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INTRODUCTION 

The last economic crisis that started in 2008 in the United States and spread throughout the 

world has once again proven the importance of effective risk management across enterprises. 

Nowadays, stakeholders are aware that managing risk exposures across all parts of their 

organization is essential in order to succeed in the competitive business environment. 

Financial risk factors businesses face are broadly grouped into the market and credit risk. 

One aspect of credit risk is particularly important in the prolonged periods of economic 

distress – as a member of the Turnaround Management Association UK asserted: “As 

businesses struggle to survive into 2010, they are likely to put increasing pressures on their 

suppliers. Payments will be withheld for as long as possible. If and when a company fails, it 

is likely that other businesses it owes money to will get little or nothing in return. 

Unfortunately, the knock-on effect will be that other firms will also be starved of cash and 

more will find themselves under financial pressure” (Jackson & Wood, 2013, pp. 183-184). 

The type of credit risk mentioned in the preceding commentary is usually a consequence of 

trade credit arrangements that are extended to customers buying goods and services. The 

extension of trade credit inherently leads to the possibility of default on deferred payments. 

When granting trade credit firms must therefore manage this risk exposure by analysing the 

creditworthiness of their customers in order to distinguish between the ones who will pay 

and those who will not. The methodology of quantitatively assessing creditworthiness is 

known under the name of quantitative credit scoring (hereinafter: CS), which is a part of 

wider empirical credit risk modelling (hereinafter: ECRM) field. Credit scoring provides a 

basis for the development of effective credit risk mitigation strategies that enable insurance 

against the potential bad trade debts and so guarantee firm’s liquidity. To measure the default 

risk involved by sales on credit, customers are assigned to risk classes based on their 

individual propensities to default on payment. As discussed later we use an approach known 

as machine learning (hereinafter: ML) in the computer science literature, which refers to a 

set of methods specifically designed to tackle computationally intensive pattern recognition 

tasks in large datasets. These methods are ideally suited for customer credit risk analytics 

because of the large sample sizes and the complexity of the possible relationships between 

payment behaviour and individual characteristics.  

Hence, it is the purpose of this thesis to employ quantitative CS methodology to calculate 

the transaction-based probability of payment default for a range of corporate customers (i.e. 

B2B customer segment). More specifically, we carry out a comprehensive comparison of 

the traditional statistical and contemporary ML classification methods. The fundamental 

catalyst for this analysis is the fact that ML methods have been recognized throughout the 

academic literature to outperform statistical ones. Nevertheless, they are still not widely used 

in the industry due to their perceived complexity. Consequently, logistic regression 

(hereinafter: LR) remains the most popular method applied by practitioners (Crone & Finlay, 

2012). A recent study by Lessmann, Baesens, Seow, and Thomas (2015) however reveals 

that the cost reduction of employing ML methods relative to LR amounts to around 5.0% of 

total losses. Similarly, Khandani, Kim, and Lo (2010) estimate the practical value of more 
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accurate predictions by summing the cost savings from trade credit reductions to high-risk 

customers and the lost revenues from the so-called “false positives” (i.e. the number of non-

defaulted cases incorrectly predicted as defaulted customers). Under a conservative set of 

assumptions, they estimate the potential net benefits of these forecasts to be 6.0-25.0% of 

total losses. Although the link between predictive accuracy and firm's bottom-line is not 

straightforward, the fact provides some evidence that more accurate models facilitate 

sizeable financial returns, which serves as a motivation for our research. 

The aim of this thesis is to find the best performing model on a given problem domain, i.e. 

payment default probability of B2B customer segment. Theoretical part of the master’s thesis 

aims to present practical issues in quantitative CS as well as recent advancements in the 

ECRM field. These concern the following two dimensions: (i) novel ML classification 

algorithms, and (ii) improved performance measures to assess and compare different models. 

Empirical section of the thesis then tries to evaluate the impact of various CS methodologies 

on model’s predictive performance with the focus of identifying the best performing model.  

Based on the master’s thesis aims we define research questions along the following lines: 

(i) Which classification method provides the best generalization ability on the unseen data 

(i.e. prediction performance) – a comparison of the most commonly applied statistical 

(e.g. logistic regression) and ML methods (e.g. k-nearest neighbours (hereinafter: k-

NN), decision trees (hereinafter: DTs), support vector machines (hereinafter: SVMs), 

artificial neural networks (hereinafter: ANNs)). 

 

(ii) Multiple explanations principle in ML suggests that learning more hypothesis leads to 

higher predictive performance – do ensemble learning methods (e.g. random forest 

(hereinafter: RF), AdaBoost and gradient boosting algorithms) improve model 

generalization ability on the unseen data? 

 

(iii) What is the effect of employing sampling techniques, i.e. does oversampling 

outperform undersampling in the context of generalization ability, i.e. predictive 

performance on the unseen data? Is SMOTEEN algorithm superior to the simple 

resampling techniques? 

 

(iv) Which type of dimensionality reduction (i.e. feature selection/extraction method) 

performs best given our problem domain – comparison of embedded, filter, and 

wrapper methods in selecting the optimal subset of independent variables. 

 

(v) Does the inclusion of the macroeconomic variables into the model (in a pooled cross-

sectional manner) improve its generalization ability? 

In order to satisfy the research questions of the thesis quantitative research is carried out 

using traditional statistical and ML methods. Firstly, theoretical part provides insights into 

the credit risk management and ML paradigm using descriptive research method. Following 
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is a systematic overview of techniques applied within the ECRM. We use comparative 

method to identify the best practices in the academic literature, which serves as a starting 

point for our own empirical analysis. Secondly, empirical part of the master’s thesis uses 

ML workflow as defined in Mirjalili and Raschka (2017, pp. 11-13) and Thomas, Crook, 

and Edelman (2017) to empirically evaluate customers’ creditworthiness. For the purpose of 

developing quantitative CS model, dataset comprising of business customers and their 

respective default status is used. Financial data is collected from the Slovenian Business 

Register managed by Agency of the RS for Public Legal Records and Related Services 

(hereinafter: AJPES), whereas the dataset on firm insolvency proceedings is obtained from 

the Information Centre of the Supreme Court of the Republic of Slovenia. Macroeconomic 

data was provided by the Statistical Office of the Republic of Slovenia (hereinafter: SURS) 

and global financial portal Investing.com.  

The structure of the master’s thesis is as follows. We begin our appraisal by introducing 

the theoretical background of the study, i.e. credit risk management and ML approach; this 

provides a basis for our further discussion concerning credit risk modelling. Firstly, trade 

credit arrangements between business entities are discussed. Furthermore, we establish the 

need for an effective management of the (trade) credit risk exposure and shortly describe 

various risk mitigation strategies. Then we turn our attention to the three components of 

credit risk and focus on the probability of default (hereinafter: PD); an important input into 

designing optimal risk management response. Next, we examine the practice of quantitative 

CS methodology that is typically used for modelling PDs. Secondly, our discussion 

continues with a high-level introduction into ML paradigm – we define general concepts and 

terminology as well as the benefits this novel predictive modelling approach delivers. 

Thirdly, we conclude the first section with a literature review aiming to present a holistic 

view of the state-of-the-art techniques used in credit risk modelling. In section 2 we discuss 

the three factors underlying the classification mapping function; firstly, the definition of 

default is considered. Then we look into the possible independent variables that can provide 

insightful information for the task at hand. Lastly, the representation (i.e. classification 

methods), evaluation (i.e. performance measures) and optimization components of 

classification algorithms are presented. Section 3 describes our experimental setup and 

presents the empirical results along with a concise discussion for each research question. 

The final section concludes, outlines the limitations of the study, and suggests some 

guidelines for the future research. 

1 THEORETICAL BACKGROUND TO THE STUDY 

This chapter starts with a gentle introduction into our research topic, namely quantitative CS 

and ML, as well as its importance in the context of enterprise risk management. Motivations 

for our study are discussed along with the practical aspects of dealing with (trade) credit risk 

and credit risk mitigation. Then, the chapter reports on the significance of ML, a field that 

has gained on its popularity in the last two decades. Finally, we conclude with a high-level 

literature review of the ECRM field. 
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1.1 Credit Risk in the Context of Risk Management 

“No risk, no fun” says a well-known German proverb indicating to an inverse relationship 

between risk and reward we commonly face in our lives. Translating this into an economic 

sphere implies a risk-return trade-off principle stating that each economic entity must 

undertake some risks in the pursuit of value-enhancing business goals (i.e. return). Strategic-

minded enterprises do not strive to simply minimize risks. Rather, they employ a modern 

view of managing risk exposures across all parts of their organization so that they incur “just 

enough of the right kinds of risk” (Curtis & Carey, 2012, p. 1). The winner in this race is the 

one capable of effective control of the risks in a continuously changing environment. Risk 

management is an integral part of the general enterprise management system for assessing 

the significance of each risk in achieving overall strategic goals (Rogachev, 2008).  

Before delving into the potential benefits that the risk management offers, we should look 

into some risk-related terminology in order to establish the basis for our further discussion. 

As a Chicago economist Frank Knight observed in his classical economic text “Risk, 

Uncertainty, and Profit” not all future situations can be thought of as risky; some aspects of 

the future remain uncertain and no amount of complex modelling will enable us to fully 

disentangle this uncertainty, i.e. the variability that cannot be quantified due to the 

impossibility of determining possible outcomes. Given the fact focus should thus be on 

managing statistically measurable risk while having in mind the extent of our ignorance with 

respect to the uncertainty (Langlois & Cosgel, 1993). As already stated, risk arises from the 

“quantifiable” uncertainty and can be best described as “a chance of an event’s occurrence 

in terms of its likelihood (i.e. the probability of different outcomes) as well as the negative 

impact it usually carries (i.e. evaluation of the outcomes)”. Risk management on the other 

hand represents “the act of identifying, measuring and, reacting to those risks” (Hay-Gibson, 

2008, p. 1). More recently the term enterprise risk management is being used to 

additionally recognize “the importance of prioritizing and managing the full spectrum of 

risks as an interrelated risk portfolio and to embed risk management in all critical decision-

making processes” (Saunders & Millon Cornett, 2018, p. 20). Although we can trace the 

origin of risk awareness back to the ancient Mesopotamia, modern risk management only 

emerged as a formal discipline in the 1950s and has since been a bumpy affair; especially so 

over the last two decades with the rise of lucrative derivatives market as well as some 

extraordinary failures of the risk management related to the LTCM failure, Enron scandal, 

Lehman Brothers collapse, etc. Some financial commentators even go so far as to argue that 

the risk sharing strategies enabled by the sophisticated financial engineering played a 

significant role in covering up the true condition of poorly run companies and thus advanced 

the final failures (Curtis & Carey, 2012; Hay-Gibson, 2008). Nevertheless, according to 

Hoyt and Liebenberg’s (2011) paper that tries to document the value relevance of enterprise 

risk management shows its implementation to be positively associated with the firm value 

measured as Tobin’s Q. The main benefits of risk management can be summarized along the 

following lines (Berk Skok, 2016; Curtis & Carey, 2012): it (i) reduces the PD and cost of 

financial distress, (ii) provides additional insights and support to the management, (iii) 
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enables more realistic performance evaluation (e.g. performance per risk exposure) which 

improves resource allocation, (iv) boosts firms competitive advantages, (v) enhances 

customer service, etc. Lastly, in order to realize the potential value enhancing benefits firms 

must react to the risks at hand either by avoiding, transferring, mitigating and/or accepting 

them. So far, we have been discussing risk as a general phenomenon. Understanding the 

typology of risk exposures however is equally important as each category demands a 

different set of risk management skills as well as tools. Risk factors can be broadly grouped 

into the following categories: market risk, credit risk, liquidity risk, operational risk, legal 

and regulatory risk, business risk, strategic risk, and reputation risk. The first two risk factors 

fall under the scope of the financial risks and can be further subdivided into equity price risk, 

interest-rate risk, FX risk, and commodity price risk in the case of market risk, and 

transaction risk and portfolio concentration risk in the case of credit risk (Curtis & Carey, 

2012; Saunders & Millon Cornett, 2018). 

1.1.1 Trade Credit Arrangements as a Source of Credit Risk 

As discussed in the introduction our aim is to employ the quantitative CS methodology to 

calculate the PDs for the range of individual business customers (i.e. B2B customer 

segment). Hence, our focus will be on measuring the credit risk usually referred to as the 

default risk in the context of non-financial institutions; in this study credit and default risk 

are used interchangeably as is often done in practice. Default/credit risk is most generally 

defined as “the risk that a counterparty does not honour his/her obligations” (Alexander & 

Sheedy, 2004, p. 211). The obligation may either be in the form of a payment or physical 

asset. The former definition suggests the risk of payment default is inherently a part of every 

transaction. In our case credit risk originates from the trade credit arrangements usually 

extended to the B2B customers (Alexander & Sheedy, 2004). Slovene Accounting Standards 

define trade credit as “a sale of goods or services on open account without an immediate 

payment” (Slovene Accounting Standards, 2016). For the supplier (i.e. seller) this represents 

an investment in accounts receivable, while for the buyer it is a source of financing recorded 

as accounts payable on the balance sheet (Garcia-Teruel & Martinez-Solano, 2010). 

Suppliers thus act as financial intermediaries by providing finance to their partners 

comprising of both time differential between a sale and a payment, as well as the proportional 

discounts for payments in bulk carried out before the due date. McGuinness, Hogan, and 

Powell (2018) argue that trade credit provides an important alternative short-term financing 

source to bank loans and is estimated to present approximately 14% of total assets among 

the European SMEs. It has been shown that such payment arrangement played a significant 

role during the post-crisis years, suggesting that it enabled many financially constrained 

firms to survive. There exists a whole body of literature with respect to the motives for 

extending trade credits. A nice overview of the topic is provided in Garcia-Teruel and 

Martinez-Solano (2010) where various financial, commercial, and operational motives are 

discussed. The most plausible reasons why more liquid firms use trade credit arrangements 

to help financially constrained ones are as follows (Garcia-Teruel & Martinez-Solano, 2010; 
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McGuinness, Hogan & Powell, 2018; Petersen & Rajan, 1997; Santos & Silva, 2014; 

Woodruff, 2019): 

(i) long lasting relationships: large suppliers may provide stability to the customers in 

time of liquidity shocks to sustain sales and more importantly to support future business 

cooperation. They often have an advantage over banks in assessing customer’s 

creditworthiness as they can acquire information more easily. Additionally, they possess 

higher bargaining power in forcing the repayment (e.g. cutting off future supplies) and 

an option to salvage the lost value from existing assets (i.e. the supplied goods); 

(ii) price discrimination: typically, suppliers are motivated to increase sales, so they offer 

favourable trade credit arrangements to gain a competitive advantage over their 

competitors. This can be effectively thought of as an indirect price discrimination that 

is particularly useful when a direct pricing system cannot be legally established. 

Creditworthy customers that find trade credit terms overpriced are prone to repay it as 

soon as possible at a discounted price while risky customers use the provided credit as 

it may still be cheaper than other financing alternatives; 

(iii) product/service quality assurance: the use of trade credit allows product quality 

verification by customers due to the deferred payment arrangement and thus represents 

an implicit quality guarantee instrument. Longer payment deadlines transmit the quality 

information. This is especially popular among smaller and younger firms since they do 

not enjoy an established market position.  

(iv) lower transaction costs: suppliers and their customers can reduce their transaction costs 

through the use of trade credit. Buyers of goods and services may decide to aggregate 

multiple payments into one and thus reduce transaction costs whereas suppliers may 

more accurately predict their future incoming receipts (lower uncertainty and thereby 

increased operational flexibility). Additionally, suppliers may decrease their production 

cost by using trade credit as a trade policy instrument; e.g. businesses with seasonal 

activity may use it to smoothen production cycles and lower their storage costs.  

Inevitably, the extension of trade credit leads to the possibility of default on deferred 

payments. When granting trade credit firms must therefore analyse the creditworthiness of 

their customers in order to distinguish between the ones who will pay and those who will 

not. Sources of such information can come from financial statements, credit reports, 

customer’s payment history with the firm, etc. (CFI, 2019). The methodology of 

quantitatively assessing the customer’s creditworthiness is known under the name of 

financial distress prediction (hereinafter: FDP) or alternatively quantitative CS. We discuss 

credit risk models in chapter 1.2. The rest of this section deals with the risk mitigation (i.e. 

insurance) part of credit risk management. 

1.1.2 Trade Credit Risk Mitigation Strategies 

Credit risk models discussed later on provide a basis for the development of effective trade 

credit risk mitigation strategies that provide insurance for the potential bad trade debts in 

order to guarantee firm’s liquidity. In the case the share of trade debts gone bad increases 
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too much the firm supplying trade credit can face short-term liquidity difficulties that may 

result in insolvency over the long-term horizon given no risk management policies are 

implemented. Hence, due to the significant portion of receivables companies hold on their 

balance sheets it is crucial they consider at least some form of trade credit insurance. Optimal 

trade credit risk mitigation policy takes into consideration both the maximization of firm’s 

sales as well as the minimization of loss originating from payment defaults and involves the 

cooperation between sales, IT, and financial departments. Firms extending trade credits must 

determine the acceptable level of credit exposure to their customers. This can be effectively 

done using credit limits1 that are set for each respective customer based on their risk-

adjusted future performance calculated using customer’s creditworthiness evaluation (Bazzi 

& Hasna, 2015; Khandani, Kim & Lo, 2010). Bazzi and Hasna (2015) provide a 

comprehensive overview of experts’ methods as well as modelling approaches of setting 

credit limits. The discussed methods depend mainly on the PD which is what we model here.  

Apart from setting credit limits there exist other instruments to insure the kind of credit risk 

discussed herein. They provide additional control of risky trade debts and thus an increased 

likelihood of compensation in case of payment default. One example is taking out trade 

credit insurance policy provided by insurance companies. Such policies are flexible and 

allow policyholder to cover the entire portfolio (i.e. whole turnover cover) or just the key 

accounts against potential bad debts (Moorcraft, 2018). Another option to tailor credit risk 

exposure employed in the countries with well-functioning derivatives market is the use of 

credit derivatives2. The common types of credit derivatives are credit default swaps, 

collateralized debt obligations, total return swaps, credit linked notes, credit default 

swaptions, etc. Whereas the striking growth in the notional amounts of credit derivatives 

suggests their usefulness in risk management we have to keep in mind that they pose risk 

management challenges of their own, e.g. complex modelling risk, counterparty credit risk, 

and settlement risk (Gibson, 2007). The detailed discussion on implementation and 

advantages of trade debt insurance instruments is beyond the scope of this study. The Table 

1 below nevertheless outlines some commonly used instruments for credit risk mitigation. 

Table 1: Credit Risk Mitigation Instruments 

Contractual Insurance 
Unfunded Credit 

Protection 

Funded Credit 

Protection 

Payment 

Mechanisms 

Contractual Penalty 

Damages 

Guarantee 

Credit Derivatives 

Financial Collateral 

Mortgage 

Lien 

Promissory Note 

Letter of Credit 

Insurance Policy 

Source: European Banking Authority (2018). 

 
1 Credit limit is defined as a threshold that a firm allows its customers to owe at any time. 
2 Credit derivatives are defined as instruments that “transfer credit risk related to an underlying entity from one 

party to another without transferring the actual underlying entity” (Chen, 2018). 



8 

 

1.2 The Three Basic Components of Credit Risk 

Previous section described (trade) credit risk in the context of risk management establishing 

the need for quantitative customer’s creditworthiness assessment in order to perform risk 

mitigation policies. This section layouts a useful framework to think about the credit risk, 

namely it discusses its three basic components with the focus on the PD that is the concern 

of this study. Central concept in measuring credit risk is the probability of default of a 

customer. It is defined as “the probability that the counterparty will fail to service its 

obligations” (Crosbie & Kocagil, 2003, p. 5). PD does not however represent a complete 

picture of the potential credit loss. Firms seek to measure two additional components 

characterizing the extent of default loss. Firstly, the magnitude of likely loss on the exposure 

termed as loss given default3 (hereinafter: LGD) and expressed as a percentage of the overall 

exposure, and secondly, the amount to which a firm is exposed at the time of default known 

as exposure at default (hereinafter: EAD) (Alexander & Sheedy, 2004). These three 

components4 provide a measure of individual default loss (𝐿𝑖): 

 𝐿𝑖 = 𝑃𝐷𝑖 ∗ 𝐸𝐴𝐷𝑖 ∗ 𝐿𝐺𝐷𝑖 (1) 

The subscript 𝑖 reminds us of the fact that we are discussing the transaction risk. 

Alternatively, risk managers may also be interested in measuring and controlling the risk of 

the whole portfolio of trade debts known as the portfolio concentration risk. To derive it we 

would need to sum up the individual default losses in equation (1) over all customers while 

also accounting for the interdependencies among them (i.e. default correlation structure). 

The quality of the entire portfolio is evaluated via portfolio credit risk models (Elizondo 

Flores, Lemus Basualdo & Quintana Sordo, 2010). We are only considering the transaction-

based credit risk in our study. Additionally, while each three components (i.e. PD, EAD, 

LGD) are critical to the management of credit risk, this study focuses on the estimation of 

PD that is the most important input into designing the optimal trade credit risk mitigation 

strategies. The rest of the section thus outlines an approach that can be taken for PD 

modelling referred to as quantitative CS. 

Prior to default, there is no way to discriminate unambiguously between the defaulted vs. 

non-defaulted firms. At best we can make some probabilistic assessments of the likelihood 

of default (i.e. estimate the PD) in order to implement risk mitigation measures proportional 

to the individual customer’s PD. The typical firm has a PD of around 2% in any year. 

However, there is a significant variation in PDs across firms (Crosbie & Kocagil, 2003). 

This variation can be modelled using credit risk models that output the credit rating of an 

individual obligor which represents an accurate classification of firm’s customers according 

 
3 LGD is often less than one, which reflects the fact that some proportion of EAD may be recovered in the 

bankruptcy proceedings – this amount is commonly referred to as the recovery rate (hereinafter: RR) and is 

calculated as follows: 𝑅𝑅𝑖 = 1 − 𝐿𝐺𝐷𝑖  (Alexander & Sheedy, 2004).  
4 Appendix 3 visually summarizes the three basic components of credit risk along with the modelling 

approaches. 
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to their creditworthiness by specifying their PD, credit score or “letter” rating. The structure 

of credit risk models is depicted in Figure 1. 

 

 

 

 

 

Source: Adapted from Alexander and Sheedy (2004). 

As can be seen in the figure above there are three approaches to model the relationship 

between realized defaults and their characteristics prior to default, namely structural, 

empirical, and reduced form approach (Chacko, Sjöman, Motohashi & Dessain, 2016). 

(i) Structural models try to quantify the credit risk via replication of the firm and its capital 

structure using option pricing approach known under the name Black-Scholes-Merton 

model extended by the famous KMV model employed by Moody’s. In such setting firm 

defaults on its obligations when the value of its assets reaches a sufficiently low level 

compared to its liabilities (debt). As the value of the firm (i.e. its assets) is hard to 

observe models use the information from the price of equity to determine the default 

risk (Kealhofer, 2003; Mosconi, 2015). Modelling firm structure is nevertheless difficult 

to implement in reality due to data availability issues and is usually only performed for 

large publicly listed corporations. 

(ii) Empirical models evaluate historical information (i.e. firm’s characteristics) of the 

defaulted companies and non-defaulted companies. In order to derive the classification 

rules from historical data various statistical and ML methods discussed later on are used. 

Empirical credit risk models come in two flavors: (i) FDP models with a focus on 

predicting the risk of companies going bankrupt, and (ii) quantitative CS models that 

are usually employed when making credit-related decisions and focus on the notion of 

payment default (Alexander & Sheedy, 2004). 

(iii) Reduced form models associate the likelihood of default to an external signal and 

describe it as an abrupt event. The timing of the default is assumed to happen “by 

surprise” and the probability of such surprise during a given period of time is modelled 

using a Poisson type of distribution that outputs the event’s arrival rate which is referred 

to as the default intensity in terms of credit risk modelling. Reduced form models thus 

assume that the default information lies outside the firm in contrast to the structural 

models. CreditRisk+ published by Credit Suisse is an example where this actuarial 

science framework is used (Jarrow & Protter, 2004).  

The rest of this chapter deals with the empirical credit risk models, or more specifically with 

quantitative CS. The aim is to find the most accurate model on a given domain as this enables 

the development of efficient credit risk mitigation strategies. There is a long tradition of FDP 

Credit 

Risk 

Model 

▪ Structural 

▪ Empirical 

▪ Reduced Form 

 
Input Characteristics 

▪ Customer’s Financials 

▪ Macroeconomic Data 

▪ Payment Behaviour 

▪ Qualitative Indicators 

OUTPUT 

▪ Probability of Default 

▪ Credit Score 

▪ “Letter” Rating 

Figure 1: Credit Risk Model Structure 
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and CS literature. One of the earliest empirical credit risk model goes back to Altman (1968), 

which was then extended by Altman, Haldeman, and Narayanan (1977). It uses discriminant 

analysis to derive a score to rank obligors. The first model that estimated default probabilities 

was employed by Ohlson (1980). Since, there has been an explosion in the use of various 

statistical as well as artificial intelligence (hereinafter: AI) methods. We outline the past 

developments and contemporary research studies in the literature review chapter. Next 

section presents the practical issues of quantitative CS and thus provides the basis for the 

empirical analysis. 

1.3 The Practice of Quantitative Credit Scoring 

So far, we have discussed credit risk in the context of risk management as well as various 

approaches to modelling credit risk (i.e. PD component). The focus of this study is to 

evaluate transaction-based credit risk arising from granting trade credits using quantitative 

CS methodology. We have briefly mentioned the approach in previous section. However, 

we have not formally defined it. Quantitative credit scoring is essentially “an objective 

way of classifying obligors into two groups – those who will default and those who will not 

default – using the characteristics of the obligor” (Thomas, Crook & Edelman, 2017, p. 3). 

Credit scoring methodology evolved from classification techniques5 used in statistics as 

there was a need for automatization of credit-related decisions. Myers and Forgy (2012) 

report that the default rates dropped by 50% or more in some cases with the ascent of CS 

models. The philosophy underlying CS is pragmatism and empiricism. Hence the aim is to 

predict the risk in granting credit to a particular customer, whereas the transparency of the 

predictive model is not necessary (pragmatism). Empiricism on the other hand implies that 

any characteristic which aids prediction should be used. The advantages of CS go along the 

following lines: (i) ability to maximize risk/reward trade-off, (ii) improved assessment of 

credit risk and consistency across customers, (iii) increased quality of the overall portfolio, 

etc. There are some authors who criticize the underlying methodology saying that CS does 

not provide any explanation of the links between the characteristics (i.e. independent 

variables) and PD. Additionally, sample bias is often present in the learning dataset which 

hinders model generalization to the unseen data. Other problems highlighted in the literature 

are the problem of low-default portfolios (hereinafter: LDP), use of biased financial annual 

account information, etc.6 (Kennedy, 2013; Kinda & Achonu, 2012; Schreiner, 2004; 

Thomas, Crook & Edelman, 2017). 

1.3.1 Application vs. Behavioural Credit Scoring 

Based on the task and data used CS can be divided into two subgroups: (i) application 

scoring, and (ii) behavioural scoring. Application scoring tries to capture the credit risk 

associated with new applicants (i.e. customers), whereas the behavioural scoring focuses 

 
5 We define the set of statistical and ML classification techniques in chapter 2.3; they are used in expert systems 

that automate decision-making processes.  
6 Detailed discussion on the topic related problems may be found in Appendix 2 along with the possible 

solutions. 



11 

 

on assessing the ongoing risk of existing accounts; i.e. the probability of ongoing negative 

behaviour. One major difference between the two CS types is the data used in the 

development phase, e.g. in the application scoring phase we usually use the static data 

gathered at the arrival of new customer because there is usually no prior internal information. 

In contrast, most of the data used in behavioural scoring is performance based and comes 

from the past customer behaviour (Siddiqi, 2017). In order to perform the analysis two 

parameters must be set to construct the development sample: (i) sample window which 

refers to the “time frame from which selected customers’ characteristics are gathered”, and 

(ii) performance window which denotes the “time window where the performance of given 

customers is monitored to assign class (i.e. defaulted vs. non-defaulted) (Siddiqi, 2017, pp. 

80-81). The point separating the two windows is known as the observation point that 

defines the existing customers used for the development of credit risk model. There exist 

several approaches to determining the three parameters. Observation point is usually set into 

the not so distant past in order to have a representative sample that incorporates current 

business conditions. In case the absolute number of defaulted instances in the dataset is too 

small to develop a robust model, the so-called stacked sampling approach where we define 

multiple observation points is taken. This approach also presents a way of including yearly 

macroeconomic variables in a pooled cross-sectional manner and thus enables the creation 

of a through the cycle credit risk model that accounts for seasonality, economic cycles and 

other abnormal periods. In the Figure 2 below you may find the graphical representation 

depicting the described approach. Performance window timeframe for application models is 

usually set to 6 or 12 months depending on the desired prediction horizon. Sample window 

on the other hand depends on the characteristics available and typically incorporates 

historical data for past 12 months (Siddiqi, 2017; Thomas, Crook & Edelman, 2017). 

Figure 2: Dataset Construction Using Stacked Sampling Approach 

 

Source: Own work. 

The rest of this chapter deals with the issues concerning application CS such as data 

requirements, definition of default, etc. Before turning our attention to specific CS issues 

there is one more thing left to discuss for the sake of completeness. Broadly speaking, there 

exist two approaches to CS: the methods that employ static characteristics (i.e. classification 

methods), and the methods that incorporate dynamic aspect into the estimation of PD; the 

latter are referred to as Markov chain probability models and survival analysis. The idea 

Sample Window Performance Window 

Observation Point 

Sample Window Performance Window 

Observation Point 
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of the former is to identify different states the customer can be in and then estimate the set 

of transition probabilities among these states over given period of time. The latter focuses 

on the estimation of the duration until default (Thomas, Crook & Edelman, 2017). As it has 

been noted before, this study examines and employs statistical as well as ML classification 

methods, the dynamic approach is not considered here. 

1.3.2 Definitions of Defaulted and Non-Defaulted Customers  

When payment delinquency is in question then the task of CS model is to map the customers 

into two groups as already said, i.e. defaulted and non-defaulted with regards to their 

payment behaviour in the performance window. Members of the non-defaulted group are 

considered likely to repay their financial obligations, while members of the other group are 

in contrast considered as likely to default. The dependent variable in this setting is thus a 

dummy variable coded as one if the payment was late or zero otherwise. Exactly where the 

line between the two groups is drawn depends on the objective of a CS model as well as the 

company’s views of success or failure (Kinda & Achonu, 2012). In the case of payment 

delinquency, the definition of default usually relies on the following considerations. First 

and foremost, the definition must be in line with organizational objectives, for example 

some companies would like to simply reduce the number of payment defaults in their 

portfolio, while others might be focused on increasing their profitability, market share, etc. 

Some are trying to apply new methods to achieve better predictive power, while others are 

building CS models to comply with the regulation. Specific objectives therefore require 

more/less stringent definitions. Secondly, the default definition must be easily interpretable 

and trackable. This condition does not only improve the development phase, but also makes 

for easier management, and decision making in the post-implementation phase. Last but not 

least, there might be regulatory requirements that govern the payment default definition 

such as Basel Accords in financial industry. In some cases, default definition is limited by 

the lack and/or length of the data the company gathers about its customers (Siddiqi, 2017).  

Defaulted customers are usually the ones who fall behind on payment for 60 or 90 days, 

which is referred to as 60 or 90 DPD, i.e. days past due. A more stringent default definition 

would be 120 DPD or bankruptcy status. It provides a more extreme differentiation but may 

lead to a problem of low-default portfolio7. Once the defaulted customers are defined the 

rest can be categorized as non-defaulted. Some practitioners additionally specify the 

indeterminate group for customers that are in the “grey zone”, where the classification is less 

obvious. They usually have some mild delinquency but a high cure rate. It is suggested that 

the proportion of indeterminates does not exceed 20% in the case of application scoring. 

Most common technique to deal with this “grey zone” customers is to discard them and build 

the model on the remaining instances (Anderson, 2007; Siddiqi, 2017). According to 

Anderson (2007) there are two possibilities in how to observe payment behaviour in the 

defined performance window: (i) a current-status definition “focuses upon the customer 

 
7 For more information on the problem of LDP please refer to Appendix 2 where we discuss relevant topic 

related problems. Furthermore, based on literature review we summarize possible ways to solve the issues. 
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payment status at the end of the period”, while (ii) a worst-ever definition “uses the worst 

status over the performance window” (Anderson, 2007, p. 340). Both definitions try to 

specify something near the “point of no return”, where the chances that the customer pays 

are low. In general, for credit risk assessments, 60 DPD dominates current-status definition, 

while 90 DPD dominates for worst-ever (Anderson, 2007). Siddiqi (2017) confirms this and 

further suggests the use of roll rate analysis8 to determine the appropriateness of the default 

definition for specific project. Now that we have discussed the dimensions to consider when 

choosing our dependent or target variable, we should also clarify how to determine the set 

of potential independent variables. 

1.3.3 Data Quality and Quantity Issues 

In order to carry out the quantitative CS analysis in practice we need data that can 

discriminate between the two groups of customers. For the case of application CS historical 

data such as past financial ratios is used. Here the underlying assumption goes as follows: 

“future performance is reflected by past performance” (Siddiqi, 2017, p. 80). Since the global 

economic crisis in 2008 it has been recognized that the macroeconomic variables hold 

additional power when modelling the PD. Moreover Altman, Sabato, and Wilson (2008) 

highlighted the utility of including qualitative variables that describe firm scale, 

diversification, corporate governance, etc. They showed that their inclusion leads to a 

significant improvement in predictive accuracy of the model. Once we determine the types 

of variables (e.g. financial ratios, payment behaviour, macroeconomic, and qualitative 

variables) for the construction of the database we have to consider the issue of data 

availability in the context of quality and quantity. Data quality refers to the three 

dimensions, namely data accuracy, completeness and consistency. Data accuracy relates to 

“the degree of precision of measurements of a characteristic to its true value”; in practice 

poor data accuracy is usually a result of user input errors (also manipulations) and/or out-of-

date characteristics. Data completeness deals with “the extent to which values are missing”, 

whereas data consistency has to do with “the lack of standardisation among various data 

sources, which may lead to conflicting characteristics” (Kennedy, 2013, p. 70). There exist 

many techniques to handle poor datasets – they are generally known as data pre-processing 

techniques (hereinafter: DPP), e.g. data cleaning, instance/feature selection, normalization, 

transformation procedures, etc. These techniques enable us to prepare final training dataset 

and thus mitigate the “garbage in, garbage out” problem. 

To ensure the development of a robust CS model a sufficient number of customer data is 

required, which is referred to as data quantity. Here the quantity in absolute (i.e. total 

number of data instances) as well as relative (i.e. the ratio between the defaulted and non-

defaulted group) terms is important. According to Crone and Finlay’s (2012) paper that looks 

 
8 Roll rate analysis helps us find some delinquency status beyond which the chances of recovery are very low. 

It shows the percentage of obligors who flow from a specific delinquency bucket (e.g. 30 DPD) into the next 

stage of delinquency status (e.g. 60 DPD) during a period of time (Zhe, 2017).   
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into the effect of both sample size and the ratio between the groups, it seems that for LR a 

sample of about 10,000 defaults results in the maximum Gini coefficient9. They add 

however, that more complex ML methods such as neural networks might require more to 

obtain the optimal performance. In this sense “more data is better”. Usually there are no 

issues with respect to the absolute number of non-defaulted customers in the sample given 

the fact that the datasets are normally dominated by them. Some authors suggest that having 

100,000 non-defaulted customers provide more than enough information. There is however 

another point, that we have already mentioned above, namely the relative odds between the 

two groups. The question at hand is whether we should keep the population odds (i.e. thus 

having imbalanced dataset) or adjust the sample to achieve the relative proportion closer to 

50:50 using undersampling and/or oversampling approach. Again Crone, and Finlay (2012) 

experimental study provides some insights into the matter; oversampling significantly 

increases the accuracy relative to undersampling, especially so in the case of ML algorithms.  

Given different types of data mentioned above the number of derived features (i.e. 

independent variables or characteristics) can grow quite fast. There are too many to deal with 

in detail, and so practitioners often use various procedures to identify the most powerful 

feature subset (Thomas, Crook & Edelman, 2017). We discuss and apply these in the 

empirical part of the study. Beforehand however it may be useful to screen all possible 

independent variables along the following criteria (Thomas, Crook & Edelman, 2017): 

(i) legal: characteristics that are illegal according to the law should be removed. However, 

we can use them to assess potential benefits of inclusion and propose a change in 

regulation; 

(ii) intuitive: we should use the characteristics that make at least some sort of intuitive 

sense; 

(iii) stable: in order to develop a stable model, we should consider using only stable 

characteristics. One way of checking the robustness of a characteristic is to perform 

distribution analysis over a given time period; 

(iv) simple to obtain: the cost of collecting data for a specific characteristic must be in line 

with the benefits it provides to the model performance. Therefore, we want to have 

characteristics that are obtained incurring relatively low costs; 

(v) verifiable and unambiguous: we should try to use characteristics that are easily 

verifiable, as well as clearly defined - this leads to more accurate data; 

(vi) future availability: we must ensure that every characteristic considered in the model 

will also be available in the future. Additionally, definitions of these items must be 

consistent; 

(vii) predictive: at the end we should evaluate each characteristic according to its predictive 

power. In practice information value is calculated for every characteristic. Then ones 

with low power are eliminated. We must note at this point that this is a univariate 

 
9 Gini coefficient is a measure of CS model performance which summarizes the performance over all cut-off 

scores. For more see Thomas, Crook, and Edelman (2017, p. 190). 
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analysis, which does not take into account the possible partial associations and 

interactions among the input characteristics. Usually, other (more advanced) 

dimensionality reduction techniques are employed as discussed later in the empirical 

part of the study.  

We can see that the feature selection process is not a purely statistical exercise; it also needs 

a solid business insight. Therefore, it must be carried out collaboratively among various 

entities/firm departments. So far, we have discussed the practical aspects of quantitative CS. 

The following chapter reports on the significance of ML in general and establishes a bridge 

between commonly used econometric toolbox and this rather new paradigm in the finance 

field.  

1.4 Machine Learning Approach 

Machines are increasingly being used for “intelligent” tasks that were not so long ago 

exclusively in the human domain (i.e. tasks where we cannot articulate our own knowledge 

explicitly such as speech recognition, trading bots, face recognition, fraud detection, etc.). 

They have been given the ability to improve the performance without humans telling them 

exactly how to accomplish the assignments they are given. Nowadays machines can achieve 

superhuman results in the disciplines ranging from engineering, medicine, biology, finance, 

etc. (Brynjolfsson & McAfee, 2017a). There are three important factors contributing to the 

success of the machines at discovering complex patterns that are not specifically pre-

programmed, namely (i) ascent of big data, (ii) improved self-learning algorithms and (iii) 

cheaper computing power. According to an article in the Harvard Business Review data 

availability has increased as much as 1,000-fold, algorithm efficiency 10 to 100-fold, and 

computing power by at least 100-fold compared to two decades ago (Brynjolfsson & 

McAfee, 2017b). These improvements go hand in hand with one another in enabling 

professionals to develop, test and use their solutions in a time- and cost-efficient manner, 

and employ them in everyday applications. This in turn adds real business value to the field 

and therefore boosts capital investment that further propagates the advancements. 

Consequently, terms like artificial intelligence, machine learning and deep learning 

(hereinafter: DL) come up in countless articles inside as well as outside the technology 

sector.  

It is widely accepted by the business community that AI falls under the so-called general-

purpose technologies (e.g. steam engine, electricity, internal combustion engine) that are 

fundamental for the future economic growth. Thus, AI is said to have a transformational 

impact on the whole economy. For example, the technology is being used by a company 

Deep Instinct to detect malware, by Amazon to optimize inventory and product 

recommendations, by PayPal to prevent money laundering, by Affectiva to recognize 

emotions of focus groups, an increasing number of financial companies are using it for trade 

executions on Wall Street, as well as for automated credit decisions. Healthcare industry is 

using it to look for early signs of lung cancer, and to predict whether a patient is susceptible 

to heart attacks and strokes (Brynjolfsson & McAfee, 2017a). These are just a handful of 
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most visible real-world applications. Based on the complex multi-stage modelling 

framework employed by PwC industry experts the cumulative expected marginal economic 

impact (as measured by GDP, i.e. gross domestic product) of the yet-to-be-implemented AI 

over the period 2017-2030 is estimated to be at around 14%, ceteris paribus. Similarly, 

McKinsey Global Institute estimates the AI potential while also considering negative 

externalities (i.e. transition and implementation costs) to about 16% or $13 trillion higher 

cumulative GDP by 2030. These figures will probably not materialize immediately; the 

adoption will most likely have a S-curve pattern with gradual acceleration of benefits over 

time. The impact will be driven via two fundamental transmission channels: (i) supply-side 

productivity gains (through process automation and augmentation), and (ii) increased 

consumer demand (due to product personalization, time saved, and higher product quality). 

The key factors for harnessing the full AI potential is in the willingness to invest, as well as 

in other barriers to adoption, e.g. regulation, human capital quality, consumer trust (Bughin, 

Seong, Manyika, Chui & Joshi, 2018; Cameron, Gillham, Rao & Verweij, 2018). AI 

undoubtedly presents an exciting source of wealth for the future, assuming the economic 

agents take strategic initiatives to capitalise on it. Additionally, it needs to be managed 

proactively otherwise the economic gaps among countries, companies, and workers may 

widened even more.  

As stated in the previous paragraph, despite being used in numerous companies around the 

globe, most promises of the AI related technologies are yet to be tapped. According to 

McKinsey Global Institute most of the progress has been done in the “narrow AI”, where 

ML algorithms are being employed to solve specific tasks, whereas the advancements in 

“human-level general intelligence10” still face significant challenges. The focus of this study 

is the former, so we focus on the specific challenges and risks facing narrow AI. ML, and 

even more so DL techniques as seen later are generally referred to as “black-box” methods 

due to their inability to assign weights to specific factors and consequently inability to 

interpret predicted outcomes, which is especially important in societal application such as 

criminal justice applications or financial lending (i.e. CS). This creates three risks. There are 

some concerns related to the way algorithms use provided data to learn, which can introduce 

new biases or propagates existing ones, derived from provided data. Secondly, unlike 

traditional expert systems that were built on explicit rules, ML systems are not guaranteed 

to work in all cases (lack of verifiability), which is a concern in mission-critical application 

such as controlling nuclear plant. A third risk has to do with difficulty of finding out why 

exactly errors were made, as the underlying predictive model is too complex. Furthermore, 

we can read about broader issues related to data privacy (i.e. use of personal information), 

cybersecurity, public opinion manipulation (e.g. influencing election results), etc. 

Nevertheless, the risks associated with narrow AI should not stop us from further advances. 

 
10 Human-level general intelligence tasks require machine to (i) reason, (ii) represent knowledge, (iii) plan, (iv) 

learn, (v) communicate in natural language, and (vi) integrate these skills towards given objectives, e.g. 

believable dialogue systems, human-level translation, natural-language comprehension, etc. (Goertzel & 

Pennachin, 2007).  
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After all we (i.e. humans) also have biases, make mistakes, cannot fully explain our decisions 

etc. It is critical that we embrace AI, while at the same time address possible misuse cases 

to achieve good outcome for all (Brynjolfsson & McAfee, 2017a; Bughin & Manyika, 2018). 

To conclude this high-level introduction into ML section, we should add that there exist high 

short-term expectations related to AI technologies. However, as Chollet (2018, p. 13) stated: 

“Do not believe the short-term hype, but do believe in the long-term vision. It may take a 

while for AI to be deployed to its true potential – a potential the full extent of which no one 

has dared to dream – but AI is coming, and it will transform our world in a fantastic way.” 

1.4.1 General Artificial Intelligence Concepts and Terminology 

Before delving deeper into the specifics of ML methods that are used in the empirical part 

of the study, it is worth defining what exactly is meant by the terms such as artificial 

intelligence, machine learning and deep learning, as well as how do these concepts relate to 

each other. Additionally, the similarity of some ML methods to the traditional statistics and 

econometrics raises further questions: are ML algorithms merely employing standard 

techniques to big data or is there more to it? If so, how do these new empirical tools fit into 

the traditional frameworks used by statisticians and economists?  

Developing and experimenting with AI can be traced back to the 1950s, when computer 

science pioneers simultaneously started exploring different possibilities of making 

computers “think”. In the years since it has undergone multiple cycles of intense optimism 

followed by disappointments and thereby a dearth of funding (“AI winters”). As we have 

seen in the preceding section AI currently goes through a phase of intense optimism. Let us 

look at some definitions to get a clearer picture of the field. Chollet (2018, p. 4) defines 

artificial intelligence as follows: “the effort to automate intellectual tasks normally 

performed by human intelligence.” More broad definition is given by PwC industry report, 

where AI is characterized as “… a collective term for computer systems that can sense their 

environment, think, and in some cases learn, and take action in response to what they’re 

sensing and their objectives” (Cameron, Gillham, Rao & Verweij, 2018). In the beginnings 

AI was based on the so-called symbolic approach to AI, where programmers would hardcode 

the explicit rules governing the problem at hand (e.g. playing chess). Such approach was 

suitable for well-defined, logical tasks, but has proved to be intractable for more complex, 

fuzzy problems, where rules cannot be simply preprogramed. Consequently, a new subfield 

of AI was born, namely machine learning. ML focuses on the issue of how to get computers 

to program themselves (i.e. can it learn on itself from experience derived from data and 

perform tasks successfully in a changing environment) (Chollet, 2018). Harrington 

summarizes the new paradigm as follows: “Machine learning is turning data into 

information” (Harrington, 2012, p. 5). As can be seen in the Figure 3 with ML, humans input 

data and expected answers, and out come the rules. As such, one of the principal use of ML 

is automatic generation of knowledge bases for expert systems (i.e. knowledge discovery in 

databases), that help human experts with their work and in some cases replace them entirely. 

Additionally, ML is useful in applications, where humans poses poor domain knowledge, so 
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effective algorithms cannot be developed, as well as in applications that require dynamic 

adaptations to changing conditions (Kononenko & Kukar, 2007; Mitchell, 1997). 

Figure 3: Classical Programming vs. Machine Learning Paradigm 

 

 

Source: Chollet (2018). 

To generate useful knowledge for such applications system must automatically modify in a 

way to improve, i.e. learn. Central to the contemporary AI research therefore is learning, 

which can be defined as a process where a learner (in our case machine) improves its 

performance on a given task via practice, imitation, and trial and error. To be more precise, 

“we say that a system learns with respect to a particular task T, performance metric P, and 

type of experience E, if the system reliably improves its performance P at task T, following 

experience E” (Mitchell, 2006, p. 1). Thus, in order to have a well-defined problem (i.e. task) 

to apply ML algorithms to, we must identify three important features (Mitchell, 1997): (i) 

the class of task, (ii) the measure of performance, and (iii) the source of experience. Once 

we have that, ML algorithm tries to optimize given objective function (e.g. cost function) 

over certain performance criterion (e.g. number of correct predictions) via weight 

adjustments of the model’s parameters using provided example data. The derived model (or 

a mapping from inputs to target) can then be used for predictive purposes to infer future 

predictions and/or for descriptive applications to gain knowledge from data (usually focus 

on former). Reader might therefore be tempted to equate ML with data mining. To a certain 

extent this might be true, since both fields use similar methods in their analyses. The main 

difference however is, that data mining applies those methods to large databases, and 

consequently also deals with database and data management related aspects, whereas on the 

other hand, ML is much more than just a database problem as we have already seen – as part 

of AI field it focuses more on developing intelligent data learning methods (Kononenko & 

Kukar, 2007). To further advocate the last claim, we must look at yet another promising field 

that we use in our analysis, namely DL. The Figure 4 displays the relation between the three 

main fields discussed in this section, namely AI, ML, and DL. Deep learning, as a subfield 

of ML, takes a rather new approach to learning, namely hierarchical representations learning 

via successive layers, and that is where the “deep” in the name DL comes from. As seen 

later, in contrast to the “shallow” ML methods, DL methods (i.e. various neural network 

architectures) also require a specification of the depth parameter11. Bengio, Hilton, and 

 
11 Depth parameter determines the number of layers stacked on top of each other usually organized as ANNs. 

Those layers try to learn representations of data with multiple levels of abstractions. For example, in image 

classification task first layer usually represents the presence or absence of edges, the second layer represents 

shapes construed from the edges and so on (Bengio, Hinton & LeCun, 2015). 
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LeCunn (2015, p. 1) define DL methods as “representation-learning methods with multiple 

levels of representation, obtained by composing simple but non-linear modules each 

transforming the representation at one level (starting with the raw input) into a representation 

at a higher, slightly more abstract level. With the composition of enough such 

transformations, very complex functions can be learned.” 

 

 

 

 

 

 

 

Source: Chollet (2018). 

As Chollet (2018) notes, one of the main reason behind DL popularity in the last decade 

comes from the fact that it offers significantly better performance on many learning tasks. 

Furthermore, DL also automates one of the crucial steps in ML workflow: feature 

engineering. Prior to that model development required careful engineering backed by 

considerable domain knowledge to design appropriate input vector. To sum up, there are two 

fundamental characteristics that underline the way DL discovers complex patterns in data: 

(i) hierarchical knowledge representations, and the fact that these (ii) incremental 

representations are learned jointly (all parameter weights are simultaneously adjusted). 

These features enable DL algorithms to fully exploit massive amounts of data we have at 

hand today. Andrew Ng (2019), professor at Stanford and ML expert, tends to answer the 

question of why DL is taking off with the simple graph presented in the Figure 5 below.  

Figure 5: Scalability Drives Deep Learning Progress 

 

 

 

 

Source: Ng (2019). 

To get an idea of the current landscape in ML and popularity of different algorithms we can 

look at the Kaggle website, an online community of data scientists, where people compete 

in numerous data science challenges. In recent years those competitions were dominated by 

two approaches, namely ensemble learning (e.g. gradient boosting machines) for solving 

Figure 4: Artificial Intelligence, Machine Learning, Deep Learning 
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structured problems, and deep learning (e.g. deep neural networks) for unstructured 

applications such as image classification (Harasymiv, 2015). We have already looked at the 

latter, whereas the ensemble learning approach remains to be discussed in chapter 2.3.3. 

1.4.2 Machine Learning Types and Basic Principles 

In this section, we take a closer look into the three types of ML methods (Harrington, 2012; 

Kononenko & Kukar, 2007; Mirjalili & Raschka, 2017): (i) supervised learning, (ii) 

unsupervised learning, and (iii) reinforcement learning, in order to get a more complete view 

of the ML methods and their applications. 

(i) Supervised learning (e.g. classification, regression) is the most common form of ML. 

Its goal is to learn a representation (i.e. model or mapping function) from labelled input 

data (i.e. independent variables) to the output variable (i.e. dependent/target variable) 

that allows us to make predictions about new, previously unseen data. The term 

supervised thus refers to a set of examples (or instances) that are pre-labelled with the 

expected answers provided by a supervisor (usually human agent). This enables direct 

feedback loop in the algorithm’s learning process via minimization of error or distance 

between a given and desired output label. Learning stops when machine modifies 

internal parameters (called weights) in a way that acceptable performance is achieved 

(Bengio, Hinton & LeCun, 2015). Supervised learning problems can be further grouped 

into classification (target variable is discrete) and regression (target variable is 

continuous) tasks. Let us suppose we have a data instance (e.g. a patient characterized 

by various features or independent variables) and we try to predict whether this patient 

is healthy or ill (i.e. class label); such learning task falls under classification and the aim 

of the ML classifier is to assign the correct class given the mapping it has learned from 

the data (patients with known diagnosis). A second type of supervised learning, called 

regression analysis is the prediction of continuous dependent variable given some 

predictors or independent variables (e.g. relationship between studying time and exam 

scores). The supervised learning methods used in classification and regression tasks are 

listed in Table 2. 

Table 2: Supervised Machine Learning Methods 

Classification (discrete target variable) 

Decision 

Trees 

Bayesian 

Classifiers 

Nearest 

Neighbours 

Discriminant 

Functions 

Support 

Vector 

Machines 

Neural 
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Algorithms 

Regression 

Trees 

Bayesian 

Regression 

Locally 

Weighted 

Regression 

Linear 

Regression 

Support 

Vector 

Machines 

Neural 

Networks 

Hybrid 

Algorithms  

Regression (continuous target variable) 

 

Source: Adapted from Kononenko and Kukar (2007). 
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(ii) In unsupervised learning there is no supervisor to input the target variable. 

Consequently, the aim is to find the regularities or structure in the unlabelled data in 

order to extract meaningful information. There are no correct answers as there is no 

supervisor that would provide feedback in the process of learning. In the field of 

statistics such applications are known as density estimation. One common ML density 

estimation technique is clustering where the aim is to find clusters or groupings in data 

and hence enables us to “organize a pile of information into meaningful subgroups 

without having any prior knowledge of group membership” (Mirjalili & Raschka, 2017, 

p. 7). According to Alpaydin (2004) clustering is widely used in businesses to infer the 

profile of its customers and adjust strategies accordingly. Another broadly used 

application of unsupervised learning is dimensionality reduction that is usually 

employed in the feature pre-processing stage to reduce high dimensionality of data (i.e. 

number of features), while retaining most of the relevant information. There are some 

other subfields of unsupervised learning that are not discussed here, namely 

associations, anomaly detection, and autoencoders (Salian, 2018). 

(iii) Reinforcement learning “deals with the problem of teaching an autonomous agent that 

acts and senses its environment to choose optimal actions for achieving its goals” 

(Kononenko & Kukar, 2007, p. 14). The output in this domain is therefore not a single 

value, but rather a sequence of actions that determine a policy. In such setting an agent 

is attempting to find the optimal way (i.e. good policy) to improve on a specific task. 

An important part of the reinforcement learning is reward system, i.e. feedback loop that 

enables learner to improve from iteration to iteration and in that sense, we can relate 

reinforcement learning to supervised learning discussed before. The more rounds of 

feedback the agent receives the better it gets (Salian, 2018). A good example of applied 

reinforcement learning is robot navigating in an environment with a specific goal of 

finding certain object. At any time, this robot can take different actions with respect to 

a number of directions. After some training it should learn the optimal policy to reach 

the goal state (Alpaydin, 2004). 

We end our overview of the ML field with three important principles that should lead the 

design of (supervised) ML systems according to Kononenko and Kukar (2007). As 

previously described ML uses knowledge extracted from input data as well as background 

knowledge (i.e. domain knowledge of model developer) to search for the most optimal 

representation (or hypothesis) given certain optimality condition. When searching through 

infinite space of those hypotheses we need some guiding principles. The first is the principle 

of simplicity or the so-called minimum description length (hereinafter: MDL) principle, 

that states “that one should prefer the model that yields the shortest description of the data 

when the complexity of the model itself is also accounted for” (Roos, 2016, p. 1). It is a 

formal version of the Occam’s razor suggesting that the simplest explanation is usually also 

the most reliable. To put it differently, the optimal hypothesis is the one that is simple (i.e. 

has low variance), but also conveys enough information to capture original data accurately 

(i.e. has low bias). Unfortunately, it is typically impossible to do both, that is why ML 
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literature talks about variance-bias tradeoff that will be further explored in the empirical 

section. Another principle that is used less frequently is known as the principle of multiple 

explanations, which says that “all hypotheses consistent with the input data are to be kept” 

(Kononenko & Kukar, 2007, p. 65). Although it initially seems to be inconsistent with the 

MDL principle, they can actually both be used to supplement each other. To be more 

concrete, MDL principle is used in searching for the set of optimal hypotheses in the learning 

phase, while the principle of multiple explanations motivates us to combine generated 

hypotheses into hybrid (i.e. ensemble) models in the execution phase. Lastly, the principles 

for the evaluation of learned hypothesis (i.e. models) instruct us to independently assess 

the learning algorithms on a separate test set, whereas the model training and hyper-

parameter optimization is carried out on training and validation sets, respectively. When 

comparing significance of the performance differences between various hypotheses 

appropriate statistical tests must be used (Kononenko & Kukar, 2007). 

1.4.3 Machine Learning – Relation with Traditional Statistics and Econometrics 

Preceding sections tried to establish a comprehensive description of ML field. Hence, we 

have reached a point where we can place this relatively new and vibrant discipline in relation 

to other scientific fields. Students of economics related programs are usually familiar with 

the probability and statistics, as well as econometrics courses. The question therefore is how 

do ML methods fit into this general framework usually being thought to economics students? 

Alpaydin (2004) suggests that methods used in ML originate from different scientific 

domains – generally speaking, the field lies at the intersection of computer science, 

engineering, and statistics. For instance, statisticians work on similar types of modelling, 

especially ones in the subfields of applied statistics. But the underlying approaches taken by 

the two are fundamentally different in a way that ML practitioners use comparatively less 

mathematical theory and are more engineering oriented (Brownlee, 2018a). As Chollet 

(2018) notes: “It is a hands-on discipline in which ideas are proven empirically more often 

than theoretically.” Although there are a lot of critics related to the fact that ML is biased 

towards theory-free approach, it is essential to take into consideration that without that 

pragmatic approach it had taken in the past, the field would have probably never reached 

such an enormous success (Brownlee, 2018a). This point was further advocated in the 

famous paper by Breiman (2001a) titled “Statistical Modelling: The Two Cultures”. In the 

paper author underlines the fundamental difference between the data modelling (i.e. 

statisticians) and algorithmic modelling (i.e. ML practitioners) cultures. The former gives 

more focus on the stochastic data generating model inside the “black box” (e.g. the 

underlying structure of the relationship between inputs and outputs), whereas the later 

focuses on finding a function or algorithm that has the best prediction performance (i.e. 

generalization) on the test set, and therefore ignores what goes on inside the “black box”. 

Breiman argues that the commitment to this data modelling approach prevented statisticians 

from using more suitable algorithmic models to tackle applied problems, where focus on 

finding a good solution for customer is essential. The workflow in applied statistics is usually 

as follows: (i) think about a parametric data model, (ii) estimate parameters of the model, 



23 

 

and (iii) perform goodness-of-fit on given instances, as well as tests of hypotheses, 

confidence intervals, etc. But as Breiman claims: “The quantitative conclusions are about 

the model’s mechanism, and not about nature’s mechanism. It follows that if the model is a 

poor emulation of nature, the conclusions may be wrong” (Breiman, 2001a, p. 202). He 

further notes that using goodness-of-fit tests and residual analysis to check the data model 

fit opens additional problems12. The most obvious way to tackle applied problem is therefore 

to check how well the model’s box emulates the nature’s box via estimation of predictive 

accuracy using cross-validation (hereinafter: CV) or separate test set that is put aside prior 

to learning. Additionally, while traditional statistics data models certainly have their own 

use cases, we should not limit our toolbox only to them. Approaching a wide range of 

problems by using solely data models a priori imposes serious limitations; we must use a 

larger set of tools advanced by ML community. The approach taken by them advocates that 

nature produces complex, partly unknowable data. The task is to find a mapping from inputs 

to outputs such that this mapping is optimal. Focus is therefore shifted from analysis of data 

models to properties of algorithms that make them “strong” predictors. (Breiman, 2001a). 

Over the last decade there has however been a trend toward collaborative work between the 

two fields, which is essential for the future success. As Hastie, Tibshirani, and Friedman 

(2017) write in the introduction section to a book on statistical learning that guides our 

empirical analysis: “The field of statistics is constantly challenged by the problems that 

science and industry brings to its door. … This book is an attempt to bring together many of 

the important new ideas in learning and explain them in a statistical framework.” 

An interesting observation on the relation between ML and statistics that further advocates 

our prior discussion is given in the article by Mullainathan and Spiess (2017), where an 

applied econometrics view is taken to analyse this rather new scientific discipline. They 

say that ML (or more precisely supervised learning, the focus of this study) mainly revolves 

around prediction tasks, where its success comes from the ability to uncover complex 

patterns not specified in advance, and consequently good out-of-sample generalization 

capabilities. On the other hand, econometrics generally revolves around parameter 

estimation or to put it plainly it deals with the estimation of 𝛽 coefficients that specify the 

structural relationship between regressors and dependent variable. As we have seen before 

ML methods have primarily not been developed for that kind of problems, so “the danger in 

using these tools is taking an algorithm built for 𝑦̂, and presuming their 𝛽̂ have properties 

we typically associate with estimation output in econometrics” (Mullainathan & Spiess, 

2017, p. 88). The problems of making inference about the underlying model structure fitted 

via ML approach is the lack of standard errors after data-driven model selection. Another 

 
12 Work by Bickel, Ritov, and Stoker (2001, in Breiman, 2001a) shows the omnibus goodness-of-fit tests have 

little power and typically do not reject hypotheses until the lack of fit is extreme. Residual analysis is similarly 

unreliable as argued by William Cleveland as it fails to uncover lack of fit in more than four to five dimensions 

where interactions between variables kick in. To get to the point, the main problem with traditional data 

modelling is the fact that “model fit itself is of secondary importance compared to the construction of ingenious 

stochastic model”  (Breiman, 2001a, p. 5). 
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challenge comes from the fact that similar predictions may be produced using different 

variables due to regularization (i.e. penalty on the model complexity), which can introduce 

omitted variable bias. Authors hence emphasise the use of machine ML methods in the 

econometrics framework should fall into the toolbox marked with 𝑦̂ rather than 𝛽̂, at least as 

of now. A key area of future research in econometrics and ML should focus on extracting 

structure from accurate prediction models without making strong assumptions about the 

underlying processes. The advantages of ML tools highlighted by authors are in line with 

the previous discussion: (i) automated search for interactions between variables (e.g. in DL), 

and (ii) better out-of-sample prediction performance. The reasons behind these are twofold, 

namely flexible functional forms with inbuilt regularizer, and empirical tuning of hyper-

parameters on validation sets prior to testing (i.e. regularizer parameters etc.), which solves 

the problem of overfitting to the data and establishes good generalization of the algorithms. 

We discuss the benefits of regularization from prediction perspective in the empirical section 

of the thesis as a part of the ML workflow.  

Taking all this into consideration Mullainathan and Spiess (2017) advocate following 

economics applications, where improved prediction has large value: 

(i) big data: unconventional high-dimensional data, where conventional econometric 

estimation methods would not work efficiently (e.g. using satellite data for determining 

economic development, classifying financial messages to explain market volatility, 

stock market prediction, CS applications in businesses, digital transformation); 

(ii) prediction in the service of estimation: in the case of linear instrumental variables ML 

can help us predict the fitted values of 𝑥̂ regressed on instruments that are used in the 

second-stage to estimate 𝛽̂ (e.g. use of validation and testing sets to prevent overfitting 

and various nonlinear functional forms); 

(iii) policy/strategy prediction: ML can help performing supervision tasks by detecting 

abusive behaviour, as well as guide strategic management decisions (e.g. marketing 

campaigns based on client clusters); 

(iv) testing theories: test economic theories that are inherently about predictions (e.g. 

efficient market hypothesis, behavioural economics models). 

1.4.4 Quantitative Credit Scoring as a Supervised Machine Learning Problem 

Quantitative CS, which uses historical information to evaluate future default probabilities as 

discussed in chapter 1.3 can be framed as a supervised learning problem in ML context. 

In particular, each instance in the dataset is represented by a set of common independent 

variables and preassigned a discrete label (i.e. dependent variable) denoting either defaulted 

or non-defaulted status. Due to the binary nature of dependent variable we can further group 

the task as the classification problem. Employing state-of-the-art classification ML 

methods discussed in chapter 2.3.2 (e.g. k-NN, DTs, SVMs, ANNs, etc.) we can accurately 

model the complex relationship between the firms’ characteristics and default status. This in 

turn provides a predictive model with high generalization capabilities to predict the PD for 

new customers.  
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1.5 Literature Review 

Literature dealing with ECRM is substantial; during the last five decades many authors have 

examined several alternatives to predict customers’ payment default (i.e. quantitative CS) or 

business’ insolvency (i.e. financial distress/bankruptcy prediction models). As it is 

impossible to separate CS from FDP literature, we use generic term empirical credit risk 

modelling to refer to both. This section tries to outline historical developments in ECRM 

research as well as to highlight major advancements in the field. Aim is to provide a holistic 

view of the state-of-the-art techniques in the field and thus establish a background for our 

further discussion on ECRM issues, which is the topic of the next chapter. Finally, we 

employ the methodology for predicting the probability of default on the corporate dataset in 

chapter 3. 

The literature on ECRM dates back to the 1930’s, when initial studies concerning the use of 

ratio analysis to predict future defaults started emerging. Research up to the 1960’s was 

generally based on univariate analysis with the studies of Fitzpatrick (1932), Smith and 

Winakor (1935), and Chudson (1945) being the most recognized. The first multivariate 

analysis for the corporate segment was applied by Altman (1968); the so-called Z-score 

model remains relevant up to this day. He identified the shortcomings of absolute 

comparison based on one financial ratio at the time and proposed an extension that combines 

“several measures into a meaningful predictive model” using statistical technique proposed 

by Fisher (1936) called multiple discriminant analysis (hereinafter: MDA) (Altman, 1968, 

p. 591). It is interesting to note however that it was Durand (1941) who carried out the 

pioneering work of utilizing MDA for financial purposes, i.e. credit worthiness prediction 

of used car loan applicants. Logit and probit analysis began to appear in the late 1970’s with 

the work of Ohlson (1980) who employed a less restrictive LR model, and Zmijewski (1984) 

who adopted similar approach (probit model) to estimate the PD. More recently ML methods 

have been piloted due to the advancement in computational power, lower costs, as well as 

emergence of big data. For more detailed discussion on the history of ECRM please refer to 

studies by Gissel, Giacomino, and Akers (2007); Jackson and Wood (2013); Jayasekera 

(2018); Ravi Kumar and Ravi (2006); Sun, Li, Huang, and He (2014); Wu, Gaunt, and Gray 

(2010). Out of this literature have come a number of competing empirical credit risk models 

that employ different kinds of techniques for model development. One of the most explored 

issues in prior research is definitely the selection of classification method (i.e. 

classifier/learner).  

Most frequently used individual classifiers nowadays are still parametric ones such as 

already mentioned LR. ML on the other hand introduced a wave of new semi-parametric 

(e.g. ANNs, SVMs) and non-parametric methods (e.g. k-NN, DTs). A number of conclusions 

emerge from reviewed literature: (i) advanced ML algorithms (especially ANNs and SVMs) 

outperform traditional statistical LR, and (ii) ensemble methods on average outperform the 

best individual ML classifiers, which emphasizes the need to implement ensembles – we 

discuss this point at the end of this review along with other recent advancements (Lessmann, 

Baesens, Seow & Thomas, 2015). There exists a considerable body of literature applying 
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ML methods to credit risk context. A number of authors have recognized that these methods 

present a flexible and powerful framework for default probability estimation with ANNs and 

SVMs scoring highest predictive performance. Tree-based algorithms and nearest 

neighbours are on average both inferior to former methods, but still perform relatively well 

compared to LR. However, previous studies have shown that the performance of the selected 

method strongly depends on the nature of datasets (Beque & Lessmann, 2017; Hand & 

Henley, 1997). Furthermore, prediction performance while important should not be the only 

criteria for method selection13. 

ECRM is a multi-stage process that generally involves DPP, model development phase, and 

consequent performance evaluation. Application of each classification method requires the 

presence of data in a mathematically feasible format to work efficiently; we follow 

recommendations on DPP from the literature (e.g. Anderson (2007); Crone, Lessmann, and 

Stahlbock (2006); Florez-Lopez (2010); Lessmann, Baesens, Seow, and Thomas (2015); 

Siddiqi (2017)). A number of authors have recognized the importance of data projection 

which aims at transforming raw data into useful representations. In particular, it is popular 

in CS to standardize/discretise14 numeric values while categorical variables are usually 

transformed using one-hot encoding in case they are nominal or mapped to integer values in 

case they are ordinal. If numerical values are standardized it is a good practice to additionally 

winsorize data in order to account for outliers or other extreme values – this is particularly 

useful when dealing with financial ratios as in our case. It is not uncommon to have missing 

values in a real-world dataset. Several methods are reported in the literature to address the 

issue of missing values - many studies exclude the cases/features that do not attain a 

minimum level of availability (e.g. 80%) in the first step. Remaining missing values are then 

replaced with values specific to each group (e.g. a mean/median replacement).  

Additionally, it is useful to analyse data using descriptive statistics and visualize them when 

possible. Principal component analysis (hereinafter: PCA) using only the first two or three 

dimension is a good start to visually inspect the patterns or clusters forming in the dataset, 

however it lacks efficiency when dealing with non-linear relationships. Therefore, authors 

suggest using t-Distributed stochastic neighbouring embedding visualization technique 

(Koutanaei, Sajedi & Khanbabaei, 2015; Mirjalili & Raschka, 2017; Šušteršič, Mramor & 

Zupan, 2009). 

Corporate ECRM, the topic of this study, employs data from balance sheets (i.e. financial 

ratios), macroeconomic variables, and other qualitative variables to estimate credit 

worthiness for global enterprises, SMEs, or micro-entrepreneurs. The dimensionality of such 

data is often quite big; some authors have thus suggested that feature selection is used in 

order to examine collected variables for their representativeness in the chosen dataset. Most 

 
13 A more comprehensive description of a framework for tool selection may be found in the paper by Alaka et 

al. (2018). 
14 Standardization involves variable scaling so that they reside in a similar numerical range which enables more 

efficient learning. On the other hand, discretization transforms continuous variables into a limited set of bins. 
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studies employ filter (e.g. information value, Relief, correlation matrix, RF), wrapper (e.g. 

stepwise selection, genetic algorithm (hereinafter: GA) methods, particle swarm 

optimization), and embedded (e.g. regularization) approaches as well as feature extraction 

techniques (e.g. PCA, discriminant analysis, factor analysis) to facilitate model development 

phase (Anderson, 2007; Beque & Lessmann, 2017; Crone, Lessmann & Stahlbock, 2006; 

Koutanaei, Sajedi & Khanbabaei, 2015; Lessmann, Baesens, Seow & Thomas, 2015; Zhou, 

Lu & Fujita, 2015). According to Liang, Tsai, and Wu (2015, p. 260) there “is no exact 

answer for the best combination of the feature selection method and the classification 

technique. However, comparing average prediction results with the baseline models shows 

the models’ performances can be improved if the feature selection method is carefully 

chosen.” It should be noted however that for some classifiers feature selection does not 

always improve performance (e.g. DTs, SVMs). Some authors advocate for feature selection 

by using either domain knowledge or the integrated approach that embeds expert knowledge 

into quantitative methods. For more we advise you to refer to Lin, Liang, Yeh, and Huang 

(2014). 

An important DPP decision concerns data partitioning. According to literature data is 

partitioned into training and test sets, which ensures proper model performance evaluation. 

Furthermore, prior to comparing different methods the best hyper-parameter configuration 

is identified for each method – this requires additional validation set. To obtain such 

validation set further holdout CV on the training set is usually performed. Contrary, it is a 

good practice in ML to use k-fold CV or nested CV, which ensures more robust model 

performance evaluation (Beque & Lessmann, 2017; Lessmann, Baesens, Seow & Thomas, 

2015; Mirjalili & Raschka, 2017; Sun, Li, Huang & He, 2014). 

The question of sample size has been dealt with in several studies; generally, the larger the 

sample size the higher the probability that a sample is representative of the population and 

the better the model performance. This is especially true for the complex ML methods. 

However, acquiring data might be costly which results in a trade-off between the increase in 

accuracy obtained from using larger sample and the marginal acquisition costs. The optimal 

sample size depends on dataset at hand. Several studies have however provided a guideline 

– for LR having 2,500 defaults is sufficient, while ML methods require at least 10,000 

defaults (Crone & Finlay, 2012; Siddiqi, 2017). Another important issue is how to deal with 

the imbalanced dataset. Credit scoring datasets usually exhibit low proportions of defaulted 

customers – fraction of defaulted customers usually ranges from 0.01 to 0.10. It has been 

shown that such class imbalance impedes classification, so various under-/oversampling 

approaches have been proposed (Weiss & Provost, 2003). Chawla, Bowyer, Hall, and 

Kegelmeyer (2002) introduced a synthetic minority oversampling technique (hereinafter: 

SMOTE), which conducts a special form of oversampling the minority class. The majority 

of prior research (e.g. Batista, Prati, and Monard (2004); Crone, Lessmann, and Stahlbock 

(2006); Lessmann, Baesens, Seow, and Thomas (2015)) has consistently identified 

undersampling suboptimal to oversampling across different methods as well as datasets. 

Moreover, SMOTE outperforms both previous resampling techniques. ML community has 
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addressed the issue of imbalanced dataset via development of distribution insensitive 

algorithms such as AdaBoost (cost sensitive learning) and RF. A number of authors have 

recognized that most of ensembles perform well in dealing with samples where a large class 

imbalance was present (Brown & Mues, 2012; He, Zhang & Zhang, 2018). 

Recent advancements in ECRM concern two dimension: (i) novel ML classification 

algorithms, and (ii) performance measures to assess and compare models. It is 

worthwhile to devote some time to discussion of these novelties, since we try to implement 

them through this study (Garcia, Marques & Sanchez, 2018; Lessmann, Baesens, Seow & 

Thomas, 2015). 

In the past decade or so the academic ECRM research has been flooded with so called 

ensemble methods that integrate the prediction of multiple models. Much empirical and 

theoretical evidence has shown that model combination increases predictive performance. 

Ensembles are generally divided into homogenous classifiers that combine base learners of 

the same type in an independent (i.e. bagging) or dependent manner (i.e. boosting). Among 

homogenous ensembles RF is often credited as a very strong classifier. Heterogenous 

ensembles that combine multiple base learners however provide even better performance; 

even very simple approach of combining set of base learners through weighted majority 

voting achieves competitive performance. Thorough discussion on heterogenous ensembles 

is beyond the scope of this study15 (Beque & Lessmann, 2017; Brown & Mues, 2012; 

Kruppa, Schwarz, Arminger & Ziegler, 2013; Lessmann, Baesens, Seow & Thomas, 2015; 

Sun, Li, Huang & He, 2014). 

In general performance measures split into three types. Those that assess the discriminatory 

ability (e.g. area under the curve (hereinafter: AUROC), H-measure); those that assess the 

accuracy of the probability prediction (e.g. Brier score (hereinafter: BS)); and those that 

assess the correctness of categorical predictions (e.g. percentage correctly classified or 

classification accuracy (hereinafter: PCC), KS statistic). The PCC and the KS embody a 

local model assessment relative to a single cut-off point (i.e. threshold value), whereas 

AUROC and BS perform a global assessment over whole distribution. Hand (2009) defines 

the so-called H-measure that provides a normalized classifier assessment and overcomes the 

deficiencies that the AUROC suffers from – empirical evidence however shows that 

AUROC and H-measure do not differ much and give similar recommendations. Different 

measures embody different notion of model performance, which is why it is good practice 

to consider few measures for the purpose of comprehensive comparison between the 

methods – we discuss model performance measures used in this study in section 2.4. 

ECRM authors sometimes employ performance comparison tests in order to statistically 

determine the difference between the methods’ generalization ability – these tests are known 

as multiple comparison tests and are based on non-parametric hypothesis testing. 

 
15 A more comprehensive description can be found in a paper by Lessmann, Baesens, Seow, and Thomas (2015) 

that provides an overview of the state-of-the-art ML methods. 
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2 CREDIT RISK MODELLING 

In previous section we saw that there are three main types of ML, as well as that quantitative 

CS falls into the category of supervised learning, more specifically classification. That being 

said the focus of this section is to present different supervised classifiers that are employed 

in this study and originate from statistics as well as ML field. The first problem each modeler 

faces is how to choose the right method among hundreds of different algorithmic variations. 

Domingos (2012) suggests that one conceptualizes the modelling problem as a combination 

of three components, namely representation, evaluation, and optimization. The optimization 

component of learning algorithms is discussed in Appendix 7 as it does not play an essential 

role in our study – we mainly employ standard optimization algorithms that are 

preprogramed in ML libraries. However, it is useful to devote some time to discuss them in 

order to get a complete picture. In the Table 3 below you may find the description of the 

three components of learning algorithms (i.e. classification methods). 

Table 3: The Three Components of Learning Algorithms 

Representation Evaluation Optimization 

Choose a set of applicable 

classifiers that can represent the 

knowledge (i.e. hypothesis 

space). 

Choose an internal evaluation 

function (i.e. objective 

function) to measure learning 

performance. 

Choose a method to search and 

find an optimal hypothesis in the 

classifier’s space. 

Instances 

   k-Nearest Neighbours 

   Support Vector Machines 

Hyperplanes 

   Logistic Regression 

Decision Trees 

Neural Networks 

Ensemble Methods 

Predictive Accuracy 

Confusion Matrix (Error I & II) 

Precision, Sensitivity, 

Specificity 

Average Precision 

ROC Curve and AUROC 

H-Measure 

First-Order Optimization 

   (Stochastic) Gradient Descent 

   Momentum Optimization 

   Adaptive 𝛼 Optimization 

Second-Order Optimization 

   Quasi-Newton Methods (BFGS) 

Coordinate-Wise Optimization 

   Sequential Minimal 

Optimization 

Source: Adapted from Domingos (2012). 

Technically speaking CS modelling deals with learning a mapping function 𝑓(∙) from inputs 

(i.e. independent variables) that are denoted as matrix 𝑿 ∈ ℝ𝑛 𝑥 𝑝, where 𝑛 and 𝑝 stand for 

number of instances and independent variables (i.e. features or characteristics), respectively, 

to the output (i.e. dependant) variable denoted by 𝒚 ∈ ℝ𝑛, or in mathematical notation 𝒚 =

𝑓(𝑿). In order to get the whole picture of the modelling problem we must discuss three 

factors underlying the mapping itself. Firstly, the definition of default or 𝒚 part is discussed 

in the next section. Afterwards section 2.2 looks into the possible independent variables that 

can provide insightful information for the discrimination between the two groups of 

customers (𝑿 part). Lastly, we consider the 𝑓(∙) part (i.e. the representation, evaluation and 

optimization components of learning algorithm as outlined in the table above). 
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2.1 Development of the Definition of Default 

In section 1.1.1 we defined default as the event where “a counterparty does not honour 

his/her obligations” (Alexander & Sheedy, 2004, p. 211). In classification task default is a 

binary variable denoted as follows in Equation (2). 

 𝒚 =  { 
0 ;  𝑁𝑜𝑛 − 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

1 ;  𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 
 (2) 

  

In CS context we usually define the defaulted customer as the one who falls behind on 

payment for 60 or 90 DPD. In order to derive this definition, one needs a complete payment 

database to develop the dependent variable 𝒚. If such data is not available, we can use more 

stringent definition of default, namely insolvency proceedings which is usually used in 

FDP. The Article 122 of the Financial Operations, Insolvency Proceedings, and Compulsory 

Dissolution Act, hereinafter referred to as ZFPPIPP (2007) defines insolvency proceedings 

as “the situation where debtor is not able to settle his/her liabilities falling due in an extended 

period of time (i.e. continuous illiquidity) or becomes insolvent.” Hence, we define the 

default of a customer as the one who underwent the bankruptcy proceeding as defined in 

ZFPPIPP within one year from the observation point. 

2.2 Types of Independent Variables Employed 

As discussed in previous sections quantitative CS evaluates historical information of the 

companies in order to derive rules that enable a priori classification of new companies’ 

obligors. A starting point in prevalent ECRM research is usually a derivation of financial 

ratios as a primary source of historical information. Financial ratio analysis is an important 

way to analyse financial health. There are usually hundreds of financial ratios measuring 

different aspects of company (Hajek & Michalak, 2013; Lin, Liang, Yeh & Huang, 2014; 

Zhou, Lu & Fujita, 2015). The financial features considered in this study are selected based 

on the frequency of prior occurrences in ECRM related studies. However, exclusive reliance 

on these financial ratios can be problematic as argued in Appendix 2. Hence, we explore the 

role of other non-financial features. There are significant risks coming from external 

environment such as macroeconomic changes as well as other industry/company specific 

factors. Bellotti and Crook (2009) explore the hypothesis that PD is affected by general 

conditions in the economy. They show that the inclusion of macroeconomic variables (e.g. 

interest rate, unemployment rate, all-share index, etc.) into the model improves predictive 

performance. Independent variables used in this study are summarized in Appendix 4. 

2.3 Model Representation 

In the literature review section, we saw that the first attempt to build a credible CS model 

began in the late 1960’s. Since then there has been an ongoing quest to improve on the 

prediction performance using different methodological approaches (Jayasekera, 2018): 

mathematical models (e.g. hazard based models, gambler’s ruin models), statistical 

models (e.g. discriminant analysis, LR), artificial intelligence models (e.g. ANNs, SVMs), 

and market based models (e.g. structural Merton model). Relative frequency of occurrence 
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in the prior literature suggests discriminant analysis and LR (i.e. statistical models) to be the 

most popular methods for studying payment defaults. In a systematic review of default 

prediction models Alaka et al. (2018) nonetheless demonstrate that the sole criteria of 

popularity for method selection usually results in improper use of tools. Hence the paper 

tries to identify key criteria to consider when choosing the set of possible methods. These 

set of criteria depend on the intention of model developer and can be categorized into three 

distinct categories: (i) results related criteria (e.g. accuracy, results transparency, 

deterministic output), (ii) data related criteria (e.g. sample size, types of variable, variable 

selection), and (iii) tools’ properties related criteria (e.g. linear vs non-linear 

representation, generalization ability). Although all these criteria are important to take into 

consideration modeler usually focuses on the first category where he has to choose between 

models giving either accurate and/or transparent results. As prior research as well as our 

discussion of ML approach suggest there is usually a trade-off between the two dimensions 

- ML methods (particularly non-decision rules tools) are on average more accurate than 

statistical ones, whereas on the other hand statistical methods provide us with a transparent 

model (i.e. structural relationship) that can be interpreted for business purposes. Breiman 

(2001a) provides an alternative view on accuracy-transparency trade-off. He notes that 

framing the question in a trade-off manner is incorrect, the goal should not be 

interpretability, but gathering accurate information. Since statistical models are usually less 

accurate, they consequently provide less accurate information. In case interpretability is 

important it is recommendable to use either more accurate decision rules ML approaches 

(e.g. DTs) or decision rules-generating tools applied to the “black-box” ML methods such 

as SVMs and ANNs. The goal of such rule extraction approaches is to derive symbolic 

representations to support specialists gaining insight into the complex structure (Alaka et al., 

2018). Since the aim of this study is to develop a prediction model, interpretability is not of 

primal importance. The selection choice of methods for the purpose of this study is hence 

based on the following two factors, the methods’ occurrence frequency and performance 

achieved in prior literature, while also having in mind other data and tool related issues such 

as sample size, types of variables, generalization ability, etc. Consequently, next two sections 

explore two kinds of methods frequently used in the literature, namely classical statistical 

methods (LR) and machine learning methods (DTs, k-NN, SVMs, ANNs). Section 2.3.3 

takes the research one step further and explores promising hybrid algorithms known as 

ensemble methods. 

It is useful to present some notation and general remarks before our discussion of the selected 

methods. Although all methods described in the following section can be generalized for 

multinomial applications, we stick with the two-class derivations as this study deals with 

binary dependent variable. This way we can present general ideas behind methodologies 

without using too rigorous notation. In Table 4 you may find an overview of the notation 

used throughout this study. 
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Table 4: Mathematical Notation Used Throughout the Study 

Mathematical Notation Definition 

𝑿 ∈ ℝ𝑛 𝑥 𝑝 
Input feature matrix, where 𝑛 and 𝑝 stand for number of 

instances and features, respectively. 

𝒙(𝑖) ∈ ℝ𝑝 𝑥 1 
Vector of all the features values (excluding the label) of the 

𝑖𝑡ℎ instance in the dataset. 

𝑥𝑝
(𝑖)

∈ ℝ Specific value of the 𝑖𝑡ℎ instance and 𝑝𝑡ℎ feature in the dataset. 

𝒚 ∈ ℝ𝑛 𝑥 1 Output target vector (or dependent variable) of length 𝑛. 

𝑦(𝑖) ∈ ℝ 
Label or specific output value for the 𝑖𝑡ℎ instance in the 

dataset. 

𝑿 =

[
 
 
 
 
 
 (𝒙(1))

𝑇

(𝒙(2))
𝑇

⋮

(𝒙(𝑛−1))
𝑇

(𝒙(𝑛))
𝑇

]
 
 
 
 
 
 

=

[
 
 
 
 
 
 𝑥0

(1)

𝑥0
(2)

⋯
𝑥𝑝

(1)

𝑥𝑝
(2)

⋮ ⋱ ⋮

𝑥0
(𝑛−1)

𝑥0
(𝑛)

⋯
𝑥𝑝

(𝑛−1)

𝑥𝑝
(𝑛)

]
 
 
 
 
 
 

 

The design matrix of independent variables and a set of 

instances, where each row represents an instance and each 

column corresponds to the feature; first column in the matrix 

is usually populated with ones in order to enable intercept 

(bias) estimation. 

𝒚 =  [𝑦(1) 𝑦(2) ⋯ 𝑦(𝑛−1) 𝑦(𝑛)]𝑇 
The column vector of dependent variable, where each element 

corresponds to a specific label for examples. 

𝒚 = 𝑓(𝑿) 

A mapping function 𝑓(∙): 𝑿 → 𝒚 that associates each input 

example 𝒙(𝑖) of a learning set 𝑿 to a single output element 𝑦(𝑖) 

of another set denoted as 𝒚. 

Source: Own work. 

2.3.1 Classical Statistical Methods – Logistic Regression 

Classical statistical methods are most commonly denoted as parametric methods16, where 

certain assumptions about the underlying distributional form of 𝑓(∙) are made. Such 

assumptions may greatly simplify and speed up the learning process and are particularly 

efficient in case we have less data. Parametric models are usually defined up to a small 

(fixed) number of parameters that describe the underlying probability distribution. If 

assumptions made are correct, then parametric models can give very accurate and precise 

estimates (i.e. have higher statistical power than non-parametric methods discussed in the 

next section). However, when assumptions are not met, we may incur a large error 

(Alpaydin, 2004).  

The most common cross-sectional statistical method used for CS is multiple discriminant 

analysis that was first used in the study by Altman (1968). It consists of a linear combination 

of independent variables, which discriminate the best between defaulted and non-defaulted 

firms. These linear characteristics are combined in a single score that given certain cut-off 

point classify the firms in groups according to resemblance. MDA technique makes some 

restrictive assumptions such as multivariate normally distributed independent variables, 

equal variance-covariance matrices across the two classes, and the absence of 

 
16 Some examples of parametric methods are least squares regression, LR, linear discriminant analysis and 

related statistical tests (e.g. Student’s T test, ANOVA tests, etc.). 
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multicollinearity (Balcaen & Ooghe, 2006). Therefore Ohlson (1980) suggested another 

group of models, namely conditional probability models (e.g. logit, probit models) that are 

considered less demanding than MDA. These models are based on certain assumptions 

regarding the probability distribution and use non-linear maximum likelihood estimation. 

The most popular among the methods is LR also known as logit model that is why next 

paragraph outlines theoretical background for this method (Balcaen & Ooghe, 2006). 

Regarding the decision between using MDA or LR Hastie, Tibshirani, and Friedman (2017) 

note that “it is generally felt that LR is a safer, more robust bet than the MDA model, relying 

on fewer assumptions.” 

Despite being named regression, logistic regression is a widely spread supervised 

classification method used to predict the probability 𝑃(𝑦 = 𝐶|𝒙; 𝜽) (i.e. likelihood) that an 

instance belongs to a certain class (denoted as 𝐶) based on given features and set of 

parameters 𝜽 = [𝜃0 𝜃1 ⋯ 𝜃𝑝−1 𝜃𝑝]𝑇, where 𝜃0 is a bias term and 𝜃1 to 𝜃𝑝 input feature 

weights. LR is a special case of generalized linear models because it uses a weighted linear 

combination of features plus a bias term as an input into the logistic function that outputs a 

number between 0 and 1 corresponding to probability. This probability can then easily be 

transformed into a class prediction using a cut-off rule (Geron, 2017; Beque & Lessmann, 

2017). LR is particularly attractive since it allows for categorical as well as numerical 

variables and enables the interpretation of the features’ importance given that there is no 

multicollinearity. The probability 𝑃(𝑦 = 𝐶|𝒙; 𝜽) follows logistic distribution, which implies 

that “an extremely healthy (weak) company, as compared to a firm that has an average 

financial health, must experience a proportionally larger deterioration (amelioration) in its 

variables in order to deteriorate (ameliorate) its financial health score” (Balcaen & Ooghe, 

2006, p. 69). To explain the idea behind LR we must introduce the odds ratio, that is defined 

as 𝑝 1 − 𝑝⁄  and calculates the odds in favour of a particular (positive) event we want to predict, 

where 𝑝 denotes its probability. The logit function is then defined as a natural logarithm of 

the odds ratio (i.e. log-odds) and can take any value from −∞ to ∞ (no restrictions are 

present contrary to modelling probabilities directly). In LR therefore one regresses log-odds 

on the linear combination of features and takes exponentials on both sides to derive the 

conditional probability 𝑝 (Thomas, Crook & Edelman, 2017). This is the LR 

transformation17 represented in equation (3). 

 
          ln (

𝑝

1−𝑝
) = 𝜃0 + 𝜃1𝑥1 + ⋯+ 𝜃𝑝𝑥𝑝 = 𝜽 ∙ 𝒙𝑇 

 

           𝑒
𝑙𝑛(

𝑝

1−𝑝
)
= 𝑒𝜽∙𝒙𝑇

  

      𝑃(𝑦 = 𝐶|𝒙; 𝜽) = 𝑝 =
𝑒𝜽∙𝒙𝑇

1 + 𝑒𝜽∙𝒙𝑇 =
1

1 + 𝑒−𝜽∙𝒙𝑇 = 𝜎(𝜽 ∙ 𝒙𝑇) (3) 

 
17 Logistic transformation 𝜎(𝜽 ∙ 𝒙𝑇), where 𝜎(∙) is a continuous logistic sigmoid function, assures that as 

weighted sum of features goes towards infinity (𝜽 ∙ 𝒙𝑇 → ∞) LR output approaches 1 and similarly, when 

weighted sum of features goes towards minus infinity (𝜽 ∙ 𝒙𝑇 → −∞) LR output approaches 0 which is in line 

with the notion of probability. 
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Once the probability is estimated the class prediction is simply made using a cut-off point 

(i.e. threshold function) of let’s say 0.5, which means that a class is 1 if 𝜎(𝜽 ∙ 𝒙𝑇) ≥ 0.5 and 

vice-versa (Geron, 2017). 

Next step in deriving LR is estimating model parameters also called weights in ML via 

training on learning examples (i.e. 𝑛 tuples) given as {(𝒙(1), 𝑦(1)),⋯ , (𝒙(𝑛), 𝑦(𝑛))}, where 𝑦(𝑖) =

1 for a positive class (e.g. defaulted class) and 𝑦(𝑖) = 0 for a negative class (e.g. non-defaulted 

class). 𝑦(𝑖) is assumed to follow Bernoulli distribution (i.e. 𝑦|𝒙 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(ℎ𝜃(𝒙)), where 

ℎ𝜃(𝒙) = 𝑃(𝑦 = 1|𝒙; 𝜽) = 𝜎(𝜽 ∙ 𝒙𝑇)). The objective is to determine 𝜃 so that LR model estimates 

high probabilities for positive class and low for negative class, which can be presented via 

function (4) for single training instance (according to Bernoulli distribution). 

 
𝑃(𝑦|𝒙; 𝜽) = (ℎ𝜃(𝒙))

𝑦
(1 − ℎ𝜃(𝒙))

1−𝑦
 (4) 

In order to derive cost function for LR maximum likelihood technique is employed assuming 

the instances are independent of one another. In practice it is easier to calculate the maximum 

of log-likelihood that is why we take natural logarithm of the expression in equation (5). 

 
𝐿(𝜽; 𝒙) = ∏ P(𝑦(𝑖)|𝒙(𝒊); 𝜽)

𝑛

𝑖=1

= ∏(ℎ𝜃(𝒙(𝑖)))
y(𝑖)

(1 − ℎ𝜃(𝒙(𝑖)))
1−y(𝑖)

𝑛

𝑖=1

 
 

 
𝑙(𝜽; 𝒙) = 𝑙𝑛𝐿(𝜽; 𝒙) = ∑ [y(𝑖)𝑙𝑛 (ℎ𝜃(𝒙(𝑖))) + (1 − y(𝑖))𝑙𝑛 (1 − ℎ𝜃(𝒙(𝑖)))]

𝑛

𝑖=1
 (5) 

Alternatively, we can rewrite the log-likelihood in (5) as a cost function 𝐽(𝜽) that can be 

minimized using optimization algorithms described in Appendix 7 (e.g. gradient descent). 

The intuition behind 𝐽(𝜽) in (6) is as follows, if we correctly predict that an instance belongs 

to class 1 then the first term in the brackets approaches 0 since natural logarithm of a number 

close to one (i.e. ℎ𝜃(𝒙(𝑖)) ≈ 1) is zero. In contrast, if prediction is wrong the cost function goes 

towards infinity. The same holds for class 0 (Mirjalili & Raschka, 2017).  

 
𝐽(𝜽) = −∑ [y(𝑖)𝑙𝑛 (ℎ𝜃(𝒙(𝑖))) + (1 − y(𝑖))𝑙𝑛 (1 − ℎ𝜃(𝒙(𝑖)))]

𝑛

𝑖=1
 (6) 

To determine the vector 𝜽 we have to minimize the upper cost function by calculating the 

partial derivatives with regards to 𝑝𝑡ℎ model parameter 𝜃𝑝 as follows (Zupan, 2018): 

 

𝜕

𝜕𝜃𝑝

𝐽(𝜽) = −∑
𝜕

𝜕𝜃𝑝

[y(𝑖)𝑙𝑛 (ℎ𝜃(𝒙(𝑖)))
𝑛

𝑖=1

+ (1 − y(𝑖))𝑙𝑛 (1 − ℎ𝜃(𝒙(𝑖)))] 

 

                  ⋯  

          = −∑ (y(𝑖) − ℎ𝜃(𝒙(𝑖)))
𝑛

𝑖=1
𝒙𝑝

(𝑖)
= −𝑿𝑇(ℎ𝜃(𝑿) − 𝒚) (7) 

If we equate partial derivatives in (7) with zero, we get so called score equations. To solve 

these equations either Newton-Raphson numerical scheme or other optimization algorithms 

may be used since this cost function is convex so global minimum is guaranteed to be found 
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(Mirjalili & Raschka, 2017). Kononenko and Kukar (2007) provide an interesting viewpoint 

with regards to LR method. They say it can be viewed as a feedforward ANN with no hidden 

layers and only one artificial neuron – the building block of ANNs as seen in Figure 6. 

 

 

 

 

 

 

 

Source: Adapted from Mirjalili and Raschka (2017). 

In order to fit LR properly some assumptions about the underlying characteristics of the data 

must be met. Although LR relaxes quite a few assumptions usually made when fitting linear 

regression or MDA, there are still several that we must consider. Violation of these 

assumptions may lead to a detrimental effect on the model structural analysis. The main 

assumptions of LR are (Jackson & Schreiber-Gregory, 2018): (i) binary dependent variable, 

(ii) independent instances (requirement for maximum likelihood estimation), (iii) absence of 

multicollinearity among independent variables, and (iv) linearity of independent variables 

and log odds (line one in equation (3)). Table 5 below shows the pros and cons of LR method. 

Table 5: Logistic Regression – An Overview of Pros and Cons 

Pros: computationally inexpensive, easy to implement, knowledge representation easy to 

interpret 

Cons: prone to underfitting (low accuracy), restrictive assumptions regarding data and 

functional form  

Source: Harrington (2012). 

2.3.2 Machine Learning Methods 

Contrary to the classical statistical methods ML methods are usually referred to as non-

parametric methods, although this distinction is not completely rigorous, and some 

methods may lie in the “grey zone” (i.e. semi-parametric methods). Non-parametric methods 

have an important advantage in the event we cannot assume particular probability 

distribution for the data; all these methods assume is, that “similar inputs have similar 

outputs” (Alpaydin, 2004, p. 153). From that perspective they are denoted as being free of 

assumptions, i.e. not subject to the stringent assumptions, which enables them to learn any 

functional form from the data, that leads to higher flexibility, power and consequently 

   𝑃(𝑦 = 𝐶|𝒙(𝑖); 𝜽) 
𝜃2 

𝜃1 

𝑥1
(𝑖)

 

1 

𝑥2
(𝑖)

 

𝑥𝑝
(𝑖)

 

𝜃3 

𝜃𝑝  

Artificial Neuron 

𝜎(𝜽 ∙ 𝒙𝑻(𝑖)) 

Net input function 

Logistic activation function  Threshold function 

𝑦̂(𝑖) 

Figure 6: Relation Between Logistic Regression and Artificial Neural Networks 
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prediction performance. Given the fact we can derive the second meaning of non-parametric 

techniques as follows: non-parametric methods do not assume the structure of a model to be 

fixed, it is determined by the data. That is why ANNs and linear SVMs are sometimes 

thought of as semi-parametric methods in this sense. Disadvantages usually related with non-

parametric methods are bigger data requirements, slower training, and overfitting problems. 

That is why considerable amount of time is devoted to optimizing learning algorithms that 

can efficiently process large amount of data while also achieve low generalization error 

(Brownlee, 2016). Non-parametric ML methods include, among others: non-parametric 

regression, k-NN, DTs, SVMs, etc.  

The most frequently used ML method is ANNs that was first introduced into ECRM research 

in early 1990s and performed significantly better than statistical methods. Another relatively 

new and efficient ML method used is SVMs, which is particularly attractive for its 

generalization capabilities. Both methods are discussed in this section with addition of k-NN 

and DT approach. We also spend some time to review ensemble methods that use different 

kinds of architectures (Sun, Li, Huang & He, 2014). Appendix 8 notes eight key ML lessons 

to have in mind when working with ML algorithms (i.e. methods). 

2.3.2.1 Nearest Neighbour Approach 

Nearest neighbour approach is one of the most basic supervised ML algorithms. It is 

interesting from the perspective that it does not learn any model (e.g. discriminative 

function), but rather learns all the examples by heart and makes predictions for new data 

instances using a similarity measure. This is called instance-based learning, in contrast to 

the model-based learning where a learner generalizes from data to build a model, and then 

uses it to make predictions. Since there is almost no learning this approach is a typical 

example of a lazy learner (Alpaydin, 2004). The principle behind nearest neighbour method 

is to find 𝑘 in distance closest examples to the new data instance and predict the dependent 

variable using majority voting. That is why it is usually know as 𝑘-nearest neighbours 

method. The number of neighbours can be either user-defined in the process of model 

evaluation or vary based on the local density of points (i.e. radius-based neighbour learning) 

and some kernel function (e.g. Gaussian kernel). Despite its simplicity 𝑘-NN has been 

successfully applied to a number of use cases such as handwritten digits and satellite images 

scenes (Scikit-learn - Nearest Neighbors, 2019a). Parameter 𝑘 determines the size of the 

neighbourhood based on cardinality principle enabling the algorithm to elegantly deal with 

sparsely as well as densely populated regions of the space spanned by features (Kononenko 

& Kukar, 2007; Beque & Lessmann, 2017). 

The 𝑘-NN algorithm is straightforward and can be summarized by the following steps 

(Harrington, 2012): 

(i) calculate distances between the new instance 𝒙∗ from test set and training examples that 

is defined as 𝑑(𝒙(𝑖), 𝒙∗) = √∑ |𝑥𝑝
(𝑖)

− 𝑥𝑝
∗ |𝑝

𝑞𝑞

 and known under the name Minkowski distance 
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(generalization of Euclidian and Manhattan distance where 𝑞 is set to 2 and 1, 

respectively); 

(ii) sort the distances calculated in (i) in ascending order as follows 𝑑1(𝒙
(1), 𝒙∗) ≤

𝑑2(𝒙
(2), 𝒙∗) ≤ ⋯ ≤ 𝑑𝑛(𝒙(𝑛), 𝒙∗); 

(iii) take 𝑘 examples (i.e. neighbours) with lowest distances; 

(iv) find the majority class 𝑦∗ of the instance 𝒙∗ from the set of 𝑘 nearest neighbours as 

shown in equation (8). 

 𝑦∗ =
𝑚𝑜𝑑𝑒

𝒚 ∈ {0,1}
 {𝑦(𝑗)}

𝑗=1

𝑘
 (8) 

The upper algorithm suggests that all features as well as nearest neighbours contribute 

equally to the calculation of target class. In case some features have higher importance, the 

algorithm can be adapted to account for selected attribute quality measure. On the other 

hand, kernel functions can be used for calculating the majority vote (using Gaussian kernel 

closer neighbours contribute more to the overall vote). The main advantage of 𝑘-NN as an 

instance-based method is that it can continuously adapt to new training data. However, there 

are some disadvantages originating from algorithmic perspective. The computational 

complexity grows linearly with the number of examples in the dataset. Furthermore, all the 

learning examples must be stored for classification of new instances since no model is 

derived. Thus, this method requires a lot of memory (Mirjalili & Raschka, 2017). It is also 

very sensitive to the scale of the data, which implies that data scaling is a good practice 

before applying the 𝑘-NN method. Table 6 below shows the pros and cons of k-NN method. 

Table 6: 𝑘-Nearest Neighbours – An Overview of Pros and Cons 

Pros: simple nonlinear algorithm, high accuracy, insensitive to outliers, assumption free 

approach 

Cons: computationally expensive, requires a lot of memory, sensitive to scale of the data, 

similarity defined solely on input variables  

Source: Harrington (2012). 

2.3.2.2 Decision (Classification) Trees 

Some applications require an insight into the underlying structure of the problem (i.e. 

interpretability) as well as good prediction performance for unseen data. Decision 

(classification18) tree is a ML method that can provide both and is therefore commonly used 

in the industry as it can produce quality decision making guidelines. DT is a non-parametric 

nonlinear supervised learning method that predicts the value of target variable by learning 

simple decision rules from training on learning examples. DT consists of internal nodes - 

corresponding to features, edges - corresponding to the possible feature values, and terminal 

nodes (leaves) that represent a discrete class label. Each tree starts with a single tree root 

 
18 This study focuses on the classification aspects of DT algorithm; that is why we can refer to the method as 

classification tress as opposed to regression tree analysis used in regression setting. 
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(topmost node) and ends with multiple leaves (Kononenko & Kukar, 2007; Beque & 

Lessmann, 2017). In between, the set of learning data is repeatedly split into new subsets so 

that children nodes have as large difference as possible in the sense of class representatives 

(binary distinction which gives the most information about the class). The process of 

recursive partitioning stops when certain “level of purity” is attained. Each terminal node 

(i.e. leaf) is then classified based on majority voting scheme into the set of possible classes 

(e.g. in our case 𝑦 ∈ {0, 1}). There are three important factors we need to consider when fitting 

a tree algorithm, namely, the splitting rule, the stopping rule, and class assignment 

decision. The last factor is the most straightforward to determine so we start with it. 

Normally, class is assigned to the terminal node based on the majority vote of the learning 

instances in the specific node. For the other two factors there exists multiple algorithmic 

implementations. Our further discussion is therefore based on the Python’s Scikit-Learn 

classification and regression tree library implementation. The most common splitting rules 

are ones that look one step ahead to determine the results of the proposed split. They try to 

find the best split for each feature in the dataset according to some measure of homogeneity 

of the target variable within the created subsets. Most libraries (including Scikit-Learn) 

implement binary DTs for the sake of simplicity and reduction in combinatorial search space 

(Thomas, Crook & Edelman, 2017). In this setting the algorithm tries to split the training set 

in two subsets using specific feature (denoted as 𝑝) and a threshold 𝑡𝑝. Then it searches for 

the pair (𝑝, 𝑡𝑝) that produces the purest subsets according to some impurity measure 𝐼 

weighted by their size as can be seen in the cost function for classification tasks in equation 

(9) where 𝑛 is the number of instances in subsets. Once the best split is determined, the 

algorithm recursively repeats the splitting at the new subsets, and sub-subsets until some 

stopping rule kicks in (Geron, 2017). 

 𝐽(𝑝, 𝑡𝑝) =
𝑛𝑙𝑒𝑓𝑡

𝑛
𝐼𝑙𝑒𝑓𝑡 +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑛
𝐼𝑟𝑖𝑔ℎ𝑡 (9) 

The three most common impurity measures are Gini impurity (𝐼𝐺), entropy (𝐼𝐻), and 

classification error (𝐼𝐸). In practice there is usually little difference in results among the three 

measures, so it is often not worth spending time experimenting with the selection of impurity 

criteria. The Scikit-Learn library uses Gini impurity as a default calculated for the case of 

two classes as follows in equation (10), where 𝑡 is the tree node and 𝑝(𝑖|𝑡) is the proportion 

of the samples that belong to class 𝑖 for particular node (Mirjalili & Raschka, 2017): 

 𝐼𝐺(𝑡) = ∑𝑝(𝑖|𝑡)(1 − 𝑝(𝑖|𝑡)) = 1 − ∑𝑝(𝑖|𝑡)2

2

𝑖=1

2

𝑖=1

 (10) 

DTs are often used in expert systems due to their simplicity, interpretability, and accuracy. 

However, they do have some limitations according to Geron (2017). Firstly, DTs usually 

produce orthogonal decision boundaries, which makes them sensitive to data rotation, and 

can produce instability. One way of dealing with this problem is via PCA. Secondly, trees 

are very sensitive to variations in training data, so each time we fit a tree different model 

may be produced. Additionally, as DTs make very few assumptions about the data resulting 
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trees will generally be too large which can lead to overfitting, that is why we need some 

stopping rule to prune it or constrain their size. This can be done via setting the maximum 

depth parameter or the minimum number of samples in the split, maximum number of leaf 

nodes, etc. There are also several algorithmic extensions that build on top of DTs such as RF 

method discussed in section 2.3.3.1. Table 7 below shows the pros and cons of DT method. 

Table 7: Decision Trees – An Overview of Pros and Cons 

Pros: nonlinear model, computationally cheap, interpretable results (i.e. “white box 

model”), can deal with missing values and irrelevant features (little data preparation) 

Cons: prone to overfitting, tree structure usually not very robust 

Source: Harrington (2012). 

2.3.2.3 Support Vector Machines 

First, we have to introduce some new notation to talk about the support vector machines 

classification. In section 2.3.1 where LR was discussed we used a convention that parameter 

vector 𝜽 includes the bias term as well as the input feature weights, i.e. the first column of 

design matrix 𝑿 is populated with ones. This and the next section where ANNs method is 

examined use a different convention, which is more common in ML culture. The bias term 

is denoted by 𝑏 and the feature weights vector 𝒘 includes only the input variable weights 

(i.e. 𝒘 = [𝑤1 𝑤2 ⋯ 𝑤𝑝−1 𝑤𝑝]𝑇). Additionally, the SVMs classifier directly predicts target 

variable 𝒚 taking values 1 and -1 for positive and negative class, respectively (i.e. 𝒚 ∈ {−1, 1}) 

(Geron, 2017; Beque & Lessmann, 2017).  

SVMs is a powerful learning algorithm developed by a Russian statistician Vladimir Vapnik 

in the 1990s. It is fundamentally different from other methods that construct a linear decision 

boundary to classify new data instances in the manner that SVMs produces the optimal linear 

separating hyperplane, as Haykin states: “Given a training sample, the support vector 

machine constructs a hyperplane as the decision surface in such a way that the margin of 

separation between positive and negative examples is maximized” (Haykin, 2009, p. 297). 

To put it differently we no longer minimize the misclassification errors, but rather the new 

objective becomes maximisation of the distance between the decision boundary and the 

training samples (i.e. instances) closest to this boundary. This can be presented in the Figure 

7 below19. We can therefore think of the SVMs as fitting the widest possible street between 

the classes. Once this street is fitted, we no longer require data instances that are “off the 

street”, since the decision boundary is fully determined (or “supported”) by the data 

instances (which can be thought of as vectors in a multidimensional feature space) located 

closest to the edge of the street. These instances are known as support vectors – hence the 

name. Since SVMs learns support vectors by heart to make predictions for unseen data this 

 
19 The graph on the left represents different decision boundaries that successfully discriminate between two 

classes. However, SVMs finds the decision boundary with the largest margin (right graph) – it is a large 

margin classifier.  
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method falls under the instance-based learning methods. The rationale behind the large 

margin classification is that normally the generalization performance is superior to the small 

margin classifiers that are more prone to overfitting (Geron, 2017). 

Figure 7: Linear Separation of Two Classes in Two-Dimensional Space Using SVMs 

 

Source: Adapted from Mirjalili and Raschka (2017). 

In order to develop some basic intuition behind SVMs, we only consider the linearly 

separable dataset first and introduce the “hard” margin classifier. This assumption is 

relaxed later to allow the SVMs to work on all kinds of data. Consider a training set of 𝑛 

instances {(𝒙(𝑖), 𝑦(𝑖))}
𝑖=1

𝑛
 similar than in LR case, where 𝒙(𝑖) is a column vector of 𝑝 features 

for each instance 𝑖, and 𝑦𝑖 takes values 1 for positive class (e.g. non-defaulted class) or -1 

for negative class (e.g. defaulted class). In line with our prior discussion we would like to 

construct a linear classifier with strong confidence of prediction (i.e. decision boundary with 

the largest margin between positive and negative class). The correct classification of positive 

(11) and negative (12) examples by large margin classifier can be described by two “hard” 

constraints: 

 𝒘𝑇𝒙+
(𝑖)

+ 𝑏 ≥ 1 (11)  

 𝒘𝑇𝒙−
(𝑖) + 𝑏 ≤ −1 (12) 

Thus, if we can derive the optimal values of 𝒘 and 𝑏 under given constraints (i.e. optimal 

separating hyperplane) we could classify new data instances by finding the sign of 

expression (𝒘𝑇𝒙(𝑖) + 𝑏); if the sign is greater or equal to 0 the instance belongs to positive 

class and vice-versa (Fletcher, 2008; Thomas, Crook & Edelman, 2017). Having the classes 

defined as -1 and 1 is mathematically convenient since we can rewrite the upper constraints 

with respect to the 𝑖𝑡ℎ training example using single equation (13) that is independent of the 

instance class due to multiplication with respective label 𝑦(𝑖). For example, if we have a 

positive instance, then we require (𝒘𝑇𝒙+
(𝑖)

+ 𝑏) to be a large positive number in order to have 

a correct and confident prediction. Conversely, in the case of negative example, the (𝒘𝑇𝒙−
(𝑖) +

𝑏) must be a large negative number so that we get a positive number after multiplication with 

Which hyperplane? The largest margin hyperplane 

𝛾 =
1

ԡ𝒘ԡ
 

𝒘𝑇𝒙+
(𝑖)

+ 𝑏 = 1 𝒘𝑇𝒙−
(𝑖) + 𝑏 = −1 

𝒘𝑇𝒙(𝑖) + 𝑏 = 0 
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 Class -1 instance 

 Supporting hyperplane 

 Largest margin hyperplane 
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-1. In both cases constraint (13) thus represents confident and correct prediction of the 

classifier (Ng, 2018).  

 𝑦(𝑖)(𝒘𝑇𝒙(𝑖) + 𝑏) ≥ 1 ∀𝑖  (13) 

As previously said the goal of the SVMs is to find the largest possible orthogonal distance 

between the closest instances (i.e. support vectors) and the separating hyperplane. This 

distance is known as the margin 𝛾 and is fully determined by the negative and positive 

hyperplanes which are in turn described by support vectors as represented in equations (14) 

and (15). 

 𝒘𝑇𝒙+
(𝑖)

+ 𝑏 = 1 (14)  

 𝒘𝑇𝒙−
(𝑖) + 𝑏 = −1 (15) 

If we subtract the upper two linear equations and normalize the derived expression by the 

length of vector 𝒘 defined as ԡ𝒘ԡ = √∑ 𝑤𝑗
2𝑝

𝑗=1  to prevent unmeaningful scaling of the margin 

we arrive at the expression (16) for the so-called margin which equals 1 ԡ𝒘ԡ⁄  (Mirjalili & 

Raschka, 2017).  

 𝒘𝑇(𝒙+
(𝑖) − 𝒙−

(𝑖)) = 2  

 
𝒘𝑇(𝒙+

(𝑖) − 𝒙−
(𝑖))

ԡ𝒘ԡ
=

2

ԡ𝒘ԡ
  

 2𝛾 =
2

ԡ𝒘ԡ
 ⇒  𝛾 =

1

ԡ𝒘ԡ
  (16) 

The maximization of the margin basically boils down to “minimizing the Euclidean norm of 

the weight vector 𝒘” (Haykin, 2009, p. 300). Additionally, minimizing ԡ𝒘ԡ is equivalent to 

minimizing 
1

2
ԡ𝒘ԡ2. The later form enables us to apply quadratic programming optimization 

later on as well as the Lagrangian method20. 

The discussion on SVMs was thus far based on a restrictive assumption that the dataset is 

linearly separable. In real life applications we usually deal with data that exhibit linearly 

nonseparable patterns, so we cannot construct a separating hyperplane without any 

misclassification errors. That is why we have to reformulate our “hard” margin classifier in 

a way that allows for the violations of the constraint given in (13) for data instances that fall 

inside the region of separation or fall on the wrong side of the decision boundary (i.e. 

misclassification). To make SVMs algorithm less sensitive to such outliers we introduce new 

variables into the constraints, namely slack variables denoted as {𝜉(𝑖)}
𝑖=1

𝑛
 that measure the 

 
20 For a better understanding of the SVMs please refer to the first part of the Appendix 5, where we provide a 

derivation of the “hard” margin classifier. The main insight is that the optimal 𝒘 vector is defined solely in 

terms of the training examples (i.e. support vectors), which is crucial for the application of kernel trick 

discussed later. 
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deviation of an instance to the ideal classification in case of linear separability. Slack 

variables relax the “hard margin” assumptions since they permit for some linearly 

inseparable instances to have margin smaller than 1; hence we talk about “soft” margin 

SVMs. New constraints for positive and negative examples are given below (Haykin, 2009). 

 𝒘𝑇𝒙+
(𝑖)

+ 𝑏 ≥ 1 − 𝜉(𝑖) (17)  

 𝒘𝑇𝒙−
(𝑖) + 𝑏 ≤ −1 − 𝜉(𝑖) (18) 

In a similar manner as before the constraints can be rewritten into one equation as follows: 

𝑦(𝒊)(𝒘𝑇𝒙(𝑖) + 𝑏) ≥ 1 − 𝜉(𝑖). The new objective function therefore takes in the account finding 

the largest possible “soft” margin for the separating hyperplane as well as the minimisation 

of the misclassification error averaged over the learning set. To solve the quadratic 

optimization problem defined in the second part of Appendix 5 Platt’s Sequential Minimal 

Optimization (SMO) method is used (Harrington, 2012). Once 𝛂’s for some subset of 

training are derived we can easily compute the optimal set of weights 𝒘𝑜 = ∑ 𝛼𝑖𝑦
(𝑖)𝒙(𝑖)𝑛

𝑖=1 . 

Multipliers 𝛼𝑖 are weights that determine which data instances contribute to the calculation 

of optimal margin. Those instance that do are referred to as support vectors. Having found 

the optimal weights, the calculation of the biased term using the constraint for support 

vectors is straightforward. Usually, the bias terms over all support vectors from 𝑖 = 1 

through to 𝑛𝑠 are averaged to get a more stable value: 

 𝑏𝑜 =
1

𝑛𝑠
∑ (𝑦(𝑖) − 𝒘𝑜𝑇𝒙(𝑖))

𝑛𝑠
𝑖=1 . (19) 

Given optimal solutions 𝒘𝑜 , 𝑏𝑜 the decision function to determine the class of new instance 

𝒙∗ may be written as follows (Hastie, Tibshirani & Friedman, 2017): 

 𝑦∗ = 𝑠𝑖𝑔𝑛(𝒘𝑜𝑇𝒙∗ + 𝑏𝑜) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖
𝑜𝑦(𝑖)𝒙(𝑖) ∙ 𝒙∗

𝑛

𝑖=1
+ 𝑏𝑜) (20) 

There is one more extension of the SVMs that makes the method highly popular among the 

ML practitioners – kernel methods. If we rewrite the decision function using the equation 

for optimal value of weights as in (20) we find that the term depends only on the optimal 

alphas (which also determine the bias) and the inner product between new data instance and 

the support vectors. Furthermore, the optimization of alphas requires only the dot product of 

input vectors to be calculated (as seen in Appendix 5). This property of the SVMs algorithm 

(i.e. dependence on the inner products between input features) can be exploited to efficiently 

apply specific kernels and hence solve nonlinear classification problems (Ng, 2018). Kernel 

methods basically create nonlinear combinations of the original variables (e.g. similar to 

adding polynomial features in regression) in a higher-dimensional space using a mapping 

function usually denoted as 𝜙(∙). Such transformation allows us to linearly separate the 

classes using SVMs linear hyperplane. There is one issue that comes to our mind when 

discussing kernels, namely the construction of nonlinear combinations seems 

computationally very expensive. Fortunately, the SVMs optimization algorithm depends 

solely on the inner products as discussed, so we can simply replace all 𝒙 with 𝜙(𝒙) to get 
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inner products formulated as 𝜙(𝒙(𝑖)) ∙ 𝜙(𝒙(𝑗)). Then given a certain mapping function we can 

define kernel function 𝐾(∙) to be 

 𝐾(𝒙(𝑖), 𝒙(𝑗)) = 𝜙(𝒙(𝑖))
𝑇
𝜙(𝒙(𝑗)). (21) 

Every inner product is thus replaced by 𝐾(𝒙(𝑖), 𝒙(𝑗)) so that the SVMs is learning in the 

transformed feature space (Mirjalili & Raschka, 2017). “In ML, a kernel is a function capable 

of computing the dot product 𝜙(𝒙(𝑖)) ∙ 𝜙(𝒙(𝑗)) based only on the original vectors 𝒙(𝑖) and 𝒙(𝑗), 

without having to compute (or know about) the transformation 𝜙(∙)” (Geron, 2017, p. 164). 

Such functions 𝐾(∙) enable optimization which massively reduces the computational burden. 

The approach is therefore called “kernel trick”. The popular choices for 𝐾(∙) in the SVMs 

literature are linear, polynomial, and Gaussian RBF kernel. These kernels can be intuitively 

thought of as similarity functions between a pair of instances. For example, Gaussian kernel 

can be defined as 𝐾(𝒙(𝑖), 𝒙(𝑗)) = 𝑒𝑥𝑝 (−𝛾‖𝒙(𝑖) − 𝒙(𝑗)‖
2
) where 𝛾 = 1

2𝜎2⁄ is free parameter to be 

optimized. The minus converts the distance measure into similarity score and the exponential 

term maps the score into range between 1 (similar instances) and 0 (dissimilar instances) 

(Mirjalili & Raschka, 2017). How do we generally know which kernels are admissible to use 

in SVM? According to Mercer’s theorem they must follow certain mathematical conditions 

(i.e. 𝐾(∙) is continuous, symmetric in its arguments, etc.). When the conditions are met, we 

can use 𝐾(∙) as we know 𝜙(∙) exists even though we do not know what it is (Geron, 2017; 

Crone, Lessmann & Stahlbock, 2006). Table 8 below shows the pros and cons of SVMs 

method. 

Table 8: Support Vector Machines – An Overview of Pros and Cons 

Pros: low generalization error, computationally inexpensive in linear setting, easy to 

implement, yields global optimal solution  

Cons: sensitive to tuning hyper-parameters and kernel choice, kernel SVM 

computationally expensive  

Source: Harrington (2012). 

2.3.2.4  Artificial Neural Networks 

Methods discussed so far fall under the scope of “shallow” ML (i.e. methods that have one 

or at most a couple of hidden layers). This section covers the concept of “deep” artificial 

neural networks with many hidden layers that enable automatic feature engineering as well 

as hierarchical learning of complex mapping functions. ANNs were first introduced in the 

late 1940s and have since witnessed several waves of enthusiasm and disappointments. 

Currently ANNs enjoy a lot of attention due to their ability to efficiently tackle real-world 

problems, which was enabled thanks to some major breakthroughs in the previous decade 

(Geron, 2017).  

The basic idea behind the ANNs is to simulate the learning mechanism of biological 

organisms, where electrical signals containing information travel across the nervous system 
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composed of neurons, i.e. cell bodies with many branching extensions. When a neuron gets 

enough signals from other neurons via synaptic connections it fires up and transmits the 

stimuli forward. The human brain has around 10 billion of such neurons, and when these 

“simple” biological units work as a part of a wider network complex information processing 

(i.e. learning) can be performed. Analogous to the biological neural network an ANNs 

compute a function of the input signals (𝑝 features) by propagating the computed values via 

the multilayer network (i.e. hidden layers of artificial neurons) to the output neuron(s). In 

such setting learning occurs by changing the weights connecting the artificial neurons. In 

order to improve the performance a sufficient number of learning examples {(𝒙(𝑖), 𝑦(𝑖))}
𝑖=1

𝑛
 

must be provided to the ANNs. Training data thus serves as a feedback to the correctness of 

the weights depending on how well the network predicts the output label given the pre-

specified label 𝑦(𝑖) (supervised learning). By successfully adjusting the weights between 

neurons in each training iteration good model generalization may be achieved. Hence the 

deep learners’ attractiveness increases with the amount of training instances (Aggarwal, 

2018; Beque & Lessmann, 2017; Geron, 2017; Thomas, Crook & Edelman, 2017). 

The biological comparison is sometimes criticised due to ANNs being a very simple 

architecture compared to the real workings of the human nervous system. Therefore 

Aggarwal (2018, p. 2) looks at the neural networks as “higher-level abstractions of the 

classical models.” This view is in line with our discussion of the LR method. We said that 

LR can be thought of as an artificial neuron or unit. ANNs gain their power by simply 

“putting together these basic units, and learning the weights of different units jointly in order 

to minimize the prediction error ... By combining multiple units, one is increasing the power 

of the model to learn more complicated functions of the data than are inherent in the 

elementary models of basic machine learning” (Aggarwal, 2018, p. 2). In order to understand 

the architecture of a multilayer ANNs we must first look at the basic structure of an artificial 

neuron also known as the perceptron. Perceptron computes a weighted sum of inputs and 

applies a specific activation function 𝑔(∙) to that sum resulting in a neuron’s activation (or 

output signal) as seen in Figure 8 (Aggarwal, 2018). 

 

Source: Adapted from Aggarwal (2018). 

Figure 8: The Basic Structure of Perceptron 
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In the case of a single-layer ANNs, input signal 𝒂[𝑙=0],(𝑖) (where 𝑙 stands for the hidden layer 

number, i.e. 0 in this case) represents the input feature vector 𝒙(𝑖) and 𝑎[𝐿=1],(𝑖) (where 𝐿 is 

the number of ANNs layers, i.e. 1 layer) the predicted value 𝑦̂(𝑖) for the 𝑖-th data instance. 

The choice of activation function that transforms the linear sum of input features plays an 

important role in network’s ability to learn new (complex) features. It is desired that such 

functions exhibit certain characteristics such as non-linearity, smoothness, as well as 

differentiability as we see later. Additionally, the choice of specific activation function also 

depends on the final output we would like to compute, e.g. if the target variable is real, then 

linear function is applicable, which makes perceptron the same as the least-square 

regression. On the other hand, if class probability needs to be calculated, sigmoid function 

is the right choice as in LR. The hyperbolic tangent function is preferred to the sigmoid, 

when output needs to be both negative and positive. Commonly used activation functions in 

applied ML are linear (i.e. identity), ReLU, sigmoid, hyperbolic tangent, and hard hyperbolic 

tangent functions (Aggarwal, 2018).  

Stacking together multiple perceptrons into a feedforward neural network architecture 

generalizes the concept to the so-called multilayer ANNs also referred to as multilayer 

perceptron, that consists of multiple “hidden” layers placed in-between the input layer 𝒙(𝑖) 

(i.e. 𝒂[𝑙=0](𝑖)) and the output layer 𝒂[𝑙=𝐿](𝑖). From the output layer we can derive the predicted 

value 𝑦̂(𝑖) and compute the value of a prespecified loss function. Each hidden neuron in layer 

𝑙 individually computes a transformed weighted sum of the inputs (i.e. signals from the 

neurons in previous layer (𝑙 − 1) denoted as 𝒂[𝑙−1](𝑖)) and outputs the activation signal 

𝑎[𝑙](𝑖). The outputs from all neurons in layer 𝑙, denoted as a vector 𝒂[𝑙](𝑖), then become inputs 

for the neurons in the next layer (𝑙 + 1) and similarly for other layers. Generally, we can 

write the output of layer 𝑙 in vectorized form as 

 𝒂[𝑙](𝑖) = 𝑔(𝑾[𝑙]𝒂[𝑙−1](𝑖) + 𝒃[𝑙]), (22) 

where 𝑾[𝑙] is now a weight matrix connecting neurons from layer (𝑙 − 1) to 𝑙, 𝒃[𝑙] a bias 

vector, 𝒂[0](𝑖) = 𝒙(𝑖), and 𝑎[𝐿](𝑖) = 𝑦̂(𝑖) (Ng & Katanforoosh, 2019; Thomas, Crook & 

Edelman, 2017). The described process of feeding the patterns of the training data through 

the network is known as forward propagation. Based on some random parameter 

initialization we can compute the network’s predictions and compare them to the correct 

labels using some predefined loss function. Loss function thus plays an integral part of the 

learning - there exist various forms of loss functions depending on the problem type; e.g. for 

classification model whose output is a probability in the set {0, 1} the binary cross-entropy 

loss is typically employed, which is analogous to the cost function we used in the case of LR 

(Brownlee, 2019) and may be mathematically expressed as follows: 

 ℒ(𝑖)(𝑾, 𝒃) = −[y(𝑖)𝑙𝑛(𝑎[𝐿](𝑖)) + (1 − y(𝑖))𝑙𝑛(1 − 𝑎[𝐿](𝑖))]. (23) 

The goal of each training iteration is to minimize this composite loss function with respect 

to all parameters in the multilayer network using complex multivariable continuous 
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optimization. In the early years, efficient methods to adjust the parameters were not known, 

therefore ANNs stayed in the shadow of other ML methods. The first significant 

breakthrough was proposed by Hinton, Rumelhart, and Williams (1968) in the famous article 

titled “Learning Representations by Back-propagating Errors”, where they formulated the 

backpropagation algorithm. With several computational, stability, and overfitting related 

advancements through the years it still remains the most widely used ANNs training 

algorithm. In essence, backpropagation can be thought of as a very efficient way of 

computing partial derivatives of a composite loss function by using the multivariate chain 

rule of differential calculus and dynamic programming to help us learn the weight 

coefficients of the network (Aggarwal, 2018). For each training instance the algorithm takes 

the output error ℒ (𝑖)(𝑾, 𝒃) computed in the forward phase and reversely determines the 

error contributions from each neuron in the network by measuring the respective gradients 

in the backward phase. The analytical form of gradients 𝜕ℒ (𝑖)(𝑾, 𝒃) 𝜕𝑾[𝑙]⁄  and 𝜕ℒ (𝑖)(𝑾, 𝒃) 𝜕𝒃[𝑙]⁄  

depends on the specific choice of activation and cost function, that is why it is important that 

such functions are well-behaved as already mentioned. Derived gradients are used to update 

the parameters using continuous optimization strategy such as simple stochastic gradient 

descent in the following way, where 𝛼 is the learning rate (Ng, 2019): 

 

𝑾[𝑙] ≔ 𝑾[𝑙] − 𝛼 ∗ 𝜕ℒ (𝑖)(𝑾, 𝒃) 𝜕𝑾[𝑙]⁄ , 

 

𝒃[𝑙] ≔ 𝒃[𝑙] − 𝛼 ∗ 𝜕ℒ (𝑖)(𝑾, 𝒃) 𝜕𝒃[𝑙]⁄ . 

(24) 

In practice mini-batch stochastic gradient descent is usually used as it aggregates the 

individual ℒ (𝑖)(𝑾, 𝒃) that are too noisy for efficient training; aggregation is done as follows: 

𝐽𝑀𝐵(𝑾, 𝒃) =
1

𝐵
∑ ℒ (𝑖)(𝑾, 𝒃)𝐵

𝑖=1 , where 𝐵 is the number of examples in the mini-batch. The 

gradients with respect to the cost function 𝐽𝑀𝐵(𝑾, 𝒃) are then as follows: 𝜕𝐽𝑀𝐵(𝑾, 𝒃) 𝜕𝑾[𝑙]⁄  

and 𝜕𝐽𝑀𝐵(𝑾, 𝒃) 𝜕𝒃[𝑙]⁄ . Such implementation requires the equation (22) to be vectorized over 

the 𝐵 training examples, as well. The outputs from a specific layer thus become matrices 

instead of vectors, and forward propagation performs the multiplication of the weight matrix 

with the activation matrix as follows: 

 𝑨[𝑙] = 𝑔(𝑾[𝑙]𝑨[𝑙−1] + 𝒃[𝑙]), (25) 

where 𝑨[𝑙] is now layer’s 𝑙 activation matrix. In the last decade several optimisation methods 

have been proposed that build on commonly used gradient descent method. It has been 

shown that selection of the optimisation method influences the quality of learning. Therefore 

we spend some time in the Appendix 7 to briefly examine the most common gradient-descent 

strategies implemented in real-world applications such as RMSProp, AdaDelta, Adam 

(Aggarwal, 2018; Mirjalili & Raschka, 2017).  

The above description of backpropagation is of course somehow simplified, and actual 

implementation usually requires additional adjustments to make the learning algorithm more 

efficient and stable. The purpose of this study is however not the detailed discussion of such 

adjustments. Therefore, we rather present some practical issues in training the ANNs in  
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Appendix 621. Table 9 below shows the pros and cons of ANNs method. 

Table 9: Artificial Neural Networks – An Overview of Pros and Cons 

Pros: automated feature engineering, extremely flexible algorithm (nonlinearity), 

scalability, good generalization ability 

Cons: non-convex loss function with multiple local minimums, a number of 

hyperparameters to tune, sensitive to feature scaling 

Source: Ravi Kumar and Ravi (2006). 

2.3.3 Ensemble Methods 

When we were discussing guideline principles to search for the optimal model in the infinite 

hypothesis space the multiple explanations principle was mentioned. It states that all 

hypothesis that are consistent with the input data are to be kept, which basically provides 

motivation for an interesting topic of ensemble methods that combine multiple base learners 

into a meta-learner. Besides DL, ensemble learning has attracted a lot of attention due to its 

recent success in Kaggle competitions. The goal of ensemble methods is to achieve higher 

generalization performance than each individual learner by boosting weak learners into a 

strong meta-learner. Most generally we can divide the methods into two groups: (i) 

homogenous ensembles that employ learners of the same type, and (ii) heterogenous 

ensembles that use different learning algorithms (Zhou, 2012). More applied categorization 

splits ensemble methods into basic and advanced ensemble techniques. Basic ensemble 

techniques include majority voting and weighted majority voting, that simply outputs the 

class that has been predicted by majority of classifiers (weighted by some factors if 

necessary). It is somewhat surprisingly that even these simple approach to ensembles 

generally achieves higher performance than the single best learner. Even if the base learners 

are weak (i.e. slightly better than random guessing), the meta-learner can achieve high 

accuracy provided that the base learners are diverse and independent of each other. In case 

the learners in the ensemble have different accuracy, it is reasonable to employ the weighted 

majority voting (i.e. give more weight to the more competent learner).  

The prediction for the new instance 𝑦∗ can be written n mathematical terms as follows in the 

equation (26) below: 

 

 𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ∑ 𝑤𝑗

𝑚

𝑗=1
𝜒𝐴(𝐿𝑗(𝒙) = 𝑖) (26) 

 
21 Additionally, our discussion of ANNs was limited to the conventional fully connected feed-forward deep 

ANNs. For the sake of completeness, we would like to stress out that other ANNs architectures exist, such as 

radial basis function networks, restricted Boltzman machines, recurrent neural networks, and convolutional 

ANNs. However, discussion of these concepts is beyond the scope of this study. 
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Here, 𝑤𝑗 is the weight associated with a base classifier 𝐿𝑗, 𝜒𝐴 is the indicator function and 𝐴 

the set of unique classes. If weights are equal than the formula boils down to a simple 

majority voting (Kuncheva, 2004; Mirjalili & Raschka, 2017). 

Advanced ensemble techniques can be further divided into two groups, namely (i) 

sequential ensemble methods, and (ii) parallel ensemble methods in accordance to how base 

learners are generated. In sequential methods base learners are generated sequentially and 

try to exploit the dependence between one another in a way to boost overall performance 

and reduce bias of weak base learners (e.g. boosting). On the other side the basic motivation 

of parallel ensemble methods is to exploit independence between base learners to reduce 

variance of predictions (e.g. bagging) (Smolyakov, 2017). Bagging was introduced by 

Breiman (2001b) and stands for bootstrap aggregating which suggest a two-step process, i.e. 

bootstrapping the training set into more random subsamples and aggregating the learners’ 

predictions using majority vote. The diversity necessary to create more independent learners 

thus comes from using different training subsamples. Bagging can significantly reduce the 

variance of an unstable learner. RF is the most used bagging technique that is built upon a 

DT classifier and is discussed in the next section. Boosting as a sequential method tries to 

boost weak learners by sequentially correcting the mistakes of earlier learners by focusing 

more on the prior mistakes (increasing their weights during training). As discussed by 

Breiman boosting can therefore attack both, the high bias and/or variance. The most common 

implementation of boosting in ML applications is Adaptive boosting or AdaBoost algorithm 

discussed (Kuncheva, 2004; Zhou, 2012). Bagging and boosting are so-called homogenous 

ensemble methods. Additionally, we can use multiple learners to build an ensemble for the 

problem at hand. The base level models are first trained on the whole dataset, then a meta-

classifier is stacked and trained on top of them. We refer to this as stacking (Smolyakov, 

2017). 

2.3.3.1 Random Forest 

As discussed in the previous section bagging is a technique that can significantly reduce the 

variance of the prediction function; that is especially true for the high-variance, low-bias 

classifiers such as DTs presented in section 2.3.2.2. Breiman (2001b) thus introduced an 

ensemble method that combines a large collection of tree predictors {𝐿𝑖}𝑖=1
𝑁 , where each tree 

depends on a randomly sampled input vector from original dataset. This results in a greater 

diversity among predictors - an essential component to achieve higher performance. Breiman 

proved that the average accuracy of a tree ensemble relates to the correlation 𝜌 between the 

predictors (i.e. trees). The lower the correlation the higher the generalization ability. That is 

why random forest method consist of an additional procedure that tries to lower 𝜌, namely 

instead of selecting all variables to split on, RF algorithm randomly picks a subset of 

variables for each tree. After a large number of trees are trained, they vote for the most 

popular class. It has been proved that the generalization error of RF converges to a limit as 

the number of trees grows and is therefore comparable to the AdaBoost ensemble algorithm 
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discussed in the next section (Breiman, 2001b; He, Zhang & Zhang, 2018; Thomas, Crook 

& Edelman, 2017). 

The algorithm for RF application is as follows (Hastie, Tibshirani & Friedman, 2017): 

(i) for 𝑖 = 1 to 𝑁: 

a) draw a bootstrap sample of predetermined size from the training data; 

b) grow a RF tree 𝐿𝑖 to the bootstrapped data, by repeating the following steps for each 

terminal node of the tree: select 𝑚 variables at random from all available input 

variables 𝑝, pick the best split variable among the 𝑚, and split the node into two 

daughter nodes; 

(ii) output the ensemble of trees {𝐿𝑖}𝑖=1
𝑁 ; 

(iii) use majority vote principle to output a prediction for the new point. 

 

There are generally three parameters that need to be chosen by the modeler: number of the 

trees 𝑁, the size of each sample, and the number of variables at each node 𝑚. Usually sample 

sizes of up to two-thirds of the original dataset are taken, whereas the number of variables is 

suggested to be equal to 𝑚 = √𝑝. The number of trees trained is usually tuned using CV 

(Thomas, Crook & Edelman, 2017). Table 10 below shows the pros and cons of RF method. 

Table 10: Random Forest – An Overview of Pros and Cons 

Pros: low generalization error (does not overfit), relatively robust to outliers and noise, 

extremely flexible (nonlinearity), easily parallelized, easily measurable feature importance  

Cons: requires more computational resources 

Source: Breiman (2001b); He, Zhang, and Zhang (2018). 

2.3.3.2 AdaBoost Meta-Algorithm 

Another popular approach to ensemble learning is boosting. In 1995 Freund and Schapire 

(1999) introduced the AdaBoost algorithm, that has since become one of the most used 

ensemble methods since it can consequently lead to a decrease in bias as well as variance 

and significantly increases the generalization performance. AdaBoost stands for adaptive 

boosting as the algorithm tries to adaptively correct the misclassifications of earlier base 

learners (also referred to as weak learners). This is carried out via reweighting of the training 

instances in each round. The misclassified training instances are assigned greater weight and 

thus given more importance in the next round of learning. Assuming 𝐿 boosting rounds the 

resulting 𝐿 weak learners trained on different reweighted training subsets are then combined 

using majority voting (Mirjalili & Raschka, 2017).  

Using pseudo code, the AdaBoost algorithm can be summarized in following steps 

(Kuncheva, 2004): 

(i) initialize the weight vector 𝒘 to uniform weights such that ∑ 𝑤𝑖 = 1𝑖  and pick 𝐿, the 

number of learners to train; 
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(ii) for 𝑗 = 1,… , 𝐿: 

a) train a weighted weak learner 𝐿𝑗 using {𝑿, 𝒚,𝒘} where 𝒚 ∈ {−1, 1}; 

b) predict class labels 𝒚̂ for 𝑿 given 𝐿𝑗; 

c) calculate weighted error rate at step 𝑗 as 𝜖𝑗 = ∑ 𝑤𝑗
(𝑖)𝑁

𝑖=1 𝑙𝑗
(𝑖) where 𝑙𝑗

(𝑖)
 is 1 for 

misclassified instances and 0 otherwise; 

d) compute the confidence coefficient 𝛼𝑗 =
1

2
𝑙𝑛 (

1−𝜖𝑗

𝜖𝑗
); 

e) update the individual weights as follows 𝒘 ∶= 𝒘 ∗ 𝑒−(𝛼𝑗∗𝒚
𝑇𝒚̂). If a prediction is correct 

than there will be positive sign and the corresponding weight is reduced, in the case 

of misclassification the weight is increased;  

f) normalize the updated weights to sum to 1: 𝒘 ∶= 𝒘
∑ 𝑤𝑖𝑖

⁄ ; 

(iii) compute the prediction for new data instance: 𝒚∗ = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑗𝐿𝑗
𝐿
𝑗=1 (𝒙∗)). 

AdaBoost is frequently referred to as meta-algorithm22 as it is used in conjunction with other 

ML algorithms. As such it overcomes the disadvantages of individual learners, but also 

presents some new challenges as seen in the Table 11 below. 

Table 11: AdaBoost Algorithm – An Overview of Pros and Cons 

Pros: low generalization error, few parameters to tune, performs very well with most 

classifiers in practice, efficient in case of imbalanced datasets 

Cons: cannot be parallelized due to sequential learning process, sensitive to outliers and 

noise  

Source: He, Zhang, and Zhang (2018); Nikolaou (2018). 

Another boosting ensemble method we use is known as the gradient boosting algorithm. 

It is similar to the AdaBoost but trains on the remaining errors to derive strong classifier. 

We implement it due to its recent popularity on Kaggle competitions.  

2.4 Measuring Model Performance 

Section 2.3 outlined a number of classification methods for quantitative CS. The question to 

ask at this point is therefore, which method is the best from the perspective of results related 

criteria, i.e. which method provides higher prediction performance? It is important to note 

one more time at this point that prediction performance is only one of the criteria used for 

selecting specific model. Sometimes results transparency might be of higher importance for 

the purpose of making informed business decisions; hence models with transparent results 

are preferred to more accurate “black-box” methods such as SVMs and ANNs23.  

 
22 In this context meta-algorithm is an algorithm that combines a set of non-meta methods; i.e. in our case it 

sequentially combines base ML methods’ outputs in order to achieve lower generalization error. 
23 There are some other data related as well as tool’s properties related criteria discussed at the beginning of 

section 2.3. However, once these criteria are accounted for and the set of appropriate methods is picked it is 

essential to be able to compare their generalization performance – the topic of this chapter. 
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The process of evaluating methods’ prediction performance is commonly referred to as 

model evaluation. It is good practice in ML to assess the model quality on a separate test 

set, which provides a less biased and more reliable performance estimate of a real-world 

functioning of the selected model on the unseen data (i.e. generalization ability); in statistics 

this process is known as out-of-sample testing. Setting the hyperparameters of algorithms 

should therefore be performed ahead on a separate validation set, which is a part of training 

set. This ensures the obtained performance is realistic (Kononenko & Kukar, 2007). This 

section reviews performance measures used in classification tasks as in our case. One of the 

most commonly used metrics to quantify the performance of a model is classification 

accuracy defined as the proportion of correctly classified test instances. However, 

evaluating the classifier solely based on high accuracy may be misleading, which is why 

dummy classifiers are usually employed to provide a “baseline” performance or the lower 

bound. This is determined by simply predicting the majority class for each instance in the 

test set estimated based on the training set. When we deal with highly imbalanced data (e.g. 

90% of positive class) dummy classifier alone would achieve accuracy of 90%. This 

demonstrates why accuracy is not a preferred performance metric in such setting (Geron, 

2017; Mirjalili & Raschka, 2017). Thus, it makes sense to focus on other performance 

metrics when evaluating and comparing a set of models. The rest of this section therefore 

introduces the following performance metrics: confusion matrix, precision, sensitivity, 

specificity, average precision, receiver operating characteristic (hereinafter: ROC) curve and 

related AUROC as well as H-measure. Note that the positive class represents defaulted 

customers, whereas the negative class represents non-defaulted customers. 

(i) Confusion matrix: if one is interested in a classification accuracy for each class then 

misclassification (confusion) matrix provides additional information. Each row in the 

matrix represents an actual class, while each column represents a predicted class. For 

binary classification task a 2 𝑥 2 confusion matrix reports four separate counts for a 

given cut-off value as follows: True positives - TP (i.e. the number of positive cases 

correctly predicted as positive), False positives - FP (i.e. the number of negative cases 

incorrectly predicted as positive), True negatives - TN (i.e. the number of negative cases 

correctly predicted as negative), and lastly False negatives - FN (i.e. the number of 

positive cases incorrectly predicted as negatives). The “best” model may therefore be 

regarded as the one where the diagonal true cases (i.e. TP and TN) are maximized or 

off-diagonal false ones (i.e. FP and FN) minimized (Mirjalili & Raschka, 2017; Siddiqi, 

2017). Off-diagonal elements can also be referred to as type I and II error. Type I error 

represents the number of negative cases incorrectly predicted as positive (i.e. the error 

associated with granting a nonperforming account) and is identical to the FP number in 

the confusion matrix, whereas FN related type II error depicts the positive class 

mispredicted as negative (i.e. the error associated with opportunity costs of not 

accepting a performing account). These errors provide us with specific threshold-based 

assessment of the correctness of categorial prediction (Garcia, Marques & Sanchez, 

2018).  
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(ii) Precision, sensitivity and specificity: in the imbalanced dataset case it is usually 

preferred to look at the specific distribution of the classification accuracy rather than 

average accuracy as discussed before. Metrics to employ in such setting are precision, 

sensitivity, and specificity, all derived from the confusion matrix (and therefore related 

to the previously defined errors). The first calculates how precise our model is in 

detecting positive instances, the second calculates the share of the correctly classified 

positive instances, and the latter calculates the relative frequency of correctly classified 

negative instances (Kononenko & Kukar, 2007; Mirjalili & Raschka, 2017). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
             𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (27) 

In the customer default probability task, a sensitivity of 0.85 and specificity of 0.95 

would imply that if a customer is defaulted, then the test will confirm the true state with 

probability 0.85. In case the customer is not defaulted, the test will wrongly proclaim 

the customer as defaulted with probability 0.005. Note that this corresponds to the notion 

of classifier’s precision; when there is high sensitivity the classifier rarely overlooks an 

actual positive (low type II error) and vice-versa for high specificity (low type I error) 

(Kononenko & Kukar, 2007). 

(iii) Average precision: the relationship between the precision and recall (i.e. sensitivity) 

can be observed in the stairstep area of the plot. Average precision summarizes such 

plot as the weighted mean of precisions achieved at each threshold, with the increase in 

recall from the previous threshold used as a weight (Geron, 2017). This is calculated 

using the formula below, where 𝑛 represents the thresholds. 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ∑(𝑅𝑒𝑐𝑎𝑙𝑙𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑛−1) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛

𝑛

 (28) 

 

(iv) Receiver operating characteristics (hereinafter: ROC) curve and AUROC: upper 

performance measures apart from average precision are all based on indirect 

minimization of type I and type II errors for an arbitrary chosen cut-off point. When 

searching for an optimal classifier we are interested in the whole range of possible cut-

off points (i.e. thresholds) and corresponding relation between sensitivity and 

specificity. The ROC curve is one of the most widely used methods that displays this 

relation in a graph without any regard to class distribution or misclassification costs. On 

a horizonal axis it tracks the FP rate (i.e. 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦), whereas on the vertical axis 

we have a TP rate (i.e. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦). The ROC curve thus displays how the number of TP 

varies with the number of FP. By changing the threshold, we get the set of points in the 

ROC space. The point (0, 0) means that all instances are classified as negative; this 

gives us sensitivity of 0.0 and specificity of 1.0. On the other hand, the threshold 1.0 

means that all instances are classified as positive, which gives sensitivity of 1.0 and 

specificity of 0.0 at the top right corner point (1, 1) on the graph. The diagonal 

connecting both points characterises a random classifier. Useful classifiers are the ones 

above the diagonal. An ideal classifier is represented by point (0, 1) in the top left 
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corner. The ROC curve for a given classifier is plotted by extrapolation of points that 

basically represent the confusion matrices at different thresholds. When comparing two 

or more classifiers the one that is always further from the diagonal dominates. In practice 

it is usually the case that the respective ROC curves cross, which means that one 

classifier is better in one region and the other is better in the other region. In such case 

it is useful to calculate the quality of the classifier via the area under the ROC curve; 

the classifier with the largest AUROC is the best one. AUROC varies from 0.5 to 1 with 

the former representing a completely random (i.e. dummy) classifier and the latter 

representing a perfect classifier. It can be thought of as the probability that the classifier 

ranks a randomly chosen positive instance higher than a randomly chosen negative 

instance (Jackson & Wood, 2013; Kononenko & Kukar, 2007; Thomas, Crook & 

Edelman, 2017). 

(v) H-measure: AUROC as defined in previous paragraph has an “appealing property of 

being objective, requiring no subjective input from the user” (Hand D. J., 2009, p. 103). 

Hand (2009) however notes that using AUROC may be potentially misleading as it is 

incoherent in terms of misclassification costs among various classifiers; effectively it 

evaluates different classifiers using different metrics24 (i.e. AUROC depends on the 

classifier used). As an alternative measure of performance that is superior to AUROC 

Hand proposes a metric that satisfies both the objectivity (i.e. everyone obtains the same 

results) as well as the independency criterions (i.e. metric is independent of the empirical 

misclassification costs). The metric is known as H-measure and uses Beta distribution 

to specify the misclassification cost distribution (default values are usually 𝛼 = 𝛽 = 2). 

As discussed in literature review, we use AUROC in our study as there is little difference 

between the measures in practice.  

3 EMPIRICAL ANALYSIS 

This chapter discusses the research methodology (i.e. the ML workflow) applied in this 

study. The development of a quantitative CS model requires historical data to derive the 

transaction-based PD for a given customer25. Data however rarely comes in a ready-to-use 

form for the classification methods presented in chapter 2.3 to work efficiently. Thus, data 

transformation techniques are one of the most crucial steps in modelling. We discuss this 

and other related issues in this section, which is organized as follows. First, we discuss the 

programming environment employed for the purpose of empirical analysis (i.e. Python and 

Jupyter Notebook) and present an overview of the workflow we follow in the rest of the 

study. Following is a thorough discussion of each step of the workflow starting with the 

dataset construction and partitioning as well as all the DPP steps. Second, before delving 

further into the empirical analysis, it is useful to describe the data using simple descriptive 

statistics, correlations, and visualization tools – this enables us to better understand the 

underlying structure of the data. Third, we review the model selection step and consider 

 
24 For a comprehensive discussion on the topic please refer to the original paper by Hand (2009).  
25 We have discussed the dependent and independent variables employed in this study in the previous section. 

For more please refer to sections 2.1 and 2.2, respectively.  
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various approaches to efficiently train the selected methods as well as look into the model 

performance evaluation phase. Finally, we present, compare, and discuss the results in 

subsection 3.5. 

3.1 Experimental Setup Using ML Workflow 

To conduct the empirical analysis and implement ML algorithms as already discussed we 

need a powerful, opensource, and user-friendly programming language. Additionally, we 

need a language with easily accessible as well as up-to-date libraries written for a number of 

tasks that we require. According to the reviewed literature Python is the best choice. Since 

its first appearance in 1991 it has become one of the most popular interpreted programming 

languages. It is commonly referred to as the scripting language since it can be used to quickly 

write small programs (i.e. scripts) to automate tasks (McKinney, 2018). Harrington suggests 

Python is a great language for data science applications due to the following (Harrington, 

2012; Lutz, 2013): 

(i) clear syntax: it carries many high-level data types, which makes abstract concepts easy 

to implement. It is also easy to process and manipulate the text – hence the name 

“executable pseudo-code”. Python code is designed to be readable and understandable 

(i.e. straightforward);  

(ii) popularity: there exists a lot of examples, tutorials, books, courses, etc., which makes 

learning it fast. Additionally, due to its low entry barrier it enjoys a large number of 

useful libraries for various applications. It is popular in scientific as well as financial 

communities and is increasingly being used in organizations; 

(iii) easy integration: Python scripts can easily communicate with other applications via a 

variety of integration mechanisms.  

Jupyter Notebook integrated development environment is a great way to run Python related 

data science experiments as it allows modeller to write and execute the code simultaneously, 

while also edit the corresponding text and results in an organized manner. Furthermore, a 

notebook enables to break up the analysis into smaller sections that can be run 

independently; this makes the development interactive and more manageable. Once the 

analysis is done one can easily share the code using different sharing options including 

HTML and PDF (Chollet, 2018).  

Now that we have discussed the benefits of using Python and Jupyter Notebook for the 

purpose of data analysis we can turn our attention to the experiment set-up itself using ML 

workflow. The Table 12 below describes the main libraries we use throughout the empirical 

section for dataset manipulation and ML application. Majority of the methods we employ in 

the study are pre-programmed inside the Scikit-Learn library. In order to get raw data into 

the required shape we use Pandas, a high-performance data editing library. Lastly, Keras is 

used to train the ANNs as it provides a highly effective way of learning using computer’s 

graphics card (hereinafter: GPU). It runs on top of the TensorFlow developed by Google 

also briefly discussed in the table below.   
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Table 12: Essential ML Python Libraries Employed in Empirical Analysis 

Library Name [Version] Description 

Keras [2.2.4] 

A deep-learning framework that provides a convenient way to define and 

train almost any kind of deep-learning model. It uses a well-specialized 

tensor library (e.g. TensorFlow) as a backend to perform various low-

level operations (Chollet, 2018, p. 61). 

Pandas [0.24.2] 

A library providing high-performance easy-to-use data structures and 

data analysis tools designed to make working with structured data fast, 

easy, and expressive (McKinney, 2018). 

Scikit-Learn [0.20.2] 

A core ML library for Python that features various classification, 

regression, and clustering algorithms; it is designed to interoperate with 

Python numerical and scientific libraries NumPy and SciPy (McKinney, 

2018).  

TensorFlow [1.12.0] 

A library developed by Google for dataflow and differentiable 

programming that is based on computational graphs. It enables Keras to 

run on CPUs and GPUs seamlessly (McClure, 2018).  

Source: Own work. 

Typical workflow for using ML in ECRM consist of three steps, namely DPP, 

dimensionality reduction, and model learning phase. Raw data rarely comes in the desired 

format, which is why data pre-processing is one of the most crucial steps; we apply it in 

section 3.1. Learning phase, applied in section 3.3, includes training and selecting a set of 

applicable predictive models. Their performance is than evaluated using model evaluation 

(Mirjalili & Raschka, 2017). Once the model is fully developed, we can use it for prediction 

of the customer’s default probabilities as in our case. The Figure 9 on the next page 

summarizes the roadmap for applying ML methods in the case of quantitative CS. 

3.1 Data Pre-processing Step 

This section describes the development of a sample of defaulted and non-defaulted 

companies for our study as well as the collection of the underlaying data. In previous section 

we described the default event (i.e. our dependent variable) and specified the set of 

independent variables characterizing each company’s status. This study considers the 

population of all Slovene commercial companies and big sole traders defined in Article 3 of 

the Companies Act, hereinafter referred to as ZGD (2006). According to ZGD (2006) 

Agency of the Republic of Slovenia for Public Legal Records and Related Services 

(hereinafter: AJPES) manages annual reports filings for national statistics as well as 

publication purposes. Company’s financial datasets for the period from 2013 to 2017 were 

thus supplied by AJPES – Slovene Business Register. They provide a basis for the derivation 

of yearly financial ratios as defined in Appendix 4. Data on firm insolvency procedures for 

the purpose of assigning default event to each company in the business register is obtained 

from the Information Centre of the Supreme Court of the Republic of Slovenia for the period 

from 2014 to 2018.  
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Figure 9: The ECRM Workflow Employed in the Empirical Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Adapted from Mirjalili and Raschka (2017); Own work. 
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Macroeconomic data was collected from the Statistical Office of the Republic of Slovenia 

(SURS) and global financial portal Investing.com. 

3.1.1 Dataset Construction 

Once the data was collected from the relevant sources, we constructed the sample collecting 

input data referring to one year prior to the default event. Using stacked sampling approach 

discussed in the theoretical part we defined five observation points set at the end of each 

year ranging from 2013 to 2017; then five 1-year sample windows were defined for which 

we created a set of independent features. Analogously five 1-year performance widows were 

created for monitoring performance of given companies and assigning them the class label 

(i.e. default vs. non-default). This approach of sample construction increased the absolute 

number of defaulted instances in the dataset, which is especially beneficial when using ML 

methods. The original AJPES database comprising of 322,203 firm-year instances was then 

filtered to establish a coherent subset of companies relevant for our analysis. Firstly, based 

on the Classification of Institutional Sectors (hereinafter: CIS) we selected the companies 

that are classified as non-financial companies26 (i.e. subsectors S.11001 – public non-

financial companies and S.11002 – private non-financial companies) (Statistical Office of 

RS, 2019a). Secondly, using Slovene Nomenclature of Economic Activities (hereinafter: 

SKD) we choose the companies that have similar balance sheet structure (such 

segmentation is almost always necessary if we want to develop an accurate model); we 

selected the following sections according to SKD: C – manufacturing, F – construction, and 

G – whole sale retail trade, repair of motor vehicles and motorcycles (Statistical Office of 

RS, 2019b). Lastly, the size of the company influences the structure of the balance sheet - 

small companies usually do not report enough data points, which results in missing values 

when calculating financial ratios. Therefore, we only selected the companies whose average 

revenue in the sample window exceeds 10,000 EUR. We added the default variable 

derived from the dataset on insolvency proceedings. The summary of the final sample is 

presented in Table 13 below. 

Table 13: Sample Size Statistics and Percentage of Defaulted Companies 

Year [𝑡] 2013 2014 2015 2016 2017 Total 

Sample Size [𝑡] 19,557 19,916 20,396 20,807 21,204 101,880 

No. of Defaults [𝑡 + 1] 209 150 169 156 158 842 

Percentage of Defaults 1.10% 0.80% 0.80% 0.70% 0.70% 0.80% 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

Afterwards we calculated the financial ratios and merged the financial and qualitative data 

with the macroeconomic variables. Our final dataset included 53 variables; for more efficient 

 
26 Institutional units which are "independent legal entities and market producers with principal activity of 

producing goods and non-financial services" (Statistical Office of RS, 2019a). 
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handling we assigned shorter names to the variables as follows: the 45 financial ratios were 

given code names ranging from f01 to f45 and the macroeconomic variables from e01 to e05. 

The following analysis is based purely on the financial ratios. We introduce the 

macroeconomic variables into the modelling in section 3.4. 

3.1.2 Descriptive Statistics and Data Visualization 

Prior to dataset partitioning it is useful to get a quick description of the data, in particular 

means and standard deviations, the number of all non-missing values, variables’ distribution 

characteristics as well as possible extreme values using describe() method in Pandas (Geron, 

2017). After a careful inspection of the descriptive statistics found in the first table of 

Appendix 9 we concluded, that our data includes some missing values and extreme values. 

The last point was further validated by plotting histograms and box plots for each variable. 

The distributions appear to be normal or log-normal around the centre for most ratios, 

however data suffers from extreme values (i.e. outliers) that are common in ratio analysis 

due to near-zero denominators. We consider solving the issues of missing values and outliers 

for the purpose of modelling in the next section.  

So far, we have only taken a quick glance at the data. It is time to get a little bit more in 

depth and employ different data visualization tools. First, we performed a fast DPP 

procedure on the whole dataset for the purpose of efficient application of different 

visualization techniques; more detailed discussion follows in the subsequent sections. In 

Appendix 10 you may find the correlation heatmap that uses coloured cells to show a 

correlation matrix between the variables. As expected, there are some highly correlated 

variables – we take care of the highly collinear independent variables in the second step of 

the analysis as there is no added value in having multiple variables with similar information 

in the model. Another useful tool for data exploration and visualization is t-distributed 

stochastic neighbouring embedding (hereinafter: t-SNE). It gives developer a feel or 

intuition of how the data is arranged in a high-dimensionality space. Similarly, to PCA t-

SNE effectively reduces the dimensionality of dataset. However, in doing so it preserves 

small distances contrary to PCA, which is particularly useful when dealing with non-linear 

datasets (Violante, 2018; Derksen, 2016). The Figure 10 below shows three different 2D 

visualization settings. First figure from the left is a standard visualisation output of the first 

two principal components of PCA that explain 33% of the variation. We can see that the first 

two components definitely hold some useful information, however the two clusters are still 

overlapping. Second figure thus shows the output of a more powerful approach called t-SNE 

as discussed. We can see a significant improvement over the previous visualization. For the 

last case (right figure) we reduced the number of dimensions with PCA before feeding data 

into the t-SNE. For this we used the first fifteen principal components that explain 

approximately 82% of the variation. The results are similar. However, the fact that we only 

used fifteen dimensions rather than all 45 financial ratios should encourage us to consider 

some dimensionality reduction prior to applying statistical and ML methods. Furthermore, 

the fact that unsupervised visualization techniques managed to cluster the defaulted and non-

defaulted companies considerably well, is a good sign for the rest of the analysis.  
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Figure 10: PCA (left) vs. t-SNE (middle) vs. t-SNE Based on PCA (right) 

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

3.1.3 Dataset Partitioning and Dealing with Missing and Extreme Values 

It is a good practice in ML to partition the original dataset into three separate sets prior to 

conducting any DPP and dimensionality reduction steps for the purpose of modelling. This 

is to prevent data leakage, which would result in too optimistic performance evaluation. The 

training set is used to fit different models, whereas the validation set serves for model 

selection, i.e. the selection of the best model using various hyper-parameter settings (hyper-

parameter tuning). Finally, the test set enables less biased model performance evaluation as 

it is completely independent of the previous modelling steps. This method is known as the 

holdout CV. According to Mirjalili and Raschka (2017) one potential disadvantage of the 

holdout method is the sensitivity of performance estimates to how we partition the original 

dataset. However, this is a less notable problem when dealing with large dataset27. Scikit-

Learn provides a model_selection.train_test_split to perform data partitioning. A useful 

feature of the method when dealing with imbalanced data is stratified sampling that divides 

the original population into homogeneous subgroups; this guarantees that the derived sets 

are representative of the overall population. We partitioned the original dataset into two 

subsets, i.e. training and test sets where the first includes 80% of the original instances, while 

the test set is comprised of the remaining 20%. For model selection phase we use 

model_selection.GridSearchCV that enables exhaustive search over user-defined hyper-

parameter values. Figure 11 illustrates the concept of hold-out CV with inner k-fold CV for 

model selection.  

Figure 11: The Concept of k-Fold Cross Validation 

 

 

 

Source: Adapted from Mirjalili and Raschka (2017). 

 
27 In future research section we discuss the nested CV that results in more robust final model performance 

estimates.  
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For each combination of values k-fold CV further splits the training set into 𝑘-folds without 

replacement, where 𝑘 − 1 folds are used for model sub-training, and one fold is used for 

model validation – the process is repeated 𝑘 times so that we obtain a robust average model 

performance to select the best hyper-parameter values (Albon, 2018).  

Table 14 summarizes the absolute and relative proportions of instances in the described sets. 

The training set used for final model learning consists of 80,987 instances, whereas the test 

set consists of 20,247 instances. Number of defaults in the sets is 644 and 166, respectively. 

Table 14: Dataset Partitioning and Corresponding Statistics 

Dataset Partition Sample Size No. of Defaults Percentage of Defaults 

Training Set 80,987 664 0.80% 

Test Set 20,247 166 0.80% 

Dropped Instances 646 12 1.80% 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

The quality of the data is the key factor in training an accurate model. Furthermore, most 

ML methods cannot work efficiently with missing data and extreme values (e.g. outliers), 

which is why we need to pre-process raw inputs in the training. As we have seen our data 

contains some missing values, which is why we employ a two-step procedure to take care 

of the issue. Firstly, we exclude the instances (i.e. dataset rows) and variables (i.e. dataset 

columns) that contain more than 20% of missing values denoted as “NaN” in our dataset. 

This operation decreased the original number of country-year instances for 646 instances 

and dropped 3 variables: interest coverage ratio, inventory turnover ratio, and net income 

growth. It is essential that dropped instances do not fall under the missing not at random 

scope. Dropping them would mean introducing a bias into the sample (Florez-Lopez, 2010). 

The percentage of defaults in the dataset remained roughly the same, which means that the 

likelihood of excluded instances coming from defaulted vs. non-defaulted group is similar. 

Secondly, remaining missing values are then imputed using simple median imputation 

strategy which is robust to outliers (Albon, 2018; Geron, 2017). It is important that the 

overall median values from the training set are saved in order to carry out the same strategy 

on the validation and test sets when selecting/evaluating the model. 

Another essential DPP step is identifying the extreme values commonly referred to as 

outliers. According to Albon (2018, p. 69) outlier detection is “more of an art than a science”. 

A common method is to look at individual variables and identify extreme values using 

percentiles. The identified outliers are than either excluded or winsorized. We use 

winsorization at first and ninety-ninth percentile which effectively clips the data at given 

values in a symmetric fashion (Badr, 2019). As in the missing values case the winsorization 

values are stored for later use on the validation and test sets. 
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3.1.4 Data Projection – Transformation of Numerical Variables 

The last step before feeding the data into steps 2 and 3 to carry out dimensionality reduction 

and model learning is to perform data projection. As discussed in the literature review 

section data projection is essential for ensuring useful data representations. Hence, we 

transform variables in the following manner (Crone, Lessmann & Stahlbock, 2006). We 

carry out feature scaling on numerical variables (i.e. financial ratios) – in particular, we 

standardize them using preprocessing.StandardScaler() method as follows; mean and 

standard deviation are calculated for each variable, then conventional scaling is performed 

by subtracting the mean and dividing by the standard deviation in order to get mean centred 

values with unit variance. This ensures efficient learning since ML algorithms usually do 

not perform well when numerical inputs have different scales (Hearty, 2016). As before it is 

crucial to fit the transformers that learn parameters using only the training and sub-training 

data and not the full dataset in order to prevent data leakage. 

3.1.5 Data Sampling Techniques 

In the literature review section, we discussed the issue of imbalanced dataset and possible 

implications of LDPs for classification methods’ performance. As there seems to be no 

ambiguous answer with respect to the effectiveness of using specific sampling technique28, 

we examine their performance differences and try to identify the optimal one given our 

specific problem domain. First, we apply the two most common sampling techniques; one is 

known as random minority oversampling (hereinafter: MOS) and the other as random 

majority undersampling (hereinafter: MUS). In MOS data instances of the minority class are 

randomly duplicated, whereas in MUS instances of the majority class are randomly 

discarded from the dataset (Van Hulse, Khoshgoftaar & Napolitano, 2007). Both sampling 

techniques are implemented in Python using the Imbalanced-Learn package that is fully 

compatible with Scikit-Learn ML library. Chawla, Bowyer, Hall, and Kegelmeyer (2002) 

proposed another oversampling method called synthetic minority oversampling technique. 

It creates new synthetic minority instances by extrapolating between the existing minority 

instances rather than just duplicating original examples as in MOS. The method first 

identifies the 𝑘 nearest neighbours of the minority class for each instance (recommended 

value of 𝑘 is 5) and then generates an artificial instance in the direction of these neighbours. 

We use a combination of over- and undersampling methods called SMOTENN that performs 

oversampling using SMOTE and cleans the majority class using Edited Nearest Neighbours 

(hereinafter: ENN). ENN removes instances for which the class from nearest neighbours 

differs (Batista, Prati & Monard, 2004). The properties of the derived datasets are displayed 

in Table 15 below. Note that we only apply the sampling on the training set in order to 

facilitate learning using balanced data. The test and validation sets are left untouched (i.e. 

remain imbalanced) in order to perform realistic performance evaluation. The pre-processed 

datasets were than fed into the second step according to the empirical workflow in Figure 9.  

 
28 ”Sampling attempts to balance original data based on a series of sampling algorithms by adjusting the number 

of samples in different classes” (He, Zhang & Zhang, 2018). 
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Table 15: Resampling the Training Set 

Dataset Partition Sample Size No. of Defaults Percentage of Defaults 

Training Set – MUS 1,328 664 50.00% 

Training Set – MOS 160,646 80,323 50.00% 

Training Set – SMOTENN 156,053 80,322 51.47% 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

3.2 Dimensionality Reduction 

Many ML tasks involve a high number of independent variables (i.e. features) in the dataset, 

which can make model training extremely slow as well as decrease its overall performance 

due to the “curse of dimensionality” as described in Appendix 8 – Lesson 6. This is also the 

case in our dataset that originally contained 50 independent variables; some of them may 

contain noise, which means they are not useful in predicting the PD. Domain knowledge can 

help us in selecting the most important variables. However, most commonly there is no 

agreed set of variables that are optimal for specific CS application. Fortunately, there exists 

several techniques that enable dimensionality reduction while keeping the most relevant 

information; section 3.2.1 discusses feature selection whereas section 3.2.2 deals with 

feature extraction techniques. The aim of this DPP step is to filter out unrepresentative 

features, i.e. the ones that bring relatively little predictive power to the model (Geron, 2017; 

Liang, Tsai & Wu, 2015; Zhou, Lu & Fujita, 2015). The main advantages of employing these 

techniques can be summarized as follows (Koutanaei, Sajedi & Khanbabaei, 2015; Salappa, 

Doumpos & Zopounidis, 2007): (i) decreasing the noise in dataset, (ii) reducing the 

computational costs, (iii) useful for data visualization and better understanding of the model, 

and (iv) simpler application. 

3.2.1 Feature Selection Techniques 

Generally speaking, feature selection (i.e. selection of an optimal subset of original 

variables) can be categorized into three subgroups. Filter methods select variables by 

ranking them using various statistical measures that assign predictive power to the variables. 

This search strategy does not involve any model training in the process of evaluation. In 

contrast wrapper methods consider feature selection as a part of model learning phase by 

assessing different variable subsets sequentially; that means that for each generated subset 

we train a model using specific classification method and evaluate the goodness of the 

selected subset. Similarly, embedded methods measure the importance of variables during 

model learning. However, these methods are embedded in the classification algorithms 

themselves which is why we discuss them in the next section dealing with model training 

(Zhou, Lu & Fujita, 2015). Generally, filters are much faster and more efficient compared to 

other feature selection strategies, but they ignore the dependencies among variables in the 

dataset. Finding the best subset using wrapper methods accounts for that dependency, 

however, it can become computationally intensive, which is why practitioners use various 
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heuristic search strategies that are able to identify suboptimal solutions (Chen & Li, 2010; 

Kozodoi, Lessmann, Papakonstantinou, Gatsoulis & Baesens, 2019). This study employs the 

following feature selection techniques: 

(i) Regularization (embedded method) is a technique that modifies the classification 

method in a way that the complexity of the model is reduced which enables better 

generalization ability. Regularized techniques are among the most helpful feature 

selection procedures as they provide sparse solutions, where weaker features’ 

parameters return to zero, leaving only subset of features with real coefficients. 

Approaches to regularization are method-specific which is why we discuss them later 

(Hastie, Tibshirani & Friedman, 2017; Zhou, Lu & Fujita, 2015). 

(ii) Information gain (filter method) or mutual information measures the dependency 

between two variables; the higher the value the higher the dependency. Information gain 

is usually a good measure for deciding the relevance of features, however it does not 

consider the dependencies between features in the dataset (Ross, 2014).  

(iii) MultiSURF (filter method) is a filter-style feature selection algorithm inspired by 

original “Relief” that evaluates the importance of variables according to how well their 

values distinguish between the instances of the same and different classes. In that sense 

it also “detects the information content of a variable that stems from the dependencies 

between all variables in the dataset” (Kononenko & Kukar, 2007, p. 164; Urbanowicz, 

Olson, Schmitt, Meeker & Moore, 2018).  

(iv) FS with random forest (filter method) employs an ensemble classification method to 

measure implicit feature importance based on the average impurity decrease computed 

from all DTs in the forest (Chen & Li, 2010; Mirjalili & Raschka, 2017).  

(v) Recursive feature elimination (hereinafter: RFE) using SVMs (wrapper method) is a 

greedy, iterative process that wraps around a learning method such as SVMs in order to 

find the best-performing feature subset. As the name suggests RFE selects features by 

recursively considering smaller and smaller sets and ranks features using weights 

assigned by the learning method (Hearty, 2016).  

(vi) Genetic algorithms (wrapper method) are evolutionary search algorithms inspired by 

the principles of natural selection in biology. They enable solving various optimization 

problems including feature selection. The idea of GA is to combine a set of solutions 

(i.e. population) from generation to generation in order to extract the best genes (i.e. 

features) of a given chromosome (bit string of 0s and 1s that represents 

inclusion/exclusion of these genes) using crossover and mutation as genetic operators 

(Scrucca, 2013). Crossover creates two offspring chromosomes from parent 

chromosomes copying selected genes from each parent. On the other hand, mutation 

randomly changes the value of single genes given some small probability (Liang, Tsai 

& Wu, 2015). The quality of each chromosome is evaluated using fitness function that 

determines the probability of it surviving to the next generation – the larger the fitness 

value the higher the survival probability. The process ends once some stopping criteria 

is met (Lin, Liang, Yeh & Huang, 2014; Šušteršič, Mramor & Zupan, 2009). 
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3.2.2 Feature Extraction Techniques 

Alternatively, we can reduce the complexity of the model using feature extraction, which 

derives a new feature set of lower dimensionality from the original feature space. By far the 

most popular unsupervised29 feature extraction technique is the principal component 

analysis. We have mentioned it in the visualization section of the study. PCA projects data 

onto a lower-dimensional hyperplane that preserves the maximum variance in order to lose 

as little information (i.e. variability) as possible. The resulting orthogonal axes (i.e. principal 

components) can thus be interpreted as “the directions of maximum variance given the 

constraint that the new feature axes are orthogonal to each other” (Mirjalili & Raschka, 2017, 

p. 142). The first principal component preserves most of the variability of the original train 

set, the second preserves the second most variability, etc. Technically speaking each 

principal component is an eigenvector of the variance-covariance matrix of the original 

variables meaning that if we plot the components and normalize their corresponding 

eigenvalues (magnitude of eigenvectors) we get a graph known as the explained variance 

ratio – it indicates the proportion of original variability along each principal component. The 

number of new dimensions we choose usually relies on the rule of thumb (e.g. 80% of 

original variance) (Geron, 2017; Šušteršič, Mramor & Zupan, 2009). Another common 

feature extraction technique is linear discrimination analysis (hereinafter: LDA). This is 

actually a classification method, but in the process of training LDA derives the most 

discriminative axes between the classes that can be used as new features. In that sense it is 

similar to PCA as it also projects original data to a lower-dimensional space. However, LDA 

has an additional goal of maximizing the differences between classes (Albon, 2018; Chen & 

Li, 2010). One assumption in LDA is that the data is normally distributed. Furthermore, it is 

assumed that the classes have identical covariance matrices and that the samples are 

statistically independent. Even if one or more assumptions are violated, LDA still functions 

reasonably well in practice, which is why we consider it in this study (Liang, Tsai & Wu, 

2015; Mirjalili & Raschka, 2017). The final selection of linear discriminants is similar to 

PCA; we pick the number of dimensions given ratio of discriminability. In our case we only 

have one linear discriminant since their number is limited to 𝐶 − 1, where 𝐶 denotes the 

number of class labels. 

3.2.3 Application of Dimensionality Reduction Techniques 

In general, final CS models usually consist of 8 to 15 variables; the exact number depends 

of the modelling goal (i.e. model transparency vs. prediction accuracy). When visualizing 

our dataset, we saw that the first fifteen principal components explained approximately 82% 

of the variation; the fact alone should encourage us to apply some dimensionality reduction 

techniques. As discussed in section 3.2.1 some feature selection algorithms (especially 

univariate filter methods) do not account for the dependencies between features in the 

 
29 PCA falls under the scope of unsupervised feature extraction techniques in contrast to the linear discriminant 

analysis that is a part of supervised techniques. The main difference is that supervised approach to 

dimensionality reduction also uses class information (Mirjalili & Raschka, 2017). 
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dataset. The top ranked features may hence exhibit highly dependence or multicollinearity. 

From the perspective of predictive modelling having multicollinear features does not affect 

the predictive capability of the model. Additionally, regularization used in ML usually 

stabilizes the coefficients, which tames its effects. Basically, multicollinearity seem to be an 

issue when we are interested in the underlying model structure (the case in traditional 

statistics) as it can lead to wrong insights when trying to interpret the model for business 

purposes (Gunipati, 2018). Although we are mainly concerned with the predictive 

performance in our study there is little use in having highly multicollinear features in the 

model, especially so when considering the costs of data collection. A highly effective way 

of dealing with multicollinearity is the use of variance inflation factor (hereinafter: VIF) that 

quantifies its severity using ordinary least squares regression analysis. A simple rule of 

thumb is to exclude the variable if its VIF is higher than 10 (Zhou, Lu & Fujita, 2015). We 

coded a sequential VIF algorithm that iteratively calculates the extent of multicollinearity 

for each feature in the dataset, excludes the one with the highest VIF, and repeats that until 

all VIFs are under the threshold. Doing so we excluded the following financial ratios from 

the dataset: Net profit margin from sales, Quick ratio, Equity ratio, and ST debt to total 

assets. In accordance with the defined ECRM workflow defined in Figure 9 we then applied 

eight dimensionality reduction techniques on the under-sampled sets to achieve higher 

computational efficiency. We ranked the features by their importance based on all techniques 

apart from regularization and GA; the former performs the selection inside model learning 

phase, while the latter only outputs a binary variable, where 1 indicates the specific feature 

is included in the model and vice-versa for 0. GA is implemented in R using GA package. 

As for the PCA and LDA we derived the corresponding feature ranks based on the 

magnitudes of their coefficients (loadings) in the derived components. The Figure 12 below 

shows the 15 most important features in our dataset based on the average rank calculated 

from the individual dimensionality reduction techniques. 

Figure 12: 15 Most Predictive Financial Ratios Based on Dimensionality Reduction 

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 
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Another interesting fact is the category aspect of the top 15 financial ratios. Namely, almost 

half of the ratios comes from the profitability category, which points at the importance of 

company’s profitability in forecasting default events. Following are the liquidity and 

leverage ratios. Looking at the whole range of selected financial ratios the Table 16 below 

summarizes the importance of categories derived from the ranks we assigned to the induvial 

ratio – the lower the rank the more important the feature. We averaged together the ranks of 

all financial ratios in a specific category in order to eliminate the size effect. Similarly, 

profitability ratios seem to have by far the highest predictive power, followed by leverage 

ratios, growth indicators, and liquidity ratios. Interestingly, cash flow related ratios seem to 

be the least important in predicting PD. 

Table 16: Importance of the Category in Predicting Default Event  

Category Averaged Rank 

Profitability ratios 8.89 

Leverage ratios 17.75 

Growth indicators 19.00 

Liquidity ratios 22.71 

Efficiency ratios 23.80 

Investment ratios 25.40 

Cash flow related ratios 27.25 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

For a more detailed overview of the feature subsets selected by dimensionality reduction 

techniques please refer to Appendix 11. We have to note however that not all of the top 15 

features are included in the final model; we only selected the top 10 features in order to get 

more transparent models. Furthermore, the final inclusion of an individual feature is method 

specific and depends on the learning phase, which is discussed next. 

3.3 Learning Phase – Model Selection and Performance Evaluation 

The generalization performance of a learning method to the unseen data is of primal 

importance in ECRM. This chapter thus discusses the practices of building good predictive 

models by fine-tuning their hyper-parameters30 (i.e. model selection) and finally evaluating 

the models’ performance (i.e. model evaluation) using four resampled datasets and eight 

feature subsets. Firstly, we have conducted a simple ratio analysis comparing the groupwise 

distributions of the defaulted and non-defaulted companies in our sample. The second table 

in Appendix 9 summarizes the results. We employed the Mann-Whitney U test that tests for 

the difference in distributions between two independent samples, i.e. defaulted vs. non-

defaulted companies. It is a nonparametric, distribution free statistical significance test with 

 
30 Hyper-parameters refer to the parameters of a learning method that need to be optimized separately. A 

popular hyper-parameter optimization technique is called grid search (Albon, 2018). 
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the null hypothesis being that there is no difference between the distributions (Brownlee, 

2018c). We can see that the null hypothesis is rejected for all financial ratios, which implies 

that there exists a difference in the distributions between the two groups of companies.   

3.3.1 Model Selection Step 

The first step in model learning is model selection, where different hyper-parameter settings 

of a given classification method are tuned and compared. The ultimate aim of this step is to 

find an optimal bias-variance trade-off; a term we have come across when different ML 

methods were introduced. We discuss bias and variance in Appendix 8 – Lesson 3, where 

we mention that the more complex the model is (i.e. the more it tries to fit the data) the lower 

bias we have at the cost of high variance which results in model overfitting and vice-versa, 

simpler models usually have high bias and low variance which results in underfitting – both 

phenomena lead to low generalization ability on the unseen data which is not desirable 

(Hastie, Tibshirani & Friedman, 2017). A useful tool to diagnose the issue of overfitting and 

underfitting are validation curves that plot train and validation set performances as functions 

of model complexity as seen in Figure 13 below. 

Figure 13: Bias-variance Trade-off Diagnosis using Validation Curves 

 

 

 

 

 

 

Source: Hastie, Tibshirani and Friedman (2017); Mirjalili and Raschka (2017); Own work. 

One way of finding the optimal model complexity is via hyper-parameter tuning that directly 

controls the complexity of the model and thus helps us efficiently select the best model given 

the learning method at hand. As mentioned in previous sections we use k-fold CV for model 

selection. In order to select the best performing hyper-parameter set we must validate the 

fitted models in each CV iteration using performance metrics. 

3.3.2 Performance Evaluation Step 

The last and most important step is the evaluation of model performance. To assess the 

ability of classifiers’ to generate accurate predictions, we employ three different evaluation 

metrics. Often the default performance measure (i.e. classification accuracy) used by Scikit-

Learn algorithms is not the most appropriate metric to use. In the case of imbalanced data, it 

makes sense to focus on other methods as discussed in chapter 2.4. Table 17 lists evaluation 
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metrics we employ in this study for the purpose of estimating and comparing the 

generalization performance. As we see in the next section model performance is evaluated 

in the CV iterations to select the best model as well as on the separate test set for the purpose 

of comparing different statistical and ML methods. For the final comparison of implemented 

statistical and ML methods in the discussion section we use AUROC metric. 

Table 17: Performance Evaluation Metrics 

Evaluation Metric Metric Type Scikit-Learn Module 

Classification accuracy Correctness of categorical predictions metrics.accuracy_score 

Average precision  Exactness of positive predictions metrics.average_precision_score 

AUROC Discriminatory ability metrics.roc_auc_score 

Source: Mirjalili and Raschka (2017); Thomas, Crook, and Edelman (2017); Own work. 

3.3.3 Application of Model Learning on Our Problem Domain 

The Figure 14 below describes the third step of our general workflow in a more detailed 

manner. So far, we have discussed the DPP steps including dimensionality reduction as well 

as specified particular methods and evaluation metrics. Instead of going through the 

described modelling steps separately, we combine them inside the pipeline function – a 

frequently used wrapper tool for chaining together individual data operations when 

employing ML (Mirjalili & Raschka, 2017). This chain of operations that includes data 

transformers (e.g. imputation of missing values, scaling, undersampling) and estimators (e.g. 

statistical and ML methods) was then fed into the 10-fold CV. The model selection was 

conducted on under-sampled sub-training sets using only methods’ specific regularization 

as a dimensionality reduction. The fact that we decided to use these settings as our baseline 

scenario has to do with the high computational burden in the case, we would want to train 

thousands of models on an over-sampled data using all described dimensionality reduction 

techniques. Regularization is usually the preferred technique to combat complexity in ML 

models. Each method has its own regularization hyper-parameters; we do not discuss them 

here. However, you may find optimal settings in Table 18 on the next page.    

Figure 14: Detailed Model Learning Phase Workflow 

 

 

 

 

 

 

Source: Mirjalili and Raschka (2017); Zhou, Lu, and Fujita (2015); Own work. 
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The performance metric used in model selection phase was average precision score that is 

derived from the precision-recall curve (similar to ROC curve). After the best hyper-

parameters on a baseline dataset were chosen for each method, we performed learning on 

the whole (final) training set in order to provide as much information to the learning methods 

as possible and finally evaluated them on the test set using the selected performance 

evaluation metrices. The results with the specifications on the best hyper-parameter settings 

as well as the test set performance values for each method are summarized in the Table 18 

below. As seen from the table there are three categories of classifiers we used, namely 

statistical, individual ML, and ensemble ML methods. This table serves as a starting point 

for our discussion of the first and second research questions of the study that follows in 

section 3.5.1.  

Table 18: Summary of Methods’ Hyper-parameter Settings and Performance Evaluation 

Classification Method Hyper-parameters 
Classification 

Accuracy 

Average 

Precision 
AUROC 

S
ta

ti
st

ic
a

l 

M
et

h
o

d
 Logistic 

Regression 

(LR) 

- Penalty: L2 

- Regularization strength (C): 0.01 
0.864 0.086 0.868 

In
d

iv
id

u
a

l 
M

L
 M

et
h

o
d

s 

k-Nearest 

Neighbours 

(k-NN) 

- No. of neighbours: 25 

- Distance metric: Minkowski 

- Power (p): 2 

- Weight function: distance 

0.862 0.067 0.854 

Decision Tree 

(DT) 

- Criterion: Gini impurity 

- Max depth: 5 
0.799 0.039 0.835 

Support Vector 

Machines 

(SVMs) 

- Regularization strength (C): 0.05 

- Kernel: linear 
0.830 0.088 0.872 

Artificial Neural 

Networks 

(ANNs) 

- No. of hidden layers: 3 

- No. of nodes per layer: 100 

- Dropout regularization: 0.5 

- Optimizer: ADAM 

- Epochs: 100 

- Mini-batch size: 250 

0.806 0.090 0.878 

E
n

se
m

b
le

 M
L

 M
et

h
o

d
s 

Random Forest 

(RF) 

- Criterion: Gini impurity 

- No. of estimators: 600 

- Max depth: 6 

0.831 0.079 0.886 

AdaBoost – DT 

- Base estimator: Decision tree 

- Learning rate: 0.5 

- No. of estimators: 750 

- Max depth: 5 

0.836 0.124 0.896 

Gradient 

Boosting 

- Base estimator: Decision tree 

- Learning rate: 0.01 

- No. of estimators: 700 

- Max depth: 3 

0.839 0.127 0.904 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 
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3.4 Experiment Setup Related to the Other Research Questions 

Before turning out attention to the results of this empirical analysis we should discuss three 

more issues related to the research questions set in the introductory part of the study – the 

choice of the optimal sampling technique, the impact of dimensionality reduction on 

generalization performance, and the inclusion of macroeconomic variables into the model. 

We analyse the relationships using the best hyper-parameter model settings for each method 

selected in the preceding step. While this might not provide us with the optimal results, it 

should give an indication of how specific modelling setting influences the overall 

generalization performance.   

Firstly, we fitted each of the eight methods on the original (i.e. imbalanced) dataset. Then 

we repeated the exercise on the oversampled data as well as on the dataset that was resampled 

using SMOTEEN technique. The results from the respective analysis may be found in 

Appendix 13. The table summarizes the performance metrics per each classification method 

for four different resampling strategies, i.e. leaving the dataset imbalanced, undersampling 

and oversampling the dataset, and finally employing the combined SMOTEEN approach. 

Secondly, similar procedure was repeated for each of the six feature selection and two feature 

extraction approaches. The results are summarized in Appendix 14. Additionally, we looked 

at the implied feature importance based on the weights assigned to specific features by the 

classification methods. Lastly, we introduced the macroeconomic variables into the model. 

We assigned the values to each instance (i.e. firm-year) in the dataset in a pooled cross-

sectional setting. As discussed, the sample window in this study ranges from 2013 to 2017 

(i.e. we use stack sampling approach as discussed in section 1.3.1), which means that we 

gathered the macroeconomic variables for the defined period and applied similar DPP steps 

as in the case of financial ratios. Namely, we dealt with potential outliers and missing values, 

and scaled the data using standardization in order to facilitate the learning process. The 

descriptive statistics may be found in Table 19 below. All values are expressed in 

percentages.  

Table 19: Macroeconomic Variables Descriptive Statistics 

Variablea Count Mean Std. Dev. Min 25% 50% 75% Max 

e01 101,880 2.49 1.95 -1.10 2.30 3.00 3.10 4.90 

e02 101,880 8.65 1.27 6.60 8.00 9.00 9.70 10.10 

e03 101,880 2.56 1.83 1.11 1.12 1.64 3.19 5.99 

e04 101,880 0.55 0.88 -0.50 -0.10 0.20 1.40 1.80 

e05 101,880 5.60 10.31 -11.22 3.15 4.18 12.38 19.59 

a Input variables used for default prediction: e01 – GDP growth, e02 – Unemployment rate, e03 – Government 

yield, e04 – Inflation rate, e05 – SBITOP index growth. 

Source: Statistical Office of the Republic of Slovenia (2019); Investing.com (2019); Own work. 
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3.5 Results and Discussion 

Credit scoring models are important for companies as risk management tools for preventing 

losses from suppliers with poor creditworthiness as argued in the theoretical part of the study. 

Customers’ individual probabilities of default on payments are generally estimated using 

historical information from annual financial statements. The standard approach for 

estimation of these probabilities is LR. However, since we are dealing with the classification 

problem ML methods have proved to be useful. In this study we have used the standard LR 

(statistical method) as well as the ML methods to estimate the default probabilities. Next 

subsections discuss the results of the empirical analysis. Since we are dealing with the highly 

imbalanced dataset and thus comparing the model performance using metrics other than the 

plain classification accuracy it is important to have in mind the baseline values given by the 

dummy classifier that makes predictions using simple rules such as always predicting the 

most frequent class in the dataset. The baseline values are summarized in the Table 20 below. 

We focus on the area under the ROC curve performance measure since it is widely used in 

the ML literature for comparing different models and shows classifier’s predictive 

performance in separating the two classes.   

Table 20: Dummy Classifier Performance Baseline Values 

Classification 

Method 
Hyper-parameters 

Classification 

Accuracy 

Average 

Precision 
AUROC 

Dummy Classifier Strategy: most frequent 0.992 0.008 0.500 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

3.5.1 Comparison of Traditional Statistical and Machine Learning Methods 

First, we compare the performance of LR with other classification methods originating 

from ML field. The experimental results are summarized in Table 18. Additionally, Figure 

15 on the next page depicts ROC curves for the classifiers at hand. We can observe that the 

classification accuracy for all classification methods is much lower than 0.992 achieved by 

the dummy classifier. However, as already argued looking solely at accuracy can be 

misleading. Firstly, classification accuracy gives us the performance evaluation at only one 

threshold (i.e. 0.5) which might not be the most optimal critical value from the business 

perspective of model errors. We should thus employ a more comprehensive measure. 

Secondly, sometimes it may be desirable to select a model with a lower accuracy but higher 

discriminatory ability. Hence, we compare the methods using AUROC curve metric. 

Looking at the AUROC value of 0.868 for the LR we can conclude that the statistical method 

performs relatively well compared to the ML methods. The worst performing classification 

methods are k-NN and DTs with AUROC values of 0.854 and 0.835, respectively. This is in 

line with the results of He, Zhang, and Zhang (2018) and Hand and Henley (1997). On the 

other hand, SVMs and ANNs both slightly outperform the LR method. Employing SVMs 

increases the overall prediction performance measured via AUROC metric by a mere 0.004 

while the increase in performance using ANNs amounts to 0.010. While there is an evidence
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Figure 15: Comparison of ROC Curves Across Different Classification Methods 

The figure below plots ROC curves of the LR and other ML methods discussed in this study. We can observe that DTs and k-NN classifiers perform 

the worst at almost every threshold. Much better performance is achieved with LR, SVMs, and ANNs. As expected, ensemble methods (RF, 

AdaBoost – DT, Gradient Boosting) provide a further improvement in the AUROC metric (curves are more to the left). 

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 



73 

 

for the case that more advanced ML methods such as SVMs and ANNs lead to an increase 

in model generalization performance on our problem domain this increase is rather small 

compared to prior research. However, there is another group of promising methods in ML 

that perform considerably well according to the ECRM research, namely ensemble learning 

methods. 

3.5.2 The Generalization Ability of Ensemble Learning  

Lessmann, Baesens, Seow, and Thomas (2015) argue that on average ensemble methods 

outperform both the statistical methods as well as the individual ML classifiers. This is also 

the case in our study as seen in Table 18. In credit risk modelling section, we said that the 

DT method usually overfits the training data which leads to poor generalization performance 

– we saw that DT method performed the worst on our CS dataset. As suggested by Breiman 

(2001b) using bagging ensemble technique can significantly improve the variance of such 

unstable learner. Consequently, we first implemented the RF ensemble method that 

combines a large collection of individual trees in a parallel fashion. Furthermore, weak 

learners can also be trained sequentially using AdaBoost and Gradient Boosting algorithms. 

They both try to reduce the bias and variance as discussed earlier. Table 21 below reports 

the improvements of using ensemble methods over the DTs and LR. RF achieves the 

AUROC of 0.886, which amounts to a 6.11% increase in the metric over the DTs and 2.07% 

increase over the LR. Both boosting ensemble methods outperformed the RF with gradient 

boosting algorithm scoring the highest AUROC value of 0.904. This presents an 8.26% 

increase in the performance over the DTs and 4.15% increase over the LR. The results in 

favour of ensemble ML methods were robust at multiple iterations of performance 

evaluation. Appendix 12 presents ROC curves of the three ensemble methods discussed in 

this study and compares them with the ROC curves of DT and LR methods. It provides a 

further validation of the superiority of ensemble ML classifiers. RF, AdaBoost, and gradient 

boosting outperform individual classifiers at each threshold, i.e. the ROC curves depicting 

the ensemble classifiers are always left of the orange and blue lines that plot DT and LR 

methods’ performance.  

Table 21: Improvements in AUROC Metric when Using Ensemble Methods  

Ensemble 

Method 

Improvement in AUROC Over 

DTs 

Improvement in AUROC Over 

LR 

Random Forest + 0.051 (6.11%) + 0.018 (2.07%) 

AdaBoost – DT + 0.061 (7.31%) + 0.028 (3.23%) 

Gradient Boosting + 0.069 (8.26%) + 0.036 (4.15%) 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

3.5.3 On the Optimality of Employed Sampling Techniques 

Credit scoring datasets usually exhibit low proportions of defaulted customers. The 

proportion of defaulted customers in our case is 0.8%, which means that our dataset is highly 

imbalanced. It has been shown that such class imbalance impedes classification, so various 
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under-/oversampling techniques have been proposed in the literature (Batista, Prati & 

Monard, 2004; Chawla, Bowyer, Hall & Kegelmeyer, 2002; Weiss & Provost, 2003). As 

discussed in the section 3.1.5 we employed three different data sampling techniques. The 

detailed results of the experiment may be found in Appendix 13. For easier interpretation 

Figure 16 below plots the AUROC metric for each classification method given four 

differently resampled datasets. When averaging together the methods’ performance values 

across the four sampling techniques we get the following results. The highest average 

performance is achieved on the under-sampled dataset (AUROC = 0.874), following is the 

combination technique known as SMOTEEN (AUROC = 0.846). Oversampling technique 

and leaving the data imbalanced score 0.831 and 0.808, respectively. Furthermore, when 

looking at each method separately we can observe different patterns. In summary, k-NN, 

SVMs, and AdaBoost – DT seem to perform poorly on imbalanced data and require 

resampling; LR and DTs perform better but still worse compared to the other three sampling 

approaches. On the other hand, ANNs and the two ensemble methods (an exception is 

AdaBoost) seem to be insensitive to the class distribution which is in agreement with the 

results from prior studies (Brown & Mues, 2012; He, Zhang & Zhang, 2018). LR, DTs, and 

SVMs perform the best with the SMOTEEN sampling technique. 

Figure 16: Methods’ Performance Evaluation Using Different Sampling Techniques 

 

 

 

 

 

 

 

 

 

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

3.5.4 Selection of the Optimal Feature Subset using Dimensionality Reduction 

Our original dataset includes 45 independent variables; however, empirical studies have 

reported that usually a smaller subset of the most predictive ones may the optimal solution. 

As there is no pre-agreed set of variables, we should employ either feature selection or 

feature extraction techniques as discussed in section 3.2. The detailed results of the 

experiment may be found in Appendix 14. For easier interpretation Figure 17 below plots 

the AUROC metric for each classification method given eight different dimensionality 
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reduction techniques. Looking at the figure the most important conclusion is that embedded 

feature selection technique (i.e. method’s specific regularization) performs the best on our 

dataset; the average AUROC metric value of implemented methods in the case of 

regularization is 0.872, following are the feature selection with RF (filter method) and 

recursive feature elimination using SVMs (wrapper method), which both score 0.862. The 

other methods have similar average performance, so it is impossible to distinguish them. It 

seems that in ML it is preferred to leave dimensionality reduction to the classification 

methods that find the best combination of feature parameters using regularization hyper-

parameters. However, in real business applications data collection is usually costly, which 

implies that using dimensionality reduction before learning phase might be the best option 

even though there is a slight decrease in the classifier’s prediction performance. Our 

experimental results show that there is no such thing as “the single best” dimensionality 

reduction technique. It is essential that we carefully choose the technique given the 

classification method we would like to use for predicting the PD.  

Figure 17: Methods’ Performance Evaluation Using Different Dimensionality Reduction 

Techniques 

 

 

 

 

 

 

 

 

 

 

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

Based on the results in Appendix 14 and Figure 17 the effect of performing dimensionality 

reduction on classification methods is as follows: 

(i) LR and SVMs combined with LDA feature extraction perform slightly better than the 

baseline classifiers combined with regularization. Employing other dimensionality 

reduction techniques perform worse than the baseline. 

        Logistic Regression          k-Nearest Neighbours             Decision Tree           Support Vector Machines   Artificial Neural Networks      Random Forest                   AdaBoost – DT                Gradient Boosting 
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(ii) k-NN classifier combined with feature selection using RF (filter method) and RFE with 

SVMs (wrapper method) performs better than the baseline k-NN. Since k-NN does not 

include any pre-processing of the input features and is based on calculating distances, 

performing feature selection can have positive impact on its prediction performance. 

(iii) DTs employ the feature selection step during the learning phase of the classifier so 

usually it does not require a separate dimensionality reduction. However, it seems that 

selecting the feature subset using RF yields the best solution in our problem domain. 

(iv) ANNs exhibit similar prediction performance across all dimensionality reduction 

techniques with RFE using SVMs scoring the best predictive performance. 

(v) Ensemble methods behave similarly across the eight dimensionality reduction 

techniques. Using embedded method (regularization) seems to be the best choice in our 

case, following are the feature selection with RF and RFE using SVMs. Employing LDA 

before training AdaBoost – DT classifier yields the worst predictive performance. 

There is one more issue we must look at when discussing optimal feature subsets. Since 

embedded method produced the best prediction results on average, it would be interesting to 

see how the optimal feature subset selected by this technique compares to the subset in 

Figure 12 where we discussed other dimensionality reduction techniques. We calculated the 

normalized weights from individual classifiers that support either the calculation of implied 

feature importance from corresponding coefficients or directly implements feature 

importance method. As seen in Appendix 15 there is a lot of overlapping in the top 15 

variables. Almost half of the ratios come from the profitability category, which again points 

at the importance of company’s profitability in forecasting default events. Following are the 

liquidity, efficiency, and investment ratios. Looking at the individual variables trade credit 

exposure ratio seems to have the most important role in predicting the PD, followed by net 

profit per employee and return on equity.  

3.5.5 Inclusion of the Macroeconomic Variables into the Model 

In theoretical section of the study we argued that there exist significant risks for the normal 

business operations coming from the external environment. Macroeconomic factors should 

thus have an influence on the PD. Bellotti and Crook (2009) show that inclusion of 

macroeconomic variables into the model improves prediction performance. As described 

in section 3.4 we included five macroeconomic variables, i.e. GDP growth, Unemployment 

rate, Government yield, Inflation rate, and SBITOP index. When comparing model results 

there seems to be no improvement in the AUROC metric for any of the implemented 

methods. Appendix 16 lists the implied importance of the 15 least important features. We 

can see that all macroeconomic variables fall in this group. We can thus conclude that in our 

pooled cross-sectional setting macroeconomic variables do not play a significant role in 

predicting defaults. This is not in line with the prior research that is consistent in claiming 

the importance of macroeconomic variables. However, articles finding their importance 

usually employ dynamic modelling methods (i.e. survival analysis, Markov chains) that 

work with panel data and thus fully account for the time-series behaviour of the failure.  
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CONCLUSION AND FUTURE RESEARCH 

In the aftermath of one of the worst financial crisis in modern history, it has become clear 

that managing risk exposures across all parts of the organization is essential in order to 

succeed in the competitive business environment. This study focuses on the aspect of credit 

risk that is particularly important for a day-to-day business operation and even more so in 

the prolonged periods of economic distress, namely the credit risk originating from trade 

credit arrangements that are extended to customers buying goods and services. Such 

arrangements inherently possess the possibility of payment delinquency or default. Firms 

should therefore manage the risk by analysing the creditworthiness of their customers in 

order to distinguish between the ones who are more likely to pay and those who have high 

PD. We employed the methodology of quantitative CS with a focus on implementing and 

comparing ML methods for the purpose of estimating PD, which serves as a basis for the 

development of effective credit risk mitigation strategies. 

In this study, we developed ML based model for forecasting customer’s credit default up to 

a year prior to it happening. Furthermore, we investigated the impact of employing different 

data sampling and dimensionality reduction techniques as well as the inclusion of 

macroeconomic variables into the model. Using AUROC performance metric we first 

compared the predictive performance of individual ML classifiers to our baseline LR 

classifier. The empirical results suggest that LR performed relatively well on our problem 

domain; k-NN and DTs performed worse than LR, while SVMs and ANNs outperformed 

the baseline by a small margin. We can conclude that there is a mixed evidence in favour of 

individual ML classification methods, which is in line with prior research. The performance 

of proposed methods usually depends on the specific problem domain. When looking at the 

ensemble ML classifiers, results are more robust and indicate that ensembles outperform 

both the LR method as well as the individual ML classifiers. We also analysed the behaviour 

of undersampling, oversampling, and SMOTEEN sampling techniques. Our results provide 

evidence that undersampling performs the best followed by SMOTEEN, while leaving the 

dataset imbalanced results in worst prediction performance on average. This contradicts 

results from prior literature that finds oversampling the most optimal choice. We can confirm 

however, that ANNs and ensemble methods seem to be insensitive to the class distribution. 

In addition, we examined the effect of dimensionality reduction in CS. Specifically, when 

comparing embedded, filter, and wrapper feature selection approaches, we found out that 

embedded technique (i.e. regularization) performs the best on our dataset, whereas there is 

no distinction in predictive performance between filter and wrapper techniques. 

Furthermore, our findings suggest that there is no such thing as the best dimensionality 

reduction technique. It is essential that we carefully choose the technique given the 

classification method we would like to implement. Lastly, there seems to be no added value 

in including the macroeconomic variables into the model using one-year (i.e. pooled cross-

sectional) setting although these variables should have an important effect as suggested by 

prior studies.  
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In hindsight, ML approaches can be easily used for the estimation of individual (i.e. 

transactional) PD for a range of corporate customers as shown in this study. Fast, reliable, 

and simple to use implementations of the proposed methods are readily available and should 

therefore be considered serious competitors of the classical LR method, especially the ones 

that also improve the model’s predictive performance. Although we have carried out a 

comprehensive study of various techniques used in quantitative CS, there are some research 

limitations with respect to the workflow of the empirical analysis. Firstly, model selection 

step was carried out on the under-sampled data using regularization as a baseline scenario; 

the selected optimal hyper-parameter set was then used throughout the rest of the empirical 

analysis. The reason behind this decision was that selection of the best set of hyper-

parameters for each specific combination of classification method, sampling, and 

dimensionality reduction technique would be computationally to intensive given our 

resources as we would have to train and evaluate thousands of different models on big 

datasets. Secondly, according to a study carried out by Varma and Simon (2006) using nested 

CV provides better (almost unbiased) estimate of model performance relative to the holdout 

test set approach we used in the study. Thirdly, we employed a pooled cross-section analysis 

which might not be the best for evaluating the importance of macroeconomic variables; it 

would be advisable to apply panel data approach in order to infer more relevant results. 

With regards to the future research, we recommend carrying out a similar empirical 

analysis on the dataset provided by a specific company. This would allow developer to work 

on a less imbalanced data as payment delinquency based definition of default is far less 

stringent than the one we used in our study (i.e. bankruptcy proceeding). Furthermore, it 

would enable the ML methods to be trained on a higher number of default instances, which 

has proven to be helpful in trying to improve predictive performance. Additionally, such 

analysis would enable inclusion of highly relevant past payment behaviour variables and 

other qualitative information about the customers. The kind of model developed for 

company’s specific purpose also opens way to an important strategy of directly introducing 

the profit maximization to the model development. One approach is to modify the dependent 

variable in order to reflect profitability and change the nature of the task from classification 

to regression. Another approach toward profit scoring is based on using profit-related 

performance measures for model selection such as expected maximum profit that is 

calculated from the costs and benefits of extending customer credits. This would provide us 

with a direct answer to an important managerial question to what degree accuracy 

improvements actually add to the bottom-line (Kozodoi, Lessmann, Papakonstantinou, 

Gatsoulis & Baesens, 2019). Finally, it would be logical to extend the study to include some 

newer ensemble classification methods that have received considerable academic attention 

in recent years. For example heterogenous ensembles were not discussed in the study, but 

tend to perform considerably well in CS applications according to the paper by Lessmann, 

Baesens, Seow, and Thomas (2015). Another improvement might be the inclusion of textual 

and similar less structured data into the ML models.  
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Appendix 1: Summary in Slovene Language 

Upravljanje s tveganji je ključno za dolgoročen obstoj podjetja na trgu. Zaradi tega morajo 

podjetja identificirati in meriti različne finančne pa tudi nefinančne nevarnosti ter se nanje 

odzivati. Med podjetji je ustaljena praksa, da svoje proizvode in storitve prodajajo na 

odloženo plačilo (angl. trade credit arrangement), za kar obstaja v literaturi cela vrsta 

finančnih, poslovnih in operativnih motivov, npr. ohranjanje dolgoročnih odnosov s 

strankami, cenovna diskriminacija, zagotavljanje kakovosti proizvodov in/ali storitev, 

nižanje transakcijskih stroškov itn. (Garcia - Teruel & Martinez - Solano, 2010). Slovenski 

računovodski standardi prodajo na odloženo plačilo definirajo kot »prodajo blaga ali 

storitve, ki ga (jo) kupec v trenutku prenosa nanj še ne plača« (Slovene Accounting 

Standards, 2016). Za prodajalca to pomeni povečanje terjatev do kupcev, medtem ko se v 

kupčevi bilanci stanja transakcija zazna kot povečanje obveznosti do dobaviteljev. Glede na 

nedavno študijo imajo evropska podjetja v povprečju 14 % celotne aktive v obliki poslovnih 

terjatev do strank, kar predstavlja znaten del likvidnosti (McGuinness, Hogan & Powell, 

2018). Tovrstna prodaja tako za vsako podjetje pomeni tveganje neplačila (angl. 

credit/default risk), kar lahko ob neupravljanju s tveganjem vodi v likvidnostne težave, 

vsekakor pa imajo tovrstni kreditni dogodki negativen vpliv na dobičkonosnost poslovanja. 

Tako je ključno, da podjetja ocenjujejo kreditno sposobnost strank v portfelju in ločijo med 

tistimi, ki bodo bolj ali manj verjetno poravnali svojo terjatev, kar ne nazadnje omogoča 

zasnovo učinkovitih strategij za upravljanje s kreditnim tveganjem.  

Metodologija, ki se uporablja za ocenjevanje kreditne sposobnosti strank oziroma omogoča 

izračun transakcijske verjetnosti neplačila, je znana pod imenom kvantitativna analiza 

kreditne sposobnosti (angl. quantitative credit scoring) in je del širšega področja 

modeliranja kreditnega tveganja (Chacko, Sjöman, Motohashi & Dessain, 2016). V 

splošnem se modeli kreditnega tveganja razvrščajo v tri razrede: strukturni (angl. structural 

models), empirični (angl. empirical models) in reducirani modeli (angl. reduced form 

models). Najprimernejši modeli za namen ocenjevanja verjetnosti neplačila poslovnih strank 

so empirični. Empirični modeli kreditnega tveganja v osnovi primerjajo med podjetji, ki so 

oziroma v nekem preteklem obdobju niso bila podvržena dogodku neplačila, ter iz te 

primerjave izpeljejo implicitna klasifikacijska pravila, ki temeljijo na historičnih 

informacijah, kot so: poslovni izkazi podjetij, makroekonomske in kvalitativne 

spremenljivke, podatki o plačilih itn. Pri tem velja dodati, da tovrstna analiza temelji na 

predpostavki »prihodnja dinamika zrcali preteklo«, torej da se vzorci oziroma izpeljana 

pravila do neke mere ponavljajo (Alexander & Sheedy, 2004). Filozofija kvantitativne 

analize kreditne sposobnosti tako temelji na premisi pragmatičnosti in empirizma v smislu, 

da je cilj modeliranja doseči čim boljšo napovedno natančnost na neodvisnem testnem 

vzorcu, in to kljub slabši interpretativnosti modela. Ključne prednosti uporabe te analize 

so naslednje: (i) omogoča maksimizacijo kompromisa med pričakovano dobičkonosnostjo 

in tveganjem; (ii) izboljšanje ocenjevanja kreditnega tveganja in večja konsistentnost ocen 

verjetnosti med strankami; (iii) višja kakovost portfelja strank itn. Na drugi strani nekateri 

avtorji opozarjajo na pomanjkljivosti metodologije, npr. pristranskost učnega vzorca, nizko 



2 

 

število dogodkov neplačila, uporaba pristranskih kazalnikov finančnega poslovanja itn. 

(Kennedy, 2013; Kinda & Achonu, 2012; Schreiner, 2004; Thomas, Crook & Edelman, 

2017). Glede na vrsto vhodnih podatkov pri modeliranju poznamo dve vrsti ocenjevanja 

kreditne sposobnosti: ocenjevanje kreditne sposobnosti i) novih (potencialnih) strank (angl. 

application scoring); ii) obstoječega portfelja strank (angl. behavioural scoring). Pri prvem 

tipično uporabimo statične podatke, zbrane ob prihodu strank, medtem ko pri drugem model 

temelji na preteklih podatkih, zbranih v določenem vzorčnem oknu; tj. oknu, ki služi za 

izpeljavo želenih neodvisnih spremenljivk. Na podlagi opazovalnega okna definiramo 

odvisno spremenljivko; v našem primeru je to dogodek neplačila. Presečni dan je točka, ki 

ločuje obe okni in definira vzorec strank, za katere bodo zbrani podatki. Obstaja možnost 

večkratnega vzorčenja, pri čemer opisani postopek ponovimo še za nekaj preteklih let; to 

je priporočljivo izvesti, če je v vzorcu premalo dogodkov neplačila oziroma kadar želimo 

dodatno vključiti še makroekonomske spremenljivke, kar v model prinese dodatno 

robustnost in večjo napovedno moč (Siddiqi, 2017).  

Pri določanju definicije dogodka neplačila je treba primarno upoštevati organizacijske 

cilje; treba se je vprašati, zakaj se razvija model kreditnega tveganja. Drugič, definicija 

neplačila mora biti jasna in sledljiva. To ne omogoča le učinkovitejšega razvoja modela, 

ampak tudi olajša zasnovo strategij upravljanja s tveganjem. Tretjič, če v industriji obstaja 

regulativa (npr. baselski sporazum v finančni industriji), je treba slediti smernicam, ki jih ta 

določa. Glede na povedano obstajajo bolj ali manj stroge definicije neplačila. Najpogosteje 

se kot neplačnika definira dolžnika, ki s svojimi obveznostmi zamuja za 60 ali 90 dni. 

Nekoliko restriktivnejša definicija bi kot neplačnika določila dolžnika, ki s plačilom zamuja 

več kot 120 dni ali pa je bil nad njim začet insolventen postopek (Anderson, 2007). Na drugi 

strani je treba za diskriminacijo med plačniki in neplačniki v vzorcu opredeliti nabor 

neodvisnih spremenljivk. Kot smo omenili, modeliranje kreditnega tveganja tipično temelji 

na finančnih kazalnikih, ki jih izpeljemo iz letnih izkazov podjetij, in pretekli plačilni 

dinamiki, če imamo na voljo podatkovno bazo računov. Številni avtorji ugotavljajo, da 

vključitev makroekonomskih spremenljivk v kreditni model pripomore k napovedni moči 

(Altman, Sabato & Wilson, 2008; Bellotti & Crook, 2009). Za robustnost napovednega 

modela je bistveno, da so podatki kakovostni (tj. natančni, popolni in konsistentni) in dovolj 

obsežni; to je posebej pomembno pri aplikaciji pristopa strojnega učenja, kot bomo videli v 

nadaljevanju (Kennedy, 2013). Glede na veliko število virov podatkov je – tipično – 

dimenzionalnost podatkovne baze velika, zato je smiselno poleg uporabe tehnik reduciranja 

dimenzionalnosti pri določitvi končnega nabora neodvisnih spremenljivk upoštevati 

naslednja merila: i) morebitne pravne omejitve; ii) intuitivnost, preverljivost in stabilnost 

spremenljivke; iii) stroške zbiranja glede na doprinos; iv) prihodnjo razpoložljivost; v) 

napovedno moč (Thomas, Crook & Edelman, 2017). 

Namen magistrskega dela je aplicirati opisano metodologijo ocenjevanja kreditne 

sposobnosti strank na vzorcu slovenskih podjetij in primerjati napovedno natančnost 

tradicionalnih statističnih metod s pristopi strojnega učenja (angl. machine learning 

approach). Vzrok za analizo predstavlja dejstvo, da je dandanes uporaba strojnega učenja v 
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finančni industriji zaradi navidezne kompleksnosti še vedno zelo omejena, kljub 

potencialnim prihrankom uporabe pristopa pri ocenjevanju kreditnega tveganja. Lessmann, 

Baesens, Seow in Thomas (2015); Khandani, Kim in Lo (2010) v raziskavah ugotavljajo, da 

izboljšana napovedna natančnost tehnik strojnega učenja vodi v primerjavi z logistično 

regresijo v zmanjšanje kreditnih izgub za od 5,0 do 25,0 %. 

Stroji oziroma računalniki se v zadnjem času vse bolj uporabljajo v različnih domenah za 

opravljanje »inteligentnih« nalog, pri katerih ljudje ne moremo eksplicitno artikulirati 

svojega znanja oziroma pravil igre. Ključno vlogo pri uspehu pristopa strojnega učenja imajo 

trije elementi: i) vzpon masovnih podatkov; ii) izboljšani algoritmi samostojnega učenja; iii) 

boljša/cenejša računalniška zmogljivost. To omogoča sorazmerno preprosto, predvsem pa 

stroškovno učinkovito aplikacijo pristopa strojnega učenja oziroma umetne inteligence 

(angl. artificial intelligence) kot celote na različnih področjih, npr. v strojništvu, medicini, 

biologiji, v financah itn. (Brynjolfsson & McAfee, 2017a). Strokovnjaki na področju umetne 

inteligence iz svetovalnega podjetja McKinsey ocenjujejo potencialno kumulativno vrednost 

uporabe te tehnologije na 16 % BDP oziroma 13 bilijard dolarjev do leta 2030, a hkrati 

opozarjajo na potencialne nevarnosti. Uporaba umetne inteligence namreč prinaša neslutena 

tveganja, povezana z varovanjem osebnih podatkov, s kibernetsko varnostjo, z manipulacijo 

javnega mnenja itn. Kljub temu nas te nevarnosti ne smejo odvrniti od nadaljnjega 

raziskovanja; z raziskovanjem namreč prispevamo h »gradnji« znanja, kar na eni strani 

omogoča boljše razumevanje priložnosti, na drugi pa učinkovitejše obvladovanje tveganj, ki 

jih prinaša umetna inteligenca oziroma stojno učenje kot njeno podpodročje (Bughin, Seong, 

Manyika, Chui & Joshi, 2018; Bughin & Manyika, 2018). Eksperimentiranje z umetno 

inteligenco sega v 50. leta prejšnjega tisočletja, ko so se znanstveniki ukvarjali predvsem z 

reševanjem dobro definiranih/logičnih problemov, kot je npr. igranje šaha (govorimo o 

simbolični umetni inteligenci). Tovrsten pristop pa se ni izkazal kot najoptimalnejši za 

uporabo v kompleksnejših nalogah, pri katerih pravil ni mogoče eksplicitno pred-

programirati. Tako se je v okviru umetne inteligence razvila nova paradigma, ki se osredinja 

na samostojno učenje »agenta«, poznana kot paradigma strojnega učenja. Cilj algoritmov 

(metod) strojnega učenja je samostojno učenje na podlagi vhodnih izkušenj v smeri 

doseganja čim večje uspešnosti, ki jo navadno merimo z neko stroškovno funkcijo (Chollet, 

2018). Znotraj strojnega učenja se v zadnjem času veliko pozornosti namenja globokemu 

učenju (angl. deep learning), ki obravnava globoke (večslojne) nevronske mreže. Te v 

določenih aplikacijah dosegajo oziroma celo presegajo zmogljivosti naravne inteligence. 

Bengio, Hilton in LeCunn (2015, p. 1) globoko učenje definirajo kot »več-nivojsko učenje 

predstavitev vhodnih podatkov, pri čemer vsak nivo vhodno informacijo pretvori na 

nekoliko višjo, abstraktnejšo raven.«  

Kot smo omenili, je fokus magistrskega dela aplikacija pristopa strojnega učenja na primeru 

napovedovanja kreditne sposobnosti strank. Tovrstno nalogo lahko uvrstimo v domeno 

nadzorovanega strojnega učenja kot enega izmed treh vrst strojnega učenja: i) 

nadzorovano; ii) nenadzorovano; iii) spodbujevalno učenje. Pri nadzorovanem učenju se 

algoritem samostojno uči pravil na podlagi implicitnih vzorcev iz vhodnih podatkov in 
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želenih izhodnih rezultatov (oziroma vrednosti odvisne spremenljivke, ki jih predhodno 

določi človek/nadzornik). V našem primeru je odvisna spremenljivka binarna oziroma 

diskretna (tj. plačnik ali neplačnik), zato govorimo o klasifikaciji. Metode nadzorovanega 

strojnega učenja imajo apriorni cilj maksimirati napovedno natančnost na podatkih zunaj 

vzorca, zato so primerne za napovedovanje verjetnosti neplačila. Ker ja tako strojno učenje 

izhodiščno namenjeno nalogam napovedovanja, nam tovrstne metode ponujajo veliko večjo 

izbiro funkcijskih oblik, kar vodi v večjo natančnost modela in posledično boljšo 

učinkovitost implementiranih strategij za upravljanje s tveganji. Dodatno nam metode 

stojnega učenja ponujajo večjo fleksibilnost glede izbire neodvisnih spremenljivk, saj so 

algoritmi prilagojeni za učinkovito učenje na velikih podatkovnih bazah in večjem številu 

neodvisnih spremenljivk; predvsem globoko učenje, ki dodatno omogoča samodejno 

izpeljavo spremenljivk (angl. automated feature engineering) (Kononenko & Kukar, 2007; 

Mirjalili & Raschka, 2017; Ng & Katanforoosh, 2019). 

V industriji se za ocenjevanje transakcije verjetnosti neplačila strank oziroma izpeljavo 

klasifikacijskih pravil še vedno najpogosteje uporabljajo parametrične statistične metode, 

kot so npr. diskriminantna analiza, pogojni verjetnosti modeli itn. – najbolj priljubljena 

metoda modeliranja je tako imenovana logistična regresija (angl. logistic regression s 

kratico LR), ki odnos med verjetnostjo neplačila in neodvisnimi spremenljivkami modelira 

prek logistične funkcije. Kot statistična metoda ima LR določene restriktivne predpostavke, 

prav tako je v osnovi namenjena pojasnjevanju strukturnega odnosa med neodvisnimi 

spremenljivkami in verjetnostjo plačila kot pa samemu napovedovanju. Posledično je 

napovedna natančnost sorazmerno nizka oziroma napovedna napaka višja, kar pomeni, da 

implementirane strategije upravljanja s kreditnim tveganjem niso optimalne. V nadaljevanju 

tako predstavljamo metode strojnega učenja, ki temeljijo na manj restriktivnih 

predpostavkah in tako omogočajo večjo sposobnost generalizacije na nove primere.  

(i) k-Najbližjih sosedov (angl. k-nearest neighbour v nadaljevanju k-NN) je eden izmed 

osnovnejših algoritmov nadzorovanega strojnega učenja. Glavna značilnost metode je, 

da pri učenju ne izpelje modela, ampak si zapolni celotni učni vzorec in poda napoved 

za nov primer s pomočjo primerjave na podlagi mer podobnosti. Zaradi večje 

robustnosti metode se podobnost primerja s k najbližjimi sosedi (Harrington, 2012). 

(ii) Klasifikacijska drevesa (angl. classification trees v nadaljevanju DT) se uporabljajo v 

aplikacijah, ki poleg napovedne natančnosti zahtevajo tudi vpogled v strukturo 

problema (tj. transparentnost). Ta nelinearna metoda ponazarja relacijo med vhodnimi 

spremenljivkami in izhodnimi rezultati (tj. odvisno spremenljivko) prek notranjih 

vozlišč. Vsako drevo se začne z izbiro najpomembnejše spremenljivke in se nato razdeli 

v poddrevesa glede na vrednosti, ki zagotovijo najbolj »čiste« podmnožice glede na 

razred; posebna vrsta dreves so binarna klasifikacijska DT, ki vedno ustvarijo le dve 

podmnožici, kar zmanjša prostor iskanja rešitve. Kot mera čistoče se najpogosteje 

uporablja Ginijev indeks različnosti. Klasifikacija novih primerov temelji na primerjavi 

njihovih vrednosti z vrednostmi spremenljivk v vozliščih, dokler ne pridemo do 

zadnjega lista v drevesu, ki nam poda napoved. DT so izjemno občutljiva na vhodne 
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podatke, kar vodi v nestabilnost njihove strukture. Zaradi tega se priporoča uporaba 

ansambelskega pristopa, poznanega pod imenom naključni gozdovi (Geron, 2017).   

(iii) Metoda podpornih vektorjev (angl. support vector machines v nadaljevanju SVMs) je 

metoda razvrščanja, ki jo je v 90. letih razvil ruski statistik Vladimir Vapnik. Zanjo je 

značilno, da množico učnih primerov razdeli v razreda, tako da maksimizira širino 

ločitvene meje med njima. SVMs si lahko zamislimo kot postavljanje najširše mogoče 

»ulice«, ki jo definirajo samo najbližji učni primeri oziroma vektorji; te imenujemo 

podporni vektorji. Ločitvena meja je pri tej metodi linearna, zato SVMs v osnovni 

različici ne more razvrščati primerov, ki so linearno neločljivi. V tem primeru lahko 

uporabimo nadgradnjo osnovnega algoritma s tako imenovanimi jedrnimi funkcijami 

(angl. kernel functions), ki osnovne podatke transformirajo v višjo dimenzijo, pri kateri 

je problem linearen. Ena izmed ključnih prednosti metode podpornih vektorjev je 

globalna optimalnost rešitve (Mirjalili & Raschka, 2017). 

(iv) Umetne nevronske mreže (angl. artificial neural networks v nadaljevanju ANNs) so 

metode globokega strojnega učenja, ki delujejo po vzoru možganov v bioloških 

organizmih. Človeški možgani so sestavljeni iz približno 10 milijard nevronov (živčnih 

celic), ki se med seboj povezujejo v mreže prek nevritov, kar omogoča procesiranje 

kompleksnih informacij. Podobno delujejo tudi ANNs, le da so te v osnovi veliko 

preprostejše v primerjavi z delovanjem biološkega živčnega sistema. ANNs sestavlja 

množica umetnih nevronov, ki imajo več različno uteženih vhodov in en izhod. Učenje 

v kontekstu nevronskih mrež poteka prek spreminjanja uteži na vhodih nevronih, dokler 

ta ni zmožna optimalno rešiti nekega problema na podlagi izkušenj iz učnih podatkov. 

Ključni algoritem, ki prilagaja uteži vsakemu nevronu v mreži, tako da je napovedna 

napaka vedno manjša, se imenuje algoritem za vzvratno razširjanje (angl. 

backpropagation algorithm). Bistvena prednost ANNs kot metode globokega strojnega 

učenja je dejstvo, da se zaradi fleksibilnosti pristopa napovedna natančnost povečuje z 

naraščanjem števila podatkov, zato je primerna za aplikacijo na masovnih podatkih. 

Nasprotno učinkovitost drugih metod stagnira (Aggarwal, 2018). 

(v) Ansambelske metode (angl. ensemble learning) so poleg globokega učenja v zadnjem 

desetletju prejele veliko pozornosti, saj na spletni strani Kaggle v različnih domenah 

dosegajo izjemne rezultate z vidika napovedne natančnosti. Cilj ansambelskih metod je 

združiti več istih oziroma različnih metod strojnega učenja v meta-algoritem, ki 

izkorišča prednosti posameznih metod. Trenutno je na voljo veliko različnih 

ansambelskih algoritmov; v okviru magistrskega dela bomo uporabili dve metodi. Pri 

opisu klasifikacijskih dreves smo opozorili na nestabilnost algoritma. Breiman (2001b) 

je tako predlagal nadgradnjo – namesto na enem drevesu učenje poteka na množici 

dreves, kar pomeni, da je končni model veliko robustnejši, napovedna napaka pa 

manjša. Ta metoda se imenuje naključni gozdovi (angl. random forest v nadaljevanju 

RF). Druga priljubljena ansambelska metoda, ki jo bomo uporabili za napovedovanje 

verjetnosti neplačila, je znana pod imenom algoritem AdaBoost (angl. adaptive 

boosting algorithm). Metoda poskuša postopoma popraviti napake prejšnjih krogov 

učenja, tako da v vsakem krogu pripiše večjo utež tistim primerom, ki so bili uvrščeni v 
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napačen razred (Freund & Schapire, 1999). Dodatno smo uporabili še metodo 

gradientne krepitve (angl. gradient boosting algorithm), ki se je izkazala za izjemno 

uspešno v preteklih raziskavah. 

 

Proces napovednega modeliranja (angl. predictive modelling) v strojnem učenju v 

splošnem sledi trem korakom, ki zagotavljajo izbiro metode z največjo sposobnostjo 

generalizacije na nove podatke – govorimo o pred-procesiranju podatkov (angl. data pre-

processing), fazi učenja izbranih metod (angl. learning phase) ter izbiri ter evalvaciji 

končnega modela (angl. model selection and evaluation). Opisani proces zagotavlja, da je 

ocenjena natančnost končnega modela realistična, kar je ključna informacija v fazi njegove 

implementacije v poslovni proces (Mirjalili & Raschka, 2017). Najpogosteje se v praksi za 

evalvacijo modela uporablja stopnja natančnosti (angl. accuracy), vendar pa ta ob 

neuravnoteženem vzorcu ni optimalna, zato smo za oceno diskriminacijske moči modela 

uporabili krivuljo ROC (angl. receiver operating curve), ki predstavlja razmerje med 

deležem pravilno razvrščenih plačnikov in deležem nepravilno razvrščenih neplačnikov, ter 

izpeljano mero AUROC (angl. area under the reciever operating characteristic), ki meri 

ploščino pod krivuljo. Vrednost AUROC pri popolnem modelu je enaka 1, medtem ko bi ta 

pri popolnoma naključnem modelu znašala 0,5 (Jackson & Wood, 2013; Kononenko & 

Kukar, 2007). Dodatno smo za primerjavo metod uporabili še metriko povprečna natančnost 

(angl. average precision). 

Za namen empirične analize smo uporabili podatke iz letnih finančnih izkazov slovenskih 

gospodarskih družb in večjih samostojnih podjetnikov med letoma 2013 in 2017, ki jih v 

okviru Poslovnega registra Slovenije (v nadaljevanju PRS) zbira Agencija RS za 

javnopravne evidence in storitve (v nadaljevanju AJPES). Podatke o insolventnih postopkih 

za obdobje med letoma 2014 in 2018, ki služijo izpeljavi odvisne spremenljivke (tj. definiciji 

neplačnikov), je posredoval Center za informatiko Vrhovnega sodišča RS. Kot je razvidno 

smo pri zbiranju podatkov uporabili pristop večkratnega vzorčenja – to je omogočilo 

vključitev večjega števila dogodkov neplačila oziroma v našem primeru stečajev. 

Makroekonomske podatke smo pridobili na spletni strani Statističnega urada RS in na 

globalnem finančnem portalu Investing.com. Obdelava podatkov je potekala v programskem 

jeziku Python in razvojnem okolju Jupyter Notebooks, ki je prilagojen potrebam izvajanja 

podatkovne analitike. Del analize je bil izveden v programskem paketu R Studio. 

Običajen potek dela v strojnem učenju se začne s korakom pred-procesiranja podatkov. 

Prvotni vzorec podatkov je vseboval 322.203 opazovanj tipa podjetje – leto za obdobje med 

letoma 2013 in 2017. Opazovanjem smo na podlagi podatkov o insolventnih postopkih 

določili status neplačnika oziroma plačnika, če se je v enem letu po objavi finančnih izkazov 

nad njim začel voditi stečajni postopek. Prvotni obseg podatkov smo nato zožili samo na 

nefinančna podjetja; to so tista podjetja, ki po klasifikaciji institucionalnih sektorjev (angl. 

classification of institutional sectors) spadajo v podkategoriji S.11001 in S.11002. Dodatno 

smo v vzorcu obdržali samo podjetja, ki imajo podobno strukturo bilance stanja, saj to 

omogoča razvoj natančnejšega kreditnega modela – skladno s standardno klasifikacijo 
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dejavnosti smo izbrali podjetja iz panog C (predelovalne dejavnosti), F (gradbeništvo) in G 

(trgovina; vzdrževanje in popravila motornih vozil). Nazadnje smo vzorec filtrirali še glede 

na velikost podjetij; obdržali smo samo podjetja, ki so imela v vzorčnem oknu povprečen 

prihodek višji od 10.000 EUR. Končni vzorec za analizo je tako vseboval 101.880 

opazovanj, med katerimi je bilo 842 oziroma 0,8 % neplačnikov. Po izpeljavi 45 finančnih 

kazalnikov s področij dobičkonosnosti, likvidnosti, zadolženosti, gospodarnosti, 

investiranja, rasti itn. smo najprej lastnosti podatkov povzeli s pomočjo enostavnih opisnih 

statistik in histogramov. To je pokazalo, da so v podatkih prisotne manjkajoče in ekstremne 

vrednosti, kar je tipično pri tovrstnih kazalnikih, saj so vrednosti v imenovalcu velikokrat 

blizu ničle. Dodatno smo si opazovanja v vzorcu ponazorili s pomočjo tehnik vizualiziranja 

visokodimenzionalnih podatkov. Najprej smo uporabili metodo glavnih komponent (angl. 

principal component analysis), tako da smo izbrali samo prvi dve komponenti, ki 

pojasnjujeta največji del razpršenosti analiziranih podatkov. Nato smo podatke ponazorili še 

s pomočjo nelinearne tehnike t-SNE (angl. t-distributed stohastic neighbouring embedding). 

Vizualizacija je pokazala, da sta v podatkih prisotni dve gruči podjetij (plačniki in 

neplačniki), vendar pa je med skupinama tudi nekaj prekrivanja; vseeno dejstvo predstavlja 

dober signal za uporabo metod nadzorovanega strojnega učenja.  

Pred nadaljnjim čiščenjem podatkov smo skladno z uveljavljenim potekom dela v 

napovednem modeliranju vzorec razdelili na učno in testno množico v razmerju 80 : 20. 

Prva je namenjena izbiri hiperparametrov modela (angl. model selection) in učenju (angl. 

fitting) klasifikacijske metode, druga pa omogoča nepristransko evalvacijo modela na 

(njemu) novih podatkih (angl. model performance evaluation). Za izbiro hiperparametrov 

modela na učni množici smo uporabili pristop k-kratnega prečnega preverjanja (angl. k-fold 

cross-validation), ki učno množico razbije na k disjunktnih podmnožic, pri čemer se k − 1 

množic uporabi kot učno množico, k-ta množica pa služi evalvaciji modela ter izbiri 

optimalnih hiperparametrov, kot prikazuje graf 11 na strani 59. Pred aplikacijo tehnik v 

korakih 2 in 3 iz grafa 9 na strani 56 smo najprej iz vzorca odstranili tista opazovanja in 

neodvisne spremenljivke, ki vsebujejo več kot 20 % manjkajočih vrednosti; druge 

manjkajoče vrednosti pa smo nadomestili z mediano. Ekstremne vrednosti smo 

nadomestili z vrednostjo 1. in 99. centila. Tako urejene podatke smo nato standardizirali. 

Standardizacija (angl. standardization) je postopek, s katerim vrednosti spremenljivke 

transformiramo, tako da jim odštejemo aritmetično sredino in delimo s standardnim 

odklonom. To zagotavlja učinkovito učenje klasifikacijskih metod.  

Naš učni vzorec vsebuje samo 0,8 % neplačnikov, kar pomeni, da imamo opravka z 

ekstremno neuravnoteženimi podatki. To zahteva implementacijo tehnik vzorčenja (angl. 

sampling technique), s katerimi uravnotežimo podatke. Najprej smo za uravnoteženje 

podatkov uporabili naključno podvzorčenje (angl. random undersampling), ki zmanjšuje 

število opazovanj v večinskem razredu, in naključno nadvzorčenje (angl. random 

oversampling), ki poveča število manjšinskih opazovanj s pomočjo naključnega podvajanja. 

Chawla, Bowyer, Hall in Kegelmeyer (2002) za uravnoteženje opazovanj v učni množici 

predlagajo uporabo tehnike SMOTE (angl. synthetic minority oversampling technique), ki 
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v vsakem koraku iz manjšinskih opazovanj generira sintetične primere. V delu smo dodatno 

uporabili nadgrajeno tehniko SMOTEEN, ki predstavlja kombinacijo podvzorčenja prek 

čiščenja večinskega razreda in nadvzorčenja z uporabo opisane tehnike SMOTE. V drugem 

koraku empirične analize smo skladno s shemo iz grafa 9 aplicirali osem tehnik zmanjšanja 

dimenzionalnosti (angl. dimensonality reduction techniques) naših podatkov. Cilj tega 

koraka je določiti optimalen nabor pojasnjevalnih spremenljivk, ki največ prispevajo k 

napovedni moči modela. V splošnem lahko te delimo v dve skupini: i) tehnike izbire 

spremenljivk (angl. feature selection); ii) tehnike ekstrakcij spremenljivk (angl. feature 

extraction). Navadno kreditni modeli vsebujejo od 8 do 15 spremenljivk; končno število je 

odvisno od cilja modeliranja (tj. transparentnost modela ali čim večja napovedna moč) in 

stroškov zbiranja podatkov. Korelacijska matrika v prilogi 10 nakazuje, da so nekatere 

spremenljivke med seboj močno korelirane; v takem primeru je smiselno izračunati 

statistiko, imenovano variančni inflacijski faktor (angl. variance inflation factor), ki 

omogoča identifikacijo multikolinearnosti med spremenljivkami v modelu in njihovo 

izločitev. Iz preostalih neodvisnih spremenljivk smo nato z uporabo tehnik izbire 

spremenljivk oblikovali šest podmnožic – vsaka je vsebovala deset najpomembnejših 

spremenljivk glede na določeno merilo. Aplicirane tehnike izbire spremenljivk obsegajo: i) 

regularizacijo; ii) izračun informacijskega prispevka; iii) MultiSURF; iv) metodo naključnih 

gozdov; v) rekurzivno eliminacijo z uporabo metode podpornih vektorjev; vi) genetski 

algoritem. Dodatno smo izvedli redukcijo dimenzij s pomočjo dveh tehnik ekstrakcij: i) 

metoda glavnih komponent, pri kateri smo uporabili 15 najpomembnejših komponent; ii) 

linearna diskriminantna analiza. 

V tretjem koraku empirične analize smo skladno s shemo iz grafa 14 izvedli samo učenje 

izbranih metod (angl. model learning). Kot že rečeno, zajema proces učenja dve fazi: i) 

izbiro modela oziroma optimalnih hiperparametrov in validacijo z uporabo 10-kratnega 

prečnega preverjanja ter ii) končno evalvacijo metod na testni množici. Evalvacija metod 

temelji na treh metrikah, ki smo jih že predstavili. Pri tem smo se za končno primerjavo 

metod in diskusijo rezultatov osredinili na mero AUROC, ki je najbolj uveljavljena na 

področju stojnega učenja. Pythonova knjižnica Scikit-Learn za učinkovito in dosledno 

implementacijo strojnega učenja ponuja funkcijo »pipeline«, ki omogoča učinkovito 

veriženje opisanih postopkov pred-procesiranja podatkov in s tem samega učenja. Rezultati, 

povezani s prvim in z drugim raziskovalnim vprašanjem, so v tabeli 18 na strani 69. Predenj 

preidemo na diskusijo rezultatov, bi opozorili, da je potekala faza izbire optimalnih 

hiperparametrov samo na podvzorčenih podatkih in z uporabo regularizacije kot izhodiščne 

tehnike zmanjšanja dimenzionalnosti. Odločitev za ta izhodiščni scenarij temelji na dejstvu, 

da naša stojna oprema ne omogoča časovno učinkovitega učenja velikega števila modelov v 

postopku izbire hiperparametrov na tako veliki podatkovni tabeli. Tako smo dobljene 

optimalne vrednosti iz izhodiščnega scenarija uporabljali med celotno analizo. To ni najbolj 

optimalno z vidika rezultatov, vendar pa vseeno ponuja neki vpogled v odnos med 

uporabljenimi metodami/tehnikami in sposobnostjo generalizacije modela na nove podatke. 

Da lahko odgovorimo na zadnja tri raziskovalna vprašanja tega dela, smo v okviru empirične 
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analize izvedli učenje metod na originalnih (tj. neuravnoteženih) podatkih in podatkih, na 

katerih smo aplicirali nadvzorčenje in tehniko SMOTEEN – rezultati analize so na voljo v 

prilogi 13. Na podoben način smo analizirali vpliv tehnik zmanjšanja dimenzionalnosti. 

Rezultate lahko najdete v prilogi 14. Pri tem smo dodatno preverili pomembnost posameznih 

neodvisnih spremenljivk v končnem modelu; dotične rezultate najdete v prilogi 15. Nazadnje 

smo v model vključili makroekonomske spremenljivke (angl. macroeconomic variables) za 

vsako leto posebej in preverili njihov vpliv na napovedno moč modela. 

V nadaljevanju povzemamo rezultate izvedene empirične analize. Kot smo omenili, 

temelji primerjava sposobnosti generalizacije metod na nove podatke (tj. testno množico) na 

metriki AUROC, saj imamo opravka z izjemno neuravnoteženimi podatki in tako mera 

klasifikacijske natančnosti ne bi omogočala robustne primerjave. Naj izpostavimo, da 

vrednost metrike AUROC pri popolnoma naključnem modelu (angl. dummy classifier) 

znaša 0,5. Vrednosti, višje od te, pomenijo večjo zmožnost modela v ločevanju med plačniki 

in neplačniki. Če si pobližje pogledamo rezultate v tabeli 18 na strani 69, vidimo, da znaša 

vrednost metrike AUROC pri statistični metodi LR 0,868, kar pomeni, da izhodiščna metoda 

sorazmerno dobro razločuje med razredoma. Najslabše se na naših podatkih obnašata metodi 

k-NN in DT – njune vrednosti AUROC znašajo 0,854 in 0,835. To je skladno s predhodnimi 

raziskavami He, Zhang in Zhang (2018) ter Hand in Henley (1997). Na drugi strani lahko 

opazimo, da naprednejše metode strojnega učenja, kot sta SVMs in ANNs, dosegajo 

nekoliko višje vrednosti AUROC, vseeno pa je vprašanje, če so te izboljšave statistično 

značilne. Robustnejše izboljšave smo zaznali pri ansambelskih metodah strojnega učenja. 

To je bilo pričakovano, saj smo v preteklih raziskavah zasledili, da ti modeli precej 

konsistentno beležijo večjo sposobnost generalizacije (Lessmann, Baesens, Seow & 

Thomas, 2015). Kot je razvidno iz tabele 21 na strani 73, aplikacija algoritmov RF, 

AdaBoost – DT in gradientne krepitve prinaša izboljšavo metrike AUROC. Vse tri 

ansambelske metode temeljijo na združevanju posameznih dreves metode strojnega učenja 

DT. RF združuje drevesa paralelno (angl. parallel ensemble methods), medtem ko preostala 

dva algoritma sekvenčno (angl. sequential ensemble methods) dodajata in izboljšujeta 

posamezna drevesa. Če primerjamo vrednosti AUROC teh treh metod z metodo DT, se 

njihova vrednost izboljša za 6,11 %, 7, 31 % in za 8,26 %. Izboljšave v primerjavi s 

statistično metodo LR so nekoliko manjše, vendar vseeno omembe vredne. Vrednost 

AUROC je pri RF za 2,07 % višja, pri AdaBoost – DT za 3,23 % in pri algoritmu gradiente 

krepitve za 4,15 %. Zadnje lepo ponazarja tudi graf krivulj ROC v prilogi 12. Nadalje je naša 

analiza pokazala, da ima pri učenju modela pomembno vlogo uporaba tehnik vzorčenja – 

povprečna vrednost metrike AUROC na neuravnoteženih podatkih znaša 0,808, medtem ko 

so pri podvzorčenju metode v povprečju zabeležile vrednost 0,874. V našem primeru 

nadvzorčenje in uporaba naprednejše tehnike SMOTEEN v povprečju nista prinesli dodatne 

izboljšave modelov. Za nekoliko podrobnejše rezultate dotične analize si lahko ogledate graf 

16 na strani 74, ki ponazarja vpliv posamezne tehnike vzorčenja glede na izbrano 

klasifikacijsko metodo. Izpostavili bi, da so ANNs in ansambelske metode (z izjemo 

AdaBoost – DT) robustnejše pri učenju na neuravnoteženih podatkih, kar je skladno s 
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predhodnimi raziskavami (Brown & Mues, 2012; He, Zhang & Zhang, 2018). Vpliv uporabe 

tehnik zmanjšanja dimenzionalnosti je predstavljen v grafu 17 na strani 75. Opazimo lahko, 

da metode v povprečju najboljše delujejo v kombinaciji z regularizacijo, ki je specifična za 

vsako metodo, sledi tehnika izbire spremenljivk z naključnimi gozdovi in rekurzivna 

eliminacija z uporabo SVMs. Če si nekoliko pobližje ogledamo rezultate, ugotovimo, da 

»najboljša« tehnika zmanjšanja dimenzionalnosti vhodnih podatkov ne obstaja – vsaka 

metoda se obnaša različno glede na uporabljeno tehniko, zato je treba njeno izbiro prilagoditi 

uporabljeni klasifikacijski metodi. Vključitev makroekonomskih spremenljivk v model ni 

prinesla izboljšav modelov v smislu metrike AUROC, saj je vseh pet spremenljivk uvrščenih 

med najmanj pomembne, kot je razvidno v prilogi 16. Pri tem je treba poudarit, da smo vpliv 

makroekonomskih spremenljivk analizirali statično in ne z uporabo dinamičnih (panelnih) 

metod (npr. uporaba markovskih verig ali analiza preživetja), ki se navadno uporabljajo, ko 

imamo opravka s panelnimi podatki. Naša analiza vključitve makroekonomskih 

spremenljivk s tega vidika ni najoptimalnejša.  

V splošnem rezultati nakazujejo na superiornost metod strojnega učenja, predvsem 

ansambelskih metod pri ocenjevanju verjetnosti neplačila poslovnih strank podjetja. Tako 

lahko sklenemo, da je uporaba teh tehnik smiselna, saj na eni strani to prinese višjo 

sposobnost generalizacije, na drugi strani pa je implementacija z uporabo že spisanih 

knjižnic preprosta, hitra in zanesljiva. Glede izvedbe empirične analize bi za prihodnje delo 

priporočali uporabo gnezdenega prečnega preverjanja, ki se odraža v robustnejši oceni 

generalizacije modela. Drugič, analizo bi bilo smiselno aplicirati na podatke specifičnega 

podjetja, saj bi to omogočilo vključitev dodatnih pojasnjevalnih spremenljivk pa tudi lažji 

odgovor na vprašanje finančnih prihrankov implementacije metod strojnega učenja. Tretjič, 

v proces učenja bi bilo smiselno neposredno vključiti koncept maksimizacije dobička in 

tekstovnih podatkov.   
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Appendix 2: An Overview of the Topic Related Problems 

In practice quantitative CS faces many problems that are well-described in the literature. The 

purpose of this section is to briefly discuss them along with possible solutions.  

Problem Topic Possible Solutions  Literature 

Arbitrary default definition – the 

payment default definition may be 

somehow arbitrary and depends on 

the objectives of CS model. 

Additionally, payment default is 

not a well-defined dichotomy in 

reality. 

To confirm that our definition truly 

identifies defaulted cases we can use two 

methods: 

▪ consensus method that is based on 

expert judgement; 

▪ analytical method that involves roll 

rate analysis; 

Using indeterminate class is a way of 

solving dichotomy issue. 

Balcaen and Ooghe 

(2006, pp. 72-73); Lin, 

Ansell, and Andreeva, 

(2012); Siddiqi (2017, 

pp. 89-103); Sun, Li, 

Huang, and He (2014, 

pp. 42-43); Thomas, 

Crook, and Edelman 

(2017, pp. 120-122). 

Low-default portfolios – 

predictive modelling methods 

usually require large number of 

defaulted and non-defaulted cases. 

Usually the issue is with the low 

number of defaulted cases. This 

leads to the fact that algorithms do 

not reach optimal performance. It 

was shown that the optimal class 

distribution should contain 

between 50% and 90% minority 

class examples within the training 

set.  

There are several ways to deal with LDPs: 

▪ stacked sampling uses multiple 

observation points for dataset 

construction; 

▪ change default definition to less 

restrictive one (e.g. use 60 DPD instead 

of 90 DPD delinquency); 

▪ statistical resampling techniques such 

as random under-/oversampling, 

SMOTE method etc. are used to create 

more balanced datasets; 

▪ ensemble learning methods that can 

deal with imbalanced data (e.g. RF, 

AdaBoost). 

Batista, Prati, and 

Monard (2004); Brown 

and Mues (2012); 

Chawla, Bowyer, Hall, 

and Kegelmeyer (2002); 

Crone and Finlay (2012); 

Lemaitre, Nogueira, and 

Aridas (2017); 

Lessmann, Baesebs, 

Seow, and Thomas 

(2015); Mirjalili and 

Raschka (2017); Siddiqi 

(2017, pp. 91-95); Sun, 

Li, Huang, and He (2014, 

pp. 50-51). 

Use of financial annual account 

information – the majority of 

empirical credit risk models build 

for B2B segment use annual 

account information in the form of 

financial ratios. They provide a 

hard, objective measure of 

company’s health. However, 

annual account data suffers from 

creative accounting, lack of 

auditing, missing values. 

Moreover, if models are based 

solely on financial ratios then it is 

implicitly assumed that there are 

no other relevant failure indicators. 

Although financial ratios have many 

drawbacks, they are nevertheless 

important in ECRM. In order to mitigate 

the discussed problems researchers 

suggest using other sources of data for 

measuring organizational success 

(internal as well as external): 

▪ cash flow-based ratios present 

additional variables that can increase 

the modelling accuracy and may be less 

manipulated then accrual-based ratios;  

▪ macroeconomic variables may also 

have an impact on firm’s payment 

behaviour; 

▪ qualitative variables such as age, type 

of business, firm size, CGI, region, etc. 

Alaka et al. (2018, p. 

178); Altman, Sabato and 

Wilson (2008); Balcaen 

and Ooghe (2006, pp. 82-

85); Beaver, McNichols, 

and Rhies (2005); Denis, 

Denis, and Sarin (1997); 

Jayasekera (2018, p. 

202); Lehmann (2003); 

Lin, Ansell, and 

Andreeva, (2012, pp. 

540, 546); Maltz, 

Shenhar, and Reilly 

(2003); Rosner (2003); 

Sharma and Iselin 

(2003); Sun, Li, Huang, 

and He (2014, pp. 51-

53). 

Continues on the next page 
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Table continued 

Problem Topic Possible Solutions  Literature 

Non-stationarity and data 

instability – ECRM is based on 

assumption that future mirrors 

past, i.e. the relationship between 

variables are stable. However, 

practitioners note that data 

generally exhibits non-stationarity 

and instability due to business 

cycles, different market conditions, 

etc. 

To mitigate poor prediction performance 

and develop more stable model, following 

approaches can be used: 

▪ stacked sampling uses multiple 

observation points to derive more 

robust through the cycle model; 

▪ feature screening based on stationarity 

of the characteristic’s distribution in 

time (i.e. characteristic distribution 

analysis).  

Anderson (2007, p. 381); 

Balcaen and Ooghe 

(2006, pp. 74-75); 

Jayasekera (2018, p. 

199); Siddiqi (2017, pp. 

86-89). 

Sample bias – model development 

is usually carried out on “known” 

customers, i.e. the ones that have 

been granted a service before 

(accepted customers). Using such 

models can be inaccurate, as the 

sample is not representative of the 

whole population; hence we talk 

about reject sample bias. 

Furthermore, sample selection bias 

may be present as a result of 

“complete data” selection criteria 

that eliminates companies with 

incomplete data.  

The presence of sample bias is usually 

limited to application scoring, whereas 

behavioural scoring does not suffer from 

it. Furthermore, in environments with 

high approval rates the bias is also less 

apparent. There are generally two 

mechanism underlying missing (i.e. not 

accepted) customers. Firstly, missing at 

random (hereinafter: MAR), and 

secondly, missing not at random 

(hereinafter: MNAR). In case of MNAR 

reject inference is typically applied in 

order to develop a model that can be used 

for “through-out-the-door” population. 

Sample selection bias may be solved with 

using more sophisticated techniques that 

deal with missing values.  

Albon (2018, pp. 76-79); 

Anderson (2007, pp. 

401-418); Balcaen and 

Ooghe (2006, pp. 75-76); 

Florez-Lopez (2010); 

Lessmann, Baesens, 

Seow, and Thomas  

(2015); Mirjalili and 

Raschka (2017, pp. 107-

111) Montrichard 

(2018); Siddiqi (2017, 

pp. 175-178, 215-235); 

Thomas, Crook, and 

Edelman (2017, pp. 141-

149); Verstraeten and 

Van den Poel (2005); 

Zmijewski (1984). 

Feature selection – the process of 

choosing an optimal subset of 

characteristics from the full feature 

set is often done based on 

subjective expert judgement 

(qualitative selection) or popularity 

in the previous research, which 

may not lead to the optimal subset 

selection given the fact that there 

are usually thousands of possible 

combinations. Another issue might 

be that the features included in the 

model exhibit multicollinearity, 

which can lead to unstable 

performance and inaccurate results 

(especially in case of traditional 

statistical methods). 

There are three general classes of 

quantitative feature selection algorithms 

that can be used as an alternative to expert 

judgement: 

▪ filter methods that apply a statistical 

measure (e.g. Chi squared test, t-test) to 

assign power to each feature, usually in 

a univariate fashion; 

▪ wrapper methods consider feature 

selection as a part of model learning to 

find the best feature subset from (e.g. 

stepwise procedure, GAs); 

▪ embedded methods try to combine 

feature selection and model 

construction using regularization 

methods. 

Alternatively, feature extraction 

techniques (e.g. factor analysis or PCA) 

can be used that reduce feature space 

dimensions.  

Alaka et al. (2018, p. 

178); Garcia, Marques, 

and Sanchez (2018, pp. 

1390-1391); Kennedy 

(2013, pp. 75-81); Liang, 

Tsai, and Wu (2015); 

Lin, Liang, Yeh, and 

Huang (2014); Mirjalili 

and Raschka (2017, pp. 

123-184); Sharma 

(2018); Siddiqi (2017, 

pp. 179-182); Sun, Li, 

Huang, and He (2014, 

pp. 51-53); Šušteršič, 

Mramor, and Zupan 

(2009, p. 4740); Thomas, 

Crook, and Edelman 

(2017, pp. 137-141); 

Zhou, Lu, and Fujita 

(2015). 

Continues on the next page 
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Table continued 

Problem Topic Possible Solutions  Literature 

Method selection – many 

researchers note that the method 

selection for ECRM mostly 

depends on method’s popularity or 

is based on modeler’s professional 

background. The use of LR is thus 

still predominantly used in the 

industry. The ascent of AI and ML 

provides a handful of new 

methods. A comprehensive 

method selection framework 

should thus be employed to select 

the best method for given domain.  

The set of criteria for method selection 

can be categorized into three distinct 

categories:  

▪ results related criteria (e.g. accuracy, 

results transparency, deterministic 

output); 

▪ data related criteria (e.g. sample size, 

types of variable, variable selection); 

▪ method’s properties related criteria 

(e.g. linear vs non-linear representation, 

generalization ability). 

Considering the relative importance of 

these criteria, we acknowledge that 

predictive accuracy is of pivotal 

importance in CS. Once we determine the 

set of possible methods based on upper 

criteria the final multiple comparison 

tests should be employed to statistically 

determine the best performing model. 

Alaka et al. (2018); 

Balcaen and Ooghe 

(2006, pp. 77-79); Beque 

and Lessmann (2017); 

Brown and Mues (2012); 

Demšar (2006); 

Kononenko and Kukar 

(2007); Thomas, Crook, 

and Edelman (2017, pp. 

25-99). 

Black-box nature of advanced 

ML methods – traditional 

statistical methods provide us with 

less accurate but transparent model 

that can be interpreted for business 

purposes. Contrary, ML methods 

(particularly ANNs and SVMs) 

provide highly accurate predictions 

at the cost of lower transparency.  

In order to gain accurate information into 

the underlying relationship between 

variables rule extraction approaches to 

derive symbolic representations can be 

applied. The experiments show that rule 

extraction techniques lose only a small 

percentage in performance compared 

with the original ML method.  

Alaka et al. (2018); 

Breiman (2001a); 

Garcia, Marques, and 

Sanchez (2018, p. 1392); 

Thomas, Crook, and 

Edelman (2017, pp. 70-

74). 

Time dimension – classification 

methods used in this study use 

single observation (e.g. one annual 

account) for each customer in the 

dataset. This snapshot 

characteristic might not be 

sufficient to model default events, 

since it does not account for time-

series behaviour of the failure 

process. Default is thus being 

modelled as a discrete event 

assuming the failure is static rather 

than dynamic process in nature. 

One way of treating default process in a 

time-series manner is using survival 

analysis for analysing the expected 

duration of time until default happens. 

This allows us to model not just if a 

customer will default, but also when, 

since time is accounted for. One of the 

most used survival models in CS is Cox 

proportional hazards model that enables 

evaluation of specific factors on survival. 

Another type of methods that incorporate 

dynamic aspect into the estimation of PD 

are referred to as Markov chain 

probability models. Alternatively, one 

can include dynamic indicators based on 

annual accounts into the classification 

methods and thus partially account for the 

time dimension.  

Balcaen and Ooghe 

(2006, pp. 77-79); 

Bellotti and Crook 

(2009); Jayasekera 

(2018); Režnakova and 

Karas (2014); Thomas, 

Crook, and Edelman 

(2017, pp. 157-177); 

Tong, Mues, and Thomas 

(2012); Wu, Gaunt, and 

Gray (2010). 

Source: Own work. 
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Appendix 3: The Basic Components of Credit Risk and Corresponding Modelling 

Approaches 

Central concept in measuring credit risk is the probability of default of a customer. PD does 

not however represent a complete picture of the potential credit loss. Firms seek to measure 

two additional components characterizing the extent of default loss. Firstly, the magnitude 

of likely loss on the exposure termed as loss given default and expressed as a percentage of 

the overall exposure, and secondly, the amount to which a firm is exposed at the time of 

default known as exposure at default (Alexander & Sheedy, 2004). 
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Appendix 4: Specification of Independent Variables Used in the Study 

The table below lists and categorizes the independent variables we used in the study. 

Additionally, it provides a short description of each category characterizing its importance 

on business operations.  

Category Description Selected Variables 

Profitability   

Ratios  

 

Name range: f01 – f10 

Assess company’s ability to earn 

profits on sales, assets and equity (i.e. 

margin analysis). Critical in 

determining the attractiveness of 

investing in company.  

Return on equity (ROE), Return on assets (ROA), 

Net profit margin from sales, EBITDA margin from 

sales, EBIT margin from sales, Overall efficiency, 

Operating efficiency, Value-added per employee, 

Net profit per employee, EBIT to total assets 

Liquidity/Solvency   

Ratios 

 

Name range: f11 – f19 

Assess company’s financial ability to 

meet short-term/long-term obligations 

using short-term/long-term assets. 

Quick ratio, Current ratio, Cash ratio, Receivables 

to payables ratio, LT financing of LT assets and 

inventory, Working capital (WCA) to total assets, 

Working capital (WCA) to sales, Trade credit 

exposure, Interest coverage ratio 

Leverage   

Ratios 

 

Name range: f20 – f25 

Assess the extent the debt is used in 

company’s capital structure and 

evaluate the level of financial leverage 

as well as the ability to service debt 

obligations.  

Equity ratio, Debt ratio, Debt/equity, 

Debt/EBITDA, LT debt to total assets, ST debt to 

total assets 

Investment   

Ratios 

 

Name range: f26 – f30 

Assess company’s investments into 

various types of assets such as 

property, plant, and equipment, 

working assets (i.e. examines asset 

structure).  

Property, plant, and equipment to total assets, 

Working assets to total assets, Financial 

investments to total assets, Current assets to total 

assets, Capital expenditures (CAPEX) to non-

current assets 

Efficiency   

Ratios 

 

Name range: f31 – f36 

Use turnover measures to assess how 

efficient is company in its operations 

and use of assets.  

Asset turnover ratio, Inventory turnover ratio, 

Receivables turnover ratio, Payables turnover ratio, 

Working assets turnover ratio, WCA turnover ratio 

Cash Flow   

Ratios 

 

Name range: f37 – f40 

Assess company’s cash flow (i.e. the 

lifeblood of each business) and 

evaluate how solvent, liquid, and 

viable company is. 

Current liability coverage ratio, Operating cash flow 

to sales, Asset efficiency ratio, Operating cash flow 

to debt 

Growth   

Indicators 

 

Name range: f41 – f45 

Measure company’s year-to-year 

progress in essential areas of company 

performance. 

Assets growth, Revenue growth, Equity growth, 

Negative equity, Net income growth 

Macroeconomic    

Variables 

 

Name range: e01 – e05 

A set of variables describing general 

conditions in the economy that have 

influence on normal business 

operations.   

GDP growth, Unemployment rate, Government 

yield, Inflation rate, SBITOP index  

Source: Bellotti and Crook (2009); Lehmann (2003); Lin, Liang, Yeh, and Huang (2014); Peavler 

(2019).  



16 

 

Appendix 5: A Deeper Insight into the Derivation of Support Vector Machines 

PART 1: The constrained “hard” SVMs optimization problem is represented in (29) and 

has some advantages: reliable solution due to convexity, as well as higher computational 

efficiency via formulation of the dual problem. 

 𝑚𝑖𝑛 𝒘,𝑏   
1

2
ԡ𝒘ԡ2  

                      𝑠. 𝑡.  𝑦(𝑖)(𝒘𝑇𝒙 + 𝑏) − 1 ≥ 0 ∀𝑖 (29) 

In order to cater for the linear inequality constraints, we construct a primal Lagrangian under 

regularity conditions known as Karush-Kuhn-Tucker (hereinafter: KKT) conditions for the 

problem at hand: 

 𝐿𝑃(𝒘, 𝑏, 𝛼) =
1

2
ԡ𝒘ԡ2 − ∑ 𝛼𝑖[𝑦

(𝑖)(𝒘𝑇𝒙(𝑖) + 𝑏) − 1]
𝑛

𝑖=1

 (30) 

The additional 𝛼𝑖 variables are nonnegative KKT multipliers that enable the reduction of a 

constrained problem into unconstrained one and play an important role in calculating optimal 

solution. According to the Lagrange duality theorem convex objective function and 

continuously differentiable linear constrains can be rewritten in a dual form that has the same 

solution. In order to formulate dual problem, we minimize 𝐿𝑃(𝒘, 𝑏, 𝛼) and get the following 

first order conditions: 

 
𝜕

𝜕𝒘
𝐿𝑃(𝒘, 𝑏, 𝛼) = 𝒘 − ∑ 𝛼𝑖𝑦

(𝑖)𝒙(𝑖)
𝑛

𝑖=1

= 0 ⇒ 𝒘 = ∑ 𝛼𝑖𝑦
(𝑖)𝒙(𝑖)

𝑛

𝑖=1

 
(31) 

 
𝜕

𝜕𝑏
𝐿𝑃(𝒘, 𝑏, 𝛼) = ∑ 𝛼𝑖𝑦

(𝑖)
𝑛

𝑖=1

= 0 (32) 

Equation (31) provides an interesting insight into SVMs. The optimal 𝒘 is defined solely in 

terms of the training examples, whose corresponding 𝛼𝑖 differs from zero; as we already 

know these are our support vectors. Plugging (31) and (32) back into the primal Lagrangian 

postulates the following dual problem: 

𝐿𝐷(𝒘, 𝑏, 𝛼) =
1

2
‖(∑ 𝛼𝑖𝑦

(𝑖)𝒙(𝑖)
𝑛

𝑖=1

)‖
2

− ∑ 𝛼𝑖 [𝑦
(𝑖) ((∑ 𝛼𝑗𝑦

(𝑗)𝒙(𝑗)
𝑛

𝑗=1

)

𝑇

𝒙(𝑖) + 𝑏) − 1]
𝑛

𝑖=1

 

 

         =
1

2
∑ 𝛼𝑖𝛼𝑗𝑦

(𝑖)𝑦(𝑗)𝒙(𝑖) ∙ 𝒙(𝑗)
𝑛

𝑖,𝑗=1
− ∑ 𝛼𝑖𝛼𝑗𝑦

(𝑖)𝑦(𝑗)𝒙(𝑖)𝒙(𝑗)𝑇 −
𝑛

𝑖,𝑗=1
𝑏 ∑ 𝛼𝑖𝑦

(𝑖)
𝑛

𝑖=1
+ ∑ 𝛼𝑖

𝑛

𝑖=1
 

          = ∑ 𝛼𝑖

𝑛

𝑖=1
−

1

2
∑ 𝛼𝑖𝛼𝑗𝑦

(𝑖)𝑦(𝑗)𝒙(𝑖) ∙ 𝒙(𝑗)
𝑛

𝑖,𝑗=1
 (33) 
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Final optimization problem therefore becomes finding the vector 𝜶 that maximizes the 

objective function 𝐽(𝜶). 

 𝑚𝑎𝑥 𝜶  𝐽(𝜶) = ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦

(𝑖)𝑦(𝑗)𝒙(𝑖) ∙ 𝒙(𝑗)
𝑛

𝑖,𝑗=1

  

            𝑠. 𝑡.  𝛼𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑦
(𝑖)

𝑛

𝑖=1
= 0 (34) 

Since SVMs optimization problem satisfies all KKT conditions the solution of the dual 

problem is consistent with the primal problem. Note that the algorithm requires only the dot 

product of input vectors to be calculated. This is important for the application of kernel trick 

discussed later (Fletcher, 2008; Haykin, 2009; Ng, 2018). 

PART 2: In order to derive the “soft” SVMs classifier the “hard” SVMs optimization 

problem from (29) is supplemented as follows: 

 𝑚𝑖𝑛 𝒘,𝑏   
1

2
ԡ𝒘ԡ2 + 𝐶 ∑ 𝜉(𝑖)

𝑛

𝑖=1

  

                                𝑠. 𝑡.  𝑦(𝑖)(𝒘𝑇𝒙 + 𝑏) ≥ 1 − 𝜉(𝑖) ∀𝑖  𝑎𝑛𝑑 𝜉(𝑖) ≥ 0, 𝑖 = 1,… , 𝑛 (35) 

The addition of the second term into the optimization problem sets the upper bound on the 

number of test errors. The trade-off between model complexity and the number of 

nonseparable points is controlled via parameter 𝐶, which can therefore be thought of as the 

reciprocal of the regularization parameter. Setting 𝐶 to large values puts more emphasis on 

correctly classifying the training examples and can thus lead to overfitting, whereas small 

values of 𝐶 allow for misclassifications. In any event, 𝐶 must be selected by the model 

developer and is determined experimentally using separate validation set or CV technique 

(Haykin, 2009). 

In similar fashion as before we may derive the primal Lagrangian function, where 𝜇𝑖 are 

Lagrangian multipliers with regards to the new constraint: 

 𝐿𝑃(𝒘, 𝑏, 𝛼, 𝜇) =
1

2
ԡ𝒘ԡ2 + 𝐶 ∑ 𝜉(𝑖)

𝑛

𝑖=1

− ∑ 𝛼𝑖[𝑦
(𝑖)(𝒘𝑇𝒙(𝑖) + 𝑏) − 1]

𝑛

𝑖=1

− ∑ 𝜇
𝑖
𝜉(𝑖)

𝑛

𝑖=1

 (36) 

Minimizing w.r.t. 𝒘, 𝑏 and 𝜉(𝑖) and considering the positivity constraints as well as the KKT 

conditions allows us to construct and solve the dual problem, which uniquely characterizes 

the solution (Hastie, Tibshirani & Friedman, 2017): 

 𝑚𝑎𝑥 𝜶  𝐽(𝜶) = ∑ 𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦

(𝑖)𝑦(𝑗)𝒙(𝑖) ∙ 𝒙(𝑗)
𝑛

𝑖,𝑗=1

  

            𝑠. 𝑡.  0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑦
(𝑖)𝑛

𝑖=1 = 0. (37) 
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Appendix 6: Some Practical Issues in Training the ANNs 

As Hastie, Tibshirani, and Friedman (2017, p. 397) suggest there is “quite an art in training 

neural networks. The model is generally overparametrized, and the optimization is 

nonconvex and unstable unless certain guidelines are followed.” Some practical issues in 

training ANNs are as follows (Aggarwal, 2018; Hastie, Tibshirani & Friedman, 2017; Geron, 

2017; Crone, Lessmann & Stahlbock, 2006): 

(i) feature pre-processing: scaling of the inputs plays an important role in ANNs’ training 

and can have a significant effect on the final solution. It is a good practice therefore to 

standardize the inputs; usually min-max normalization is carried out to scale the inputs 

into the range (0, 1), which helps gradient descent strategies to perform efficiently. 

Another technique employed is referred to as whitening, in which the axes are rotated 

in a way to create uncorrelated features (e.g. typically PCA is used);  

(ii) parameter initialization: choice of initial weights in the network is of particular 

importance due to the stability issues during the network training, known as the 

vanishing/exploding gradients discussed below. Setting all weights to 0 would lead to 

having all derivatives equal to zero, which implies perfect symmetry, and the algorithm 

gets stuck. Starting instead with large values may lead to poor solutions. ML 

practitioners suggest using more sophisticated rules that account for number of layers 

such as the Xavier/He initialization. Bias parameters are always initialized to zero; 

(iii) overfitting: normally ANNs have too many parameters which leads to overfitting 

problems and poor generalization performance for the unseen data. Increasing the 

number of training data usually improves the performance. A good rule of thumb is to 

have at least two to three times more training instances than parameters. Additionally, 

there exists several design methods to mitigate the impact of overfitting. Firstly, 

regularization or weight decay that adds a penalty in the form of either 𝐿1 = 𝜆ԡ𝑾ԡ1 =

𝜆 ∑|𝑾| or 𝐿2 = ԡ𝑾ԡ2 = 𝜆 ∑𝑾2 norm to the cost function. Larger values of 𝜆 (determined 

using CV or hold-out) tend to shrink weights towards zero and thus generalize the 

model. Secondly, early stopping that ends the training after a few iterations. The exact 

stopping time is determined with the help of separate hold-out set, i.e. when the hold-

out generalization error starts increasing, the training is stopped. Thirdly, dropout 

method that is referred to one of the most effective regularization techniques. It consists 

of randomly dropping out a number of neurons in the layer, which introduces noise into 

the model and prevents the network to learn insignificant patterns. Dropout can also be 

thought of as an ensemble technique for ANNs. As we discuss in the next section, 

ensemble methods usually perform better than base learners, hence the popularity of this 

regularization approach; 

(iv) tuning hyper-parameters: one drawback of ANNs’ flexibility is that usually they 

require careful hyper-parameter tuning in order to derive well performing architecture. 

The hyper-parameters such as the learning rate, the regularization parameter, number of 

layers and neurons etc. are therefore optimized in a separate tuning phase that follows 

the initial training of the network. The tuning phase is carried out on a separate hold-out 



19 

 

data or via CV method using the so-called grid search technique. One issue with the 

procedure is that the number of hyper-parameters is usually large, which leads to an 

exponential increase in the number of points in the grid. Therefore, it is much better to 

use randomize grid search, where computational burden can be directly controlled;  

(v) the vanishing and exploding gradients: deep ANNs usually face several stability 

issues with regards to the gradients, i.e. earlier layers receive small updates compared 

to the later ones using backpropagation algorithm. This is referred to as the vanishing 

gradient problem. On the other hand, some gradients may accumulate and result in very 

large updates, which is known as the exploding gradient. Both problems lead to unstable 

network. Some solutions to address the issues are as follows: specific choice of 

activation function (e.g. ReLU and hard tanh), adaptive gradient descent strategies, 

batch normalization, etc. 
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Appendix 7: (A Peak into) Model Optimization Procedures 

The third component of learning as argued in the beginning of section 2 is model 

optimization. When the problem at hand follows some well-defined form, we can usually 

directly calculate the exact “closed form” analytical solutions (e.g. linear regression using 

linear algebra). However, in applied ML most of the methods that enable complex problem 

solving do not have an exact solution, but rather require numerical optimization. That being 

said the learning process in the ML domain essentially boils down to optimizing the set of 

model weights through the iterative process of minimizing the cost function via different 

gradient descent strategies; in that sense we can look at ML as an iterative search problem 

(Brownlee, 2018b). The rest of this section deals with high-level non-technical discussion 

of the optimization strategies used in this study. First, we look into the simple gradient 

descent update rule, which is part of first-order continuous optimization techniques. Then 

second-order quasi-Newton methods used in optimizing convex LR cost function are briefly 

discussed. The rest of the chapter deals with ANNs non-convex optimization strategies that 

are incorporated into the gradient descent rule. At the end coordinate-wise optimization (i.e. 

sequential minimal optimization) is mentioned as an efficient way of solving the SVMs dual 

problem.  

When LR method was discussed we noted that the simplest way of optimizing the 𝜽 set of 

parameters is via the gradient descent update rule. The general idea behind all gradient 

descent strategies is to use the negative direction of the gradient (i.e. multivariable derivative 

vector that points in the direction of steepest ascent) of a given cost function to gradually 

converge to a minimum. One important parameter of the basic gradient descent algorithm is 

the learning rate 𝛼 that determines the size of the step; if 𝛼 is too small, then the convergence 

to the optimal set of 𝜽 is slow (i.e. it takes many iterations), alternatively choosing a large 𝛼 

might make the algorithm diverge and thus fail to find the solution (Geron, 2017). Gradient 

descent only uses the knowledge of first-degree derivatives. When we have a well-behaved 

convex cost function quasi-Newton numerical methods give superior performance in 

searching the minimum of a function as they also employ second-order derivatives (second-

order optimization algorithms). That is why LR optimization is commonly carried out using 

L-BFGS (i.e. Limited-Memory Broyden-Fletcher-Goldfarb-Shanno) algorithm, which is an 

iterative method for solving unconstrained nonlinear problems (Bengio, Courville & 

Goodfellow, 2016; Cramer, 2003). 

For ANNs where we face non-convex cost functions with ridges, plateaus and other 

irregularities, quasi-Newton methods impose significant computational burden (e.g. Hessian 

matrix of second-order derivatives). Additionally, in high-dimensional spaces they tend to 

converge to functional irregularities (i.e. especially saddle points). Since most problems in 

ANNs are difficult to express in terms of smooth convex functions, generally gradient 

descent with some additional course corrections on top the basic update rule is employed. 

Modifications help the update rule to at least partially overcome the issue of multiple local 

minima, saddle points, etc. and so enable faster learning in this “ill-conditioned” setting. One 
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method that can significantly speed up the learning process is known as momentum 

optimization. Momentum-based techniques try to smooth out the zigzagging by using an 

“averaged” direction of the last few iterations. This is formally done via introduction of the 

momentum term 𝒎 into the update rule that is derived from an exponentially decaying 

average of previous gradients that consistently “move” through the parameter space and help 

in avoiding local minima and zigzagging. However, momentum optimization introduces 

another hyperparameter 𝛽 that requires careful tuning. It influences the importance of 𝒎, 

namely the higher the value the higher the friction (in case 𝛽 = 0 there is no momentum). 

Other methods such as RMSProp and AdaDelta attack the zigzagging issue through 

introduction of the parameter-specific (adaptive) learning rate. The idea is that large 

parameters are often oscillating so the corresponding learning rates are diminished to achieve 

stability. Adam optimization which stands for “adaptive moments” is generally the best 

choice since it incorporates both ideas, i.e. momentum as well as adaptive learning rate. The 

additional hyperparameter 𝜂 requires little tuning since the default value of 0.001 is used 

(Aggarwal, 2018; Bengio, Courville & Goodfellow, 2016; Geron, 2017). 

The quadratic dual problem that was formulated for SVMs in (37) requires different kind of 

optimization strategy in order to find the vector of Lagrangian multipliers 𝛂 that minimizes 

the SVMs cost function J(𝛂). The SMO (sequential minimal optimization) algorithm 

developed by John Platt does the job. It builds on a simple idea of coordinate-wise 

optimization known as coordinate descent, that finds the minimum of a function by moving 

along the coordinate block. In a basic coordinate descent usually one parameter at the time 

is optimized leaving other fixed. However, the second SVMs constraint in (37) that can be 

rewritten as 𝛼1 = −𝑦(1) ∑ 𝛼𝑖𝑦
(𝑖)𝑛

𝑖=2  defines 𝛼1 completely in terms of other 𝛼𝑖’s. Thus, holding 

the 𝛼2, … , 𝛼𝑚 fixed we cannot change 𝛼1 without violating the constraint. That is why SMO 

takes the problem and breaks it into sequential optimization of two alphas at the time in order 

to keep satisfying the constraint. The convergence of the procedure is guaranteed given the 

KKT conditions are satisfied (Ng, 2018). There are few more details with regards to the 

SMO that are beyond the scope of this study; for more information you can refer to Platt’s 

(1998) article “SMO: A Fast Algorithm for Training Support Vector Machines.” 
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Appendix 8: Eight Key ML Lessons to Have in Mind 

Like any discipline, ML has a lot of “folk wisdom” that is not thoroughly documented in 

textbooks. Thus, it is worth reviewing them before delving into the empirical part of the 

study. This section therefore highlights key ML lessons to have in mind when constructing 

a ML related project (especially supervised one). They are based on our hitherto discussion 

as well as on insights provided by Domingos (2012): 

(i) Lesson 1 – it is generalization that counts: the aim of ML approach (i.e. predictive 

modelling) is to achieve good generalization ability with respect to unseen data 

instances. This means that it is essential to test the model generalization performance 

on a separate test set prior to deploying it for day-to-day business use (according to the 

principles for the evaluation of learned hypothesis). From technical perspective 

modeler has to prevent data leakage, defined as an introduction of information from 

outside the training dataset into the learning phase, in order not to overestimate the 

expected performance. The two possible sources of data leakage are leaking features 

(i.e. variables that giveaway information observed after prediction is required) and 

illegitimate DPP procedures (Kaufman, Perlich & Rosset, 2011). 

(ii) Lesson 2 - data alone is not enough: in the absence of some general assumptions there 

is no way learner can generalize beyond the data given. This was demonstrated by 

Wolpert (1996) in the famous “no free lunch theorem (hereinafter: NFL)” stating that 

if no assumption is made, then no algorithm can be preferred over any other. ML tools 

therefore employ some loose assumptions such as smoothness, similar examples have 

similar classes etc. in order to learn from given data. In practical terms NFL theorem 

suggest that no model is a priori better than others. Consequently, we must evaluate 

more reasonable models to find the optimal one (Geron, 2017). 

(iii) Lesson 3 - overfitting has many faces: encoding too much data related noise usually 

leads to the problem of overfitting (e.g. model performs with ~100% accuracy on 

training set but much worse on testing set). One way of understanding overfitting is 

by decomposing the generalization error into bias and variance. If we assume 𝒚 =

𝑓(𝑿) + 𝜀 where 𝐸(𝜀) = 0 and 𝑉𝑎𝑟(𝜀) = 𝜎𝜀
2 then we can we can derive expression (38) for 

total prediction error at some 𝑿 = 𝑥0 as follows (Hastie, Tibshirani & Friedman, 2017): 

 

The first term is the irreducible error, the second term is squared bias (the amount by 

which the average of estimates differs from true mean) and the last term is the variance 

(measures algorithm’s sensitivity to particular learning set). Bias a priori depends on 

the learning method and cannot be changed unless we choose different learning 

 
𝐸𝑟𝑟(𝑥0) = 𝐸 [(𝑦 − 𝑓(𝑥0))

2

| 𝑿 = 𝑥0] 

 
         = 𝜎𝜀

2 + [𝐸[𝑓(𝑥0)] − 𝑓(𝑥0)]
2
+ 𝐸 [𝑓(𝑥0) − 𝐸[𝑓(𝑥0)]]

2

 

          = 𝜎𝜀
2 + 𝐵𝑖𝑎𝑠2 (𝑓(𝑥0)) + 𝑉𝑎𝑟 (𝑓(𝑥0)) (38) 
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algorithm (i.e. alter hypothesis space or use multiple methods), whereas variance 

originates from the learning examples. Generalization error is therefore composed of 

two opposing factors; hence a compromise must be found. Typically, if we make the 

model 𝑓(∙) more complex by adding parameters, we get lower bias and higher variance 

which results in overfitting and vice-versa, simpler models with less parameters results 

in underfitting - high bias and low variance (Kononenko & Kukar, 2007). There are 

many tools that help us solve this under- vs. over-fitting problem: perform CV (allows 

tuning model hyper-parameters within training set), train with more data, remove 

irrelevant features, use early stopping (stopping the learning process as it begins to 

overfit), include regularization term, and/or consider ensemble methods. 

(iv) Lesson 4 - intuition fails in high dimension: “curse of dimensionality” as described 

by Bellman is one of the biggest problems in ML besides overfitting and refers to the 

fact that as dimensionality of data (i.e. number of features) increases, space increases 

so fast that data becomes sparse and many algorithms break down. Building a classifier 

is therefore much harder as we do not have the intuition supporting our development. 

In this sense “less is more”, since having more features may be outweighed by the 

dimensionality issues. In practical applications however Domingos (2012, p. 82) 

suggests that the curse is partly offset by the fact that “examples are not spread 

uniformly through the feature space, but are concentrated on or near a lower-

dimensional manifold (i.e. “the blessing of non-uniformity”).” Some learners can 

implicitly benefit from the fact, while on the other hand various dimensionality 

reduction technics may be employed (i.e. feature selection and/or feature extraction). 

(v) Lesson 5 - feature engineering is the key: one of the most important factors in 

designing a good ML classifier is feature engineering and is therefore a step that takes 

the most effort - it requires time, intuition, creativity as well as strong domain 

knowledge. Consequently, ML should be an iterative process of experimenting with 

various feature engineering techniques, analysing the performance, and repeating the 

whole process. Since this process is time-consuming and domain knowledge-related 

automation of feature engineering using ANNs may help. 

(vi) Lesson 6 - more data beats a cleverer algorithm: when facing issues with model 

performance gathering more data is usually the solution. In case we have limited data 

at hand simple algorithm may beat a complex one since more evolved ML methods 

usually have much more parameters to tune and hence require bigger datasets (in line 

with Figure 5). It is a good practice to try simpler methods first to establish some 

benchmark and build on that using more sophisticated tools. Another data related issue 

is its representativeness, namely the problem of sampling bias and quality of the 

overall dataset that can be summarized in famous quote “garbage in, garbage out” 

(Geron, 2017).  

(vii) Lesson 7 - learn many models, not just one: this in accordance with our hitherto 

discussion that ML is not a “one-way street”, since developers must try multiple 

variations of learners to find the best one. Furthermore, as argued in section 2.3.3 
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ensemble modelling is now a standard, which means it must be part of a ML toolkit 

employed in each application. 

(viii) Lesson 8 - simplicity does not imply accuracy: we are familiar with the theoretical 

aspects of Occam’s razor suggesting that the simplest explanation is usually also the 

most reliable. However, hands-on experience implies that taking this recipe too serious 

would prevent us from using accurate but more complex ensemble models or 

algorithms like SVMs and ANNs. Domingos (1999) provides an interesting viewpoint 

on the matter. He argues that the original Occam’s intent was not to advance the 

simpler models of the two with the same training-set error, but rather “given two 

models with the same generalization error (i.e. test-set error), the simpler one should 

be preferred because simplicity is desirable in itself” (Domingos, 1999, p. 410). 

Meaning that simpler models should not be preferred at the expense of lower accuracy, 

but rather due to simplicity being “a virtue in its own right.” 
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Appendix 9: Financial Ratios Descriptive Statistics and Groupwise Medians 

The table below presents the basic descriptive statistics of our final modelling sample. 

Varsa Count Mean Std. Dev. Min 25% 50% 75% Max 

f01 101,865 -0.08 15.57 -3,714 0.00 0.06 0.20 1,287 

f02 101,866 0.01 1.61 -375 0.00 0.02 0.08 132 

f03 101,880 -0.05 5.18 -1,595 0.00 0.02 0.05 108 

f04 101,880 0.05 0.48 -115 0.02 0.05 0.12 1 

f05 101,880 -0.03 4.43 -1,385 0.00 0.02 0.07 1 

f06 101,873 1.44 54.88 0 1.00 1.02 1.06 11,010 

f07 101,869 1.47 54.87 0 1.00 1.02 1.07 11,203 

f08 87,049 34,865.37 185,124.74 -5,434,140 16,533.75 24,173.66 36,637.67 42,490,385 

f09 87,049 3,715.61 168,105.78 -30,853,520 143.10 1,480.28 5,860.47 20,372,425 

f10 101,818 -0.68 153.91 -48,179 0.00 0.03 0.09 1,524 

f11 101,496 3.76 97.33 0 0.55 1.07 1.96 18,158 

f12 101,496 4.72 134.90 0 0.96 1.44 2.52 30,160 

f13 101,496 2.01 70.17 0 0.05 0.23 0.78 18,098 

f14 101,365 13.59 3,545.79 0 0.41 0.88 1.52 1,128,661 

f15 94,918 62.91 10,350.20 -747,482 0.62 1.03 1.86 2,054,779 

f16 101,818 -0.23 24.98 -6,558 -0.02 0.20 0.45 1 

f17 101,880 0.07 7.11 -990 -0.01 0.12 0.33 343 

f18 101,880 0.40 1.87 0 0.09 0.19 0.34 252 

f19 54,105 2,138.16 78,296.36 -2,945,261 1.08 4.78 24.25 6,018,287 

f20 101,818 -0.22 33.99 -6,558 0.15 0.37 0.62 1 

f21 101,818 1.22 33.99 0 0.38 0.63 0.85 6,559 

f22 101,861 7.00 193.08 0 0.62 1.70 2.87 39,318 

f23 101,840 40.02 3,586.03 0 3.13 7.88 10.94 1,129,473 

f24 101,818 0.27 17.00 0 0.00 0.00 0.18 3,615 

f25 101,818 0.95 25.05 0 0.24 0.46 0.72 6,559 

f26 101,818 0.24 0.25 0 0.02 0.14 0.40 1 

f27 101,818 0.62 0.30 -1 0.39 0.66 0.89 1 

f28 101,818 0.11 0.20 0 0.00 0.00 0.11 1 

f29 101,818 0.70 0.28 0 0.49 0.77 0.95 1 

f30 89,854 -1.77 415.18 -120,714 0.00 0.07 0.38 19,065 

f31 101,866 2.13 12.63 0 0.79 1.43 2.44 2,483 

f32 75,954 6,917.38 1,814,892.38 0 3.82 8.78 25.36 500,119,730 

f33 100,899 974.00 288,148.29 0 3.04 5.38 10.40 91,481,572 

f34 101,608 9.89 290.54 0 1.67 3.28 5.68 47,347 

f35 101,791 7.42 364.27 0 1.40 2.40 4.01 95,736 

f36 101,847 25.93 1,834.60 0 0.00 3.08 8.60 572,156 

f37 101,496 0.06 83.11 -23,679 -0.05 0.13 0.47 3,270 

f38 101,880 0.05 1.25 -144 -0.02 0.04 0.13 103 

f39 101,818 -0.03 72.63 -18,338 -0.02 0.06 0.16 12,272 

f40 101,571 0.21 36.08 -9,965 -0.04 0.10 0.32 3,270 

f41 97,639 2.50 249.91 -1 -0.08 0.03 0.22 62,671 

f42 96,428 10,684.63 1,656,092.51 -1 -0.13 0.04 0.30 493,933,579 

f43 84,378 0.61 22.45 -1 0.01 0.07 0.24 5,461 

f44 101,880 0.09 0.29 0 0.00 0.00 0.00 1 

f45 67,128 54.01 11,781.14 -1 -0.38 0.11 1.10 3,050,575 
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The table below presents groupwise medians for defaulted and non-defaulted companies. 

We compare their respective distributions using non-parametric Mann-Whitney U test. 

Varsa Non-Defaulted Defaulted p-Value Varsa Non-Defaulted Defaulted p-Value 

f01 0.057 0.000 0.000*** f23 7.786 10.000 0.000*** 

f02 0.024 -0.135 0.000*** f24 0.000 0.033 0.006** 

f03 0.016 -0.227 0.000*** f25 0.453 0.964 0.000*** 

f04 0.054 -0.053 0.000*** f26 0.141 0.049 0.002** 

f05 0.023 -0.164 0.000*** f27 0.656 0.625 0.007** 

f06 1.019 0.820 0.000*** f28 0.000 0.002 0.042* 

f07 1.024 0.859 0.000*** f29 0.764 0.835 0.000*** 

f08 24,272.374 11,690.141 0.000*** f30 0.067 0.000 0.002** 

f09 1,508.429 -9,806.000 0.000*** f31 1.437 0.695 0.000*** 

f10 0.032 -0.110 0.000*** f32 8.812 5.334 0.000*** 

f11 1.078 0.420 0.000*** f33 5.390 3.034 0.000*** 

f12 1.443 0.606 0.000*** f34 3.297 0.770 0.000*** 

f13 0.230 0.010 0.000*** f35 2.400 1.867 0.000*** 

f14 0.879 0.390 0.000*** f36 3.112 0.000 0.000*** 

f15 1.034 0.144 0.000*** f37 0.158 0.000 0.000*** 

f16 0.201 -0.316 0.000*** f38 0.042 0.000 0.000*** 

f17 0.120 -0.303 0.000*** f39 0.057 0.000 0.000*** 

f18 0.188 0.260 0.000*** f40 0.096 0.000 0.000*** 

f19 4.890 -6.595 0.000*** f41 0.029 -0.154 0.000*** 

f20 0.374 -0.102 0.000*** f42 0.044 -0.310 0.000*** 

f21 0.626 1.103 0.000*** f43 0.071 -0.063 0.000*** 

f22 1.085 2.000 0.000*** f45 0.106 0.088 0.000*** 

a Input variables (Vars) used for default prediction: f01 – Return on equity (ROE), f02 – Return on assets 

(ROA), f03 – Net profit from sales, f04 – EBITDA margin from sales, f05 – EBIT margin from sales, f06 – 

Overall efficiency, f07 – Operating efficiency, f08 – Value-added per employee, f09 – Net profit per employee, 

f10 – EBIT to total assets, f11 – Quick ratio, f12 – Current ratio, f13 – Cash ratio, f14 – Receivables to payables 

ratio, f15 – LT financing of LT assets and inventory, f16 – WCA to total assets, f17 – Working capital (WCA) 

to sales, f18 – Trade credit exposure, f19 – Interest coverage ratio, f20 – Equity ratio, f21 – Debt ratio, f22 – 

Debt/equity, f23 – Debt/EBITDA, f24 – LT debt to total assets, f25 – ST debt to total assets, f26 – Property, 

plant, and equipment to total assets, f27 – Working assets to total assets, f28 – Financial investments to total 

assets, f29 – Current assets to total assets, f30 – Capital expenditures (CAPEX) to non-current assets, f31 – 

Asset turnover ratio, f32 – Inventory turnover ratio, f33 – Receivables turnover ratio, f34 – Payables turnover 

ratio, f35 – Working assets turnover ratio, f36 – WCA turnover ratio, f37 – Current liability coverage ratio, f38 

– Operating cash flow to sales, f39 – Asset efficiency ratio, f40 – Operating cash flow to debt, f41 – Assets 

growth, f42 – Revenue growth, f43 – Equity growth, f44 – Negative equity, f45 – Net income growth.  

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 
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Appendix 10: Financial Ratios’ Correlation Heatmap 

The figure below shows the correlation matrix between the pairs of features in the dataset. 

The darker the shade of colour the stronger is the linear relationship between the features, 

i.e. red colour depicts the positive relationship, whereas the blue colour corresponds to 

negative one. We can see that the financial ratios coming from the same group display higher 

pair-wise correlations (the groups are separated using black triangles). That is especially the 

case among the profitability (f01 – f10) and cash flow related ratios (f37 – f40). This gives 

a motivation to inspect the presence of multicollinearity and remove highly interdependent 

features. 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work.  
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Appendix 11: Feature Subsets based on Dimensionality Reduction in Step 2 

The table below lists the 15 most predictive variables based on the employed dimensionality 

reduction techniques. Additionally, we list the parameter settings for each technique. 

Dimensionality Reduction  Selected Feature Subsets - TOP 15 

Regularization Depends on specific classification method employed 

Information Gain 

 

- Score function: Mutual information 

- Number of neighbors: 3 

Equity growth, Net profit per employee, Overall efficiency, EBIT margin from 

sales, Return on equity, Operating efficiency, Return on assets, Value-added 

per employee, LT financing of LT assets and inventory, Debt ratio, EBIT to 

total assets, Debt to equity, Current ratio, CAPEX to non-current assets, WCA 

to sales 

MultiSURF 

Overall efficiency, Operating efficiency, Return on assets, Value-added per 

employee, EBIT margin from sales, WCA to total assets, Debt ratio, Net profit 

per employee, EBIT to total assets, Payables turnover ratio, Equity growth, 

Negative equity, Return on equity, EBITDA margin from sales, Trade credit 

exposure 

FS with Random Forest 

 

- Number of estimators: 100 

- Max depth: 10 

- Criterion: Gini impurity 

Equity growth, Net profit per employee, Return on equity, LT financing of LT 

assets and inventory, Overall efficiency, Value-added per employee, Debt 

ratio, Return on assets, Payables turnover ratio, CAPEX to non-current assets, 

Operating efficiency, EBIT to total assets, Debt to equity, WCA to total assets, 

Revenue growth 

Recursive Feature Elimination 

 

- Estimator: Support vector machines 

- Number of features to remove per   

 iteration: 1 

Negative equity, Net profit per employee, WA to total assets, Current assets to 

total assets, Trade credit exposure, WCA to sales, Return on assets, Debt ratio, 

CAPEX to non-current assets, PPE to total assets, Cash ratio, Return on equity, 

Payables turnover ratio, Asset turnover ratio, Value-added per employee 

Genetic Algorithm 

 

- Fitness function: AUROC metric 

- Estimator: Random forest 

- Crossover probability: 0.8 

- Mutation probability: 0.005 

- Population size: 50 

Debt ratio, WCA to sales, Net profit per employee, WCA turnover ratio, 

Value-added per employee, Revenue growth, Asset turnover ratio, Return on 

equity, LT debt to total assets, Equity growth, EBITDA margin from sales, 

Debt to EBITDA, CAPEX to non-current assets, WA turnover ratio, Debt to 

equity 

Principal Component Analysis 

 

- Number of components: 15 

EBIT margin from sales, WCA to sales, EBITDA margin from sales, EBIT to 

total assets, Debt ratio, WCA to total assets, Trade credit exposure, Operating 

efficiency, Return on assets, Overall efficiency, Return on equity, Operating 

CF to sales, Net profit per employee, CAPEX to non-current assets, Asset 

efficiency ratio 

Linear Discriminant Analysis 

 

- Number of components: 1 

Revenue growth, EBITDA margin from sales, WA turnover ratio, Debt ratio, 

Overall efficiency, EBIT margin from sales, Receivables to payables, Equity 

growth, Operating CF to sales, Assets growth, Current ratio, LT financing of 

LT assets and inventory, Assets efficiency ratio, Financial investments to total 

assets, LT debt to total assets 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 
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Appendix 12: Comparison of ROC Curves for the Basic LR and DT Classifiers and the Three Ensemble Methods 

The figure below plots ROC curves of the three ensemble methods discussed in this study and compares them with the ROC curves of DT and LR 

methods. We can observe that DT classifier performs the worst at each threshold. Much better performance is achieved with LR. As expected, 

ensemble methods (RF, AdaBoost – DT, Gradient Boosting) provide a further improvement in the AUROC metric. 

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work.
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Appendix 13: Effects of Employing Different Sampling Techniques 

The table below summarizes the results related to using different data sampling techniques. 

The baseline scenario in this context is leaving the data imbalanced and comparing the 

methods’ performance metrics with the scenarios where dataset was resampled.  

Classification Method Sampling Technique 
Classification 

Accuracy 

Average 

Precision 
AUROC 

Logistic Regression 

(LR) 

Imbalanced Dataset 0.830 0.084 0.858 

Undersampling (MUS) 0.864 0.086 0.868 

Oversampling (MOS) 0.857 0.094 0.885 

Combination (SMOTEEN) 0.837 0.095 0.886 

k-Nearest Neighbours 

(k-NN) 

Imbalanced Dataset 0.992 0.059 0.704 

Undersampling (MUS) 0.862 0.067 0.854 

Oversampling (MOS) 0.933 0.034 0.701 

Combination (SMOTEEN) 0.871 0.036 0.770 

Decision Tree 

(DT) 

Imbalanced Dataset 0.863 0.062 0.799 

Undersampling (MUS) 0.799 0.039 0.835 

Oversampling (MOS) 0.866 0.062 0.789 

Combination (SMOTEEN) 0.840 0.052 0.856 

Support Vector Machines 

(SVMs) 

Imbalanced Dataset 0.992 0.019 0.690 

Undersampling (MUS) 0.830 0.088 0.872 

Oversampling (MOS) 0.854 0.093 0.880 

Combination (SMOTEEN) 0.832 0.096 0.885 

Artificial Neural Networks 

(ANNs) 

Imbalanced Dataset 0.992 0.081 0.870 

Undersampling (MUS) 0.806 0.090 0.878 

Oversampling (MOS) 0.959 0.071 0.834 

Combination (SMOTEEN) 0.942 0.084 0.845 

Random Forest 

(RF) 

Imbalanced Dataset 0.890 0.092 0.894 

Undersampling (MUS) 0.831 0.079 0.886 

Oversampling (MOS) 0.871 0.099 0.893 

Combination (SMOTEEN) 0.851 0.090 0.888 

AdaBoost – DT 

Imbalanced Dataset 0.991 0.071 0.752 

Undersampling (MUS) 0.836 0.124 0.896 

Oversampling (MOS) 0.991 0.060 0.755 

Combination (SMOTEEN) 0.983 0.071 0.751 

Gradient Boosting 

Imbalanced Dataset 0.992 0.116 0.894 

Undersampling (MUS) 0.839 0.127 0.904 

Oversampling (MOS) 0.870 0.133 0.910 

Combination (SMOTEEN) 0.869 0.093 0.890 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 
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Appendix 14: Effects of Employing Different Dimensionality Reduction Techniques 

The table below summarizes the results related to using different dimensionality reduction 

techniques. The baseline scenario is regularization on under-sampled dataset. Additionally, 

we employed five filter and wrapper feature selection techniques as well as the two feature 

extraction techniques as discussed in the study. 

Classification Method 
Dimensionality 

Reduction 

Classification 

Accuracy 

Average 

Precision 
AUROC 

Logistic Regression 

(LR) 

Regularization 0.875 0.086 0.867 

Information Gain 0.888 0.060 0.811 

MultiSURF 0.890 0.062 0.811 

FS with RF 0.869 0.063 0.827 

RFE with SVMs 0.871 0.077 0.847 

GA 0.876 0.064 0.810 

PCA 0.859 0.076 0.854 

LDA 0.912 0.083 0.875 

k-Nearest Neighbours 

(k-NN) 

Regularization 0.877 0.073 0.857 

Information Gain 0.827 0.052 0.846 

MultiSURF 0.828 0.053 0.844 

FS with RF 0.826 0.067 0.864 

RFE with SVMs 0.835 0.071 0.863 

GA 0.830 0.058 0.847 

PCA 0.862 0.066 0.853 

LDA 0.778 0.061 0.840 

Decision Tree 

(DT) 

Regularization 0.816 0.038 0.818 

Information Gain 0.816 0.035 0.814 

MultiSURF 0.773 0.038 0.809 

FS with RF 0.825 0.040 0.853 

RFE with SVMs 0.802 0.040 0.811 

GA 0.792 0.042 0.828 

PCA 0.783 0.028 0.768 

LDA 0.790 0.041 0.839 

Support Vector Machines 

(SVMs) 

Regularization 0.863 0.081 0.873 

Information Gain 0.896 0.065 0.826 

MultiSURF 0.905 0.069 0.831 

FS with RF 0.860 0.058 0.841 

RFE with SVMs 0.865 0.081 0.858 

GA 0.878 0.058 0.811 

PCA 0.855 0.065 0.850 

LDA 0.901 0.083 0.875 

Artificial Neural 

Networks 

(ANNs) 

Regularization 0.810 0.076 0.879 

Information Gain 0.819 0.069 0.862 

Continues on the next page 
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Table continued 

Classification Method 
Dimensionality 

Reduction 

Classification 

Accuracy 

Average 

Precision 
AUROC 

Artificial Neural 

Networks 

(ANNs) 

MultiSURF 0.821 0.074 0.866 

FS with RF 0.818 0.083 0.874 

RFE with SVMs 0.789 0.079 0.883 

GA 0.743 0.069 0.859 

PCA 0.796 0.081 0.878 

LDA 0.771 0.083 0.874 

Random Forest 

(RF) 

Regularization 0.842 0.090 0.889 

Information Gain 0.831 0.070 0.866 

MultiSURF 0.818 0.092 0.866 

FS with RF 0.812 0.077 0.883 

RFE with SVMs 0.814 0.090 0.874 

GA 0.832 0.088 0.878 

PCA 0.822 0.067 0.853 

LDA 0.808 0.059 0.861 

AdaBoost - DT 

Regularization 0.835 0.096 0.893 

Information Gain 0.806 0.052 0.855 

MultiSURF 0.804 0.046 0.859 

FS with RF 0.808 0.079 0.877 

RFE with SVMs 0.811 0.079 0.872 

GA 0.817 0.087 0.870 

PCA 0.814 0.073 0.847 

LDA 0.741 0.034 0.738 

Gradient Boosting 

Regularization 0.841 0.125 0.902 

Information Gain 0.809 0.059 0.862 

MultiSURF 0.823 0.080 0.868 

FS with RF 0.816 0.073 0.881 

RFE with SVMs 0.819 0.075 0.885 

GA 0.815 0.091 0.877 

PCA 0.813 0.070 0.865 

LDA 0.794 0.067 0.865 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 
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Appendix 15: 15 Most Predictive Financial Ratios Based on the Regularization Method 

The figure below shows the 15 most important features in our dataset based on the 

normalized weights calculated from individual classifiers that supports either the calculation 

of implied feature importance from corresponding coefficients (as in the case of LR and 

SVMs) or directly implements feature importance method (as in the case of RF, AdaBoost 

– DT, and Gradient Boosting). Note that k-NN, DTs, and ANNs do not support this 

calculation and were therefore excluded from this part of the analysis.  

 

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

Appendix 16: 15 Least Predictive Features Including Macroeconomic Variables 

The table below shows the 15 least important features (including macroeconomic variables) 

in our dataset based on the normalized weights calculated from individual classifiers as in 

the case above. The output gives us an indication that macroeconomic variables do not have 

an important role in our predictive model. The reason for that might be that the variability in 

the macroeconomic factors is fairly low, since we only included half of the cycle into our 

analysis. 

15 Least Predictive Features in Our Dataset 

Current assets to total assets, Current liability coverage ratio, SBITOP index growth, Receivables turnover ratio, 

Quick ratio, Assets growth, EBITDA margin from sales, Revenue growth from sales, Operating CF to sales, Inflation 

rate, Debt to EBITDA, GDP growth, Unemployment rate, Equity growth, Government yield  

Source: Slovene Business Register – AJPES (2019); Supreme Court of RS (2019); Own work. 

 


