3038  37.43
Avg. trip duration for rider (min) | 30.56 30.47 30.56 30.70  37.38

First, we consider a setting with twice as many participants than in the base case (denoted
by 2 : 2). We also consider a setting with twice as many riders but the same number of
drivers as in the base case (denoted by 1 : 2). This represents an environment in which the
pool of ride-share participants is skewed towards the riders, who have more to gain from
participating. For completeness sake, we also consider the opposite case: a setting with
twice as many drivers as there are riders (denoted by 2 : 1). To study the effect of a different
trip patterns, we create a set of instances in which participants travel along a narrow South-
North corridor in the Atlanta region. While in the base case (denoted by default) the area is
shaped like a square with trips originating in suburban areas and heading towards the urban
center, the corridor instances represent trips that occur in a narrow rectangle. To allow for
a fair comparison, the geographic area covered in the five corridor instances is roughly the
same as in the base case, and, similarly, the number of trips, TAZ locations, and meeting
points is roughly the same as in the base case (this setting is denoted by 1 : 1¢). Table 2.11
presents the results for the different experiments.
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Table 2.11: Effects of trip patterns and density

drivers : riders
1:1 2:2 1:2 2:1 1:1¢
0 4 0 4 0 4 0 4 0 4

System:

Matching rate (%) 68.00 74.83 | 75.02 8291 | 5240 59.75 | 61.34 62.69 | 72.16 78.26
Mileage savings (%) 27.39 29.63 | 31.06 33.65 | 21.83 2542|2639 27.11 | 31.35 33.26
Drivers:

Matching rate (%) 67.96 74.08 | 75.34 81.57 | 7849 84.22 | 46.07 47.09 | 72.31 77.51
Trip time increase (%) | 25.45 26.41 | 25.75 27.43 | 2545 26.13 | 20.13 19.40 | 22.56 23.46
Riders:

Matching rate (%) 68.11 75.65| 74.73 84.26 | 39.35 47.52 | 91.87 93.88 | 72.23 79.21
Trip time increase (%) | 13.09 26.54 | 13.13 28.16 | 13.09 29.22 | 13.09 19.12 | 10.70 21.54
Walk time (min:sec) - 8:56 - 9:19 - 9:41 - 7:50 - 9:00

As expected, we see that the matching rate increases with the number of participants. More
surprising is the fact that the relative advantage of the use of meeting points in terms of the
overall matching rate also seems to increase slightly with the density. A potential explana-
tion for this is that opportunities for matches with multiple riders increase.

With twice as many riders than drivers in the system, we see that 47.52% of the riders are
matched, which is almost best possible (50%) if we ignore the possibility of double and
triple matches. The number of double and triple matches has increased compared to the
base case, but it is still relatively small. A more careful choice of meeting points may result
in an increase of the number of double and triple matches, but it is more likely that an
increase in both rider and driver time flexibility is needed.

Maybe as expected, in the setting with twice as many drivers as riders, the introduction of
meeting points has only a small impact on the matching rate. The matching rate is already
very high without meeting points. With the introduction of meeting points, the share of
riders that are in at least one feasible match increases from 94.83% to 95.78%, while the
matching rate for riders increases from 91.87% to 93.88%. Note, though, that this is the one
setting in which the trip time increase for drivers decreases with the introduction of meeting
points (from 20.13% to 19.40%).

For the corridor instances, we see that both the matching rate and the mileage savings are
approximately 4% higher than for the default instances, and that the benefits of the meeting
points are similar. The same holds for the trip time increase for drivers and the walking
distance for riders.

2.5.7 The Impact of Objective Hierarchies

All the results discussed so far were obtained using the objective hierarchy in which the
number of matches (z1) is maximized first followed by maximizing the mileage savings
(z2). We observed in Section 2.5.4 that this objective hierarchy tends to favor solutions
involving single matches. In this section, we compare the system performance for three
natural objective hierarchies. The first (Hierarachy I) is the default one, and maximizes
participant matches followed by mileage savings, the second (Hierarachy 2) maximizes
mileage savings followed by participant matches, and the third (Hierarachy 3) maximizes
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rider matches followed by mileage savings. The latter may be more desirable than the de-
fault hierarchy, in which the primary objective is maximizing participant matches, because
unmatched riders may not necessarily have the option of using their own car to perform

their trip. The results for the five base case instances and 4 meeting points per TAZ can be
found in Table 2.12.

Table 2.12: Results for different objective hierarchies

Hierarchy 1 Hierarchy 2 Hierarchy 3

(Matches — Savings) (Savings — Matches) (R. Matches — Savings)
System:
Matching rate (%) 74.83 73.88 74.36
Mileage savings (%) 29.63 29.79 29.74
Drivers:
Matching rate (%) 74.08 72.66 73.14
Trip time increase (%) 26.41 25.58 26.09
Riders:
Matching rate (%) 75.65 75.17 75.65
Trip time increase (%) 26.54 26.01 26.41
Walk time (min:sec) 8:56 8:51 8:57
Matching:
Num. of single matches 1037.4 1003.8 1011.0
Num. of double matches 17.8 30.6 30.4
Num. of triple matches 1.0 14 14

We see that the difference for all but one of the system performance metrics for the three ob-
jective hierarchies is less than one percentage point. The exception is the matching rate for
the drivers, which for the default objective hierarchy (Hierarchy 1) is 1.42% larger than for
the objective hierarchy in which the primary focus is on maximizing mileage savings (Hi-
erarchy 2). This reflects the structural difference in the optimal matchings: there are almost
twice as many double matches when the primary objective is to maximize mileage savings.
Interestingly, the matching rate for riders does not increase when maximizing the number
of matched riders is taken as the primary objective (rather than maximizing the number of
match participants). Triple matches are still rare in all solutions. From a ride-sharing ser-
vice provider’s perspective, the default objective hierarchy is likely to be preferred, as their
revenue is linked to the participant matching rate. However, from a societal perspective,
the alternative objective hierarchy in which the number of riders matched is the primary
objective is probably preferable, as it strikes a better balance between rider mobility and
mileage savings (which are linked to congestion and emissions).

Since the number of matched participants is an integer, it is relatively easy to compute the
Pareto frontier that characterizes the trade-off between the number of matched participants
and the mileage savings. Figure 2.8 depicts the Pareto frontier for the third of the five base
case instances (the frontier for the other base case instances look similar).

As already indicated by the small differences in the values of the performance metrics in
Table 2.12, the two objectives are well aligned. This is also reflected in the small number
of points that constitute the Pareto frontier.

Figure 2.9 provides more detail regarding the change in the structure of the optimal match-
ings as we move from a solution obtained with the default objective hierarchy to a solution
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Figure 2.8: Pareto frontier for the third base case instance

obtained with the alternative objective hierarchy in which the primary focus is on mileage
savings. We see that single rider — single driver matches are replaced by matches involving
two or three riders. As a consequence, the number of drivers with matches decreases. Sur-
prisingly, the number of riders with matches also decreases, which indicates that in many
situations riders are “competing” for the same drivers.
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Figure 2.9: Matching rates for Pareto efficient points for the third base case instance

2.6 Conclusion

In this study, we have shown that the introduction of meeting points in a ride-sharing sys-
tem can substantially improve a number of critical performance metrics, i.e., percentage of
matched riders, percentage of matched participants, and mileage savings. The price that has
to be paid to achieve these performance increases is minor: riders may have to walk a short
distance and may have to plan their time more carefully so as to ensure that they arrive on
time at the meeting point where they are to be picked up (it is unlikely that drivers will be
willing to wait for a rider at a pickup point for more than a minute or two). Even though
the number of possible matches increases significantly with the introduction of meeting
points, our computational experiments have demonstrated that all feasible matches can be
generated efficiently with a carefully designed and implemented algorithm.
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The observed increases in performance of a ride-sharing system resulting from the intro-
duction of meeting points may even be greater when the meeting points are chosen carefully
based on observed travel patterns. This is an interesting opportunity for further research.

As expected, driver and, especially, rider flexibility strongly impact the performance of a
ride-sharing system. This points to two additional and interrelated future research direc-
tions: (1) how to stimulate (and reward) riders to increase their flexibility and be willing
to use more distant meeting points, and, similarly, how to stimulate (and reward) drivers to
increase their flexibility and be willing to make longer detours, and (2) how to (better) in-
tegrate ride-sharing systems with other available transportation systems, e.g., bike-sharing
systems, so as to ensure that riders can reach meeting points that are further away fast and
easy.
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3 ENHANCING URBAN MOBILITY: INTEGRATING
RIDESHARING AND PUBLIC TRANSIT

3.1 Introduction

People all around the world use private cars to travel to work. Most of these commuter
trips are single-occupant vehicle trips. In the U.S.A., for example, single-occupant trips
represent approximately 77% of all commuter trips (Polzin and Pisarski, 2013); similar
percentages are found in Europe (EEA, 2010). Low vehicle occupancy rates combined with
the high number of trips made during peak hours often creates severe traffic congestion in
urban areas. The resulting stress and the air pollution caused by vehicle emissions can have
serious negative health effects.

To reduce the negative externalities of car travel, local governments encourage the use of
public transport. Unfortunately, many suburban and rural areas are not adequately served
as they lack the population density to justify public transit, i.e. the public transport is not
economically viable. In cities with sprawling suburban areas, the utilization of public transit
to commute to work is often low, e.g. less than 5% in metropolitan areas like Houston and
Atlanta (McKenzie, 2010).

To attract more riders from suburban areas to public transit, transportation agencies must
find adequate solutions to accommodate the first and last mile from the riders’ home to
and from the transit stations. Possible solutions for a transportation agency include oper-
ating a fleet of demand-responsive feeder vehicles and collaborating with local taxi service
providers. In the U.S.A., for example, public transport providers have started collaborating
with Uber and Lyft to better coordinate their service offer (Murphy, 2016). While the ser-
vices provided by Uber and Lyft are convenient for the riders, they are often (too) costly for
the transportation agency and/or the riders.

A cheaper and more environmentally sustainable alternative is to use already existing trips
as a feeder for public transit. A recent TRB report highlights ridesharing as an important
opportunity for transportation agencies when seeking to address the “last mile problem”
(Murray et al., 2012). Deutsche Bahn (German Railways) is running several pilots to syn-
chronize bus and rideshares to provide convenient door-to-door transport to their travelers
(Annual report DB 2015). The Flinc ridesharing smartphone app will soon integrate train
timetables and regional public transport schedules across Germany.

In this chapter, we examine the potential benefits of integrating ridesharing and public tran-
sit. Ridesharing and public transit can, in fact, complement each other. On one hand,
ridesharing can serve as a feeder system that connects less densely populated areas to pub-
lic transport. On the other hand, the public transit system can extend the reach of ridesharing
and reduce the detours to be made by drivers. As such, it may help overcome incompatibil-
ities in the itineraries of drivers and riders and facilitate the matching process.

Consider the example depicted in Figure 3.1 with driver d; and rider r; and two stations
s1 and sp, where the circles indicate the origins and the squares indicate the destinations,

This chapter is based on Stiglic et al. (2016a).
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where the number above an arc represents the time it takes to travel between the nodes, and
where the driver is willing to accept an increased trip time of at most five minutes.

a 15 \2
__) / > >
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@@

Figure 3.1: Rider (grey) and Driver (white) traveling from Origin (circle) to Destination (square) via Public
Transit

Without the use of public transit, a match between d; and r; is not feasible because the
required increase in trip time (20 min) exceeds the driver’s limit. If, however, the rider is
willing to take the transit line from s to s» and walk 2 minutes to his final destination, a
feasible match between d; and r; is possible because d; has to make a smaller detour. (We
have to ensure the rider can reach his final destination in time based on the transit line’s
timetable.)

We consider a centralized system that automatically establishes matches between drivers
and riders. A driver can either move a rider from his origin directly to his destination or to a
transit station so that he can take the train to his final destination. The transit system operates
a fixed timetable and drivers and riders announce their itineraries and time schedules on
short notice. In this chapter, we assume the system creates matches in a way that maximizes
the number of riders who are matched. As a secondary objective, the system minimizes the
additional driving distance of the matched drivers. As such, this hierarchy aims to maximize
rider mobility while minimizing the inconvenience of the matched drivers and, at the same
time, the negative externalities of car travel.

Given that such a system potentially involves two or even more stakeholders (rideshare
provider, transit agency, local government), determining operational objectives might not
be a straightforward task. The ridesharing literature suggests several alternatives such as
maximizing the number of matched participants, maximizing the number of matched riders,
or maximizing the distance savings. These objectives are well aligned with the objectives of
a rideshare provider. The increase in total trip time duration for participants is an important
aspect too since participants may be very sensitive to how much (additional) time they
spend in transit. In contrast, a transit agency will very likely be interested in increasing
ridership on public transport lines and the local government could be interested in reducing
the number of total vehicle miles.

When there is a “park and ride’ facility at the station, a driver may even decide to park his car
after taking a rider to the station and take public transport to his final destination himself.
Drivers provide the ride in exchange for a small fee that covers the vehicle’s operating
costs and a small remuneration for the time that has been “lost” (due to the pickup and
drop-off as well as the detour). The public transit provider may choose to cooperate with
other stakeholders and offer additional benefits to drivers who are willing to accommodate
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riders. These might come in the form of a free park-and-ride ticket, a toll waiver, an HOV
lane permit, or priority parking in the city center. As such, this service can be offered at
a relatively low cost to the rider. This may help to increase rider-ship on public transit
(which will lead to an increase in public transportation revenues) and reduce the number of
personal vehicles on the road.

The main contributions of our research are that: (i) we introduce a new and relevant problem
that considers the integration and synchronization of ridesharing and scheduled public tran-
sit; (ii) we present a solution approach to optimally create single or multi-modal rideshare
matches; and (iii) we conduct an extensive numerical study on artificial instances that cap-
ture the primary characteristics of many real-world transit settings and quantify the benefits
of integrating ridesharing and public transport. The remainder of the chapter is organized
as follows. In the next section, we discuss relevant and related literature. In Sections 3.3
and 3.4, we formally define the problem and introduce a solution approach. In Section 3.5,
we discuss the details of our numerical experiments and present the core results. We finish
the chapter with a summary of our findings and recommendations for practitioners.

3.2 Related literature

The use of demand-responsive transportation services to enhance the performance of public
transport systems has been promoted for some time and a wide variety of such services is
offered in practice, often focusing on, or reserved for, people with disabilities and subsi-
dized by the government.

Cayford and Yim (2004) present a basic demand-responsive feeder system for the city of
Milbrae in California. In low-demand periods, buses can deviate from their ‘fixed’ routes as
well as from their scheduled departure times based on actual demand. The route deviation
is limited to skipping portions of the fixed route when there is no demand for drop-offs
on those portions of a particular trip. Buses operate according to the fixed schedule in
high-demand periods.

One of the common integration options between a fixed-schedule system and an on-demand
feeder system is the so-called Demand Responsive Connector (DRC). Koffman (2004)
presents examples of DRCs in several US cities and observes that it is one of the most
popular types of flexible transit services. Such systems typically operate within a service
area and move passengers to and from a transfer point that connects to a major fixed-route
transit network.

A critical question in this context is under which conditions is it better, in service and cost
terms, to operate the feeder system using a fixed-route policy and under which conditions
is it better to operate the feeder system as a demand-responsive service. Quadrifoglio and
Xiugang (2009) and Li and Quadrifoglio (2010) develop analytical and simulation models
for this purpose and find that the switching point between a demand-responsive and fixed-
route policy is in the range of 10 to 50 customers/miZ/h.

A DRC is typically deployed within a specified zone where the zone has one transfer point
and a single transportation company provides the service. Li and Quadrifoglio (2011) con-
sider the optimal zone design problem and develop an analytical model based on continuous
approximations. Lee and Savelsbergh (2017) study a setting in which a zone has multiple
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transfer stations and a passenger can be dropped off at any of these transfer stations as long
as the passenger’s desired service is met. They demonstrate that a more flexible system can
offer substantial cost savings, especially when transit services are frequent and/or transit
stations are relatively close together.

In this chapter, we consider the use of ridesharing as a feeder system for scheduled transit.
Several recent papers focus on algorithmic approaches to optimally match riders and drivers
in the ridesharing context. The work in this area typically considers door-to-door trips in
which a driver moves one or more riders from their origin to their destination (see, for
example, Agatz et al. (2011), Wang et al. (2016), Lee and Savelsbergh (2015)). Furuhata
etal. (2013) and Agatz et al. (2012) provide a detailed overview of this line of research and
the links to other modes of transport.

In Chapter 2, we do not require door-to-door transportation but allow riders to walk to and
from their meeting points to facilitate more convenient rides for the drivers. In this chapter,
we extend this work by also allowing transfers to a transit service with a fixed schedule.
While there are only a few meeting points within walking distance of a specific rider, many
more transit stations are within reach by using scheduled transit. The synchronization of
the rideshare trips with the transit service links our work to multi-hop ridesharing which
involves the temporal synchronization of different rideshare trips (see Herbawi and Weber
(2011a), Coltin and Veloso (2013) and Drews and Luxen (2013) for algorithmic approaches
to these types of problems).

3.3 Problem definition

We consider a transit service provider that receives a sequence of trip announcements A
from participants. The set of announcements A can be partitioned into a set of trip an-
nouncements by the drivers, D C A, and a set of trip announcements by the riders, R C A. A
trip announcement a € A has a submission time, 0,, at which it becomes known in the sys-
tem, has an origin location, o,, and a destination location, d,, as well as an earliest departure
time, e,, at the origin location and a latest arrival time, /,, at the destination location. We
assume that the participants’ departure times are somewhat flexible so that the difference
l, — e, 1s greater than the travel time from the origin to the destination. For each a € A,
there is also a maximum acceptable trip duration, 7;, a maximum acceptable walking dis-
tance from a transit station, M,, and a maximum acceptable waiting time at a transit station,
W,. We denote the distance from location i to j by d;;, the vehicle travel time from location
i to j by t;j, and the time it takes to walk from i to j by 7;;. We assume that a service time of
7 is incurred when a driver picks up a rider.

We consider a connected public transit network with a fixed cyclic timetable. The timetable
describes the departure and arrival times of each train at each station. (We refer to the transit
vehicles as trains but these could also be buses, trams, ferries, or metros.) Let S denote the
set of transit stations. Let #;; be the (shortest) travel time by train between station i € S and
J €S, where traveling between two stations in the network can involve one train or multiple
trains with transfers. In case the shortest route involves transfers, then transfer and waiting
times are included in the travel time. Note that for a cyclic timetable with identical trains,
the travel time 7;; is not dependent on the departure time from station i. (Modeling a more
general setting in which the timetable is not cyclic would require a travel time that depends
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on a specific departure k, i.e. t_lkj) We denote by 6, (¢) the last train departure at station

s € S at or before time ¢ and by 0" (¢) the first train departure at station s € S at or after time
t.

For presentational convenience, we only consider trips into the city center, i.e. the morning
commute. It is straightforward to extend the concepts and technology to accommodate more
extensive travel patterns. Consequently, we assume for each station s € § an access time,
T,, representing the time needed to walk from the drop-off location to the platform. Further,
we assume that a subset of the transit stations, Sp C S, have a park-and-ride facility and
for each station s € Sp a park time, 7, representing the time needed to park and walk from
the parking facility to the platform. Finally, we assume that when a rider (or a driver) uses
public transport he will always travel to the station that is closest to his final destination.
Let s, be the closest station to the destination of rider r. Hence, using public transit is
only feasible for rider r if s, is within the maximum acceptable walking distance of his
destination, i.e. when d; 4 < M,. For assessing the feasibility of matches involving public
transport, it is convenient to calculate the latest time, /7, at which a rider r can arrive at the

s Yy
platform at station s € S and reach his destination at or before /., i.e. [{ = 0, (I, — 5,4, —Iss,)-

We allow matches in which a driver picks up two riders for a drop-off at a transit station
(i.e. from two different pickup locations). However, to minimize the inconvenience to the
driver the two riders will be dropped off at the same transit station.

Thus, the transit service provider offers these types of matches:

e A rideshare match: a match between a rider and the driver in which the driver trans-
ports the rider from his origin to his destination;

e A transit match: a match between a rider and the driver in which the driver transports
the rider to a transit station. Subsequently, the driver drives to his destination while
the rider takes public transit to reach his final destination.

e A park-and-ride match: a transit match in which the driver parks his car and then
uses public transport to reach his final destination.

A rideshare match always involves one rider, but both a transit match and a park-and-ride
match can involve one or two riders. At this stage, we do not consider matches with more
than two rider pickups. The main reason is that it would increase the inconvenience to
the driver (it will increase the driver’s journey time and increase the risk of delays on the
driver’s journey). Note that we do allow multiple riders to travel together between the same
origin and destination. A secondary reason is that it facilitates our presentation. Finally, we
observe that, conceptually, it is straightforward to extend our algorithm to handle three or
more rider pickups.
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Table 3.1: A summary of the notation used

Locations
Oll 9 dll
Sr

d;j

Time parameters

Oq

Set of driver trip announcements

Set of rider trip announcements

Set of trip announcements, A = DUR

Set of transit stations

Set of transit stations with a park-and-ride facility, Sp C §

Origin and destination location of trip announcement a € A
The closest station to the destination of rider r € R, s, € S
Distance from location i to j

Announcement time of trip announcement a € A

Earliest departure time from the origin of trip announcement a € A

Latest arrival time at the destination of trip announcement a € A

Latest time at which a rider r can arrive at the platform at station s € S and reach his destination at or before /,
Maximum acceptable trip duration for trip announcement a € A

Maximum acceptable walking distance from a transit station for trip announcement a € A
Maximum acceptable waiting time at a transit station for trip announcement a € A

Travel time from location i to j by car

Travel time from location i to j by foot

Shortest travel time between station i € § and j € S by train

Service time at the pickup location of a rider

Service time for the rider to walk from to drop-off location to the platform at station s € §

Service time for the rider to park and walk from the parking facility to the platform at station s € Sp
First and last train departure at station s € S at or before time ¢




3.3.1 Assessing the feasibility of a rideshare match

A rideshare match involves a driver i € D and a rider j € R. The departure time e{ of
driver i matched with rider j depends on the announcement submission time of rider j, the
earliest departure time of rider j, and the trip duration from o0; to 0}, and is set as follows

J

e; = max(e;,0j,ej — tol.oj). This assures that driver i does not wait for rider j at o;. The

i
.
e’j + T+ 1o,d;- Driver i will arrive at his destination at time lij = l;. +14;4;- The rideshare

pickup time, e;, of rider j is elj + o0, and the arrival time, [*, at the rider’s destination is

match is only feasible if the trip time duration for driver i, i.e. lij — elj , 1s less than or equal
to 7;. Further, driver i and rider j must arrive at their destinations before their latest arrival
times /; and [}, respectively.

3.3.2 Assessing the feasibility of a transit match

A single-rider transit match involves a driver i € D, arider j € R, and a transit station s € S.
The driver’s departure time, e{ , and the rider’s pickup time, e’j, are computed in the same

way as for a rideshare match. The arrival time at station s is ei- +T+1os. The driver arrives

at his destination at time lij = e; +1o;s + T+ 15, The rider arrives at his destination at time
lj. = 9+(€§~ + T+to;5 + Ts) +Iss, +f5,q,- The transit match is feasible if the rider arrives at
the platform of the transit station in time, i.e. elj F T4 1o+ T < lj , if the driver arrives at

his destination in time, i.e. ll-j < I;, and the trip durations of the rider, i.e. l} — es-, and the

driver, i.e. lij — elj , are less than or equal to 7 and T;, respectively.

A two-rider transit match involves a driver i € D, riders j,k € R (j # k), and a transit station
s € S. Without loss of generality, we assume that rider j is picked up before rider k. To
avoid waiting at o; and oy, the driver departs at e{k = max(e;,aj,ej —loo;,ak; ek — (tojo; +
T+1, j,,k)). The pickup time e; of rider j is elj k + 10,0, and the pickup time eé‘ of rider k is
e’j +T+1o0,- The arrival time at station s is e; + T +1,,5. The driver arrives at his destination

at time lij = e}; + T+ 15+ 1sd;- The transit match is only feasible if both riders arrive at the
platform at the transit station in time, if the driver arrives at his destination in time, and
if the trip durations of the driver and the riders are less than the maximum acceptable trip
durations.

Note that in the above discussion we have not explicitly considered the waiting time of a
rider at the platform, e.g. wz. = 9+(€3~ +T+1o,5+Ts) — (e? + T+1o;5+ T,) in the case of a
single-rider transit match. However, it is easy to see that if the transit match is feasible, the
waiting time at the transit station can be minimized by having the driver depart later. The
delay in the driver’s departure is bounded by min(wi.7 li— lj-, li— ej. —(T+1o;5+ 1)), i.e. the
current waiting time, the remaining driver flexibility, and the remaining rider flexibility.

3.3.3 Assessing the feasibility of a park-and-ride match

Assessing the feasibility of a park-and-ride match is similar to assessing the feasibility of a
transit match. We only have to account for the fact that, after dropping off the rider(s) at the
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transit station, the driver continues using public transport rather than by using his car. The
first difference occurs in calculating the arrival time at the station platform: rather than using
the access time T;, we use the park time 7 to account for the fact that the driver parks his
car and then the driver and rider(s) walk to the platform from there. The second difference
is calculating the time for the driver to arrive at his destination, which now involves public
transport.

3.3.4 The matching problem

As in the models introduced in Chapter 2 and Chapter 3, we create a node for each driver
i € D and each rider j € R and an edge connecting node i and j if there is a feasible match
between driver i and rider j. We also introduce nodes that represent pairs of riders (j, k),
where j,k € R and j # k. We add an edge connecting node i and (j, k) if there is a feasible
match between driver i and rider pair (j,k). Each edge e has two weights: the number of
riders in the match, v,, and the additional driving distance for driver &, (note that this value
may be negative in park-and-ride matches because the driver uses public transport to reach
his destination from the park-and-ride station). Note that a transit match between a driver
and a rider (or a driver and a pair of riders) may not be unique since a number of feasible
transit matches involving different stations and different departures may exist. Similarly, a
park-and-ride match between a driver and a rider (or a driver and a pair of riders) may not be
unique. We only consider the match with the shortest driving distance for that combination
of the driver and rider(s).

Let E represent the set of all edges in the bipartite graph and let the binary decision variable
x, for edge e € E indicate whether the edge is in an optimal matching (x, = 1) or not (x, = 0).
Further, let E; and E; represent the set of edges in E associated with driver i and rider j,
respectively. Then, our rideshare matching problem with the objective of maximizing the
number of riders who are matched can be formulated as the following integer program:

maxz; = Y VeX (3.1)
eckE

subject to
) x.<1 VieD, (3.2)
ecE;
Y x.<1 VjeR, (3.3)
EEE‘/‘
x. €{0,1} VecE. (3.4)

Objective function (3.1) maximizes the number of matched riders. Constraints (3.2) and
(3.3) assure that each driver and each rider is only included in at most one match in an
optimal matching, respectively.

To obtain a matching that minimizes the total increase in driving distance for all drivers, the
objective should be replaced by:
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minz; = Z OcXe. (3.5

ecE

Since both objectives, i.e. maximizing the number of matched riders and minimizing the
total trip time increase for all participants, are relevant, we take them both into account in a
hierarchical fashion where we consider z; as the primary objective and z; as the secondary
objective. We first solve (3.1) subject to (3.2) - (3.4). Let zj be the number of matched
riders. We then solve (3.5) subject to (3.2) - (3.4) plus the additional constraint ) g Vex, >
;-

3.4 Solution approach

Our ride-matching algorithm consists of a match identification phase and an optimization
phase in which the optimal matching is determined (based on the set of feasible matches).
Matches are identified separately for each match type, i.e. rideshare matches, transit matches,
and park-and-ride transit matches. To identify feasible matches with two riders, we take ad-
vantage of the property that a match between driver i and riders j and k, j # k, can be time-
feasible (but not necessarily) only if the matches between driver i and rider j and driver i
and rider k are both time-feasible.

3.4.1 Determining feasible rideshare matches

Identifying a single rideshare match is a relatively simple task. In this study, we perform
a straightforward enumeration of all possible driver-rider pairs and identify those that are
feasible by checking the conditions outlined in Section 3.3.1.

3.4.2 Determining feasible transit matches

Identifying feasible transit matches starts with several preprocessing procedures. For each
announcement a € A, we determine the closest public transit station s € S to the destination
location d,. This is done by performing a query in a k —d tree in which all transit station lo-
cations are stored. Let s, denote the closest public transit station to the destination location
for announcement a. The set of rider announcements R, := { JER| dsjdj <M j} is consid-
ered in the determination of potential transit matches and the set of driver announcements
D), = {i €D|d;y < M,-} is considered in the determination of potential park-and-ride tran-
sit matches. Note that all driver announcements d € D are considered when determining
potential transit matches.

The next preprocessing procedure serves to find for each rider j € R, the set of feasible
origin transit stations S; and the set of feasible departures at each feasible origin station
s € §;. For arider j € R), a train departure time ¢ at origin station s € S; is feasible if
ej+THlos <t andr <[; — fsjdj — fssj, i.e. the earliest possible arrival time at the station is
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less than 7 and the earliest arrival at the destination departing at or after 7 is less than /;. All
feasible departures are stored for each individual rider separately.

In another preprocessing step, we find for each driver i € D the set of feasible transit stations
S and the set of feasible departures at each feasible transit station s € S; that he can visit.
For a driver i € D, a transit station s is feasible if he can visit this station on his way
from his origin to his destination location without exceeding his maximum acceptable trip
duration. A station departure 7 is feasible if the driver’s arrival occurs at or before t — .
To identify such departures, we build an implied time window [e!, I]] at station s with the
earliest arrival time eé = e;+1,,s+ T and the latest departure time l£ = l; —tyq,. All departures
t for which ¢ — 1, € [el,[i] are feasible. A lookup table is constructed that enables one to
query potentially feasible drivers based on origin station and departure. Feasible single-
rider transit matches are identified for each rider by inspecting all feasible stations and
feasible train departures for that rider and retrieving all potentially compatible drivers. The
feasibility of a given match is checked by examining the conditions that are outlined in

Section 3.3.2.

3.4.3 Determining feasible park-and-ride matches

To identify feasible park-and-ride matches, a slightly different preprocessing procedure for
the drivers is performed compared to that described in the previous section. The (only)
difference is that the latest departure time I/ is calculated using the transit trip duration
from s to s;, the destination station of the driver, i.e. lf; =1[— sfdi — Ty, — 7P. Based on the
preprocessed feasible departures of the riders and drivers, feasible single-rider park-and-
ride matches are identified for each rider by inspecting all feasible stations and feasible train
departures for that rider and retrieving all potentially compatible drivers. The feasibility of
a particular park-and-ride match is checked by examining all conditions that are outlined in
Section 3.3.3.

3.4.4 Determining feasible transit and park-and-ride matches with two
riders

Once all feasible single-rider transit (or park-and-ride) matches are known, we group all
matches of this type using a hash map on driver-station combinations. We examine each in-
dividual driver—station combination and construct all potential pairs of riders. We evaluate
all possible combinations of departures for a driver—station—rider pair combination to iden-
tify and record the best feasible one according to total trip time increase for the participants
in a match. Once all feasible transit and park-and-ride matches are known, we determine
the best match for a particular driver—rider pair match.

It is straightforward to extend this logic to iteratively identify matches with more than two
riders. To identify all feasible matches involving n riders, one needs to examine each fea-
sible grouping of a driver—station combination and a set of n — 1 riders and construct and
examine the feasibility of all possible groupings of the driver—station combination and n
riders (where the initial n — 1 riders form a subset of the n riders). The number of groupings
that one needs to examine during this process is typically small because the earliest and
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latest arrival time constraints as well as the maximum detour and maximum trip duration
constraints rule out most of the possible groupings.

3.5 A computational study

In this section, we report the results of our computational study designed to assess the
possible benefits and synergies that can arise from integrating a ridesharing system and a
public transit system.

3.5.1 Generation of instances

We focus on a rectangular metropolitan area 20 by 10 miles in size that features a circular
urban center with a radius of 2.5 miles and a sprawling suburban area.

We consider a stylized transit network that captures the key features of a real-world com-
muter train network, such as the Bay Area Rapid Transit (BART) network in the San Fran-
cisco region.

The radial route network consists of two commuter train lines and four urban rapid transit
lines. Transfers between the different train lines are only possible at the transfer hub, which
is located in the center of the urban area. The inter-station distance is approximately 2.25
mi on commuter lines and 0.75 mi on the urban transit lines. Figure 3.2 illustrates the
transit lines, stations, and the urban and suburban regions. The figure also indicates the
eight park-and-ride stations.

\ I ‘Commuter line A Urban line 1 4

‘
' | Urban line 2 !
\ ! ! ,

Park and ride stations --Urban line 3 Park and ride stations

\ Urbaﬂ line 4 4

--Commuter line B

|:|urban regionDuburban region —e— commuter train line ~—*— urban transit line —M— transfer hub
Figure 3.2: Representation of a public transit network and urban/suburban regions
We generate n participant trips in which the probability of a driver or rider trip is equally

likely. For each trip announcement, we generate an earliest departure time based on a
truncated normal distribution with a standard deviation of 30 minutes. To create commuter

79



trips, we randomly draw origins from the complete region and draw destinations from the
urban center. Since we assume that it is unlikely participants with very short trips will
participate, we use rejection sampling to filter out trips that are shorter than 1 mile.

Travel times on roads are calculated using Euclidean distances with a 30% uplift. We as-
sume an average driving speed of 20 mph, which represents the travel speed in a congested
urban area. We consider a pickup time of two minutes for each rider who is picked up by
a driver. We assume a walking speed of 4 feet per second (LaPlante and Kaeser, 2004).
The maximum walking distance for the rider to or from a transit station is 0.5 miles, which
corresponds to 11 minutes of walking at this speed.

We assume a cyclic schedule with the same departure frequency for all transit lines, with
a default departure frequency of 15 minutes. The line schedules are synchronized at the
hub location so that all transfers between lines take the same amount of time. The average
speed of the commuter train is 40 mph and the average speed of the urban transit train is
20 mph. All trains have a dwell time of one minute for regular stations and three minutes
at the hub station to allow for transfers. We assume that it takes two minutes to enter and
leave a transit station which captures walking to and from the platform, with an additional
two minutes of service time for all park-and-ride matches to account for the time needed
to park the vehicle. The characteristics of the base case instances are summarized in Table
3.2.

Table 3.2: Characteristics of the base case instances

Trip pattern: suburb to center
Avg. number of participants: 1000
Driver-rider ratio: 0.5
Matching flexibility: 20 min
Scheduling flexibility: 15 min
Driver detour flexibility: 25%
Rider flexibility: 50%
Maximum number of driver stops: 3
Avg. driver trip distance: 8.0 mi
Avg. driver trip duration: 24.1 mi
Max. walk distance to transit station: 0.5 mi
Walk speed: 4 ft/s
Car speed: 20 mi/h
Suburban train speed: 40 mi/h
Urban train speed: 20 mi/h
Vehicle capacity: 2 seats
Pickup time per rider: 2 min
Transfer time street to platform: 2 min
Additional transfer time for park-and-ride: 2 min
Train dwell time: 1 min
Train hub dwell time: 3 min
Frequency of train departures: 15 min
Number of stations: 41
Number of park-and-ride stations: 8
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3.5.2 Computational results

The main aim of this research is to analyze and quantify the benefits of integrating rideshar-
ing with public transit and to determine what value this can create for different stakeholders,
e.g. public transport agencies, rideshare providers, and system participants. We use the op-
timization results to compute and evaluate a number of metrics to gain insight into the
system performance and the potential of ridesharing to enhance mobility and increase the
use of public transport. In all experiments, we use either the base case setting or a setting
in which one of the characteristics is varied in order to assess the sensitivity of the system
performance to this characteristic.

The algorithm for generating feasible matches is implemented in C and the simulation
framework is implemented in Python 3.4. CPLEX 12.6 is used for solving matching prob-
lems. All base case instances are solved within a few seconds, with solution times of up to
a minute for the largest instances with 2,000 participants.

3.5.3 Benefits of an integrated system

To evaluate the benefits of integrating ridesharing and public transit, we analyze the match-
ing rates for several different settings. As a benchmark, we consider a setting in which only
door-to-door rideshare matches are generated, denoted by RS. Next, we consider settings
in which both rideshare and transit matches are generated, where TRS1 denotes the set-
ting in which only single-rider transit matches are generated and TRS2 denotes the setting
in which transit matches with one or two riders are generated. Finally, PTRS denotes the
setting in which, in addition to the matches considered in TRS2, a driver may opt to take
public transport after dropping off the riders at a transit station, i.e. park-and-ride matches.
The results for the base case can be found in Table 3.3 where we report averages over 10
randomly generated instances. When we report the percentage of transit and P+R matches,
it is relative to the number of matches, i.e. if 80 out of 100 riders are matched and 36 of
them are dropped off at a transit station by drivers who then drive to their final destinations,
and 4 of them were dropped off at a transit station by drivers who then take public transport
to their destinations, the matching rate is 80%, the transit matching rate is 45%, and the
P+R matching rate is 5%. Further, when we report travel time increases for the riders, it is
relative to the travel time they would have needed if they had driven themselves.

We observe that integrating ridesharing and public transit can have significant benefits.
The average number of matched riders (our primary objective) increases from 66.8% to
83.8%. Interestingly, the average length of the driver detour (our secondary objective) in an
integrated system is smaller than in a rideshare-only system, i.e. 7.2% compared to 8.4%.
Thus, not only is mobility enhanced but the negative externalities associated with car travel,
such as emissions and congestion, are reduced. This reduction of the average length of the
driver’s detour is due, in part, to drivers deciding to use public transport. Perhaps equally
important is the fact that the average increase in travel time for riders is relatively small, i.e.
7.5%. This may encourage more people to consider public transport as a viable alternative
to traveling by car.

Another important observation is that to achieve a high matching rate, it is critical that a
driver is willing to pick up and drop off more than one rider (in our setting at most two are
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Table 3.3: Results for different rideshare settings (avg. over 10 random base case instances)

RS TRS1 TRS2 PTRS

Riders
Matching rate (%): 6
Transit matches (%):
P+R matches (%):

A travel time (%):
Drivers

Matching rate (%): 68.3 755 73.8 74.2
Transit matches (%): | 0 324 273 25.1

o

8§ 740 837 838
324 372 339

0 0 4.0

7.3 7.4 7.5

S S S

P+R matches (%): 0 0 0 3.3
A travel time (%): 19.1 17.1 21.6 21.9
A distance (%): 8.4 7.0 104 7.2

dropped off at the same transit station). If drivers are only willing to pick up and drop off a
single rider, the matching rate is 74% whereas if drivers are willing to pick up and drop off
two riders the matching rate is 83.7%. Of course, this increase in the matching rate comes
at the expense of a longer average driver detour (from 7.0% to 10.4%).

In Figure 3.3, we provide more details on the matches found for riders by showing the
number of riders in the different types of matches for the four settings. We again see that
transit matches involving two riders are critical to achieving high matching rates in the
settings that allow them (TRS2 and PTRS). We also see that the number of riders in park-
and-ride matches is small (only 17 on average).

Single rideshare
400 | |B  Single transit

[ Double transit
350 ||l Single P+R

B Double P+R
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777

2727

—

777
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777

227
777
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777

[

777

777

227

777

227

Number of matched riders

RS TRS1 TRS2 PTRS
Figure 3.3: Number of matched riders in different match types

The fact that allowing park-and-ride matches results in an increase in the matching rate
may, at first, seem surprising as it mostly impacts drivers. However, some transit matches
are time-feasible only when the driver uses public transport because the driver can reach
his destination faster using public transport than by car. Another factor contributing to the
small number of drivers choosing to use public transport is the use of hierarchical optimiza-
tion, i.e. maximizing the matching rate followed by minimizing the (total) driver distance
subject to the constraint that the matching rate cannot decrease. The constraint that the
matching rate cannot decrease is restrictive and leaves little flexibility for reducing the de-
tour distance. If we are willing to accept slightly lower matching rates, it is possible that
we would see many more drivers opting for public transport. Finally, the location of the
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transit stations offering park-and-ride, which in our transit network are relatively far from
the urban center, (negatively) impacts the benefits of the park-and-ride option.

To provide further insight into the opportunities offered by an integrated system, we look
at the trips associated with the transit and park-and-ride matches generated for a single in-
stance. Figure 3.4 shows the paths from the riders’ origins to their transit stations. For
matches involving two riders, the trip from the first rider’s origin to the second rider’s ori-
gin is represented by a dotted line and the trip from the second rider’s origin to the transit
station is represented by a solid line. Interestingly, we see that only about 25% of the riders
is dropped off at the station that is closest to their origin. It is often more convenient for
a driver to use a transit station closer to the urban center. As a consequence, the public
transport trips for riders tend to be relatively short. This also suggests that park-and-ride fa-
cilities at transit stations located close to the urban center may significantly increase drivers’
use of public transport.

|:|urban region|:4suburban region —e— commuter train line ~—#— urban transit line —M— transfer hub

single transfer —— double transfer single P+R transfer double P+R transfer

Figure 3.4: Map of rider paths to transit stations for one of the base case instances for the PTRS setting

In the next subsections, we evaluate the impact of varying instance characteristics. We will
report results only for the most and the least restricted rideshare settings, i.e. RS and PTRS.

3.5.4 Impact of driver matching flexibility

In this section, we evaluate the impact of the drivers’ matching flexibility, i.e. their willing-
ness to extend the latest arrival time at their destination. Table 3.4 shows, unsurprisingly,
that lower driver matching flexibility (i.e. 10 min) limits the value of integrating ridesharing
with public transit because fewer two-rider transit matches are feasible (there is simply not
enough time to accommodate more than one rider).
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Figure 3.5: Breakdown of trip durations and waiting time at home for all riders matched in single transit
matches in the optimal solution for one of the base case instances — an individual bar in the pane represents
the breakdown of the itinerary for a rider in a match (riders are ordered based on the sum of total trip duration
and the waiting time at home)

Table 3.4: Results for different driver matching flexibilities (Avg. over 10 random instances)

10 min 15 min 20 min

RS PTRS | RS PTRS | RS PTRS
Riders
Matching rate (%): 649 788 |66.8 838 |663 84.0
Transit matches (%): | 0 34.3 0 33.9 0 38.7
Drivers
Matching rate (%): 65 70.8 | 68.3 742 | 66.7 73.7
P+R matches (%): 0 3.0 0 3.3 0 3.8
A distance (%): 8.1 6.4 8.4 7.2 8.5 7.0
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3.5.5 Impact of density

In this section, we investigate how the number of system participants affects the perfor-
mance. Table 3.5 shows, as expected, that the matching rate increases significantly when
the number of system participants rises; the net improvements in the rider matching rate are
14.4 to 17.6 percentage points.

Table 3.5: Results for different numbers of participants in the system (Averaged over 10 random instances)

500 1000 2000
RS PTRS | RS PTRS | RS PTRS

Riders
Matching rate (%): 535 679 | 668 838 |76.0 93.7
Transit matches (%): 0 39.0 0 339 0 36.5

Drivers

Matching rate (%): 563 63.6 | 683 742 |74.1 787
P+R matches (%): 0 4.6 0 3.3 0 4.3
A distance (%): 7.1 4.7 8.4 7.2 8.8 6.7

3.5.6 Impact of transit system parameters

In this section, we study the impact of transit line characteristics on the system performance.
We consider three speed scenarios for the suburban trains: 30 mph, 40 mph (base case), and
50 mph and three departure frequencies for all transit lines: every 5, 15 (base case), or 25
minutes. Figure 3.6 shows the rider matching rates for the nine combinations. As expected,
we see that more frequent departures and faster trains improve the performance of the sys-
tem and create more rider matches. The results also suggest that the departure frequency
is more important than the speed, i.e. only a marginal benefit arises from increasing the
suburban train speed from 40 mph to 50 mph.

We also see that more drivers and riders use public transit (i.e. the number of drivers and
riders who are matched in transit and park-and-ride matches increases). Also as expected,
less frequent departures and slower trains tend to negatively impact the system’s perfor-
mance in terms of both the percentage of matched riders and the percentage of riders and
drivers who use public transit. In the worst case, with a train frequency of 25 minutes
and speeds of 30 mph, 77.75% of riders are matched on average and 22.11% are matched
in transit and park-and-ride matches. In the best case, 86.86% of riders are matched and
35.45% of riders are matched in transit and park-and-ride matches, on average.

In the second experiment, we examine the interplay between the frequency of train depar-
ture and the driver matching flexibility. This interplay is interesting because the matching
flexibility determines which train departures can be accommodated by a driver — if the
matching flexibility is low and departures are infrequent, few, if any, departures can be ac-
commodated by a driver and vice versa. The results in Table 3.7 confirm our expectations.
Combinations of low matching flexibility (10 min) and infrequent departures (25 min) re-
sult in poor performance — only approximately 20% of riders are matched in transit matches
of park-and-ride matches and less than 2% of drivers are matched in park-and-ride matches.
Further, combinations of high matching flexibility and a high frequency of train departures
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Figure 3.6: Rider match rates for different transit line characteristics

Table 3.6: Sensitivity analysis: Train departure frequency and Suburban train speed

30 mph 40 mph 50 mph
Drivers Riders | Drivers Riders | Drivers Riders
Matched (%): | 73.27 8319 | 7322 83.03 | 73.37 86.86

Frequency / Speed

Smin o cers (%) | 225 29.97 | 344 3356 | 448 3545
15 min Matched (%) | 7225 8103 | 742 8377 | 7312 8338

PTusers (%): | 1.48 27.34 | 241 3171 | 383  34.9
o5 iy Matched (%) | 704 7775 | 7048 7879 | 698 792

PT users (%): | 1.13  22.11 228  26.08 2.6 26.2

create more opportunities to create (transit) matches and produce a high rider matching rate
(90.07%) and a large percentage of riders matched in transit matches (34.76%).

It is perhaps surprising that the shares of park-and-ride and transit matches in the setting
with the lowest matching flexibility and least frequent train departures are still quite high.
A possible explanation for this is the fact that numerous transit stations and transit lines are
considered for a drop-off for each match. This creates greater opportunities to find a feasible
drop-off station and a feasible drop-off time than if just the nearest station (or a smaller set
of stations) were to be considered. The findings of this section lead us to conclude that:
(1) the integration of ridesharing and public transit creates value across a wide range of
speed and frequency properties of a public transport network, but that (2) it is (of course)
beneficial for the system if the trains are fast, the departures are frequent, and the drivers
are flexible in their schedule.

Table 3.7: Sensitivity analysis: Train departure frequency and Driver matching flexibility

10 min 20 min 30 min
Drivers Riders | Drivers Riders | Drivers Riders
Matched (%): 71.29  79.24 74.68 87.28 | 76.43  90.07

Frequency / Match flex.

Smin o cers (%) | 336 3076 | 376 340 | 431 3476
S min Malched (%) | 68.74 7868 | 73.34 8475 | 7638  87.66

PTusers (%): | 1.86 2838 | 341 3217 | 346  32.9
oSy Malched (%) | 6882 7257 | 725 8432 | 7667 8584

PT users (%): 1.94 19.78 3.04 2886 | 3.31 28.89
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3.6 Conclusion

Our study has shown that the integration of a ridesharing system and a public transit system
can significantly enhance mobility, increase the use of public transport, and reduce the
negative externalities associated with car travel.

We found that driver willingness to pick up and drop off more than one rider is critical to
the system performance. We investigated only the simplest and most convenient (from a
driver’s perspective) variant, i.e. driver willingness to pick up two riders and drop them off
at the same transit station. Further investigation of more flexible variants is warranted. We
also observed the potential of park-and-ride facilities, but more experimentation is needed to
fully understand the benefits, i.e. the location and number of transit stations with park-and-
ride facilities as well as the use of different objective hierarchies when generating rideshare
and transit matches. Other opportunities for further research include analyzing more com-
plex transit systems, the use of meeting points in order to streamline the process of picking
up riders, and the integration of (free) bike-sharing systems.
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4 ON THE EFFICIENT GENERATION OF FEASIBLE
DRIVER RIDER MATCHES IN RIDESHARING
SYSTEMS

4.1 Introduction

Ridesharing platforms enable people with similar itineraries and time schedules to share
rides. Platforms seeking to provide high-quality automated matching need to efficiently
solve ride-matching problems: Given a set of riders and a set of drivers with associated
itineraries, schedules, and other preferences, one needs to find an optimal matching with
respect to the total distance savings or an alternative objective. An exact solution approach
requires that all feasible matches be found by checking each possible driver-rider pair. The
resulting feasible matches are then used to construct a matching problem, which can be
solved very efficiently using a state-of-the-art LP solver.

We study how to identify all feasible driver-rider matches more efficiently. This can have an
important effect on the total runtime of the algorithm because, typically, only a very small
fraction of the possible matches are feasible, meaning it is possible to do much better if we
do not have to fully evaluate all pairs. We explore two ideas: (1) direct drive times from
origin to destination can be used to efficiently identify those riders who have sufficiently
small drive times to be matched with a particular driver, and (2) rider time windows can be
stored in a memory structure that allows one to find riders with time windows that overlap
with the time window of a driver in sub-linear time. We develop and test a data structure
that combines optimizations (1) and (2) and test its performance.

To the best of our knowledge, the only related research on the efficient generation of driver—
rider matches was undertaken by Geisberg et al. (2010). They develop an approach based
on contraction hierarchies to efficiently compute detours to match ridesharing offers and
requests in real road networks. In this chapter, we look at how to efficiently identify matches
with compatible trip times.

4.2 Problem description

We are provided with a set of trip announcements S. Each trip announcement s € S is
associated with an origin location oy and a destination location dg as well as an earliest
departure time e and a latest arrival time /;. We assume the participants’ departure times
are somewhat flexible so that the difference /; — e, is greater than the travel time from origin
to destination. The set of announcements S can be partitioned into D C S, the set of trip
announcements by the drivers, and R C S, the set of trip announcements by the riders. Each
driver i € D also specifies a maximum trip duration 7;, which implies the extra time the
driver has available to accommodate a rideshare. We will denote the travel time between
locations i and j with ;.

This chapter is based on Stiglic et al. (2015b).
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The data structure we are designing needs to support one query type: find and return all
riders j € R with a travel time that is compatible with the travel time of the given driver
i € D. A rider’s and a driver’s travel time are compatible if: (1) the time windows of the
driver and the rider overlap by at least the shortest time needed to complete the trip from
the rider’s origin to the rider’s destination; and (2) the trip duration from the rider’s origin
to his destination is smaller or equal to the sum of the trip duration from the driver’s origin
to his destination and the maximum detour duration the driver is willing to incur.

To check if a match is feasible, we construct an implied time window within which driver
i € D can pick up rider j € R at 0. For a match to be feasible, this time window needs to
overlap with the implied pickup time window of rider j. This constraint can be expressed
in the following form:

max(ei —|—t0i0j,€j) < min(li —ld;d; — tojdj7lj — tgjdj) 4.1)

Also, the trip of driver i € D that is associated with this match must be smaller than 7;, i.e.
the sum of the travel times associated with the three legs of the trip must not exceed T;:

tO,‘Oj + ledj + tdjdi S 7; (42)

4.3 Meeting points

The problem described above does not take into account the concept of meeting points
introduced in Chapter 2. However, this case can easily be addressed by constructing implied
time windows. Consider Figure 4.1. Let #7“* denote the time needed to drive distance d’}'"",
the longest distance rider j is willing to walk to and from a meeting point. Thus, the
minimum time the rider and driver will share is t}"m =lo;d; — 2t}"‘”‘ . Therefore, we redefine
the time window for rider j to be [e; + 17", [; —"*"].

__nymax
to;.d; — 21}

Figure 4.1: Minimum shared ride time for rider j

4.4 Basic approach

We may consider drivers one by one and find all time- and cost-feasible matches for each
driver. A straightforward enumeration algorithm with runtime complexity O(nm) finds all
feasible single-rider matches, where n is the number of drivers and m is the number of
riders. When the number of participants is large, it becomes computationally expensive to
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determine the time- and cost-feasible single matches in this way, especially if one considers
that for each driver—rider pair one needs to fully evaluate one must also find the shortest
path for the shared trip.

4.5 Interval tree

Interval trees are designed to efficiently find intervals that overlap. It takes O(log(m))
time to find an overlapping interval in a balanced interval tree, where m is the number of
intervals in the tree. Unfortunately, in the ridesharing setting, as many as 1/2 of the rider
time windows may overlap with a driver time window on average. Hence, if we denote the
expected ratio of overlapping rider intervals by r.,,, we cannot expect the performance to
be better than O(r.yp - log(m)) with a standard interval tree. In practice, the performance
of an interval tree might even be inferior to a linear search due to issues with locality of
reference.

A query in a standard interval tree returns all overlapping intervals — including those with
a very small overlap. However, the time window of a driver and a rider has to overlap by
at least the time needed to complete the shared part of their trip. Consider Figure 4.2. It
shows three possible ways in which the time window of a rider j can overlap with the time
window of a driver i.

Figure 4.2: Overlaps of the time interval of rider j with queries corresponding to three drivers i,i’,i”

The interval of the rider is stored in the memory structure, and the three intervals related to
drivers i, ', and i” represent three possible queries. The overlap can be from the right of
interval [e},[;], as with [e;, 1], it can be from the left of interval [e;,[;], as with [e;, ][], or
it can span the entire interval [e;,/;], as with [e;, [;].

Using this simple observation, we see that if the overlap in the query has to be at least
t}”i”, then we can shorten the rider intervals [e;,/;] in our memory structure by t}"”‘. We
can shorten the rider intervals from the left and from the right. That is, we shorten the
intervals by adding t;”i” to the lower end and by subtracting t;?”" from the upper end, i.e.
[e},l}] = lej+to;a;, — 17, 1j — 1o, a; +17*]. This may result in: (1) e, <Ijor(2) e’j > l}.
For each of these two cases, we analyze the three possible types of driver queries.

Figure 4.3 depicts Case (1): the intervals of drivers i, i/, and i, represent all possible types
of overlap.

Queries in an interval tree with reduced rider intervals for drivers i and i” will not return
rider j as a compatible rider. The query for driver i, on the other hand, will return rider j

91



l.mln t’nln
€ eermeeiliiiii : )-—-(/J --------- oy
el
e li” (o il
| i e i >
t

Figure 4.3: Shortening the time interval of rider j and overlaps with queries corresponding to drivers i, i, and

i//

since the overlap is greater than t}””‘. Thus, using reduced intervals in a standard interval
tree produces the desired results. Let us now consider Case (2). If e’j > l} (as in Figure 4.4),

we have an inverted interval [l},
interval [, ¢’] is a sub-interval of interval [e;, ;].

¢"]. In such a situation, there is sufficient overlap only if

D
[ Yoo

Figure 4.4: Inverted time interval of rider j and overlaps with queries corresponding to drivers i, i/, and i’

The intervals of drivers i’ and i have some overlap with the inverted interval [/}, e"], but
only the interval of driver i has sufficient overlap.

Queries using a standard interval tree with reduced time windows will return all time-
feasible riders for a driver but, unfortunately, may also return some time-infeasible riders
(i.e. the driver’s interval is too small to accommodate the rider). This disadvantage is out-
weighed by the fact that the intervals in the interval tree are much smaller and, thus, the
queries are much faster. However, the number of riders returned can be quite large. Below,
we propose an alternative approach that uses sorted lists.

4.6 Sorted interval list

We maintain a list of intervals, each with a lower end / and an upper end u. We first sort
the intervals in non-decreasing order of their lower end. We then recursively compute an
auxiliary upper end u* for each interval in the sorted list. The auxiliary upper end is defined
as uj = max(u;_,,u;) for an interval in position i in the list (for all positions i > 1) and
uy = ug for the interval in position 0. Intervals for which u = u* are super-intervals — they
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Figure 4.5: Visualization of a query in an interval list

are not a sub-interval of any other interval in the list. Intervals for which u < u* are sub-
intervals — they are a subset of at least one interval in the list.

If we are in Case (1), we find all intervals that potentially overlap with [f;o,, ;] by finding
the position of the leftmost interval in the sorted list with ¢, > #;,,, and the position of the
rightmost interval in the sorted list with #; > f;,;,;, using binary search. The two positions
define the sublist we want. For Case (2), the query is even simpler: we first find the position
of the leftmost interval in the sorted list with #; > 1;,,, and the position of the rightmost
interval in the sorted list with #; > #;,,5. These positions define the sublist that contains all
potential sub-intervals of [f;o,ien). We add the two resulting lists together and further
refine them. Figure 4.5 visualizes how the intervals are sorted and how a query works (i.e.

which intervals it returns).

The speed of the search may be further improved by breaking up the sorted list into sublists.
For each super-interval, we create a sublist containing all its sub-intervals. We only keep
the super-intervals in the original list. Each sublist may be further broken down to a desired
level of granularity (i.e. the minimum number of intervals in a sublist). We know that all
the intervals in a sublist of an interval are within its bounds so we may use this information
to explore only the relevant sublists. This approach can improve the search in large data
sets, especially when the super-intervals are large compared to the sub-intervals.
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4.7 Interval container

We finally propose an approach using a container with n bins. The positions of the bins in
the container are ordered with respect to the riders’ trip durations. By using bins to group
riders with similar ride durations, we limit the search to relevant subsets of bins. Each bin
features an interval container as described in Section 4.6, but we do not break the interval
lists up into sub-lists. By grouping intervals into bins, we ensure the intervals within each
bin have a similar length. This helps in performing efficient queries inside the interval lists.

Let us first discuss the construction of the bins. We compute 75,;, = minjcg T; and T540 =
max jeg Tj. We then compute a step size 1 = (Tyax — Tnin) /1, Which is used to determine a
critical value for each bin. The critical value for a bin in position k is v = T, + hk,Vk €
[1,...,n]. We then sort all riders into bins so that all riders in the bin at position k € [2,...,n]
have a ride time smaller than or equal to v, and greater than v;_;. Riders with ride times
smaller than v; are sorted into the bin in position 0.

We proceed by creating an interval container in each bin. We first shorten all rider intervals
in a given bin as suggested in the previous section. We may shorten the interval of a rider by
adding 7} to e and subtracting 7 from /;. Hence, ¢’j =ej+Tjandl'; =1; —T;. If ¢/ ; <1';,
we have a normal interval [¢/,/’], and we have an inverted interval [I’, '] otherwise. Next,
we create a list of normal intervals and a list of inverted intervals. Each interval has a lower
end / and an upper end u. We first sort the intervals in non-decreasing order of their lower
end. We then recursively compute an auxiliary upper end u* for each interval in the sorted
list. The auxiliary upper end is defined as u} = max(u;_,,u;) for an interval in position i in
the list (for all positions i > 1) and uj = uo for the interval in position 0.

Queries are performed as follows. For driver i, with time interval [t;,,,thigh], we first
identify the bins for which, vy < T,k € [1,...,n], using bisection search. For each bin we
identify, we explore the interval container to find and return all riders with overlapping
intervals. We perform one query in the part that contains normal intervals and one query
in the part that contains inverted intervals of the interval container. With normal intervals,
we find the position of the leftmost interval in the sorted list by using binary search. The
two positions define the sub-list we want. With inverted intervals, these two positions are
the leftmost interval in the sorted list with #; > 1;,,, and the rightmost interval in the sorted
list with #; > 75,4, We add all the resulting sub-lists together and further refine them using
inequalities (1) and (2).

4.8 Heuristic approach

Finally, we also propose a heuristic strategy. Instead of identifying the bins for which
vk < T,k €l,...,n], for driver i € D, we propose to only consider those for which vy <t7,.4..
By doing so, we ignore all riders who have ride times larger than the drive time of the
driver. In the instances we have experimented with, this means we overlook 2% of the
possible matches. However, these are typically matches that are less attractive to a driver
because the origin, the destination, or both are normally not well-aligned with the driver’s
original route. Such a strategy may decrease query times by an additional 25% on average.
Optionally, one could also decide to cut-off riders with short rides compared to that of the
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driver because the distance saving associated with such a match will be low. Thus, one
could add several of such rules to the query, speed up the search, and also have full control
over what kind of matches will be identified.

4.9 Performance

In order to test the performance, we generate several ridesharing instances of various sizes
using the same approach as in Chapter 3 (based on the travel demand model for the metropoli-
tan Atlanta region). We use the same instance characteristics as in the base case instances,
but do not consider meeting points.

We generate eight instances that have between approximately 1,000 and 12,000 partici-
pants. We implement four different enumeration techniques in Python 2.7: brute force
enumeration, enumeration with interval lists (as in Section 4.6), enumeration with interval
bins (as in Section 4.7) and the heuristic (as in Section 4.8). We test on a single core of an
15-3360M machine. Figure 1 presents the test results. The horizontal axis represents the
number of possible driver—rider pairs and the vertical axis represents the runtimes for the
four techniques.

As can be seen from Figure 4.6, the approach based on interval containers performs best on
all instances. The runtime is more than 51% less than for brute force on average. Compared
with the interval lists, the best performing approach takes 20% less time to complete. These
results were stable over the instances.

4.10 Conclusion

In this section, we presented an approach for identifying all feasible single driver—single
rider matches more efficiently. We showed that it can decrease the duration of the enu-
meration phase by more than 50% compared to a brute force search and 20% compared to
interval lists. We also presented a heuristic strategy to speed up the search even further.

One possible direction for future research could be to consider how to use the spatial data
associated with the participants’ trips in order to partition the data structure even further
and speed up the queries even more.
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5 A MATHEMATICAL FORMULATION FOR THE
SINGLE DRIVER-MULTI RIDER MATCHING
PROBLEM IN RIDESHARING SYSTEMS

5.1 Introduction

In this section, we present a mixed-integer linear programming model for the single driver—
multiple rider matching problem that arises in certain types of ridesharing systems. The
problem has many similarities with the dial-a-ride problem (DARP), which is a pickup and
delivery problem with ride time constraints. Given the similarities, we borrow certain types
of constraints from the DARP literature.

The model we devise allows us to match a single driver with several riders. It also permits
participants to opt for driver or rider roles or, alternatively, to let the model determine what
is the most desirable role from a system perspective. If there is no match for a rider or a
driver, the model is able to add this opportunity cost to the objective function value. The
model minimizes the cost of all the trips that have to be performed to move the participants
from their origin to their destination nodes.

The model we present can be used to plan rides for a certain period of time (typically
a day) for a ridesharing platform (accessed by participants through a web or smartphone
application). We assume that on a specific day there is a group of participants that have to
make a trip from a specific origin to a specific destination. Each participant can opt to offer
a ride to potential riders (a), or ride in someone else’s car (b), or alternatively may leave the
decision regarding their role to the system. Participants enter their ride requests/offers in
the system at least by noon (12.00) for the next day. The following information is available:

e cxact origins and destinations of all participants (coordinates and addresses);

e time windows for all participants’ trips (earliest time of departure and latest time of
arrival);

e is participant a driver, rider, or is he willing to let the system determine what is more
desirable;

e number of free seats in a particular vehicle;
e transportation network data (distance matrix, travel time matrix).

The model we present is based on the prior work of Cordeau, Laporte, and Ropke as well
as Herbawi and Weber (Cordeau and Laporte, 2003; Cordeau, 2006; Cordeau and Laporte,
2007; Ropke et al., 2007; Ropke and Cordeau, 2009; Herbawi and Weber, 2011c, 2012a,b,
2011b,a, 2012c). It is a generalization of the pickup and delivery problem with time win-
dows or of the dial-a-ride problem (if one also considers passenger convenience). The
reduction is very straightforward: in the ride-matching problem, assume that drivers have
no time constraint or (alternatively) have homogenous or heterogeneous working times.
Further, assume that drivers do not have individual origins and a destination, but have one

This chapter is based on Stiglic and Gradisar (2014).
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common origin and destination depot or that there are only a few of such depots. Also as-
sume that the drivers’ vehicle capacities are homogenous or, alternatively, that there are few
different vehicle types in the fleet, each with a specific capacity respectively. Then, such a
special case is in fact a pickup and delivery problem with time windows.

5.2 Mathematical model

We adapt the dial-a-ride problem (DARP) model formulation of Cordeau (2006). Let n
denote the number of ride requests and m the number of drive offers. The problem may be
defined on a complete directed graph G = (N,A), where N =PUDUOUT, P ={1,...,n},
O={n+1,...2n},D={n+m+1,...2n+m}, T = {2n+m+1,....2n+ 2m}. Subsets
P and D represent the pickup and drop-off nodes of the riders, while subsets O and T
represent the origin nodes and the terminal nodes of the drivers. Each ride request i is
associated with an origin node i and a destination node i + n + m. Similarly, each drive
offer is associated with an origin node i and a destination node i +n + m. Flexible ride
requests have origins in P and destinations in D like normal ride requests. Let K represent
the set of pseudovehicles. Each ride request and each ride offer corresponds to exactly one
pseudovehicle. Each pseudovehicle k € K has a capacity of Q; and a cost per km of c.
Capacity is set to 1 for pseudovehicles corresponding to riders and to the number of seats in
a participant’s vehicle for pseudovehicles corresponding to drivers and flexible riders. Each
pseudovehicle also has a cost per km c;. In the case of pseudovehicles corresponding to
riders, the cost represents the cost the rider will incur if he is not assigned to any driver (e.g.
the cost of using public transport). By modelling the problem in this way, we assure that the
costs of unassigned riders are taken into account in the objective function, thus implicitly
taking care of minimizing the number of riders left without a ride.

Each node i € N is associated with a load change ¢; and a non-negative service duration
d; such that g; = —qjn+m (i=1,...,n+m). A time window [e;,[;] is associated with each
node i € N, where ¢; and /; represent the earliest and latest time, respectively, at which the
service may begin at node i. Each arc (i, j) € A is associated with a distance d;; and a travel
time ¢; e

For each arc (i, j) € A and each pseudovehicle k € K, let x{i j = L if vehicle k travels from
node i to node j and O otherwise. For each node i € N and each vehicle k € K, let Bf be
the time at which the vehicle k begins service (i.e. visits) at node i, and Q;‘ be the load
of vehicle k after visiting node i. Finally, for each participant i, let Lf.‘ be the ride time of
participant i in vehicle k£ and L; the maximum acceptable ride time for that participant. We
formulate the problem as follows:
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min Z Z Z xﬁjdi7jck

iEN jEN keK

Subject to

Y Y =1 vieruo,
keK jeEN

Y Yxi,=1 vjebur,
keKieN

Y Yuii<1 vjeN,
keKieN

Y (5, —xi)=0 ViePUO,VkeK, k#i,
JEN

Y O im =X nim) =0 Vi€ PUO,VkeK, k#i,
JEN

Y (=) =0 Vi€ePUO, VKkEK, k#i,
JEN
JjFEi+n+m

J#i

JjeP
X jonim+35; SIViEN,VjEN, Yk € K k#1,
Xinim;=0 Vi€ PUO,VjEN,
xi;=0 Vie PUO,VjEN,
BY > (Bf +d;+1;)x{; VieN,VjeN\VkeK,
Li+Bf+d—Bf,,,=0 VicN,Vic PUO,VkEK,
0% > (0F +gi)xk; VieN,VjeNVkeK,

e; <BY<I; VieN,VkeKk,
li,i—}—n—i—mSLfSLi Vie PUO, Vk € K,
X ;€{0,1} VieNVjEN,VkeK,
BfeRJ VieN,VkeK,
LY eR] VieN,VkeK,

ofkeZf VieN,VkeKk,
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(5.1

5.2)
(5.3)
5.4)
(5.5
(5.6)

5.7

(5.8)

(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(5.14)
(5.15)
(5.16)
(5.17)
(5.18)
(5.19)
(5.20)

The objective function (1) minimizes the total costs of all the trips including the costs
incurred by unassigned riders. Constraints (2)—(4) are global constraints that govern the as-
signment of participants to trips. Constraints (2) and (3) assure that each participant leaves
from his origin node and arrives at his destination node exactly once. Constraints (3) assure
that a pseudovehicle arrives at a particular node not more than once. Constraints (5) to (7)
are flow conservation constraints that enforce the consistency of the routes. Constraints (5)
and (6) enforce that the vehicle which enters a particular node is also the one the leaves
that node. Constraints (7) ensure that the same vehicle that picks up a particular rider is
also the one that drops him at his destination. Driver origin and destination nodes are ex-



ceptions in all flow conservation constraints. Constraint (8) enforces that a driver’s vehicle
will definitely be used in the solution, while constraint (9) ensures that a pseudovehicle that
is going straight from its origin to destination cannot interfere with other trips. Constraints
(10) make sure that a driver’s vehicle does not arrive at its own origin node. Finally, con-
straints (12)—(16) are well-known DARP constraints assuring the consistency of the load
and service time variables. Note that (12) and (14) are in fact nonlinear constraints and
need to be linearized — we use the approach suggested by Cordeau (2006).

5.3 Preprocessing phase

We implemented a preprocessing phase to speed up the runtime of the solver. In the prepro-
cessing phase, we analyzed each possible pairing of two participants i and j, where i # J,
by solving (n+m)? — (n+4m) a small linear program in the following form:

mint; (5.21)
Subject to

tj—t th'—i—di (5.22)
tien —tj >tj N +d;j (5.23)
[i+N —titN 2 LN i+N +djiN (5.24)
1> e (5.25)
1> e (5.26)
tivnem < liznim (5.27)
fitntm < Ljtnim (5.28)
tivntm—1j < L;j (5.29)
fivnim —ti <L (5.30)
RS, ke {i,ji+n+m, j+n+m} (5.31)

By solving each linear program, we find whether the pairing of rider j with driver i is
feasible considering all the time windows and ride time constraints. If such a pairing is

infeasible, we fix all the corresponding x’J , and x; jn+m> Where Vs € N variables to zero.

5.4 Testing

We implemented the model using the Python CPLEX 12.6 application programming inter-
face and ran experiments on an Intel 15 quad core computer with 4 GB of memory. We
have tested the model on a number of randomly generated instances to determine whether
the model is correctly implemented. After this step, we constructed several instances that
model a more realistic problem of matching riders and drivers traveling between Slovenia’s
two biggest cities. In the instances, 20 participants need to drive from Maribor to Ljubljana.
We calculated a travel time matrix using Google Maps tools.
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We experiment how the clustering of time windows (if the time windows of all participants
are less or more aligned), the participants’ maximum ride time and the number of flexible
participants influence the number of matches, total costs, and the complexity of the problem
reflected in the time the solver spent solving the instance. We used a cost of .25 EUR per
vehicle kilometer for all participants. The value of the objective function hence reflects the
total costs associated with the planned itineraries. We report the results in the table below.

We found that preprocessing significantly reduces solution times, e.g. for instance 8, we
reduced the time CPLEX spent on the main model from 1,546 to 12 seconds. Still, we could
not solve instances 6, 10, 14 within the limit of 1000 s.

5.5 Results

What we observe from the results in the table below is that simply by varying the clustering
of the time windows, the maximum ride times and the number of users that are flexible,
one may significantly increase or decrease the complexity of the problem. It can clearly
be seen that the homogeneity of time windows, the ride time flexibility, and the number of
flexible riders (0, 4, 12, 20) all have a very positive effect on the number of matches found,
the value of the objective function, but also can have drastic effects on the solution times.
The star, for instance 12, denotes there are two double matches in the solution. All other
instances only have single driver—single rider matches.

5.6 Conclusion

In this chapter, we introduced a new ride-matching model for ridesharing systems that is
capable of matching individual drivers with multiple riders. We also devised a preprocess-
ing phase and demonstrated its usefulness. The tests we performed clearly demonstrate that
simply by varying the clustering of the time windows, the maximum ride times and the
number of users that are flexible, one may significantly increase or decrease the complex-
ity of a single instance of the problem. It is also quite clear that larger, real-life instances
of this problem would require a more sophisticated solution approach. This is an obvious
possibility for future research.
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Table 5.1: Results of single driver—multi rider experiments with MIP model

Number of flexible users \ Time windows | Departure time flexibility | Instance ID \ Optimal value \ Time needed (s) \ Number of matches

Homogenous 10 m%n 1 581.875 0.15 2
0 20 min 2 334.125 456.23 10
Scattered 10 min 3 581.875 0.12 2
20 min 4 395.625 1.07 8
Homogenous 10 m%n 5 549.125 0.15 3

4 20 m}n 6 N/A N/A N/A
Scattered 10 m%n 7 549.125 0.15 3
20 min 8 363.125 12.01 9
Homogenous 10 m%n 9 487.25 0.15 4

12 20 an 10 N/A N/A N/A
Scattered 10 min 11 517.25 0.15 4

20 min 12 301 947.63 10*
Homogenous 10 m%n 13 394.75 290.97 8

20 20 m}n 14 N/A N/A N/A
Scattered 10 m}n 15 426.125 2.42 7

20 min 16 N/A N/A N/A




CONCLUSION

Our aim in this thesis was to gain a better understanding of how ridesharing systems func-
tion and to investigate several strategies and possible design choices for ridesharing system
providers.

In Chapter 1, we identified and defined three different types of participant flexibility relevant
in the dynamic ridesharing context. We quantified the impact of these types of flexibility
on system performance by conducting an extensive computational study. Finally, we inves-
tigated the level of additional flexibility that is required to improve the effectiveness of a
rideshare system.

In Chapter 2, we designed and implemented an algorithm that optimally matches drivers
and riders in large-scale ridesharing systems. We performed an extensive simulation study
in order to understand how meeting points affect the number of matched participants as
well as the system-wide driving distance savings. We concluded by performing sensitivity
analysis for a wide range of potential factors to understand the robustness of the effects of
introducing meeting points into a ridesharing system.

In Chapter 3, we designed and implemented an algorithm to optimally create single or
multi-modal rideshare matches. We then conducted an extensive simulation study to quan-
tify the benefits of integrating ridesharing and public transit. Like in the other two chapters,
we also performed sensitivity analysis for a wide range of potential factors to understand
the robustness of the observed effects.

In Chapter 4, we studied how to identify feasible driver—rider matches more efficiently.
We explored two ideas: (1) direct drive times from origin to destination can be used to
efficiently identify those riders who have sufficiently small drive times to be matched with
a particular driver; and (2) rider time windows can be stored in a memory structure that
allows one to find riders with time windows that overlap with the time window of a driver
in sub-linear time. We developed and tested a data structure that combines optimizations
(1) and (2) and tested its performance.

In Chapter 5, we presented a new mixed-integer linear programming model for the single
driver—multiple rider matching problem that arises in certain types of ridesharing systems.
The model we devised allows users to opt for driver or rider roles or, alternatively, to let the
model determine what is best. The model minimizes the cost of all the trips that have to be
performed to move the users from their origin to their destination nodes. We developed a
preprocessing procedure and tested its usefulness. As a final step, we performed simulations
on different instances constructed according to the ridesharing practice between Slovenia’s
two largest cities.

Discussion of Practical and Theoretical Contributions

The main contributions of Chapter 1 are that we introduced and defined three different types
of participant flexibility relevant in the dynamic ridesharing context, i.e. matching flexibil-
ity, detour flexibility, and scheduling flexibility; we quantified the impact of these flexi-
bility types on system performance by conducting an extensive computational study; and
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we investigated the level of additional flexibility required to improve a rideshare system’s
effectiveness. While previous studies have looked at some aspects of participant flexibility
in isolation, this is the first study to explicitly and extensively investigate the interaction
between system density, level of flexibility, and type of flexibility.

The primary contributions of Chapter 2 are that we introduced a new and relevant problem
that considers the use of meeting points in ridesharing systems, we discussed the design
and implementation of an algorithm that optimally matches drivers and riders (based on
an extension of the traditional bipartite matching formulation) in large-scale ridesharing
systems with meeting points, and we performed an extensive simulation study (based on
real-world traffic patterns) to assess the benefits of meeting points.

The biggest contributions of Chapter 3 are that we introduced a new and relevant prob-
lem that considers the integration and synchronization of ridesharing and scheduled public
transit, presented a solution approach to optimally create single or multi-modal rideshare
matches, and conducted an extensive numerical study on artificial instances that capture the
main characteristics of many real-world transit settings and quantify the benefits of inte-
grating ridesharing and public transport.

The main contributions of Chapter 4 are that we presented several alternative data struc-
tures designed to find and return all riders with a travel time that is compatible with the
travel time of a given driver. We showed that the most advanced method we developed can
reduce the duration of the enumeration phase by more than 50% compared to an exhaustive
enumeration. The key contributions of Chapter 5 are that we introduced a new and relevant
optimization problem for the single driver—multiple rider matching problem that emerges
in certain types of ridesharing systems and presented a special preprocessing procedure for
this specific problem.

Summary of the most important insights

We would first like to highlight two important insights of this thesis as a whole:

e Methodological insight: In Chapter 2, we observed that a match between a driver i
and a set of riders J C R with |J| > 2 is time-feasible if the match between driver i
and subset of riders J' C J is time-feasible for all J/ C J. Hence, for a match of one
driver and two riders to be time-feasible, the match of the driver with each of these
two riders must also be time-feasible. Similarly, for a match of one driver and three
riders to be time-feasible, the match of the driver with each of the possible rider pairs
must be time-feasible as well, and so forth. We believe this is an important property
that can help efficiently solve a wide variety of ride-matching problems. We used it
in three different implementations and it has also been applied by Arslan et al. (2016)
to solve a related matching problem.

e Operational insight: All of our results consistently show that if rideshare partici-
pants are not motivated and/or willing to be flexible and if the system operates in
isolation, then it is very challenging to guarantee a high matching rate for partici-
pants (e.g. > 75%). Our results also show that these problems can potentially be
mitigated by motivating drivers to make longer detours and by motivating riders to
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accept multi-modal matches in which part of the trip may be performed by riding on
public transport, riding on a bike, or walking.

The most important insights for each chapter are summarized as follows:

e The results presented in Chapter 1 clearly demonstrate (and quantify) the impact of
participant flexibility on the performance of a single driver—single rider ridesharing
system (in terms of the matching rate achieved). The study shows that participant
flexibility plays a key role in easing the matching process, especially in systems with
low participation rates. In order for dynamic ridesharing to work, drivers and riders
need to be flexible in terms of their departure and arrival times (at least 10 to 15
minutes depending on the locations of origin and destination) but, most importantly,
drivers need to be flexible in terms of the detour they are willing to make. Another
key finding is that when the number of trip announcements in the system is small,
participants must be flexible in their departure times to find a match, the extent to
which drivers are willing to make detours is critical to the success of a ridesharing
system, and the flexibility required to be matched can vary significantly for system
participants.

e In Chapter 2, we showed that introducing meeting points into a ridesharing system
can substantially improve several critical performance metrics, i.e. percentage of
matched riders, percentage of matched participants, and mileage savings. The price
to be paid to achieve these performance increases is minor: riders may have to walk
a short distance and may have to plan their time more carefully so as to ensure they
arrive on time at the meeting point where they are to be picked up (it is unlikely that
drivers will be willing to wait for a rider at a pickup point for more than a minute or
two). The observed increases in performance of a ridesharing system resulting from
introducing meeting points may even be greater when the meeting points are cho-
sen carefully based on observed travel patterns. Even though the number of possible
matches increases significantly when meeting points are introduced, our computa-
tional experiments demonstrated that all feasible matches can be generated efficiently
with a carefully designed and implemented algorithm.

e The results presented in Chapter 3 show the integration of a ridesharing system and
a public transit system can significantly enhance mobility, increase the use of public
transport, and reduce the negative externalities associated with car travel. We found
that driver willingness to pick up and drop off more than one rider is critical to the
system performance.

e In Chapter 4, we demonstrated that it is possible to significantly speed up the gen-
eration of feasible rideshare matches by exploiting the idea that direct drive times
from origin to destination can be used to efficiently identify those riders who have
sufficiently small drive times to be matched with a particular driver.

e Finally, in Chapter 5 we introduced a new model and a preprocessing procedure.

We hope the insights this thesis generates will valuably contribute to the current body of
knowledge on ridesharing systems and their operation and they will inform ridesharing
system providers on how to design applications, matching algorithms and incentive schemes
as well as form alliances with other systems such as public transport agencies and bike-
sharing system providers.
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Opportunities for Future Research

Ridesharing as a research topic is receiving more and more attention. While the number
and variety of studies on the design and operation of these systems is growing, there are
still important opportunities for future research.

A clear opportunity for future research is the analysis of complex ridesharing systems inte-
grated with large metropolitan public transport systems, bike-sharing systems and/or other
modes of scheduled or on-demand transportation.

A different research direction could entail the design and testing of cost-sharing and in-
centive schemes to motivate drivers and riders to share rides. One interesting option is the
blending of genuine ridesharing in which a driver performs only a small detour to pick up
a rider and only expects the rider to remunerate a certain part of the trip costs with the
ridesharing model popularized by Lyft and Uber (in which drivers act as taxi drivers). It
seems that a combination of these two systems could ensure a high level of service at an
affordable cost while also reducing congestion-related problems in urban areas.

A topic that still needs to be understood better is the influence of different commitment
strategies on the performance of a ridesharing system in a dynamic system. A more em-
pirical study could also focus on user preferences regarding commitment strategies and
matching rules as such.

Finally, in most of this thesis we investigated only some of the most convenient and prac-
ticable types of matches. The main reason for this is that in genuine ridesharing drivers
share rides on trips that are already planned. In such a setting, drivers only accept rideshare
tasks that are convenient for them. Clearly, there are settings like long-distance ridesharing
in which more complex matches can be interesting (see Chapter 5). One potential research
topic in long-distance ridesharing is certainly multi-hop ridesharing in which a rider can
transfer between several vehicles before arriving at his final destination. Another possible
extension is the integration with other modes of scheduled or on-demand transport. Riders
may also want to book a return trip back home, making the ride-matching problem even
more complex and hard to solve.
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APPENDIX



Summary in Slovenian language / DaljSi povzetek v
slovenskem jeziku

Uvod

Deljenje prevoza (ang. ride-sharing) je druzbeni pojav, pri katerem si posamezniki z uje-
majocimi se prevoznimi potrebami delijo eno vozilo in celotno pot ali nekatere dele svojih
poti opravijo skupaj. Voznik vozila ima dolo¢eno pot ob dolo¢enem Casu in je v zameno za
povracilo stroSkov prevoza pripravljen po poti pobirati ter odlagati sopotnike. Pot voznika
je lahko fiksna ali pa se lahko prilagaja posameznim lokacijam vstopa in izstopa potnikov
— obstaja veliko moZnosti oz. variacij. Razen povracila stroSkov prevoza vozniku, ki sicer
mocno prevladuje, so moZzni tudi drugi dogovori, kot npr. da vsak udeleZenec pelje enkrat
na teden (tipi¢no v t. i. Carpoolingu).

Koristi deljenja prevoza za posameznika so niZji stroski transporta, moZnost uporabe pasov
za vozila z ve¢ potniki (tipasovi HOV v ZDA) in manjSa utrujenost sopotnikov. V primerih,
ko sopotniki nimajo osebnega vozila, lahko govorimo tudi o skrajSanem Casu potovanja v
primerjavi z javnim transportom.

Z deljenjem prevozov se lahko pomembno zmanjSa Stevilo osebnih vozil, ki so potrebna
za zadovoljitev potreb posameznikov po mobilnosti. Zlasti v regijah, v katerih mobilnost
posameznikov temelji na uporabi osebnih vozil, je z deljenjem prevozov mogoce zniZati
Stevilo vozil v prometu in s tem razbremeniti prometno omreZje. Deljenje prevozov ima
lahko torej pozitivne ucinke na promet in okolje v smislu zmanjSevanja pojavnosti gnece
ter zastojev v prometu. Pravtako lahko vpliva na zmanjSevanje onesnazenosti, zmanjSevanje
porabe goriv oz. energije ter posledi¢no primarnih virov.

S pojavom interneta in mobilnih tehnologij so se pojavile raznovrstne, napredne oblike del-
jenja prevoza. Danes obstaja Sirok spekter razli¢nih sistemov: od preprostejSih e-oglasnih
desk za deljenje prevoza do bolj kompleksnih storitev, do katerih se lahko dostopa preko
spletnih in mobilnih aplikacij in ki ponujajo avtomatsko tvorjenje skupin, nacrtovanje poti
ter elektronska placila. V tej disertaciji se osredotocamo na napredne sisteme, ki omogocajo
deljenje prevozov preko pametnih telefonov in drugih sodobnih naprav ter avtomatsko
povezujejo voznike in potnike, tj. tvorijo prevozne skupine. Primer takSnega ponudnika
je npr. nemsko podjetje Flinc (https://flinc.org/). V primerih, ko je vodilni ¢as od
najave prevoza v sistemu do dejanske izvedbe kratek (npr. 10-30 minut) in je malo Casa za
koordinacijo med vozniki ter potniki, govorimo o t. i. dinami¢nem deljenju prevozov.

Tako izkuSnje iz prakse kot akademske Studije kazejo, da je snovanje in upravljanje sis-
temov za deljenje prevoza zahtevno. Predvidevati je treba, kako se bo sistem obnasal v
razli¢nih razmerah, in ves Cas spremljati, kaj se dogaja na strani ponudbe prevozov ter
kaj na strani povpraSevanja po prevozih. To je zlasti pomembno ob vzpostavitvi tovrstnih
sistemov. Ob zagonih novih sistemov za deljenje prevoza je Stevilo uporabnikov nizko,
zaradi Cesar je pogosto tezko najti ujemanja. Kamar in Horwitz (2009) sta pokazala, da
je Stevilo dopustnih reSitev (ujemanj) za uporabnika mo¢no odvisno od celotnega Stevila
aktivnih uporabnikov. Zato je ob zagonu verjetnost, da se bo neki uporabnik ujemal s ka-
terim drugim, majhna. To se dogaja tudi v uveljavljenih sistemih na dolocenih relacijah ob
dolocenih urah oz. dnevih. NezmoZnost najti prevoz ali potnike, posebej nekajkrat zapore-



doma, lahko uporabnika odvrne od nadaljnje uporabe. Gre torej za resen problem, ki je
relevanten tako za sisteme v zagonu kot tudi za uveljavljene sisteme.

Vsak voznik, ki ponuja prevoz v sistemu za deljenje prevoza, ima doloceno pot. Da bi
naSel sopotnike, s katerimi bi si delil stroSke prevoza, je pripravljen narediti nekaj dodatnih
postankov, potrebnih za vstop v vozilo in izstop iz njega. Pogosto mora voznik napraviti
tudi obvoz in se s tem pribliZati izvoru ter cilju posameznega potnika. Najvecja dolZina
obvoza in Stevilo dodatnih postankov sta odvisna od voznikove pripravljenosti, da podaljSa
potovalni ¢as. To pomembno razlikuje sisteme za deljenje prevoza od drugih sorodnih
sistemov, v katerih so vozniki dejansko taksisti in se popolnoma prilagajajo zelji stranke.
Primer takSnega sistema je npr. Uber (https://www.uber.com). Nivo storitve v tovrstnem
sistemu je lahko bistveno visji zaradi visoke fleksibilnosti voznika — to se odraza tudi v ceni
prevoza, ki je bistveno visja kot v pravem sistemu za deljenje prevoza. Z izjemo taksijev, v
katerih si ve¢, med seboj nepovezanih strank deli taksi prevoz, takSne storitve tudi nimajo
nujno pozitivnih u¢inkov na zgoscenost prometa ter okolje.

Omejena pripravljenost voznikov za izvedbo dodatnih postankov in daljSih obvozov zelo
otezuje deljenje prevozov. Ce je voznik nefleksibilen, je namre¢ izredno tezko najti us-
treznega sopotnika. Posledica tega je lahko, da velikega deleza voznikov in potnikov, ki bi
sicer Zeleli sodelovati v sistemu, ni mogoce povezati. Da bi tovrstne probleme preprecili
ali jih vsaj pomembno omejili, je treba sisteme za deljenje prevoza skrbno nacrtovati in
uporabiti primerne tehnologije ter algoritme, vendar, kot smo pokazali v disertaciji, to Se ni
zadosten pogoj za uspesSno delovanje.

Ta disertacije je osredotoCena na lajSanje procesa iskanja ujemanj v sistemih deljenja pre-
voza. V ta namen smo zasnovali in preizkusili ve€ razli¢nih modelov, algoritmov ter meh-
anizmoyv, ki bi lahko zagotovili visoko verjetnost ujemanja za uporabnike (maksimizacija
Stevila ujemanj). Opravili smo veliko Stevilo simulacij, na podlagi katerih je mozno sklepati

o pomembnih lastnostnih sistemov za deljenje prevoza in tudi o potencialnih u¢inkih dolocenih
strateSkih odlocitev upravljavca sistema (npr. integracija sistema deljenja prevoza s siste-
mom javnega transporta ali vkljucitev nabornih tock v sistem deljenja prevoza).

V sklopu disertacije smo razvili in testirali vecje Stevilo metod. Te metode so zapisane v ob-
liki matemati¢nih modelov in v psevdokodi ter implementirane v visokonivojskih program-
skih jezikih (Python, Cython, C, Optimization Programming Language [OPL]). Pomembna
dela razvoja sta bila testiranje in konc¢na validacija. Po tem koraku smo primerjali razli¢ne
mehanizme in algoritme med seboj s pomocjo simulacij na nakljuéno generiranih podatkih.
Ti podatki so bili generirani na podoben nacin kot v preteklih primerljivih Studijah (npr.
Agatz et al., 2011; Herbawi and Weber, 2012a; Kleiner et al., 2011). V simulacijah za
drugo poglavje smo uporabili tudi podatke, ki so jih Ze uporabili raziskovalci v preteklih
Studijah (podatki za Atlanto, ZDA, v Agatz et al., 2011).

V prvem poglavju disertacije proucujemo vpliv fleksibilnosti uporabnikov sistema deljenja
prevoza na Stevilo ujemanj med vozniki in potniki, ki jih je mozno vzpostaviti. Ta vpliv
smo proucili tako, da smo zgradili posebno simulacijsko okolje, ki simulira sistem del-
jenja prevoza, v katerem se en voznik lahko poveze z najve€ enim potnikom. Definirali
smo tri tipe fleksibilnosti, ki igrajo pomembno vlogo pri dinami¢nem deljenju prevozov, in
skozi veliko Stevilo simulacij kvantificirali vpliv posamicnega tipa fleksibilnosti na Stevilo
moznih ujeman;j. Tipi fleksibilnosti, ki smo jih definirali so fleksibilnost prirejanja (ang.
matching flexibility), fleksibilnost razporejanja (ang. scheduling flexibility) in fleksibilnost



obvoza (ang. detour flexibility). Naredili smo tudi simulacijo, pri kateri smo proucili, ko-
liko dodatne fleksibilnosti (in katere) je potrebno, da se odstotek povezanih uporabnikov
poveca za dolocen odstotek.

V drugem poglavju razvijemo nov model za tvorjenje prevoznih skupin, ki vsebuje naborne
tocke. Do zdaj so modeli v literaturi predpostavljali, da potniki vstopajo v vozilo in izstopajo
iz njega na svojih dejanskih izvorih ter ponorih. Kakorkoli, ta predpostavka je precej ome-
jujoca, saj se mora samo ena stran prilagajati drugi. Z vkljucitvijo standardnih nabornih
mest v sistem je omogoceno, da se potnik iz svojega izvora premakne na najugodnejSe
naborno mesto oz. da se z doloCene ugodne naborne tocke pomakne proti svojemu ponoru
z razliénimi transportnimi modalitetami. TakSne naborne toCke se uporabljajo v veliko
sistemih deljenja prevozov, vendar Se niso bile omenjene oz. uporabljene v optimizaci-
jski literaturi. Algoritem, ki smo ga zasnovali za reSitev tega problema, skuSa optimirati
ujemanja z vidika dveh kriterijev: maksimiranje Stevila uparjenih uporabnikov in maksimi-
ranje Stevilo prihranjenih prevozenih kilometrov v celotnem sistemu.

V tretjem poglavju predstavljamo nov model in algoritem za tvorjenje prevoznih skupin, ki
omogoca integracijo s sistemom javnega transporta. Na ta nacin je omogoceno, da voznik
potnika zapelje na njegovo kon¢no destinacijo ali pa ga zapelje na postajo javnega trans-
porta, od koder se z vlakom, avtobusom ali drugim prevoznim sredstvom pelje do svoje
koncne destinacije. Sistem poskuSa sinhronizirati poti in ¢ase odhoda in prihoda voznikov
in potnikov z urnikom javnega transporta ter uposteva veliko Stevilo omejitev glede prefer-
enc voznikov in potnikov (najhitrejSi cas odhoda, najpoznejsi Cas prihoda, najdaljSe trajanje
poti ipd.). Podobno kot v prejSnjem poglavju tudi v tem algoritem, ki smo ga zasnovali za
reSitev problema, skuSa optimirati ujemanja z vidika dveh kriterijev: maksimiranje Stevila
uparjenih uporabnikov in maksimiranje Stevilo prihranjenih prevoZenih kilometrov v celot-
nem sistemu.

V Cetrtem poglavju predstavljamo krajSo metodoloSko diskusijo na temo generiranja vseh
dopustnih ujemanj med vozniki in potniki. Predstavljamo, kako je mogoce izkoristiti last-
nosti problema za izboljSanje ucinkovitosti metode generiranja vseh dopustnih ujeman;.
Informacije o najkrajSem moZnem trajanju poti posamicnega potnika in voznika izkoris-
timo pri grajenju podatkovne strukture, katere namen je omogociti u¢inkovito poizvedbo o
tem, kateri potniki so potencialno dopustni za doti¢nega voznika.

V zadnjem, petem poglavju predstavimo matemati¢ni model za tvorjenje prevoznih skupin
v sistemih za deljenje prevoza, ki omogoca, da posami¢nega voznika poveZemo z vecjim
Stevilom potnikov. Gre za model, ki je primeren za deljenje prevoza med vec¢jimi mesti.
Model tudi dopusca, da se uporabnik ne opredeli glede vloge in mu jo sistem sam doloci na
podlagi razmerja med ponudbo ter povpraSevanjem. Predstavimo tudi rutino za predproce-
siranje problema. Izvedemo nekaj manjsih simulacij.

V nadaljevanju povzemamo glavne ugotovitve prvih treh poglavij.



Vpliv fleksibilnosti voznikov in potnikov na delovanje di-
namicnih sistemov deljenja prevoza

O dinami¢nem deljenju prevoza govorimo, ko se i§¢ejo ujemanja za posami¢nega voznika
znotraj zelo kratkega Casovnega okna. Z drugimi besedami to pomeni, da je vodilni ¢as od
najave prevoza v sistemu do dejanske izvedbe kratek (npr. 10-30 minut) in je malo Casa
za koordinacijo med vozniki ter potniki. Tak$ni sistemi so primerni za deljenje prevozov v
urbanih okoljih, kjer je gostota prometa velika in zato obstaja dobra moZnost, da bo se za
doti¢nega voznika ali potnika naSlo ujemanje. Lahko gre za poti v sluzbo in nazaj ali pa za
pot na prostocasne aktivnosti, kot je npr. nakupovanje.

Dinamicno deljenje prevoza uporabniku dopusc¢a moznost, da prevoz ponudi ali poisce v
trenutku, ko ve, kdaj tocno bi se Zelel nekam odpraviti. To pomeni, da je uporabnik lahko
neodvisen od strogo dolocenega urnika, kot npr. pri javnem transportu ali navadnem del-
jenju prevozov, kjer je cas odhoda fiksno dolocen Ze vsaj nekaj ur vnaprej. Po drugi strani
ravno pomanjkanje fleksibilnosti sistemu povzro€a tezave pri vzpostavljanju ujemanj, saj
je izredno tezko ob vsakem trenutku zagotavljati, da bo mogoce najti primernega sopotnika
ali voznika.

Jasno je, da je za sistem bolje, da se prevoz najavi bistveno pred najhitrejSim ¢asom odhoda
ali da je voznik pripravljen narediti vecji obvoz na svoji poti, ali spet da je potnik pripravljen
odriniti kadarkoli znotraj Sirokega ¢asovnega okna. Kar ni jasno, je, kako vsak izmed teh
tipov fleksibilnosti oz. prilagodljivosti vpliva na obnasanje sistem, tj. kateri tip fleksibilnost
je bolj pomemben, ali je bolj pomembna fleksibilnost potnikov ali voznikov ipd. S temi
vprasanji se ukvarja to poglavje.

V tem poglavju proucujemo, kako razli¢ni tipi fleksibilnosti, ki so relevantni v kontekstu di-
namicnega deljenja prevozov, vplivajo na delovanje sistema kot celote. Ugotavljamo, kako
dolocene vrednosti nekega tipa fleksibilnosti vplivajo na Stevilo ujemanj, ki jih je mogoce
vzpostaviti. Ugotavljamo, kako povecati Stevilo ujemanj v sistemu, s tem da se spremeni
fleksibilnost dolocenega Stevila uporabnikov, in ne nazadnje opazujemo, kako samo Stevilo
uporabnikov v sistemu in razmerje med vozniki ter potniki vplivata na obnaSanje sistema
in na $tevilo ujemanj, ki jih je mogoce vzpostaviti.

Simuliramo sistem, v katerem je mogoce enega voznika povezati z najve¢ enim potnikom.
V Studiji definiramo tri tipe fleksibilnosti: fleksibilnost prirejanja (ang. matching flexibility),
fleksibilnost razporejanja (ang. scheduling flexibility) in fleksibilnost obvoza (ang. defour
flexibility). Fleksibilnost obvoza je relevantna samo za voznike, medtem ko sta fleksibilnost
razporejanja in fleksibilnost prirejanja relevantni tako za voznike kot za potnike.

Fleksibilnost prirejanja je pripravljenost uporabnika, da se na pot odpravi hitreje ali pozneje,
kot je idealni Cas, in sicer z namenom, da bi si povecal mozZnost, da se zanj najde uje-
manje. Fleksibilnost ujemanja je v tej Studiji definirana kot razlika med najhitrejSim ¢asom
odhoda in najpoznejSim ¢asom prihoda, ki se ji odsSteje direktni potovalni ¢as med izvorom
ter ponorom uporabnika. V tej Studiji predpostavljamo, da uporabniki fiksno dolocijo na-
jhitrejsi ¢as odhoda in da vecja fleksibilnost prirejanja pomeni, da je uporabnik pripravljen
na cilj prispeti pozneje. Omeniti je treba, da ta fleksibilnost (tako kot je definirana) postavlja
zgornjo mejo na najdaljsi obvoz, ki ga je Se pripravljen narediti voznik.

Fleksibilnost razporejanja definira Cas, ki je na voljo, da sistem razporedi potnike in voznike.



Za posameznega uporabnika to pomeni, koliko €asa je njegova najava v sistemu in na voljo
za iskanje najboljSega ujemanja. Fleksibilnost razporejanja je sestavljena iz vodilnega Casa
od najave v sistem do najhitrejSega ¢asa odhoda.

Slika 1 na ¢asovni premici vizualizira zgoraj omenjene tipe fleksibilnosti za najavo. Vodilni
¢as najave je 15 minut, fleksibilnost razporejanja je 30 minut, fleksibilnost prirejanja pa je
15 minut. Direktni potovalni ¢as med izvorom in ponorom uporabnika je 30 minut.

prirejanje potovanje
a; =0 es =15 Li—to =30 Iy =60 f
razporejanje

Slika 1: Fleksibilnost prirejanja in razporejanja za najavo s € S

Kot smo zZe izpostavili, je fleksibilnost obvoza relevantna samo za voznike. Gre za razmerje
med potovalnim ¢asom med izvorom in ponorom voznika ter najdaljSim potovalnim ¢asom,
ki ga je Se pripravljen sprejeti, da bi se prilagodil potniku in si z njim delil stroSke. V
tej Studiji to fleksibilnost definiramo kot funkcijo potovalnega Casa voznika. Predpostavl-
jamo, da je fleksibilnost obvoza §; voznika i € D funkcija trajanje njegove direktne poti, tj.
0; = Crtoq, + T, Kjer je ¢y parameter fleksibilnosti obvoza, T pa Cas, potreben za izvedbo
postanka.

Osnovne eksperimente smo naredili za dve med seboj razli¢ni geografski razporeditvi. Prva
predstavlja koridor, v katerem se uporabniki iz suburbanega obmocja vkljucujejo na av-
tocesto oz. hitro cesto in potujejo v urbani center. Tak model ima znacilnosti dnevnih
migracij na delovna mesta iz okolice vecjih mest v center mesta. TakSen model je rele-
vanten, ker predstavlja zelo pogost prometni vzorec, ki je pogosto tudi povezan s pomem-
bno zgoscenostjo prometa in z zastoji na vpadnicah v mesta. Slika 2 prikazuje osnovne
znacilnosti te geografske razporeditve. Druga geografska razporeditev je bolj naklju¢na in
predstavlja bolj naklju¢ne poti na prostocasne aktivnosti znotraj vecjega mesta. Izvori in
ponori so generirani popolnoma naklju¢no znotraj ve¢jega kvadrata.

izvori ponori

4 uvozg

+ :/:
N

1 avtocesta

Slika 2: Prikaz geografske razporeditve v koridorju.

Za omenjeni geografski razporeditvi smo naredili vecje Stevilo simulacij. V prvem tipu
simulacij smo proucevali, kako Stevilo uporabnikov v sistemu in njihova fleksibilnost (ki
je enaka za vse uporabnike) vplivata na Stevilo ujemanj oz. stopnjo ujemanja. Stopnja
ujemanja je definirana kot odstotek vseh uporabnikov, ki so bili uparjeni. V prvem eksper-
imentu smo za 20 razli¢nih naklju¢no generiranih primerov izraCunali stopnjo ujemanja za
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razli¢na Stevila uporabnikov v sistemu (med 500 in 5000 uporabnikov) in fleksibilnostjo
prirejanja (med 5 in 60 minut). Slika 3 prikazuje rezultate za prvi eksperiment.
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Slika 3: Povprecne stopnje ujemanje (Matching rate) za razlicne kombinacije sistemske fleksibilnosti prire-
janja (System-wide matching flexibility) in Stevila najav uporabnikov (Number of trip announcements).
Rezultati so povprecja 20 neodvisnih ponovitev.

Rezultati kaZejo, da je tezko zagotoviti visoko stopnjo ujemanja v sistemu deljenja pre-
voza, ¢e uporabniki niso pripravljeni sprejeti fleksibilnosti prirejanja med 15 in 20 minut.
Rezultati tudi kaZejo, da je fleksibilnost potrebna zlasti, ko je Stevilo uporabnikov majhno.
To hkrati pomeni, da je kriti¢na masa, tj. okvirno Stevilo uporabnikov, pri katerem sis-
tem postane vzdrzen, o¢itno mo¢no odvisna od samega obnaSanja uporabnikov, tj. njihove
fleksibilnosti.

Naslednji eksperiment je podoben prvemu: za 20 razli¢nih naklju¢no generiranih primerov
smo izracunali stopnjo ujemanja za razli¢na Stevila uporabnikov v sistemu (med 500 in 5000
uporabnikov) in fleksibilnostjo obvoza (med 5% in 50%). Odstotek fleksibilnosti pomeni
odstotek, za katerega je voznik pripravljen podaljsati svojo pot, da bi se prilagodil potniku.
Ta fleksibilnost ne zajema Casa, ki je potreben za izvedbo dveh postankov — ta Cas je fiksiran
na 2 minuti —, predpostavljamo, da je voznik vedno pripravljen narediti ta postanek.

Rezultati kaZejo, da je fleksibilnost voznikov izjemnega pomena pri vzpostavljanju ujeman;.
Na sliki 4 so ocitne velike razlike med rezultati za nizke vrednosti fleksibilnosti in majhne
vrednosti fleksibilnosti. O¢itno je, da je eden od kljuCev za uspesno delovanje sistema najti
primerne spodbude, da bi vozniki bili pripravljeni narediti daljSe obvoze.

Zadnji eksperiment v prvi seriji proucuje vpliv fleksibilnosti razporejanja na Stevilo uje-
manj. V nasprotju s prejSnjima dvema tukaj predstavljamo rezultate samo za primer del-
jenja prevozov znotraj mest (geografija tipa 2). Razlog je v tem, da so rezultati za koridor
prakticno popolnoma enaki. Nadalje proucujemo samo dve Stevili uporabnikov v sistemu,
in sicer 500 ter 2000 uporabnikov. Vodilni ¢as variiramo med 0 in 30 minut, fleksibilnost
prirejanja pa tudi med O in 30 minut. IzraCunamo rezultate za vse moZne kombinacije. Naj
spomnimo, da smo v tej Studiji fleksibilnost razporejanja definirali kot seStevek vodilnega
Casa in fleksibilnosti prirejanja.

Rezultati na sliki 5 kazejo, da vodilni ¢as pomembno vpliva na stopnjo ujemanja pri nizkih
vrednostih fleksibilnosti prirejanja. Kombinacije kratkega vodilnega Casa (< 5 min) in nizke
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Slika 4: Povprecne stopnje ujemanje (Matching rate) za razli¢ne kombinacije sistemske fleksibilnosti obvoza
(system-wide detour flexibility) in Stevila najav uporabnikov (Number of trip announcements). Rezultati so
povprecja 20 neodvisnih ponovitev.
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Slika 5: Povprecne stopnje ujemanje (Matching rate) za razlicne kombinacije sistemske fleksibilnosti prire-
janja (system-wide matching flexibility) in vodilnega Casa najave (Announcement lead-time).

fleksibilnosti prirejanja (< 10 min) zelo omejujejo delovanje sistema za deljenje prevoza.
Opozoriti je treba, da bi v realnem okolju ti rezultati po vsej verjetnosti bili Se slabsi, saj v
simulaciji ne upoStevamo vseh mogocih neucinkovitosti, ki lahko pri tako kratkih vodilnih
¢asih pomembno vplivajo na komunikacijo med sistemom in uporabniki.

V nadaljevanju smo naredili Se vrsto drugih eksperimentov, ki so bolj ali manj variacije
eksperimentov, ki smo jih predstavili v tem povzetku. Na podlagi rezultatov eksperimentov
lahko potegnemo naslednje zakljucke:

e fleksibilnost uporabnikov igra klju¢no vlogo pri lajSanju procesa iskanja ujemanj v
sistemih deljenja prevoza,

e da bi sistem lahko uspes$no deloval, morajo vozniki in potniki biti fleksibilni pri izbiri
Casa odhoda ter prihoda (vsaj 10 do 15 minut),



e izjemno pomembno za dobro delovanje sistema je, da so vozniki pripravljeni delati
daljSe obvoze — rezultati kazejo, da je ravno s povecevanjem pripravljenosti voznikov,
da podaljSajo svoj vozni ¢as, mogoce doseci najvecja povecanja Stevila ujemanj.

Rezultati simulacij kaZejo na potencial vpeljave spodbud za povecevanje fleksibilnosti uporab-
nikov in lahko sluZijo kot strokovna podlaga pri njihovem snovanju ter vpeljavi.

Koristi zbornih mest v sistemih deljenja prevoza

Do zdaj so modeli v literaturi predpostavljali, da potniki vstopajo v vozilo in izstopajo iz
njega na svojih dejanskih izvorih ter ponorih. Kakorkoli, ta predpostavka je precej ome-
jujoca, saj se mora samo ena stran prilagajati drugi. Z vkljucitvijo standardnih nabornih
mest v sistem je omogoceno, da se potnik iz svojega izvora premakne na najugodnejSe
naborno mesto oz. da se z dolo¢ene ugodne naborne tocke pomakne proti svojemu ponoru
z razli¢nimi transportnimi modalitetami. TakSne naborne toCke se uporabljajo v veliko
sistemih deljenja prevozov, vendar Se niso bile omenjene oz. uporabljene v optimizaci-
jski literaturi. Algoritem, ki smo ga zasnovali za reSitev tega problema, skusSa optimirati
ujemanja z vidika dveh kriterijev: maksimiranje Stevila uparjenih uporabnikov in maksimi-
ranje Stevila prihranjenih prevoZenih kilometrov v celotnem sistemu.

Graf na sliki 6 prikazuje primer deljenja prevoza med voznikom d1 in potnikom r1 ter
dvema zbornima tockama m1 in m2. Stevilka nad povezavo predstavlja potovalni ¢as med
vozlis¢ema. Brez uporabe zbornih tock ni moZno povezati voznika in potnika, saj mora
voznik podaljSati trajanje svoje poti za 6 minut, da bi se lahko prilagodil potniku, ¢esar ni
pripravljen storiti. Ce pa je potnik pripravljen hoditi dodatnih pet minut do naborne tocke
in od nje, pa je deljenje prevoza mozno, saj se je obvoz za voznika ustrezno zniZzal.
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Slika 6: Potnik (siva barva) in voznik (bela barva) potujeta od izvora (krog) do ponora (kvadrat) preko zbornih
tock.

Da bi omogocili avtomatsko povezovanje voznikov in potnikov v sistemu deljenja prevoza,
je treba definirati optimizacijski problem in razviti primeren algoritem za njegovo resitev.
V tej Studij smo problem definirali na nacin, da lahko voznik naredi najve¢ dva postanka,
in sicer enega, da potnika oziroma potnike pobere, in enega, da potnike odlozi. Model, ki
smo ga definirali, dopusc¢a, da vozniku priredimo vecje Stevilo potnikov. V tej Studiji smo
to Stevilo omejili na najvec tri potnike, ker je to najvecje Stevilo odraslih potnikov, ki se Se
lahko udobno peljejo v vecini osebnih vozil. Voznik tako lahko na enem zbornem mestu



pobere in na drugem zbornem mestu odloZi do tri potnike. Model uposteva vecje Stevilo
omejitev, ki so vezane na najhitrejsi ¢as odhoda iz izvora in najpoznej$i prihod na ponor,
najdaljsi Se sprejemljivi Cas potovanja, najdaljse trajanje hoje do zbornega mesta in z njega
ipd.

Algoritem, ki smo ga razvili za reSitev optimizacijskega problema, deluje v dveh fazah: v
prvi fazi generiramo vsa mozna ujemanja med vozniki in potniki, v drugi fazi pa na pod-
lagi identificiranih dopustnih ujemanj skonstruiramo celoStevilski linearni optimizacijski
problem prirejanja potnikov oz. kombinacij potnikov voznikom.

V prvi fazi na ucinkovit nacin generiramo vsa mozna ujemanja med potniki in vozniki. Pri
tem uporabljamo lastnost, da je dopustno ujemanje med voznikom in n potnikov mozno le,
Ce obstaja dopustno ujemanje za vsako izmed moZnih kombinacij teh potnikov ter voznika.
To pomeni, da lahko ujemanja generiramo rekurzivno, tako da v prvi fazi za dolocenega
voznika generiramo samo ujemanja tega voznika s posami¢nimi potniki. Ko generiramo
ujemanja s pari potnikov, je treba za posamicnega voznika prouciti samo tiste potnike, ki so
bili dopustna posami¢na ujemanja. Enaka logika velja tudi za trojice.

V drugi fazi gre za razSirjen problem prirejanja, ki voznikom prireja posamicne voznike oz.
pare ali trojice voznikov. Problem je sicer NP-teZek, vendar je zaradi svojih lastnosti hitro
resljiv s programom IBM CPLEX. Ucinkovito lahko reSimo tudi velike primere problema
prirejanja z ve€ tiso€ uporabniki.

V drugem delu Studije smo nato naredili vecje Stevilo simulacij na podlagi prometnega
modela za SirSe obmocje mesta Atlanta v ZDA (Metro Atlanta). Namen teh simulacij je bil
kvantificirati vpliv vkljucitve nabornih to¢k v sistem deljenja prevozov. Parametri, ki smo
jih prevzeli v simulacijah, so povzeti v tabeli 2.

Tabela 2: Lastnosti osnovnih primerov deljenja prevoza v simulaciji.

Prometni vzorec: migracija z obrobja v center
Povprecno Stevilo najav uporabnikov: | 2849.4
Povprecno Stevilo najav voznikov: 1425.8
Povprecno Stevilo najav potnikov: 1423.6
Povprecna dolZina poti voznika: 7.58 mi
Povprecna dolZina poti potnika: 7.64 mi
Povprecno trajanje poti voznika: 30.34 min
Povprecno trajanje poti potnika: 30.56 min
NajdaljSa razdalja do zborne tocke: 0.5 mi

Hitrost pesca: 4 ft/s
Najdaljsi ¢as hoje do zborne tocke: 11 min
Hitrost vozila: 15 mi/h
Fleksibilnost obvoza voznika: 0.25
Fleksibilnost prirejanja voznika: 20 min
Kapaciteta vozil: 3 prosti sedezi

V tabeli 3 so povzeti rezultati za Sest razli¢nih scenarijev. Stolpec O prikazuje rezultate za
sistem, v katerem ni nabornih tock. Stolpci 1-4 prikazujejo rezultate za razli¢ne stopnje gos-
tote nabornih tock v sistemu, v stolpcu 1 imamo eno naborno to¢ko na TAZ, v stolpcu 4 pa
Stiri naborne tocke na TAZ. Mesto je v modelu namre¢ razdeljeno na manjSe regije, imen-



ovane TAZ (TAZ — travel analysis zone). V povprecju TAZ obsega povrSino 4,1 kvadratne
milje. Scenarija 4* in 4** prikazujeta rezultate za najviSjo gostoto nabornih tock, s tem da
so v scenariju 4* moZna samo prirejanja med enim voznikom in enim potnikom, v scenariju
4** pa je mozna uporaba samo najblizje naborne tocke do potnikovega izvora oz. ponora.
Kot je razvidno, lahko uporaba nabornih tock v sistemu bistveno poveca Stevilo ujeman;
med vozniki in potniki, ki jih je moZno vzpostaviti. V primerjavi z rezultati brez uporabe
nabornih tock se je stopnja ujemanja povecala za 6,8 odstotne tocke. Razvidno je tudi, da
stopnja ujemanja ni bistveno niZja, ¢e upoStevamo le ujemanja, v katerih sta en voznik in
en potnik (povprecna stopnja ujemanja se zmanjsa le za 0,7 odstotne tocke). Po drugi strani
je jasno vidno, da je za dobro delovanje sistema koristno, da je nabornih tock v sistemu
veliko (z veCanjem gostote toCk v sistemu se pomembno veca tudi stopnja ujemanja) in da
so potniki ter vozniki fleksibilni glede tega, na kateri naborni tocki bodo vstopili ali izstopili
(stopnja ujemanja za scenarij 4** je bistveno niZja kot za scenarij 4).

Tabela 3: Rezultati za razli¢ne gostote porazdelitve nabornih tock in razli¢ne tipe ujemanj.

0 1 2 4 4* 4%

Sistem:

Stopnja ujemanja (%) 68.00 71.14 7290 74.83 | 74.13 69.71
Prihranek prevoZenih milj (%) | 27.39 28.36 28.93 29.63 | 29.24 27.59
Vozniki:

Stopnja ujemanja (%) 67.96 70.93 7245 74.08 | 74.08 69.65
Povecanje trajanja poti (%) 2545 2598 2631 2641 | 26.19 25.77
Potniki:

Stopnja ujemanja (%) 68.11 71.43 73.43 75.65 | 74.26 69.84
Povecanje trajanja poti (%) 13.09 19.27 2274 26.54 | 1643 1642
Trajanje hoje (min:sek) - 8:06 828 8:56 | 8:45 5:06

V nadaljevanju Studij smo naredili Se vecje Stevilo simulacij, ki so bile namenjene preveritvi
robustnosti rezultatov simulacije in vpliva dolo¢enih pomembnih parametrov. Zakljucek
tega poglavja je, da je vpeljava nabornih tock v sistem vsekakor koristna. Najvecje koristi
je mozno doseci, ko so tako potniki kot vozniki fleksibilni glede izbire primernih nabornih
tock. Pomemben ucinek je mozno doseci tudi, ko potnik lahko doseze bolj oddaljene
naborne tocke, npr. z uporabo kolesa ali javnega transporta. Pomemben ucinek ima tudi
pripravljenost voznikov za delanje obvozov (kar smo Ze pokazali v prejSnjem poglavju).

Integracija sistema deljenja prevoza s sistemom javnega trans-
porta

V tem poglavju predstavljamo nov model in algoritem za tvorjenje prevoznih skupin, ki
omogoca integracijo s sistemom javnega transporta. Na ta nacin je omogoceno, da voznik
potnika zapelje na njegovo koncno destinacijo ali pa ga zapelje na postajo javnega trans-
porta, od koder se z vlakom, avtobusom ali drugim prevoznim sredstvom pelje do svoje
kon¢ne destinacije. Sistem poskuSa sinhronizirati poti voznikov in potnikov z urnikom
javnega transporta ter uposteva veliko Stevilo omejitev glede preferenc voznikov in potnikov
(najhitrejSi ¢as odhoda, najpoznejsi Cas prihoda, najdaljSe trajanje poti ipd.). Podobno kot
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v prejSnjem poglavju tudi v tem algoritem, ki smo ga zasnovali za reSitev problema, skusa
optimirati ujemanja z vidika dveh kriterijev: maksimiranje Stevila uparjenih uporabnikov
in maksimiranje Stevila prihranjenih prevoZenih kilometrov v celotnem sistemu.

Graf na sliki 7 prikazuje smisel integracije sistema za deljenje prevoza s sistemom javnega
transporta. Gre za primer deljenje prevoza med voznikom d1 in potnikom r1 ter dvema
postajama javnega transporta sl in s2. Stevilka nad povezavo predstavlja potovalni &as
med vozlis¢ema. Brez uporabe javnega transporta ni mozno povezati voznika in potnika,
saj mora voznik podaljSati trajanje svoje poti za celih 20 minut, da bi se lahko prilagodil
potniku, Cesar ni pripravljen storiti. Ce pa je potnik pripravljen uporabiti tudi javni transport
in hoditi dodatni dve minuti do kon¢ne destinacije, pa je deljenje prevoza mozno, saj se je
obvoz za voznika ustrezno skrajSal.
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Slika 7: Potnik (siva barva) in voznik (bela barva) potujeta od izvora (krog) do ponora (kvadrat)

Da bi omogocili avtomatsko povezovanje voznikov in potnikov v sistemu deljenja prevoza,
je treba definirati optimizacijski problem in razviti primeren algoritem za njegovo resitev.
V tej Studij smo problem definirali na nacin, da lahko voznik naredi najvec tri postanke,
in sicer do dva postanka, da pobere do dva potnika, in enega, da potnika odloZi na postaji
javnega transporta. Dodatno v modelu tudi dopus¢amo, da voznik potnika pobere in ga
prepelje direktno do njegove destinacije, Ce je to dopustno in smiselno. Model uposteva
vecje Stevilo omejitev, ki so vezane na najhitrejSi ¢as odhoda z izvora in najpoznejsi prihod
na ponor, najdalj$i Se sprejemljivi ¢as potovanja, najdaljSe trajanje hoje do zbornega mesta
in z njega ipd.

Algoritem, ki smo ga razvili za reSitev optimizacijskega problema, deluje v dveh fazah: v
prvi fazi generiramo vsa moZna ujemanja med vozniki in potniki, pri ¢emer upostevamo
urnik javnega transporta, v drugi fazi pa na podlagi identificiranih dopustnih ujemanj skon-
struiramo celoStevilski linearni optimizacijski problem prirejanja potnikov 0z. kombinacij
potnikov voznikom.

V prvi fazi na u€inkovit nacin generiramo vsa moZna ujemanja med potniki in vozniki. Pri
tem uporabljamo lastnost, da je dopustno ujemanje med voznikom in »n potnikov mozno le,
Ce obstaja dopustno ujemanje za vsako izmed mozZnih kombinacij teh potnikov in voznika.
To pomeni, da lahko ujemanja generiramo rekurzivno, tako da v prvi fazi za doloCenega
voznika generiramo samo ujemanja tega voznika s posami¢nimi potniki. Ko generiramo
ujemanja s pari potnikov, je treba za posami¢nega voznika prouciti samo tiste potnike, ki so
bili dopustna posamic¢na ujemanja. Enaka logika velja tudi za trojice.

V drugi fazi gre za razSirjen problem prirejanja, ki voznikom prireja posami¢ne voznike oz.
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pare ali trojice voznikov. Problem je sicer NP-teZek, vendar je zaradi lastnosti hitro resljiv s
programom IBM CPLEX. Uc¢inkovito lahko reSimo tudi velike primere problema prirejanja
z vecC tisoC uporabniki.

V drugem delu Studije smo nato naredili vecje Stevilo simulacij, s katerimi smo Zeleli kvan-
tificirati vpliv integracije sistema za deljenje prevozov in sistema javnega transporta. Sim-
ulacija predpostavlja metropolitansko obmocje, ki meri 20 krat 10 milj. V sredini obmocja
je urbani center. Izvore uporabnikov generiramo enakomerno naklju¢no v celotnem pra-
vokotnem obmocju, njihove ponore pa znotraj kroga, ki predstavlja center mesta. Sistem
javnega transporta sestavlja Sest linij, ki se krizajo v centru. Tukaj je moZno prestopiti na
drugo linijo. Rdeci Crti predstavljata hitrejSa vlaka, ki povezujeta periferijo s centrom (glej
sliko 3.2). Crne &rte predstavljajo urbane linije znotraj mesta. Potovalna hitrost teh linij je
v primerjavi s tistimi na periferiji niZja, postaje so postavljene bolj na gosto. V dolocenih
scenarijih dopusc¢amo tudi uporabo parkiriS¢ na obrobju mesta (t. i. koncept park-and-ride).
Osnovni parametri simulacije so povzeti v tabeli 4.

Tabela 4: Lastnosti osnovnih primerov deljenja prevoza.

Prometni vzorec: migracija z obrobja v center mesta
Povprecno Stevilo najav uporabnikov: 1000
Razmerje med vozniki in potniki: 0.5
Fleksibilnost prirejanja: 20 min
Fleksibilnost razporejanja: 15 min
Fleksibilnost obvoza: 25%
Fleksibilnost potnika: 50%
Najvecje Stevilo postankov voznika: 3
Povprec¢na dolZina poti voznika: 8.0 mi
Povprecno trajanje poti voznika: 24.1 mi
Najvecja razdalja do postaje javnega transporta: 0.5 mi
Hitrost pesca: 4 ft/s
Hitrost vozila: 20 mi/h
Hitrost regionalne linije: 40 mi/h
Hitrost urbane linije: 20 mi/h
Kapaciteta vozila: 2 sedeza
Cas pobiranja potnika: 2 min
éas, potreben za transfer med avtom in vlakom: 2 min
Dodatno trajanje transferja za park-and-ride: 2 min
Cas postanka vlaka na postaji: 1 min
Cas postanka vlaka na osrednji postaji: 3 min
Frekvenca odhodov vlakov: 15 min
Stevilo postaj javnega transporta: 41
Stevilo postaj park-and-ride: 8

Rezultati osnovne simulacije so povzeti v tabeli 5.
Scenariji od leve proti desni so:
e RS — normalno deljenje prevoza (ni integracije z javnim transportom);

e TRS1 - deljenje prevozov z moznimi transferji enega potnika do postaje javnega
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Tabela 5: Rezultati za razlicne primere deljenja prevoza (povp. 10 neodvisnih ponovitev).

RS TRS1 TRS2 PTRS

Potniki
Stopnja ujemanja (%): 66.8 740 83.7 838
Transferji na postaje (%): | 0 324 372 339
Transferji P+R (%): 0 0 0 4.0
A potov. Cas (%): 0 7.3 7.4 7.5
Vozniki
Stopnja ujemanja (%): 68.3 755 738 74.2
Transferji na postaje (%): | 0 324 273 251

Transferji P+R (%): 0 0 0 3.3

A potov. Cas (%): 19.1 17.1 21.6 21.9

A razdalja (%): 8.4 7.0 10.4 7.2
transporta;

e TRS2 — deljenje prevozov z moznimi transferji do dveh potnikov do postaje javnega
transporta;

e PTRS - deljenje prevozov z moZnimi transferji do dveh potnikov do postaje javnega
transporta in moznostjo, da voznik svoje vozilo parkira na postaji javnega transporta
ter pot nadaljuje z javnim transportom.

Kot je razvidno iz rezultatov, je integracija obeh sistemov lahko zelo koristna. V primerjavi
z osnovnim scenarijem se stopnja ujemanja poveca s 66,8% na 83,7%. Pomemben rezultat
je tudi, da vpeljava ujemanj, ko voznik na postajo prepelje do dva potnika, pomembno
prispeva k vecji stopnji ujemanja (povecanje stopnje ujemanja za cca 10 odstotnih tock).
Vidimo tudi, da manjsi odstotek voznikov (3,3%) uporabi tudi moznosti park-and-ride.

Zakljucek

Upamo, da bodo metode, dognanja in rezultati, predstavljeni v tej disertaciji, koristno
prispevali k boljSemu razumevanju, upravljanju ter delovanju sistemov za deljenje prevoza.
Zlasti upamo, da bodo rezultati simulacij upravljavce sistemov za deljenje prevoza spod-
budili k uvedbi raznovrstnih spodbud oz. motivacijskih shem za voznike in potnike ter k
proucitvi moznosti integracije z javnim transportom in drugimi sistemi, kot so npr. sistemi
deljenja koles.
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