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OPTIMIZACIJA ENO-DIMENZIONALNEGA RAZREZA Z UPORABNIM 

OSTANKOM: PRIMER NIZKEGA RAZMERJA MED POVPREČNO DOLŽINO 

NA ZALOGI IN POVPREČNO DOLŽINO NAROČIL 

POVZETEK 

Problem eno-dimenzionalnega razreza ima v praksi veliko pojavnih oblik. V največ 

primerih je definiran kot problem, pri katerem je treba v naprej znano število naročenih 

palic razrezati iz znane zaloge palic (različno število različnih dolžin palic). Gre za 

zadovoljevanje naročil kupcev, ki izhajajo iz potreb trga.  

Proces optimizacije eno-dimenzionalnega razreza materiala temelji na porabi zalog z 

namenom izpolnjevanja naročila, pri tem pa upošteva ekonomski cilj minimiziranja 

stroškov. Eden glavnih razlogov, da podjetje optimizira proces razreza eno-

dimenzionalnega materiala, je v minimizaciji materiala, ki predstavlja neuporaben ostanek. 

Neuporaben ostanek materiala je izguba, ki jo želimo zmanjšati. V nekaterih primerih, ko 

je ostanek dovolj velik, se ga vrne v skladišče in ponovno uporabi (Alfieri et al., 2007; 

Cherri et al., 2009). Oznaka problema eno-dimenzionalnega razreza z uporabnim ostankom 

je 1DCSPUL (angl. One-dimensional Cutting Stock Problem with Usable Leftover).  

Pri rezanju materiala je zelo pomembno, kako velik je ostanek rezanja, saj se premajhen 

ostanek smatra kot odpadek in zavrže, to pa vpliva na stroške podjetja. Smotrno je, da je 

ostanek, ki se zavrže, čim manjši oz. tako majhen, kot je to mogoče (Gradišar & Jesenko, 

1996). Odločevalci se pri reševanju 1DCSPUL odločijo, kje je meja, nad katero se ostanek 

vrne nazaj v skladišče, in pod katero predstavlja izgubo pri razrezu. Če upoštevamo 

vračanje neuporabljenega materiala v skladišče, potem minimizacija ostanka ne predstavlja 

nujno najboljše rešitve za podjetje (Cherri et al., 2009). Pri 1DCSPUL gre za proces, pri 

katerem imamo na zalogi standardne in nestandardne dolžine. Nestandardne dolžine 

predstavljajo uporabni ostanki prejšnjih naročil. 

Poleg optimizacijske metode lahko na višino neuporabnega ostanka oziroma izgube vpliva 

tudi narava problema, ki jo je pri reševanju treba upoštevati. Tako je iz praktičnega 

primera, predstavljenega v Erjavec et al. (2009) razvidno, da je povprečna izguba pri 

1DCSPUL enaka 15 %. Razlog je v nizkem razmerju med povprečno dolžino na zalogi in 

povprečno dolžino naročil. Razmerje med povprečno dolžino na zalogi in povprečno 

dolžino naročil je nizko, če je manjše od nekega praga. V praktičnem primeru, opisanem v 

Erjavec et al. (2009), je ta enak 3, zato je takšen prag upoštevan v doktorski disertaciji.  

Predstavljena sta razvoj in podroben opis nove metode za reševanje 1DCSPUL za primere, 

ko je razmerje med povprečno dolžino na zalogi in povprečno dolžino naročil manjše od 3. 

Učinkovitost nove metode je na primerih iz literature preverjena s primerjavo s podobnimi 

metodami. Nova metoda je podana na način, ki omogoča enostavno integracijo v obstoječe 

informacijske sisteme podjetij. 



V literaturi obstaja veliko metod za reševanje 1DCSPUL, vendar pa še ni jasnega odgovora 

na vprašanje, kako različne metode testirati in primerjati. Kljub številnim kriterijem in 

primerom (Cherri, Arenales, & Yanasse, 2008; Cui & Yang, 2010) metode testiranja, ki jih 

je mogoče zaslediti v strokovni in znanstveni literaturi, ne zagotavljajo točnih in popolnih 

informacij o učinkovitosti različnih metod. Glavni problem je v tem, da so posamezni 

primeri ustvarjeni neodvisno eden od drugega in da vsebujejo tako podatke o naročilu kot o 

zalogi. Slednje pa ni v skladu z lastnostjo 1DCSPUL, da se uporabni ostanki iz prejšnjih 

naročil vrnejo na zalogo in uporabijo za izpolnjevanje prihodnjih. Pri obstoječih metodah 

testiranja uporabni ostanki ne izhajajo iz prejšnjih naročil. Namesto da bi upoštevale 

vračanje uporabnih ostankov iz prejšnjih naročil na zalogo, obstoječe metode testiranja 

temeljijo na primerih, kjer je v skladišču vedno enako število uporabnih ostankov, ki so 

ustvarjeni z generatorjem naključnih števil.  

Zato v doktorski disertaciji predlagam nov, natančen model testiranja metod za reševanje 

1DCSPUL, ki na podlagi simulacij omogoča bolj natančne primerjave različnih metod s 

tega področja. Metoda testiranja temelji na konceptu, kjer so uporabni ostanki, ki se 

ustvarijo pri izpolnjevanju trenutnega naročila, uporabljeni za izpolnjevanje naslednjega, in 

tako dalje. Razen v Trkman in Gradišar (2007) in Cherri et al. (2012) metode v literature 

ne upoštevajo vračanja ostankov iz trenutnega naročila na zalogo z namenom izpolnjevanja 

kasnejših naročil. Ker ni mogoče zaslediti nobene natančne metode za testiranje in 

primerjavo rešitev, so metode v literaturi testirane napačno. Za premostitev tega problema 

je v doktorski disertaciji predlagana nova metoda za testiranje, kjer uporabni ostanki niso 

ustvarjeni naključno, temveč so simulirani na način, ki bolje odraža stanje v realnosti kot 

metode v literaturi. Delovanje predlagane metode testiranja je prikazano na primerih, ki 

imajo različno razmerje med povprečno dolžino na zalogi in povprečno dolžino naročil. 

Ključne besede 

Optimizacija, eno-dimenzionalni problem razreza, uporabni ostanek, hevristične metode, 

simulacije 

 

 

 



ONE-DIMENSIONAL CUTTING STOCK OPTIMIZATION WITH USABLE 

LEFTOVER: A CASE OF LOW STOCK-TO-ORDER RATIO 

SUMMARY  

One-dimensional cutting stock problem occurs in many forms in practice. It is mostly 

defined as a problem, where a number of ordered items, known in advance, must be cut 

from a known stock of bars. The goal is to satisfy customers’ orders, deriving from the 

market needs.   

 

The process of optimizing the one-dimensional cutting of material makes the use of stock 

bars more efficient in order to fulfill the customer’s order.  It follows the economic goal of 

minimizing the costs. Companies optimize the process of cutting one-dimensional material 

due to minimization of material that is treated as an unusable leftover. Leftover material 

thus represents a loss and should be reduced. If the leftover is of enough size it can be 

returned back on stock and reused (Alfieri, van de Velde, & Woeginger, 2007; Cherri, 

Arenales, & Yanasse, 2009). Such problem is known as one-dimensional cutting stock 

problem with usable leftover (1DCSPUL).   

 

The amount of leftovers is very important when cutting material. Insufficiently large 

amount is regarded as a waste and discarded. That affects the company’s costs.  It is 

reasonable that the discarded leftover is as small as possible (Gradišar & Jesenko, 1996).  

When solving 1DCSPUL the decision-makers define the threshold above which the 

leftover is returned back on stock and below which the leftover represents a cutting loss. 

When returning usable leftovers back on stock the waste minimization does not necessarily 

represent the best possible solution for the company (Cherri et al., 2009). The 1DCSPUL 

thus consists of standard and non-standard stock lengths. The non-standard lengths are 

leftovers from previous orders that can be reused. 

 

The amount of unused material or loss depends on the optimization method but can be 

affected also by the nature of the problem, which need to be considered when solving the 

problem. In practical case it is shown that the average trim loss in 1DCSPUL amounts 15% 

(Erjavec, Gradišar, & Trkman, 2009). The cause can be found in the low ratio between 

average stock length and average order length. The ratio between average stock length and 

average order length is low if it is lower than some threshold. In practical case,  as 

presented in Erjavec et al. (2009), the ratio equals 3, therefore the same threshold is taken 

into account in presented doctoral dissertation.  

 

I introduce the development and a detailed description of the new method for solving 

1DCSPUL in cases, where the ratio between average stock length and average order length 

is lower than 3. The efficiency of the new method is, using cases from the literature, shown 

by comparison with similar methods. 



In the literature it is possible to find many method for solving 1DCSPUL but there is no 

answer to the question of testing and comparing different solutions. Despite numerous 

criteria and hundreds of problem instances (Cherri et al., 2009; Cui & Yang, 2010), the 

testing methods used in the literature do not provide accurate and complete information 

about the effectiveness of different methods. The main problem is that the benchmark 

problem instances are generated independently from one another and that they contain both 

order and inventory data. This is not in line with the basic characteristic of the 1DCSPUL 

that usable leftovers from previous orders are used in the following ones. The existing 

testing methods do not take usable leftovers from previous orders into account. Instead of 

concentrating on returning usable leftovers from previous orders back on stock, the 

existing methods use problem instances, where usable leftovers in stock are generated with 

a random number generator. 

Therefore I propose a new precise model for testing solutions to 1DCSPUL, which is based 

on simulation. Thus it enables more accurate comparison of different methods from the 

relevant field. A new testing method is based on the concept in which the usable leftovers 

generated in the previous order are used in the current one, and the usable leftovers 

generated in current order in the next one, and so on. Except for two papers (Trkman & 

Gradišar, 2007; Cherri et al., 2012) the methods in the literature do not take into account 

returning of leftovers from current instance back on stock and using them in the following 

ones. It is also not possible to find a sufficient and accurate testing method for comparison 

of the solutions hence the methods in the literature are not correctly tested. To overcome 

this issue a new testing method is proposed where usable leftovers are not randomly 

generated but are simulated in a way that reflects the real situation better than the methods 

in the literature. The efficiency of proposed testing method is demonstrated by cases with 

different ratios between average stock length and average order length. 

Keywords 

Optimization, One-dimensional Cutting Stock Problem, Usable Leftover, Heuristics, 

Simulation 
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INTRODUCTION 

The introductory chapter presents the issue and provides an overview of the research area. 

Subsequently, I state the purpose and the goals of the doctoral dissertation, which is 

followed by a description of the research methods and techniques used. Thereafter, I 

discuss the potential research contribution. The structure of the doctoral dissertation is 

described in detail in the last part of the introduction. 

Presentation of the issue and overview of the research area 

The one-dimensional cutting-stock problem (1DCSP) comes in a variety of forms in 

practice in various industrial processes. It most often occurs in paper (Chauhan, Martel, & 

D’Amour, 2008) metal (Abuabara & Morabito, 2009; Leão, Santos, Hoto, & Arenales, 

2011; Stadtler, 1990), steel (Dimitriadis & Kehris, 2009; Hajizadeh & Lee, 2007), wood 

(Venkateswarlu, 2001), aluminum (Stadtler, 1990), textile (Alfieri et al., 2007; Arbib, 

Marinelli, Rossi, & Di Iorio, 2002; Gradišar, Jesenko, & Resinovič, 1997), aerospace 

(Morgan, Morton, & Daniels, 2006), medicine (Aktin & Özdemir, 2009) and glass (Tsai, 

Hsieh, & Huang, 2009) industries.  

1DCSP is largely defined as a problem in which a number of ordered items provided in 

advance must be cut from a known stock of bars (various numbers of bars of various 

lengths). This involves filling customers’ orders, which arise from market needs. 

The first attempts to find an optimal solution to the problem began in 1939, when 

Kantorovich presented a basic model for solving 1DCSP; however, the formulation of the 

problem as known today was introduced in 1956 (Paull, 1956). The next important step 

was made in 1961, when Gilmore and Gomory presented a solution method based on linear 

programming (Gilmore & Gomory, 1961). Later many other solutions to the 1DCSP were 

presented, which consequently led to the need to classify them in a way that would clearly 

distinguish between various types of problems. To this end, Dyckhoff proposed a 

classification in 1990 (Dyckhoff, 1990) based on which several interesting methods have 

been developed for solving the problem (Belov & Scheithauer, 2002; Scheithauer & Terno, 

1997; Schilling & Georgiadis, 2002; Vanderbeck, 2000), and later on this classification 

was also expanded to include the time dimension (Trkman & Gradišar, 2007). The year 

2007 was also important: it saw the presentation of a new classification that indicated 

significant progress in cutting and packaging (Wäscher, Haußner, & Schumann, 2007). 

Using this classification, problems can be sorted into classes in even greater detail. 

The process of optimizing the one-dimensional cutting of material is based on the use of 

stock in order to fill the order, while taking into account the economic goal of minimizing 

the costs. One of the main reasons for a company to optimize the process of cutting one-

dimensional material is the minimization of leftover material. Leftover material is a loss 

that we want to reduce. In some cases, when there is enough leftover material, it can be 



2 

 

returned to the warehouse and reused (Alfieri et al., 2007; Cherri et al., 2009). This is 

known as the cutting-stock problem with usable leftover (CSPUL). With regard to one 

dimension it is called one-dimensional cutting stock problem with usable leftover 

(1DCSPUL). 

Optimal solutions usually result from the application of exact methods (Alves & Valério de 

Carvalho, 2008), but they are only useful for small orders (the results of exact methods are 

the best possible solutions, but in the case of larger orders the computing time is too long 

due to the insufficient computing power of computers); therefore, the use of an exclusively 

exact method was inappropriate for my dissertation. The majority of methods developed 

are thus based on a heuristic approach (Ragsdale & Zobel, 2004; Vahrenkamp, 1996; 

Yeung & Tang, 2003). In contrast to exact methods, heuristic solutions do not ensure an 

optimal solution, but they do find one within a reasonable time.  

When cutting material, the amount of leftovers is very important because an 

inappropriately large amount is considered as waste and is discarded, which affects the 

company’s costs. It makes sense for the amount of leftovers discarded to be as small as 

possible (Gradišar & Jesenko, 1996). In solving the 1DCSPUL, those making decisions set 

the limit above which the waste is returned to the warehouse and below which the waste 

represents a cutting loss. Taking into account that the unused material is returned to the 

warehouse, waste minimization is not necessarily the best solution for the company (Cherri 

et al., 2009). The 1DCSPUL essentially involves a process in which there are standard and 

nonstandard lengths in stock. The nonstandard lengths are the useful leftovers from 

previous orders. In the 1DCSPUL one should also take the following assumptions into 

account (Cherri et al., 2009): 

 the amount of the order must be known; 

 the amount of the stock must be known; and 

 the orders must be filled. 

An extensive overview of methods used for solving 1DCSPULs is provided in Cherri et al. 

(2009). The most frequently used methods are heuristics. The COLA and CUT methods 

have an important place among the methods used for solving 1DCSPULs; they were the 

first methods developed for this type of problem. The COLA method was presented in 

Gradišar et al. (1997), and the CUT method was presented in Gradišar, Resinovič, and 

Kljajić (1999). Both methods are item oriented and based on exhaustive repetition. 

In addition to the optimization method, the nature of the problem can also influence the 

amount of unused waste or loss; thus it must be taken into account when solving the 

problem. The practical example presented in Erjavec, Gradišar, & Trkman (2009) shows 

that the average loss in the 1DCSPUL is 15%. The reason for this lies in the low ratio 

between average stock length and average order length (henceforth, the ratio between 
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average stock length and average order length will be referred to as r). The literature does 

not offer any definition of a low r; therefore this ratio will be defined in the third chapter.  

Operations research is of key importance to the problem discussed. Even though the 

literature provides several definitions by various authors, for the purpose of this doctoral 

dissertation, operations research can be defined as analytical scientific method of providing 

decision-makers with a quantitative basis for making better decisions in organizations 

(Čižman, 2004).  

The purpose of operations research is to find an optimal (exact) or near-optimal (heuristic) 

solution to complex decision-making problems. It is based on many mathematical methods 

and techniques such as modeling, decision analysis, and business simulations. The 

beginnings of operations research date back to the late 1930s, when researchers from 

various areas joined forces in field operations to test and evaluate solutions in order to 

develop radar technology for the British Royal Air Force. Later on, various operations 

research groups around the world analyzed military issues. After the Second World War, 

the use of operations research was expanded to management, with the aim of supporting 

the decision-making process. Today operations research is widely used around the world to 

aid decision-making with a significant contribution to management, business, and industry 

(Assad & Gass, 2011). 

The use of operations research methods in companies tackles a variety of business 

challenges; for example (Crowder, 2000):   

 the increased complexity of running a successful business; 

 new opportunities in the electronic economy; and 

 a large volume of information, but no decision. 

 

The main objective of operations research in companies is to increase efficiency, which 

can be achieved through the following benefits, delivered by operations research projects 

(Robinson, 2000): 

 increased revenue or return on investment; increase market share; 

 decreased cost or investment; 

 greater utilization from limited equipment, facilities, money and personnel; 

 assessment of likely outcomes of decision alternatives and determining better 

alternatives; 

 managed and reduced risk; 

 quantified and balanced qualitative considerations; 

 increased speed or throughput; decreased delays; 

 greater control and turnaround; 

 improved quality; 
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 a better basis for forecasting and planning; and 

 demonstrated feasibility and workability and assistance with training. 

 

Companies use the applications of operations research in various business functions and 

categories, like board room and senior executive offices, manufacturing and service 

operations, distribution, transportation, telecommunications, finance, control, marketing, 

information technology, human resources, legal services, engineering, research and 

development, revenue management, supply chain management, data mining, complex 

scheduling and intelligent real-time systems (Robinson, 2000). 

One of the important areas of operations research is optimization. It appears in many 

disciplines, such as economics, engineering, physics, and mathematics (Antoniou & Lu, 

2007). The field developed rapidly in the twentieth century and today makes it possible to 

solve complex problems (Alba, Blum, Asasi, Leon, & Gomez, 2009). In practice, this 

means that the optimization process tends to acquire the best possible solution, which is 

obtained through the use of various techniques, methods, procedures, and algorithms 

(Antoniou & Lu, 2007). 

1DCSP is an optimization problem. The method presented in the doctoral dissertation will 

solve the posed problems automatically. This way a company can achieve a competitive 

advantage over other market players. The use of information technology and the 

automatization of production processes can significantly reduce the cost of cutting. It is 

therefore possible to expect an increase in methods for solving the 1DCSP in the future 

(Trkman & Gradišar, 2010). 

Purpose and goals 

The main purpose of the doctoral dissertation is to enhance the theoretical knowledge of 

the field researched with the development of a new method for solving the 1DCPSUL in 

cases in which r is low. 

My first goal is formulated as follows: 

 To develop a new method for solving 1DCSPULs with a low r that will provide better 

results than existing methods. 

The second issue involves comparing and testing different methods for solving the 

1DCSPUL, which should be tested by using the same criteria and benchmark instances. 

Because the effectiveness of different methods has not been comprehensively and 

thoroughly discussed in the literature, my second goal is: 

 To improve the current methods of testing solutions to 1DCSPULs with the simulation 

method. 
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Research methods and techniques 

The first research method I use includes a detailed and extensive overview of the research 

literature (both primary and secondary sources) with an emphasis on research contributions 

dealing with the areas discussed. I also analyze the effectiveness criteria of one-

dimensional cutting.  

The results of the proposed method are obtained through the use of simulations, which are 

one of the most frequently used research methods in the social science (Pidd, 2004). The 

application of the simulations technique is important for the area discussed and therefore it 

is presented in greater detail in the fifth chapter of the doctoral dissertation.  

The concept of using simulations for testing the method—where, contrary to individual 

consideration of separate instances, the group of instances would be taken into account—

has not yet been theoretically supported in previous studies. Nor does the literature contain 

any method that would take into account a low r, except for a working paper (Gradišar, 

2008). Therefore the results of my study include important findings and thus provide a 

theoretical contribution to the relevant field of knowledge; in addition, the practical 

contribution is expressed in lower total costs for companies that apply this method. 

The test data are generated using a test case generator, although some of them are also 

taken from practice.  

To facilitate my research I use suitable software such as:  

 Microsoft Excel; 

 a problem generator algorithm; 

 COLA; 

 ECOLA; 

 CUT; 

 C-CUT; 

 MPL/CPLEX; and 

 newly developed algorithm for solving 1DCSPULs with a low r. 

 

Microsoft Excel is a spreadsheet application developed by the Microsoft Corporation. It 

enables users to organize, format, and manipulate data using formulas and functions. In 

addition to spreadsheet presentation, data can also be displayed as graphs, histograms, or 

charts. 

The problem generator algorithm PGEN for the general 1DCSP was introduced in 2002 

and generates random variables through a uniform random number generator (Gradišar, 

Resinovič, & Kljajić, 2002). Due to its simplicity, randomness, portability, and 

reproducibility, PGEN uses a pseudo-random number generator presented in 1995 (Gau & 
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Wäscher, 1995). A slightly modified PGEN was used to generate problem instances in this 

dissertation. A detailed explanation of the PGEN generator and its modification is provided 

in Chapter 4 of the doctoral dissertation. 

COLA will be used to develop a new method for testing solutions to the 1DCSPUL. The 

method is explained in detail in Chapter 3 of the doctoral dissertation. 

ECOLA (Tomat, Gradišar & Štiglic, 2013) is a heuristic method for solving 1DCPSUL 

that minimizes the trim loss and the difference between usable leftovers used and 

produced.  

CUT is an improved and generalized version of COLA (Gradišar et al., 1997) and was 

developed by Gradišar et al. (1998). It is a computer program for solving the 1DCSP when 

the stock lengths are different. It is classified as an item-oriented method and minimizes 

the influence of end conditions leading to a heuristic solution (Gradišar, Kljajić, Resinovič, 

& Jesenko, 1999). 

C-CUT (Gradišar & Trkman, 2005) is an algorithm for solving 1DCSP that is based on a 

combination of a sequential heuristic procedure and a branch-and-bound method. It is 

suitable for all problem sizes.  

MPL is a mathematical computer solver for integer linear problems. It includes multiple 

commercial optimizers to solve the models developed. 

The results will be evaluated using comparative analysis and presented numerically. I will 

compare the results of the new method for solving 1DCSPULs with a low r with those of 

general methods for solving 1DCSPULs. 

A detailed description of the methodology, techniques, and tools used is given in the 

corresponding chapters of the doctoral dissertation. 

Research contribution 

My contribution to the relevant field of knowledge is improvement of the method 

published in Gradišar (2008), and a new model for testing solutions to 1DCSPULs, based 

on simulations, that has not yet been applied in the literature dealing with item-oriented 

solutions. The proposed method considers the usable leftovers from the previous instance 

and uses them in the next one. Thus the method reflects the real situation better than the 

methods in the literature, which do not take into returning usable leftovers account when 

testing and comparing various solutions.  

The main anticipated contributions include: 

 an improved method for solving 1DCSPULSs problems where r is low; and 
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 development of a new method for testing 1DCSPUL solutions that will enable more 

accurate comparison of various methods from this area. 

 

Limitations 

The doctoral dissertation describes methods for solving the 1DCSP. These methods could 

also be used for solving the general cutting stock problem, but usually more suitable 

methods (i.e., pattern-based methods) are selected for solving such problems (Trkman & 

Gradišar, 2007). I consider methods for solving the 1DCSP but do not analyze such 

methods for solving two- or three-dimensional cutting stock problems in the doctoral 

dissertation. 

The newly developed method is based on a heuristic approach to solve the CPSUL. 

Therefore an optimal solution is not provided. I analyze the possibilities for solving the 

problem studied with the exact method, and in Chapter 3 of the doctoral dissertation I 

provide an argumentation for why the use of an exact method is not suitable in my case. 

Methods for solving the 1DCSPUL deal with merely part of the entire cutting processes in 

a company. The reduction of trim loss refers only to a small share of the total costs that 

arise from preparing the required number of order lengths (Arbib & Marinelli, 2005). In 

order to provide higher savings, a redesign of the entire cutting stock process could be 

more appropriate than solving only the 1DCSPUL. Constant improvement of business 

processes should be a continuous routine based on the development of information 

technology (Trkman, 2010). 

A method for solving the 1DCSPUL should be easy to adjust to changing business 

processes and to integrate into a company’s information systems, such as ERPs or 

decision-support systems (Čižman & Černetič, 2004; Rodríguez & Vecchietti, 2008). Thus 

the company would have a better decision-support environment, which could serve as a 

basis for making better decisions (Liu et al., 2009).  

Structure 

Chapter 1 of the doctoral dissertation provides a detailed and critical literature review of 

the 1DCSP. I highlight the terms and concepts used in this area and present the latest 

classification used to sort different types of problems into corresponding categories. I 

provide an analysis of the exact and heuristic approach and describe the difference between 

these two approaches. An in-depth overview of the methods and existing algorithms for 

solving the 1DCSP is then given. At the end of Chapter 1, I briefly discuss the role of 

cutting and the cutting process in companies. 

Chapter 2 analyzes the 1DCSPUL, describing the concept and providing an overview of 

the current state of affairs. This is followed by a detailed and critical literature review of 
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the main methods for solving the 1DCSPUL. I define and explain the low r at the end of 

the chapter. 

Chapter 3 concerns the development of a new method for the 1DCSPUL in the case of low 

r. First, I define the problem. Then, I provide an experiment that justifies the use of a 

heuristic approach in my doctoral dissertation, rather than an exact one. After this, I 

present the development of a solution. I provide a detailed explanation for each step of the 

proposed algorithm. Next, I test the solution, whereby I also emphasize the selection and 

modification of a selected problem generator. An analysis of the results is presented at the 

end of the chapter. 

Chapter 4 highlights the importance of simulation, especially computer simulation. I then 

present the use of computer simulation in practice, particularly in operational management. 

I also present the use of computer simulation in relation to cutting processes. Next I 

describe the issues that arise when testing algorithms for solving the 1DCSPUL. Then I 

propose a new method for testing solutions to the 1DCSPUL. As a testing method I use a 

simulation in which a group of instances is observed. The results of the proposed method 

are presented at the end of the chapter. 

Chapter 5, the last chapter, presents the main findings of the doctoral dissertation and 

highlights the importance of the results for companies. I emphasize the contribution of the 

doctoral dissertation to the relevant field of knowledge. This is followed by an in-depth 

discussion of the results obtained through the experiments in the doctoral dissertation. At 

the end of the chapter, outlook to further research are provided. I point out the most 

interesting open research issues that may serve as a basis for conducting further research in 

the area studied. 
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1 THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM  

Various companies are involved in the process of cutting material as part of their business 

processes. It is thus reasonable that the method used is tailored to a company’s needs as 

much as possible to ensure the maximum efficiency when consuming the material. One of 

the most important elements a company should take into account is the amount of leftover 

being thrown away (trim loss) that represents an unnecessary cost for the company. 

Therefore, it is rational to minimize the trim loss.   

The main problem lies in the limited resources of material that have to be cut. This is 

usually expressed in a limited quantity or limited dimensions of material in stock due to 

various factors influenced by the market. Limitations regarding the dimensions of material 

can also derive from (Erjavec, 2011): 

 the availability of material on the market; 

 logistical constraints (i.e. the size and weight of the material); and 

 natural limitations (i.e. maximal lengths of wooden logs dependent on the felled trees), 

etc.  

Researchers have been engaged in resolving the cutting stock problem for more than 

seventy years. The first mention dates back to 1939 (Kantorovich, 1960) and since then 

interest in solving the cutting stock problem has been permanently on the rise. A 

mathematical approach was introduced in 1940 (Brooks, Smith, Stone, & Tutte, 1987) and 

served as a basis for further research and developments of various methods. Minimizing 

trim loss as a key element of cutting stock optimization emerged in 1957 (Eisemann, 

1957). Great progress in solving the cutting problem was made by Gilmore and Gomory a 

few years later, when they presented a linear programming method for solving the 1DCSP 

(Gilmore & Gomory, 1961). Their method will be explained in detail in the second 

subchapter below.  

The field of the 1DCSP problem is a well know and researched field, which can also be 

seen from the number of related scientific articles, published in well-cited journals. In 

1992, Sweeny and Paternoster presented a study in which they analyzed more than 400 

books, articles, dissertations and working papers on cutting and packing problems. They 

pointed out the trend of publishing scientific papers from the mentioned field. From 1960 

on, when there were approximately 20 releases, the number of published scientific papers 

was constantly increasing. From 1961 to 1970 there were roughly 25 scientific papers, 

from 1971 to 1980 nearly 110, and from 1981 to 1990 around 250 (Sweeney & 

Paternoster, 1992). The graphical presentation is in Figure 1. 
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Figure 1: Publications in cutting stock problem by time periods. 

 

 
 

Source: Sweeney & Paternoster, 1992. 

 

Another research study of trend of published scientific papers in the field of cutting and 

packing problems was made by Wäscher, Haußner and Schumann in 2007. Their analysis 

examined the period from 1995 to 2004 in which 445 scientific papers were published. The 

majority of these papers were published in the field of the 1DCSP (172) (Wäscher et al., 

2007). The results of the abovementioned study are presented in Figure 2. 
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Figure 2: The number of publications in the field of cutting stock problem by year. 

 

Source: Wäscher et al., 2007.  

The most recent analysis of the number of scientific papers published in the field of cutting 

that could be found in the literature is presented by Cesar (2013). He conducted an analysis 

for the period from 1971 to 2011. The search strings consisted of cutting stock problem, 

nesting problem, partitioning problem, trim loss problem, guillotine problem, bin packing 

problem, strip packing, vector packing + cutting, knapsack + cutting, multiprocessor 

scheduling and usable leftovers. In addition to scientific papers written in English, Cesar 

also searched for publications in other languages. The search strings in the German 

language were zuschnitt (problem(e) / -soptimierung(en)) (eng. cutting (problem(s) 

/optimization(s))  and Rucksack + zuschnitt (eng. backpack + cutting), behälterproblem 

(eng. container problem) and packen (eng. packing), in the Russian language задачa 

раскроя (eng. cutting problem) and задача о ранце / рюкзаке (eng. problem of knapsack / 

backpack), in the Spanish language problema de la mochila (eng. knapsack problem), 

problema de corte (eng. cutting problem) and problema + guilotin (eng. problem + 

guillotin) and in the Portuguese language problema de corte de estoque (eng. cutting stock 

problem) and sobras aproveitáveis + corte (eng. usable leftovers + cutting). He concluded 

that research into the problem was stagnating until 1989. From 1990 to 2007 constant 

growth in publishing was visible and, after some oscillations from 2007 to 2010, the 

highest number of published papers in history occurred in 2011. The results of this analysis 

are presented in Figure 3. 
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Figure 3: The number of scientific papers published in the field of cutting from 1971 to 

2011. 

 

Source: Cesar, 2013. 

For the purposes of this doctoral dissertation, I conducted an additional analysis to narrow 

down the publications to the field of the cutting stock problem and, more precisely, the 

1DCSP. The main difference from the abovementioned analysis is that I adjusted the 

search string to the cutting stock problem for the purpose of exposing only those 

publications that are closely related to my doctoral dissertation.  

As a tool for the presented analysis I chose Web of Science
TM

, which is an online academic 

citation indexing and search service provided by Thomson Reuters. The platform enables 

access to scientific content using tools provided for searching, tracking, and measuring. It 

collaborates in the sciences, social sciences, arts, and humanities. It covers more than 

23,000 journals, 23 million patents, 110,000 conference proceedings, 5,500 websites, 2 

million chemical structures, 100 years of back files, 40 million source items, 700 million 

cited references and 256 scientific disciplines. Among other things, the analytical tool I 

used enables the most prolific authors on a topic to be determined, the institutions that have 

published the most in a specific field to be identified and publication trends for a specific 

scientific field to be analyzed.  

Four search strings were taken into account. The first was “cutting”, the second “cutting 

stock problem”, the third “one dimensional cutting stock problem” and the fourth “trim 

loss". Web of Science includes a special tool for making an analysis with an arbitrary 

search string, but for that the search string must be included in one of the suggested fields. 

I first conducted an analysis where the search strings were only included in the title of the 

publication. It turned out that there is a relatively small number of papers that include the 

strings in the title and therefore only the analysis based on the strings included in the topic 
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of a publication is presented in this doctoral dissertation. Analysis where the search string 

was “cutting” had shown that there exist many papers from various research areas that are 

not relevant for my doctoral dissertation. Therefore the analysis was narrowed down only 

to papers that are classified to be from the area of operations research management 

science
1
.     

I conducted an analysis for the period from 1994 to the end of October 2013. The results 

are shown in Table 1. 

Table 1: The number of publications by year and search string. 

Year Cutting 
Cutting stock 

problem
 Trim loss 

One dimensional 

cutting stock problem
 

1994 98 20 27 4 

1995 98 25 23 7 

1996 109 27 32 7 

1997 136 24 31 5 

1998 149 31 36 5 

1999 131 35 39 6 

2000 137 29 33 4 

2001 141 24 38 3 

2002 176 40 46 14 

2003 150 31 31 5 

2004 179 43 42 9 

2005 219 53 47 12 

2006 225 55 53 11 

2007 299 78 56 19 

2008 299 70 54 14 

2009 367 59 58 13 

2010 306 55 50 11 

2011 299 68 45 12 

2012 324 65 56 13 

2013
1 

254 50 44 14 

1.Only publications that were recorded in Web of Science by the end of October 2013 are taken into account. 

Source: Web of Science, 2013; own analysis. 

A graphic presentation of the number of publications per year for the search string 

“cutting” with the corresponding citations indexed within Web of Science is provided in 

                                                 
1
 Based on the Web of Science classification of research areas.  
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Figure 4. Please note that the data for 2013 only include papers that had been published by 

the end of October 2013.  

Figure 4: The number of publications and corresponding citations by year. 

 

Source: Web of Science (search string “cutting”), 2013; own analysis. 

The graphic presentation in Figure 4 only provides data from 1994 to 2013, although the 

analysis was conducted for the whole timespan. The sum of all publications was 4,614 

papers that were cited 48,476 times, of which 11,721 are self-citations. Those papers were 

cited in 26,583 publications, 2,605 of which are self-citations. On average, every paper was 

cited 10.51 times. 

A graphic presentation of the number of publications per year for the search string “cutting 

stock problem” with the corresponding citations indexed within Web of Science is 

provided in Figure 5. Please note that the data for 2013 only include papers that had been 

published by the end of October 2013.  
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Figure 5: The number of publications and corresponding citations by year. 

 

Source: Web of Science (search string “cutting stock problem”), 2013; own analysis. 

The graphic presentation in Figure 5 only provides data from 1994 to 2013, although the 

analysis was conducted for the whole timespan. The sum of all publications was 985 

papers that were cited 10,308 times, of which 4,510 are self-citations. Those papers were 

cited in 4,985 publications, 739 of which are self-citations. On average, every paper was 

cited 10.46 times. 

A graphic presentation of the number of publications per year for the search string “trim 

loss” with the corresponding citations that are indexed within Web of Science is provided 

in Figure 6. Please note that the data for 2013 only include papers that had been published 

by the end of October 2013.  

Figure 6: The number of publications and corresponding citations by year. 

 

Source: Web of Science (search string “trim loss”), 2013, own analysis. 
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The graphic presentation in Figure 6 only shows data from 1994 to 2013, but the analysis 

was conducted for the whole timespan. The sum of all publications was 924 papers that 

were cited 11,379 times, of which 514 are self-citations. Those papers were cited in 9,984 

publications, 218 of which are self-citations. On average, every paper was cited 12.31 

times. 

A graphic presentation of the number of publications per year for the search string “one 

dimensional cutting stock problem” with the corresponding citations that are indexed 

within Web of Science is provided in Figure 7. Please note that the data for 2013 only 

include papers that had been published by the end of October 2013.  

Figure 7: The number of publications and corresponding citations by year. 

 

Source: Web of Science (search string “one dimensional cutting stock problem”), 2013, own analysis. 

The graphic presentation in Figure 7 only shows data from 1994 to 2013, but the analysis 

was conducted for the whole timespan. The sum of all publications was 197 papers that 

were cited 1,727 times, of which 517 are self-citations. Those papers were cited in 875 

publications, 144 of which are self-citations. On average, every paper was cited 8.77 times. 

It can be seen in Figure 5, Figure 6 and Figure 7 that the number of publications in the 

areas of the cutting, the cutting stock problem, the one-dimensional cutting stock problem 

and the trim loss is still increasing, even though the maturity level has probably been 

reached. This also holds for the number of citations. Hence, it is possible to claim that the 

studied area is very interesting for research.  
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The majority of scientific papers in the area of the cutting stock problem were published in 

leading journals from the field of operational research. The distribution of the publications 

through the journals is presented in Table 2
2
.  

Table 2: The number of publications in the field of cutting stock problem by journals. 

Journal title 
Number of 

publications
* % 

European Journal of Operational Research 123 15.36 

Computers and Operations Research 60 7.50 

Journal of the European Operation Research Society 49 6.13 

International Journal of Production Research 31 3.88 

Operations Research 29 3.63 

Annals of Operations Research 24 3.00 

Informs Journal of Computing 22 2.75 

Computers Industrial Engineering 13 1.63 

Mathematical and Computer Modeling 12 1.50 

Mathematical Programming 12 1.50 

International Journal of Production Economics 12 1.50 

Computational Optimization and Applications 10 1.25 

Engineering Optimization 9 1.13 

IIE Transactions 8 1.00 

Management Science 7 0.88 

International Journal of Advanced Manufacturing 

Technology 
6 0.75 

Journal of Intelligent Manufacturing 6 0.75 

Mathematics of Operations Research 6 0.75 

… …  

TOTAL 800 100 

* Search string “cutting stock problem” included in the topic of publication. 

Source: Web of Science (search string “cutting stock problem”), 2013; own analysis. 

The analysis showed that more than 15% of all publications from the cutting stock problem 

field were published in the European Journal of Operational Research, followed by 

Computers and Operations Research with more than a 7% share and the Journal of the 

European Operation Research Society with more than a 6% share. A large range of 

journals has published less than six scientific papers from the analyzed field, but they are 

not presented in Table 2 due to space limits. Nevertheless, it is possible to conclude that 

                                                 
2
 Only journals that have published six or more scientific papers concerning the field of the cutting stock 

problem are included in the table due to space limits. 
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the variety of journals from different fields indicates the prevalence of the cutting stock 

problem in various industries.  

I also analyzed publications from the considered scientific field by individual researchers. 

The analysis of authors by the number of papers is presented in Table 3. The findings are 

provided later.  

Table 3: The number of scientific papers by authors. 

“Cutting stock problem” “One dimensional cutting stock problem” 

Researcher
3
 

Number of 

publications
 % Researcher

4
 

Number of 

publications 
% 

Cui Y.D. 48 6.00 Cui Y.D. 22  12.87 

Scheithauer G. 16 2.00 Scheithauer G. 12 7.02 

De Carvalho 

J.M.V. 
15 1.88 

De Carvalho 

J.M.V. 
7 4.09 

Hifi M. 14 1.75 Belov G. 7 4.09 

Kendall G. 13 1.63 Gradišar M. 7 4.09 

Burke E.K. 11 1.38 Terno J. 7 4.09 

Arenales M.N. 10 1.25 Hifi M. 5 2.92 

Terno J. 10 1.25 Arenales M.N. 4 2.34 

Vanderbeck F. 10 1.25 Caprara A. 4 2.34 

Yanasse H.H. 10 1.25 Monaci M. 4 2.34 

Alves C. 9 1.13 Trkman P. 4 2.34 

Gradišar M. 9 1.13 Wӓscher G. 4 2.34 

Belov G. 8 1.00 Burke E.K. 3 1.75 

Bennell J.A. 8 1.00 Kendall G. 3 1.75 

Monaci M. 8 1.00 Kljajić M. 3 1.75 

Marinelli F. 7 0.88 Resinović G. 3 1.75 

Morabito R. 7 0.88 Umetani S. 3 1.75 

Vasko F.J. 7 0.88 Yanasse H.H. 3 1.75 

Wӓscher G. 7 0.88 Rohling H. 3 1.75 

… … … … … … 

TOTAL 800   171      100 

Source: Web of Science (search strings “cutting stock problem” and “one dimensional cutting stock 

problem”), 2013; own analysis. 

According to both search strings, Y.D. Cui is the researcher who has published the highest 

number of papers. He has put out 6% of all published papers concerning the “cutting stock 

                                                 
3
 Only researchers that have published 7 or more scientific papers are included in the presentation due to 

space limits. 
4
 Only researchers that have published 3 or more scientific papers are included in the presentation due to 

space limits. 
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problem” search string and almost 13% with the “one dimensional cutting stock problem” 

search string. In both cases, Y.D. Cui is followed by G. Scheithauer (2% of all publications 

with the “cutting stock problem” search string and 7.02% with the “one dimensional 

cutting stock problem” search string) and J.M.V. De Carvalho (1.88% of all publications 

with the “cutting stock problem” search string and 4.09% with the “one dimensional 

cutting stock problem” search string). The smaller the number of papers, the higher is the 

number of authors. It would go well beyond the purpose of this analysis to state them all 

and therefore only the first 19 authors are listed.   

I also analyzed the number of published papers issued in journals categorized as journals in 

the field of operational research by Web of Science. Analysis was carried out with the 

“cutting stock problem” search string being included in the topic of a publication. The 

results are shown in Table 4.  

Table 4: Publications in the field of operational research by authors.  

Author Number of publications
1 

% 

Cui Y.D. 25 5.07 

De Carvalho J.M.V. 15 3.04 

Scheithauer G. 15 3.04 

Hifi M. 11 2.23 

Vanderbeck F. 10 2.03 

Yanasse H.H. 10 2.03 

Alves C. 9 1.83 

Arenales M.N. 9 1.83 

Kendall G. 9 1.83 

Terno J. 9 1.83 

Belov G. 8 1.62 

Burke E.K. 8 1.62 

Gradišar M. 8 1,62 

… … … 

TOTAL 493 100 

1.  Search string “cutting stock problem” is included in the topic 

of publication. 

 

Source: Web of Science (search string “cutting stock problem”), 2013; own analysis. 

To more comprehensively represent the abovementioned analysis of researchers, I 

combined those authors who appear in all three categories (the search strings “cutting stock 

problem” and “one dimensional cutting stock problem” in the topic of the publication are 

the first two, while the third is the number of publications in the field of operational 

research). The findings are presented in Figure 8. 
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Figure 8: Publications by authors in dependence on search category.  

 

Source: Web of Science, 2013; own analysis. 

I also analyzed the number of times the authors have been cited. Web of Science does not 

provide a tool that enables searches of citations by the topic of a publication. An analysis 

of citations of papers that include the search strings in the topic of the publication would 

exceed the scope and purpose of this doctoral dissertation. Accordingly, the presented data 

only refer to publications with one of the search strings in the title. The results are set out 

in Table 5.  
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Table 5: The number of citations per author. 

“Cutting stock problem” “One dimensional cutting stock problem” 

Researcher
5
 

Number of 

citations
 % Researcher

6
 

Number of 

citations 
% 

Cui Y.D. 48 3.30 Scheithauer G. 11 4.89 

Hifi M. 24 1.65 
De Carvalho 

J.M.V. 
9 4.00 

Haessler R.W. 22 1.52 Alves C. 8 3.56 

Jansen K. 20 1.37 Gradišar M. 8 3.56 

De Carvalho 

J.M.V. 
19 1.31 Arbib. C 7 3.11 

Kendall G. 16 1.10 Arenales M. N. 7 3.11 

Burke E.K. 15 1.03 Belov G. 7 3.11 

Scheithauer G. 15 1.03 Cui Y. D. 7 3.11 

Vanderbeck F. 14 0.96 Marinelli F. 7 3.11 

Caprara A. 13 0.89 Terno J. 6 2.67 

Arenales M.N. 12 0.82 Wӓscher G. 6 2.67 

Huang W.Q. 12 0.82 Yanasse H.H. 6 2.67 

Monaci M. 12 0.82 Trkman P. 5 2.22 

… … … … … … 

TOTAL 1455   225 100 

*Only publications that include search string in the title are considered. 

Source: Web of Science, (search strings “cutting stock problem” and “one dimensional cutting stock 

problem”), 2013; own analysis. 

Most of the methods published by those authors who were the most cited will be presented 

in the second and third chapters. Papers published by those authors also serve as a 

theoretical background to my doctoral dissertation.  

I carried out presented analysis to highlight the importance of studied area. For deeper 

understanding of the process of knowledge creation a systematic literature network 

analysis should be conducted based on existing methodologies for reviewing literature and 

analyzing citation network. Examples can be found, for instance, in Tranfield, Denyer and 

Palminder (2003), Saunders, Lewis and Thornhill (2009), Jahangirian et al. (2010), Mills, 

Eurepos and Wiebe (2010), Yin (2011) and Collicha and Strozzi (2012). However, such 

analysis would go beyond the purpose of doctoral dissertation and is therefore not carried 

out. 

                                                 
5
 Only authors that have been cited 12 times or more are included in the presentation due to spatial 

limitations. 
6
 Only authors that have been cited at least 5 times or more are included in the presentation due to spatial 

limitations.  
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1.1 Presentation of the terms and concepts 

As explained in the introductory chapter of this dissertation, the 1DCSP considers the 

cutting of ordered material (which usually comes in longer pieces and is denoted as items) 

from the material in stock (that comes in shorter pieces and is denoted as bars). The most 

common objective is to minimize the trim loss, but other goals can also be taken into 

consideration. For example, the minimization of (Trkman & Gradišar, 2010): 

 costs; 

 cutting time; 

 number of changes in blade’s settings; and 

 amount of stock etc. 

An illustrative presentation of the 1DCSP can be seen, for example, in Dyckhoff (1990). In 

stock, there are 3 bars, each 98 units long. The assortment is fixed and cannot be changed. 

Items demanded in an order must be cut from those bars. The orders are unpredictable and 

therefore the specifications, provided in an order represent a stochastic process.  

An illustrative order consists of items of different lengths. The specifications are presented 

in Table 6. 

Table 6: Order specifications. 

Item length  Ordered quantity 

5 4 

6 2 

11 1 

25 2 

28 1 

44 1 

46 3 

Source: Dyckhoff, 1990. 

To prepare the cutting plan it is necessary to satisfy two conditions: 

 the ordered items must not overlap each other; and 

 the order items can only be placed in bigger objects. 

The cutting plan depends on the cutting goal, which is usually minimization of the trim 

loss, and presents the possible ways of cutting. The cutting plan for the illustrative example 

is shown in Figure 9. 
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Figure 9: Cutting plan. 

 

Source: Dyckhoff, 1990. 

A lot of past research effort was oriented to trim loss minimization and modern methods 

therefore allow for very small residual pieces, also known as retails or leftovers, to be 

considered as waste (Cui & Yang, 2010). However, other aspects should also be taken into 

consideration. Trim loss minimization does not necessarily ensure the minimal possible 

total cost since the methods do not consider other processes associated with the cutting 

process, such as purchasing, warehousing, production, and sales. Researchers should keep 

this in mind when conducting further research. Due to the relatively small improvement 

possibilities, some approaches evolved that consider certain other criteria as well, e.g. 

(Rodríguez & Vecchietti, 2008):  

 returning leftovers that are bigger than some threshold back to stock for the purpose of 

meeting future demands; 

 energy consumption; 

 An ecological effect; and 

 total production cost. 

 

The development of many solutions to cutting and packing problems consequently created 

a need to classify them in a way that clearly distinguishes between various types of 

problems and this led to Dyckhoff proposing a classification (Dyckhoff, 1990). Later on, 

this classification was expanded to include the possibility of a few groups of identical large 

objects (Gradišar et al., 2002) and the time dimension (Trkman & Gradišar, 2007). The 

year 2007 is also important: it saw the presentation of a new classification that indicated 

significant progress in cutting and packaging (Wäscher et al., 2007). Using this 

classification, problems can be sorted into classes in even greater detail. 

An interesting approach for highlighting the importance of the field of cutting is shown by 

Cesar. He paid particular attention to patents for the following reasons (Cesar, 2013): 



24 

 

 algorithms can be patented, not just published in the journal; 

 patents have appeared much earlier than scientific publications; 

 patent language is not a limitation contrary to scientific publications, where papers 

published in the English language have a higher chance of being cited, which also 

affects the impact factor;  

 patent application usually takes economic objectives into account; and 

 in some countries patents are more respected than scientific publications (i.e. China). 

In some scientific fields one can see increased growth in innovations at the expense of 

patents and decreased growth in innovations at the expense of scientific publications 

(Hicks, Breitzman, Olivastro, & Hamilton, 2001; Tansey & Stembridge, 2005). 

Patents in the field of cutting are usually introduced as an answer to the needs of the 

industry and do not represent the result of a theoretical study. Since the presented doctoral 

dissertation seeks to link academic research with commercial practice I will now present 

some of the relevant patents. 

The first patents in the field of cutting were introduced in the 19
th

 century and consisted of 

various prototypes. One of the first is a machine for cutting wire for manufacturing wood 

screws and rivets. It was presented by Pierson (1836). The design is shown in Figure 10. 

Figure 10: Patent design. 

 

Source: Pierson, 1836. 

Afterwards many machines for cutting various materials were patented. In steel industry 

patents were registered, i.e., by: 
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 Cornell (1872).  

 Grace (1892). 

 Carnahan (1888).  

 Koehler (1890). 

 Hammond (1894).  

 Sheldon (1896). 

 Slettengren (1950). 

 … 

 

 

Figure 11: Grace patent. 

 

Source: Grace, 1892 

 In paper industry there have also been many patents. Some of the most reverberant are: 

 Gage (1848). 

 Bigelow (1858). 

 Dougherty (1862). 

 Hatch (1869). 

 Aekell (1872). 

 Cohek (1875). 

 Bradt (1907). 

 … 

 

Figure 12: Bigelow patent. 

 

Source: Bigelow, 1958. 

Also in wood industry a high number of patents emerged: 

 Read (1837). 

 Keane (1838). 

 Bead (1846). 

 Smith (1855). 

 Hodge (1861). 

 Wooster (1914). 

 Leon (1944). 

 … 

 

Figure 13: Read patent. 

 

Source: Read, 1837. 

The development of patents in industries other than steel or wood was not so frequent but 

there still exist many, i.e.: 
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 North (1886): the invention is related to improvements in elevating and allocating 

device that was especially modified for use of a mixture of sand and water material. 

 Neumair (1940): the invention is proposed for cutting cigar wrappers, designed 

especially for a bright material such as polished metal foil blacked with a cellulosic 

fabric coated with elastic lacquer. 

 Coddington (1943): invention is intended for cutting grass and weeds, not only on 

smooth terrain, but also on rough ground. 

 … 

 

Figure 14: North patent. 

 

Source: North, 1886. 

Patents are relevant to my dissertation since it is also possible to patent the algorithms used 

for cutting material. The majority of such patented algorithms come from practice and is in 

line with economic interests. Since the development of algorithms is closely associated 

with the development of computers, especially computational power, the patenting of 

cutting algorithms started after 1980 (Cesar, 2013).  

Patented algorithms are usually not intended for general use but are adjusted to special 

cases. It is important to distinguish between methods and technology. Patents can relate to 

both, but the methods (algorithms) are typically strongly related to a specific type of 

machine or technology and describe the process of handling the material. Such a patent 

that is a combination of technology and method can be found in Singh and Jolly (1987) 

where the inventors had proposed a method which supervises the cutting activity with the 

use of high temperature. The authors suggested the use of infra-red temperature sensors to 

sense the surface temperature, which is a few millimeters from the width of the cut made 
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by a saw or cutting torch and to sense the temperature in the kerf of the plate being cut. 

The cutting process is then optimized by a microprocessor that derives a control algorithm 

to sustain the recognized temperature and respective standard ranges.  

The number of patents in the field of operational research in the last decade has been 

increasing, which also shows the importance of the field. Patented algorithms can be 

displayed in various forms but the most commonly used one is a presentation of the logical 

structure. An example can be seen in the patent by Mazouz, Slutzky, Hall, Shell, and 

Huston (1992). The method part is shown in Figure 15. 

Figure 15: A part of the patented cutting method documentation. 

 

Source: Mazous et al., 1992. 

The proposed method combines fields of cutting and packing. The algorithm controls the 

cutting activity and suggests where to dispose of the cut material in the best possible place. 

Then the apparatus automatically places parcels of various sizes and shapes on a pallet. 

The material first comes into the machine randomly. It is then addressed by a computer 

which is based on an expert system that obtains the required information and applies 

predetermined rules to assign a space for the parcel on the pallet. The coordinates are then 

automatically communicated to a flexible material handling robot (Mazouz et al., 1992). 

Such methods can also be modified for the purposes of the 1DCSPUL (one-dimensional 

cutting stock problem with usable leftovers), but that would be beyond the limits of this 

dissertation.  
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Many algorithms have been patented for cutting material in various industries by different 

inventors in the last few years, for example: 

 Tanida (2009): the patent consists of a device for identifying the pipe or tube before the 

cutting process starts, a reader to acquire information while the cutting process is 

performed, a management system for storing the production history and thread cutting 

for the removal of identifiers.  

 Ylitalo (2011): the patent encompasses a method for transmitting data to a 

communication system.  

 Borovicka, Hlavacek, Hloch, and Valicek (2012): the inventors presented a method for 

the design of material cutting technology based on the determination of a so-called 

constant of cuttability of materials. They provided four versions of the method that 

depend on the parameters being measured.  

 Norberg Ohlsson (2012): the author presented a method and a system for a cutting 

machine based on beam cutting technology. The method consists of a set of controlling 

rules and variables for cutting patterns.  

Various patents have been specially developed for solving a multi-dimensional cutting 

problem, e.g.:  

 In 1988, a special method for the purposes of the metal industry was introduced. The 

invention represents a cutting tool composed of a ceramic matrix that has a distributed 

reinforcement comprising ceramic whiskers (Rhodes, Dziedzic, & Beatty, 1988). 

 An interesting method for cutting sheet material was patented in 1988. The invention 

enables multiple layups of sheet material to be cut in a side-by-side or stacked 

connection on the cutting plate of a computer-controlled machine. It allow a different 

marker of a selection of pattern parts to be cut from each of the stacked layups 

(Pomerleau, Vivirito, & Markowitz, 1998).  

 A special dimensional cutting tool for cutting wooden stock was introduced in 1988. It 

consists of a flat surface that can be moved to accommodate varying thicknesses of 

material (Rice, 1988).  

 A method for manufacturing wire was presented in 1995. It is based on cutting ribbon-

like material into thin rectangular strips, welding the strips together and rounding the 

edges (Stazaev, 1995).  

 A special method of cutting material for use in medicine for implants was developed in 

2011. It is grounded on a plotted laser cutting system that is controlled by a computer 

program and includes a motion system (Cali & Myers, 2011).  

These patents represent an important driver of progress in tackling practical issues that 

arise from market needs. They represent the theoretical and practical development of the 

researched field and therefore future studies in the area of the 1DCSP should consider 

analyzing patents in greater detail.  
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1.1.1 The classification of cutting and packing problems 

There are many variants of cutting and packing problems in practice due to the presence of 

the problem in a wide range of industries, as explained in the introductory part of the 

dissertation. Consequently, there are many different approaches to tackle the studied 

problem. Many different solutions to the problem have been presented, leading to the need 

for a classification that clearly distinguishes such problems. Therefore, in 1990 the 

Dyckhoff classification scheme for the cutting stock problem was introduced (Dyckhoff, 

1990). 

Beside cutting and packing problems, other problems in mathematics, operational research, 

logistics, production and economics have a similar logical structure. Dyckhoff therefore 

developed a consistent and systematic approach for a comprehensive typology integrating 

the various kinds of problems with the aim of standardizing the different terminology used 

in the literature. The problems that have a similar logical structure and appear in the 

literature under different names can be solved using the same or similar methods. Those 

problems are (Dyckhoff, 1990): 

 cutting stock and trim loss problems; 

 bin packing problems; 

 dual packing problems;  

 strip packing problems; 

 vector packing problems; 

 knapsack (packing) problems; 

 vehicle loading, pallet loading, container loading, and car loading problems; 

 assortment, depletion, design, dividing, layout, nesting, and partitioning problems; and 

 capital budgeting, change making, line balancing, memory allocation, and multi-

processor scheduling problems. 

The proposed systematization was based on the differentiation of the main characteristics 

of cutting and packing problems regarding their reference to a stock of large objects, a list 

of small items, patterns as geometric combinations of small figures for one large figure 

each or for the assignment of small items to patterns as well as patterns to large objects.  

The characteristic considered to be the most important is dimensionality, which is defined 

as the minimum number of dimensions of real numbers necessary to describe the geometry 

of patterns. Basic dimensionality types are one-dimensional, two-dimensional, three-

dimensional and multi-dimensional (e.g., time as a fourth dimension, multi-period capital 

budgeting, vector packing problem…) types of the cutting and packing problem 

(Dyckhoff, 1990).  
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The next important characteristic is quantity measurement where two possibilities exist. 

The first considers a discrete (or integer) measurement where the frequency or number of 

objects or items of a certain shape is taken into account. The second one considers a 

continuous (or fractional) measurement where the whole length of several objects or items 

having the same shape is measured with regard to the relevant dimensions, the length of 

the objects or items being summed up with respect to a further dimension that is not 

essential to the geometry of the patterns (Gilmore, 1979). 

Another characteristic of the discussed classification is the shape of figures. This is defined 

as a geometric representation in a space of relevant dimensions. The shape of figures can 

be unambiguously determined by its form, size and orientation. Regarding one-

dimensional problems, which form an essential part of my doctoral dissertation, the size of 

items is the most important and can be regular (or standard) or irregular (non-standard) 

(Dyckhoff, 1990).   

Assortment is another characteristic for use in classifying cutting and packing problems 

and is defined by the shapes and number of permitted figures. There are two possibilities. 

One is that different forms can occur and the other is that all items have the same form. 

The next characteristic is availability and relates to the availability of objects concerning 

the lower and upper bounds of their quantity, their sequence or order and the date when an 

object can or has to be cut or packed (Dyckhoff, 1990). 

Pattern restrictions are another characteristic and can be divided into four groups when 

constructing geometric combinations. The first group relates to minimal or maximal 

distances between small figures or between cuts dividing large figures. The second group 

takes account of the orientation of small figures relative to each other and/or a large figure. 

The third group regards restrictions in the frequency of small items in a pattern, while the 

fourth group concerns the type and number of permitted cuts (Dyckhoff, 1990). 

The seventh important characteristic concerns assignment restrictions when arranging 

small items into suitable patterns or when assigning patterns to appropriate large objects. 

The assignment restrictions relate to the kind of assignment, number of assignment stages, 

number and frequency or sequence of patterns and the dynamics of allocation (Dyckhoff, 

1990).   

The next characteristic is named objectives and means a criterion that has to be maximized 

or minimized. Different objectives may refer to quantities of large objects or small and 

residual pieces assigned to patterns, the geometry of the patterns or sequence, a 

combination or the number of patterns. The last characteristic relates to the status of 

information and variability with reference to a deterministic, stochastic or uncertain 

definition of problem data (Dyckhoff, 1990).  
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All of the abovementioned characteristics can be summed up as four main criteria that 

enable the classification of cutting and packing problems. The appropriate notations are 

given in brackets (Dyckhoff, 1990):  

1. Dimensionality: 

 one-dimensional (1) 

 two-dimensional (2) 

 three-dimensional (3) 

 n-dimensional with N > 3 (N) 

  

2. Kind of assignment: 

 all objects and a selection of items 

 a selection of objects and all items 

 

3. Assortment of large items. 

 one object (O) 

 identical figure (I) 

 different figures (D) 

 

4. Assortment of small items: 

 few items (of different figures) (F) 

 many items of many different figures (M) 

 many items of relatively few different (non-congruent) figures (R) 

 congruent figures (C) 

 

The presented Dyckhoff classification has been the subject of some expansion proposals.  

Gradišar et al. (2002) suggested a further possibility under the third group of Dyckhoff’s 

classification: 

  (G) a few groups of identical large objects. 

 

The next proposal for an improved typology emerged from Trkman and Gradišar (2007) 

due to the inability of the Dyckhoff classification to differentiate between consecutive and 

instantaneous solutions of cutting stock problems. The new class is called the time-span of 

optimization and comes in a variety of three options (Trkman & Gradišar, 2007, p. 292): 

 “IN: (instantaneous) indicates the optimization/solution of cutting/packing problem for 

a given data in one time period.  

 CD: (consecutive deterministic) optimization for two or more consecutive time periods 

when the demand and supply of material for all time periods are known in advance. 

Material unused at the end of a time period may be used at a later time period. A 
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specific sub-type of the CD type is an example where some predicted demand lengths 

from an early time period could also be held until they appear as a demanded length in a 

later time period. 

 CS: (consecutive stochastic) optimization for two or more time periods where only the 

data for the first period is known with certainty. Probability distributions for future data 

may be known and material unused at the end of a time period may be used at a later 

time period”. 

 

The abovementioned expansion brings an important aspect into consideration when dealing 

with cutting problems – the inclusion of time periods in the classification enhances the role 

of returning leftovers back to stock for the purpose of being reused. Another important 

aspect of the proposed expansion is based on the assumption that exact demand for future 

orders is not known in advance (Trkman & Gradišar, 2007). Apart from a few exceptions 

(Alem, Munari, Arenales, & Ferreira, 2010; Krichagina, Rubio, Taksar, & Wein, 1998; 

Sculli, 1981), this problem has rarely been discussed in the literature so far.  

Due to the increased number of papers published in the field of cutting and packing at the 

end of the last century, Dyckhoff’s classification has been revealed to include some 

shortcomings, especially in terms of generality. The main deficiencies are (Wäscher et al., 

2007): 

 not all cutting and packing problems can be classified according to Dyckhoff 

classification; 

 the Dyckhoff classification is inconsistent since the same problem can be classified in 

several subclasses; and 

 each subclass does not necessarily contain homogeneous problems. 

 

A new, improved typology was therefore introduced in which the following classification 

of cutting and packing problems is proposed (Wäscher et al., 2007): 

1. Dimensionality: 

 one-dimensional 

 two-dimensional 

 n-dimensional with N > 3 

  

2. Problem type: 

a. output maximization (not enough large objects to meet the demand for all small 

objects); 

b. input minimization (enough large objects to meet the demand for all small objects). 

 

3. Distribution of order lengths: 

a. the same order lengths 



33 

 

b. weak heterogeneity of distribution of order lengths 

c. strong heterogeneity of distribution of order lengths 

 

4. Distribution of item lengths: 

a. one large object 

b. many large objects 

 

5. The shape of order objects: 

a. usual shape 

b. unusual shape 

1.1.2 Definition of cutting  

As described in the introductory chapter, the first version of the definition of the 1DCSP 

was introduced in 1939 by Kantorovich, but a more significant step came in 1956 when 

Paull formulated the problem as it is today (Paull, 1956), and in 1961 when Gilmore and 

Gomory introduced a linear programming approach (Gilmore & Gomory, 1961) which led 

to the development of various methods for solving the 1DCSP. At this point, I shall briefly 

present the general definition of the 1DCSP based on Gilmore and Gomory’s (1961) linear 

programming approach.  

It is assumed that there exist Ln (n = 1,…,k) standard lengths in stock. To fulfill the 

demand there is an unlimited amount of pieces of each standard length in stock. The order 

consists of Ni pieces of length li (i = 1,…,m). The order can be fulfilled if there exists Lj li. 

The material that needs to be cut to fill the order represents the total cost, which has to be 

minimized.  

The 1DCSP can be expressed as an integer linear programming problem if we assign 

x1,…,xn variables to each of the possible activities that cut required order lengths from 

items in stock. The satisfaction of m inequalities must be achieved: 

                                  (       )                                                               ( ) 

where aij represents the number of pieces of li, created by the j-th activity. To minimize the 

costs the objective function is then formulated as: 

                                                                                                                                  ( ) 

where ci represents the cost of the stock length cut by the i-th activity. Now the 

introduction of slack variables comes into play and the 1DCSP can be described as: 

                                  (       )                                                          ( ) 

              (         )                                                                                                        ( ) 
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To obtain a solution, the simplex computational procedure is then conducted. The variables 

in the basic feasible solution are x1, x2,…, xn, Pi is the vector (a1i, a2i, …, ami) and ci is the 

cost coefficient. A new activity that cuts the required order length from stock length L can 

be defined as P = (a1, a2, …, am). Matrix A consists of the P1,…, Pm columns which form a 

basis so that column vector U can satisfy the equation A∙U=P. An improvement of the 

solution with the new activity can be used if and only if C∙U>c. C is the row vector (c1, 

c2,…, cm). Let us say that the row vector C∙A
-1

 has coefficients b1,…, bm. One can conclude 

that there exists an activity cutting L that can be used over the previous solution if there 

exist nonnegative integers a1, a2,…, am that satisfy the following inequalities: 

                                                                                                                               ( ) 

                                                                                                                                  ( ) 

The procedure to obtain the solution starts with the determination of m initial activities and 

associated costs. For each i a stock length Lj is selected. i is an activity defined to be the 

one cutting the required number of pieces of length li from Lj. The cost of the i-th activity 

is the cost cj of the stock length Lj. The initial m+1 x m+1 matrix can be formed hence: 

‖
‖

           
        

        
     
         

‖
‖
                                                                                                    ( ) 

where aii denotes the number of pieces of length li that are cut in the i-th activity from the 

items in stock at a cost of ci. B represents the corresponding activities for each of the m 

columns. 

The next step concerns forming mm+1 dimensional column vectors S1,…, S2 that 

correspond to the slack variables. Given N=B
-1

∙N, it is possible to determine whether a 

better solution can be found. If the first element of B
-1

∙P is not positive, then no 

improvements in the results can be made and the final solution is obtained.  

More information about the abovementioned formulation, including a detailed explanation 

with some simple examples, can be found in Gilmore and Gomory (1961).  

In addition to minimizing the cost, other objectives occur in the 1DCSP, i.e. minimizing 

the waste, and minimizing or maximizing the total value of produced items. Growth in the 

number of orders influences the growth of possible cutting patterns and can lead to an 

inability to calculate the number of possible cutting patterns. 

In general, the number of possible patterns grows exponentially as a function of m, the 

number of orders. As the number of orders increases, it may therefore become impractical 
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to enumerate the possible cutting patterns. Many alternative approaches have thus emerged 

and will be explained in the second section of this chapter.  

When solving the 1DCSP, multiple solutions that result in the same amount of, e.g., trim 

loss can be found, which impacts the appearance of many problems, such as (de la Banda 

& Stuckey, 2007; Diegel, Montocchio, Walters, Van Schalkwyk, & Naidoo, 1996; 

Umetani, Yagiura, & Ibaraki, 2003): 

 The minimum pattern count problem: this concerns finding a minimum pattern count 

solution amongst minimum trim loss solutions. Any instance with n orders can have at 

least one minimum trim loss solution with n+1 patterns. 

 The minimum stack problem: this regards the sequence of patterns in such a manner 

that there are not too many partially fulfilled orders at any point in the procedure.  

 The minimum number of knife changes problem: this relates to sequencing and 

permuting the patterns in a way that minimizes the number of times knives need to be 

switched. In the literature, this problem is also denoted as the travelling salesman 

problem. 

1.1.3 Definitions of the one-dimensional cutting stock problem and the trim loss 

In this subchapter, definitions are given of the standard and general 1DCSP.  

First, I present the general 1DCSP that includes the common definition of trim loss as 

being one of the key factors considered by methods for solving the 1DCSP. The following 

assumptions should be taken into account (Gradišar et al., 2002): 

 there is a sufficient amount of material in stock to fill every customer’s order; 

 an exact number of required order lengths needs to be cut into the demanded number of 

pieces; 

 a shortage of material is not possible – if such a situation occurs, it is always possible to 

adapt the required material; and 

 all lengths are considered to be integers or they can be multiplied by a factor that 

transforms them into integers. 

 The proposed formulation uses the next notation: 

li order lengths; I = 1,…, n, 

di required number of pieces of order length li, 

Uj stock lenghts; j = 1,…, m, 

pi,j number of pieces of order length li having been cut from stock length j. 
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The integer programming model is than formulated: 

(minimize trim loss that is smaller or equal to max li) 

   ∑   

 

   

   (                                                  )                                   ( ) 

 

s.t. 

   ∑             

 

   

        (                   )                                                                   ( ) 

 

∑    

 

   

               (                 )                                                                               (  ) 

 

∑  

 

   

       (                                                            )    (  ) 

 

                                                                                                                                          (  ) 

 

                                                                                                                                                   (  ) 

 

                                                                                                                                           (  ) 

 

where the indication whether stock length j is used in the cutting plan is given as: 

    { 
                    

                  
                                                                                                              (  ) 

The indication whether the trim loss relating to stock length j is greater than the longest 

order lengths is functioned as: 

    { 
                         

                                       
                                                                                        (  ) 

The indication of extent of the trim loss relating to stock length j is as following: 

    { 
                         

                                       
                                                                                         (  ) 

All residual stock lengths that result from a demand constraint need to be considered. This 

is enabled by the upper bound for the trim loss being set at between 0 and max li. It is 
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important to set the maximum number of residual lengths that are larger than max li to be 

equal to or smaller than 1. In the case of having more than one residual stock length, it is 

assumed that it is possible to combine those residuals so that only one residual piece in 

stock is larger than max li. Otherwise, it could happen that the trim loss would be avoided 

but the material in stock would begin to infinitely accumulate (Gradišar et al., 1997).  

Due to the differences in stock lengths, the appropriate method for solving the general 

1DCSP should be item-oriented. Since the heuristic approach has in several cases proven 

to be more efficient in terms of time complexity, such a method should be applied to find a 

solution.  

The use of pattern-oriented approach would be more suitable to use when solving standard 

1DCSP (Gau & Wäscher, 1995), which is described as follows: 

li order lengths; I = 1,…, n, 

di required number of pieces of order length li, 

Lk stock lengths; k = 1,…, p.  

p represent the amount of different standard stock lengths. Cutting patterns are being cut 

from different stock lengths and form a cutting plan. Another component of cutting plan 

are the accompanying frequencies for filling all orders. c represent the cutting pattern and 

can be, when being cut from standard stock length k, stated as a vector: 

(                     )                                                                                                       (  ) 

The upper vector satisfies the inequations: 

∑                                                                                                                                         (  ) 

 

   

 

                                                                                                                                       (  ) 

The notation acquired for the needs of formulation is: 

aick - signifies the frequency that order length li appears in a pattern. 

 xck – signifies the number of times that c are being cut from k. 

tk – represent the amount of cutting patterns that are being cut from k.  

Thus the formulation of an integer programming model is: 
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        ∑∑          (                                             )

  

   

 

   

                   (  ) 

s.t. 

   ∑∑                (       

  

   

 

   

)                                                                                (  ) 

                       (        ) (       )                                                             (  ) 

The main difference between the general 1DCSP and standard 1DCSP is that the main goal 

of the latter one is not to minimize the trim loss but to optimize the total stock lengths to be 

cut.  

In practice, sometimes problems occur that cannot be solved using either the item-oriented 

or pattern-oriented approach. Therefore, a definition of a hybrid 1DCSP was proposed for 

the purpose of allowing for (Gradišar et al., 1999b): 

 the cutting of order lengths into the exact required number of pieces; 

 cumulating consecutive residual lengths in one piece, which can be used later; and 

 using non-standard stock lengths. 

1.2 Exact and heuristic approach 

In this subchapter, I will introduce the most significant concepts for solving the 1DCSP. 

Due to the relatively large diversity of cutting problems, many different approaches have 

emerged that take account of various aspects (Bischoff & Wäscher, 1995): 

 applicability of the research: methods for solving the 1DCSP can be used in various 

industries such as steel, glass and paper manufacturing. 

 the diversity of real-world problems: the structures of cutting and packing problems in 

the real-world vary according to specific goals or constraints, e.g. the degree of 

integration into wider planning systems; and 

 the complexity of the problems. 

Also important is the time needed for an algorithm to prepare the cutting plan. The 

computational time mostly depends on the algorithm’s time complexity, which is depends 

on the amount of input parameters.  

The majority of cutting problems are denoted as NP-complete
7
 problems (Bischoff & 

Wäscher, 1995). The time consumed when solving NP-complete problems increases 

                                                 
7
 The abbreviation NP refers to nondeterministic polynomial time. 
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exponentially in conjunction with the problem size and therefore bigger problems cannot 

be solved exactly. Depending on the computational time, the methods for solving the 

1DCSP can be classified in two groups: 

 Exact methods: these provide the best possible solutions but are only useful for small 

orders due to the exponential growth of computational time. The solutions found have 

exponential complexity. 

 Heuristic methods: these do not ensure the optimal solution but they do find one within 

a reasonable time. Problems can thus be solved in polynomial time. 

A problem is NP-hard if it is possible to transform any other NP problem into the original 

problem with a polynomial algorithm. A problem is NP-complete if it is placed in the set 

of NP problems and also in the set of NP-hard problems. If an efficient polynomial 

algorithm to solve one NP-complete problem were to be found, it would be possible to use 

it to solve all other NP-complete problems (Schrijver, 1998). Such an algorithm has not yet 

been found. 

Although NP-hard problems cannot be optimally solved, various techniques can be applied 

to solve several large-scale instances in negligible time (Pisinger, 1995):  

 branch-and-bound; 

 dynamic programming; 

 state space relaxation; and 

 preprocessing. 

NP-problems represent a set of solutions that can be defined with use of a nondeterministic 

algorithm in limited polynomial time. Typical NP-hard problems are knapsack problems 

(Caprara, Carvalho, Lodi, & Woeginger, 2013). 

The knapsack problem was first mentioned already in 1896 (Mathews, 1896). Later, the 

number of solutions to the problem started to grow and in 1974 Horowitz and Sahni 

introduced a new branch and search algorithm that was significantly faster than previous 

algorithms (Horowitz & Sahni, 1974). Many new methods followed afterwards.  

Algorithms for solving knapsack problems are some of the most widely used algorithms 

for solving bin-packing problems and problems related to the tree data structure (Skiena, 

1999). 

A knapsack problem is defined as the optimal packing of a knapsack, where the value of 

the content should be maximal, the empty volume minimal and the weight of the content as 

small as possible. Mathematical it can be defined in a following way (Scheithauer, 2008): 

 p … knapsack volume;  



40 

 

 bi … object volume i, where       {     }; 0 < bi ≤ p; 

 m … number of objects of volume bi, which are packed in the knapsack; 

 ci … value of the object i, ci ≥ 0; 

 zi … sum of usage of object i at packing, where        . 

The goal is to find such set of objects that they not exceed p in the total volume and at the 

same time have the maximal value: 

 ( )     {∑      

     

∑    
     

               }                                                                  (  ) 

As already mentioned above there exist many algorithm for solving the knapsack problem. 

Hereinafter is presented the main algorithm for solving hard knapsack problems (Pisinger, 

1995). 

It is assumed that the items are ordered according to non-increasing efficiencies ej = pj / wj, 

thus  

                                                                                                                                        (  ) 

Various orderings could satisfy the abovementioned statement but for the purpose of this 

presentation it is assumed that one particular ordering has been selected. For any two 

indices s, t, where 1 ≤ s ≤ t ≤ n the set of the partial vector Xs,t is defined: 

      {(       )     {   }
     }                                                                                             (  )                                             

For a partial vector xi   Xs,t the defined corresponding profit sum   is notated as  (  )  

     ∑     
 
   . The weight sum   is defined as  (  )      ∑       

 
   . An optimal 

solution is found by: 

      {  (  )    (  )   }                                                                                                      (  ) 

In order to enumerate the set      it is assumed, that n is a power of two. Initially n sets of 

     are constructed, each consisting of two partial vectors: 

      {( ) ( )}   (       )                                                                                                   (  ) 

Follows the multiplication of the sets two by two, obtaining 

                                                                                                                                            (  ) 

as the Cartesian product of 

                         (           )                                                                           (  ) 
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The procedure is continued in such way until the final two sets       and          are 

reached, which are multiplied in a similar way.  

For example the following data instance is given:  

J 1 2 3 4 

pj 7 5 6 3 

wj 4 5 7 4 

         

where n = 4 and c = 13. The running of the main algorithm is presented in Figure 16. 

Figure 16: Main algorithm for solving knapsack problem. 

 

Source: Pisinger, 1995. 

All such problems involve a subset of demanded items that have to be selected in such a 

way that the corresponding profit sum is maximized and the capacity of the knapsack is not 

exceeded. In accordance with the distributions of items in the knapsack many variations of 

knapsack problems exist, such as (Pisinger, 1995): 

 the 0–1 knapsack problem: each item can only be chosen once; 

 bounded knapsack problem: the amount of each item type is bounded; 

 multiple-choice knapsack problem: individual items can be selected from separate 

classes; and 

 multi-constrained knapsack problem: a general integer programming problem where 

coefficients are positive. 
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Knapsack problems are widely applicable in practice, for example in investment 

management, tourism, cargo loading, budget control, financial management, cryptography 

and cutting (Pisinger, 1995). 

In terms of cutting, such examples are ideal patterns that are defined as a combination of 

demanded items of any lengths which are cut from a certain bar in such a way that the trim 

loss is minimized. A complementary problem is all of the remaining patterns that are not 

ideal (Cesar, 2013). 

Table 7 presents the difference between polynomial and exponential algorithms. It shows 

the change in the problem size that can be solved using a faster CPU
8
. The size increases 

rapidly for algorithms with polynomial time complexity and slowly for algorithms with 

exponential time complexity. 

Table 7: Influence of faster computer on polynomial and exponential algorithms. 

Function of time 

complexity 

The problem size 

with the nowadays 

computer 

100-times faster 

computer 

1000-times faster 

computer 

n N1 100 N1 1000 N1 

n
2 

N2 10 N2 31,6 N2 

n
3 

N3 4,64 N3 10 N3 

n
5 

N4 2,5 N4 3,98 N4 

2
n
 N5 N5 + 6,64 N5 + 9,97 

3
n 

N6 N6 + 4,19 N6 + 6,29 

Source: Garey & Johnson, 1979. 

As is evident from Table 7, it is not very likely to expect exact solutions for large problems 

in the future. Accordingly, the exact methods are only appropriate for solving problems of 

a small size. Problems of a bigger size can be solved using heuristic algorithms.  

The main disadvantage of the heuristic methods used for solving large problems with low 

time and computational complexity is that they do not provide an optimal solution. Instead, 

they provide a nearly optimal solution within a reasonable time. In practice, providing a 

solution in a short time often has a crucial meaning for an efficient business. The desired 

speed of designing the cutting process can thus depend on various factors, such as 

(Erjavec, 2011): 

 the agreed delivery period; 

 the occupancy of cutting machines; or 

 the number of orders.  

                                                 
8
 The abbreviation CPU refers to central processing unit. 



43 

 

Companies tend to operate at the lowest possible costs and therefore a solution obtained in 

a short time period and with a higher trim loss outweighs the optimal solution obtained in a 

longer time period with a lower trim loss (Erjavec, 2011). This is one of the main reasons 

that heuristic methods are more commonly used in real-world situations.  

According to Dyckhoff, methods for solving the 1DCSP can be divided into two groups 

with regard to the basic principle that was used. These groups are (Dyckhoff, 1990): 

 Pattern-oriented methods: cutting patterns and the frequency of each pattern are 

determined using different methods. Most pattern-oriented methods are based on the 

algorithm introduced by Gilmore and Gomory (1961; 1963). These methods initially 

construct patterns and they then assign large and small items to some of those patterns. 

Methods based on a pattern-oriented approach are only useful in the case of all items in 

stock being of the same lengths or a few different standard lengths. 

 Item-oriented methods: in this group of methods patterns are not determined. Instead, 

the cutting plan is prepared for each individual item in stock. Methods based on an 

item-oriented approach are generally used as they can be applied to both standard and 

non-standard item lengths in stock. These methods promptly assign items to objects.             

In the case of standard stock lengths, the pattern-oriented methods are more flexible and 

more appropriate for use in solving large problems. In the case of non-standard stock 

lengths, only item-oriented methods come into play (Trkman & Gradišar, 2010).      

Some of the main distinctions between item-oriented and pattern-oriented approaches are 

presented in Table 8.  

Table 8: Solution approaches. 

Item-oriented Pattern oriented 

Exact methods 
Approximation 

algorithms 
One-pattern Several patterns 

E.g. branch and 

bound, dynamic 

programming 

Bin packing 

algorithms 

Knapsack algorithms, 

various methods in 

more dimensions 

LP-based and 

general 

heuristics 

Source: Dyckhoff, 1990. 

The classification presented in Table 8 is not totally whetted. For example, the type of 

pattern-oriented methods, denoted as one pattern, can be considered only in the case of one 

large object. Regarding the one-dimensional type of problem, such methods are based on 

combinatorial algorithms, i.e. those for solving the knapsack problem. In the presented 

typology, the emphasis is on combinatorial perspectives of cutting and packing problems 

and not on the geometric properties of objects (Dyckhoff, 1990). 
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When using methods based on the pattern-oriented approach to find the optimal solution, 

the main problem lies in the large number of possible patterns that can be used for cutting 

the individual item. A middle-sized problem is selected for demonstration purposes. There 

are 50 different order lengths and the individual item is cut into 5 pieces (5 different or 

same item lengths are obtained from each item in stock). The number of possible patterns 

for one item can be calculated using the equation for a combination with a repetition: 

      
  (

     

 
)                                                                                                                 (  )  

where n stands for the number of different order lengths and r for the number of order 

lengths that are used in the cutting of an individual item. Therefore, 3,162,510 different 

patterns can be used for an individual item. It is usually necessary to use more than one 

item so the number of all possible combinations of patterns and items that are going to be 

used in the cutting is significantly higher. It is possible to conclude that every method that 

attempts to obtain a solution by testing all possible patterns is doomed to fail, except in 

cases with very small problems (Trkman & Gradišar, 2010).  

Due to the abovementioned grounds, methods based on a pattern-oriented approach do not 

test all possible patterns when solving large problems but only test some of them instead. 

The key question that arises regards the selection of patterns to be tested among all 

possible patterns. Hence, the most appropriate patterns are determined using various 

methods. The frequency of each individual pattern is determined after. As a result, the 

certainty of obtaining the optimal solution depends on the method’s performance and the 

type of problem (Trkman & Gradišar, 2010).  

When using methods based on an item-oriented approach each item that has to be cut is 

treated separately. A cutting plan is determined for each item. Where all items have 

different lengths such an approach is the only realistic one. Use of an item-oriented 

approach is in some cases also suitable when solving problems where all items have the 

same lengths (Trkman & Gradišar, 2010).  

For the approaches presented above (item-oriented and pattern-oriented) both groups of 

methods, exact and heuristic, can be used to solve problems. Exact methods are based on 

algorithms that in a finite number of steps provide an optimal solution to the problem with 

a certain probability. This is also a major advantage of exact methods. The biggest 

disadvantage lies in the exponential growth of time needed to determine a solution when 

the problem size is growing due to the NP-hardness of most cutting problems. To obtain a 

solution the exact methods use various techniques, such as (Trkman & Gradišar, 2010): 

 linear programming; 

 branch and bound; and 

 dynamic programming. 
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The heuristic method is a procedure that provides nearly optimal solutions to the 

optimization problem. Those methods are generally more suitable for solving bigger 

problems and mostly become applicable in cases where an algorithm for the optimal 

solution has not yet been found or it has been too computationally demanding for solving 

bigger problems (Eiselt & Sandblom, 2000).  

Another important question arises regarding how to determine the quality of the method. A 

method is considered to be good quality if the obtained solution has a sufficient quality. 

That is, if it differs from the optimal solution by less than some acceptable value that is 

determined by various criteria. The proof that the obtained solution deviates by less than 

such a value can be mathematical or statistical on the basis of a large number of generated 

and solved problems (Hinxman, 1980). Mathematical proof considers the maximal possible 

deviation of the heuristic solution from the optimal one. Statistical proof considers a 

statistical analysis of the obtained solutions and their comparison with the optimal ones. 

Such an analysis can also point out the suitability of the exact or heuristic method for 

solving different types of problems.   

Another disadvantage of heuristic methods is that they are usually quite specific and only 

suitable for solving an individual problem. A heuristic method that provides a fine solution 

for one specific problem given certain goals and assumptions will probably not be suitable 

for another problem, even if those problems are apparently similar (Trkman & Gradišar, 

2010).  

1.2.1 Types of exact methods 

With respect to the limitations on the processing capacity of a computer there are various 

methods for solving the 1DCSP in an exact way. The most commonly used are the branch-

and-bound method, techniques of linear programming and dynamic programming. Since 

descriptions of the last two approaches are presented in other parts of my doctoral 

dissertation, here I will only present the branch-and-bound approach.  

Since the number of feasible points in bigger problems is relatively high, it is impossible to 

verify all of them. Therefore, the branch-and-bound method is based on a smart selection 

of points that are to be verified. The elementary principle is that first the linear program of 

the problem is solved to obtain a solution that consists of non-integer values of the 

variables (Trkman & Gradišar, 2010). If the values are an integer that means there is an 

optimal solution of the problem since the optimal solution of the linear relaxation of the 

problem, where all the values are integers, is also an optimal solution to the integer 

problem (Winston & Goldberg, 2004).  

If the values are not integers, the solution of integer relaxation presents the lower bound for 

the solution of the minimization problem and the upper bound for the maximization 
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problem. Therefore, it is possible to deduce that the obtained solution is not optimal 

(Trkman & Gradišar, 2010).  

The next step is to divide a problem into two parts by branching it with the addition of a 

new limitation. Then one of the variables that initially does not have an integer value is 

selected. For example, if the value of variable y in the solution of the relaxation of the 

linear program equals 4.532, then the limitation y ≥ 5 is added in the first sub-problem and 

y ≤ 4 in the other. These two sub-problems do not have any common point. However, 

together they contain all possible integer solutions to the problem but not the optimal 

solution to the relaxation of the linear program that is not integer (Trkman, 2008). Created 

sub-problems are noted as a tree. Each individual solved sub-problem is denoted as a node. 

Further, one of the sub-problems is selected and the solution of its relaxation is found. This 

process continues until all of the nodes have been taken into account. The solution that 

remains is optimal. One of the key advantages of this method is that the elimination of one 

node excludes several feasible points that cannot provide an optimal solution.  

Two relevant questions are: which nodes should be branched first, and according to which 

variables should the branching be carried out? In practice, there are several options. One is 

the “last in first out” principle where we initially process one part of the tree and acquire a 

possible solution and then proceed with solving the remaining tree. Another option is to 

always solve that part of the sub-problem which has the best value of the objective 

function by jumping from one part of the tree to another. By using the branch-and-bound 

method it is possible to find an optimal solution to the problem, but in practice application 

of the method usually depends on the NP-hardness of the problem; the harder a problem, 

the longer the time it will take to obtain a solution.  

1.2.2 Types of heuristic methods 

Many heuristic methods can be found in the literature. Some of the most important ones 

are presented in the next subchapter. At this point, only a brief categorization of heuristic 

methods into groups is given.   

Various types of heuristic methods can be identified according to the way they operate to 

obtain a solution to the problem (Hinxman, 1980; Trkman & Gradišar, 2010). 

 State-space search: partial solutions to the problem are taken as nodes in a graph. Then 

the best path from the initial state (a complete unsolved problem) to the final state (a 

final solution to the problem) is found. Individual nodes and links between them are 

created dynamically. 

 Problem reduction: the main problem is divided into several smaller sub-problems. 

Each sub-problem is then solved separately (if those sub-problems are small enough it is 

also possible to apply exact methods). The final solution is presented as the union of 

individual solutions.  
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 Cut-off: if an exact method is based on attaining the optimal solution with iterations, it 

can be transformed into a heuristic method by introducing a condition when to terminate 

the iterations. The termination of iterations is possible when the solution obtained 

differs from the optimal one by less than some set value or when the costs and 

computational time exceed a certain, but still acceptable limit.  

 Aspiration level: if a heuristic method is based on acquiring various possible solutions 

to a problem, it is possible to accept the first solution that meets some criterion that is 

set in advance. Such an approach is useful when a nearly optimal solution is needed 

instead of the optimal one. 

 Repeated exhaustion repetition: heuristic methods of this type initially obtain some 

adequate pattern with a low trim loss. This pattern is then repeated as often as possible 

until the overproduction of an individual order length occurs. Then follows the 

exclusion of the last pattern usage and the determination of a new pattern that is used 

again as often as possible. This procedure continues until the complete fulfillment of the 

order has been reached.   

 Sampling: this approach is similar as in the aspiration level. Several possible solutions 

are identified. Next, for each of the possible solutions the value of the objective function 

is calculated. Then the point with the best value of the objective function is selected.  

Another classification of heuristic methods can be found in the literature. Beraldi, Bruni, 

and Conforti (2009) proposed a categorization of at least three different groups of heuristic 

approaches. These are, in particular: 

 sequential heuristic procedures (SHP); 

 methods that are based on linear programming; and 

 metaheuristic methods, e.g. tabu search, genetic algorithms, evolution algorithms etc. 

The main disadvantage of methods that use the heuristic approach is that they do not find 

the optimal solution on the account of the shorter computing time. But, in practice, finding 

the solution in the shortest possible time is often crucially important for a successful 

business performance. The desired speed of designing a cutting plan can therefore depend 

on various factors such as the date of the delivery of material, the occupancy of the cutting 

machines and the number of orders. Due to the smaller total cost, companies are willing to 

make a compromise between the amount of the trim loss and how long it takes to prepare 

the cutting plan (Erjavec, 2011). 

1.2.3 A Combination of exact and heuristic methods 

Sometimes researchers combine the exact and heuristic methods to obtain better solutions. 

Such an example is found in Gradišar and Trkman (2005) where the authors presented a 

new approach that combines the SHP and branch-and-bound algorithm. This combination 

enables almost optimal solutions and keeps the low time complexity. First, the bigger part 
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of the problem is solved using the heuristic method. Second, smaller sub-problems are 

being solved using the exact method. The presented combination of exact and heuristic 

methods provides better results than can be obtained using only the heuristic approach.  

1.3  Overview of the methods 

In this section, I present some of the best known methods for solving the 1DCSP. In 

addition to the presented methods, the literature provides information about many other 

methods, although a detailed description of all methods would exceed the framework of 

this doctoral dissertation.  

The best known heuristic method that obtains solution using a sampling approach was 

presented by Gilmore and Gomory (1961). The aim is to find a cutting plan with minimal 

costs. Costs are presented as the sum of costs of all items used. The stock consists of an 

unlimited number of pieces, each with a standard length. In the order that has to be filled 

there is a certain number of pieces of known lengths. Due to the unlimited amount of 

material in stock, the order can be met in all cases except if the longest ordered item is 

longer than the longest item in stock. The main problem is represented by the large number 

of possible patterns. The presented method deals with it in a way so that in each phase of 

the simplex method, when a new pattern is needed, not all possible patterns are reviewed. 

Instead, the relevant pattern is found by solving an auxiliary problem. Such a problem is 

commonly called the knapsack problem.  

The knapsack problem can be explained using an example of a hitch-hiker (Martello & 

Toth, 1990). He has to fill his knapsack up with objects that will maximize his comfort. He 

can choose from among many objects but cannot select all of them due to the limited size 

of the knapsack. The mathematical formulation of the problem requires numbering the 

objects from 1 to n and introducing a vector of binary variables xj (j = 1,...,n) with respect 

to:  

xj = {
                          
                                

                                                                                                      (  ) 

Suppose that a measure of comfort is pi given by object j, wj is its size and c is the size of 

the knapsack. The knapsack problem is how to select, from among all binary vectors x 

satisfying the constraint 

∑    

 

   

                                                                                                                                        (  ) 

the one that maximizes the objective function: 
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The 1DCSP is a common application of the knapsack problem in various forms in different 

industries. An example can be found in the production of fiber optic cables where the 

problem is how to cut lengths of cable to meet a customer’s demands while extracting the 

greatest value from each length of cable (Bartholdi III, 2008).  

A similar problem can be found in the paper industry. A paper mill produces huge rolls of 

paper. The dimensions of these rolls are determined by the manufacturing process. With 

respect to filling a customer’s orders these rolls are sliced into smaller rolls. Gilmore and 

Gomory (1963) proposed a modification of their method that is adjusted to this specific 

problem. They made small changes in the problem formulation and in the algorithm for the 

purpose of obtaining a solution in a shorter time.  

One of the first techniques for solving optimization and combinatorial problems such as 

the traveling salesman problem and the three machine scheduling problem was the branch-

and-bound method (Little, 2012). Branch-and-bound algorithms are the most efficient for 

solving non-convex problems since they assure a lower and upper bound of the optimal 

objective value. Their main disadvantage is that they generally consume a lot of time due 

to the exponential growth of the required effort with the problem size (Boyd & Mattingley, 

2007).  

Another technique for solving complex optimization problems is called simulated 

annealing. It uses a random-search approach. The name comes from its similarity to a 

process where a metal cools and freezes into a minimum energy crystalline structure. The 

approach that is used to find an extreme of the function may be compared to a bouncing 

ball that bounces over mountains from valley to valley. The high temperature assists the 

ball to bounce very high – presumably over any mountain – so any of the valleys can be 

reached if there are enough bounces. If the temperature decreases, then the ball does not 

have the possibility to bounce so high anymore and is therefore stuck in relatively small 

arrays of valleys. In that way, an acceptance distribution is determined. It depends on the 

temperature. If the level of cooling is firmly controlled, then a simulated annealing can find 

a global optimum of the function but it consumes an infinite amount of time, which is also 

the main disadvantage of the presented technique. Other weaknesses refer to the non-clear 

compromise among the quality of the solution and the consumed time and fine-tuning of 

the parameters for a specific problem. The chief advantage is that simulated annealing is a 

flexible and robust approach that enables complex non-linear models with a lot of data and 

constraints to be tackled. The following elements are essential for conducting a simulated 

annealing procedure (Busetti, 2003): 
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 a representation of possible solutions; 

 a generator of random changes in solutions; 

 a means of evaluating the problem functions; and 

 an annealing schedule – an initial temperature and rules for lowering it as the search 

progresses. 

The structure of a simulated annealing is presented in Figure 17. 

Figure 17: The structure of simulated annealing algorithm. 

 

Source: Busetti, 2003. 

Later, many methods for solving the 1DCSP evolved that differ from Gilmore and 

Gomory’s approach. One of the possible techniques is called a genetic algorithm (GA) 

which was introduced in 1975 (Holland, 1992). The core idea is that short, low-order and 

highly fit schemata can be recombined to form higher-order schemata and complete strings 

with high fitness (Rothlauf, 2006). The GA’s performance is derived from the real-life 

situation that was first described by Darwin in 1859. Three basic principles are (Darwin, 

1859):  

 a population consists of individuals with different properties and abilities. There is also 

an upper limit on the number of individuals in a population; 
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 nature creates new individuals with properties that are similar to the existing 

individuals; and 

 natural selection more often selects promising individuals for reproduction. 

The analogy between biological genetics and the GA is shown in Figure 18. 

Figure 18: Analogy between biological genetics and GA. 

 

Source: Haupt & Haupt, 2004. 

The properties and abilities of an individual are determined by the genotype. Different 

genotypes allow that individuals with different properties exist. The number of individuals 

from a population is limited due to finite resources. When the number of individuals 

surpasses the standing upper limit, some individuals are detached from the population. 

Individuals mutate over generations. Descendants receive some properties of their parents. 

The genotype is changed by mutation. The genetic information of the parents is also 

recombined. Another important determination of the GA is the fitness value of an 

individual. Highly fit individuals are enabled to create more descendants than those who 

have a lower fitness value. After some generations, the poorer individuals are detached 

from the population. Hence they no longer have a chance of creating descendants with 

similar properties. In such a way the overall fitness of a population improves over 

generations. Accordingly, in principle the GA first randomly creates and evaluates an 

initial population. It then iteratively creates new generations by recombining the selected 

individuals with a high fitness value and applying mutation to the descendants (Rothlauf, 

2006). The demonstrative main loop of the genetic algorithm is presented in Figure 19. 
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Figure 19: Main loop of the genetic algorithm. 

 

Source: Poli, Langdon, McPhee & Koza, 2007.           

The main steps of the GA include representation, initializing the population, selection, 

recombination and mutation. In the representation step, the genetic programs are stated as 

syntax trees. Variables and constraints that are denoted as terminals are represented by 

leaves of the tree and the arithmetic operators are presented as internal nodes (functions). 

Together, they create a primitive set of the system. When the system is more complex, the 

trees can be joined under a special root node and become denoted as branches (Poli et al., 

2007).  

The phase of initializing the population is comparable with other evolutionary techniques 

where the individuals in the initial population are randomly generated. To create an initial 

population, many methods can be used such as the Full and Grow method or the Ramped 

half-and-half method. Common to all of the methods for the creation of the initial 

population is that individuals are formed with respect to a pre-determined maximum depth. 

Further generation of the tree depends on the selected method or a combination of them. 

The main limitation of such a creation of the population lies in the difficulty of controlling 

the statistical distributions of main properties like the size and shape of the generated tree. 

Those limitations can be omitted using various modifications that have been developed for 

specific situations. If some characteristics of the desired solution are known, the initial 

population does not need to be completely randomly generated. Instead, the trees with 

those characteristics can be used when seeding the initial population. It is also possible that 

such seeds are preliminary created with another GA. If the initial population is not entirely 

randomly generated, then it is necessary that a situation is prevented where the second 

generation would be dominated by offspring of a single or a few seeds. It is generally 

considered that a variety of population should be observed since the significant mixing of 

different initial trees is necessary for ensuring that the GA works efficiently (Poli et al., 

2007).  

As mentioned above, the phase of selection consists of genetic operators that are applied to 

individuals who have a higher probability of being selected on the basis of their fitness 

value. This means that an individual with a higher fitness value will have more children 

than those with a lower value (Poli et al., 2007). In this phase, two chromosomes are 
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selected from the pool of chromosomes and produce the new offspring. This procedure 

runs until the stop criterion is met. Many methods for selecting an individual can be found 

in the literature, such as pairing from the top-to-bottom method, random pairing and 

weighted random pairing, but the one that is most widely used is called tournament 

selection. By this method, a small subgroup of chromosomes is randomly chosen from the 

mating pool and the chromosome with the highest value in this subgroup becomes a parent. 

Since many different sets of parents are created, the configuration of the next generation 

varies for each selection scheme (Haupt & Haupt, 2004).  

Recombination and mutation reflects the main differences between the GA and other 

evolutionary algorithms. Those are the operators of crossover and mutation. In the sub-tree 

crossover process, a sub-tree crossover randomly selects a crossover point in each parent 

tree. Next, the offspring are created by substituting the sub-tree entrenched at the crossover 

point in a copy of the first parent with a copy of the sub-tree entrenched at the crossover 

point in the second parent. Many other methods for performing a crossover can be found in 

the literature, such as a one-point crossover, common region, a size-fair crossover, a 

uniform crossover and a context-preserving crossover. The decision on which one to select 

depends on the needs of the specific problem. The next step is a mutation, which is 

performed by randomly selecting a mutation point in a tree and substituting a sub-tree that 

is rooted there with a randomly generated sub-tree. The process of mutation depends on the 

mutation methods selected (Poli et al., 2007). After the crossover and mutation phase, the 

value of the offspring and mutated chromosomes is evaluated. An illustrative procedure of 

the GA is presented in Figure 20. 
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Figure 20: Flowchart of GA. 

 

Source: Koza & Poli, 2005. 

Another widely used optimization method is called dynamic programming. It transforms a 

complex problem into a subset of problems that are simpler. It provides a common 

framework for solving various types of problems. It usually follows one of two approaches 

(Alba et al., 2009): 

 Top-down approach: initially the problem is divided into sub-problems which are then 

solved separately. The algorithm memorizes the mapping between sub-problems and 

solutions and returns to the stored solution if the problem has been preliminarily solved.  

 Bottom-up approach: on the basis of complexity first the sub-problem are solved and 

stored. The solution to a complex problem is then built on the solutions to the sub-

problems.  

The main advantage of dynamic programming is the efficiency when the search tree is 

exponential so sub-problems that have the same properties are constantly arising. The chief 

limitation lies in the capacity of computational power. If the range of sub-problems is too 

large to fit into a computer’s memory, the dynamic programming method will not find a 

solution (Alba et al., 2009). The method of dynamic programming is more often used when 
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solving two-dimensional cutting problems and since my doctoral dissertation addresses the 

1DCSP I will not explain dynamic programming in detail. More information on this topic 

can be found, e.g. in Powell (2007). 

A commonly used heuristic method is a greedy algorithm, which was first mentioned in the 

literature in 1971 (Edmonds, 1971). It finds the solution step by step and always selects the 

next step, which provides the most noticeable and direct value (Dasgupta, Papadimitriou, 

& Vazirani, 2006). It is used for solving various optimization problems including cutting 

problems. Although a greedy algorithm always takes decisions that are the best possible 

ones at that moment, it is not necessary that the final solution will be optimal. The 

performance of the algorithm depends on its design. In general, first the optimization 

problem is cast as one in which the decision is made and one sub-problem is left to solve. 

Next, the proof has to be provided that there is always an optimal solution to original 

problem that makes the greedy decision optimal (the greedy decision is always safe this 

way). Finally, the optimal sub-structure is demonstrated by showing that the remaining 

sub-problem has the possibility of combining the optimal solution to the sub-problem with 

the greedy decision so the algorithm reaches an optimal solution to the original problem. 

This indicates one of the biggest differences with dynamic programming, which is that the 

decision is based on the current situation and the sub-problems that remain are solved later 

(Cormen, Leiserson, Rivest, & Stein, 2009). 

In the late 1990s, a new meta-heuristic approach was proposed by Glover (1986). It is 

called a tabu search and is still widely used. The name comes from the word “tabu” and is 

associated with the transmission of a social memory that is subject to adjustment over time. 

The most important elements of a tabu search are adaptive memory and responsive 

exploration. The first one enables an efficient search for the solution space that is based on 

random processes that implement sampling. Such a method implies a memoryless design 

that includes the genetic, annealing and branch-and-bound approaches. The second 

element, responsive exploration, is based on the selection of bad choices since those 

choices produce better information than a good random choice. It combines the 

examination of solution characteristics and the exploration of new promising solutions. 

There are four fundamental dimensions of the memory structure in a tabu search, namely 

(Glover & Laguna, 1997): 

 quality; 

 influence; 

 recency; and 

 frequency. 

The next most important elements are intensification and diversification. Intensification 

regards a modification of the decision rules to provide a good solution. Diversification 
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considers the selection of the best solutions to define the best attributes for newly obtained 

solutions (Glover & Laguna, 1997). 

1.4  Overview of existing algorithms 

In this subchapter I present the best known methods for the 1DCSP. Some of them can also 

be used for solving the 1DCSPUL and therefore they will be explained in the second 

chapter and will not be mentioned here.  

The first efficient algorithm for obtaining a heuristic solution was proposed by Gilmore 

and Gomory in 1961 and later modified for cutting paper. However, since this was already 

explained in the previous subchapter I will not describe it again at this point.  

In the literature it is possible to find several solutions to the 1DCSP that are based on the 

GA or its modifications.  

Vahrenkamp (1996) proposed a modified GA that only takes efficient patterns into 

consideration, where the trim loss is smaller than some predetermined threshold. Ragsdale 

and Zobel (2004) introduced a combination of the GA with other heuristic methods for 

solving the problem where the basic requirement is that individual orders have to be cut 

sequentially for the purpose of being rapidly and comprehensively filled. Another example 

can be found in the construction industry (Shahin & Salem, 2004) where the GA was used 

whereas other heuristic methods were inappropriate to apply due to various shortcomings. 

Quiza Sardiñas, Rivas Santana, and Alfonso Brindis (2006) presented a multi-objective 

optimization technique that was based on the GA with the purpose of optimizing the 

cutting parameters in turning processes. A similar solution with the addition of production 

cost under a set of machining constraints can be found in Yildiz and Ozturk (2006). In the 

clothing industry, a hybrid GA was proposed by Yueng and Tang (2003) where a cutting 

problem was transformed into a permutation problem that could be effectively solved with 

a combination of the GA and a novel heuristic algorithm. The number of objects and setups 

of cutting patterns was minimized with a symbiotic GA that enabled the generation of 

combinations of cutting patterns and their frequency at the same time (Golfeto, Moretti, & 

de Salles Neto, 2009).  

In 1990 Goulimis presented an approach that provides an optimal solution for the 1DCSP. 

First, the possible cutting patterns are enumerated. Then the related integer program is 

solved by a combination of cutting plans and the branch-and-bound algorithm. The 

presented approach was experimentally tested with real data from a board mill. The results 

show that the average savings in material were up to 2.5% better than according to 

previously used methods. The number of cutting patterns and blade setups was also 

significantly reduced (Goulimis, 1990).  



57 

 

The modified integer round-up property of the linear integer minimization problem for the 

1DCSP has been demonstrated by proposing a new non-polynomial heuristic procedure for 

solving the problem (Scheithauer & Terno, 1995). Antonio et al. (1999) introduced two 

methods based on dynamic programming. The purpose was to solve a large spectrum of 

industrial cutting stock problems. The main contribution is the reduced computational 

burden by keeping only those states that seem to be the most cost-effective in each phase 

of the dynamic process. The first method, which was used in the sales department, where 

time was more important than the excellence of a solution, favored the computational time 

on account of the quality of the result. The second method favored the quality of the 

solution (Antonio, Chauvet, Chu, & Proth, 1999).  

For the purposes of the fashion industry a mixed integer programming model was 

presented. The algorithm hunts for an optimal range of cutting patterns. Then it allocates a 

combination of pieces that need to be cut to those patterns (Degraeve & Vandebroek, 

1998). 

Sometimes a combination of various approaches works best for solving the problem. One 

example is a combination of column generation and the branch-and-bound algorithm 

(Vance, Barnhart, Johnson, & Nemhauser, 1994). A formulation of the problem is based on 

general integer variables and it is thus not limited to be binary. The linear relaxation 

enables a strong lower bound and the cutting pattern is disintegrated into single arc 

variables (de Carvalho, 1998). 

Degraeve and Schrage (1999) offered an interested insight into the cutting stock problem 

since they presented a method termed column generation which enables the use of 

fractional amounts of patterns when solving a problem. They proposed an extension of the 

Degraeve column generation procedure within the branch-and-bound method and 

introduced a relatively general method that can also be used for solving various situations 

from practice. Such situations can consist of upper bounds on the amount by which the 

demand could be over-satisfied, a bound on the maximum leftover acceptable in each 

pattern and a limit on the maximum quantity of knives in cutting patterns. They tested their 

method on real industrial data sets. The presented method was later improved in 2003 by 

reducing an average solution factor by more than 300 so that bigger problems could be 

solved. The improvement consisted of integration of a hybrid simplex method to find the 

LP relaxation and of adding a branching scheme, which centers on the enumeration tree to 

solve the residual problem. Some additional rules, such as a pruning rule and use of the 

dominance rule, were also taken into account. They also proved the efficiency of the 

algorithm for solving bin-packing problems (Degraeve & Peeters, 2003).  

The large number of cutting patterns usually makes the cutting stock problem impossible 

to solve and so Suliman (2001) introduced a new approach. If the linear programming 

construction of a problem is free of integer variables, then the effect of the amount of 
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cutting patterns would be diminished. The solution is a simple pattern generation 

procedure that uses a search tree to develop the pattern generation method. 

A generalization of a combination of Chvatal-Gomory cutting planes with column 

generation was presented in 2002. The presented heuristic method was developed for 

solving the 1DCSP with various bar lengths in stock. Although the solution is based on the 

heuristic approach, the optimal solution is found in approximately 90% of test cases (Belov 

& Scheithauer, 2002).  

In 2002 Holthaus introduced an algorithm that minimizes cost and was built for solving an 

integer 1DCSP with different types of standard stock lengths. It was based on the column-

generation technique and combined some existing heuristic and exact methods (Holthaus, 

2002). Another approach from the abovementioned researcher was introduced a year later. 

The focus was on possible savings in the total cost of material that could be achieved by 

using a pool with two or more different stock lengths (Holthaus, 2003).  

A new model that resolved the non-linearity in the 1DCSP between pattern variables and 

pattern run lengths was introduced by implementing a novel use of 0-1 variables with some 

constraints (Johnston & Sadinlija, 2004). 

A combination of the exact and heuristic methods can lead to nearly optimal solutions also 

when solving very big problems. Such a method for solving the 1DCSP was introduced in 

2005. It enabled all stock lengths to be different and combined a sequential heuristic 

procedure with the branch-and-bound approach. First, the problem is solved heuristically 

and a good solution is obtained. Then the smaller, critical part of the problem is solved 

with the exact method. Such a combination gives very good solutions in a relatively short 

time (Gradišar & Trkman, 2005). 

The general tabu search approach was improved to efficiently solve a 1DCSP that is 

considered as a sequence problem. A varying mixed objective function was introduced that 

considers incentive and the total trim loss and therefore expands the possibilities for 

finding a good solution. The proposed approach was experimentally tested on real data. 

The solutions obtained were compared with the results of methods previously used for that 

specific case. The modified tabu search proved to be more efficient (Yang, Sung, & Weng, 

2006).  

In 2006, Cui, Chen and Wu outlined a method adjusted to the needs of a silicon steel 

circular blanks company. The dynamic programming technique was applied. First, the 

sheet lengths are grouped in ascending order and the best ones are selected. The optimal 

solution for an individual length is then used as an initial solution for the next length. Next, 

the optimal strip layouts on segments are determined. The optimal segment lengths are 

then obtained using implicit enumeration (Cui, Chen, & Wu, 2006). 
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In 2006, Belov and Scheithauer presented a method that is able to tackle the 1DCSP and a 

two-stage, two-dimensional guillotine constrained cutting problem. They enhanced a 

branch-and-price scheme with general-purpose cutting plans. The solution is primarily 

obtained for LP relaxation and later improved with mixed-integer cuts. Unfortunately, 

practical experiments revealed that the method is more efficient when applied to a two-

dimensional cutting problem than for the 1DCSP (Belov & Scheithauer, 2006). 

A hybrid approach of metaheuristics and linear programming for solving 1DCSP where the 

quantity of stock rolls should be minimized due to increasing costs of switching among 

cutting patterns is proposed by Umetani, Yagiura, and Ibaraki (2006). The algorithm 

consists of two phases. For increasing the performance the local search was combined with 

linear programming technique.  

The problem of having a large number of different cutting patterns when solving the 

1DCSP was tackled by a sequential heuristic method that minimized the input of material. 

Additional functionality was added in order to restrict the number of open stacks to an 

arbitrary limit. To evaluate the solution with regard to several objectives, the Pareto 

criterion was used (Belov & Scheithauer, 2007). 

Lee proposed an integer linear programming method based on local search heuristics. He 

holistically integrated the main problems and sub-problems of price-driven, pattern-

oriented methods and presented a unified model which generates patterns in situ. The 

emphasis is on improvement of the integer linear programming over continuous linear 

programming (Lee, 2007).  

An interesting combined method can also be found in Alves and Valério de Carvalho 

(2008), where the authors proposed a new branch-and-price-and-cut algorithm based on the 

exact approach. They researched the use of valid dual inequalities within the previous 

algorithms and showed that the column generation could be enhanced in all branching tree 

nodes with the use of those inequalities. They proved that inequalities can be stretched to 

the whole branch-and-bound tree to improve the conjunction of the proposed branch-and-

price-and-cut algorithm. 

Another sequential heuristic method was introduced by Cui, Zhao, Yang and Yu (2008). 

The focus was on pattern reduction. The newly presented algorithm first creates a cutting 

pattern from a chosen sub-set of unassigned items, then it defines the pattern usage 

frequency, removes those items that are given to the cutting pattern from the sub-set and 

repeats the procedure. It stops when all the items have been assigned. Experiments have 

shown that this algorithm obtains a better solution than other methods that are based on 

pattern reduction. 
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Pattern reduction is a widely studied objective when developing a method for solving the 

1DCSP. Another method was introduced by Cerqueira and Yanasse (2009). Their solution 

was based on the evaluation of a group of patterns based on their frequencies.  

A two-stage method for pattern generation and cutting plan determination is based on the 

integer linear programming models. First, a heuristic procedure is applied to identify all 

possible cutting patterns and to minimize the trim loss. Then the second integer linear 

programming model is applied and a cutting plan is formed. The model took various 

factors into account, such as (Aktin & Özdemir, 2009): 

 material inputs; 

 the number of setups; 

 labor hours; 

 overtime; 

 demand requirements; 

 material availability; 

 regular and overtime availability; and 

 due date constraints. 

A rarely used technique for solving the 1DCSP is ant colony optimization. An improved 

model where the authors modified parts encoding, solution path, state transition probability 

rules and phenomena updating rules consisted of 16 steps and proved to be suitable for 

solving combinatorial optimization problems (Yang, Li, Huang, Tan, & Zhou, 2009). 

An interesting aspect of the 1DCSP was considered by Reinertsen and Vossen (2010) 

where the orders must be met within a given period of time. They developed an algorithm 

that considers the due dates of orders. The test data were taken from practice so the 

aggregation of orders, multiple stock lengths and cutting of different types of material on 

the same machine were also studied.  

When solving the 1DCSP trim loss minimization is usually the main goal, but not always. 

In 1990, Wäscher presented a linear programming method to simultaneously tackle several 

objectives, such as costs of overgrading, material, warehouse and trim loss (Wäscher, 

1990). 

Another linear programming method was introduced five years later and was intended for 

solving two-stage cutting stock problems. The outcomes of the first stage are intermediate 

products, which are then cut into final items in the second stage. In addition to minimizing 

the trim loss costs, the presented method also reduces the number of set-ups and minimizes 

the quantity of cutting patterns and intermediate products. The linear program is solved by 

a column generation technique (Valério de Carvalho & Guimarães Rodrigues, 1995). 
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Many methods from the literature are based on modifications of Gilmory’s algorithm. Such 

a case can be found in Soeiro Ferreira, Antonio Neves, and Fonseca Castro (1990). The 

authors were dealing with a roll cutting problem in the iron and steel industry that included 

two phases. The first phase covered the cutting of raw material into intermediate products 

that were cut to the final product in the second phase. The developed method was based on 

automatic sequential searching.  

In 1995 a project was presented where the problem involved the distribution of wooden 

products with different quality necessities that have to be cut from wooden panels. The 

main trouble was the very short time limit since the cutting plan should be made in 2 

seconds, before the material is sent to the machine. The problem was solved with a 

combination of Lagrangean relaxation and sub-gradient optimization (Rönnqvist, 1995). 

Methods for optimizing the sequence of cutting patterns evolved in 1995. The aim was to 

minimize the maximum queue of incompletely cut orders. The first method was intended 

for solving more specific cases and was based on the lower bound. The second method 

used an implicit exhaustive search procedure and could be used more generally (Yuen & 

Richardson, 1995).  

Another method for determining the cutting sequence was presented in 1998 for the 

purpose of minimizing the queue of partially cut orders. The presented mathematical 

model included three phases. First, the greedy algorithm is applied and a relatively good 

starting solution is obtained. This solution is then improved by a tabu search in the second 

phase. In the third phase, an optimal solution is reached by implication of the enumeration 

procedure that uses the previously gained solutions (Faggioli & Bentivoglio, 1998).   

The special nature of the problem was noted by Wagner (1999). He took into account trim 

loss minimization, stock usage and ending inventory levels. The method enabled non-

integer results, while the main emphasis of his work was on rounding up those numbers. 

Because the traditional rounding-up procedures are not effective, he proposed a specially 

developed GA to solve the integer programming problem formulation.  

An algorithm that was based on a hierarchical approach pursued three objectives (Vasko, 

Newhart, & Stott Jr, 1999): 

 to satisfy the customer’s order as much as possible – the number of uncut orders should 

be as small as possible; 

 to minimize overgrading – diminishing the use of too good material when performing 

cutting. Such a situation occurs when a customer wants to have material of a lower 

quality. If the company fails to satisfy the customer’s requirements, the material can be 

of better quality, but this at the expense of the company; and  

 to minimize the trim loss. 
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Various objectives that should be taken into account when formulating the objective 

function arise from real-life situations. Minimization of the cutting time was the case in the 

method developed by Chu and Antonio (1999). They introduced approximation algorithms 

for various intentions such as a fast response to a specific customer requirement and the 

provision of a production plan for the next period. The proposed method is similar to the 

one published in Antonio et al. (1999) where the authors proposed an approach for solving 

large problems. The presented methods were based on dynamic programming and reduced 

the computational complexity by only keeping those situations that appear to be the most 

cost effective.  

Sometimes other objectives should also be taken in to account, such as (Venkateswarlu, 

2001): 

 trim loss: expressed as percentage of the total material used; 

 overproduction: items that are cut from the material in stock oversize the order due to 

the repetition of cutting patterns. It is expressed as a percentage of all items cut; 

 average stock: the length of material in stock after filling a customer’s order; 

 average number of different lengths of material in stock: the average of different lengths 

that remain in stock after cutting; and 

 average number of bars in stock: the number of bars that remain in stock after filling a 

customer’s order.  

Some other authors have also included other criteria. In 1998, an interesting method 

evolved for the purposes of the paper-converting industry. The aim was to minimize the bi-

linear cost function when producing required paper sets from larger raw paper reels. The 

costs consisted of trim loss, the warehousing of partially used reels of paper and changes in 

the machine and blade settings. The first step of the method concerns a nonlinear 

procedure for generating all possible cutting patterns. In a later step, a solution is obtained 

with mixed integer linear programming (Westerlund, Harjunkoski, & Isaksson, 1998).  

In the clothing industry, various layers of commodities must be put on a cutting table 

before the cutting is undertaken. This is a timewasting process that results in high setup 

costs, which in relation to the trim loss costs represent the total production costs. Hence, 

the method for minimizing such setups and at the same time generating a little or no trim 

loss was introduced. The proposed method uses a mixed integer programming model for 

searching for an optimal set of cutting patterns (Degraeve & Vandebroek, 1998).  

An attention-grabbing approach can also be found in Foerster and Wascher (2000). The 

goal was to find a plan with a small or minimal quantity of cutting patterns instead of 

minimizing material costs since the quantity of cutting patterns needed to fulfill a certain 

set of orders can be vital for the capacity load that can be achieved for cutting equipment. 

The proposed method has two steps. First, the minimal input plan is generated and then the 



63 

 

quantity of patterns is reduced. The authors focused on the development of a new method 

for the second step. The method may be regarded as a generalization of other methods 

solving such a problem.  

The goal of minimizing the total cost of production was followed by Menon and Schrage 

(2002). The method sought to tackle the problem of allocating customers’ orders to 

machines when producing paper. The model was formulated as a dual-angular integer 

problem. The authors proposed an approach that solved decomposable dual-angular integer 

programs on the basis of sub-problems’ boundaries and applied it to solve a problem from 

practice. The impact of symmetry, which fortifies the difficulty of solving the 

decomposable integer programs, was therefore meaningfully reduced.  

An interesting method which took the maximization of profit into account, based on the 

revenues from sales, the costs of the material, the costs of changing the cutting pattern and 

the costs of the discarded material, was presented by Schilling and Georgiadis (2002). The 

solution was grounded on a mixed integer linear programming model that was resolved 

with the use of standard techniques.  

A method for specifying the order of cutting on various machines was introduced to solve 

real problems in the construction industry. The sequencing algorithm searches for the 

processing sequence for starting the cutting patterns arising from an integer solution and 

exploits the relations among orders in patterns (Armbruster, 2002).  

In 2002, Zak presented two papers dealing with a multistage 1DCSP where the cutting 

process consists of various following steps. Since at the end of each stage (except the last 

stage) the result is an intermediate product, the aim was to minimize the total material used 

in order to meet the customer’s demands. In the first paper, he developed a special 

procedure for row and column generation which uses a revised simplex algorithm to 

efficiently solve a non-linear knapsack problem (Zak, 2002a). In the second paper, he 

presented a generalization of the Gilmore and Gomory column generation method in order 

to solve large-scale linear programming models (Zak, 2002b). 

As mentioned in the previous section, evolutionary algorithms (EA) present an efficient 

possibility for solving many optimization problems. One type of evolutionary algorithm is 

evolutionary programming (EA) which uses a mutation as the search operator but, unlike 

the GA, does not conduct the crossover phase. A method that uses the EP algorithm was 

introduced by Liang, Yao, Newton, and Hoffman (2002). Apart from trim loss 

minimization, the objectives that were considered were minimization of the quantity of 

stock and the quantity of partially finished items. They proposed two new mutation 

operators and experimentally showed that application of the EP can result in a better 

solution in comparison with the GA when solving the 1DCSP. 
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A heuristic method that followed the goal of minimizing the number of cutting patterns 

used in the cutting plan was introduced in 2003. The formulation of the model was based 

on the assumption that the relocation of the blades, as needed upon each pattern change, 

represents the highest cost rather than the trim loss, although the trim loss is not 

overlooked. The limitation about the highest quantity of trim loss in each cutting pattern is 

built up in the model (Umetani et al., 2003).  

Another method drawn from the paper industry was presented in 2004. The costs of 

changes in cutting patterns and of resetting the blades were evaluated. The method was 

based on simulated annealing where a general regression neural network is skilled using 

available data to create a model that comes close to the response surface in the feasible 

domain. The candidates generated by the simulated annealing are then verified by 

estimating the objective functions (Yen, Wong, & Jang, 2004). 

Another objective that is taken into account is order priority. Such an approach was 

studied, for example, by Ghodsi and Sassani (2005a). The purpose was to have all 

demanded items ready within a given time limit. The method was grounded on an adaptive 

fuzzy ranking technique to solve problems in real time. The orders were prioritized on the 

basis of the complexity of fulfillment. In the same year, those authors presented another 

method regarded as complementary to the one described above. The purpose was to 

minimize the trim loss when the items in stock are of a random size and quality. The 

solution enables real-time solutions and allows it to be implemented on-line (Ghodsi & 

Sassani, 2005b). 

An interesting example can be found in Gramani and França (2006) where the 

minimization takes the trim loss, storage costs and setup cost into account. They 

considered the production planning for various periods. They combined the stock and lot-

sizing problem and formulated a mathematical model based on an analogy with the 

network shortest path problem. The results indicated that the solution is 28% better than 

that obtained by solving each of the abovementioned problems separately.  

Minimization of the trim loss would not be appropriate if the material in stock is infinitely 

long, such as in Hajizadeh and Lee (2007). Therefore, the minimization considered the sum 

of cutting time and pattern changing time to meet the given demand. The goal was to 

realize the better effectiveness of cutting machines so the whole production could have a 

higher performance. The model included linear formulations for presented problems using 

a binary expansion of the quantity of pieces of altered types in a pattern. The time available 

for a pattern change was formulated as a linear function of the quantity of knives. The 

experiments suggested that the presented approach could lead to 400% better results than 

those from any existing methods.  

To solve the 1DCSP with limited multiple stock lengths several heuristics have been 

developed. Significant work has been done by Poldi and Arenales (2009). They developed 
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a range of methods for constructive and residual heuristics based on the first fit decreasing 

approach and greedy procedure. They made a comparison with some other methods such 

as the branch-and-bound procedure developed by Belov and Scheithauer (2002). 

In the paper industry it is also possible to find a method that aims to fulfill a customer’s 

orders in the terms of the quality of material. Orders are satisfied by transforming paper 

mills into a high quantity of sheeted products so that huge reels of different paper grades 

are produced. These reels are later cut into smaller rolls and sold or sheeted into finished 

products. Reuse of the material is not possible. The binary linear model uses two 

approaches for solving. The first one is branch-and-bound based on column generation and 

the second is the heuristic method for marginal cost minimization (Chauhan et al., 2008).  

When solving the 1DCSP an evolutionary algorithm can be very efficient. This was shown 

for a type of problem where different stock lengths are available but their amount is 

limited. Every step of EA development was developed in a way so as to be suitable for a 

particular problem. In the representation phase, each gene was considered as a cutting 

pattern and the quantity of times it is cut. Accordingly, the individuals were formed by a 

matrix. The initial population was generated taking the computational time and diversity 

into account. For the selection process the random greedy approach was used. The 

cooperation and self-adoption phase were based on the use of a repeated exhaustion 

reduction heuristic. The considered strategy for population replacement was steady-state-

oriented. The stopping criterion was defined by a parameter that was signified by the 

maximum quantity of iterations to be made. The objective function represented the fitness 

function. It was the minimization of the trim loss in the described case (Araujo, 

Constantino, & Poldi, 2011). The presented EA method was then compared with some 

other heuristic methods (Belov & Scheithauer, 2002; Poldi & Arenales, 2009). 

It is possible to find many papers in the literature that deal with a comparison of various 

methods for solving the 1DCSP. In Vance (1998), a comparison is made for two branch-

and-price approaches that differ in the way that the integer programming of the column 

generation is formulated. In the first, the algorithm tackles the problem using 0-1 integer 

variables. The other uses universal integer variables. Both algorithms were tested on real-

life data and the same computer. Better results were obtained with the algorithm that was 

based on a more compact column generation formulation since the amount of relaxations 

of the linear program is smaller and is thus less difficult to solve. One important finding 

from this study was that a compact formulation is more suitable for solving complex 

problems due to the increased quantity of columns. On the other hand, it cannot be used for 

cases where the stock items are not of standard lengths because the generalizations used to 

define the compact formulations do not apply. When the formulation of column generation 

is less compact, this influences the branch-and-bound symmetry and it is therefore not 

applicable to some situations (Vance, 1998). 
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Another evaluation of several methods was made by Gradišar et al. (2002). Until that 

paper, a general comparison of the various algorithms was impossible since they took 

many different factors into account. The authors suggested that the trim loss is the most 

important one and they therefore proposed a common definition of trim loss by introducing 

a General One-Dimensional Cutting Stock Problem type. Then two heuristic methods 

(CUT and COLA) were evaluated. 

A comparison of three heuristic methods by trim loss was presented by Bingul and Oysu 

(2005). The authors evaluated three different levels of the complexity of a problem: easy, 

medium and hard. The approximate method was compared with the GA and simulated 

annealing, both with an improved bottom-left. The conclusion was that the GA performs 

better than the other two when solving complex problems, whereas for easy and medium-

sized problems the approximate algorithm is the most suitable.  

Similar methods to those described above may be found for solving two-dimensional, 

three-dimensional or four-dimensional cutting problems. The description of such methods 

is not presented here since that would go beyond the purpose of my doctoral dissertation. 

1.5  The role of cutting in companies 

Cutting activities in companies are closely related to elements of supply chain management 

(SCM), which is one of the most important areas in operational research. Many definitions 

of SCM can be found in the literature (Tan, 2001) but, for the purpose of this doctoral 

dissertation, SCM can be identified as the integration of various functional areas within an 

organization to enhance the flow of goods from immediate strategic suppliers through the 

manufacturing and distribution chain to the end user (Houlihan, 1988). 

Cesar (2013) further defines the activity of cutting as a result of the planning and 

realization of all activities in the supply chain in the most efficient way. When emplacing 

the cutting process in the SCM of a company, the whole activity can be divided into three 

phases
9
 (Cesar, 2013): 

 From raw material to product 

This phase includes the raw material suppliers, suppliers of intermediate products and 

suppliers of the final product. The cutting process starts with preparation of the material 

needed for molding steel. The next step is to design profiles out of structural steel, 

which is then reworked into bars of various standard lengths. This step is usually not 

conducted between different suppliers but between different production units of the 

company.  

                                                 
9
 The example is taken from the steel industry. 
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 Product 

The product is derived by cutting standard bars into the number and lengths of items 

required in an order.  

 From product to buyer 

Ordered items of proper lengths must be transferred from the cutting machine to the 

appropriate spots and prepared for their transfer to the buyer. This step is usually 

implemented as part of the internal logistics of the company.   

The phases described above are illustrated in Figure 21, which is based on work of 

Wieland and Wallenburg (2011) and modified by Cesar (2013) to include individual 

activities related to the cutting process. The modification was undertaken on the basis of 

visits and personal communications with appropriate managers in the steel enterprises 

Štore Steel, Acroni, and Metal Ravne. Those activities are marked in black rectangles.  

Figure 21: Illustration of the role of cutting activities in SCM. 

 

Source: Wieland & Wallenburg, 2011; modified by Cesar, 2013.  

The abovementioned description of the cutting activity reflects the situation in the steel 

industry, but does not necessary hold for other industries where the number of participants 

in the SCM can differ.  
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Beside the presented example, cutting activities can also be found in other areas, e.g.: 

 transportation (Baskan, Haldenbilen, & Ceylan, 2012; Norros, 1995; Sen et al., 2012);  

 stock management (Tomat, Gradišar, & Štiglic, 2013); and 

 location and distribution (Iori, Salazar-González, & Vigo, 2007; Zachariadis, Tarantilis, 

& Kiranoudis, 2012). 
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2 THE ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH 

USABLE LEFTOVER 

This chapter presents a special type of the 1DCSP in which leftovers longer than a 

predefined threshold are returned back to stock so that they can be used again in future 

orders (1DCSPUL). 

First I describe the concept and present the current state of affairs, and then an overview of 

the methods for solving the 1DCSPUL from the literature is given. At the end of this 

chapter, I explain r and provide the definition of a low r. 

2.1  Description of the concept and general formulation 

Optimizing the one-dimensional cutting of material is based on the use of stock to fill an 

order with the aim of minimizing the company’s costs. One of the main goals when 

optimizing the cutting of one-dimensional material is minimizing leftover material because 

it represents a loss that companies wish to reduce. If the leftover material is of adequate 

size, it can be returned to the stock and used for filling future orders (Alfieri et al., 2007; 

Cherri et al., 2009). This is known as the 1DCSPUL. 

Various definitions of the 1DCSPUL can be found in the literature, but one of the most 

precise and comprehensive definition was given by Cherri and is therefore used for the 

doctoral dissertation (Cherri et al., 2009, p. 898): 

“A set of pieces (items) must be produced by cutting large units (objects) of standard sizes 

(objects bought from suppliers) or non-standard (objects that are leftovers of previous 

cuts). The demand of the items and the availability of the objects are given. Demand must 

be met by cutting the available objects such that the leftovers are “small” (…) or 

“sufficiently large” (…) to return to stock, but in a reduced number.” 

The first attempts to evaluate usable leftovers in the 1DCSP can be found in the work of 

Kantorovich (1960), but this concept was barely referenced. The second occurrence of 

usable leftovers dates to the 1970s (Brown, 1971). The next researcher that tackled the 

issue of usable leftovers was Roodman (1986). He took two objectives into account: trim 

loss minimization and aggregation of the leftovers in several cutting patterns so they could 

be used again in the future. 

However; the general definition was proposed by Scheithauer (1991). The presentation 

summarized below is based on his paper. Residual lengths are considered using a linear 

programming model. The order consists of pieces Ti of lengths li and demand bi (i = 1,…, 

m). Stock lengths sizes are denoted as Lq (q = 1,…, p). It is presumed that every stock 

length contains a value vq. Some residual lengths Rk of sizes rk contain a positive valuation 

wk (k = 1,…, r). The goal is to find the cutting patterns and corresponding amount in a way 
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that the customer demand is satisfied and the costs are minimal. The costs are represented 

by the costs of stock lengths consumed minus the value of residual lengths attained. 

Another assumption is that there is always a sufficient amount of items in stock to fill an 

order. 

Given the above the presentation of a feasible cutting pattern of stock length Lq by an 

(m+r)-dimensional non-negative integer vecor a = (a1,…, am+r)
T
 is of the following form: 
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The j-th cutting pattern, j = 1,…, nq, of the q-th stock length, q = 1,…, p, is denoted by 
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) . The amount of admissible cutting patterns of lengths Lq is 

represented by nq. The frequency of cutting pattern a
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 is being cut is given by the variable 

xjq. The proposed mathematical model is of the next form: 
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Scheithauer suggests applying revised simplex method and column generation technique. 

A feasible basis B of the relaxation problem is formed by a set of m linear independent 

columns vectors. The vector of simplex multipliers is to be d = (d1, …, dm)
T
. Hence the 

column generation problem is  

       {                          }                                                                                   (  ) 

where  
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Obtaining a new column and continuation of the simplex algorithm is repeated until c
* 

≥ 0, 

when the optimal basis B is found. For computation of zq first we need to find an optimal 

solution to the knapsack problem  
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Abovestated forumula value presents properties of residual lenghts but to prevent useless 

cuts the following assumptions have to be met: 

 wk / rk ≤ vq / Lq   for all k and q with rk ≤ Lq , 

 wk / rk ≤ vt / rt   for all k and t with rk ≤ rt. 

 if rk and rt are residuals than rk + rt is a residual as well. 

In accordance with those assumptions an optimal solution for zq exists with 

∑                                                                                                                                         (  )

 

   

 

So the forumlation for zq can be reduced to 

         { (       (     |            }     (      )                    (  ) 

Given the abovementioned the following origination is formed as 

      {                               { (       (     )|             }}        (48) 

Additional explanation and some trivial examples can be found in Scheithauer (1991). 

A more sophisticated definition was introduced by Sinuany-Stern and Weiner (1994). Two 

objectives were considered when proposing the formulation. The first regards trim loss 

minimization and the second regards organization cutting such that the maximum quantity 
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of leftovers is joined in the last bar to be used again. An algorithm was developed to deal 

with this problem. Using a heuristic approach, it is also suitable for solving large problems. 

For the formulation of the problem next notation is used: 

L – length of the standard bars.  

N – number of bars used. 

ni – the number of pieces of length li required, i = 1,…, I. 

Xij – the number of pieces of length li cut from bar j. 

Only standard bars are available in stock. 

The proposed formulation of the problem is than expressed as a linear integer problem. N 

and Xij must be chosen in relation to: 
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The upper formulation holds for having no leftover. Than the number of bars is  

   ∑      ⁄                                                                                                                               (  ) 

In case N0 is not an integer than the lower bound need to be considered: 
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For the formulation of utilizing leftovers is it assumed that here are K residuals from 

previous orders, Lk, k = N+1,…,N+K, which are needed to use. So the previous constraints 

can be reformulated as 

∑             (       )

 

   

                                                                                                 (  ) 
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)                                                                                                          (  ) 

So the new upper bound is 
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The above presented formulation and an algorithm were developed for the actual use in 

practice. It was only used to solve small problems but it served as a basis for the 

development of various more complex algorithms for solving 1DCSPUL. 

The most recent general mathematical notation and formulation was presented by Cherri, 

Arenales, Yanasse, Poldi, and Vianna (2013): 

 i: item type; 

 j: cutting pattern; 

 k: object type; 

 K: number of types of objects in stock; 

 Lk: length of object type k; 

 ek: availability of object type k in stock; 

 ck: unit cost of object type k; 

 m: number of items; 

 li: length of item type i; 

 di: demand for item type i; 

 Nk: total number of cutting patterns in relation to object type k; 

 δk: threshold length for a retail from object type k; 

 αijk: number of item type I in cutting pattern j of object type k; 

 xjk: number of objects type k cut in relation to cutting patterns j; and 

 pik: the number of item types I cut from object type k. 
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Using the terminology stated above the leftover sk from object type k is as follows: 

      ∑     

 

   

                                                                                                                         (  ) 

2.2  Overview of methods for solving 1DCSPUL 

As explained in Chapter 1 of the doctoral dissertation, optimal solutions usually result from 

the application of exact methods (Alves & Valério de Carvalho, 2008), but they are only 

useful for small orders (the results of exact methods are the best possible solutions, but in 

the case of larger orders the computing time is too long due to the insufficient computing 

power of computers). The majority of methods developed are thus based on a heuristic 

approach (Vahrenkamp, 1996; Cui, 2005). In contrast to exact methods, heuristic solutions 

do not ensure an optimal solution, but they do find one within a reasonable time. The focus 

of this subchapter is primarily to present heuristic methods because these are widely used 

across many different industries. 

COLA was the first method that could generally be used to solve the 1DCSPUL on a large 

scale. It is based on a sequential heuristic procedure and is classified as item-oriented. It 

was developed by Gradišar et al. (1997) for the clothing industry. COLA is used in Chapter 

5 to propose an improvement of testing solutions to 1DCSPUL with the simulation 

method, and so a detailed explanation is provided below.    

The problem was defined as a bicriterial multidimensional knapsack problem with side 

constraints. To transform an exact algorithm into a heuristic one with polynomial 

complexity, a basic limitation was introduced. It included processing one item at a time 

and it stopped when all of the order requirements were met. The algorithm performed a 

step-by-step procedure. Because it was developed for the clothing industry, the items were 

denoted as rolls. When the procedure started, all of the rolls were classified as 

unprocessed, but were reduced by one roll for each step. The number of processed rolls 

therefore rose by one roll for each step. The algorithm was based on a sequential heuristic 

procedure. It solved a series of knapsack problems. To find the first optimal combination, 

the knapsack algorithm generated a sequence of vectors in lexicographically decreasing 

order. A PC version of the method was released for public use as well as the algorithm. 

The procedure that was developed was based on the following assumptions (Gradišar et al., 

1997): 

 It is easier to find a good solution by choosing a roll that is selected from the largest 

possible set of different rolls; 

 It is easier to find a good solution for the selected roll if it is selected from the largest 

possible set of feasible solutions. This is possible in the following cases: 

o The roll is the longest possible; 
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o The order lengths are the shortest possible; 

o The number of different order lengths and the number of pieces are the largest 

possible; 

 It is easier to find a good solution for the selected roll if the differences in order lengths 

are the largest possible. 

The COLA flowchart is presented in Figure 22. A more precise formulation can be found 

in Gradišar et al. (1997).  
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Figure 22: Flowchart of COLA. 

 

Source: Gradišar et al., 1997. 
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Method COLA was than improved by CUT. It combined the pattern-oriented linear 

program method and the item-oriented SHP with the purpose of cutting order lengths in 

The COLA method was then improved with CUT. It combined the pattern-oriented linear 

program method and the item-oriented SHP in order to cut order lengths into the exact 

number of pieces required and to accumulate consecutive residual lengths into one piece 

that could be returned back to stock and used again later in the cutting process. The initial 

algorithm performed two steps. In the first step, the problem was transformed into a 

problem such that it could be solved with linear program methods. The second step 

concerned patterns. The algorithm withdraws from the solution all of the patterns that 

include more pieces of order lengths than required. This was the first part of the final 

solution. Due to the withdrawn patterns, a new problem was created and was solved with a 

sequential heuristic procedure, which resulted in the second part of the solution. The final 

solution consisted of both parts described above (Gradišar et al., 1999a). CUT was also 

released to the public and its algorithm is still freely available.  

Based on CUT, the C-CUT method was developed by Gradišar and Trkman (2005). It 

combined a sequential heuristic procedure and a branch-and-bound method. The main 

advantage of the proposed method was that it was suitable for all sizes of the problem. 

First the method finds a temporary solution using CUT and then it improves the solution 

by solving a small, crucial part of the problem by using the exact approach. The method 

had some limitations. It performed better than other methods when the problem consisted 

of fewer than ten different lengths in stock and on demands if the time limit was set to less 

than one minute. However, with a small increase in the time limit, the method would 

perform better than others for all sizes of the problem. C-CUT consists of five steps. In the 

first step, it obtains the solution using CUT and stores the results. In the second step, the 

algorithm verifies whether the solution obtained by CUT is optimal and then stops. 

Otherwise it proceeds with the procedure. In the third step, it forms a sub-problem based 

on the results of the first step. The procedure in the third step also differentiates between 

cases of surplus or a lack of material. In the fourth step, the C-CUT uses the branch-and-

bound exact method and finds a solution to the sub-problem defined in the third step. In the 

final, fifth step, the part of the cutting plan obtained in the first step is substituted with a 

solution to the sub-problem. The solution obtained is then compared with the solution 

obtained by CUT. The best one is selected as the final solution (Gradišar & Trkman, 2005). 

A practical case from the metal industry was presented by Chu and Antonio (1999). They 

considered minimization of trim loss and cutting time in metal tube production and 

developed two heuristics for different purposes. The first one tackled responses for 

individual customer demand that needed to be as fast as possible. The second delivered the 

manufacturing plan for the next day. The amount of usable leftovers that are put back into 

stock was determined by transportation costs and storage capacity (Chu & Antonio, 1999). 



78 

 

A decision-support tool for solving a cutting and reuse problem was developed for use in 

the car industry based on a European plant producing gear belts. The purpose was to 

minimize trim loss, control quality, equalize workload, and minimize setup. The method 

was formed as a linear integer programming method and used standard packages within a 

column generation scheme (Arbib et al., 2002). 

The next method that considered returning items back to stock and using them again was 

published by Kos and Duhovnik (2002). The focus was on cutting optimization with 

variable stock sizes and inventory status data. A hybrid genetic algorithm was proposed in 

order to minimize waste. The large trim loss items would be returned to the inventory and 

used again for subsequent optimizations. The hybrid genetic algorithm is presented as 

general genetic algorithm operators (crossover and mutation) combined with other 

heuristic algorithms. Regarding encoding, the efficiency of crossover was modified and 

therefore improved with a grouping method in the chromosome. The proposed framework 

for the genetic algorithm consisted of six sequential sub-steps. In the first step, the initial 

population was generated using an approximation algorithm. In the second step, the fitness 

of individuals was evaluated. In the third step, the selection was made. The fourth step 

concerned crossover, where “genes” from the parents were applied to their descendants by 

combining a chromosome. In the fifth step, some individuals in the newly created 

population were randomly substituted in order to ensure diversity in the population. The 

last, sixth step, stopped the procedure if the criteria had been reached regarding best 

members; otherwise, the procedure returned to the third step and looped again. Crossover 

and mutation are important operators of the genetic algorithm and therefore the paper 

offers a precise description of the four steps for each operator. The evaluation function is 

executed in the final stage of the proposed algorithm. This method minimizes waste and 

produces larger leftovers that can be used again (Kos & Duhovnik, 2002). 

An interesting approach that can also be used to solve the 1DCSPUL is found in Trkman 

and Gradišar (2007). Instead of applying optimization to a single order, they considered an 

optimization of consecutive order sets that need to be filled. The reason is that cutting is a 

continuous business process and so the partly utilized stock lengths should be used again. 

In order to satisfy such a situation, a previously developed method for solving the 1DCSP 

was modified. The objective was to minimize the trim loss or production costs. Two 

models were developed. The testing results of the first model exposed some disadvantages 

of the first model in terms of a high trim loss at later time periods. Those disadvantages 

were then eliminated with inclusion of the costs of returning usable leftovers back to stock. 

The computational test of the second model suggested better performance of the proposed 

method in comparison to other methods (Trkman & Gradišar, 2007). 

Usable leftovers were also considered by Alves and Valério de Carvalho (2007). The 

authors modified the column generation method to better control the dual variables, which 

are of key importance for fast performance of the algorithms. 
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Koch, König, and Wäscher (2009) presented a practical case in which an unusual 

algorithm was developed and implemented in a real company in the wood industry. The 

special features were the strong interdependency of the cutting process with a handling 

process and the possibility of returning leftovers back to stock to be used again in the 

future. The proposed decision-support application was based on an integer linear 

programming model. The main focus of the algorithm was on minimizing the costs of the 

trim loss, usable leftovers, transportation, and item manipulation (Koch et al., 2009). 

For door and window production, Dimitriadis and Kehris (2009) proposed an algorithm to 

tackle the scheduling and planning problems at a real company. The aim was to reduce the 

amount of objects used and return the leftovers that were large enough back to stock. The 

authors modified the FFD (First-Fit Decreasing) and MBS (Minimal Bin Slack) 

algorithms, which are widely known heuristics for solving cutting and packing problems. 

First the classic CSP was solved, and the leftovers were regarded as residuals and were 

then considered for filling orders in subsequent periods (Dimitriadis & Kehris, 2009). 

The 1DCSPUL in the aircraft industry was studied by Abuabara and Morabito (2009). 

They proposed two models of the problem using a mixed integer formulation with the goal 

of minimizing waste and considering leftovers to be usable. The first model was a special 

case of the model presented by Gradišar et al. (1997), transformed into a mixed integer 

problem. The second model was a simplification of the first one and included slight 

modification of some constraints to determine the leftovers that could be returned to stock. 

The experiments suggested substantial savings in practical situations (Abuabara & 

Morabito, 2009). 

Poldi and Arenales (2009) developed heuristics based on exhaustive repetition to minimize 

trim loss when solving the 1DCSPUL. First the constructive part of the problem is solved 

using FFD and a greedy procedure. Then the residual heuristic is applied by a rounding-

down approach and greedy rounding. The proposed algorithms were developed for special 

cases in which the demand is low and there are various items lengths available in stock. 

The procedure proved to be accurate, fast, simple, and flexible (Poldi & Arenales, 2009). 

Significant work has been done by Cherri et al. (2009). In their paper, the authors 

presented several modifications of existing heuristic methods to take usable leftovers into 

account. First the exhaustive repetition heuristic (Hinxman, 1980) was adapted. The 

modifications concerned the FFD and greedy procedure and were denoted as the FFDL and 

GreedyL procedures. Each of them consisted of several subsequent steps. Next the residual 

heuristics to obtain a solution to the 1DCSP from the linear relaxation of the integer 

programming problem (Gilmore & Gomory, 1963) was proposed. Their solution was based 

on the residual heuristic by greedy rounding (RGR; Poldi & Arenales, 2005), which was 

adjusted for solving 1DCSPUL and denoted as RGRL. The proposed algorithm was 

computationally tested for solving large problems and compared with existing methods. A 



80 

 

detailed explanation of the algorithms as well as the detailed computational results can be 

found in Cherri et al. (2009). 

In 2010, Poldi and Arenales developed a large-scale integer linear optimization model for 

predicting object production. The model included waste and the warehouse cost of keeping 

items in stock. Linear relaxation was solved by the simplex method with column 

generation. In addition, the authors proposed two rounding procedures that were based on a 

rolling horizon scheme. The proposed solution has been used in a real company for solving 

practical problems (Poldi & Arenales, 2010). 

Another heuristic for solving the 1DCSPUL was introduced by Cui and Yang (2010). The 

algorithm presented consists of two procedures. The first one is based on linear 

programming to satisfy the majority of the demand. The second procedure is SHP and 

satisfies the remaining demand. The criteria that are considered are the cost of consumed 

objects, profit from usable leftovers, and profit from shorter stock reduction. 

Computational tests showed that this algorithm outperforms other methods in reducing 

object costs, reducing trim loss, ensuring shorter stock, and increasing the average length 

of usable leftovers. A precise description of the algorithm, the procedures developed, and 

computational experiments can be found in Cui and Yang’s paper (2010). 

New formulations and mathematical models that are modifications of previously developed 

models can also be found in Ravelo, de Meneses, and dos Santos (2011). The authors 

proposed two models with adjustments concerning constraint formulation. Some 

illustrative computational experiments are also presented. 

An interesting heuristic that was based on the assumption that usable leftovers (non-

standard stock lengths) should not stay in stock for a long time was developed in 2012. The 

performance of priority-in-use heuristics was tested at successive time periods. The 

proposed FFDL
P
 heuristic consists of two steps. RGRL

P
 consists of three steps. Both 

algorithms are a modification of FFDL and RGRL, which were introduced in Cherri et al. 

(2009). For testing the performance, orders were generated randomly. The stock consisted 

of remaining standard objects from previous demands and of non-standard objects that 

were usable leftovers from previously filled orders. Twelve time periods were simulated 

(Cherri et al., 2012).  

2.3  Low ratio between average stock length and average order length 

This subchapter is adapted from work published in Gradišar, Erjavec and Tomat (2011). 

In addition to the optimization method used, the amount of trim loss can also be influenced 

by some specific characteristics of the problem that need to be considered when solving the 

problem. The average trim loss when solving 1DCSPUL is around 15%, as shown in 
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Erjavec et al. (2009). As already stated in the introduction, the explanation can be found in 

r. 

In practice, there are various order and stock lengths for every problem, and so r could 

refer to: 

1) the ratio of the longest stock to the shortest order or 

2) the ratio of the average stock to average order length. 

The first possibility would not reflect the real situation for all situations; for example, in 

the case of a very large order quantity with the longest order being only a small portion of 

the total order length. Therefore I employ the second meaning of the r for the purposes of 

my doctoral dissertation. 

Because the literature does not provide any definition of a low r, it can be defined as 

follows: 

 r is low if it is lower than a given threshold t. 

In the practical example described in Erjavec et al. (2009), r equals 3. Thus the same 

threshold is taken into account in my doctoral dissertation. 
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3 DEVELOPMENT OF A NEW METHOD 

Presented chapter is adapted from work published in Gradišar, Erjavec and Tomat (2011). 

Where necessary the relevant modifications are added and described. 

A lower r means that the number of possible solutions is limited, which consequently 

increases the probability of a solution with a large loss (Gradišar et al., 1999a). The 

number of possible solutions is the lowest when r is between 1 and 2 because this means 

that in most cases only one unit of the order is cut from one unit in stock. This is also the 

reason why there is more trim loss produced in cases with a low r. It can be presumed from 

the above that the difference between the trim loss of an optimal solution and the trim loss 

arising from using the currently available methods—except for exact methods—increases 

if r decreases. Hence there is still a possibility for further improvements. For this reason a 

new optimization method for solving 1DCSPUL with low r is developed.  

In relation with the subchapter 2.3 an important issue regards the configuration of the 

threshold t. In practical example that can be found in Erjavec et al. (2009) r is around 3 

therefore t is set to 3 for the needs of this study. 

3.1  Problem definition 

For defining a problem the following assumptions are taken into account: 

 a sufficiently large stock of material is available to satisfy every customer's order; 

 a certain number of lengths is available in stock; 

 standard stock lengths consist of the same length or of a few different standard lengths; 

 nonstandard stock lengths are the leftovers from previous orders; 

 leftovers that are equal or greater than minimal order length are treated as usable and are 

returned back on stock to be used again in the future orders; 

 lengths are considered to be integers - if they are not it is presumed that it is always 

possible to multiply them with such factor, which transforms them to integers; and 

 a given quantity of order lengths forms an order that need to be cut into a required 

number of pieces. 

The next notation is used: 

li   - order lengths; i  1,...,m, (order lengths are sorted in a decreasing order: l1 l2 l3 …), 

ni  - required number of pieces of order length li, 

Lk  - stock lengths; k  1,...,p, 

Nk  - number of pieces in stock of length Lk, 
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xjk  - frequency of cutting pattern j that is cut from stock length k, 

nk  - total number of cutting patterns that are cut from stock length k.  

The cutting plan is formed based on cutting patterns that have been cut from various stock 

lengths and of the frequency needed to fulfill all the orders.  

Cutting pattern j that is cut from stock length k is expressed by a vector 

(                     )                                                                                                             (  ) 

which satisfies  

∑        
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                                                                                                                                          (  ) 

aijk signifies the number of times that order length li occurs in a specific pattern. 

The formulation of integer programming model for minimizing sum of stock lengths to be 

cut is as following: 
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3.2  Solution development 

It is considered that a solution should be independent of commercial software, simple to 

code and easy to integrate into the company’s information systems for the reasons of 

constantly changing information systems that support studied processes. Therefore special 



84 

 

care is devoted to such a development that allow for flexibility and adaptability of the 

method. 

Nowadays the competition between supply chains instead of competition among single 

companies is increasingly gaining importance. In general a better integration of supply 

chain assures the more frequent exchange of smaller amount of material therefore the 

orders are becoming smaller (Trkman & McCormack, 2010). So the importance of 

methods for solving small to medium- size problems will increase.  

Various approaches are found in the literature for solving such problems. The majority of 

them solve the problem heuristically and only few of them have been reported to obtain a 

solution using an exact approach. Exact solutions are by definition better if results are 

measured only by the levels of trim loss. However, in many industries solution should 

consider time efficiency of solution as well.  Exact methods were proved to be time 

efficient only when solving relatively small orders. The limit is loose but nevertheless 

recent exact methods solve problems with 5 different stock sizes and from 40 (Belov & 

Scheithauer, 2002) to 100 order items (Alves & Valério de Carvalho, 2008). Problems are 

solved heuristically when these figures are exceeded. 

Because the literature does not provide any specific information about cases with low r, I 

carried out an experiment using the C-CUT algorithm (Gradišar & Trkman, 2005) to check 

if the problem could be solved exactly. I was increasing the number of orders at usual r 

(more than 5) and lower r (less than 2) and observed whether the optimal solution was 

found in a reasonable time. The experiment was performed with software for developing 

and formulating models MPL for Windows 4.2 on a PC using 1.87 GHz Intel Pentium 

processor and 508 MB of RAM. The results of experiment where r is usual are presented 

in Table 9. The time that was still acceptable for finding a solution was set to 10 minutes. 

Table 9: The results of C-CUT at usual r. 

Number of items 

in the order 

Time needed for finding 

a solution (sec) 

Was the solution 

optimal? 

15 87 Yes 

18 80 Yes 

19 520 Yes 

20 210 Yes 

20 153 Yes 

21 600 No 

21 600 No 

24 600 No 
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The results of experiment where r is low are presented in Table 10. The time that was still 

acceptable for finding a solution was set to 10 minutes. 

Table 10: The results of C-CUT at low r. 

Number of items 

in the order 

Time needed for finding 

a solution (sec) 

Was the solution 

optimal? 

15 0.9 Yes 

18 0.4 Yes 

21 0.05 Yes 

24 7.28 Yes 

27 0.72 Yes 

30 12.52 Yes 

33 0.53 Yes 

36 17.17 Yes 

36 55.63 Yes 

37 600 No 

37 600 No 

37 600 No 

38 600 No 

39 600 No 

 

The algorithm could not find an optimal solution if the number of orders was equal to or 

higher than 21 at usual r and equal to or higher than 37 at lower r. Therefore I can presume 

that a similar relationship would also hold for modern algorithms, which currently enable 

up to 100 orders at usual r. Thus the number of orders at lower r would be a bit lower than 

200, which is less than it is enabled by the proposed algorithm, which I estimate is able to 

process up to 700 orders. 

With respect to the above described a proposed method is a constructive heuristics that is 

based on the exhaustive repetition for solving small to medium-size instances of cutting 

problem with low r. It uses a combination of item-oriented and pattern-oriented approach 

and consists of four iterative steps, each of which fulfills a portion of demand. After all the 

demand is satisfied the algorithm stops. At the beginning of the procedure all stock lengths 

have its place in the set of unprocessed stock lengths. The amount of unprocessed pieces 

(UNk) of each stock length Lk is equal to Nk. The amount of unprocessed pieces (uni) of 

each order length li is equal to ni. The sets of processed stock lengths and processed order 

lengths are both empty. The set of unprocessed pieces of stock lengths is diminished in 

every reiteration.  The amount of pieces that are cut changes so as the processed stock 

lengths that are reduced to the trim loss. The specific stock lengths cannot be used in next 
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iteration if all pieces of that stock length were used in previous iteration. Finally all uni are 

equal to 0. The algorithm contains of the following iterative steps: 

1. Step 

The knapsack problem is solved. The optimal and second to optimal solution are found for 

each stock length. Only unprocessed pieces of order lengths are considered. 

2. Step 

Cutting patterns obtained in 1. step are considered and sorted according to a1jk, a2jk, a3jk ... 

As a result sorted patterns are saved in a list. The cutting patterns that contain longer order 

lengths are positioned on the top of the list. The cutting patterns that contain shorter order 

lengths are positioned on the bottom of the list.  

3. Step 

A corresponding frequency of each cutting pattern is selected regarding the unprocessed 

pieces of order and stock lengths. First the frequency for the cutting pattern that is on the 

top of the list is designated. Than the algorithm sequentially moves down the list and 

selects the frequency for second cutting pattern and so on. The corresponding frequency is 

represented by the highest frequency that is not higher than the current amount of 

unprocessed pieces of corresponding stock length. At the same time it has to be so low that 

enables the prevention of an overproduction of any order length. Thus the corresponding 

amount of unprocessed pieces of stock and order lengths decreases instantly after the 

individual frequency is selected.  

4. Step 

The algorithm stops if all the orders are satisfied. Otherwise it returns to the 1. step.  

When developing an algorithm, the next assumptions were taken into account: 

 In case of low r the optimal or near to optimal solution of cutting problem compounds 

of optimal or second to optimal solution of knapsack problems. 

 In order that a good solution would be obtained more easily the cutting patterns that 

consist of largest order lengths are processed earlier. 

The first assumption regards to the fact that the number of possible solutions is lower in the 

case of low r. Thus the probability of optimal or second to optimal solution of knapsack 

problems being also optimal or near to optimal solution of the cutting problem is higher. 

The second assumption regards to the minimization of the so-called ending conditions
10

 

(Haessler & Sweeney, 1991).  The good solution could be obtained more easily if the set of 

possible solutions is larger (Gradišar et al., 1999a). So the longer order lengths are 

                                                 
10

 It is one of the main disadvantages of SHP, which may cause increased trim loss.  
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processed earlier to preserve the set of possible solutions as large as possible for the 

longest possible period.   

The proposed algorithm that optimizes the stock length cutting can be seen on a flowchart 

in Figure 23.  

 

Figure 23: Flowchart of cutting algorithm. 

 

As it can be seen from Figure 23 a series of knapsack problems need to be solved to obtain 

cutting patterns. Then the corresponding frequency for each cutting pattern needs to be 

selected for each iteration. A sequence of vectors (a) is generated in a lexicographically 

decreasing order when applying the knapsack procedure to allow finding the optimal and 

second to optimal patter for Lk. m should be 7 or less in order to expect acceptable response 

time.  

 

3.3  Testing the solution and analysis of the results 

Due to very fast processing FORTRAN programming language was selected to code the 

algorithm. It is called LCUT and can run on a personal computer. The program contains 
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less than 1.000 lines of code. For coding the data input and results printout the 4GL
11

 was 

used. LCUT is stand-alone application but it can be easily integrated into existing 

information systems.  

Following constraints are built in the LCUT: 

 ratio between largest stock and shortest order length is  10; 

 number of different order lengths is  7; 

 number of pieces for each order length is  99; 

 number of different stock lengths is  20; and 

 number of pieces for each stock length is  99. 

Due to those constraints less than 10 seconds is needed for creating a cutting plan on a 

personal computer. 

To demonstrate the practical use of LCUT first an experiment with the real data was 

conducted. The data were obtained from the one of the big retailing companies of the 

technical products in south-east Europe. Among others the company is resells various 

metal bars that are cut in order to satisfy the customer’s demand. The customer demand 

consists of 4 different order lengths with required sum of 34 pieces. Input data are 

presented in Table 11. 

Table 11: Details about order lengths. 

Number Length (cm) Pieces 

1 965 12 

2 780 7 

3 538 10 

4 430 5 

Source: Retail Company, 2011. 

On stock there is plenty of material available. It consists of 57 pieces of 15 different 

lengths with r being equal to 1.2. Standard and non-standard stock lengths are stored 

together. All lengths are in centimeters. The stock data are presented in Table 12. 

                                                 
11

 4GL refers to Fourth-Generation Programming Language that consists of packages for software 

development. It is especially appropriate for developing heuristic solutions.  
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Table 12: Details of stock lengths. 

Number Length Pieces 

1 1,200 12 

2 750 10 

3 685 10 

4 590 10 

5 865 4 

6 1,600 2 

7 600 1 

8 500 1 

9 1,400 1 

10 640 1 

11 800 1 

12 765 1 

13 670 1 

14 690 1 

15 820 1 

 

The question arises if the described problem is small enough to be solved optimally. As 

already explained in the subchapter 3.2 the limit of problem size that can be solved exactly 

in a reasonable time is unclear and depends on the computational power. Exact methods in 

the literature enable solving problems with five different stock sizes and from 40 (Belov & 

Scheithauer, 2002) to 100 order items (Alves & Carvalho, 2008). In addition I conducted 

an experiment using the C-CUT algorithm (Gradišar & Trkman, 2005) to see what sizes of 

the problems could be solved exactly. The experiment is described into details in 

subchapter 3.2. An optimal solution could not be found if the number of orders was equal 

to or higher than 21 at usual r and equal to or higher than 37 at lower r. 

Since the presented problem consists of 34 ordered items and 57 stock pieces with 15 

different stock lengths it is possible to presume that it could not be solved optimally. Even 

if the exact method would provide an optimal solution to this particular problem, it would 

not be suitable for use in practice, where the majority of the problems are of significantly 

higher size and thus cannot be solved exactly.  

However, the presented experiment was conducted to demonstrate the practical use of 

LCUT. For finding the solutions less than 1 second was needed. The results are presented 

in Table 13. 
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Table 13: Results of LCUT – utilized stock lengths. 

Number Length Pieces Pattern Trim loss (cm) Trim loss (%) 

1 1200 11 1 times 965[1] 235 19.58 

4 590 10 1 times 538[3] 52 8.81 

5 865 2 2 times 430[4] 5 0.58 

5 865 1 1 times 780[2] 85 9.83 

6 1600 2 2 times 780[2] 40 2.50 

9 1400 1 
 1 times 965[1],      

1 times 430[4] 
5 0.36 

11 800 1 1 times 780[2] 20 2.50 

15 820 1 1 times 780[2] 40 4.88 

    Total trim loss: 3345 cm 

(11.98%) 

 

Used amount of stock lengths equaled to 29 pieces. All patterns consisted of one or two 

pieces. The frequency of the patterns varied from 1 to 11. The total trim loss amounted 

3345 cm, which represents 11.98% of total used stock lengths. 

To show the efficiency of LCUT the experiment was conducted with two other methods as 

well. The first is RGR heuristics (Cherri et al., 2009) and the second is CUT (Gradišar et 

al., 1999a). The results of RGR and CUT are presented in Table 14 and Table 15. 

Table 14: Results of RGR – utilized stock lengths. 

Number Length Pieces Pattern Trim loss (cm) Trim loss (%) 

1 1200 11 1 times 965[1] 235 19.58 

4 590 10 1 times 538[3] 52 8.81 

5 865 2 2 times 430[4] 5 0.58 

5 865 2 1 times 780[2] 85 9.83 

6 1600 2 2 times 780[2] 40 2.50 

9 1400 1 
 1 times 965[1],      

1 times 430[4] 
5 0.36 

11 800 1 1 times 780[2] 20 2.50 

    Total trim loss: 3390 cm 

(12.17%) 

 

As it is seen from the Table 14 the total trim loss amounts 3390 cm in case of RGR, which 

represents 12.17% of total utilized stock lengths. From comparison with the results 

obtained by LCUT it can be seen that the trim loss with LCUT is lower for 45 cm or 0.19 

percentage points that represent savings of total utilized stock lengths.  
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Table 15: Results of CUT – utilized stock lengths. 

Number Length Pieces Pattern Trim loss (cm) Trim loss (%) 

1 1200 12 1 times 965[1] 235 19.58 

4 590 9 1 times 538[3] 52 8.81 

5 865 2 2 times 430[4] 5 0.58 

6 1600 2 2 times 780[2] 40 2.50 

8 500 1 1 times 430[4] 70 14.00 

9 1400 1 
 1 times 780[2],      

1 times 538[3] 
82 5.86 

11 800 1 1 times 780[2] 20 2.50 

15 820 1 1 times 780[2] 40 4.88 

    Total trim loss: 3590 cm 

(12.75%) 

 

As it is seen from the Table 15 the total trim loss amounts 3590 cm in case of CUT, which 

represents 12.75% of total utilized stock lengths. From comparison with the results 

obtained by LCUT it can be seen that the trim loss with LCUT is lower for 245 cm or 0.77 

percentage points that represent savings of total utilized stock lengths.   

To show the performance of LCUT another experiment was conducted with more 

extensive series of problem instances. For testing the method a specific problem generator 

is used. One of the most widely known problem generator when testing the methods for 

standard 1DCSP is CUTGEN1, which is based on five problem parameters (Gau & 

Wäscher, 1995): 

m - problem size; 

L - standard stock length; 

v1,v2 -  lower and upper bounds for order lengths; 

đ - average demand per order length. 

The CUTGEN1 was then generalized to allow usage for any type of the problem in the 

terms of variety of large objects. Thus the new structures for determination of standard and 

non-standard stock lengths were added. The parameters of proposed problem generator 

PGEN (Gradišar et al., 2002) are: 

n - number of different order lengths, 

v1,v2 -  lower and upper bounds for order lengths,             (       ), 

đ - average demand per order length, 
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p - number of different standard stock lengths, 

s1, s2 - lower and upper bounds for standard stock lengths            (       )  

m - number of non-standard stock lengths, 

u1, u2 - lower and upper bounds for non-standard stock lengths   

          (       )  

PGEN consists of the next subsequent steps (Gradišar et al., 2002): 

1. Generation of test problems: 

- defining the number of test problems, 

- defining the order lengths and demands, 

- defining the standard stock lengths, 

- defining the non-standard stock lengths. 

2. Verification if the algorithm is the solution of standard 1DCSP: 

- if it does it is transformed into solution of hybrid 1DCSP 

- solution to the test problems is obtained. 

For the evaluation criteria the sum of all test problems overall trim loss is used due to its 

simplicity. More in-depth explanation of the problem descriptors generation and seed 

sequences determination that is tackled by the dynamic programming scheme PROGEN 

can be found in Gradišar et al. (2002). 

For generating problem instances a PGEN generator with slight modifications was used; in 

accordance with problem descriptors the input data were generated as random sample of 

one or more test problems. The next problem descriptors were used: 

m - number of different order lengths. 

v1, v2 - lower and upper bound for order lengths, i.e. v1  li  v2 ( i  1,...,n). 

n - average demand per order length. 

P - number of different standard stock lengths. 

s1, s2 - lower and upper bound for standard stock length, i.e. s1  Lk   s2 ( k  1,...,P). 

N - number of pieces of standard stock lengths. 

p  - number of non-standard stock length. 

u1, u2 - lower and upper bound for non-standard stock length, i.e. u1  Lj  u2 ( j  1,...,p). 
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r  - number of consecutive generated problem instances. 

The tenets of the parameters for generation of test problems were: 

 Determination of order lengths and demands. 

 Determination of standard and non-standard stock lengths. 

The following values were taken into account: 

 m = 5; 

 v1 = 100 and v2 = 200; 

 demand n = 10, 20 and 30; 

 number of different standard stock lengths P = 5, 10 and 15; 

 number of pieces N = 10; and 

 number of non-standard stock lengths p = 10. 

In line with the above description the stock consisted of 60,110 and 160 pieces. Lower and 

upper bound for standard stock length s1, and s2 had such values that allowed the variation 

of r from 1.25 to 3 by step 0.25. That means s1 varied from 125 to 300 and s2 from 250 to 

600. The non-standard lengths are the usable leftovers from previous instances therefore 

they must not exceed maximum order lengths. Also on average they should not be greater 

than order lengths. Thus the u1 and u2 has been set to 150 and 200. 

24 instances classes have been designed by combining different values of the above-

mentioned problem parameters. Then 10 successive problem instances were generated for 

each class. The seed of random problem generator was modified by 1 from 1 to 240 so 

altogether 240 problem instances were generated.  

Problem descriptors, seeds can be seen in Table 16, where each row represents 10 problem 

instances.  
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Table 16: Problem descriptors and seeds. 

Problem descriptors Seed 

Class 

instance 
n s1 s2 P from to 

1 10 125 250 5 1 10 

2 20 125 250 10 11 20 

3 30 125 250 15 21 30 

4 10 150 300 5 31 40 

5 20 150 300 10 41 50 

6 30 150 300 15 51 60 

7 10 175 350 5 61 70 

8 20 175 350 10 71 80 

9 30 175 350 15 81 90 

10 10 200 400 5 91 100 

11 20 200 400 10 101 110 

12 30 200 400 15 111 120 

13 10 225 450 5 121 130 

14 20 225 450 10 131 140 

15 30 225 450 15 141 150 

16 10 250 500 5 151 160 

17 20 250 500 10 161 170 

18 30 250 500 15 171 180 

19 10 275 550 5 181 190 

20 20 275 550 10 191 200 

21 30 275 550 15 201 210 

22 10 300 600 5 211 220 

23 20 300 600 10 221 230 

24 30 300 600 15 231 240 

 

The results of experiment are presented in Table 17. All lengths are in centimeters. To 

allow comparison the solution for each problem instance was solved with both LCUT and 

CUT. The later was selected because it does not depend on any commercial software and 

the source code can be entirely controlled by user. Both LCUT and CUT are stand-alone 

applications. It is also possible to combine LCUT and CUT into a single application. 

Values of parameters B, E and W indicates how many times the results obtained with 

LCUT are Better, Equal or Worse than the results obtained with CUT with respect to the 

total waste. R1 shows the total number of usable leftovers that are returned back to stock 

when applying LCUT. With CUT those values are denoted as R2.  
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As already mentioned returning leftovers and reusing them result in additional costs. In 

practice those costs vary from situation to situation but in general they can be positioned 

somewhere between following two cases: 

 In the Case 1 those costs are insignificant in comparison with the costs of saved 

material. In such case all leftovers that are longer or equal to the minimal order 

length are returned back on stock with the purpose to be used again in future 

orders. They are not considered as a waste.  

 In the Case 2 the cost of returning leftovers back on stock are significantly high. In 

terms of costs it is therefore better to treat them as a waste than return them to 

stock.  

To show the importance of both scenarios the presented experiment was carried out for 

both Case 1 and Case 2.  



96 

 

Table 17: Results of LCUT and CUT. 

Class 

instance 

Case 1 Case 2 

B E W R1 R2 B E W 

1 0 9 1 0 1 1 9 0 

2 1 8 1 0 0 1 8 1 

3 1 8 1 0 0 1 8 1 

4 1 3 6 0 5 3 3 4 

5 1 2 7 0 4 5 2 3 

6 1 3 6 46 19 2 2 6 

7 2 0 8 0 9 8 1 1 

8 5 1 5 0 6 7 1 2 

9 4 0 6 0 8 8 1 1 

10 0 0 10 0 9 4 0 6 

11 2 0 8 4 14 7 0 3 

12 4 0 6 10 16 6 0 4 

13 1 0 9 4 16 6 0 4 

14 0 0 10 1 9 2 0 8 

15 2 1 7 6 34 5 0 5 

16 0 0 10 1 15 6 0 4 

17 1 0 9 0 12 6 0 4 

18 3 0 7 0 14 7 0 3 

19 0 0 10 0 19 9 0 1 

20 3 0 7 1 17 8 0 2 

21 2 0 8 0 18 5 0 5 

22 0 0 10 2 16 8 0 2 

23 2 0 8 8 15 5 0 5 

24 0 0 10 1 20 7 0 3 

Sum 35 35 170 84 296 127 35 78 

 

The analysis of the results shows that in Case 1 LCUT performed better 35 times than 

CUT, 25 times the results were equal and 170 times the result obtained by LCUT was 

worse. In Case 1 R2 is significantly higher than R1 since the overall amount of R2 is 296 

and the overall amount of R1 is 84. With LCUT usable leftovers are produced only in 13 

out of 240 problem instances so the probability that one or more usable leftovers will be 

produced in the next problem instance is about 5%. This probability is about 84% by using 

CUT. In Case 2 LCUT the obtained results are 127 times better, 25 times equal and 78 

times worse than with CUT. No usable leftovers were produced. 

The average waste is also taken into account for better evaluation of presented algorithm. 

In Case 1 LCUT causes 8.4% average waste, CUT 8.0 %, and combination of LCUT and 
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CUT 7.9%. The combination regards to the each problem being solved with both LCUT 

and CUT. Then better solution is selected. The use of LCUT alone would make no sense 

but in combination with CUT the waste decreases for 0.1%. Such combination not only 

reduces waste but also diminishes the amount of usable leftovers. In Case 2 there is no 

usable leftover after the problem is solved. Thus the average waste is higher. LCUT 

produces 8.7% average waste, CUT 9.2%, and combination of LCUT and CUT 8.5%. Thus 

on average LCUT saves 0.5 percentage points more material than CUT. If it is combined 

with CUT 0.7 percentage points of material is saved. The results of experiment are 

summarized in the Table 18. 

As it can be found in literature such decrease is not negligible as several methods provide 

smaller savings in comparison with other methods. For example, FFDL consumes 0.01% 

less material than CUT, FFD consumes 0.03% less material than RGRL 1, GreedyL 

consumes 0.05% less material than Greedy and CUT consumes 0.07% less material than 

RGR 1. RGRL 3 produces 0.08% less scrap than FFDL and RGR 3 produces 0.1% less 

scrap than RGR 2. Considering the amount of produced retails GreedyL generates 0.1 

percentage points less retails than RGRL 1 and RGRL 2 and 0.3 percentage points less 

retails than RGRL 3 and COLA. Regarding total loss of material constructive Greedy 

outperforms constructive FFD for 0.3% (Cherri et al., 2009). Several methods were also 

tested with problems that contain small sized items. The overall total loss of material using 

RGRL
P
 is 0.0001 percentage points smaller than with RGRL and 0.005 percentage points 

smaller than with RGR. Regarding medium sized items RGRL and RGRL
P
 produce 0.01 

percentage points smaller overall trim loss than RGR (Cherri et al., 2012).  

Table 18: Summarization of results. 

 Case 1 Case 2 

LCUT better than CUT 35x 127x 

LCUT equal to CUT 35x 35x 

LCUT worse than CUT 170x 78x 

LCUT average waste 8.4% 8.7% 

CUT average waste 8.0% 9.2% 

LCUT+CUT average waste 7.9% 8.5% 

 

The average percentage of waste depends on the r in both cases. In the first three class 

instances of Table 17 this ratio equals 1.25. The average waste amounts 13% of used stock. 

In the last three class instances r is 3. The average waste decreases to 3%. Regarding 

usable leftovers the value of R2 is significantly lower in the first half of Table 17 than in 

the second half. Such situation occurs due to increased number of possible solutions. 

Values of average demand per order length n in Table 16 do not affect the results since the 

calculation of each of 240 problem instances takes less than 1 second with both algorithms 

LCUT and CUT. 
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If the exact methods would be used the optimal solution for some problem instances could 

be found. Nevertheless the most of problems are of bigger size than those that could be 

solved exactly. Current state for solving the problem with exact methods is limited to five 

different stock sizes and 40 (Belov & Scheithauer, 2002) to 100 (Alves & Valério de 

Carvalho, 2008) order items. The experiment that took into account the cases with low r 

was already deeply explained in the subchapter 3.2.   

Additional testing of the proposed algorithm has been made. 48 samples were generated 

with the same r as in Table 17. For each ratio four problem instances were generated. The 

number of different stock lengths equaled 5. The total number of stock units was 25. On 

the order side there were up to 30 items of 5 different lengths. Those 48 instances were 

solved with LCUT, CUT and an exact method, proposed by Gradišar & Trkman (2005). 

The average produced waste was observed. The results are summarized in Table 19. 

Table 19: Summarized results of exact method, CUT and CUT+LCUT. 

 Exact Method CUT CUT+LCUT 

Case 1 5.6% 7.5% 7.3% 

Case 2 7.3% 9.4% 8.8% 

 

In Case 1 the average waste produced by an exact method amounted 5.6%, by CUT 7.5% 

and by the combination of CUT and LCUT 7.3%. In Case 2 the exact method produced 

7.3%, CUT 9.4% and a combination of CUT and LCUT 8.8% of total waste on average. 

The presented solutions differ from those presented in Table 18 due to the reduction of a 

problem instances size. Therefore r was slightly different. The use of exact method would 

be more reasonable in such situation but the presented algorithm enable solving problem 

instances that consist of up to 693 orders and 1980 stock items of 20 different lengths, 

which is substantially beyond the limits of exact methods. Although there is still room for 

improvement it is possible to conclude that the proposed method is better than existing 

method for solving such kind of a problem.  
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4 DEMONSTRATION OF THE TESTING METHOD 

In this chapter I introduce the importance of using simulation in relevant areas of my 

doctoral dissertation. Then I present a new simulation-based concept for testing methods 

for solving the 1DCSPUL. Such an approach has not yet been well researched in the 

literature, although it has been mentioned and suggested by Trkman and Gradišar (2007) 

and Cherri et al. (2012). The main idea lies in considering the usable leftovers from 

previous instances and using them again in subsequent instances. Thus real situations in 

which usable leftovers are returned back to stock would be better addressed. 

Except for the above mentioned papers (Trkman & Gradišar, 2007; Cherri et al., 2012) the 

methods in the literature do not take into account returning of leftovers from current 

instance back on stock and using them in the following ones. To the best of my knowledge, 

none of the papers provide a sufficient and accurate testing method for comparison of the 

solutions. Methods for solving 1DCSPUL are thus incorrectly tested. To overcome this 

issue a new testing method is proposed.  

The purpose of this chapter is to demonstrate the new concept for testing various solutions 

to 1DCSPUL. The key question is how the stock of usable leftovers would grow over time 

and influence the future orders. Therefore I simulate the level of usable leftovers in stock 

as it would grow over time in reality if the sequence of orders generated were filled with 

the consecutive generated shipment of standard bars. 

4.1  Computer simulation 

With the development and accessibility of computers, researchers and managers have been 

able to explore a broader variety of possible options in decision-making. They have been 

able to use the computer to simulate a real system and, due to its speed, they could 

simulate a system over a long period of time. The simulation could also be carried out 

without a computer, but because decision problems need to be solved as quickly as 

possible the computer simulation plays an important role in management science (Pidd, 

2004). Today simulation represents one of the most widely used and powerful decision-

making tools for the design and operation of complex processes and systems (Shannon, 

1998). 

There are many definitions of the simulation. For the purposes of the doctoral dissertation, 

a simulation can be described as a method that allows experimentation on a model of some 

system. It enables better understanding of the complex processes interactions within that 

system (Pidd, 2004).  

Simulation involves a set of techniques that can show the operational aspects and 

relationships in models. This can be achieved through sampling and observing the 

evaluation parameters for the phenomena one wishes to simulate (Seila, Ceric, & 
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Tadikamalla, 2003). The main idea is to mimic the individual processes’ operations from 

reality in relation to the time dimension (Banks, 2005). 

In addition to the concept of simulation being easy to understand, it has many other 

advantages (Pidd, 2004; Shannon, 1998): 

 it allows testing new designs without resources that would be needed for real 

implementation; 

 new concepts, operations, decisions, structures, and so on can be explored without 

disturbing the current processes; 

 it enables bottleneck identification; 

 a hypothesis related to a certain phenomenon can be efficiently tested; 

 it is possible to control the time dimension; slowing up the process enables in-depth 

analysis. Several years can be simulated in a second; 

detecting the most important variables for the system is simplified; and 

 it has the ability to experiment with unknown situations and answer “what if” questions. 

Like every other technique, simulation also has some disadvantages (Banks, 2005; 

Shannon, 1998): 

 professionally skilled practitioners are needed to ensure that simulation reflects the real 

situation as much as possible; 

 the input data should be highly reliable, which may sometimes require a lot of time; 

 the results depend on the quality of the model, and so it has to be thoroughly designed; 

 for a given input the simulation models produce probable output but do not “obtain” the 

optimal solution; 

 the use of direct experiments can sometimes be cheaper; 

 the cost of simulation can exceed the benefits gained from the results; and 

 if the system is too complex it is very hard to define it in a way that would allow 

reliable simulation. 

In general the simulation can be divided into two classes (Banks, 2005): 

 static simulation is based on observation and determination of patterns that are then 

transformed into formulas and rules; and 

 dynamic simulation is based on studying the system behavior over periods of time. 

Two different types of simulation models exist: discrete and continuous models. Usually 

the independent variable is time. In discrete models, the dependent variables change across 

time periods. In continuous models, the state of the system is given through a functional 

relationship to the time variable (Gilbert & Troitzsch, 2005). 
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In addition, simulation models can be divided into deterministic or stochastic simulation 

models. In deterministic models, the performance of the system can be fully predicted in 

advance. In stochastic models, it can be predicted with a certain probability (Banks, 2005). 

The computer simulation used in the study can be denoted as stochastic because several 

subsequent time periods are taken into account. 

A simulation study should consist of the following steps (Shannon, 1998): 

1. Problem definition 

In this step, the goals of the experiment should be defined, the purpose identified, and 

the questions stated. 

2. Project planning 

This step considers identification of efficient and appropriate personnel, management 

support, and computer hardware and software resources for conducting a study. 

3. Conceptual model formulation 

In this step, the preliminary model is developed (e.g., flowchart, block diagram, 

pseudo-code, etc.). The components, descriptive variables, and interactions among 

them are defined. 

4. Preliminary experimental design 

The measures of effectiveness that will be used are proposed in this step. It also 

includes the selection of the data that should be gathered from the model. 

5. Input data preparation 

This step consists of collecting and identifying the data needed for the model. 

6. Model translation 

The model should be formulated using appropriate computer simulation language. 

7. Verification and validation 

In this step, the model ought to be tested to confirm that it operates as it should. The 

output must be representative of the output of the real system. 

8. Final experimental design 

Now the experiment that will produce the desired information needs to be designed. 

The manner of execution also needs to be identified. 

9. Experimentation 

The simulation is run in order to obtain the desired information and to perform 

sensitivity analysis. 

10. Analysis and interpretation 

The results are analyzed and the conclusions are drawn. 

11. Implementation and documentation 

The results and findings are reported. The model and its use are documented. 

Computer simulation is an experiment based on a computer model of a certain system. 

Usually various scenarios are predicted, and those with the best results are implemented 



102 

 

into the real system. The experiment can be relatively simple; for example, trying to 

answer “what-if” questions. In such a case, the corresponding variables in the simulation 

program are set to these values and the simulation is performed. However, the models 

implemented are often more sophisticated and complex. Statistical design techniques are 

needed due to various effects that may be produced as a result of several interrelating 

scenarios. The basic idea is shown in Figure 24.  

Figure 24: Simulation as experimentation. 

 

Source: Pidd, 2004. 

4.1.1 Simulation in practice 

The applications of simulations can be found in many different sectors, such as 

manufacturing, services, defense, healthcare, and public services. Simulations are used in 

several areas; for example, design, planning and control, strategy making, resource 

allocation, and training. They have proved to be very useful in response to complexities 

involving an entire company, especially in decision-making processes. They are also an 

important tool for organizational learning and change management (Fowler, 1998). The 

simulation technique is very frequently used by decision-makers due to potential for 

interactive modeling, which allows for higher transparency and understandability of the 

models (Kljajić, Bernik, & Škraba, 2000). 

Computer simulations occur in several business areas, e.g., manufacturing, services, 

healthcare, and public services ((Jahangirian, Eldabi, Naseer, Stergioulas, & Young, 2010). 

It has also attracted much attention from researchers in various fields. Since 2000, the 

majority of research articles that have considered the application of simulation have been 

related to SCM (Chan & Chan, 2005; Kleijnen & Smits, 2003; Terzi & Cavalieri, 2004; 

Van Der Zee & Van Der Vorst, 2005), followed by business process engineering (Jansen-

Vullers & Netjes, 2006). A detailed review of research articles relating to simulation can 

be found in Jahangirian et al. (2010).  

Simulation has various applications in practice, such as workforce planning, maintenance 

management, knowledge management, project management, organizational design, 

management training and education, financial management, quality management, assembly 

line balancing, capacity planning, cellular manufacturing, transportation management, 

facility location, forecasting, inventory management, just-in-time, process engineering-
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manufacturing, process engineering-service, production planning and inventory control, 

purchasing resource allocation, scheduling, strategy, and supply chain management 

(Jahangirian et al., 2010). The distribution of published research articles by the 

applications mentioned above is shown in Figure 25. 

Figure 25: Number of papers by application. 

 

 Source: Jahangirian et al., 2010. 

4.1.2 Simulation in operational management 

The importance of simulation in operational management can be seen from the research 

conducted by Shafer and Smunt (2004). They examined articles that considered simulation 

studies in operational management and were published in over twenty leading operations 

management journals between 1970 and 2000. Out of more than 600 published simulation 

studies, they extracted eighty-five articles that were the most empirically oriented. These 

articles were then classified into seventeen categories. They analyzed published empirical 

operational management simulation studies from 1970 to 2000 by journal and time period, 

by topic and time period, and by journal and topic. The detailed presentation of the 

findings can be found in their publication. 

The trend for simulation studies in operational management is shown in Figure 26. 
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Figure 26: Published scientific papers that consider empirical simulation in operational 

management by years. 

 

Source: Shafer and Smunt, 2004.  

From the Figure 26 it is possible to see a rise in the number of publications in operational 

management simulation studies. Such growth may be the result of an increase in 

operational management research or an increase in simulation research, but the reason 

probably lies in a combination of both possibilities (Shafer & Smunt, 2004). 

4.1.3 Simulation in relation to cutting processes 

Cutting processes represent part of manufacturing processes, and this is an area in which 

simulation can be used for various analyses. It allow evaluation of investment in the 

equipment and building, such as factories, warehouses, and distribution centers (Erjavec, 

2011). Sometimes simulation is used to predict the workflow of existing or planned 

systems and for comparing alternative solutions in production planning (Benedettini & 

Tjahjono, 2009). Simulation is also an appropriate technique for inventory optimization 

when the demand is uncertain (Kofjač, Kljajić, & Rejec, 2009). The literature includes 

many articles that consider simulation in relation to cutting processes. 

Schulz and Bimschas (1993) conducted simulation of the cutting process to optimize 

precision machining. The goal of the study was to produce high-precision workpieces. In 

the real situation there were many errors, and so they simulated planned cutting processes 

and made these errors predictable. This enabled machining optimization before the start of 

production. The simulation application was based on persistent work involving 

simultaneous transmission of power caused by cutting forces onto the current workpiece 

geometry. The authors demonstrated the simulation of workpiece machining and the 

optimization processes needed to attain higher precision. This reduces the probability of 

the workpiece containing errors. 

1 

5 6 

23 
20 

30 

0

5

10

15

20

25

30

35

70 - 75 76 - 80 81 - 85 86 - 90 91 - 95 96 - 00

Time period 

Number of
papers



105 

 

In industry, a finite element method is a widely used simulation technique. Usually the 

machining process is simulated to study various potentials of mechanism. Key techniques 

are considered, such as chip separation criteria, contact, self-adaptive mesh, and so on 

(Zhigang, Yinglin, & Litao, 2003). Another aspect that should be taken into account 

regards uncut chip thickness. An example can be found in Liu and Melkote (2007). 

Work based on a finite element method simulation has been done by Ceretti, Lucchi, and 

Altan (1999). They simulated an orthogonal cutting operation in various cutting 

environments. They changed the tool geometry and cutting speed. To simulate ductile 

fracture of a material, they developed fracture criteria and built them into the model. 

Modeling and simulating cutting processes can improve cutting tool designs and determine 

optimum conditions. This especially holds for advanced applications such as high-speed 

milling processes. A milling process is an operation of the highest demand because of the 

high temperatures and stresses that are generated on the cutting machine due to high 

workpiece hardness. Thus, predicting cutting forces, machine stresses, and temperature 

characteristics should be taken into account in high-speed end milling. Özel and Altan 

(2000) developed a methodology for simulating the cutting process in such operations. The 

proposed methodology predicts chip flow, cutting forces, device stresses, and 

temperatures. Their approach was based on flow stress data of the workpiece material and 

friction on the chip. Chip formation on the main and side cutting edges of end milling was 

predicted by using flat strain and axisymmetric workpiece distortion with modular 

representation of chip geometry. The predicted cutting forces were compared with the 

measured ones. The results showed an acceptable accuracy of the proposed methodology. 

A finite element method was also used to study the technical parameters and chip 

mechanism for cutting processes in chip plastic formation and thermo-mechanical 

coupling. The emphasis was on determining key features; namely, contact and friction 

between the workpiece and tool, chip separation criteria, and residual stress and strain 

(Gang & Pan, 2001). 

In mechanical and aerospace engineering, simulation has been used to optimize nanometric 

cutting of single-crystal aluminum (Komanduri, Chandrasekaran, & Raff, 2000). The 

authors observed the disorder of the atoms in the mechanized surface close to the cut depth 

in order to gain information about the variation of the cutting forces, the ratio of thrust to 

cutting force, the particular energy necessary for excluding the element volume of work 

material, the characteristics of deformation ahead of the tool, the subsurface distortion of 

the machined surface with crystal alignment, and cutting direction. 

In the metal industry, simulation of the orthogonal cutting process based on the 

Lagrangian–Eulerian finite element method was proposed by Movahhedy, Gadala, and 

Altintas (2000). They combined formulations in order to join the advantages of both 

methods. Based on the proposed model, they simulated the cutting process and presented 
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the capabilities and potential of their approach. Another simulation of cutting processes in 

the metal industry can be found in Li, Gao, and Sutherland (2002), which simulated cutting 

steel with a special machine. The objective was to identify the effects of dissimilarities of 

the machine rake face. They simulated four different cases in relation to three different 

machine face geometries. The model was validated with the experimental data. 

Another example of using simulation for improving cutting processes can be found in 

Klocke, Raedt, and Hoppe (2001), in which the authors simulated high-speed orthogonal 

turning of steel with potentially endless continuous cutting simulation. They compared the 

results of the experiment and simulation, and evaluated the input parameters. It was shown 

that several assumptions in the terms of material properties need to be made when applying 

simulation of the cutting process. 

Yun, Ko, Lee, Cho, and Ehmann (2002) introduced a virtual machining system for 

simulating an end milling cutting process. The cutting configuration calculation was based 

on a moving edge node Z-map model. They simulated four different transient cuts and 

predicted the cutting force variation during the process. A comparison of the results with 

the measured ones proved the model to be valid. 

An interesting use of simulation was presented by Cus and Balic (2003). They proposed a 

GA-based optimization technique for the metal industry to determine the cutting 

parameters in machining operations. They researched the production cost and time that 

influences the quality of the final product with the aim of constant improvement of cutting 

conditions. The proposed method consists of modification of recommended cutting 

conditions, neural-network learning of the cutting conditions found, and replacement of 

better cutting conditions with those that were previously learned by the suggested GA. A 

comparison with the experimental results shows that the introduced GA procedure is 

effective and efficient. It was developed in such way that allows easy implementation into 

companies’ existing manufacturing systems. 

For research in mechanical engineering, a molecular dynamics method was developed to 

model and simulate the nanoscale ductile mode of cutting monocrystalline silicon wafer. 

The problem lay in cutting fragile small materials because a brittle-ductile transition could 

occur. The results indicated that when a ductile cutting mode is reached the power exerted 

on a cutting tool is greater than the cutting power. As the thickness of the chip increases, 

the compressive stress in the cutting sector decreases. Thus the chip is more likely to be 

cracked. The results of the study helped the company anticipate the machining mechanism 

and prevent unnecessary costs (Cai, Li, & Rahman, 2007). 

Several simulation methods were later developed in nanometric cutting processes. For 

example, a three-dimensional molecular dynamics simulation was conducted to investigate 

the influence of uncut chip thickness on the depth of subsurface deformed layers. The 

relations between workpiece atoms and tool atoms were computed with a combination of 
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embedded atom potential and Morse potential. The results obtained by simulation indicated 

that the depth of subsurface layers is damaged due to the atomic force microscope pin 

tool’s rake angle. The results were experimentally verified (Zhang, Sun, Yan, Liang, & 

Dong, 2008). A similar method was introduced by Zhu, Hu, Ma, and Wang (2010) in 

which they examined the nanometric cutting process of copper using a diamond tool. They 

considered the tool geometry, cutting depth, cutting speed, and bulk temperature. Their 

findings were proven with the measurement of the real outputs. 

In manufacturing companies, it is very important to plan and optimize the machining 

process when cutting material in order to reduce machining damage as much as possible. 

An example of using simulation in a helical milling process was presented by Wang, Qin, 

Ren, and Wang (2012). They studied the features of multi-phase milling in terms of 

varying chip thickness and cutting force directions. The prediction model was compared 

using data obtained through experimental testing. Based on a good match of the data, a tool 

was developed to predict the change of cutting forces under various cutting conditions. 

Many other examples of using simulation to improve the cutting process can be found in 

the literature, but listing them would by far exceed the framework of the doctoral 

dissertation. 

4.2  Simulation as a testing method 

The efficiency of the proposed cutting method can be determined if it is compared with 

other methods. A comparison between several methods has already been made in Cui and 

Yang (2010) and the results show that in general RSHP outperforms other methods. The 

comparison is based on many criteria: total bar length, material utilization level, standard 

bar count, usable leftovers count, total length of usable leftovers, total trim loss, average 

usable leftovers count, average length of usable leftovers, average computation time, and 

number of cutting patterns. However, none of the other five methods tested best satisfied 

all the criteria listed. 

Cherri, Junior, and da Silva (2011) pointed out that it is difficult to determine which 

method has the best performance. This is because individual algorithms provide different 

solutions regarding incompatible characteristics, such as the number of leftovers generated 

and trim loss. A fuzzy technique was developed to overcome this difficulty. The 

characteristics of individual algorithms were considered in order to allow easier 

classification of the method. The selection of the most appropriate method for solving a 

specific problem was therefore simplified (Cherri et al., 2011). 

The proposed methods for solving the 1DCSPUL could be tested by using the same criteria 

and same benchmark instances. However, the results would not be very useful because the 

main issue is overlooked: when evaluating methods for solving the 1DCSPUL the group of 

instances should be taken into account instead considering individual instances, in which 
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the usable leftovers for each instance are generated with a random number generator. In 

practice, usable leftovers from previous orders are returned back to stock and used again to 

fill future orders. Using the simulation method instead of randomly generated usable 

leftovers makes it possible to acquire information about the actual amount of usable 

leftovers in stock. Methods for solving 1DCSPUL should be tested and compared on the 

basis of the simulation; otherwise it is not possible to be in line with the basic characteristic 

of 1DCSPUL that usable leftovers from previous orders are used in the following ones. 

This is overlooked in the literature since usable leftovers for each instance are generated 

randomly when testing and comparing various methods. Thus the majority of methods is 

wrongly tested and compared.  

Therefore I propose the new testing method where the usable leftovers generated in the 

previous order are used in the current one, and the usable leftovers generated in current 

order in the next one, and so on. Even though such approach can be found in Trkman and 

Gradišar (2007) and Cherri et al. (2012) it has not yet been sufficiently researched 

regarding testing and comparing the methods. In the literature methods are tested on the 

basis of a randomly generated constant number of usable leftovers in stock (Cherri et al. 

(2009; Cui & Yang 2010) instead of taking the usable leftovers from previous instance into 

account and using them in the current one. Hence, in my doctoral dissertation for each 

order the computer simulation method is used.  

As an illustrative example of how testing the method should be approached, I presume that 

the most important criterion is the number of usable leftovers in stock because a high level 

of usable leftovers could result in higher trim loss and inventory costs. The level of usable 

leftovers in stock is simulated because in reality it would grow over time if the sequence of 

orders generated were filled with consecutively generated shipments of standard bars. 

In presented simulations COLA is selected for solving 1DCSPUL because it consumes the 

highest number of usable leftovers from previous orders in comparison to other methods 

(Cherri et al., 2009; Cui & Yang, 2010). This means that the possibility of growth of usable 

leftovers in stock would be greater in comparison to selection of some other method and 

the real life situation would be even more reflected. COLA is written in FORTRAN 

programming language since it allow for very fast processing. 4GL was used for data input 

and printout of the results. The detailed description of COLA can be found in chapter 2. 

In order to demonstrate the proposed testing method, four cases were analyzed. Among 

them r varies but it is low in all four cases. The parameters for order generation are 

presented in Table 20. In Sequence 1 and Sequence 4, orders are generated with the 

problem generator CUTGEN1 (Gau & Wäscher, 1995) by using the same parameters as in 

Cherri et al. (2009) and Cui and Yang (2010), and the same two standard bars are in stock 

(1,000 and 1,100) with 100 pieces of each. Sequences 2 and 3 are added in such a way that 

the gap between Sequence 1 and Sequence 4 is evenly filled. The number of consecutive 



109 

 

orders in Cherri et al. (2009) and Cui and Yang (2010) varied between 10 and 40. In my 

doctoral dissertation, 30 is selected. Threshold for returning leftovers back on stock is set 

to min lsi in all four cases. 

Table 20: Parameters for order generation. 

 Sequence 

1 

Sequence 

2 

Sequence 

3 

Sequence 

4 

Number of different items  20 20 20 20 

Interval in which each item is situated  [5, 83] [6, 146] [8, 209] [11, 335] 

Number of pieces  125 102 79 34 

Number of consecutive orders  30 30 30 30 

Source: Cherri et al., 2009; Cui & Yang, 2010; own analysis. 

4.2.1 Results 

The results of testing COLA are shown in the Table 21. Beside the trim loss the total 

number of usable leftovers after all previously fulfilled orders is presented as well since it 

influences the amount of trim loss and should be therefore taken into account.  
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Table 21: Results of COLA. 

 Sequence 1 Sequence 2 Sequence 3 Sequence 4 

Order 

number 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

1 2 2 23 2 63 20 121 2 

2 1 3 134 6 181 9 443 10 

3 0 2 69 10 88 36 142 49 

4 1 1 10 10 105 25 160 61 

5 1 2 36 23 166 19 400 59 

6 20 1 51 13 316 22 452 70 

7 1 2 21 23 86 38 223 80 

8 1 2 22 6 70 44 115 78 

9 16 2 49 3 138 71 498 68 

10 0 2 73 2 426 58 460 68 

11 24 2 49 6 202 60 754 63 

12 2 1 46 18 117 67 240 74 

13 1 2 78 11 123 95 264 126 

14 1 2 25 9 133 111 162 151 

15 1 1 35 20 109 118 106 165 

16 0 2 93 28 410 102 458 188 

17 1 2 21 20 51 104 164 188 

18 1 3 16 20 78 102 40 195 

19 0 1 24 19 259 97 291 198 

20 3 2 21 10 85 115 206 196 

21 0 2 35 9 193 100 311 195 

22 3 2 21 22 63 129 160 198 

23 0 2 20 11 25 129 66 185 

24 0 2 43 8 210 134 150 183 

25 5 3 21 6 95 153 262 191 

26 0 1 51 13 78 148 236 192 

27 0 2 61 13 99 156 371 188 

28 0 2 60 7 215 163 263 192 

29 0 2 8 8 255 154 126 213 

30 5 1 53 6 122 145 355 210 

Sum 90  1,269  4,561  7,999  

 

The most important parameter regarding trim loss is the r. In general, a lower r produces 

higher trim loss. From Sequence 1 to Sequence 4 this ratio decreases and therefore trim 

loss increases from 90 in Sequence 1 to 7,999 in Sequence 4. An additional reason for 
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increased trim loss is the high number of usable leftovers in stock. The results in the 

literature are not sufficiently detailed to allow the precise determination of the contribution 

of usable leftovers to trim loss. 

The results for Sequence 1 and Sequence 2 show that usable leftovers in stock from the 

previous orders do not accumulate, but are used up. The accumulated number of usable 

leftovers after 30 instances is one in Sequence 1 and six in Sequence 2. In Sequence 2, the 

results show that the amount of usable leftovers in stock initially increases, but stabilizes 

after five instances. This indicates that the point of using usable leftovers at least at the 

same pace as they are produced is reached at a low level of usable leftovers. However, in 

Sequences 3 and 4 there is excessive generation of usable leftovers and the point where the 

number of usable leftovers in stock is stabilized is most likely between instances 25 and 30 

in Sequence 3 and more than 30 in Sequence 4. The reason why the number of usable 

leftovers in stock does not grow constantly is that at a certain level of usable leftovers the 

number of possible cutting plans becomes so large that finding a better solution is easier 

and the production of usable leftovers is lower. At that level, the number of usable 

leftovers used and produced becomes equal. 

The dependence of results on different sequences of the same set of orders is also studied. 

For Sequence 1 and Sequence 3, the experiment is conducted again with the same set of 

orders but in the opposite direction. The results are presented in the Table 22. 
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Table 22: Results of COLA for Sequences 1 and 2 - calculation with opposite sequence 

direction. 

 Sequence 1 Sequence 3 

Order 

number Trim loss 

Usable leftovers 

(number of bars) Trim loss 

Usable leftovers 

(number of bars) 

1 5 1 113 2 

2 0 1 259 2 

3 2 2 188 18 

4 0 1 156 17 

5 0 2 78 15 

6 5 3 233 22 

7 0 2 28 18 

8 3 2 71 45 

9 0 2 203 45 

10 2 2 145 62 

11 0 1 364 56 

12 16 2 84 50 

13 1 3 32 64 

14 0 2 508 69 

15 6 2 124 84 

16 0 2 103 79 

17 2 2 122 100 

18 1 2 93 103 

19 0 2 225 98 

20 19 1 413 89 

21 0 2 180 114 

22 16 2 79 117 

23 0 2 97 105 

24 0 1 316 107 

25 7 2 132 107 

26 1 2 60 120 

27 6 3 108 143 

28 1 2 170 142 

29 1 3 87 158 

30 1 2 90 148 

Sum 95  4,761  

 

The comparison of results shows that trim loss and the number of usable leftovers in stock 

are very similar in both cases. In Sequence 1 the sum of trim loss is increased from 90 to 

95 and the number of usable leftovers by one. In Sequence 3 the sum of trim loss is 
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increased from 4,561 to 4,761 and the number of usable leftovers from 145 to 148. Thus it 

is possible to conclude that the dependence of results on different sequences of the same 

set of orders is so small that it can be ignored. 

To demonstrate the proposed testing method I carried out and additional experiment where 

I have compared COLA (Gradišar et al., 1997) with ECOLA (Tomat, Gradišar & Štiglic, 

2013). 2 cases were analyzed. ECOLA is also written in FORTAN and 4GL is used for 

data input and printout of the results. Parameters for order generation were nearly the same 

as for Sequence 1 and Sequence 2 and can be found in Table 20. Different sequences for 

the same set of orders were taken into account and 100 consecutive instances were 

simulated instead of 30. For testing and comparing COLA and ECOLA 100 instances are 

considered since such quantity is of sufficient size to demonstrate the performance of the 

proposed testing method. The results are presented in Table 23. 
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Table 23: Comparison between COLA and ECOLA. 

 Sequence 1 Sequence 2 

 COLA ECOLA COLA ECOLA 

Order 

number 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

Trim 

loss 

Usable 

leftovers 

(number 

of bars) 

1 2 2 2 2 23 2 23 2 

2 1 3 1 3 134 6 134 6 

3 0 1 0 1 69 10 69 10 

4 3 1 3 1 10 10 10 10 

5 1 2 1 2 36 23 36 23 

6 9 2 1 1 51 13 51 13 

7 0 2 0 2 21 23 21 23 

8 1 2 0 2 22 6 22 6 

9 17 2 17 2 49 3 49 3 

10 0 2 0 2 73 2 73 2 

... … … … … … … … … 

46 1 4 7 2 60 49 40 86 

47 1 2 2 2 41 48 359 86 

48 18 2 0 2 61 43 186 81 

49 13 2 0 2 36 58 27 98 

50 2 2 2 2 18 57 27 94 

51 1 2 0 3 54 61 47 94 

52 0 1 1 4 67 56 60 93 

53 4 2 0 1 94 65 67 103 

54 0 2 1 2 103 65 133 110 

55 1 2 0 2 141 57 170 98 

… ... … … … … … … … 

90 12 2 12 2 16 10 31 142 

91 13 3 2 1 100 19 244 130 

92 2 2 6 2 49 28 66 125 

93 0 2 0 2 54 32 9 129 

94 0 2 1 2 137 52 124 161 

95 0 2 1 3 27 55 45 180 

96 1 2 4 1 29 58 18 185 

97 3 2 2 2 63 62 37 197 

98 6 1 5 4 89 75 92 208 

99 0 1 14 3 35 43 33 178 

100 0 2 0 2 17 51 22 188 

Sum 351  332  5,124  6,235  
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The results for Sequence 1 and Sequence 2 point out the efficiency of tested methods in 

dependence on r. In Sequence 1, where r is higher, both methods result in 2 usable 

leftovers in the stock after fulfilling 100 orders. In Sequence 2, where r is lower, the tested 

methods provide results that differ significantly. The quantity of usable leftovers in stock 

after 100 successive instances equals to 51 pieces with COLA and 188 pieces with 

ECOLA. So COLA outperforms ECOLA for 269%.  

With simulation the motion of the usable leftovers in stock can be precisely observed. 

There is no excessive accumulation of usable leftovers in Sequence 1 although there are 

some minor increases in growth, i.e. in 46
th

 instance. In Sequence 2 the amount of usable 

leftover starts to increase immediately after first instance. Then it slightly falls after 7
th

 

instance but it again starts to grow after 11
th

 instance. After 100 instances there are many 

usable leftovers produced so their excessive accumulation in stock is not prevented.  

In Sequence 1 the trim loss is 5.5% lower using ECOLA. In Sequence 2 COLA provided 

better results. Trim loss amounts 5,124, which is 18% lower in comparison with ECOLA, 

where trim loss equals 6,235.  

Based on the presented demonstration of proposed testing method it is possible to conclude 

that the use of ECOLA is more reasonable for problems, where r is higher since it results 

in smaller trim loss. COLA is more appropriate for solving problems, where r is lower.  

A comparison where successive instances are simulated reflects the real situation much 

better than if the usable leftovers would be randomly generated for each individual 

instance. Testing and comparing the methods on the basis of simulation enables a decision-

maker better understanding of specific situation, i.e., an accumulation of usable leftovers in 

stock over time. Thus it is possible to make better decision when selecting the most 

appropriate method. 

The proposed testing method can be regarded as more comprehensive than other testing 

methods in the literature since it provides realistic results due to taking the whole group of 

successive instances into account instead of considering only an individual instance. It also 

assures valuable additional information about the amount of usable leftovers in stock after 

a certain number of periods.   
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5 CONCLUSION AND OUTLOOK 

The doctoral dissertation considers the CSP, which is a well-known problem in many 

industries. A special type of this problem was addressed. Leftovers that are longer than 

some predefined threshold are returned back to stock to be used again in the future. This is 

known as the 1DCSPUL. 

When solving the 1DCSPUL, the most important element is usually trim loss reduction. 

The amount of trim loss depends on r. If r is low, then the number of possible solution is 

diminished and the possibility of a solution with a larger trim loss increases (Gradišar et 

al., 1999a). Therefore, improvement is still possible. For this reason, I developed a new 

optimization method for solving 1DCSPUL with low r. 

To determine the efficiency of the method for solving 1DCSPUL, it should be compared 

with existing methods. Testing could be done by using the same criteria and benchmark 

instances, but the results would not be realistic because the main issue is ignored. Instead 

of individual consideration, an entire group of instances should be taken into account so 

that the usable leftovers from previous instances are used to fill successive orders. 

Therefore a new testing method is proposed based on the use of computer simulation in 

which usable leftovers from previous orders are used in the current one and the usable 

leftovers produced in the current order are used in the next one, and so on. Thus 

information about actual amount of usable leftovers in stock is acquired. 

In this chapter I state the main findings and describe their importance for companies. Then 

the contribution of my doctoral dissertation to the relevant field of knowledge is presented, 

followed by the discussion subchapter. At the end I offer some outlook to further research. 

5.1  Main findings 

In presented doctoral dissertation I have addressed the problem of trim loss reduction in 

1DCSPUL the case of low r. A new optimization heuristic method LCUT has been 

developed and explained into details. To compare results of LCUT with comparable 

existing methods a practical case was selected. In comparison with RGR and CUT the 

performance of LCUT was higher since the obtained results were slightly better. To 

conduct an additional and more extensive comparison CUT was selected due to its ability 

of combining it with LCUT. Because neither LCUT nor CUT depends on commercial 

software they can be easily coded and integrated into various computer platforms that are 

used in practice. Due to simple implementation into the company information system 

presented method also provides the opportunity for company to adjust to changing business 

processes.  

The performance of LCUT can be seen from testing and comparison with CUT. Results 

obtained with LCUT consisted of significantly less usable leftovers. A larger number of 
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usable leftovers affects the increase in the amount of shorter stock lengths, which in 

general leads to higher trim loss or even unsolvable problems in later time periods (Trkman 

& Gradišar, 2007). Therefore two extreme situations in the terms of the reprocessing 

usable leftovers costs were taken into account. In Case 1 those cost are negligible. LCUT 

obtained slightly worse results than CUT but when those two methods were combined the 

savings amounted 0.1% of used stock. In Case 2 the cost of preprocessing usable leftovers 

are too high for usable leftovers to be put back on stock. In such situation LCUT obtain 

significantly better results than other methods. In combination of LCUT and CUT the 

savings are 0.7% of used stock. The results suggest that is it useful to combine LCUT with 

CUT although LCUT can be also used as a stand-alone application.  

Based on the above explanations the first goal, which claimed that a new method for 

solving the 1DCSPUL with a low r would be developed that will provide better results 

than existing methods, has been reached. 

The second part of the doctoral dissertation concerns improving current methods of testing 

solutions to 1DCSPUL with the use of computer simulation. I proposed a new testing 

method based on computer simulation, in which usable leftovers from previous orders are 

used in the current one and the usable leftovers produced in the current order are used in 

the next one, and so on. 

To show the effectiveness of proposed testing method COLA was selected and four cases 

with different r were analyzed. To allow comparison the parameters for conducting the 

experiment were partially the same as in the literature. An amount of usable leftovers in 

stock was observed since that is one of the most important criteria in the terms of trim loss 

reduction. The r from Sequence 1 to Sequence 4 decreases therefore the amount of usable 

leftovers in stock increases which influences the trim loss to be higher. The computational 

results are based on several tested problem instances. To verify the experiment I have also 

studied the dependence of the results on different sequences of the same set of orders. The 

results indicate that dependence is so small that can be ignored. To demonstrate the 

proposed testing method an additional experiment was carried out. For testing and 

comparing COLA and ECOLA 2 cases were analyzed and 100 consecutive instances were 

simulated. Such approach reflects the real situation better than the methods in the literature 

where usable leftovers are generated randomly instead of being taken from previous 

orders. 

 

The proposed method is not limited to a single order but analyzes the criteria in 

consecutive orders. In the experiment, the method enabled better control of usable 

leftovers. The number of usable leftovers in stock is one of the most important elements 

that influences the amount of trim loss. A computer simulation was used in which usable 

leftovers from a previous order are used in the next one instead of being randomly 

generated. 
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Based on the above explanation the second goal, which claimed that the current methods 

for testing solutions to the 1DCSPUL can be improved with the simulation method, has 

been reached. 

5.2  Importance of results for companies 

Cutting activities are becoming an increasingly important part of SCM, especially in the 

steel, metal, wood, and transportation industries. To perform a cutting process in the most 

effective manner, it is necessary to apply methods that allow the minimal trim loss. Thus 

the company’s cost can be reduced. With respect to trim loss, LCUT performs better than 

the existing method for solving the 1DCSPUL with a low r. 

When selecting a method for solving the 1DCPSUL, it is important for the method to 

perform best when solving problems like those that occur at a company. In general, the 

selection depends on testing the potential methods. The testing method can thus help 

companies to select the most appropriate method for their business needs. This reduces the 

total cost to the company. 

5.3 Contribution of the doctoral dissertation to the relevant field of 

knowledge 

My contribution to the relevant field of knowledge is a new optimization method for 

solving the 1DCSPUL with low r. It is not possible to find any similar method in the 

literature that takes such an r into account. Therefore, the method presented represents a 

significant theoretical contribution. The use of the proposed method improves the 

possibilities for better decision-making and thus represents a contribution to the relevant 

field of knowledge. 

A newly proposed method for testing solutions to the 1DCSPUL allows for real situations 

to be better replicated than possible with methods from the literature. 

The doctoral dissertation contributes to further development of research in computer 

simulation, cutting and packing problems, optimization, and operations research. 

5.4  Discussion and limitations 

A few issues need to be discussed regarding the matters studied. 

The proposed LCUT method for solving 1DCSPUL with low r has some constraints that 

were explained in subchapter 3.3. In relation to these constraints, a cutting plan is created 

in less than 10 seconds using a personal computer. If those constraints were different, that 

would influence the time needed for cutting plan creation. Depending on tightening or 

mitigating the constraints, the performance of the method in practice would change. 
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The time duration for which it is still acceptable to find a solution depends on the nature of 

the business and on the decision-maker. If the cutting process represents only a marginal 

activity then the overall time needed for preparing a cutting plan probably does not play 

such an important role. When testing whether the problems presented in the doctoral 

dissertation could be solved using an exact method, a certain acceptable time limit was set. 

If that time were prolonged it is possible that an optimal solution would be found. 

However, in industry the solutions should usually be obtained within a few seconds and 

therefore the use of an exact method for solving large problems would not be appropriate. 

If the problems are very small or the time limit infinite, then the decision-maker should 

consider using an exact approach. 

When proving the efficiency of LCUT, I conducted an experiment with the same data but 

using two other methods (RGR and CUT). These methods were selected for comparison 

because it was found in the literature that they perform best for similar problems, as 

discussed in the doctoral dissertation (Gradišar et al., 1999a; Cherri et al., 2009). It is 

possible that for different situations (e.g., a different size of the problem, higher r, etc.) 

some other methods could perform better and should therefore be considered in 

comparison. 

For problem generation, the PGEN generator with minor modifications was used. For a 

variety of large objects, some other problem generator could be applied. Thus, the results 

could differ from the one presented. PGEN was used due to the characteristics of the real 

data obtained from the retail company. 

In chapter 4, the simulation method was presented as a testing method. When 

demonstrating the procedure, the threshold for returning leftovers back to stock was set to 

min lsi in all experiments. Such a threshold was selected due to many examples from the 

literature (Cherri et al., 2009; Cui & Yang, 2010), but in a practical situation it depends on 

the decision-maker. The applicants should bear this in mind when implementing the 

proposed method. 

When presenting the simulation approach as a testing method, a specific number of 

consecutive orders was taken into account. Such number was selected to be comparable 

with the cases presented in the literature (Cherri et al., 2009; Cui & Yang, 2010). In 

practice, this number depends on the frequency of cutting. That is, if the company has to 

fill many orders in a short time period, then that number should be higher to allow better 

understanding of what is happening with the amount of usable leftovers in stock. 

5.5  Outlook to further research 

The proposed method for solving the 1DCSPUL with low r is intended for solving one-

dimensional problems. A similar approach could also be developed for solving two- or 

three-dimensional problems. 
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Next, the possibility of including some additional costs into the LCUT should be 

considered; for example, warehouse costs. Another possibility is to combine the 

minimization of trim loss with the minimization of costs, such as in Erjavec et al. (2009), 

in which the focus would not only be the cutting activity but also other connected activities 

that form the processes of procuring material (Trkman & McCormack, 2010). 

Regarding the proposed method for testing solutions to the 1DCSPUL, it would be useful 

if other existing methods were also adapted to the sequence of orders.  

As shown by the experiments, r influences the amount of usable leftovers in stock. It 

would be valuable to conduct an experiment with more successive order instances and 

observe the growth of usable leftovers in stock by different r. It is possible that in some 

cases those usable leftovers would begin to accumulate. This would result in ever-growing 

stock, which is not acceptable due to the high warehouse and logistics costs. 
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Appendix 1: Abbreviations 

 

1DCSP  One-dimensional cutting stock problem  

1DCSPUL  One-dimensional cutting stock problem with usable leftover 

GA   Genetic Algorithm 

EP     Evolutionary Programming 

EA    Evolutionary Algorithm 

SHP    Sequential Heuristic Procedure 

SCM    Supply Chain Management 

PC    Personal Computer 

FFD    First Fit Decreasing 

MBS   Minimal Bin Slack 

RGR    Residual heuristic by Greed Rounding 
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DALJŠI POVZETEK DISERTACIJE V SLOVENSKEM JEZIKU 

Področje operacijskih raziskav je ključno za proučevani problem. Čeprav je v literaturi 

mogoče zaslediti več definicij več različnih avtorjev, lahko za potrebe doktorske disertacije 

definiram operacijske raziskave kot uporabo analitičnih znanstvenih metod, ki zagotavljajo 

odločevalcem kvantitativno osnovo za boljše odločanje v organizacijah (Čižman, 2004).   

Namen operacijskih raziskav je poiskati optimalno (eksaktno) ali skoraj optimalno 

(hevristično) rešitev za kompleksne odločitvene probleme. Operacijske raziskave temeljijo 

na mnogih matematičnih metodah in tehnikah, kot so npr. modeliranje, odločitvena 

analiza, poslovne simulacije itd. Del operacijskih raziskav predstavlja tudi optimizacija, 

problem eno-dimenzionalnega razreza pa sodi med optimizacijske probleme. 

V operacijskih raziskavah imajo simulacije pomembno vlogo (Shafer & Smunt, 2004). V 

doktorski disertaciji je predstavljen nov, natančen model testiranja, temelječ na simulaciji, 

ki v literaturi za rešitve, ki obravnavajo posamezna naročila, še ni bil uporabljen. Metoda 

upošteva uporabne ostanke iz prejšnje instance v naslednji instanci. Tako se metoda bolj 

približa realnim situacijam, kot metode testiranja v literaturi, ki vračanja ne upoštevajo.  

V teoretičnem delu doktorske disertacije podrobno raziščem področji reševanja problema 

eno-dimenzionalnega razreza materiala (1DCSP) in problema eno-dimenzionalnega 

razreza materiala z uporabnim ostankom (1DCSPUL). V praktičnem delu razvijem in 

opišem novo optimizacijsko metodo za reševanje 1DCSPUL za primere, kjer je razmerje 

med povprečno dolžino palic na zalogi in povprečno dolžino naročil (r) nizko. Nato 

predlagam nov model za testiranje metod za reševanje 1DCSPUL, ki temelji na 

simulacijah. Na koncu opišem glavne ugotovitve, prikažem prispevek doktorske disertacije 

k znanosti in podam predloge za nadaljnje delo.  

PROBLEMATIKA IN PREDMET RAZISKOVANJA 

Z 1DCSP se srečuje mnogo proizvodnih podjetij, predvsem pa tista, ki želijo optimizirati 

svoje poslovanje (Haessler & Sweeney, 1991). Tako optimizacija razreza materiala 

predstavlja pomembno raziskovalno področje širom sveta. Jedro problema je, kako 

izpolniti naročilo z minimalnimi stroški (Haessler & Sweeney, 1991).   

1DCSP ima v praksi veliko pojavnih oblik. V splošnem je definiran kot problem, kjer je 

treba v naprej znano število naročenih palic razrezati iz znane zaloge, ki je sestavljena iz 

različnega števila različnih dolžin palic. Pri rezanju materiala je zelo pomembno, kako 

velik je ostanek rezanja, saj se nezadostno velik ostanek smatra kot odpadek in se zavrže, 

to pa vpliva na višje stroške podjetja. Smotrno je, da je ostanek, ki se zavrže, čim manjši 

oz. tako majhen, kot je to mogoče (Gradišar & Jesenko, 1996).  
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Prvi poskusi iskanja optimalne rešitve so se začeli leta 1939, ko je Leonid Kantorovich 

predstavil osnovni model za reševanje problema eno-dimenzionalnega razreza, vendar pa 

takšna formulacija problema, kot jo poznamo danes, izhaja iz leta 1956 (Paull, 1956). 

Naslednji pomembni korak se je zgodil leta 1961, ko sta Gilmore in Gomory, dva izmed 

najbolj priznanih avtorjev s področja 1DCSP, predstavila metodo reševanja, ki temelji na 

linearnem programiranju (Gilmore & Gomory, 1961).  

Kasneje je bilo predstavljenih še veliko metod za reševanje 1DCSP, kar je posledično 

vodilo v potrebo po klasifikaciji, ki bi jasno razlikovala med različnimi vrstami problemov. 

V ta namen je leta 1990 Dyckhof predlagal klasifikacijo problemov eno-dimenzionalnega 

razreza materiala. Po tej klasifikaciji je 1DCSP opisan kot model 1/V/D/M, kjer 1 

predstavlja eno-dimenzionalni problem, V predstavlja pogoj, da vsa naročila izhajajo iz 

razreza zalog, D predstavlja več različnih palic na zalogi, M pa predstavlja več različnih 

naročil. Klasifikacija se lahko uporablja tudi za nekatere druge, podobne primere 

(Dyckhoff, 1990): 

 problemi razreza in problemi odpadka, 

 problemi pakiranja, 

 problemi nakladanja, 

 problemi alokacije, razvrščanja in kategorizacije, 

 alokacija kapitala, 

 določanje urnikov. 

Na osnovi Dyckhoffove klasifikacije je bilo razvitih več zanimivih metod za reševanje 

problema razreza (Scheithauer & Terno, 1997; Vanderbeck, 2000; Belov & Scheithauer, 

2002). V letih med 1995 in 2002 se je pojavilo tudi več večfaznih metod, ki so opisane v 

Trkman in Gradišar (2010). Klasifikacija je bila kasneje razširjena tudi s časovno 

dimenzijo. Takšen pristop je bil prvič predstavljen v Trkman in Gradišar (2007). Nova 

klasifikacija temelji na več kriterijih: število različnih dolžin na zalogi, razmerje med 

povprečno dolžino materiala na zalogi, povprečno dolžino naročenega materiala in 

karakteristikah posameznih kosov materiala na zalogi in v naročilu (Trkman & Gradišar, 

2007). Leta 2007 je bila predstavljena tudi nova klasifikacija, ki nakazuje pomemben 

napredek na področju rezanja in pakiranja (Wäscher et al. 2007). Z njeno uporabo je 

mogoče še bolj natančno razvrstiti probleme v razrede.   

V procesu optimizacije eno-dimenzionalnega razreza materiala se zaloge porabljajo z 

namenom izpolnjevanja naročila, pri tem pa se sledi ekonomskemu cilju minimiziranja 

stroškov. Eden glavnih razlogov je v minimizaciji materiala, ki predstavlja neuporaben 

ostanek, saj le-ta pomeni izgubo oz. strošek za podjetje. Kadar je ostanek dovolj velik, da 

se ga vrne v skladišče in ponovno uporabi, govorimo o 1DCSPUL (Alfieri, 2007; Areales 

et al., 2009). 
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Optimalne rešitve so večinoma rezultat uporabe eksaktnih metod (Alves & Valério de 

Carvalho, 2008), vendar so te metode uporabne le pri majhnih naročilih (rezultati eksaktnih 

metod predstavljajo najboljše možne rešitve, v primeru večjih naročil pa je zaradi 

pomanjkanja računske moči računalnikov čas računanja predolg), tako da izključno 

eksaktne metode za uporabo v moji disertaciji niso primerne. Zato večina razvitih metod 

temelji na hevrističnem pristopu. Nasprotno od eksaktnih metod hevristične rešitve ne 

zagotavljajo optimalne rešitve, jo pa zato poiščejo v razumnem času. Nekatere izmed 

hevrističnih metod za reševanje 1DCSP in 1DCSPUL so predstavljene v doktorski 

disertaciji. 

Pri reševanju 1DCSPUL je bistvenega pomena uporabni ostanek, ki se vrne v skladišče z 

namenom kasnejše uporabe. Pomembno je, kje je meja, nad katero se ostanek vrne nazaj v 

skladišče, in pod katero ostanek predstavlja izgubo pri razrezu. To mejo navadno določijo 

odločevalci. Tako v primeru vračanja neuporabljenega materiala v skladišče minimizacija 

ostanka ni nujno najboljša rešitev za podjetje (Cherri et al., 2009). Pri reševanju 1DCSPUL 

so na zalogi palice standardnih in nestandardnih dolžin. Slednje so uporabni ostanki iz 

prejšnjih naročil. Upoštevati je trebna naslednje predpostavke (Cherri et al., 2009): 

 velikost naročila mora biti znana, 

 velikost zaloge mora biti znana, 

 naročila morajo biti izpolnjena. 

V literaturi je mogoče najti mnogo metod za reševanje 1DCSPUL. Obširen pregled je npr. 

objavljen v Chierri et. al (2009). Metode večinoma temeljijo na hevrističnem pristopu. 

Pomembno mesto med metodami za reševanje 1DCSPUL imata metodi COLA in CUT, ki 

sta bili za ta tip problema razviti najprej. COLA je bila predstavljena leta 1997 (Gradišar et 

al., 1997), CUT pa leta 1999 (Gradišar et al., 1999a). Obe metodi posamično obravnavata 

naročila in temeljita na izčrpnem ponavljanju.  

Iz praktičnega primera, predstavljenega v Erjavec et al. (2009), je razvidno, da je 

povprečna izguba materiala pri reševanju 1DCSPUL enaka 15 %. Vzrok pa ne tiči le v  

izbrani optimizacijski metodi, temveč tudi v naravi problema. Razlog je v nizkem r. Ker 

literatura ne ponuja nobene definicije nizkega r, omenjeno razmerje v doktorski disertaciji 

definiram na naslednji način: 

»Razmerje med povprečno dolžino na zalogi in povprečno dolžino naročil (r) je majhno, če 

je manjše od nekega praga.« 

Ker je v vsakem primeru problema več različnih dolžin zaloge in naročila, je lahko 

omenjeno razmerje: 

1. razmerje med najdaljšo dolžino na zalogi in najkrajšo dolžino naročila, ali 

2. razmerje med povprečno dolžino zaloge in povprečno dolžino naročila.  
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Prvo razmerje ne predstavlja najboljše definicije v vseh primerih (npr. kjer obstaja veliko 

število naročil, najdaljše naročilo pa predstavlja le zelo majhen del skupne dolžine naročil), 

zato je druga možnost boljša izbira. Naslednje vprašanje je povezano z definiranjem praga 

nizkega razmerja. V Erjavec et al. (2009) je ta enak 3, zato je takšen prag upoštevan v 

doktorski disertaciji. 

Nižji r pomeni omejeno število možnih rešitev, posledično pa se poveča verjetnost rešitve 

z veliko izgubo (Gradišar et al., 1999a). Število možnih rešitev se najbolj zniža takrat, ko 

je r med 1 in 2, saj to pomeni, da se v večini primerov od ene palice v zalogi odreže samo 

ena enota naročila. To je tudi razlog, da primeri, kjer je r nizek, povzročajo več ostanka. Iz 

zgoraj napisanega je mogoče domnevati, da se razlika med izgubo optimalne rešitve in 

izgubo, ki je posledica uporabe trenutno razpoložljivih metod, z izjemo eksaktnih, veča, če 

se niža r. To posledično predstavlja tudi večje možnosti za izboljšave. 

Stroški, povezani z razrezom, pa niso odvisni le od priprave čim boljšega načrta razreza, 

ampak tudi od nabave materiala in prilagoditve logističnih procesov. To pomeni, da lahko 

celostna prenova procesa eno-dimenzionalnega razreza materiala vodi do bistveno večjih 

prihrankov kot le optimizacija načrta razreza. Metode za reševanje eno-dimenzionalnega 

problema razreza morajo imeti torej možnost prilagoditve spreminjajočim poslovnim 

procesom in enostavne integracije v informacijski sistem podjetja (Alfieri, van de Velde, & 

Woeginger, 2007; Čižman & Černetič, 2004; Rodrigues & Vecchietti, 2007). 

Vse hitrejši razvoj in večja dostopnost računalnikov v zadnjih desetletjih sta odločevalcem 

omogočila večje možnosti pri sprejemanju odločitev. Ker je z računalniškimi simulacijami 

mogoče proučevati realni sistem tudi v daljšem časovnem obdobju, predstavljajo eno 

izmed najbolj pogosto uporabljenih in najzmogljivejših orodij pri načrtovanju zahtevnih 

procesov in sistemov. Pri simulacijah gre za proces izdelave modela realnega sistema in 

izvajanja eksperimentov s tem modelom, z namenom boljšega razumevanja interakcij 

znotraj kompleksnih procesov (Pidd, 2004). 

Računalniške simulacije temeljijo na računalniškem modelu določenega sistema. Običajno 

se simulira različne scenarije, tisti z najboljšim rezultatom pa je potem uporabljen v 

realnem sistemu. Takšen eksperiment je npr. iskanje odgovorov na t. i. »kaj če« vprašanja. 

Uporaba računalniških simulacij je pogosta v mnogih panogah, npr. v proizvodnji, 

obrambni industriji, zdravstvu in javnem sektorju (Jahangirial et al., 2010). Računalniške 

simulacije so učinkovito orodje za podporo odločanju, zato se pogosto uporabljajo za 

načrtovanje, kontrolo, pripravo strategij in razporeditev virov v podjetjih (Folwer, 1998). 

Ker omogočajo interaktivno modeliranje, zagotavljajo transparentnost in razumljivost 

proučevanih modelov (Kljajić et al., 2000). 

Na področju operacijskih raziskav je v zadnjih 35. letih mogoče opaziti porast v številu 

znanstvenih študij, ki temeljijo na uporabi simulacij, saj število znanstvenih člankov s tega 

področja narašča (Shafer & Smunt, 2004). Tudi pri optimizaciji razreza materiala, ki 



6 

 

predstavlja del proizvodnega procesa, se lahko simulacije uporabljajo za različne analize. 

Omogočajo npr. ocenjevanje investicij v opremo, stroje, skladišča in distribucijske centre 

(Erjavec, 2011). Številni primeri uporabe simulacij v povezavi s procesom razreza 

materiala so opisani v 3. poglavju doktorske disertacije. 

CILJI DOKTORSKE DISERTACIJE 

Cilja v moji doktorski disertaciji sta naslednja: 

 Razvoj nove metode za reševanje 1DCSPUL z majhnim r, ki bo dala boljše rezultate od 

obstoječih metod. 

 Izboljšanje obstoječih metod testiranja rešitev 1DCSPUL z metodo simulacij. 

 

OPIS ZNANSTVENE METODE 

Prva uporabljena znanstvena metoda zajema natančen in obsežen pregled znanstvene 

literature (tako primarni kot sekundarni viri) s poudarkom na znanstvenih prispevkih, ki se 

nanašajo na obravnavana področja. Analizirani so tudi kriteriji učinkovitosti eno-

dimenzionalnega razreza.  

Pri testiranju nove optimizacijske metode za reševanje 1DCSPUL z majhnim r so testni 

podatki generirani s pomočjo generatorja primerov, deloma pa so iz prakse. Za pomoč pri 

raziskavi je uporabljena ustrezna programska oprema (npr. MS Excel, PGEN, COLA, 

CUT, MPL/CPLEX). Rezultati so ocenjeni z metodo primerjalne analize. Primerjal sem 

rezultate nove metode, razvite za reševanje 1DCSPUL z majhnim r, z rezultati obstoječih 

metod.  

Rezultati predlagane metode testiranja rešitev 1DCSPUL so pridobljeni z uporabo 

simulacij, ki so ene izmed najbolj pogosto uporabljenih raziskovalnih tehnik v 

družboslovnih znanostih (Pidd, 2004).  

RAZVOJ NOVE METODE 

Pričujoči razdelek je povzet po Gradišar, Tomat in Erjavec (2011). Kjer je potrebno, so 

dodane in opisane ustrezne prilagoditve. 

Definicija problema 

Pri definiciji problema so upoštevane naslednje predpostavke: 

 na zalogi je na voljo zadostna količina materiala za izpolnitev vseh naročil kupca, 

 na zalogi je na voljo določeno število dolžin, 

 standardna zaloga sestoji iz enake dolžine ali iz več standardnih dolžin, 

 nestandardna zaloga sestoji iz uporabnih ostankov iz prejšnjih naročil, 
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 ostanki, ki so enaki ali daljši od minimalne dolžine palic na naročilu, se štejejo kot 

uporabni in so vrnjeni na zalogo z namenom uporabe v prihodnjih naročilih, 

 dolžine so izražene s celimi števili – če niso, se predpostavlja, da jih je vedno mogoče 

pomnožiti s takšnim faktorjem, ki jih zaokroži na celo število, 

 število naročenih dolžin tvori naročilo, ki mora biti dosledno izpolnjeno. 

Pomembno je, kako je definiran prag nizkega r, saj je od njegove velikost lahko odvisna 

višina izgube materiala pri reševanju 1DCSPUL. V praktičnem primeru, predstavljenem v 

Erjavec et al. (2009), je r enak 3, zato je takšen prag upoštevan v pričujoči doktorski 

disertaciji.  

Natančna matematična formulacija problema je podana v 4. poglavju doktorske disertacije. 

Razvoj rešitve 

Obravnavani problem bi bilo mogoče rešiti z eno izmed obstoječih metod za reševanje 

1DCSPUL, vendar pa lahko metoda, razvita posebej za takšen tip problema, proizvede 

boljše rezultate. Posebna pozornost pri razvoju metode je namenjena prilagodljivosti 

metode. Razvita je na način, ki omogoča enostavno integracijo v informacijske sisteme 

podjetij.  

V literaturi je na voljo več metod za reševanje 1DCSPUL, ki večinoma temeljijo na 

hevrističnem pristopu. Uporaba eksaktnih metod privede do boljših rezultatov, vendar pa je 

običajno čas čakanja na rešitev daljši, kar v podjetjih navadno ni sprejemljivo. Uporaba 

eksaktnih metod je zato smiselna le za reševanje relativno majhnih problemov. Ker 

literatura ne ponuja posebnih informacij o primerih z nizkim r, sem z algoritmom C-CUT 

(Gradišar & Trkman, 2005) izvedel eksperiment, s katerim sem ugotavljal, ali je problem 

mogoče rešiti eksaktno. Postopoma sem zviševal število kosov naročil pri običajnem r (več 

kot 5) in pri majhnem r (manj kot 2) ter opazoval, ali je bila najdena optimalna rešitev v 

zglednem času. Ko je bilo število kosov naročil pri običajnem r enako ali večje kot 21, 

algoritem ni več našel optimalne rešitve. Pri nizkem r se je to zgodilo, ko je bilo število 

kosov naročil enako ali večje od 37. Iz eksperimenta je mogoče sklepati, da bi bilo 

razmerje podobno tudi pri sodobnih algoritmih, ki skladno z literaturo pri običajnem r 

trenutno omogočajo 100 kosov naročil. Tako bi bilo pri manjših r število kosov naročil 

nekaj manj kot 200, kar je precej manj, kot zmore obdelati predlagani algoritem, za 

katerega ocenjujem, da omogoča obdelavo do 700 kosov naročil.  

Zato v doktorski disertaciji razvijem hevristično metodo za reševanje 1DCSPUL pri 

nizkem r, ki temelji na kombinaciji metode vzorcev in posamičnega obravnavanja. 

Predlagana metoda sestoji iz štirih ponavljajočih se korakov: 
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1. korak 

Algoritem reši problem nahrbtnika
12

 in poišče optimalno in drugo najbolj optimalno rešitev 

za vsako dolžino palic na zalogi, pri čemer upošteva le nepredelane kose naročil.  

2. Korak 

V 1. koraku pridobljeni vzorci razreza se razvrstijo po v naprej določenem zaporedju. 

Rezultat je razvrščeni seznam vzorcev. Na vrhu seznama so vzorci, ki vsebujejo daljša 

naročila. 

3. Korak 

Za vsak vzorec s seznama se določi ustrezna frekvenca
13

. Določanje frekvence poteka 

zaporedno, pri čemer se najprej obravnavajo vzorci, ki so na vrhu seznama.  

4. korak 

Če so vsa naročila izpolnjena, se algoritem ustavi, sicer se ponovno vrne na korak 1.  

Podrobnejša obrazložitev in grafični prikaz predlaganega algoritma je v 3. poglavju 

doktorske disertacije.  

Testiranje metode in analiza rezultatov 

Predlagana metoda se imenuje LCUT in je napisana v programskem jeziku FORTRAN, 

omogoča zelo hitro procesiranje in ni namenjena splošni uporabi, temveč za primere z 

nizkim r. Vhodni podatki so generirani s pomočjo četrte generacije programskih jezikov. 

Program lahko teče na navadnem osebnem računalniku. LCUT ima naslednje omejitve:  

 razmerje med največjo dolžino na zalogi in najkrajšo dolžino naročila mora biti manjše 

ali enako 10, 

 število različnih dolžin naročila mora biti manjše ali enako 7, 

 število kosov za posamezno dolžino naročila mora biti manjše ali enako 99, 

 število različnih dolžin na zalogi mora biti manjše ali enako 20, 

 število kosov za posamezno dolžino na zalogi mora biti manjše ali enako 99.  

Delovanje algoritma LCUT je prikazano na realnih podatkih, pridobljenih v slovenskem 

podjetju, ki je eno izmed večjih ponudnikov tehničnih izdelkov v JV Evropi. Rezultati so 

bili pridobljeni v manj kot 1 sekundi, skupna izguba pa je znašala 11,98 % uporabljenega 

materiala. Učinkovitost delovanja predlagane metode je na enakem primeru prikazana s 

primerjavo z metodama RGR (Cherri et al., 2009) in CUT (Gradišar et al., 1999a). RGR je 

proizvedel 12,17 % izgube materiala, kar je 0,19 odstotne točke več kot LCUT. Tudi CUT 

                                                 
12

 Problem nahrbtnika je podrobno predstavljen v 1. poglavju doktorske disertacije. 
13

 Ustrezna frekvenca je najvišja frekvenca, ki v danem trenutku ni višja, kot je število nepredelanih palic na 

zalogi. Hkrati mora biti ustrezna frekvenca dovolj nizka, da prepreči preveliko proizvodnjo katerekoli 

naročene dolžine.  
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se je odrezal slabše, saj je proizvedel 12,75 % izgube materiala, kar je 0,77 odstotne točke 

več kot LCUT.  

Za prikaz delovanja predlagane metode sem izvedel eksperiment, ki je vseboval širok 

nabor problemov. Za generiranje skupno 240 problemov je bil uporabljen rahlo prilagojen 

generator naključnih števil PGEN (Gradišar et. al., 2002). Vsak izmed problemov je bil 

rešen z algoritmoma LCUT in CUT. Eksperiment je bil izveden za dva scenarija z vidika 

stroškov vračanja uporabnih ostankov na zalogo: 

 v prvem scenariju so ti stroški zanemarljivi v primerjavi s stroški prihranjenega 

materiala. Zato so vsi ostanki, ki so enaki ali daljši od minimalne dolžine naročila 

vrnjeni na zalogo z namenom prihodnje uporabe; 

 v drugem scenariju so stroški vračanja ostankov na zalogo zelo visoki. Z vidika 

stroškov jih je tako bolje zavreči kot vrniti na zalogo.  

Opazoval sem tudi, do kakšnih rezultatov privede kombinacija obeh metod. Vsak izmed 

problemov je rešen z obema metodama, potema pa je izbrana boljša izmed rešitev. Tako se 

je skupna izguba materiala zmanjšala za 0,1 %. Poleg nižje izgube materiala, pa se z 

uporabo kombinacije zmanjša tudi število proizvedenih uporabnih ostankov.  

Da bi prikazal učinkovitost predlagane metode, je bil opravljen še en eksperiment, ki je 

zajemal oba zgoraj opisana scenarija. Generiral sem 48 primerov s podobnim r kot pri 

prejšnjem eksperimentu, vendar z drugačnimi vhodnimi podatki. Ti primeri so bili rešeni z 

eksaktno metodo, objavljeno v Gradišar in Trkman (2005), algoritmom CUT in 

kombinacijo algoritmov LCUT in CUT. Velikost problemov je bila dovolj majhna, da je 

omogočala uporabo eksaktne metode. Rezultati so pokazali, da bi bila za proučevane 

primere najbolj smotrna uporaba eksaktne metode, vendar pa so v praksi problemi bistveno 

večji, zato uporaba eksaktne metode ne bi bila mogoča. Metoda, predlagana v doktorski 

disertaciji, lahko rešuje probleme, ki vsebujejo do 693 naročil in do 20 različnih dolžin z 

do 1980 palicami na zalogi, kar je neprimerno več, kot trenutno zmorejo reševati eksaktne 

metode (Belov & Scheithauer, 2002; Alves & de Carvalho, 2008).  

TESTIRANJE METODE 

Učinkovitost metode za reševanje 1DCSPUL je lahko prikazana, če je primerjana z 

ostalimi metodami. V literaturi sicer že obstajajo primerjave, ki temeljijo na več kriterijih 

(Cherri et al., 2009; Cui & Yang, 2010), vendar pa ne zagotavljajo točnih in popolnih 

informacij o učinkovitosti različnih metod.  

Metode za reševanje 1DCSPUL bi bile lahko testirane z uporabo enakih kriterijev in 

enakih primerov, vendar pa rezultati najverjetneje ne bi bili uporabni, saj je ključni element 

spregledan. Pri ocenjevanju metod za reševanje 1DCSPUL je namesto opazovanja 

posameznega primera treba upoštevati skupino več primerov. Ključni kriterij je tako 
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naraščanje uporabnih ostankov na zalogi skozi čas in vplivanje na izpolnjevanje prihodnjih 

naročil. Nova metoda za testiranje, predlagana v doktorski disertaciji, temelji na konceptu, 

kjer so uporabni ostanki, ki so ustvarjeni pri izpolnjevanju prejšnjega naročila, uporabljeni 

za izpolnjevanje trenutnega, uporabni ostanki, ustvarjeni pri izpolnjevanju trenutnega 

naročila, pa so uporabljeni pri naslednjem. Takšen pristop je v literaturi mogoče zaslediti le 

v Trkman in Gradišar (2007) in Cherri et al. (2012), ostale metode pa tega ne upoštevajo. 

V literaturi tudi ni moč zaslediti nobene metode za testiranje, ki bi omogočala natančno 

primerjavo različnih rešitev. Metode v literaturi so tako napačno testirane. Zato je v 

doktorski disertaciji predlagana nova metoda za testiranje rešitev 1DCSPUL.  

Uporabni ostanki na zalogi niso ustvarjeni naključno, kot npr. v Cherri et al. (2009) in Cui 

in Yang (2010), temveč je pri vsakem naročilu uporabljena metoda računalniških 

simulacij. Tako je z uporabo simulacij naraščanje uporabnih ostankov v skladišču takšno 

kot v realnosti.  

Da bi prikazal delovanje predlagane metode, sem analiziral 4 različne primere z različnim, 

vendar nizkim r. Problemi so generirani z generatorjem problemov CUTGEN1 (Gau & 

Wäscher, 1995). V dveh primerih so vhodni parametri in podatki o zalogi enaki kot v 

Cherri et al. (2009) in Cut in Yang (2010). Poleg velikosti proizvedenega neuporabnega 

ostanka materiala sem opazoval tudi število proizvedenih uporabnih ostankov. Za potrebe 

prikaza predlagane metode je bil za reševanje 1DCSPUL izbran algoritem COLA, saj v 

primerjavi z ostalimi metodami porablja večje število ostankov iz prejšnjih naročil. Na ta 

način se možnost za naraščanje uporabnih ostankov na zalogi poveča, kar bolje odraža 

realno situacijo. Preveril sem tudi odvisnost rezultatov od obratnega zaporedja z istim 

naborom naročil. Rezultati kažejo, da je razlika med izgubo materiala in količino 

uporabnih ostankov na zalogi pri obeh eksperimentih tako majhna, da se takšna odvisnost 

lahko zanemari. Z namenom demonstracije predlagane testne metode sem izvedel še 

dodatni eksperiment. Za primerjavo metod COLA in ECOLA sem analiziral dva primera, 

kjer sem simuliral 100 zaporednih časovnih obdobij. Takšen pristop odraža dejansko 

situacijo bolje kot metode v literaturi, saj so namesto naključno ustvarjenih uporabnih 

ostankov uporabljeni dejanski uporabni ostanki iz prejšnjih časovnih obdobij.  

Predlagana metoda testiranja rešitev za 1DCSPUL je boljša od obstoječih metod, saj je bolj 

točna in zagotavlja popolnejše informacije o številu uporabnih ostankov na zalogi po več 

zaporednih obdobjih. 

ZAKLJUČEK 

V predstavljeni doktorski disertaciji proučujem področje 1DCSPUL, ki je dobro znani 

problem v mnogih industrijskih panogah. Ključnega pomena je zmanjšanje izgube 

materiala. Velikost neuporabnega ostanka je navadno odvisna od r. V primeru nizkega r se 

število možnih rešitev zmanjša, možnost rešitve z večjim neuporabnim ostankom pa se 

poveča (Gradišar et al., 1999a). Ker to predstavlja možnosti za izboljšave, je v doktorski 
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disertaciji razvita nova optimizacijska metoda za reševanje 1DCSPUL pri nizkem r. 

Eksperimentalni rezultati so pokazali, da se predlagana metoda obnese bolje od obstoječih 

metod. Metoda je predstavljena na način, ki omogoča enostavno implementacijo v 

obstoječe informacijske sisteme podjetij.  

Preverjanje učinkovitosti metode za reševanje 1DCSPUL se lahko prikaže s primerjavo z 

obstoječimi metodami, kjer se upošteva enake kriterije in probleme. Vendar pa na tak 

način rezultati niso realni. Namesto obravnavanja posameznega naročila je treba upoštevati 

skupino več zaporednih naročil. Zato v doktorski disertaciji predlagam novo metodo 

testiranja, ki temelji na računalniških simulacijah, kjer so uporabni ostanki iz prejšnjih 

naročil uporabljeni za izpolnjevanje prihodnjih.  

Aktivnosti, povezane z razrezom postajajo vse bolj pomemben del upravljanja z 

oskrbovalno verigo, predvsem v kovinski, jeklarski, lesni in transportni industriji. Za čim 

večjo učinkovitost procesa razreza je pomembno, da podjetja implementirajo takšne 

metode za reševanje 1DCSPUL, ki proizvedejo čim manj neuporabnega ostanka in na ta 

način zmanjšajo stroške.  

Podjetja se morajo pri izbiri metod odločiti za takšno, ki je najbolj primerna za reševanje 

njihovih problemov. Izbor je v splošnem odvisen od testiranj posameznih metod. 

Predstavljena nova metoda testiranja tako pomaga podjetjem pri izboru najprimernejše 

metode za zadovoljitev njihovih poslovnih potreb. 

Teoretičen prispevek k znanosti je predstavljen z razvojem nove metode za reševanje 

1DCSPUL pri nizkem r in nov natančen model testiranja, temelječ na simulaciji, ki v 

literaturi za rešitve, ki obravnavajo posamezna naročila, še ni bil uporabljen. Predstavljena 

doktorska disertacija tako prispeva znaten delež k nadaljnjemu razvoju obravnavanih 

področij.  

Predlagana metoda za reševanje 1DCSPUL pri nizkem r je predvidena za reševanje eno-

dimenzionalnih problemov, vendar bi bilo mogoče podoben pristop uporabiti tudi za 

reševanje dvo-dimenzionalnih ali tri-dimenzionalnih problemov. Nadaljnje raziskave bi 

lahko zajemale tudi vključitev različnih stroškov v metodo, kot so npr. stroški skladiščenja.  

Eksperimenti kažejo, da višina r vpliva na količino uporabnih ostankov na zalogi. Zato bi 

bilo smiselno narediti eksperimente z različnimi metodami in več časovnimi obdobji ter 

opazovati, kako višina r vpliva na naraščanje števila uporabnih ostankov v skladišču.  

 

 

 


