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INTRODUCTION

Problem description and identification of the subject of research. Electricity as a commod-

ity differs from other tradeable goods as it cannot be reliably stored in large quantities. Energy

has to be consumed as soon as it is produced, and power demand and supply have to remain

essentially balanced in real time in order for the grid frequency to remain stable. The growing

portion of Renewable Energy Sources (hereinafter RES) in the grid further contributes to the

instability of the electrical power system (generation, transmission, consumption).

Energy consumption has to be estimated and announced in advance; however, deviations

from these values need to be balanced in real time by either using reserve capacities or buy-

ing the missing quantities on the balancing market. Balancing energy is considerably more

expensive than energy bought in advance.

To reduce operation costs,Distribution System Operators (hereinafter DSOs) started offering

different tariffs as early as the 1980s to motivate customers to defer consumption at times of

highest demand and highest prices observed on the market. These were the first forms ofDe-

mand Side Management (hereinafter DSM). The newly liberalized market has set the stage

for a new business model: the announced but not consumed energy of a DSO’s customers

can profitably be offered on the balancing market. The Demand Response (hereinafter DR)

programs motivate customers to actively defer their consumption, either as a result of price

incentives or fair compensation. Customers can also just practice Energy Efficiency (here-

inafter EE), which is the passive version of DSM. Virtual Power Plants (hereinafter VPPs),

sophisticated software solutions for DR programs, which connect consumers, prosumers, sys-

tem operators and the balancing market into a Smart Grid (hereinafter SG), have emerged

only recently.

With the adoption of a package of laws, called the Third Energy Package in 2009 the Eu-

ropean Union (hereinafter EU) introduced a legislation that aims gradually to liberalize the

electricity market. Its goal is to establish a reliable and competitive supply. Competitive-

ness is being achieved by separating the ownership of channels of production, sales, and

transmission, as well as the introduction of an independent system operator and independent

distributors. Furthermore, an internal European electricity market and balancing market are

established. Each European country has to establish its own national regulatory authority

and they all cooperate within the framework of the Agency for the Cooperation of Energy

Regulators (hereinafter ACER), codified in the ”European Parliament and Council Regula-

tion establishing the Agency for the Cooperation of Energy Regulators” (2009) (hereinafter

”2009/713/EC ACER Regulation”).

The new legislation incentivizes the development of an integrated European balancing mech-
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anism. In this context, in 2011, ACER started developing the Framework Guidelines on Elec-

tricity Balancing. Judging from ACER’s statements, DR is expected to play a significant role

in the future integrated balancing market. The guidelines will enable the emergence of new

business models, such as VPPs allowing DR programs and distributed generation resources

to compete on an equal footing (Cordis, n.d.).

In the context of VPP, short-term load forecasting (hereinafter STLF) plays a central role

since, for the VPP to successfully bid in the balancing market, it has to know the precise load

of its DR participants (and the quantity they will be able to curtail) for the next 24 hours at

least. The goal of STLF is to predict the electrical load for at least one hour and up to a few

days ahead. The aim is to ensure a secure supply of electrical energy while minimizing daily

operating and distribution costs.

In addition to STLF, there are also

• mid-term load forecasting: for which the goal is to predict weekly, monthly and yearly

load peaks, which enables efficient operational planning, and

• long-term load forecasting: which is used for predicting consumption beyond one year

and up to a few years in advance; it plays a vital role in generation, transmission and

distribution network planning.

These two forms of forecasting are not the subject of this work. Each of these fields has its

specific characteristics that require different approaches/methods to solving problems.

While long-term load forecasting was an integral part of system planning from its beginnings,

short-term load forecasting started to gain traction since the emergence of the free market.

Maintaining constant grid frequency at all times and thus ensuring the grid’s stability is be-

coming an increasingly challenging task as the traditional power grid is increasingly evolving

into a more complex future grid that includes RES, micro grids that are able to decouple from

the RES!see Renewable Energy Sources main grid and function in island mode, and so on.

For these grid forms, fast and accurate load forecasting at all levels is crucial. In addition

to the load, the production of RES needs to be forecast. The future will bring even more

complex forecasting situations as DSM and DR will have to be considered in the forecasting

process. The field of forecasting and STLF has also been gaining importance and is devel-

oping the academic realm quickly. The number of articles is increasing rapidly, and this year

the 36th International Symposium on Forecasting will be held.

The vast majority of STLF literature is related to forecasting load time series on a large scale,

that is data that is highly spatially aggregated, usually on the level of a utility, DSO or even a

whole country. The present master’s thesis is an attempt at short-term load forecasting indi-
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vidual industrial and residential consumers’ loads, to be used in VPPs. It covers forecasting

on a very short scale, such as a community of a couple dozen houses, as well as on the in-

dividual level. In a VPP setting, there is a need in the forecasting module to predict each

consumer’s electricity load for the next 24 hours, based on his historical consumption data.

The results of this module serve as input data for the optimization module, which determines

the optimal activation (a subset of consumers who are asked to reduce their consumption) at a

DR event, based on the predicted load of all consumers, taking into account some limitations

while minimizing activation costs.

Purpose of this research. The purpose of this master’s thesis is to study the problem of short-

term load forecasting for individual residential and industrial consumers, to master statistical

methods suitable for addressing the problem, to establish their performance on real data and

finally to select a method that on average delivers the best forecast accuracy and that is suffi-

ciently robust to be used in an automated environment. Additional aspects of automation also

need to be anticipated and satisfactorily solved, such asmissing data imputation, anomaly and

outlier detection, the presence of holidays and extraordinary events.

Research questions. The following research questions will be pursued:

• How to predict with satisfactory accuracy the hourly load consumption for the next 24

hours for any industrial or residential consumer?

• Which method should best be applied for this task?

An outline of research objectives. The fundamental research objective is to determine a

statistical method or methods, that can predict, with sufficient accuracy for the requirements

of a VPP, the load consumption for the next 24 hours of any individual household or industrial

consumer. Where that is not possible, why no such method exists should be determined and

preferably theoretically explained, and a suitable practical solution should be proposed.

The core objective is to determine the type of underlying statistical problem, to select and

present each statistical method deemed appropriate for solving this problem, and to test their

efficiency on acquired real data and to select among them the one which provides on average

the most accurate predictions. Throughout, I will seek not only to specify the results obtained

but also to establish root causes and to explain in a theoretical manner what the most probable

reasons are for the results obtained.

Identification of research methodologies. The acquired input data is primary data, collected

by sampling electric energy at automated smart meters, every 15 minutes. The measurements

were collected for 123 industrial and 235 residential anonymous consumers between January

2011 and August of 2013 and represent time series of load demand. I will apply an empirical
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data analysis methodology modified for time series forecasting.

After becoming familiar with the field of electricity and forecasting in general, the relevant

scientific literature on STLF will be reviewed. By visually observing data and further ex-

ploratory analysis, I will try to understand the characteristics of the data, which will lead the

selection of appropriate statistical methods to be applied.

The performance of tested methods will be estimated primarily by forecast accuracy, compu-

tational complexity and suitability for use in an automatic environment. If individual fore-

casting will not be feasible, an attempt to forecast aggregated data of several users will be

made. Throughout the process, I will apply all my knowledge of statistics and my experi-

ence.

Structure of the master’s thesis. The first chapter sets the broader context of this work. We

briefly present the electric power system and the relatively recent transition of the European

electricity market from a traditional and regulated market to a completely liberalized market.

The chapter is concluded by a description of the balancing market, which sets the stage for

virtual power plants in the following chapter.

The second chapter narrows the setting further. It introduces the concept of demand side

management and its active version, the demand response. DR programs are also offered

by virtual power plants as providers of advanced software solutions. A demand response

event, as the central event in DR programs, is described by its phases. In this context, Cus-

tomer Baseline Load (hereinafter CBL) and its forecasting play a central role. The chapter is

concluded by the introduction of the European research project called eBadge which is the

framework of this work.

The third chapter starts by investigating forecasting, in general, continuing to the specific

field of load forecasting. The principles of a forecasting procedure are first outlined, then

the concept of a mathematical load model is described, including the stepwise approach to

building one. Forecast accuracy measures are compared and the most suitable one is chosen.

Finally, major research work in short-term load forecasting is presented.

The fourth chapter covers all analytical work done prior to the actual forecasting. Data is

prepared for processing. This includes missing data imputation, outlier detection and spe-

cial events handling. Producing time plots for loads of individual industrial and residential

consumers reveals the trend and seasonal patterns contained in a given consumer’s load data.

This is investigated further by decomposing signals into single patterns.

The fifth chapter describes the software used and all methods that were applied. They range
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from very simple average-based methods in Section 5.1, followed by the centrally important

time series models. These are classified into popular exponential smoothing methods on one

side, and the Autoregressive Integrated Moving Average (hereinafter ARIMA) models on

the other. As these methods are crucial, they are covered in depth. Finally, two alternative

approaches are presented for comparison: the contemporary neural network AR models and

the U.S. standards baseline, as a straightforward, robust and simple-to-implement method.

Chapters six to eight present results from forecasting the load of individual industrial con-

sumers, individual households and groups of households, respectively. Method performance

is compared based on time complexity and the chosen forecast accuracy measure Mean Ab-

solute Percentage Error (hereinafter MAPE). Chapter eight is central to finding the most

appropriate method and covers most of the methods. Their selection is guided by two in-

sights gained from the previous two chapters: the fact that the load of individual households

is unpredictable and the decision that the method that is ultimately selected for forecasting

the loads of groups of households will also be used in the process of forecasting loads of indi-

vidual industrial consumers. The chosen method, tbats() function, is a very sophisticated

state space model, able to handle multiple seasons of the load signal.

Part of this work was carried out at the time of my employment at the XLAB d.o.o. company

which gave me the opportunity to study this exciting field.

Throughout this text bold will be used to denote the first appearance of a major term, italic

font is used to introduce a less important term or to emphasize parts of a sentence. monospace

font is used for annotating R functions and packages. R functions are given with parentheses,

for example bats().

1 ELECTRICITY MARKET

The electricity market, as part of the energy market, in the EU has undergone huge changes

in the last decade. Since mid-2007 when the last provisions of the second liberalization

directives came into force (”Parliament & Council Directive concerning internal market in

electricity’s common rules”, 2003), the EU energy market is, at least on paper, completely

liberalized. Production and supply have essentially become market activities in which var-

ious participants compete for market shares, as well as trade in organized markets, such as

energy exchanges that offer energy products, as well as derivatives. In truth, liberalization

is an ongoing process, not without obstacles, which has so far reached different stages of

implementation across EU member states.
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1.1 Electric Power System

Electrical power is produced by transforming energy, derived from various energy sources,

such as nuclear energy, fossil fuels (coal, gas, and oil), into electricity. Alongside tradi-

tional power generating facilities, more recently the use of Renewable Energy Sources

(hereinafter RES), such as bioenergy, hydropower, wind, solar and geothermal energy, is

continually on the rise. Electricity is transmitted to the end consumer through the power

grid.

The first part of the network, called the transmission grid, operates at high and extra-high

voltage and is dedicated to long-distance transmission. It is managed by Transmission Sys-

tem Operators (hereinafter TSOs) (EUETS, n.d.).

The second part of the network, called the distribution grid, operates partly at high voltage,

but mostly at medium and low voltages, and is dedicated to the regional distribution of elec-

tricity, supplying it to lower-level distribution systems and to directly connected customers.

One can think of it as the capillary part of the power grid. It is run by Distribution Sys-

tem Operators (hereinafter DSOs). The thresholds, determining the delimitation between a

transmission system and a distribution system, are established at the national level.

Both TSOs and DSOs (commonly called system operators) are legally bound to ensure the

security and reliability of supply of their part of the system. (EUETS, n.d.) The network of

electrical components used to supply, transfer, and use electric power as a whole is called an

electric power system (hereinafter EPS) also known as a power grid.

1.2 Electricity Market

1.2.1 The energy market – traditional model

Traditionally, electrical power was supplied by state-owned companies, which covered all

activities (production, transmission, distribution, and retail) along the supply chain and bore

responsibility for supplying all custumers of a certain geographic area. They were vertically

integrated organizations, acting as autonomous EPSs in their own right. These ”traditional

versions” of a TSO centrally dispatched production, forecast the cumulative load (on the

company level), and balanced the deviations between production and consumption. As these

companies had a market monopoly, they were not motivated to reduce production costs or

to introduce innovative technologies. All costs were reflected in the end consumer’s price.

The prices were also elevated to include an addition for investments into expanding and

modernizing the infrastructure and were not competitive.
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1.2.2 Liberalization of European electricity market

Starting in 1999, the EU initiated a process of market liberalization. In 2009, the latest

round of market legislation was adopted with the codification of the ”Parliament and Council

Directive concerning internal market in electricity’s common rules” (hereinafter ”Directive

2009/72/EC”). The directive, also known as the Third Energy Package, introduced legis-

lation that aims gradually to liberalize the energy market. This will increase competition,

allowing new players to join the sector, and, ultimately, liberalize energy prices. Its ultimate

goal is to establish a competitive, reliable and sustainable supply of energy that will be driven

by innovation and new technologies. Serena (2014) studied the historical motivation for in-

troducing this legislation, the challenges of its introduction and issues/benefits concerning

consumers.

The EU is aiming to reduce the concentration of power in the energy market, which it intends

to achieve by separating the ownership of the channels of production, sales, distribution, and

transmission (unbundling); the ownership of these companies will be private. There is also a

separation within the same activities (vertical separation) where competition in the wholesale

market allows for new producers to enter the market and new business models to emerge in

the retail market.

Production and sales have become commercial activities as the TSO and DSOs have become

independent and regulated. Across EU member states the situation regarding DSOs varies

extensively; some member states have hundreds of DSO’s, whereas others have only one or

two. The transmission system is accessible to all players under the same conditions. For

regulation purposes, every EU member state establishes its own independent National Regu-

latory Authority. These cooperate within the framework of the Agency for the Cooperation

of Energy Regulators (hereinafter ACER) (Market legislation, 2009).

The new situation in the market is already enabling new business models, which are com-

peting with traditional ones. Investments into energy infrastructure are being made at an

increased pace, with the objective of increasing cross-border trading and access to diverse

sources of energy. A European Internal Electricity Market is envisioned, but not yet im-

plemented. It will be “implemented bottom-up through regional market coupling projects and

top-down through the network codes that ACER, EC and ENTSO-E develop” (ENTSO-E,

2014).

Currently, electrical energy produced, is traded at various regional electricity markets, such

as:

• long-term market: standardized products of electrical energy are traded for up to three
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years in advance. The products offered are weekly, monthly, quarterly and yearly prod-

ucts of base, peak, and off-peak energy. Retailers buy most electrical energy at these

markets, in order to avoid price risk.

• day-ahead market: insufficiently bought electrical energy, according to a DSO’s pre-

diction is bought a day in advance, at elevated prices but in order to minimize loss.

• intra-day market: is similar to the day-ahead market, but with the difference that en-

ergy is bought at very short notice and delivered one or two hours later. The prices are

obviously even higher.

• balancing market: a TSO settles imbalances between demand and supply after markets

have closed (gate closure). This happens in and near real time.

The day-ahead and intra-day markets are examples of spot markets. All the above-listed

markets are physical marketswhere the commodity is physically delivered. Apart from these

markets, there are derivatives markets where prices of the derivative instruments depend

on prices of the underlying electricity products. The reasons for trading can be to hedge

electricity price risk, or even for speculative reasons. A more detailed description of the

above listed markets, with focus on risk management can be found in (Paravan, 2004).

1.3 Balancing Market

Electricity as a commodity is different from other tradeable goods. Since there are still no

reliable technologies available for storing large quantities of energy (“bulk storage”), energy

has to be consumed as soon as it is produced. Power demand and supply have to remain

essentially balanced in real time for the grid frequency and the whole power grid to remain

stable. (Magliavacca et al., 2015, p. 12). Even the smallest deviations from the prescribed

50 Hz may result in system instability and occasionally even black-outs. Therefore, market

players are subject to very strict balancing rules, and inability to fulfill the requirements is

heavily penalized.

The inclusion of RES, such as solar and wind generation, into the grid represents new chal-

lenges for network operators’ daily balancing activities. RES display intermittent behavior,

which affects flows within the grid, making it difficult to ensure the security of supply, to

guarantee the availability of an adequate reserve margin to cope with unforeseeable events

and to ensure that electricity markets function in a proper way (Magliavacca et al., 2015, p.

11).

TSOs have a legal obligation to keep the grid frequency constant at all times. Frequency

is regulated by means of automatic and manual regulation mechanisms. The TSO holds in

store active power capacity made available by producers, which can be activated at any time

to bring balance into the grid.
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There are several levels of reserves, and they differ by function and response time. In the EU,

the primary reserve is intended to stop the frequency drift in the case of unpredictable major

events (for example a power plant going down). The secondary reserve brings the frequency

back to its nominal value. The tertiary reserve is able to solve longer-term imbalances, which

last up to a few hours. The secondary and tertiary reserves are part of a larger network

safeguard called ancillary services.

Before market liberalization, ancillary services were the only way to balance the demand and

supply of electrical energy. The overall balancing services’ procurement costs were naturally

transferred to the price the end users were paying, partly in the form of imbalance charges and

partly in the form of network charges. The new legislation introduced a balancing market

where demand and supply for balancing electrical energy meet. Trading is done by placing

bids to buy and offers to sell energy. The origin of the balancing energy can be a power

generating facility or demand facility (these will be discussed in the next chapter).

Currently, there are onlynational balancing/reservemarkets in all EU states. A pan-European

Exchange of Balancing Energy is envisioned, but, due to the scale and complexity of this

task, a phased approach has been adopted. The first phase will be a coordination on a regional

basis, followed by a merging of these regional balancing markets. Balancing cost varies by

country and is dependent on multiple factors, such as market size, the share of RES in the

grid, and so on. It is expected that the pan-European balancing market will benefit all par-

ticipating countries as they will be able to balance supply and demand more accurately and

also reduce their balancing costs.

2 DEMAND RESPONSE PROGRAMS

In this chapter, we will learn about DR Programs, within a VPP environment. These are

advanced approaches to stimulate customers to defer their consumption in times of highest

market demand. We will discuss phases of a DR event and introduce the central term that

will be our focus in the following chapters, Customer Baseline Load. We will also describe

the current state of DR programs in the U.S., Europe, and Slovenia.

2.1 Demand Side Management

To ensure stability of the electricity grid, electricity supply and demand must remain bal-

anced in real time. Traditionally, utilities have reached back to peaking power plants, asking

them to increase their power generation to meet rising demand. To prevent power outages,

Demand Side Management was introduced at the beginning of the 1980s. The term covers

any activity that helps reduce or conserve energy use. DSM comprises Energy Efficiency,

Demand Response, and even ordinary retail rates (tariffs). DR programs will be discussed

in depth in Section 2.2.
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More recently, DSM technologies became increasingly feasible due to the integration of ICT

and the power system, resulting in a new term: smart Grid (Enernoc, 2014). It connects

TSOs, DSOs, RES, and end consumers into a new, contemporary type of grid. It has been

established that when the share of RES in the power grid surpasses 30%, energy balancing

becomes a huge challenge due to the unpredictable nature of RES power generation, which

disrupts the system’s frequency. A smart grid is able to manage that.

In Slovenia, the concept of smart grids is fairly new. A fundamental study was published

by Kosmač et al. in 2010 that describes all elements of the smart grids concept in detail and

lays out a vision / execution plan of introducing it into the Slovenian electricity market and

households.

2.1.1 Virtual power plants

AVPP is a software platform that follows a new business model, which only became possible

in the liberalized market. It reaps benefits from the fact than by consuming less than the

estimated and announced energy, the curtailed energy can be profitably sold at the balancing

market. A VPP, therefore, offers DR programs to interested consumers / prosumers that have

a load profile suitable for aggregation.

Prosumer is a term, coined from ”consumer” and ”producer”. These are for example cus-

tomers, who own a wind or solar power station. By offering curtailed electrical energy to the

balancing market, a VPP becomes a balancing asset. Frequently, VPPs are owned and run

by a distribution utility and maximize value for both the end user and the distribution utility

using a sophisticated set of software-based systems. They are dynamic and can react quickly

to a change in market demand.

2.2 Demand Response Event

DR programs stimulate consumers to reduce their energy use at times of peak demand as a

result of financial incentives or price information. Requests for demand reduction are called

when stress on the grid is significant. They are made for a specific and limited period, also

referred to as a DR Event.

Each DR event has three key measurement components (Enernoc, 2011):

• baseline the amount of energy the customer would have consumed in the absence of a

DR event,

• actual use the amount of energy the customer actually consumed during the DR event

period and
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• load reduction the mathematical difference between the baseline and the actual use:

load reduction = baseline demand− actual demand. (1)

Demand Response Event Phases. The North American Energy Standards Board (hereinafter

NAESB) has developed Figure 1 to clarify phases and standardize the terms of a DR event.

The figure is reproduced subject to a limited copyright waiver from NAESB with all rights

reserved.

Figure 1. Demand Response Event Phases

Source: E. Winkler et al., Measurement and Verification Standards Wholesale Electric Demand Response

Recommendation Summary, 2008, p. 17.

Phases of curtailment in a DR event are (Enernoc, 2011):

• The ramp period is when sites begin to curtail (the beginning of deployment).

• The sustained response period is bound by the reduction deadline and the release/recall.

In this period, the DR resources are expected to have arrived and to stay at their committed

level of curtailment.

• The recovery period occurs after customers have been notified that the event has ended

and start to resume normal operations.

Notifications are issued to customers/grid operators as an advance notification that the event

is likely to take place, as well as when the event is certain to be called and, at the agreed upon

schedule, to denote the deployment of the resources.
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When a customer enrolls in a DR program, first his baseline (yellow line in Figure 2) is gener-

ated from his historical load data. Based on the agreed upon curtailment plan, the committed

capacity line (purple line in Figure 2) is calculated from it. The customer must remain at or

below this usage level during the entire DR event.

Customer’s curtailment or load reduction is calculated by deducting the actual meter data

(blue line in Figure 2) from the baseline during the event period. Curtailment performance

is tracked by comparing the actual meter data to the committed capacity during the event

period. In Figure 2, the deployment occurred at 11:00 and the customer started to decrease

energy usage in the preparation of the 12:00 pm reduction deadline. He performed well

because the actual meter readings were consistently below the committed capacity during

the event. In the following chapters, we will show that such a model for rewarding will not

be able to be used for reward individual households.

Figure 2. Baseline and Committed Capacity

Source: Reproduced after Enernoc, The Demand Response Baseline (White paper), 2011, p. 5.

2.3 Customer Baseline Load

Fundamental for operating these programs is the ability to estimate each DR participant’s fu-

ture load. A Customer Baseline Load (hereinafter CBL) is by definition an “estimate of the

electricity that would have been consumed by a demand resource in the absence of a demand

response event. The baseline is compared to the actual metered electricity consumption dur-

ing the demand response event to determine the demand reduction value” (Grimm, 2008).
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In the U.S., in order to unify terminology and procedures for DR programs, efforts for stan-

dardizationwere initiated by the Federal EnergyRegulatory Commission (hereinafter FERC).

Agreements have been reached as to what constitutes a “good” baseline. It has the following

properties (Enernoc, 2010):

• accuracy: customers should receive credit for no more and no less than the curtailment

they provide,

• simplicity: the baseline and the resulting curtailment calculations should be simple enough

to calculate for all stakeholders, including end-user customers, during events

• integrity: baseline methods should protect against attempts to “game the system” and

should not encourage irregular consumption.

Calculations of CBLmay differ by type of DR program. Furthermore, baseline design for the

aggregation of DR resources for use as a VPP needs to consider the following issues: what

to do when a customer leaves the aggregation and what to do when more resources join the

aggregation.

As we will see in the course of this work, it is impossible (for statistical reasons) to predict

an individual household’s load with sufficient accuracy to be used as a baseline. To reward

residential participants in DR programs, new business models have to be developed. Typi-

cally, a one-time bill credit is provided to customers who sign up for a direct-load control

or other type of load-monitoring and/or control program. Sometimes, rebates are offered to

replace older inefficient appliances.

2.4 An Overview of Demand Response Programs

2.4.1 Demand response programs in U.S.

Prior to DR in deregulated markets, regulated utilities had large industrial customers on in-

terruptible load tariffs, since at least the mid-1980s. DR in deregulated markets began in

1999 with the New York Independent System Operator’s (hereinafter NYISO) Special Case

Resource Program for DR to participate in the installed capacity market.

The FERC defined DR in 2007 as any changes in load from either a response to price or an

incentive to reduce load. Thus, any retail (regulated) utility tariff or wholesale market DR

program, and even energy efficiency, can be considered DR.

DR programs differ from state to state, based on their state regulations and specific environ-
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mental objectives and targets to be reached.

In the early days of DR in deregulated markets, participation was primarily from large indus-

trial and commercial customers, in this way the largest reductions for the least effort were

achieved. That changed for wholesale markets only within the past year or two, so now there

is quite a variety of sizes and types of loads in DR programs.

Smaller, residential customers are targeted by direct load control programs for electric hot

water heaters and air conditioners. In New York City, for example, there are millions of win-

dow air conditioner units, and Consolidated Edison (hereinafter ConEd) has a DR program

to cycle those units every 10–15 minutes to help flatten out the load on the system. In July

2016, ConEd also partnered with a solar retailer and a battery supplier to start a VPP program

that distributes solar power across a small grid. Customers can draw power from solar units

during the day or sell surplus energy back to ConEd. The storage batteries will protect them

against power outages from major storms. ConEd can tap surplus power in the batteries to

meet system demands and keep the lights on if a power line fails. Meanwhile, ConEd will

recharge the batteries. This program is an important experiment, following a “Reforming the

Energy Vision” initiative, adopted two years ago, that requires the state’s utilities to adopt

new business models. It is believed that providers will make enough profit from their new

roles as energy delivery platforms to offset declines in their monopoly rates of return that

support the distribution infrastructure (Behr & Rahim, 2016).

2.4.2 Demand response programs in Europe

A few companies in the Slovenian market (among them CyberGrid, since 2010) have ac-

tively been supplying DR and VPP technology solutions to be used by utilities, power traders,

DSOs, and large industries. Only a couple of DSOs currently operate a VPP. Their DR pro-

grams only include industrial consumers; event notifications are issued by telephone, and ac-

tive participation is requested on the consumer’s side. The few VPPs running are profitable.

Outside of the VPP setting, early-stage residential DR programs are offered, unfortunately

without broad participation yet.

In Europe, the latest EUmarket liberalization legislation, codified in ”Directive 2009/72/EC”

(2009) and ACER’s ensuing Framework Guidelines on Electricity Balancing introduced the

necessary legal ground for the development of an integrated European balancing market,

whereDRprograms andVPPswill play a significant role. Currently, industrially and commer-

cially targeted VPP programs are on the rise across the EU, but it is a slow process, hindered

by the mentality and the resistance of big market players.
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Furthermore, a three-year research project, called eBadge, was concluded in November 2015.

Its main objective was “to propose an optimal pan-European intelligent balancingmechanism

that will include VPPs by means of an integrated communication infrastructure that can assist

in the management of the electricity transmission and distribution grids in an optimized, con-

trolled and secure manner” (eBadge, 2014). It has demonstrated the feasibility of the model

and confirmed that cross-border balancing will benefit all participants. Results were con-

firmed by a pilot project, that included such entities as: residential and industrial consumers

/prosumers, energy providers, DSOs, TSOs, VPPs and possibly others.

2.5 Role of Load Forecasting in Demand Response Programs

Forecasting DR participants’ baseline load is fundamental for the existence of these pro-

grams as being able to anticipate near future events and to quantify the capacity, available

for offering to the balancing market, is at the core of this business. Moreover, fair participant

compensation is the major motivation for participating in these programs in the first place.

In the framework of a VPP, every single participant’s baseline should be forecast, as well as

the aggregated load of all VPP consumers. Production of participating RES is also predicted.

The baseline forecasts serve as input data for the VPP’s Optimization module, which for

every DR event selects an optimal subset of customers whose aggregated curtailment will

cover the energy amount the VPP is planning to offer to the market. For this reason, VPPs

are also called aggregators.

3 LOAD FORECASTING

3.1 About Forecasting in General

“Forecasting is about predicting the future as accurately as possible, given all of the informa-

tion available, including historical data and knowledge of any future events that might impact

the forecasts” (Hyndman & Athanasopoulos, 2013, sec.1.2).

The process of forecasting can take onmany different approaches that result in different meth-

ods. Which approaches are appropriate for a given forecasting situation depends largely on

the type of data available. When numerical historical data is available, and we may reason-

ably assume that some aspects of the past patterns will continue into the future (Hyndman &

Athanasopoulos, 2013, sec.1.4), then we will adopt the quantitative forecasting approach and

use that data for predictions. Otherwise, we will have to take the (less reliable) qualitative

approach.
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Figure 3, reproduced here with the kind permission of J. Scott Armstrong and Kesten C.

Green, comprehensively shows the relationships between various groups of methods in a

selection tree for forecasting methods. In this work, we will only be concerned with the

quantitative approach, calling for statistical methods.

Figure 3. Selection tree for forecasting methods

Source: J. S. Armstrong & K. C. Green, Selection Tree for Forecasting Methods, 2014.

Our focus will remain limited to univariate methods for which forecasts are based only on

present and past values of the quantity being forecast. Multivariate methods that additionally

include values of one or more external factors (for example, weather) are not included here

for two reasons: the satisfactory forecast accuracy of the former methods as well as prac-

tical reasons (the care for obtaining weather data and ensuring accurate and timely weather

forecasts becomes obsolete). We will show that univariate methods can be a valid alternative

to the multivariate methods. Once the historical data has been modeled, the forecasts are

computed by extrapolation.

Forecasting is a necessary process in every business because it helps to make informed de-

cisions on how to schedule production, transportation, stock and personnel, and provides
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a guide to long-term strategic planning (Hyndman & Athanasopoulos, 2013). It also helps

track business progress, gives insight into customer behavior, and helps to improve ROI on

online advertising by targeting the most promising customer segments.

In today’s saturated markets good forecasting is a competitive advantage, so it is no surprise

that it has been experiencing a steep increase in the last 15 years. Many scientific journals

are exclusively dedicated to this multidisciplinary research field, e.g. Foresight – The Inter-

national Journal of Applied Forecasting, issued by the International Institute of Forecasters

(hereinafter IIF) since 2005, the International Journal of Forecasting by Elsevier, and the

Journal of Forecasting, to name a few. As a research field, forecasting is present in manage-

ment, behavioral sciences, social sciences, engineering, and other fields.

Good Forecasting Practices. Armstrong, Green, and Graefe (2015) summarized good prac-

tices in forecasting into a unifying theory, called The Golden Rule of Forecasting. Twenty-

eight guidelines were logically derived from the Golden Rule and explained in the paper.

Most of the rules have been analyzed regarding their ability to improve forecasting accuracy

on 105 scientific papers. It turned out that ignoring any single guideline increased forecast

error by more than 40% on average.

Principles of Forecasting (Armstrong, 2001) is the first handbook that summarizes forecasting

knowledge, derived from empirical studies and provides guidelines and necessary steps to

efficient forecasting in most fields. The book, which is also a comprehensive overview of

existing forecasting methods, is a collaborative effort of 40 forecasting researchers and 123

expert reviewers. It contains an extensive forecasting dictionary.

Despite the existence of clear guidelines for good practices, Armstrong et al. (2015, p. 7)

conclude that most researchers still ignore cumulative knowledge about forecasting methods

and also do not estimate forecast accuracy. This has, in some cases, led to the use of unsuitable

methods.

3.2 Load Forecasting

Load forecasting is defined as the science or art of predicting the future load on a given

system, for a specified period ahead. It is divided into three different segments (Soliman &

Al-Kandari, 2010):

• Short-term load forecasting: loads from one hour to seven days ahead are forecast so

that daily running and dispatching costs can be minimized.

• Mid-term load forecasting: is used to predict weekly, monthly and yearly peak loads up

to 10 years ahead so that efficient operational planning can be carried out.
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• Long-term load forecasting: is used to predict loads from one to several years ahead so

that expansion planning can be facilitated.

Each of these three tasks represents a whole different field with its own characteristics and

its own set of suitable methods.

3.2.1 Forecasting procedure

First, historical data|textbf is gathered by observing the load sequentially over a certain time

interval. Wewill only consider equidistant points in time, where data is sampled hourly, daily,

weekly, monthly, etc. In mathematical terms, load data is a time series, represented by pairs

{(ti, yi)}Ti=1, where ti is the i-th point in time and yi is the electric energy consumed between

time ti−1 and time ti. A graphical plot of the load time series of a single consumer/group of

consumers is called a load curve or load profile. Depending on the time interval overwhich it

is plotted, we are speaking about a daily, weekly, monthly or yearly load curve. Alternatively,

we might call it a load time series. In forecasting, we want to be able to predict load values

beyond the forecast origin, which is the time tT of the last known observation. The forecast

values should also refer to equidistant points in time, for a specific number of periods, which

is called the forecast horizon or lead time. Only historical data will be used, which is called

an ex-ante forecast|textbf.

A forecasting method is a mathematical procedure for computing forecasts from present

and past data. It can simply be expressed in terms of algorithmic rules and need not be based

on any underlying stochastic model. Therefore, a “method” should clearly be distinguished

from the term “model” (Chatfield, 2000, p. 12).

The general approach to forecasting is to find amathematical model of electricity load that

describes the relationship between the load (the dependent variable) and the independent

variables, such as time, weather, economic factors, etc. that influence it. They may also be

called explanatory or causal variables. In load predictions, we will strive to select a most

appropriate load model, one that takes into account the characteristics of the load curve and

the nature of the underlying problem. Most models reflect the underlying stochastic nature

of the problem and are stochastic models. After a model is selected, themodel parameters

are determined that best fit the relationship between independent and dependent variables.

This is usually done with an optimization technique. After the mathematical relationship

is known, it can be extrapolated to the timeframe to be predicted. Any influential variables

in that timeframe are either known or predictable, and a forecast is made either based on

historical data alone or also the predicted values of the explanatory variables.

In Figure 4, all measurements are plotted in black. To the left of the forecast origin, historical
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data are displayed, with the fitted model (in red). This model is then used to produce the

forecast values (in blue), coming close to the actual values. The two prediction intervals are

plotted around the predicted values, which need not lie at the center of the intervals.

Figure 4. Forecasting: Historical and Forecast Data, 80% and 95% Prediction Intervals
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3.2.2 The importance of load forecasting

In the energy sector, different forecasts are crucial, load forecasting as well as predicting the

production of RES. While long-term load forecasting was an integral part of system planning

from the beginnings, short-term load forecasting started to gain traction since the emergence

of the free market.

Load research is also a field to which the Association of Edison Illuminating Companies

(hereinafter AEIC) has dedicated a separate committee. The company was founded in 1885

by Thomas Edison and his associates and is one of the oldest organizations in the electric

energy industry. The AEIC encourages research and the exchange of technical information

and best practices, focusing on finding solutions to problems of mutual concern to electric

utilities, worldwide. It holds an annual conference dedicated to load research & analytics.

(More at: http://aeic.org/.)

3.3 Mathematical Model of Electricity Load

3.3.1 The stochastic process

Statistically speaking, the discrete load time series that we want to predict is unknown at time

tT of forecasting and, as such, can be seen as a sequence of random variables {YT+1, YT+2,

YT+3, . . .}. The random variable Yt at time t can take on a range of values, each with a differ-

ent probability. Usually, its forecast Ŷt is given as the average of these values. Additionally, a

prediction interval is specified which will contain the actual value yt of the random variable

Yt with a specified probability. A 95% prediction interval will contain the actual value with

a 95% probability (Hyndman & Athanasopoulos, 2013, sec. 1.7).
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The forecast is always based on some observations. Sometimes we will precisely spec-

ify which information was used in calculating the forecast. For example, we will write

ŶT+h|T to denote the forecast of random variable YT+h, taking into account all observa-

tions {y1, y2, . . . , yT} up to and including time tT . The forecasts
{
ŶT+1, ŶT+2, ŶT+3, . . .

}
are based on the outcomes of random variables and can themselves be considered random

variables, and so are the forecast errors {ET+1, ET+2, ET+3, . . .}, each one being the differ-
ence of two random variables: Et = Yt − Ŷt.

How should the observed time series be modeled statistically? Every time series repre-

sents the evolution of a system of random values over time and, as such, the observations

y1, y2, . . . , yT are inherently dependent. It would be inappropriate to treat the time series

as a random sample of independent observations. The stochastic (or random) time series

{Y1, Y2, . . . , YT} is modeled as the initial part of a stochastic process Y = {Y1, Y2, . . . , } =

{Yi; i = 1, 2, . . . , }. This one, in turn, is a collection of random variables, “connected” by

their joint probability distribution. The observed time series {y1, y2, . . . , yT} is seen as a (fi-
nite) realization of the stochastic process and is the only realization that we will ever be able

to observe (Chatfield, 2000, p. 34). This might sometimes not be enough to estimate the

properties of the underlying stochastic process and later use it for forecasting.

A deterministic process will only evolve in one way, once the initial conditions {y1, y2, . . . ,
yT} are known. The stochastic process involves randomness or uncertainty and even when
the starting point is known, there are still many directions into which the process may and

will evolve. The load time series is real-valued, and there are infinitely many realizations

{yT+1, yT+2, yT+3, . . . , } of the future process are possible. The observed future values are
only partly determined by past values.

3.3.2 Types of models for time series forecasting

Somemodels only include information from the past observations of the electrical load. They

are generally referred to as time series models. Symbolically, we may write (Hyndman &

Athanasopoulos, 2013, sec. 1.4):

Yt+1 = f(Yt, Yt−1, Yt−2, Yt−3, . . . , error), (2)

where t is the current point in time, Yt is the current value of the load process, Yt−1, Yt−2, . . .

are past values of the load process and Yt+1 is its value in the next period. The prediction of

the future values is based only on past values of the load process, but no other variable which

may affect the load. The effects of any relevant external variables and the random variation

of load are contained in the “error” term.
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Other models allow for the inclusion of other, possibly relevant information (e.g. strength of

economy, effect of holidays, weather variables such as temperature and humidity). Models

that predict based on the so-called predictor or explanatory variables are called explana-

tory or regression models. We can describe them by the following formula (Hyndman &

Athanasopoulos, 2013):

Yt = f(GDPt, temperaturet, humidityt, time of dayt, day of weekt, error). (3)

The ”error” term accounts for any influential variables not captured in the model, as well as

random load fluctuations. The model helps to explain what drives the electricity demand.

When using the model for forecasting, the variables on the right side are replaced with their

predictions for a future time t+ h (e.g. temperaturet+h) to predict the future load Yt+h.

Mixedmodels also exist. They are known under different names, such as dynamic regression

models, ARIMA with regression, panel data models, longitudinal models, transfer function

models and so on. These models synthesize features of both previous groups. The relation

might look like this (Hyndman & Athanasopoulos, 2013):

Yt+1 = f(Yt,GDPt, temperaturet, humidityt, time of dayt, day of weekt, error). (4)

There is a trade-off in using either the time series model or the explanatory or mixed mod-

els. The disadvantage of using external predictor variables in explanatory and mixed models

is the additional care for regularly obtaining their measurements, as well as ensuring their

timely and accurate forecasts, possibly by a robust automated procedure. Due to the propa-

gation of forecasting errors from explanatory variables, a time series model may give more

accurate forecasts. In general, our choice of method would depend on the following criteria:

the complexity of the model, computational time complexity, maintenance complexity, and

forecast accuracy. In STLF, it has been observed that univariate methods generally outper-

form regression models in the first 6 hours and, depending on other factors, can be a viable

alternative for predictions of up to 24 ahead. For these reasons, we will study univariate

methods exclusively.

3.3.3 Time series model building

To model the time series means to find a mathematical representation of the process that

generated the observed data. Amodel is just a theoretical concept that tries to describe as well

as possible the observed data and (potentially) explain its relations to factors that influenced

it. We want to model the systematic variation, related to all identified underlying causes, and

the unexplained variation.
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We will approach the statistical model building in three steps (Chatfield, 2000, pp. 81–88):

1. Model identification: this step includes formulating a class of models that suits the per-

ceived data relationships (based on initial analysis of observed data) and reducing the

selection to one model family.

Selecting the proper model family is the most demanding part of model building. Many

elements of the correlogram analysis may but do not need to help. For example, the

non-seasonal AR and MA processes are characterized by the properties of their ACF and

PACF. Sample ACF and PACF are compared to the theoretical ACF and PACF to deter-

mine if the model is appropriate for the situation at hand. Also, if the sample ACF “cuts

off” at lag q, meaning that it is “effectively zero” for lags q + 1 and on, then q will be

the degree of the model. (Please, see Sections 5.2.2, 5.4.1 and 5.4.2 for details on ACF,

PACF; AR and MA processes.)

2. Model fitting: the selected model contains parameters that need to be computed so that

the model fits the observed data.

The fit is usually achieved by minimizing some distance measure, e.g. the ordinary least

squares approximation. The fitted model is just an approximation of the data. The good-

ness of fit depends on the model complexity and the suitability of the selected model and

is accessed at step 3.

3. Model verification: The fitted model needs to be checked against domain knowledge

and the properties of historical data.

The latter is done by residual analysis. Residuals are differences between observed values

and their forecasts:

et = yt − ŷt. (5)

For time series forecasting residuals are based on one-step forecasts; that is, the forecast

of yT+1 is based on observations, available up to that time: ŷT+1 = ŷT+1|T . The model

explains historical data well if the residuals:

a) have zero mean. If they do not, then the forecasting model is biased.

b) are uncorrelated. If they are correlated, then there is remaining information contained

in the residuals that was not captured in the model.

Models that do not satisfy the above conditions can be improved. In the case of inconsis-

tencies, the model needs to be either discarded or modified to achieve better performance.

Model building is an iterative process.

After we have a valid fitted model, we will use it outside the range of data to which it has

been fitted, to predict the future values. The systematic variation will be used for computing

point forecasts, and the unexplained variation will assist in calculating prediction intervals.
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3.4 Evaluating Forecast Accuracy

3.4.1 Forecast accuracy

In statistics, forecast accuracy is the degree of closeness of predicted values to the actual

(measured) values. For a load time series, this closeness is measured at points in time for

which the load is being forecast. The actual values are not known at the time of forecasting,

but for the purpose of selecting the best method, the accuracy is calculated by predicting load

values for a past time interval, for which historical data is actually known. This is called

the in-sample performance and differs from the out-of-sample performance that can only be

evaluated after the fact. The corresponding analysis is called the ex-ante analysis and differs

from the a posteriori or after-the-fact analysis.

The accuracy of forecast depends on the following factors:

• the intrinsic volatility of the phenomenon being forecast: Greater volatility leads to re-

duced accuracy;

• the model uncertainty: If the same data is used to select, fit, and use the model then

biases arise. Prediction intervals are usually calculated based on the fitted model and are

too narrow;

• the aggregation level: Aggregating data is highly correlated to lower volatility, therefore

aggregating loads of more consumers (contemporaneous aggregation) or sampling load

over longer intervals (e.g. 1 hour vs. 15minutes, weekly vs. daily; temporal aggregation)

will lead to higher accuracy;

• the length of the forecast horizon: The further away we drift from the forecast origin,

the more the accuracy decreases, for statistical reasons;

• the selected load model: A model that describes the underlying phenomenon better will

yield higher accuracy;

• the accuracy of (any eventual) predicted variables: The prediction errors of input data

will add to prediction errors in the result. The same is true for the uncertainty of input

data versus uncertainty of the results.

The parameter estimation algorithms used in load forecasting in the last five decades have

been limited to the least-error squares minimization criterion, although the least absolute

value criterion can be a viable alternative.

The uncertainty of a predicted value is expressed in terms of a prediction interval. It de-

fines the bounds within which future observed values are expected to fall, with a specified

probability. For example, a 95%prediction interval is expected to contain the actual observed

value with a 95% probability. The interval is estimated based on statistical methods.
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3.4.2 Forecast accuracy measures

Let {(ti, yi)}Ti=1 be a time series, representing the load curve to be predicted. We want to

predict load at times tT+1, tT+2, tT+3, . . . , tT+H , where tT is the forecast origin and H is the

forecast horizon. Let yi denote the observation at time ti and ŷi denote a forecast of yi. Then

the forecast error at time ti is denoted by ei = yi − ŷi.

Forecast accuracy can be determined based on different accuracy (or error) measures that

consider forecast errors over the entire forecast horizon, summarized into a single value. A

lower accuracy measure (counterintuitively) means better accuracy. Let us look at the most

common ones. Most of these are also included in the selected R software package that was

used throughout this work.

Note that every accuracy measure is ”sensitive” to (or detects) a different type of difference

between the observation and its forecast. When comparing forecast methods on the same

dataset, different accuracy measures will therefore produce different performance rankings.

The classification of accuracy measures follows Hyndman and Athanasopoulos (2013).

3.4.2.1 Scale-dependent measures

The forecast error ei is in the same order of magnitude as the forecast values. Any accuracy

measure that is based on the forecast error is, therefore, scale dependent and can only be used

to compare the performance of different methods on the same dataset. It can not be used

to compare the performance of the same method on two time series with different orders of

magnitude.

The simplest scale-dependent accuracy measure isMean Error:

ME = E
[
{ei}T+H

i=T+1

]
= E

[
{yi − ŷi}T+H

i=T+1

]
=

1

H

T+H∑
i=T+1

(yi − ŷi) (6)

It tends to detect forecast bias (e.g. systematic overpredicting or underpredicting) but will

completely ignore huge individual errors, as long as the forecast is not biased. (That infor-

mation is lost in the process of averaging.)

Better detection of the magnitude of errors is obtained by measures that use absolute rather

than actual values of the forecast errors in the formula. The two most commonly used scale-

dependent measures are:
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Mean Absolute Error, based on absolute errors:

MAE = E
[
{|ei|}T+H

i=T+1

]
= E

[
{|yi − ŷi|}T+H

i=T+1

]
=

1

H

T+H∑
i=T+1

|yi − ŷi| (7)

and Root Mean Square Error, which is based on squared errors:

RMSE =

√
E
[
{e2i}

T+H
i=T+1

]
=

√
E
[
{(yi − ŷi)2}T+H

i=T+1

]
=

√√√√ 1

H

T+H∑
i=T+1

(yi − ŷi)2
(8)

3.4.2.2 Normalized measures

We can enhance the usability of RMSE by normalizing it. By comparing it to the greatest

difference observed across the forecast horizon, we construct a new accuracy measure, called

Normalized Root Mean Square Error. It is expressed as a percentage of this difference:

NRMSE =
RMSE

xmax − xmin

(9)

This measure is not implemented in the R package, but we will need it in Section 3.5.

3.4.2.3 Measures based on percentage error

The percentage error at time ti is defined by pi = 100 · ei
yi

= 100 · yi−ŷi

yi
. It has the

advantage of being scale-independent, so all accuracy measures based on it are suitable for

comparing forecast performance independently of the dataset.

The simplest measure in this group isMean Percentage Error:

MPE = E
[
{pi}T+H

i=T+1

]
= 100 · E

[{
yi − ŷi

yi

}T+H

i=T+1

]

=
100

H

T+H∑
i=T+1

(
yi − ŷi

yi

) (10)

which suffers from a similar deficit as ME: unless the forecast is biased, single percentage

errors will cancel each other out for the most part, so the resulting measure will not be able

to detect large percentage errors as such.
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This deficiency is overcome byMean Absolute Percentage Error

MAPE = E
[
{|pi|}T+H

i=T+1

]
= 100 · E

[{∣∣∣∣yi − ŷi

yi

∣∣∣∣}T+H

i=T+1

]

=
100

H

T+H∑
i=T+1

(∣∣∣∣yi − ŷi

yi

∣∣∣∣) (11)

which is one of the most useful measures for practical purposes.

Both measures have the disadvantage of being undefined or assuming infinite values when-

ever yi = 0 applies to some ti. They also assume extreme values when yi is close to 0,

which is not useful for practical purposes. For these reasons, Anderson (1985, pp. 348)

proposed symmetric MAPE or adjusted MAPE:

sMAPE = 200 · E
[{ |yi − ŷi|

yi + ŷi

}T+H

i=T+1

]
(12)

Despite the adjustments, whenever yi is close to zero, ŷi is also likely to be so, so division by

a number close to zero will result in an unstable measure calculation. Furthermore, the value

of sMAPE can be negative. For these reasons, Hyndman and Koehler (2006) recommend

that the sMAPE not be used.

3.4.2.4 Scaled measures

MeanAbsolute ScaledErrorwas proposed by (Hyndman&Koehler, 2006) as an alternative

to using percentage errors when comparing forecast accuracy across series on different scales.

The errors are scaled based on the in-sampleMAE from a simple forecast method (Hyndman

& Athanasopoulos, 2013). For seasonal time series, like the load time series of an industrial

consumer, a scaled error at time tj is defined using seasonal naïve forecasts:

qj =
ej

MAEin-sample

=
ej

1
T−m

∑T
i=m+1|yi − yi−m|

. (13)

The numerator is the forecast error ej = yj − ŷj at time tj , and the denominator is the in-

sample mean absolute error of the seasonal naïve forecast method. It uses the last observation

from the same season as the forecast: ŷT+h|T := yT+h−km, wherem is the season’s length

and k = bh−1
m

c + 1 (Section 5.1). The result is independent of the scale of the data. A

scaled error that is less than one indicates that the method performed better than the seasonal

naïve method did on average, on historical data. A value greater than one indicates a poorer

performance.
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MASE is then simply:

MASE = E
[
{|qj|}T+H

i=T+1

]
. (14)

3.4.2.5 Selected accuracy measure

In the forecasting module, MAPE is the accuracy measure of choice as, due to the absolute-

ness, it is independent of the direction of the bias and, as it is based on percentage errors, it

gives results between 0% and 100% which are suitable for ranking purposes.

In contrast, ME has neither of these advantages, RMSE can take on any positive value, MPE

is bias-dependent, and so on. The issue with sMAPE is that it is not treating over-forecasting

and under-forecasting in the same way. As the following example shows, it penalizes under-

forecasting slightly heavier than over-forecasting by the same margin:

• Over-forecasting: yi = 100, ŷi = 110 gives a sMAPE= 200 · 10
210

= 9.52%

• Under-forecasting: yi = 100, ŷi = 90 gives a sMAPE= 200 · 10
190

= 10.53%

Moreover, sMAPE was not available in R, the software used. MASE was a secondary mea-

sure that helped select the best overall forecasting method.

3.5 Review of Literature

The electrical load is affected by external factors, such as weather and social factors. The

principal weather factors are temperature and humidity. Social factors are captured in sea-

sonal effects (hour of the day, day of the week, calendar holiday) and special events that

result in a significant deviation from the typical load behavior. Marinescu, Harris, Dusparic,

Clarke, and Cahill (2013) found the biggest correlation, up to 0.9, between current load and

the load of the previous day, followed by temperature (up to 0.8 in the evening and night).

Humidity plays a lesser role; nonetheless, its correlation in the evening can reach 0.5. Re-

cent studies (Chen, Cañizares, & Singh, 2001) have shown that when consumers adjust their

consumption behaviopricer based on price information, thus are price elastic, then including

electricity price data as a predictor variable will improve forecasts even further.

The aggregation level of data matters when selecting how to approach STLF. Data that is ag-

gregated more (either contemporaneous or temporal aggregation, see page 23), demonstrates

lower volatility. The level of volatility affects the selection of methods, as well as forecast

accuracy. It can mean the difference between being and not being able to forecast a specific

future load. In fact, a recent paper by Sevlian and Rajagopal (2014) confirms the observa-

tions of the present work by describing the relationship between MAPE and the aggregation
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size in the form of an explicit scaling law.

3.5.1 Large scale aggregates

Most scientific literature is based on large-scale data, usually a cumulative load of a DSO (for

example, Taylor, Menezes, and McSharry (2006) used data of Rio de Janeiro in Brazil and

Chen et al. (2001) used historical load data from the Ontario Hydro system) or even an entire

country (Taylor (2010) used two load time series; one for Great Britain and one for France).

Results from forecasting on a large scale might serve as inspiration for forecasting loads on a

very small scale, but do not quite address the same problem, even less when predicting load

of individual consumers. (We consider a very small scale to be an aggregation at transformer

level, an equivalent to several dozens of houses.)

Wewill start by reviewingmethods tested on a large scale. The simplest methods are based on

some averages of past consumption, e.g. the seasonal naïve method and the method of typical

days. Many classical methods have been successfully used for large-scale STLF, the most

popular families studied include the multivariate multiple regression methods, the univari-

ate exponential smoothing methods, and seasonal ARIMA models. Contemporary methods

are based on artificial intelligence (hereinafter AI) and include above all Artificial Neural

Network (hereinafter ANN), fuzzy logic (hereinafter FL), neuro-fuzzy method and Support

Vector Machines (hereinafter SVM). Two useful STLF literature surveys can be found in

(Alfares & Nazeeruddin, 2002) and (Taylor & McSharry, 2007).

A frequent approach to STLF is to use univariate methods for lead times of up to 6h ahead

and multivariate methods beyond that horizon. Over such a short horizon, weather changes

gradually and its influence is implicitly captured in the recent historical data. When weather

data is difficult to obtain, univariate methods are sometimes used for lead times of up to 24

hours.

When comparing six different univariate methods, Taylor et al. (2006) found that for lead

times of up to 48 hours the simpler and more robust methods, such as the double-seasonal

exponential smoothing, outperformed the more complex ones, including ANN and regres-

sion with principal component analysis (hereinafter PCA). This method consistently reached

MAPE below 3% for the time series of Rio de Janeiro, and below 1.5% for that of England

and Wales.

Load profiles on a large scale reveal daily, weekly and yearly seasonality (we will get familiar

with the term in Section 4.5). While double-seasonal methods have been known to be com-

petitive for some time, Taylor (2010) extended three of them to include a third seasonality.

All double-seasonal methods showed increases in performance over their single seasonal ver-
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sions, and all triple seasonal methods outperformed their double-seasonal versions, as well as

a univariate neural network approach, at all lead times. MAPE increased with lead time and

reached around 1.5% for all three triple seasonal methods for a lead time of 24 hours. Un-

fortunately, these methods require a long historical time series. While this amount of data is

provided at the utility or country level, it is frequently not the case for individual consumers,

especially single households or small communities.

Artificial neural networks have been increasingly used for STLF in the past two decades and

have proven to be successful in the more advanced variants, in particular as hybrid models,

which are combinations of neural networks with stochastic learning techniques, such as ge-

netic algorithms (GA), particle swarm optimization (PSO) and similar. For a review of recent

research in this field consult (Baliyan, Gaurav, & Mishra, 2015). A critical review of papers

covering ANN approaches can be found in (Hippert, Pedreira, & Souza, 2001).

In their univariate form, used as an autoregressive time series models, Faraway and Chat-

field (1998) have found that due to their flexibility ANNmodels frequently failed to converge.

When they did converge, they failed to find the global minimum of the objective function. In

some cases, neural networks fit the in-sample data well but performed poorly at predicting the

future (Thielbar & Dickey, 2011). Furthermore, the NN3 competition showed that standard,

less compute-intensive forecasting methods, such as ARIMA, outperform neural networks

(Crone, Nikolopoulos, & Hibon, 2008). This was also the case in the study by Taylor et al.

(2006). Recent work by Thielbar and Dickey (2011) on using neural networks for time series

forecasting produced mixed results.

3.5.2 Individual households

There are just a handful of very recent studies covering STLF for individual households. They

all use different approaches, mostly sophisticated AI. Prior to the large-scale smart meter

installations, hourly residential data was also hardly available. In the near future, much more

data will be available as the EU is committed to having installed smart meters for at least 80%

of consumers by 2020, with full deployment by 2022 (”Directive 2009/72/EC”, 2009).

Ghofrani, Hassanzadeh Etezadi-Amoli, and Fadali (2011) applied Kalman filtering to indi-

vidual residential data and observed a MAPE of 30.42% for a sampling period of one hour

and forecast horizon of one hour, which is considered very short time load forecasting. In

their case accuracy increased with a shorter sampling period. Longer lead times were not

studied.

Edwards, New, and Parker (2012) applied several machine learning techniques, which were

proven to be successful in commercial buildings, to forecast the next hour’s load for three

homes with simulated occupancy. In that case, the best MAPE values obtained on single
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houses were between 16.11% and 21.33%. It can be speculated that the results would be

worse if the houses had been occupied by people, as they would produce even more complex

load patterns.

Gajowniczek and Ząbkowski (2014) studied STLF for an individual household and forecast

its load demand for the next 24 hours. They tested seven ANNmodels and a SVM.Multilayer

perceptrons performed best in the ANN category. Forecast accuracy was measured in terms

of percentage of forecasts that were up to 10% off from the actual values. ANN’s accuracy

was between 57% and 69%, depending on the hour of the day, while SVM’s was between

52% and 68%. The drawback of this study is that they disposed of one single time series,

so additional information on the unit (demographics and a list of appliances) was of no use.

Similar data on a larger number of units might potentially yield richer insight.

3.5.3 Small communities/residential buildings

Studies on STLF for residential buildings and aggregations at the level of a single transformer,

VPP or microgrid, are still rare, but they play a major role in the management of microgrids

and VPPs. Two studies are worth mentioning.

The work by Marinescu et al. (2013) used data from a smart-meter trial on a community of

houses in Ireland in 2009–2010, including weather information. Several approaches were

used to forecast load for a day and week ahead: ANN, FL, AR, ARMA and ARIMA models

and wavelet neural networks (hereinafter WNN). The data was aggregated to investigate two

different scenarios: one that covered 90 houses and reached peaks of 140 kWh and another

one of 230 houses, with peaks up to 340 kWh. No method outperformed all the others at all

times. ANN and WNN performed best at the evening peak, from 5–8 p.m., while FL was

best in the first part of the day. ARIMA had best average results across 24 hours. NRMSE,

the accuracy measure of choice (see page 25) was between 3.61 and 4.28 for the group of

90 houses. Accuracy increased for the group of 230 houses, due to the effects of irregular

human behavior canceling out. By combining four of these methods at their best performance

intervals, an improvement in performance of 11–28% was accomplished (Marinescu, Harris,

Dusparic, Cahill, & Clarke, 2014).
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4 DATA

The first step to selecting methods appropriate for the underlying problem is to visualise data

and perform an initial exploratory analysis.

4.1 Software Used

The open source statisticalR language package (hereinafterR) was used throughout this work;

from data preparation, analysis, visualization, to performing all experiments, calculating fore-

cast accuracy and visualizing the results.

The main package used was forecast, developed by Hyndman (for package documenta-

tion, seeHyndman (2016)). The package contains all relevant forecastingmethods, especially

for time series, including some functions that are the result of the author’s research work. It

also makes use of all the presented forecast accuracy measures, including ME, RMSE, MAE,

MPE, MAPE, MASE, and ACF1.

4.2 Input Data

The historical data used for the development of the forecast model was provided by one of

the major Slovenian DSOs, Elektro Ljubljana. It comprises anonymized metering data of

electric energy consumption for 235 residential consumers and 123 industrial consumers for

the period between January 2011 andAugust 2013. The data was collected from smart meters,

sampled at 15-min intervals and had local timestamps. It contains large blocks of missing

data in all sources at random positions. The origins of missing data are reading errors in the

concentrator. The concentrator also has limited memory, so the data is lost forever.

Later, data from single-chip devices was made available by Telekom Slovenije. These de-

vices, called Home Energy Hubs and Business Energy Hubs, were providing measurements

of total power consumption of individual consumers and that of up to 5 devices, at 1-min

sampling rate. They were installed at the sites of around 120 residential and industrial par-

ticipants in a pilot project. While data sampled at a rate this small is able to give customers

more insight into their power consumption, it does not aid in better predictions. Results will

show that measurements aggregated to 1 hour are optimal for forecasting load of individual

consumers. Any data that is less aggregated is too volatile and results in unacceptably bad

forecasting accuracy. (See Table 1 for a comparison of accuracy).

The historical data was used to determine the best methods for the forecasting module, while

the field measurements from home/business energy hubs were used as real-time input for the

forecasting module.
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4.3 Handling Data Anomalies

4.3.1 Missing data

Except for the simplest ones, most forecasting methods will not work when there are missing

values in the historical data. Missing values need to be imputed, that is replaced by their es-

timated values, before forecasts can be made. Several techniques can be used (case deletion,

single imputation, multiple imputation); when using them, the forecaster needs to prevent

introducing bias, a non-zero average error.

A comprehensive work on the estimation of missing values in time series is the doctoral dis-

sertation by Fung (2006). Sorjamaa (2010) is focusing on the latest and most contemporary

methods, contributing some new and improved methodologies, like the deterministic Em-

pirical Orthogonal Functions (EOF) and Self-Organizing Maps (SOM), based on supervised

learning.

Imputation Method Used. Missing data estimation procedure was developed a-posteriori

and independently. The idea was to develop a forecasting procedure first, using data with no

missing values and later develop a procedure that will estimate the missing values, prior to

forecasting.

The fact that the forecasting procedure will run on-line and in real time played a role in

selecting an estimation procedure that is fast and reliable. A simple method was developed

that predicted the missing load, corresponding to a timestamp, as the average load of the same

hour and same day of the week from data available in the last 28 days. In case this data was

missing for all 4 weeks, a longer time interval was considered.

Alternatively, we could let the forecast software package handle missing data in an auto-

mated manner. The function na.interp() is able to impute missing data in non-seasonal,

as well as seasonal series. It first fits a seasonal model to the data, and then interpolates the

seasonally adjusted series, before re-seasonalizing.

4.3.2 Outliers

By outliers, we mean observations that differ substantially from the expected value given

a model of the situation. An outlier can be identified judgmentally or if it deviates from

the mean by a distance of more than two standard deviations. Outliers can be handled by

tsoutliers(): it identifies them and suggests reasonable replacements.
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4.3.3 Holidays and special events

The calendar variables, implemented in the forecast package are not suitable for 1-h mea-

surements, so we will have to develop a custom solution, perhaps inspired by the already

implemented functions. Holidays and neighboring days could be predicted as a pointwise

average of past weekends.

4.4 Data Preparation

For the scope of determining the proper statistical model for the forecasting procedure, data

with no missing values was used, for the sake of simplicity. However, in the process of

forecasting, we have to use the data available, so the first steps of the procedure always need

to include replacing missing data and outliers, as described in the previous section.

4.4.1 Selecting data without missing values

First, the length of the historical period needs to be determined. If then accuracy is insuffi-

cient, a longer period should be tested. The optimal length for best forecast accuracy should

ultimately be determined empirically. We will start by forecasting from 28 days of historical

data for the following reasons: 1. load values primarily depend on the recent past, 2. the

period should be long enough to capture a few weekly seasonal cycles, 3. it will implic-

itly capture the influence of recent past weather and exclude the irrelevant less recent past

weather. This period will hopefully be long enough to capture all major features of this time

series. Our goal is to find a long enough period where the most sources have no missing

data.

First, all sources containing more than 10% overall missing values were immediately dis-

carded. Then we were looking for the longest period in which most sources had no missing

data. June 2011 was selected as the sufficient period (4 weeks of historical data plus addi-

tional 2 weeks for the maximum forecast period) where none of the industrial sources had

missing values. For residential sources, May and June 2013 were selected. All models were

tested on the selected periods.

4.4.2 Data transformation

Data was imported from txt files into R’s local database structures. The timestamps were

converted to Coordinated Universal Time (hereinafter UTC) timestamps. No duplicates were

found. Time series for 2011–2013 were concatenated for each source. Sources with too

many missing values were discarded. After this step, we were left with 94 industrial and 171

residential sources. Their corresponding time series were labeled as Ind1, Ind2, …, Ind94
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for industrial and Dom1, Dom2, …, Dom171 for residential sources. We will alternately be

using the terms consumer and customer.

After testing features of several different R data objects, we decided to store all consumers’

time series individually as multi-seasonal time series (ormsts) objects with seasonal periods

(seasonal cycle lengths) of one day and one week, and the primary frequency (number of

observations per seasonal cycle) of 24 ∗ 7 = 168. The initial time series retained the

original 15-min sampling.

For predicting groups of residential consumers, the time series of all sources were first ag-

gregated into the SUM171 time series, retaining the 15-min sampling. It contained 46%

overall missing values (time points at which at least one source had a missing value). The

longest period without missing values was barely 2 days long and therefore unusable for our

purposes. Instead, a smaller group of 69 residential consumers was constructed by gradually

adding sources. SUM69 contained 19% overall missing values in a 3-year period between

2011 and 2013. The longest continuous period without missing values ranged from April

2013 to September 2013.

4.4.3 Data aggregation

Models were initially tested directly on the 15-min measurements provided and, after these

time series turned out to be too volatile for good forecasting accuracy, they were aggregated

into 1-h measurements and the models were retested. (Compare test set MAPE values for

Holt-Winters method between 15-min and 1-h sampled data in Table 2.) In this way, we were

able to obtain much better forecasting accuracy. The difference in “smoothness” between

a signal sampled at 15 minutes and the same one sampled at 1 hour is clearly visible by

comparing Figures 5 and 6.

Figure 5. Time Series of Dom15 Consumer, Week1 of May 2013, 15-min Sampling
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Figure 6. Time Series of Dom15 Consumer, Week1 of May 2013, 1-h Sampling
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4.5 Data Visualisation

The first step to obtaining an impression of the signal to be forecast is to visualise the data.

This will enable us to see all its major characteristics, such as whether the time series is

stationary, whether there is a trend, whether its pattern depends on seasons, whether it displays

patterns related to business cycles, whether the pattern changes on holidays, whether there

are any outliers or noticeable “special events” for which the pattern changes visibly, etc.

The answers to these questions will guide the selection of appropriate models. Any success-

ful forecasting model needs to consider and incorporate all features discovered during data

visualisation or ones that are discovered during statistical analysis.

Let us first explain what is meant by the above questions. First, we will be looking for pat-

terns that a time series may or may not display, and that will affect the selection of forecasting

methods:

• A trend exists when there is a long-term change in the underlying mean level per unit

time. The term ”long-term” refers to the length of the historical period. A trend can be

linear or non-linear.

• A seasonal pattern occurs when a time series fluctuates subject to seasonal factors, such

as the time of day, the day of the week or the season of the year. A time series can

have multiple seasonal patterns, like a daily, weekly or yearly seasonal pattern and each

seasonal cycle’s length is a fixed and known period. A “season” is a part of the seasonal

pattern.

• A cycle occurs when the pattern of the fluctuations in the signal is not of a fixed period and

the fluctuations are not related to a specific time in a year but are rather related to “business

cycles” and other economic factors. The cyclic pattern has a variable and unknown length
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which is usually longer than the seasonal patterns.

• Irregular fluctuations are the “left-over” signal after trend, seasonal pattern and cycle

have been removed from the original time series. It is desirable that for it to be com-

pletely random, in which case it is called white noise and is not predicted. In a contrary

case, it includes some “left-over” pattern, so the model was not completely successful in

explaining the sources of signal fluctuations.

A time series is said to be stationary when its statistics (for example mean and variance) do

not change over time. A time series exhibiting a trend is not stationary.

We will consider the following types of plots, which are suitable for a time series:

• Time plot: observations are plotted against the time of observation, with consecutive

observations joined by straight lines. The time plot will be reveal many features of a time

series, but some might require the application of some analytic techniques (for example,

the classical seasonal decomposition in Section 4.6.1.)

• Seasonal plot: observations are plotted against the individual seasons in which they were

observed. Constructing a seasonal plot of a time series for which the period spans over

several seasonal cycles is equal to “slicing” the series into periods of the length of a

seasonal cycle and plotting them on the same graph, in an overlapping manner. It gives a

visual confirmation of the seasonal pattern’s existence and enables comparison between

the years. It might also reveal a trend.

Occasionally, we will plot these “chunks” in separate graphs, side by side, to be able to

see the details more clearly.

4.5.1 Industrial consumers

Let us plot the yearly load time series of the first industrial consumer, labeled by Ind1:

Figure 7. Time Series of Ind1 Consumer for 2011, 1-h Sampling
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The graph is too compressed to see much, the only thing that stands out are the reduced loads

at weeks 17–18, which denote the 1st of May holidays, then again roughly around weeks

32–36, the usual summer vacation period, week 45, indicative of the autumn holidays, and

the last week of December, denoting the Christmas season. Plotting a monthly Time Series

of the same consumer, see Figure 8, reveals a weekly and a daily seasonal pattern with no

visible trend.

Figure 8. Time Series of Ind1 Consumer for the First 28 Days of June 2011, 1-h Sampling
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Layering these four consecutive weeks on top of each other in a seasonal plot (Figure 9)

only confirms that the seasonal patterns almost entirely overlap. The differences between

observations at the same season (time of the day and day of the week) seem to be more

random than anything else. We predict that any statistical method, based solely on historical

data, should be fairly successful and conclude that the load of individual industrial consumers

should be predictable.

Figure 9. Seasonal Plot of Ind1 Consumer, June 2011, 1-h Sampling
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Graphs of manymore industrial sources were visualised. They all displayed similar behavior.

Every industrial consumer’s load profile follows a different curve, but they all display the

following similarities:

• all workdays follow a similar pattern,

• weekends usually display a different pattern, with much lower values,

• the seasonal plot shows good overlapping (only small variations from week to week).

4.5.2 Residential consumers

Now, let us look at an 8-month time plot (from January to August of 2013) of the first resi-

dential consumer, denoted by Dom1 (Figure 10).

Figure 10. Time Series of Dom1 Consumer for 2013, 1-h Sampling
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Note that the weeks are labeled from 105 onward, since this time series is part of a 3-year

time series, starting in 2011. No holiday effects are visible here. Let us examine the monthly

load time series of the same consumer (Figure 11):

Figure 11. Time Series of Dom1 Consumer for 4 Weeks in May 2013, 1-h Sampling
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The plot seems to be much more volatile (or “spiky”) than the industrial one observed in

the previous section. A daily fluctuation is visible as an elevated load during daytime and

reduced load at nighttime but no two days are exactly the same. Plotting these four weeks

for a side-by-side comparison (Figure 12) only confirms this.

Figure 12. Time Series of Dom1 Consumer for 4 Weeks in May 2013, 1-h Sampling
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A seasonal plot (Figure 13) of these four weeks shows that load peaks are reached at different

times every week. The previous week’s behavior is not repeated in the following week.

Figure 13. Seasonal Plot of Dom1 Consumer for 4 Weeks in May 2013, 1-h Sampling
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From the seasonal plot, one can see that at a specific season (say, time ti) in a week very

different values will be observed from week to week (imagine a vertical line as a visual aid).

Therefore, predicting the load of a household for a specific hour will be a hard and unreliable

task. Looking at seasonal plots of some other households makes this only clearer:

Figure 14. Seasonal Plot of Dom5 Consumer for 4 Weeks in May 2013, 1-h Sampling
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The load of the Dom5 consumer (Figure 14) is showing a different pattern every week. The

peaks are reached at random times and the flat profile in week 2 indicates the a temporary

absence of the inhabitants. This kind of profile is by nomeans an exception among residential

consumers.

Figure 15. Seasonal Plot of Dom12 Consumer for 4 Weeks in May 2013, 1-h Sampling
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The load profiles of Dom12 and Dom15 consumers (Figures 15 and 16) seem less irregular,

but the reliability of predictions will not improve considerably.

The more “erratic” behavior related to load consumption in households can be explained

with social and psychological factors. Regardless of whether the behavior is the cumulative

result of several people sharing a household or just one, human behavior is not mechanic and

as such hardly predictable without considering factors that affect it. The situation is very

different from the industrial environment that follows schedules and working hours.

Figure 16. Seasonal Plot of Dom15 Consumer for 4 Weeks in May 2013, 1-h Sampling
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4.5.3 Group of residential consumers

Displaying the aggregated load profile of 69 residential consumers shows that it is less

volatile than those of all the individual households and is starting to show some pattern. This

is due to purely statistical reasons and was expected. The more consumers are aggregated,

the smoother the profile will become. Figure 17 is displaying the load profile of SUM69, as

we labeled the group of residential consumers, over a period of four weeks.
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Figure 17. Time Series of SUM69 Residential Group for May 2013, 1-h Sampling
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All four weeks display similarities, as we can see in Figure 18.

Figure 18. Time Series of SUM69 Residential Group, 4 Weeks in May 2013, 1-h Sampling
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The extent of similarity of the load profiles becomes more evident by examining the sea-

sonal plot in Figure 19. The profile is not only smoother but also displays more consistent

behaviour.
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Figure 19. Seasonal Plot of SUM69 Residential Group, 4 Weeks in May 2013, 1-h

Sampling
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We are hopeful that groups of residential consumers will be predictable. The fact that obser-

vations for the four consecutive weeks at any specific time of week do not differ much from

each other indicates that even predicting load as the average of those four measurements

would result in a forecast with fairly good accuracy.

The lowest number where one might start seeing this effect is probably 30 households.

This is a consequence of statistical laws. The aggregated load profile of several households

becomes more predictable the more households are aggregated together. Loads of individual

households are by a magnitude of 1000 smaller than loads of individual industrial consumers.

Due to the above facts and since we only had 120 household sources for testing in the pilot

project, we recommended aggregating household data into 2 groups of 60 households, at

random for the purpose of forecasting in the pilot project.For the “real-life” situation, it would

be better to aggregate into groups that have a summary load of around 1000 kW, comparable

to that of an industrial consumer.

4.6 Exploratory Data Analysis

In this section, we will analyze the features of load time series beyond what is revealed by

looking at time plots and seasonal plots.

4.6.1 Industrial consumers

Since the situation for groups of residential consumers is similar to that of individual indus-

trial consumers, it is important to understand the latter in depth.
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We can think of a time series as being composed of several components, each representing

one or more of the underlying patterns. Decomposing the time series will aid in better

understanding. It is also a good start for forecasting, as components are forecast separately

and later assembled, and this bottom-up forecasting approach usually benefits the forecasting

accuracy.

We will split the series into the three components: the seasonal component, the random, ir-

regular or error component, and the remaining trend-cycle component. The last component

is not the usual trend component, as it also contains business cycle variations. The decom-

position can be obtained by several different methods. We will apply the classical seasonal

decomposition by moving averages method. (For details on this decomposition method con-

sult Section 5.3.) Since the magnitude of seasonal fluctuations does not change over time,

we will select the additive model, where components are added, rather than multiplied:

yi = Ti + Si + Ei, (15)

whereby yi denotes the signal value at time ti, Ti denotes the trend component at time ti, Si

denotes the seasonal component at time ti and Ei the error component at time ti. All times

{t1, t2, t3, . . . , tT} belong to the historical period.

Figure 20 displays the seasonal decomposition for Ind1 load time series for 2011. We set the

frequency of the seasonal component to 168 hours (which is equivalent to 7 days).

Figure 20. Classical Seasonal Decomposition by Moving Averages of Ind1 Time Series for

2011, 1-h Sampling
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The trend-cycle component, in our case, does not represent a long-term increase or decrease

of signal values but is rather indicative of a business cycle. It clearly shows a consumption

drop during the 1st-of-May period which is a national holiday in Slovenia, a longer reduction

during the summermonths of July andAugust and another drop aroundNovember 1st (the so-

called ”potato holidays”). The seasonal component looks regular. The random component

has a mean of−0.0138which means that this component is close to being random (so-called

white noise) and does not contain any more pattern. The decomposition was successful.

In Figure 21, we can observe the same decomposition of Ind1-signal on a monthly scale, for

June 2011 data. In subsection 5.3 we will learn an alternative decomposition method, while

some forecasting methods that use two seasons rather than one will be presented in Sections

5.5.4, 5.5.6, 5.5.7.

Figure 21. Classical Seasonal Decomposition by Moving Averages of Ind1 Time Series for

June 2011, 1-h Sampling
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4.6.2 Residential consumers

As was observed in Section 4.5, the load signal of SUM69 is less volatile than any single

household’s signal. Let us compare volatility visually. We will plot the load signals of single

households against the plot of SUM69, in the hope of seeing some correlations that would

enable splitting the group reward in a DR event at least proportionally. Load signals of sin-

gle households will be magnified by a corresponding factor to have the same magnitude as

SUM69.

How are the load profiles of single households related to the load profile of the entire SUM69
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group? We observe in Figure 22 that load signals of single households move in opposite

directions at most points and are also not “in tune” with SUM69. This would make sharing

the DR reward proportionally between households participating jointly in a DR event unfair.

Also, if we observed a spike for a particular household at the time of the DR event, it would

not automatically mean it is not curtailing. Moreover, vice versa: if we observed a valley, it

would not mean that it is curtailing. There is just no way to tell which household contributed

to the curtailment of the group if we can not predict the behavior of a single household. New

business models to reward domestic DR participants will have to be invented.

Figure 22. A Plot of SUM69 Residential Group Against Magnified Single Household Plots,

Week 2 of May 2013, 1-h Sampling
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The reward model will have to be more qualitative than quantitative in nature. Since the con-

sumption that would have occurred in the absence of a DR event will not be known at the level

of any single household, there is also no possible fair way to reward single households.

Households will have to be rewarded as a group, and the reward will possibly be split based

on a combination of the following factors: the average yearly consumption of each household,

the load of each household during the DR event compared to its average consumption at the

same timeframe in the past 4 weeks. (The fact that a household would be below the average

consumption could be an indicator of curtailment. Only curtailing households would split

the prize.) The fairness of this model remains to be tested.
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4.6.3 Anticipation of forecasting efficiency

The industrial example showed that a typical load profile of an individual industrial consumer

decomposes nicely into the trend, seasonal and random components, and we are hopeful we

will be able to successfully predict its short-term future load.

Data visualisation and analysis for residential consumers has shown that:

• Individual households will not be predictable.

• If groups of households will be forecast jointly the question of how to fairly reward single

DR participants remains to be answered. (This might result in many new businessmodels.

Some of them might differ considerably from the established U.S. DR models).

5 METHODS

There is a vast pool of methods that aim to solve the short-term load forecasting task. Very

different approaches have been tested in academic circles. They range from very simple

approaches (such as predicting a season’s load as the average of a few past seasons) to the

more advanced and popular ARIMA models and exponential smoothing methods (e.g. Holt-

Winters), to more contemporary methods (e.g. artificial neural networks) and various hybrid

models.

Models that include seasonal factors (e.g. time of day, day of week) are usually more suc-

cessful in predicting electrical load, which is by its nature seasonal.

Different methods, available in the forecast package in R, developed by Professor Rob

Hyndmanwill be tested. (Refer to package documentation at (Hyndman, 2016)). Themethod

ultimately selected for implementation into a VPP software solution will have to satisfy some

specific conditions. The following features are crucial:

• automated: it will be able to predict time series that have different features, without

human intervention,

• robust: it will handle missing data, outliers, etc. autonomously,

• streaming data: it will be able to run online and in real time, on a large number of

different time series (bulk forecasting).

The last requirement means that highly accurate but time-consuming methods will be dis-

carded. In this section, we will review the forecasting methods which will be used in the

experiments and describe their main features.
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5.1 A Few Simple Methods

The methods presented in this section are too simple to be able to capture the complex nature

of the load profile so, except for the seasonal ones, we do not expect them to perform well at

our task. They will only be used to either visually compare their sophistication level to that

of more advanced methods or to use their performance as a benchmark to be surpassed.

Average Method. The forecast of all future values is set to be the mean of all historical load

observations:

ŷT+h|T = ȳ =
1

T

T∑
i=1

yi; h = 1, 2, 3, . . . , (16)

where by ŷT+h|T we denoted the estimate of yT+h based on historical data y1, . . . , yT .

This is the simplest forecast method and merely a rough estimate of the actual values. It does

not consider any specific features of the time series to be forecast, like seasonality, etc. It

will be inaccurate most of the time.

Naïve Method. Naïve forecasting models assume that things will remain as they have in the

past. In time series, the naïve model only uses the last known observation as the prediction

for all future values:

ŷT+h|T = yT ; h = 1, 2, 3, . . . (17)

Note that within the R software naïve() function is simply a convenient wrapper for the

ARIMA function that returns forecasts and prediction intervals of ARIMA(0, 1, 0) random

walk. It obviously does not take seasonality into account.

Drift Method. This method predicts that the future values will linearly increase or decrease

with the rate of the average change between two consecutive historical observations, called

drift:

ŷT+h|T = yT + h ·
∑T

t=2(yt − yt−1)

T − 1
= yT + h

(
yT − y1

T − 1

)
. (18)

Note that this equals the overall increase/decrease rate over the entire historical period. Again,

this method is not appropriate for forecasting a seasonal time series.

Seasonal Naïve Method. This method already considers a simple form of seasonality: each

forecast is set to be equal to the last observed value from the same season of the year (e.g.,

the same day in the previous week).

ŷT+h|T = yT+h−km; h = 1, 2, 3, . . . , (19)
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wherem = is the seasonal period, and k = b(h − 1)/mc + 1 is the number of seasons

necessary to “reach” historical data. The last observed seasonal cycle is merely repeated as

necessary beyond the forecast origin to the forecast horizon.

U.S. Standards Baseline Type I Method. This method is founded in the requirements for a

”good baseline” (see Section 2.3). Several variations of this method exist, such as high X of

Y, regression, comparable day and rolling average (see Enernoc (2011) for details). We used

a simple high 10 of 10 method, which calculates hourly averages, using data from 10 most

recent days preceding the DR event, and used this as a prediction. In this way, the method

considers the form of the signal (if the signal is seasonal, so will its prediction be). It is

straightforward, well-defined and has no parameters, which is desirable whenever a baseline

calculation has significant legal or economical consequences.

5.2 Time Series Models – Basic Concepts

Time series models belong to the group of univariate methods. They use only information

available on the variable to be forecast and do not try to uncover any other factors that might

influence its behavior. They will extract and predict the trend and seasonal patterns but

will completely ignore any other factor, that might considerably alter the predicted variable’s

behavior, such as weather conditions, as well as market and business changes.

All time series models are stochastic models. The forecasts are given as the average of all

values that the series will likely assume at a specific time. The uncertainty is assessed and

specified in a prediction interval. (For a definition, consult page 19.)

The basic concepts explained in this section are fundamental for the understanding of time

series models that are covered in the Sections 5.3–5.5. These are: forecasting by time series

decomposition, ARIMA models, and exponential smoothing methods.

5.2.1 Stationary stochastic processes

Definition 1. A stochastic process Y = {Yi, i = 1, 2, . . .} is strongly stationary if its

joint probability distribution does not change when shifted in time.

As a consequence, all of its statistical properties will remain unchanged in time. A strongly

stationary process can also be called a strictly stationary or a first-order stationary process.

Definition 2. A stochastic process is weakly stationary if its first and second moments are

finite and constant over time.
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A weakly stationary process is also called covariance stationary or second-order stationary

or simply stationary. More precisely, if Y = {Yi, i = 1, 2, . . .} is a stationary stochastic

process, then at every time ti the following conditions hold:

• E(Yt) = µ and

• Cov(Yt, Yt−h) = γh,

where µ is a finite constant and γh is independent of time t.

Note thatE(Yt) is the expected value of random variable Yt and calculated by employing its

probability density function ft. A similar statement could be made about the calculation of

covariance γh. As we will see later (e.g. equation (21)), the mean, autocovariance and auto-

correlation of the observed time series is calculated in a deterministic manner, from sample

data.

Note that any strongly stationary process is also automatically weakly stationary, due to more

relaxed requirements. A time plot of a stationary time series will be roughly horizontal and

have a constant variance. There will be no visual patterns, neither trend nor seasonal.

The simplest example of a stationary process is white noise.

Definition 3. A stochastic process {εt} is called white noise if it has zero mean, a constant

variance σ2, independent of time and zero covariance.

When a time series model explains the historical data well then the residual time series will

be a white noise process.

5.2.2 ACF, PACF and unit root tests

An autocovariance coefficient (hereinafter ACV coefficient) defines the covariance between

a random variable and its lag: γh = Cov(Yt, Yt−h). An autocovariance function (here-

inafter ACVF) is the set {γh;h = 1, 2, 3, . . .}. Note that γ0 = σ2.

More frequently we will use the autocorrelation coefficients:

ρh =
γh

γ0
=
E[(Yt − µ)(Yt−h − µ)]

E[(Yt − µ)2]
=
E[YtYt−h] − µ2

E[Y 2
t ] − µ2

, (20)

where ρh is the autocorrelation for lag h, γh is the autocovariance for lag h, γ0 = σ2

is the time series variance and µt−h = µt = µ is the stationary time series mean. An

50



autocorrelation function (hereinafter ACF) is the set {ρh;h = 1, 2, 3, . . .}. An AC

coefficient measures the cross-correlation of a process with itself at different lags.

The ACF is decreasing to zero with an increasing lag h. A plot of the ACF coefficients

ρ0, ρ1, ρ2, . . . against the lag h, called an ACF plot, is important for two reasons:

• it may be able to determine whether a time series is stationary or not. A stationary time

series’ ACF will decline to zero relatively fast, while in the case of a non-stationary time

series the decrease will be slow;

• it may be able to identify the presence and length of different seasonal cycles in a given

time series and determine specific situations that call for a specific model.

An ACF plot of the historical or sample data is called the correlogram. For finite sample

data, the empirical autocorrelations are estimated from sample data and not calculated from

random variables Yt and Yt−h at a specific time t. For example:

ρ̂h =

∑N
t=h(yt − ȳ)(yt−h − ȳ)∑N

t=h(yt − ȳ)2
, (21)

where ρ̂h is an autocorrelation for lagh, of the sample ACF,N is the number of all historical

observations, and ȳ is the sample mean. Examining the correlogram of a time series helps

answer the question whether a time series is random or not. A random time series’ AC

coefficients will be roughly zero: ρ̂h u 0. We will examine the ACF of the residual time

series to prove or discard its randomness.

The partial autocorrelation function (hereinafter PACF) specifies the correlation between

a variable and a lag of itself that is not explained by correlations at all lower-order lags. For

example, the partial autocorrelation at lag 2 is the difference between the actual correlation

at lag 2 and the expected correlation due to the ”propagation” of correlation at lag 1.

Unit Root Tests.When the ACF plot was unsuccessful in determining whether a time series

is stationary or not, we will have to rely on hypothesis testing. Several statistical tests can

tell if a time series needs differencing to become stationary or not. The two most popular

ones are the Augmented Dickey-Fuller (ADF) test, presented in (Said & Dickey, 1984) and

(Banerjee, Dolado, Galbraith, &Hendry, 1993), and the Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) test, which was first published in (Kwiatkowski, Phillips, Schmidt, & Shin, 1993).
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5.2.3 Time series differencing

Many of the most important time series models apply to stationary time series. However,

most time series that we encounter in practice are non-stationary. A non-stationary time

series can often be turned into a stationary one by a process called differencing. It creates a

new time series, made up of differences {Yt − Yt−1} between consecutive observations. If
the resulting time series is not stationary, we can repeat the process of differencing by taking

first differences as input. The process of differencing removes changes in the level of a time

series that is the trend and seasonal components and this way ”stabilizes” the mean in time.

We will first introduce the notion of backshift operator, as that will help a more compact

presentation.

A backshift operator B shifts the stochastic process {Yt} back in time by one period:

BYt = Yt−1; for every t. Applying the backshift operator h times will shift the data back

by h periods: BhYt = Bh−1(BYt) = Yt−h; for every t.

Using the backshift notation, a first difference is the difference of a process {Yt} and its

first-order lag process {Yt−1}:

∆Yt = (1 −B)Yt = Yt −BYt = Yt − Yt−1. (22)

By creating first differences of first differences, we obtain second-order differences:

∆2Yt = (1 −B)2Yt = (1 − 2B +B2)Yt = Yt − 2Yt−1 + Yt−2 (23)

The dth-order difference is denoted by (1 − B)dYt. Most non-stationary processes can

be rendered stationary by first- or second-order differencing. Note, that the second-order

difference operator ∆2 = (1 − B)2 = (1 − 2B + B2) is different from the second

difference operator (1 − B2). The latter just subtracts a second-order lag from the original

process.

5.2.4 Seasonal differencing

When the time series does not include a trend but appears to be seasonal, then seasonal dif-

ferencing might be all it takes to obtain a stationary process. A seasonal difference is the

difference between an observation and a same-season past observation from the previous

period.

Yt
′
= Yt − Yt−m; (24)
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wherem is the number of seasons (e.g. the number of months in a monthly-data yearly time

series). If the seasonally differenced time series yt
′
is white noise, then the time series can

be modeled as:

Yt = Yt−m + εt (25)

Forecasts equal the last observation from the relevant season, hence are seasonal naïve fore-

casts.

5.2.5 Wold’s representation theorem

Any weakly stationary stochastic process {Yt} can, according to Wold’s representation

theorem (Wold, 1938), be written in the form of a general linear time series model:

Yt = µ+

(
εt +

∞∑
i=1

ψiεt−i

)
. (26)

The deterministic part µ = µt = E[Yt] is the mean of any of the random variables {Yt}.
The second part of representation is stochastic, where {εt} is a white noise process, and εt

is the difference between the observed value Yt at time t and the optimal forecast µt of that

value based on information available prior to time t. As the process {εt} captures all new

information to the process {Yt} it is also called the innovations process and the errors εt

are called innovations. In backshift notation we define an infinite degree lag polynomial

ψ(·) of coefficients ψ1, ψ2, ψ3, . . . as:

ψ(B) = 1 + ψ1B + ψ2B
2 + . . . , (27)

we can rewrite Wold’s linear representation of the stationary stochastic process (26) as

Yt = µ+

(
1 +

∞∑
i=1

ψiB
i

)
εt = µ+ ψ(B)εt (28)

5.2.6 Causal and invertible stochastic processes

A process {Yt} is said to be causal or a causal function of process {εt} if it has a repre-

sentation

Yt =
∞∑
i=0

ψiεt−i, (29)
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or in other words, when Yt = ψ(B)εt where ψ(B) = ψ0 + ψ1B + ψ2B
2 + . . . and∑∞

i=1 |ψi| < ∞. As we will see in Section 5.4.2, this means that a causal process can be

represented by a MA(∞) process.

A process {Yt} is said to be invertible or an invertible function of process {εt} if it has a
representation

Yt =
∞∑
i=0

φiYt−i + εt, (30)

or in other words, when εt = φ(B)Yt where φ(B) = φ0 + φ1B + φ2B
2 + . . . and∑∞

i=1 |φi| < ∞. In other words, an invertible process can be represented by an AR(∞)

process, which is a suitable for forecasting purposes. (See Section 5.4.1 for description of

process).

5.2.7 Characteristic polynomial

Here we will present a result, needed in Section 5.4.1, when covering autoregressive pro-

cesses. An autoregressive process of order p (or AR(p) process) is a weighted linear com-

bination of the past p values plus a white noise process εt:

Yt = (φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p) + εt. (31)

Using the backshift B and setting φ(B) = (1 − φ1B − φ2B
2 − . . .− φpB

p) we can

rewrite it as:

φ(B)Yt = εt, (32)

where φ(·) is a polynomial in B of order p, called a p-degree characteristic polynomial.

Note thatφ(B) is actually an operator, acting on processY in the followingway: φ(B)Y =

ε. Equation 32 is by its nature a difference equation.

Under which conditions is the AR(p) process Y weakly stationary?

To be stationary, Y must fulfill two requirements: 1) the finiteness of its expected value and

2) the finiteness of its autocovariances and their independence of time.

We will state the result here without proof:

Theorem 1. Let Y be an AR(p) process, defined by (32). Equation (32) has a unique causal

stationary solution provided that the roots {ζi} of the characteristic equation:

φ(z) = 1 − φ1z − φ2z
2 − . . .− φpz

p = 0; for z ∈ C. (33)
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lie outside the unit circle (or: |ζi| > 1; for every i).

While trying to satisfy the second condition for stationarity in the theorem, the AC coeffi-

cients ρh had to be computed. It turned out that the autocorrelations {ρh} are expressed in

terms of the roots of the characteristic equation. This is the connection between ACF and the

roots of the characteristic equation.

Note, that with theorem 1wemerely specified another way to test the stationarity of a process,

in this case a AR(p) process. It follows that this process can be represented in the form of a

MA(∞) process.

5.2.8 Box-Ljung test

This statistical test by Ljung and Box (1978) is used to test the lack of fit of an autoregressive

moving average time series model. The test is applied to the residual time series after the

model has been fitted to the data. Instead of testing residual autocorrelation at each distinct

lag, as the ACF does, this test examines autocorrelations up to lagm and expresses an “over-

all” judgement of the randomness of the residuals. It is therefore called a portmanteau test.

The test is defined as:

H0: The model does not exhibit lack of fit.

H1: The model exhibits lack of fit.

For a stochastic process Y withN historical observations the Ljung-Box statistic is a func-

tion of accumulated sample autocorrelations ρ̂h, up to a specified time lagm:

Q(m) = N(N + 2)
m∑

k=1

ρ̂2
k

N − h
. (34)

We will reject the null hypothesis (indicating that the model has a significant lack of fit)

whenever the test statistic has a value that is highly unlikely to be a coincidence. This will

be the case when

Q(m) > χ2
1−α,h, (35)

where χ2
1−α,h is the chi-square distribution table value with h degrees of freedom and sig-

nificance level α. Note that, since we are applying the test to residuals, the degrees of free-

dom must account for the estimated model parameters of an ARMA(p, q) model, hence:

h = m− p− q.

The test is a substantial improvement over the original test by Box and Pierce (1970).
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5.2.9 Information criteria

An information criterionmeasures the appropriateness of a statistical model for modeling a

specific set of historical data. It looks for a tradeoff between model complexity and goodness

of fit. Selecting the model with the lowest information criterion will ensure the best fit while

keeping the complexity as low as possible.

The most used information criterion is the Akaike information criterion or AIC:

AIC = 2k − 2ln(L), (36)

where k is the number of estimated parameters in the model and L is the maximum value

of the likelihood function for the model. AIC was first described in (Akaike, 1974). For the

case of estimating an ARMA(p, q) model, the AIC will result in:

AIC(p, q) =
2

T
(p+ q) log σ̂2(p, q), (37)

where σ̂2(p, q) is the estimated variance of the ARMA(p, q) model’s errors εt.

5.3 Forecasting with Time Series Decomposition

As mentioned in Subsection 4.6.1, when predicting a time series, decomposing it into single

patterns, which we described in Section 4.5, and separately forecasting each will most likely

result in higher overall forecast accuracy. Several different decomposition methods have

been developed since the 1920s, each with its own advantages and disadvantages.

5.3.1 Classical decomposition method

This method by Kendall, Stuart, and Ord (1983, pp. 410–414) splits the time series into a

sum or a product of its cyclical, seasonal, trend, and error components. These components

are then analyzed individually. The method, in use from the 1920s to the 1950s, is no longer

recommended due to its shortcomings. We will briefly outline its additive version here as it

forms the bases of all later methods:

Step 1: The estimate T̂i of the trend-cycle component at time ti is obtained by using a 2×m
moving averages procedure:

T̂i =
2

m
yi−m +

1

m

m−1∑
j=−m+1

yi+j +
2

m
yi+m, (38)
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where m is the seasonal period and T̂i can be computed for all historical times,

except the first and lastm ones.

Step 2: The detrended time series is calculated by subtracting the trend-cycle component

from the original time series: yi − T̂i.

Step 3: In the case of monthly data the seasonal component is estimated by first computing

seasonal indices for each month as averages of all detrended values available for that

month in all data. The indices are then normalized to add up to 0. They define the

estimate
{
Ŝi

}
i
of the seasonal component.

Step 4: The error component is calculated by subtracting the estimated trend and seasonal

components from the original signal:

Êi = yi − T̂i − Ŝi (39)

The above procedure is implemented in the decompose() function. For details of this

method consult the original description in (Kendall et al., 1983, pp. 410–414).

Several alternative decomposition methods were developed by the United States Census Bu-

reau since then. The X-11 decomposition method by Shiskin, Young, and Musgrave (1967)

was an improvement of the classical decomposition method. This later evolved into the im-

proved X-11 ARIMA decomposition by Dogum (1988) and was superseded with the X-12

ARIMA decomposition method (see: Findley, Monsell, Bell, Otto, and Chen (1998)). The

X-12 ARIMAmethod has overcome all shortcomings of the classical decomposition method:

it is able to estimate the trend and seasonal components on all historical points, it is robust to

occasional unusual observations; variations can handle trading day variation, holiday effects

and effects of known predictors. Recently, the Time Series Research Staff (2016) added X-13

ARIMA SEATS decomposition method to the census II family. In R the package seasonal

represents an interface to the free software for X-13 ARIMA SEATS, provided by the Census

Bureau.

5.3.2 Forecasting with STL decomposition

The Seasonal Decomposition of Time Series by Loess (or STL decomposition) is an im-

provement over the classical and X-12 ARIMA methods. It was developed by R. B. Cleve-

land, W. S. Cleveland, McRae, and Terpenning (1990). The trend and seasonal components

are computed by using the LOESS smoothing procedure on the trend and seasonal compo-

nents iteratively over several steps. The LOESS smoother calculates a weighted average of

a few neighbouring values where closer values get a bigger weight. After the components

estimations are known the decomposition performance needs to be accessed (The random

component needs to be “white noise”).
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Forecasting for the additive decomposition model is done by splitting the time series into the

seasonal component Ŝi and the seasonally adjusted component Âi:

yi = Ŝi + Âi; where Âi = T̂i + Êi. (40)

Both components are then predicted separately. The seasonal component is assumed to

change little or not at all over the years, so it is predicted using the seasonal naïve forecasting

method: last period’s actuals are set to be this period’s forecasts, without adjusting them.

(e.g., we predict next year/week by taking last week/year as the estimate.) The seasonally

adjusted component can then be predicted by using any non-seasonal forecasting method,

e.g. the Holt method or the non-seasonal ARIMA method. This method is implemented in R

as the stl() function.

5.4 ARIMA models

An autoregressive integrated moving average (hereinafter ARIMA) model consists of three

parts: the autoregressive (hereinafter AR), the integrated (hereinafter I) and the moving av-

erage (hereinafter MA) and any of these parts (but not all) can be omitted. This group of

models is among the most important ones for linear time series modelling. They were first

described in (Box & Jenkins, 1970, sec. 1.5, 3.1), now revised in (Box, Jenkins, & Reinsel,

1994, sec. 1.5, 2.3, 3.1, 3.5, 4.2, 5.1–5.3, 5.6, 7.4, 7.5, 7.7, 7.8, 8.2).

The model is usually identified (that is, the orders are established) by comparing the sample’s

ACF and PACF to the properties of the model ACFs and PACFs. The model is then fitted to

the data and the resulting model is used for stepwise forecasting.

5.4.1 Autoregressive (AR) models

An autoregressive model (hereinafter AR model) is similar to a multiple regression model

in that it forecasts the future values {yt} of the forecast variable y as a linear combina-

tion of predictive variables. However, these are not external variables but past observations

{yt−1, yt−2, . . . , yt−p} of the same forecast variable.

An autoregressive model of order p or AR(p) model can thus be written as:

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt, (41)

whereYt is the forecast random variable, its “lags”Yt−1, Yt−2, Yt−3, . . . are the explanatory

random variables, φ1, φ2, . . . , φp, p is the number of lags included are model parameters

to be estimated and the error terms {εt} form a white noise stochastic process. The process
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Y = {Yt}, constructed from equation 41, is called an autoregressive process of order p.

After the model is fitted to historical data, the solution can be written as:

Ŷt = φ̂1Yt−1 + φ̂2Yt−2 + . . .+ φ̂pYt−p, (42)

where Ŷt is the forecast random variable and φ̂1, φ̂2, . . . , φ̂p are estimations of model pa-

rameters. This forecast equation is used repeatedly for a stepwise forecast.

An AR(p) process has a unique weakly stationary causal solution if and only if the roots

of the characteristic equation are all situated outside of the unit circle (as we have seen in

theorem 1).

To identify the AR(p) model by determining its lag p, the following characteristics of the

ACf and PACF ca be considered:

• the ACF of an AR(p) process has a geometrical decline,

• the PACF of an AR(p) process cuts off at lag p.

5.4.2 Moving average (MA) models

Amoving average model (hereinafter MA model) is similar to the AR model, but rather than

using past values {Yt−1, Yt−2, . . . , Yt−p} to predict the future of a stochastic process Y ,

it uses past forecast errors εt−1, εt−2, . . . , εt−p.

A moving average model of order q orMA(q) model can be written as:

Yt = εt + ψ1εt−1 + ψ2εt−2 + . . .+ ψqεt−q, (43)

where Yt is the forecast random variable, the forecast errors {εt−h}, defined by εt−h =

Yt−h − Ŷt−h constitute a white noise random processes and ψ1, ψ2, . . . , ψp are model

parameters. Note that the number of lags included q can be arbitrarily large.

MA models are extremely important because of Wold’s representation Theorem (see page

53) which states that every weakly stationary stochastic process {Yt} can be approximated

to an arbitrary degree of precision by a sum of a stochastic and a deterministic time series.

The stochastic part is effectively an MA(∞) process:

Yt = δt +

(
∞∑
i=0

ψiεt−i

)
. (44)
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The degree of precision of approximation is directly related to the order q of MA.

For a MA(q) process, the weakly stationarity follows directly from definitions. An AR(p)

process can always be represented in form of a MA(∞) process. To represent a MA(q)

process in form of an AR(∞) process certain conditions have to be met.

A weakly stationary process’ characteristics are captured in its ACF. For a linear model, like

the MA(q), its characteristic function or characteristic polynomial

ψ(z) = 1 +
∞∑
i=1

ψiz
i (45)

will determine all equivalent structures. There are up to 2q equivalent MA models that could

have generated a specific ACF. Therefore, in attempting to identify the model that has gen-

erated the sample ACF, we are faced with the identification problem.

Under certain conditions, however, a unique solution exists: if the characteristic polynomial

ψ(z) = 1 + +ψ1z
1 + ψ2z

2 + . . . + ψqz
q has only roots ζ with |ζ| ≥ 1, then the

MA(q) model is identified and uniquely defined. Namely, under this condition, we can inter-

pret the MA(q) process as being the MA(∞) representation in Wold’s theorem. Large roots

translate into small coefficients {ψt}, so the MA(q) model is invertible and has an AR(∞)

representation:

Yt =
∞∑
i=1

φiYt−i + εt (46)

To identify the MA(q) model by determining its lag q, the following characteristics of the

ACF and PACF ca be considered:

• the ACF of an MA(q) process cuts off at lag q

• the PACF of an MA(q) process has a geometrical decline

5.4.3 Autoregressive moving average (ARMA) models

The process Y , defined by the autoregressive moving average model:

Yt =

p∑
i=1

φiYt−i +

q∑
j=0

ψjεt−j (47)

is called anARMA(p, q) process, provided it is stable (asymptotically stationary) and uniquely

defined. The first sum represents an AR(p) process and the second sum represents a MA(q)
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process The process {εt} is a white noise process. The AR and the MA processes have

their corresponding characteristic polynomials φ(z) and ψ(z), respectively. Note, that

AR(p)=ARMA(p,0) and MA(q)=ARMA(0,q).

Thus, not every ARMA model will define an ARMA process. (An unstable one will not.)

Next, we will state (without proof) the necessary conditions for characteristic polynomials

φ(z) = 1 − φ1z − . . .− φpz
p and ψ(z) = 1 + ψ1z + . . .+ ψqz

q:

Theorem 2. An ARMA process is uniquely defined and stable if and only if the following

statements are true:

1. all roots ζ of the characteristic AR polynomial φ are |ζ| > 1

2. all roots ζ of the characteristic MA polynomial ψ are |ζ| ≥ 1

3. the polynomials φ and ψ have no common roots.

The first condition ensures stability (the AR process is causal) and is unaffected by the MA

part. The second condition implies the uniqueness of the MA process and the third condition

finally ensures the uniqueness of the entire structure. Note, that when all roots of the charac-

teristic MA polynomial are |ζ| > 1, then the MA part is invertible, and hence the complete

ARMA(p, q) process has an AR(∞) representation.

Model Identification. To identify the ARMA(p, q) model, we will not be able to proceed

by examining the correlogram, as in the case of AR and MA processes. Namely, for an

ARMA(p, q) process both ACF and PACF geometrical decline, that starts approximately at

p and q. However, this is difficult to recognise.

Researchers will frequently proceed in the following way:

1. Estimate (fit) various ARMA(p, q) models, for a wider range 0 ≤ p ≤ P and 0 ≤
q ≤ Q of lags. The number of models to be estimated is (P + 1)(Q+ 1).

2. Calculate ompare all (P+1)(Q+1)models by one of the information criterions. Select

the model which has the smallest value of the selected information criterion, thus, the

least complex model. Note, that many R functions use the Akaike information criterion

(consult page 56 for details).

3. Test the model specifications.

4. If the selectedmodel turns out to be specified incorrectly, discard it and test another model

with larger p or q.
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5.4.4 ARIMA models

If the original processY is not stationary, we should obtain a stationary process by computing

the first order difference process:

Xt = ∆Yt = Yt − Yt−1 (48)

or the second order differences:

Xt = ∆2Yt = Yt − 2Yt−1 + Yt−2. (49)

If the differenced process is stationary, then we attempt to fit an ARMA model to it.

A process Y is called an autoregressive moving average orARIMA(p, d, q) process if for

some d there is a differencing process∆d so that the differenced processXt = ∆dYt is an

ARMA(p, q) process.

The ARIMA family is a broad class of time series models, that includes the AR, MA; ARMA

and ARIMA models. The key tool in identifying the correct model is the estimation of

ACF.

5.4.5 SARIMA models

All ARIMA models addressed thus far were intended for use with non-seasonal data. A sea-

sonal ARIMAmodel is an extension of ARIMAmodels, constructed by including additional

seasonal terms to the familiar non-seasonal ARIMAmodels. It is denoted asARIMA(p, d, q)

(P,D,Q)m, where (p, d, q) refers to the non-seasonal part of the model, (P,D,Q)m rep-

resents the seasonal part andm is the number of periods per season. For reference refer to

(Hyndman & Athanasopoulos, 2013, sec.8.9).

Note that the auto.arima() function also includes seasonal ARIMA models.

5.4.6 The auto.arima() function

The Hyndman-Khandakar algorithm for automatic ARIMA modelling, implemented in the

auto.arima() function is a variation of the algorithm, described in Hyndman and Khan-

dakar (2008), which uses unit root tests for determining stationarity and minimization of the

AIC and maximum likelihood estimation (MLE) to fit a selected ARIMA model.
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5.5 Exponential Smoothing Methods

Exponential smoothing (sometimes denoted by ES) is a technique that can be applied to

time series data, either to produce smoothed data for presentation, or to make forecasts. This

family of methods has been in use since the 1950s and does not suffer from any impairment in

efficiency and popularity. They originate from a numerical technique from the 17th century,

which was adopted by the signal processing community in the 1940s to convert FIR filters

into IIR filters.

This familiy of models predict future values as weighted averages of past observations, with

recent observations weighted more heavily than older observations. In fact, the name “ex-

ponential smoothing” reflects the shape of the weighting function. The weights decrease,

following an exponential function.

Despite the exponential smoothing methods having been around for decades, it was not until

the article of Hyndman, Koehler, Snyder, and Grose (2002) that a framework incorporating

stochastic models, likelihood calculation, prediction interval calculations, and procedures for

model selection was developed.

There are 15 versions of the method: the trend can be excluded, additive, multiplicative or

damped and the seasonality can be excluded, additive, additive double-seasonal, multiplica-

tive, or multiplicative double-seasonal. There is also a triple-seasonal version.

In the following sections, we will describe the exponential smoothing methods from a simple

exponential smoothing, to more complex versions that include trend, seasonality, and double

seasonality. At the end, we will present two functions in R, bats() and tbats(), which

are both seasonal and include all known components.

5.5.1 Simple exponential smoothing

The simplest ESmethod is called simple exponential smoothing or single exponential smooth-

ing and is suitable for time series that display no visible trend or seasonal pattern. This data

can be forecast by using simple methods, like the average or naïve method from Section

5.1.

When predicting with the average method, all available past observations are considered in

the prediction and their power in predicting the future is considered equal, and they are thus

given equal weights:

ŷT+h|T =
1

T

T∑
t1

yt. (50)
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The naïve method only considers the last observation and gives it all weight. All forecasts

are equal to the last observed value of the time series:

ŷT+h|T = yT . (51)

With the simple exponential smoothing, wewant to achieve amiddle way between these two

concepts. We will consider more recent observations to be more important in predicting the

next value, and give them larger weights than to the more distant observations. The weights

will decrease exponentially with lag h:

ŷT+1|T = αyT +α(1−α)yT−1 +α(1−α)2yT−2 + . . .+α(1−α)T−1y1, (52)

where 0 ≤ α ≤ 1 is called the smoothing parameter. The one-step ahead forecast is

basically a weighted average of all past observations with decreasing weights, the decrease

rate being dictated byα. By definition, the forecast is always in delay at least by one period,

in comparison to the original time series. The model’s capability to adapt to the time series

fluctuations depends on α. A greater α will be able to follow the series’ behaviour well,

while a low α will result in a more smoothed signal.

Formula (52) can be expressed in three equivalent forecasting forms. We will only mention

one here: the component form representation includes a forecast equation and a smooth-

ing equation for each included component. We will only consider the level lt here (but the

methods in Sections 5.5.2 and 5.5.3 will consider trend bt and seasonal component st addi-

tionally):

Smoothing equation lt = αyt + (1 − α) lt−1 (53)

Forecast equation ŷt+1|t = lt, (54)

The formulation (53) is attributed to Brown (1956, p. 15). The form defines the one-step

ahead forecast ŷt+1|t. The forecast for several steps ahead follows as:

ŷT+h|T = ŷT+1|T = lT (55)

The smoothing process needs to be initialised by selecting an initial value for the level l0.

There are several different strategies for doing this, but a common approach would be to set

l0 = y1. Alternatively, one can obtain the initial value l0 and the smoothing parameterα by

an optimization procedure. We will be minimizing the forecast errors et = yt − yt|t−1 by

minimizing the sum of squared errors (SSE).

Note that simple exponential smoothing with smoothing parameter α is equivalent to using
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the ARIMA(0, 1, 1) model, as Yt − Yt−1 = εt − (1 − α)εt−1

5.5.2 Holt’s linear trend method

Holt’s linear trendmethod is an extension of the simple exponential smoothingmethod to time

series that display a linear trend. It was developed by Holt (1957); the paper was republished

in (Holt, 2004) for greater accessibility.

It first estimates the Level lt and the trend (slope) bt at present time t, then uses them to

forecast the time series in the next moment:

Level equation lt = αyt + (1 − α)(lt−1 + bt−1) (56)

Trend equation bt = β(lt − lt−1) + (1 − β)bt−1 (57)

Forecast equation ŷt+h|t = lt + hbt (58)

Here α and β denote the smoothing parameters for the level and trend, respectively.

The level equation estimates level lt as a weighted average of observation yt at time t and

the within-sample one-step-ahead forecast for time t. The trend equation estimates trend bt

as a weighted average of the estimated trend lt − lt−1 and the previous estimate of trend

bt−1. The forecast is then obtained as a linear function of the last estimated level plus the last

estimated trend value. For an h-step ahead forecast, we just add h-times the last estimated

trend value.

It is common to initialize the smoothing process by setting l0 = y1 and b0 = y2 − y1. The

initial values l0, b0 and the values of the smoothing parameters can also be computed by a

similar optimization procedure to the one in Section 5.5.1.

Note that there is also a variation of this method with an exponential trend, a result of multi-

plying, rather than adding the trend and level estimates for the forecast: ŷt+h|t = ltb
h
t .

5.5.3 Single-seasonal Holt-Winters method

Holt’s linear trend method was again extended by Holt (1957) and Winters (1960) to addi-

tionally capture seasonality. All three components (the underlying level, the trend, and the

seasonal component) are estimated by smoothing equations.

There are essentially two versions of this method. The additive version is appropriate for

time series for which the seasonal variations do not change in size in relation to the level of

the series. The multiplicative version is used when the seasonal variations are proportional

to the level of the series.
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TheHolt-Winters AdditiveMethod. The component form for this method is expressed as:

Level equation lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1) (59)

Trend equation bt = β(lt − lt−1) + (1 − β)bt−1 (60)

Seasonal euation st = γ(yt − lt−1 − bt−1) + (1 − γ)st−m (61)

Forecast equation ŷt+h|t = lt + hbt + st−m+h
+
m
, (62)

wherem is the length of the seasonal cycle. By h+
m = b(h− 1) mod mc+ 1 we make

sure to select the index of the same season in the last year of observations. The seasonal

component st is estimated as a weighted average of the estimated season yt − lt−1 − bt−1

and the previous same-season estimate of season st−m. It is added to the forecast.

The smoothing parameters α, β, γ and the initial values l0, b0, s0 need to be estimated by

optimization.

TheHolt-WintersMultiplicativeMethod. The component form for this method is expressed

as:

Level equation lt = α
yt

st−m

+ (1 − α)(lt−1 + bt−1) (63)

Trend equation bt = β(lt − lt−1) + (1 − β)bt−1 (64)

Seasonal equation st = γ
yt

(lt−1 + bt−1)
+ (1 − γ)st−m (65)

Forecast equation ŷt+h|t = (lt + hbt)st−m+h
+
m
. (66)

Here, the seasonal component is just multiplied by the previous lt + hbt term.

5.5.4 Double-seasonal Holt-Winters method

The double-seasonal Holt-Winters method (hereinafter DSHW) is an adaptation of the Holt-

Winters method that is able to cope with two cycles (a daily and a weekly one), present in

the load profile, rather than just the one in the usual form of the Holt-Winters method. It

was developed by (Taylor, 2003) who was using it for short-term load forecasting. Adding a

second seasonal component results in a model that is more true to the real situation and leads

to better forecast accuracy.

The DSHW leaves the equations for level (59) and trend (60) as is, while the seasonal esti-

mation is replaced by two equations, one for daily season dt and one for the weekly onewt,

and the final forecast changes accordingly:

66



DSHW Additive Method

Level equation lt = α(yt − st−m) + (1 − α)(lt−1 + bt−1) (67)

Trend equation bt = β(lt − lt−1) + (1 − β)bt−1 (68)

Seasonality 1 dt = δ(yt − lt−1 − wt−s2) + (1 − δ)dt−s1 (69)

Seasonality 2 wt = ω(yt − lt−1 − dt−s1) + (1 − ω)wt−s2 (70)

Forecast ŷt+h|t = lt + hbt + dt−s1+h + wt−s2+h, (71)

The smoothing parameters are α, β, δ, ω, and the initial values that we need to establish are

l0, b0, d0 and w0.

Later, Taylor also developed a triple-seasonal version of Holt-Winters method to add the

yearly seasonality of the load time series.

5.5.5 State space models

The state space models are stochastic models that underlie the exponential smoothing meth-

ods described in Sections 5.5.1–5.5.4. Those methods generate point forecasts while the

present models will not only generate the same point forecasts but also prediction intervals.

Every model consists of a measurement equation that models the historical data and some

transition equations that describe the transitions of the unobserved components (or states

level, trend and seasonal) through time; thus the name “state space”.

For each known method we can generate two models: one with additive errors and one with

multiplicative errors. So from the 15 mentioned methods we arrive at 30 stochastic models.

Some non-linear state space models suffer from weaknesses, such as instability.

To overcome this and other shortcomings of previously known state space models, De Liv-

era, Hyndman, and Snyder (2011) developed a state space modeling framework that will be

discussed in the next section. Two very general models, BATS and TBATS were developed

in this framework.

5.5.6 BATS model

The BATS model was modeled in the new innovations state space modeling framework,

described in detail in (De Livera et al., 2011). The framework incorporates Box-Cox transfor-

mations, Fourier representations with time-varying coefficients and ARMA error correction.

The term “innovations” refers to innovations as the single source of error. It was constructed

to handle time series which exhibit complex seasonal patterns. The load time series is an

example of such a series. It has the following key features:
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• multiple seasonality: it contains daily, weekly and yearly seasonal periods,

• high-frequency seasonality: the weekly seasonal period has a frequency (length) of 168,

which is considered high frequency,

• non-integer seasonality: taking the leap years into account, the yearly seasonal period

will have an average seasonal frequency of 365.25 days or 52.18 weeks,

• dual-calendar effects: when predicting load in e.g. some Islamic countries, the holiday

effects of two calendars need to be considered: the Hijri and the Gregorian.

While some time series models could handle some of the above-listed complexities, the men-

tioned framework is the first concept that covers all of them. By including a new estimation

procedure based on maximum likelihood estimation, it is also less compute-intensive and

therefore faster.

BATS is an acronym for the key features of the model: Box-Cox transform, ARMA errors,

Trend, and Seasonal components. The model is the most obvious generalization (extension)

of the traditional seasonal innovations models to allow for multiple seasonal periods. The

system of equations reads:

Transformed observations y
(ω)
t =

{
yω
t −1

ω
ω = 0

log yt ω 6= 0
(72)

Level equation lt = lt−1 + φbt−1 + αdt (73)

Trend equation bt = (1 − φ)b+ φbt−1 + βdt (74)

Seasonalities s
(i)
t = s

(i)
t−mi

+ γidt; for i = 1, 2, . . . , S (75)

Error dt =

p∑
i=1

ϕidt−i +

q∑
i=1

θiεt−i + εt (76)

Forecast y
(ω)
t = lt−1 + φbt−1 +

T∑
i=1

s
(i)
t−mi

− d
(i)
t (77)

The differences from a traditional model are roughly:

1. the observations yt are first transformed by Box-Cox transformations (Box & Cox, 1964)

to obtain y
(ω)
t .

2. an ARMA(p, q) process dt is added as an additional error term to a Gaussian white noise

process εt.

3. there are two types of trends included: a long-term trend or global trend b and a short-

term trend or local trend bt. b is a replacement for a damped trend in traditional models

and bt converges to b.

4. the seasonal components are denoted by s
(i)
t .
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The parameters of the BATS(ω, φ, p, q,m1,m2, . . . ,mJ ) model are: the Box-Cox param-

eterω, the damping parameterφ, the ARMAparametersp and q, and a list of the seasonal pe-

riods {m1,m2, . . . ,mJ}. For example, BATS(1, 1, 0, 0,m1) represents the underlying

model for the well-known Holt-Winters additive single-seasonal method. The model for the

additive double-seasonal Holt-Winters method is given by BATS(1, 1, 0, 0,m1,m2).

We will use the bats() function, which is contained in the forecast package in R. It

was developed by Professor Rob Hyndman. (Refer to package documentation at (Hyndman,

2016)). The function fits a BATSmodel applied toY , as described in (De Livera et al., 2011).

Parallel processing is used by default to speed up the computations. The bats() function

selects the best model out of a group of BATS double-seasonal models, based on lowest AIC

(page 56).

5.5.7 TBATS model

The TBATS model is a Trigonometric exponential smoothing state space model with Box-

Cox transformation, ARMA errors, Trend and Seasonal components. Parallel processing is

used by default to accelerate the computations. It is a further extension of the BATS model,

allowing for a trigonometric representation of seasonal components based on Fourier series:

Seasonality s
(i)
t =

kj∑
j=1

s
(i)
j,t (78)

Level of seasonality s
(i)
j,t = s

(i)
j,t−1 cos λ

(i)
j + s

∗(i)
j,t−1 sin λ

(i)
j + γ

(i)
1 dt (79)

Growth of seasonality s
∗(i)
j,t = −s(i)j,t−1 sin λ

(i)
j + s

∗(i)
j,t−1 cos λ

(i)
j + γ

(i)
2 dt, (80)

where γ
(i)
1 and γ

(i)
2 are smoothing parameters, λ

(i)
j = 2πj/mi, and mi is seasonal pe-

riod of the i-th seasonal component, s
(i)
t is the level of the seasonal component and s

∗(i)
t is

its growth. Note, that by setting the smoothing parameters to zero, we get a deterministic

representation.

The tbats() function is also part of the forecast package and is based on the work by

De Livera et al. (2011). It is an improvement over the bats() function and can be used

for seasonal or non-seasonal time series. It works in several steps and attempts to find the

TBATS model with the lowest AIC from a group of generated models. Parallel processing

is used when possible. For a step-by-step description of tbats() function the reader is

referred to Appendix B.

The fittedmodel is designated as TBATS(ω, φ, p, q, {m1, k1}, {m2, k2}, . . . , {mJ , kJ}),
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whereω is the Box-Cox parameter and φ is the damping parameter. The error is modelled as

an ARMA(p, q) process andm1, . . . ,mJ lists the seasonal periods used in the model and

k1, . . . , kJ are the corresponding initial seasonal values (the Fourier terms) used for each

seasonality.

5.6 Autoregressive Artificial Neural Network Models

Artificial Neural Networks (ANN) are forecasting methods that are based on simple math-

ematical models of the brain. They allow complex nonlinear relationships between the “re-

sponse variable” and its “predictors”. The model is fitted by a “learning algorithm”. These

models function as black boxes and detect relationships without any prior knowledge.

The simplest networks contain no hidden layers and are equivalent to linear regression (Fig-

ure 23a). Once we add an intermediate layer with hidden neurons, the neural network be-

comes non-linear. There can be many hidden layers. A simple example of a non-linear neural

network is shown in Figure 23b.

Figure 23. An Artificial Neural Network Model, Without and with Regression

(a) A simple neural network equivalent to a

linear regression

(b) A neural network with four imputs and

one hidden layer with three hidden neurons

Source: R. J. Hyndman & G. Athanasopoulos, Forecasting: Principles and Practice, 2013, sec. 9.3.

The R function nnetar() is a new experimental function that fits a neural network with

lagged values of the time series as inputs. It is a feed-forward neural network with a single

hidden layer and lagged inputs for forecasting univariate time series. The notationNNAR(p, k)

indicates there arep lagged inputs andk nodes in the hidden layer. For example, aNNAR(9, 5)

model is a neural network with the last nine observations (yt−1, yt−2, . . . , yt−9) used as

inputs, an output yt and five neurons in the hidden layer. A NNAR(p, 0) is equivalent to the

ARIMA(p, 0, 0) model (Hyndman & Athanasopoulos, 2013, sec. 9.3).
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ANNs might be able to capture non-linear relations better than traditional models. In fact,

they have been very successfully used for STLF on a large scale. However, results depend

on the neural network design, that is number of the layers, size of the hidden layer, number of

inputs in the input layer, and so on. They can be used as pure time series models or including

other predictive variables, such as weather, day of week, time of day etc. As we are dealing

solely with pure time series models, we will also test ANNs in their autoregressive role,

predicting load values of the next 24 hours from sufficient historical data.

6 RESULTS – INDUSTRIAL CONSUMERS

We will start by testing a few forecasting methods on historical data for industrial consumer

Ind1 and compare forecast accuracy. The selected period ranges from June 1st, 2011 to June

28th, 2011 (training set). Data were aggregated to 1-h measurements. The goal was to

forecast the electricity consumption for the next 1, 2, 3 and 14 days (test set), in 1-h values.

A couple of other residential sources were also analyzed and forecast and, since the results

were similar, we will only be displaying Ind1 results here.

6.1 Forecasting with STL Decomposition

Experiments. The 4-week historical load time series of Ind1 consumer was used and STL

decomposed, as we can observe in Figure 24.

Figure 24. STL Decomposition of Ind1 Consumer Time Series for June 2011, 1-h Sampling
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The deseasonalized series was then forecast by using the seasonal naïve method. 1-day, 2-
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day, 3-day and 14-day forecasts were visualized and forecast accuracy was calculated by

using MAPE. Figure 25 displays the last 7 days of historical data and a 3-day forecast with

80% and 95% prediction intervals.

Results.A MAPE of 4.3% was obtained on the training set and 7.3% on the test set.

Figure 25. 3-Day Naïve Forecast of STL-Decomposed Ind1 Consumer Time Series
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Note. Historical Data: 28 Days in June 2011. Sampling: 1 h.

Commentary. The STL decomposition should capture the load signal’s nature well. Further-

more, the seasonal naïve forecasting method seems to be performing fairly well. We will

consider the achieved MAPE of 7.3% on the test set as a benchmark, against which we will

measure more advanced forecasting methods.

6.2 Single-Seasonal Holt-Winters Method

Experiments. The same training and test sets as in section 6.1 were used for industrial con-

sumer Ind1. The future load was forecast by applying the single-seasonal Holt-Winters

method. It is an ESmethod, suitable for time series that display a linear trend and seasonality.

Results for a 3-day forecast are visualised in Figure 26.

Forecast accuracy was calculated. Residuals were inspected to assess their eventual autocor-

relation and autocovariance. Box-Ljung test for autocorrelations was performed. Residuals

were also plotted and their statistics were estimated to check randomness.

Results.MAPE on the training set was not satisfactory: the values for a 1-day, 2-day, 3-day

and 14-day forecast were 16%, 19%, 18% and 18%, respectively. Furthermore, the autocor-

relation function (ACF) pointed to the autocorrelation of residuals, and the Box-Ljung test

confirmed that there are correlations between Yt and lags Yt−1 to Yt−20.
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Conclusion. The forecast accuracy of 16–19% is insufficient for our task and, due to the

autocorrelation of residuals, the Holt-Winters single-seasonalmethod is not the most suitable

one for this source, as it can not explain all variation in the data.

Figure 26. 3-Day Single-Seasonal Holt-Winters Forecast of Ind1 Consumer Time Series
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Note. Historical Data: 28 Days in June 2011. Sampling: 1 h.

6.3 ARIMAModels

Experiments.We tested the performance of the ARIMA model family for the same source,

training and test set as before. The best model was selected by using the auto.arima()

function, which also fits the model.

Results.The automatic functionauto.arima() selected the seasonal autoregressivemodel

ARIMA(1, 0, 0)(1, 0, 1)168, with a week as the lenght of its main seasonal cycle. However,

it needed around 5 minutes to automatically determine the most accurate ARIMA model and

fit it to the data. MAPE reached 5.2% on the training set and was even better on the test set:

it reached 4.5% for the 1-day and 3-day forecast and 5% for the 2-day forecast. The ACF

and the Box-Ljung test did not detect any autocorrelation of residuals, so the model is valid.

The results of the 3-day forecast are plotted in Figure 27.

Commentary. auto.arima() shows a solid improvement in forecast accuracy over the

Holt-Winters method and explains the data well. However, baseline calculation time in a

VPP environment is crucial. The selection and fitting process is an optimization problem and

it seems, that the function which fits several models before selecting the best one, takes too

much time. Therefore, we will look for a method that is less time consuming.
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Figure 27. 3-Day auto.arima() Function Forecast of Ind1 Consumer Time Series
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Note. Historical Data: 28 Days in June 2011. Sampling: 1 h.

6.4 Discussion – Industrial Consumers

Applying a few very different methods to a single industrial source we showed that forecast-

ing load profiles of individual industrial consumers is feasible. The accuracy achieved varied

across the methods tested. Forecasting by STL decomposition and seasonal naïve forecast-

ing method achieved a solid accuracy and can serve as a benchmark to be surpassed. The

single-seasonal Holt-Winters method was found to be less suitable, as it is not able to explain

all the variations contained in the double-seasonal load signal, resulting in a somewhat poor

performance. The auto.arima() function achieved the best accuracy but was discarded

for use in the VPP environment due to exceedingly long calculation times.

We will now continue by testing the forecasting methods on households and groups of house-

holds as they will be harder to predict. If we manage to find a method with good accuracy

based on residential data, we will also be able to use it for forecasting industrial consumers.

7 RESULTS – RESIDENTIAL CONSUMERS

We will now extend the pool of methods and aim for methods that give greater consideration

to special features of load time series. As fitting different ARIMA models can be too time

consuming, we will focus on Exponential smoothing methods. All methods will be judged

based on MAPE accuracy measure and computational complexity.

Experiments. The historical period ranges fromMay 9th, 2013 to June 5th, 2013, or 4 weeks.

The goal is to forecast the next 24 hourly values of June 6th, 2013. All methods will be tested

on several different household data sources (Dom1, Dom5, Dom12). We will also investigate

the influence of aggregating measurements to 1-h on forecast accuracy. Time complexity will
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be a special concern.

Wewill plot the results and calculate the forecast accuracy. Residuals will be plotted and their

statistics will be calculated to confirm randomness. They will also be checked for autocorre-

lation and autocovariance, for which the Box-Ljung test will aid in detecting autocorrelations

at certain lags.

7.1 Single-Seasonal Holt-Winters Method

During the forecasting with this single-seasonal method, we will additionally observe the

influence of historical data sampling (15 min versus 1 h) on forecast accuracy. All signals

that were sampled at 15 min were multiplied by 4 to obtain the same order of magnitude and

be visually comparable to signals sampled at 1 h.

Results. Results for Dom1 show that MAPE improves by a factor of 2, once we pass from a

15-min sampling of the input signal to the aggregated signal, sampled at 1 h. As we switched

to the more aggregated signal MAPE, measured on the test set fell from 81.6% to 45%.

Furthermore, the prediction interval shrunk visibly for the aggregated signal, which is also

visually smoother, less volatile and therefore easier to predict. Note, that the plot in Figure

28a has been stretched along the y-axes, for better comparability of the signals.

Figure 28. Dom1 Consumer Time Series and 24-h Single-Seasonal Holt-Winters Forecast

(a) Sampling: 15 min 
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(b) Sampling: 1 h 
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

We were focusing on MAPE as our primary selected accuracy measure. Figure 28b seems

to indicate a good prediction accuracy, but the value of MAPE, measured on the test set, was

45%. This means that in the 24 forecasted points the forecast value differed from the actual

value by 45% on average. In the worst case, the error was most probably even bigger.

75



The results for Dom5 are even more extreme: MAPE reached 495% on 15-min sampled

signals and 103% on 1-h sampled signals. The forecasting results can be observed in Figure

29.

Figure 29. Dom5 Consumer Time Series and 24-h Single-Seasonal Holt-Winters Forecast

(a) Sampling: 15 min 
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(b) Sampling: 1 h 
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

In the Dom12 case, MAPE is of the same magnitude for both sampling values. The ag-

gregated 1-h sampling gives slightly worse results (MAPE = 71%) compared to the 15-min

sampling (MAPE = 68%).

Figure 30. Dom12 Consumer Time Series and 24-h Single-Seasonal Holt-Winters Forecast

(a) Sampling: 15 min 
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(b) Sampling: 1 h 
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

All forecast accuracy measures are summarized in Table 1. ME for the 15-min Dom1 source

is negative because the method could not adequately capture the two spikes.
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Table 1. Accuracy of Single-Seasonal Holt-Winters Method for Selected Households and

Two Different Sampling Periods: 15 min, 1 h

Dataset
ME RMSE MAE MPE MAPE MASE ACF1

in % in %

Dom1

15 min∗
Training∗∗ -3.2156 0.0896 0.0422 -0.10 38.58 0.5393 NA

Test∗∗∗ -4.6170 0.1440 0.0700 -71.77 81.64 1.066 0.6968

1 h
Training∗∗ 0.0088 0.3281 0.1770 -13.48 41.25 0.6207 NA

Test∗∗∗ 0.0188 0.2510 0.1347 -24.55 44.98 0.6191 -0.4668

Dom5

15 min∗
Training∗∗ -0.0004 0.1380 0.0604 31.07 167.19 0.5439 NA

Test∗∗∗ 0.2396 0.2598 0.2396 495.42 495.42 1.6891 0.7517

1 h
Training∗∗ -0.0010 0.1388 0.0798 24.18 150.36 0.7464 NA

Test∗∗∗ 0.0209 0.0889 0.0783 -81.15 103.65 0.5936 0.653

Dom12

15 min∗
Training∗∗ -0.0003 0.1215 0.0732 5.30 35.45 0.6659 NA

Test∗∗∗ 0.0569 0.1453 0.1119 32.91 68.42 0.9037 0.8167

1 h
Training∗∗ -0.0006 0.1163 0.0750 1.65 33.57 0.7403 NA

Test∗∗∗ -0.0965 0.1441 0.1247 -55.44 71.83 1.1785 0.7999

Note. ∗ 4×15-min sampling values, ∗∗ Training set span over 4 weeks, ∗∗∗ Test set span over 24 h.

Commentary. Running single-seasonal Holt-Winters forecasts on different households for

different sampling periods (15min, 1 h) has provided the following insight: In most cases this

method gives considerably more accurate predictions when working with an aggregated time

series, sampled at 1 h. However, in terms of accuracy, we begin to see, what was anticipated

in Section 4.5.2: the irregular household signals are hard to predict and the accuracy itself is

directly related to data’s volatility. Even the best observed MAPE of 45% is still insufficient

for the precision needed in a VPP environment.

Since the Holt-Winters method only considers one seasonality (the longer one of one week),

we hope to obtain better accuracy with methods that respect the double-seasonal nature of

load signals. We will only work with aggregated signals from this point on.

7.2 Double-Seasonal Holt-Winters Method

Experiments. The dshw() function was used for forecasting the Dom1, Dom5 and Dom12

signals, sampled at 1 h. Analysis steps are listed at the beginning of Chapter 7. Note, that

there are no prediction intervals implemented in this function.

Results. For the Dom1 signal, MAPE reached 41% on the training set and 45% on the test

set. It seems that the DSHW smoothes spikes too much. This is due to the exponential

smoothing nature of the method. Plotting the ACF function showed no autocorrelation. The
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p-value of the Box-Ljung test statistic was 0.052, proving that the sample auto-correlations

of the residuals are not too big. Plotting the residuals showed that the residuals are a random

process. The model is valid, thou not very accuarate, as we can observe in Figure 31.

Figure 31. Dom1 Consumer Time Series and 24-h Double-Seasonal Holt-Winters Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

For the Dom5 source, MAPE reached 87% on the training set and 161% on the test set; the

results are thus useless. Furthermore, the ACF function displayed autoregression of residuals

at lags 1 and 5, the p-value of 0.0004 for the Box-Ljung statistic proved that the residuals are

not “overall” random but are autocorrelated. In other words, the true innovations are not

independent and the residuals still contain a periodic component. Hence, the model needs

improvement to extract this periodic component. This is also visually verified by plotting the

residuals. The model can be observed in Figure 32.

Figure 32. Dom5 Consumer Time Series and 24-h Double-Seasonal Holt-Winters Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

For the Dom12 signal, the MAPE on the training set reached 31%, but amonuted to 81% on
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the test set, which testifies of poor prediction power of this model. The residuals were even

more correlated than in the case of Dom5, exposing autocorrelations at lags 1,2,14,15 and 20.

The extremely low p-value of 9.68 ∗ 10−7 for the Box-Ljung test statistic clearly confirmed

this. Thus, the model had to be dismissed. See Figure 33 for results.

Figure 33. Dom12 Consumer Time Series and 24-h Double-Seasonal Holt-Winters Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Commentary. The DSHW assumes a double-seasonal nature of the signal, but the signals of

individual households are very irregular and in fact do not show regular seasonal patterns.

Clearly, the DSHW can not deal with their irregular nature and can not predict the individual

household signals satisfactorily. (The MAPE, observed on the test set was between 45% and

161% and renders the results useless and two out of three models failed to explain all the

variations, contained in the data).

7.3 BATS Model

Experiments. The state space BATS model was used for forecasting the Dom1, Dom5 and

Dom12 load signals, following the described analytic steps. The applied bats() function

selects the best model out of a group of BATS models, based on the lowest AIC.

Results and Commentary.When forecasting theDom1 signal the bats() function selected

BATS(0.128, {1, 1},−, {24, 168})model. The first parameter is the Box-Cox parameter,
followed by the two parameters for ARMA errors; no damping parameter was used and we

are looking at a double-seasonal model, that successfully uncovered the two seasonal periods,

the daily one (24) and the weekly one (168).

MAPE reached 28.7% on the training set and 29.6% on the test set. The ACF of residuals is

showing very little autocorrelation, at the more distant lags 15 and 19. The p-value of 0.18 for
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the Box-Ljung statistic confirms that the innovations are indeed independent and the model

explains the variation well, which can be observed in Figure 34. The residual plot seems

normally distributed with zero mean. Forecasting errors are standard normally distributed.

The AIC value was 1990.173.

Figure 34. Dom1 Consumer Time Series and 24-h bats() Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Forecasting Dom5 selected BATS(0.036, {2, 0}, -, -) as the best model. It does not include
any damping of the trend and is a non-seasonal model with AR errors. MAPE reached 59%

on training set and 120% on test set. The residual ACF displayed a strong autocorrelation at

lags 3,5,7,8,13 and 14. This was confirmed by the very low p-value of 7.255 ∗ 10−5 of the

Box-Ljung statistic. The residual plot seems normally distributed with mean close to zero.

Forecasting errors are standard normally distributed. The AIC value was 556.86. The model

is not able to explain the variation of the data well, which can clearly be seen in Figure 35.

Figure 35. Dom5 Consumer Time Series and 24-h bats() Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.
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BATS(0.041, {0, 0}, 0.8,−) was selected as the best model for forecasting the Dom12

signal. It contains Box-Cox transformations and a damped trend, but no seasonality. MAPE

amounted to 23% and 32%on the training and test set, respectively. The residual ACF showed

negligible autocorrelation at lag 15, confirmed by the high p-value of 0.158 of the Box-

Ljung statistic. The residual plot seems normally distributed with the mean close to zero.

Forecasting errors are standard normally distributed. The AIC value was 763.28.

Figure 36. Dom12 Consumer Time Series and 24-h bats() Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Commentary. Figures show that the BATS model can not “follow” the shape of the “er-

ratic” load curve of individual households and is therefore unsuccessful in predicting their

future. In two cases it failed to detect seasonality and in one case strong autocorrelation was

proven, confirming that thatmodel should be further improved by extracting another periodic

component from the residuals.

7.4 TBATS Model

Experiments.We hope that the more sophisticated TBATS state space model will be able to

better explain the load curve of individual households. We will test it on the same sources.

The tbats() function selects the best model out of a group of TBATS seasonal and BATS

non-seasonal models, based on lowest AIC.

Results and Commentary. Dom1: Figure 37 shows that for this signal the tbats() is

slightly less successful in predicting the future volatility than the bats() function, result-

ing in poorer accuracy. In fact MAPE reached 43% on the training set and 45% on the test set.

The ACF plot did not indicate any autocorrelation of residuals but the Box-Ljung test showed

some lag-dependence. The residual plot seems normally distributed with mean around zero.

Forecasting errors are standard normally distributed. The AIC value was 2047.291. The
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model selected for having the lowest AIC is TBATS(0, {0, 0},−, {24, 6}, {168, 6}),
which captured both the daily and weekly seasonalities.

Figure 37. Dom1 Consumer Time Series and 24-h tbats() Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Forecasting the Dom5 signal selected the TBATS(0.083, {0, 0}, 0.8, {24, 6}, {168, 4})
model, with mediocre accuracy: MAPE reached 56% on the training set and 65% on the

test set. The prediction intervals in Figure 38 are huge and the forecast could not predict the

shape of the curve well, which is confirmed by the p-value of 0.0017. The ACF function also

showed autocorrelation of the residuals, at lags 5, 8, 13 and 14.

Figure 38. Dom5 Consumer Time Series and 24-h tbats() Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

ForecastingDom12 also resulted in the selection of a proper TBATS(0, {1, 1},−, {24, 5},
. . . {168, 6}) model. As Figure 39 shows, with its ARMA errors and double seasonality it

managed to produce some prediction, with MAPE reaching 21% and 34% on the training
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an test sets, respectively. The model is also valid, with a p-value of 0.47 of the Box-Ljung

statistic. It seems that this is the best we will be able to observe.

Figure 39. Dom12 Consumer Time Series and 24-h tbats() Function Forecast
 

Time (weeks)

L
oa

d
 (

k
W

h
)

4.4 4.6 4.8 5.0

0.
0

0.
2

0.
4

0.
6

0.
8 measured

fitted
tbats() 24−h forecast
80%−pred.interval
95%−pred. interval

Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Commentary. Our hopes were not fulfilled. The performance of the tbats() function in

predicting the load of individual households depends on the specific dataset. Nevertheless,

it will produce a mediocre prediction at best and in most cases it will be unable to explain

the complete variation in the data. It seems that the very irregular load behaviour of single

households can not be captured even by the most sophisticated models.

7.5 Time Complexity

The time complexities of the tested methods are gathered in Table 2:

Table 2. Time Complexity of Exponential Smoothing Methods, Measured on Individual

Household Data

Method/Function
Time complexity (in s)

Dom1 Dom5 Dom12

Single-Seasonal Holt-Winters 0.027 0.028 0.027

Double-Seasonal Holt-Winters 9.340 10.670 10.060

bats() 160.000 96.000 91.000

tbats() 15.940 17.570 17.430

The double-seasonal Holt-Winters method is slower than the Holt-Winters method because

it considers two seasonalities instead of just one. The more sophisticated tbats() function

runs considerably faster than the bats() function. This is probably because the tbats()

function is more recent and runs in parallel, by default.
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7.6 Discussion – Residential Consumers

The methods that consider double seasonality in the load curve perform better than the ones

that only consider a single seasonality (The double-seasonal Holt-Winters method performs

better than the single-seasonal one and tbats() function performs better than bats()

function.) tbats() would be the best choice among the tested methods, however it can not

copewith the unpredictability of human behavior that is reflected in an individual household’s

load. For the purpose of a VPP and in general we hold that these can not be predicted with

any good reliability, nor are the functions able to predict the shape of the load curve correctly.

We hope to be able to predict at least groups of households and find a solution there.

8 RESULTS – GROUPS OF RESIDENTIAL CONSUMERS

As it is now clear that the load behaviour of individual households is unpredictable, we will

attempt to forecast groups of residential users.

Experiments. We will use a vast pool of methods, from simple average ones, to the more

sophisticated methods of exponential smoothing. We will look for the best method based on

MAPE but also compare performance between the simpler and the more complex methods.

We will use SUM69 historical data as input, aggregated into hourly measurements. The

training data period ranged from May 9th, 2013 to June 5th, 2013 and span four weeks. We

will predict 24 hourly values of June 6th, 2013.

8.1 Simple Methods

Many DSOs use some form of an average method on a daily basis, usually distinguishing

between weekdays, weekends and special days, such as holidays. This leads us to first assess

the performance of these methods and verify if they could potentially be a good replacement

for the more advanced methods, like the tbats() function. Due to the simpler nature of

these methods we expect the methods to be less accurate; however, we do not know to what

extent.

8.1.1 Average method

Results and Commentary. This method takes the average value of all the historical values

as the prediction of all future values. The method is only good as a very rough prediction.

It does not consider the seasonal nature of the load profile, as can be observed in Figure 40.

MAPE reached 34% on the training set and 29% on the test set. The MASE accuracy value

of 1.8, a number higher than 1, indicates that the model performed more poorly than the

seasonal naïve method.
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Figure 40. Time Series of SUM69 Group of Households and 24-h Average Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

8.1.2 Naïve method

Results and Commentary. The method takes the last observed value as the prediction for all

future values (Figure 41). It also does not consider seasonality; thus, the poor performance:

MAPE reached 14% on the training set and 41% on the test set, with MASE amounting to

2.4. Seasonal naïve method is to be preferred above this one.

Figure 41. Time Series of SUM69 Group of Households and 24-h Naïve Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

8.1.3 Seasonal naïve method

Results and Commentary.MAPE reached 11% on the training set and 14% on the test set.

As expected, introducing the element of seasonality (Figure 42) into a simple forecast is a

major improvement for predicting a seasonal time series. The MAPE of this method could

serve as a rough benchmark, as it is easily computed.
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Figure 42. Time Series of SUM69 Group of Households and 24-h Seasonal Naïve Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

8.1.4 Drift method

Results and Commentary. The drift method increases/decreases with the increase/decrease

rate, calculated over the entire historical period. In this specifici case the increase rate is

rougly zero, so the drift forecast equals the naïve one (compare Figure 43 to Figure 41).

MAPE reached 14% on the training set and 41% on the test set. Drift method is not suitable

for a seasonal time series like the load profile.

Figure 43. Time Series of SUM69 Group of Households and 24-h Drift Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

8.1.5 U.S. standards baseline type I

Results.MAPE, achieved by the U.S. standards baseline type I reached 9.5% on the test set,

which is better than the similar seasonal naïve method. This is because the former method
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forecasts load at a specific time as an average of loads from several different days of the same

type, while the later predicts from a single value. In this way, the influence of the random

component is somewhat reduced. (Observe, how the forecast in Figure 44 better predicts the

observed values than the one in Figure 42.)

Figure 44. Time Series of SUM69 Group of Households and 24-h U.S. Standards

Baseline Type I Forecast
 

Time (weeks)

L
oa

d
 (

k
W

h
)

127.0 127.2 127.4 127.6 127.8

10
20

30
40

50
60 measured

U.S. Standards Baseline Type I 24−h forecast

Note. Historical Data: 10 Days preceding the forecast. Sampling: 1 h.

Commentary. The U.S. Standards baseline type I, with its MAPE of 9.5% on the test set per-

formed considerably better than the other simple methods and could be acceptably accurate

for some purposes. It is still advisable to strive for as good an accuracy as possible, but the

baseline can easily be used where other methods do not work or for the purpose of imputing

missing data.

8.1.6 Discussion – simple methods

Simple methods should serve as benchmarks. The average, naïve and drift methods are linear

and do not consider seasonality, and thus do not represent a good prediction method for load

profile. The seasonal naïve method and the U.S. standards baseline, in contrast, consider

seasonality. U.S. baseline’s test set MAPE of 9.5% should serve as a good benchmark to be

surpassed by the method selected eventually.

8.2 Exponential Smoothing Methods

8.2.1 Single-seasonal Holt-Winters method

Results. The HW method performs well on SUM69 for the selected period. MAPE reached

9.1% on the training set and 11% on the test set. There is some correlation between lags of
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residuals. The residual plot seems normally distributed with mean at 0.1. Forecasting errors

are close to being standard normally distributed. Time consumed: 0.02 seconds.

Figure 45. Time Series of SUM69 Group of Households and 24-h Single-Seasonal

Holt-Winters Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

8.2.2 Double-seasonal Holt-Winters method

Results. The DSHW method considers both seasons of the SUM69 load profile and conse-

quentially performs better than HW. MAPE reached 7.6% on the training set and 8.5% on

the test set. There is no evidence of autocorrelation of residuals. Residuals seem random and

forecasting errors are almost normally distributed, with a slight tendency to over-estimation.

The time consumed was 13 seconds.

Figure 46. Time Series of SUM69 Group of Households and 24-h Double-Seasonal

Holt-Winters Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.
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8.2.3 BATS model

Results. The bats() function has selected the BATS(0.002, {3, 1}, 0.997, {24, 168})
model. The parameters suggest that it captured both the daily and the weekly seasonalities.

MAPE reached 6.2% on the training set and 8.1% on the test set. The good prediction is also

visible on Figure 47. There is no evidence of the autocorrelation of residuals. Residuals seem

random and forecasting errors are almost normally distributed. Time consumed: 5 minutes

and 2 seconds.

Figure 47. Time Series of SUM69 Group of Households and 24-h bats() Function

Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

8.2.4 TBATS model

Results.Thetbats() function has selected the TBATS(0, {2, 2},−, {〈24, 6〉, 〈168, 3〉})
model, which also captures both seasonalities. The accuracy has slightly improved over

bats() but no conclusions may be drawn based on a single case. MAPE reached 8.9% on

the training set and 7.3% on the test set. There is autocorrelation within the residuals, which

means the seasonal component was not completely extracted from the residuals. Residuals

seem random though, with the mean zero and forecasting errors being practically normally

distributed. The time consumed was 19 seconds. The results are plotted in Figure 48.
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Figure 48. Time Series of SUM69 Group of Households and 24-h tbats() Function

Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Using the same fitted TBATS model to forecast 3 days results in MAPE on test set raising to

10.5% (see Figure 49).

Figure 49. Time Series of SUM69 Group of Households and 3-Day tbats() Function
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

When the forecasting horizon is prolonged to 14 days, MAPE rises to 13.1% on the 14-day

test set (336 forecast points). Forecast accuracy can be observed in Figure 50.
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Figure 50. Time Series of SUM69 Group of Households and 14-Day tbats() Function

Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Conclusion. As we can observe, MAPE improves from HW, over DSHW to bats() and

tbats(), based on calculations for the SUM69 time series only. We should not draw

conclusions based on one case, but considering experience with forecasting single house-

holds, these observations can only be confirmed. Out of these four methods, we would select

tbats() as it considers two seasonalities and is overall the most sophisticated one. As it

includes all models, it would also yield any of the previous models, if they performed better

in a specific case. Moreover, it is highly computationally efficient.

8.3 ARIMAModels

Results. To fit an ARIMA model we used the auto.arima() function, which automati-

cally selects the most suitable seasonal or non-seasonal model for the given signal’s charac-

teristics and fits it. It chose the ARIMA(1, 0, 0)(1, 0, 1)[168] model with non-zero mean,

where (1,0,0) denotes parameters for nonseasonal and (1,0,1) for seasonal component with a

weekly seasonality (a frequency of 168 hours). Forecasting based on this model yields test

set MAPEs of 16.3%, 15.3%, 14.8% and 18.6% for 1-day, 2-day, 3-day and 14-day fore-

cast, respectively. The 1-day and 14-day forecasts can be observed in Figures 51 and 52,

respectively.
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Figure 51. Time Series of SUM69 Group of Households and 24-h auto.arima()

Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Figure 52. Time Series of SUM69 Group of Households and 14-Day auto.arima()

Function Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Commentary. One of the prominent methods for STLF on a large scale, ARIMA, seems to

perform more poorly on a small scale. It was outperformed by the tbats() function; thus

on a small scale we will favor tbats() over ARIMA. Perhaps we might have been able to

improve forecast accuracy if we did not use an automatic algorithm (the type of model, either

ARMA, ARIMA or SARIMA would be picked based on results of statistical analyses), but

that is what we are looking for.
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8.4 Autoregressive Artificial Neural Network Models

This family of methods has been extensively studied in the past decade and was successfully

applied for STLF on a large scale. Here we will test how well it performs on a small scale of

69 households and see how it compares to the autoregressive ARIMA.

Results. In our case, we will only consider one “predictor”, the historical load data. The

NNAR model, selected by the nnetar() function, was unsurprisingly the NNAR(28, 1)

model, a neural network with the last 28 observations (yt−1, yt−2, . . . , yt−28) used as in-

puts and output yt and one neuron in the hidden layer. MAPE achieved 5.8% on the training

set and only 18.1% on the test set.

Figure 53. Time Series of SUM69 Group of Households and 24-h nnetar() Function

Forecast
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Note. Historical Data: 28 Days in May 2013. Sampling: 1 h.

Commentary. nnetar()’s forecast accuracy is not satisfactory and is slightly worse than

that ofauto.arima(). This is in line with results from a similar study, based on 90 and 230

households in Ireland (Marinescu et al., 2013), where on the 90-household aggregation, ANN

performed slightly worse (NRMSE was 3.82%) than ARIMA, which reached a NRMSE of

3.63%. For the rest, the studies are different; ARIMA in the Irish case had a historical

interval of 7 days compared to 28 days of the present study. Furthermore, their ANN was

not autoregressive but included weather data and day-of-week information. The aggregation

level of the 90 households is double of ours, reaching maximum peaks at 140kWh, compared

to 70kWh of the SUM69 group of households.
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8.5 Summary of Results with Discussion – Groups od Residential

Consumers

Forecast accuracy results for all methods, tested on SUM69 time series is summarized in

Table 3.

Table 3. Forecast Accuracy for Different Methods for SUM69 Group of Households

Method Group Method/Function
MAPE (in %)

Training set Test set

Simple Methods

Average 32.8 28.9

Naïve 14.5 40.8

Drift 14.4 41.4

Seasonal Simple Methods
Seasonal Naïve 8.4 14.1

U.S. Standards Baseline Type I NA 9.5

Exponential Smoothing Methods
Single-Seasonal Holt-Winters 9.1 11.0

Double-Seasonal Holt-Winters 7.6 8.5

State-Space Models
bats() 6.2 8.1

tbats() 8.9 7.3

ARIMA Models auto.arima() 6.9 16.3

Artificial Neural Networks nnetar() 5.8 18.1

For the purpose of forecasting a group of households, the simplest methods (average, naïve,

drift) did not perform well enough. They do not attempt to capture any of the specific fea-

tures a load profile caries (e.g. seasonality), so their poor performance was expected. Better

results were achieved by methods that consider seasonality (seasonal naïve method, U.S.

Standards Baseline Type I); they can serve as good benchmarks. Although the ANN mod-

els were proven to perform well at STLF on a large scale in a multivariate setting including

weather, their univariate version NNAR performed poorly at STLF on a very small scale.

The single-seasonal Holt-Wintersmethod performedwell enough, withMAPE reaching 11.5%

on the test set. The double-seasonal Holt-Winters method, as expected, only improved its ac-

curacy. The auto.arima() function had an average test set MAPE of 15% and should

only be regarded as a benchmark to be surpassed. It was also discarded, as fitting several

models in some cases resulted in huge time consumption.

bats() function performed well, but it only includes single seasonality. The method of

choice is the tbats() function, as it includes both seasonalities (one day and one week)

and also performs well. (A MAPE of 7.3% was reached on the test set for the tested group

of 69 households.) The second choice would be the U.S. standards baseline with a MAPE

of 9.5%, achieved on the test set. The selected methods can also be used for predicting the

loads of industrial consumers, as those are less volatile.
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CONCLUSION

Load profiles of industrial users display clear seasonal patterns with seasonal cycle lengths

of one day, one week and one year. Because of this they can be predicted with good accuracy

withmost seasonal methods. The test set forecast accuracymeasureMAPE of 7.3%, achieved

by applying STL-decomposition, should serve as a reference.

Individual households, on the other hand, exhibit very “erratic” behavior with no clear pat-

terns. As a result, they are not reliably predictable by any time series model. This seems to

be due to the impact of randomness of human behaviour which cannot be modeled. When

aggregating 15-minute data into one hour signals forecast accuracy doubles on average. The

best test set MAPE achieved at this sampling rate was 29.6% but can get much worse if the

signal is very volatile. (This result is in line with literature.)

In groups of households, erratic behavior is reduced for statistical reasons. Individual dif-

ferences in human behaviour even out in a group setting and the share of this influence is

minimized. Load profiles of such groups reveal patterns that are similar to the ones seen in

individual industrial consumers. Therefore, it suffices to study the performance of forecasting

methods for groups of households only.

Simple average linear methods (e.g., average, naïve and drift) do not capture the seasonal

nature of the load signal and their poor accuracy of 29–41% was expected. Other average

methods (e.g., seasonal naïve method and U.S. standards baseline) manage to capture sea-

sonality and their observed accuracy of 14% and 9.5%, respectively can serve as benchmarks

to be surpassed. The family of ARIMA models underperformed, contrary to expectations.

It was also too computationally intensive. The neural network AR models that seem to be

the state-of-the-art in a large scale multivariate STLF setting, fail as simple univariate time

series models and their accuracy of 18% is unacceptable. Exponential smoothing methods

(HW, DSHW, BATS and TBATS are generally suitable, especially the last three ones, which

are double-seasonal methods.

The function tbats() achieved a MAPE of 7.3% on the test set. It is our method of choice

and a sophisticated state space model. The second choice is clearly the U. S. standards base-

line, because of its simplicity, robustness and decent performance. The same two methods

can be used for forecasting individual industrial consumers, especially since the lower volatil-

ity of their input signal will only result in potentially higher accuracy. It is hard to compare

results to known literature due to different settings and different methods used. However, lit-

erature reports MAPE values between 5.15% at the university level and 13.8% at the village

level, respectively. Our result seems to indicate forecast accuracy on the higher end. This

function was, to the best of the author’s knowledge, not yet used in studies on real data.
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Future work can take on many directions:

1. studying the influence of the length of the historical time interval on forecast accuracy,

2. studying different ways of selecting households into groups and this way improving fore-

casts of existing methods by improving the input signal,

3. studying alternative forecasting methods,

4. combining time series forecasts in hybrid models,

5. improving single steps of the forecasting process,

6. explainingwhy the noise and irregular components of single households cancel each other

out when aggregated.

Ad. 1. All forecasts were done using a 28-day historical time interval, for the following rea-

sons: 1. This period is long enough to capture a load’s major seasonality with cycle length of

seven days, 2. recent weather is implicitly captured in the signal, 3. earlier weather influences

are excluded, 4. for STLF historical data’s relevance drops quickly with its age 5. the biggest

correlation of the load time series is with its lags -1 and -7. Despite having obtained good

forecasting results, longer (and in some cases shorter) historical intervals should be studied

to determine the optimal length for historical intervals in terms of forecast accuracy.

Ad. 2. To improve the forecast accuracy of existing methods for groups of households clus-

tering techniques could be applied to construct clusters (groups) of households with similar

load profiles. Furthermore, for VPP purposes customers could be aggregated into groups

that reach peaks at different times (for example: one group’s peak is another group’s valley).

Thus, a VPP could place bids on the balancing market at different times. The minimum di-

mension of a group in order to be predictable should be studied. The dimension should be

expressed in group load per time unit, rather than the number of its members. Households

could also be segmented based on whether their primary source of heating is electric energy

or not and whether they use air conditioning for cooling or not. Another way of segmenting

would be by geographic regions. Load profiles for the same region will exhibit less volatility,

since the weather is similar for all customers.

Ad. 3. A natural extension of research in our direction would be to test the triple-seasonal

methods (triple seasonal ARMA, triple seasonal HWT exponential smoothing, triple seasonal

intraday cycle exponential smoothing), suggested by Taylor (2010). Another direction would

be to study mixed models that include weather and ARIMA with regression that will include

holidays or special events (e.g. soccer game) as predictors.

Ad. 4. As a rule, studies that attempted combining forecast results, obtained from various

methods, either by using different methods for different times of day or by taking an aver-

age of forecasts from several methods, ended up proving that the hybrid method on average
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performed better than any one of the single methods included. To combine results from this

work, the newly developed forecastHybrid package could be used.

Ad. 5. And finally, outlier detection and missing value imputation should be studied care-

fully.

Ad. 6. The aggregated signal of many households is smoother and reveals seasonal patterns.

This observation should be proved by applying statistical laws.
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APPENDIX A: Povzetek

OPIS PROBLEMATIKE Z OPREDELITVIJO PREDMETA RAZISKAVE

Električna energija kot dobrina se razlikuje od drugega tržnega blaga, saj je ne moremo za-

nesljivo skladiščiti v večjih količinah. Energijo je treba porabiti takoj, ko je proizvedena. Da

bi ohranjali frekvenco omrežja vseskozi stabilno, pa se morata proizvodnja in poraba uskla-

jevati v realnem času. Naraščajoči delež obnovljivih virov energije (angl. renewable energy

sources – RES) v omrežju samo še dodatno ogroža stabilnost omrežja.

Poraba električne energije mora biti ocenjena in napovedana vnaprej, odstopanja od teh vre-

dnosti pa je treba izravnavati v realnem času bodisi z aktivacijo rezervnih kapacitet ali z

nakupom manjkajočih količin na izravnalnem trgu. Izravnalna energija je občutno dražja od

energije, ki je bila kupljena vnaprej.

Da bi znižali operativne stroške, so operaterji distribucijskega omrežja že v osemdesetih letih

preteklega stoletja pričeli ponujati različne tarife, da bi tako motivirali odjemalce, da odložijo

svojo porabo v obdobjih največje porabe oziroma najvišjih cen na trgu. To so bile prve oblike

upravljanja s porabo (angl. demand side management – DSM).

Novi liberalizirani trg pa je omogočil tudi nastanek novega poslovnega modela: napovedano,

vendar ne tudi porabljeno energijo odjemalcev določenega distributerja je moč donosno po-

nuditi v odkup na izravnalnem trgu. Programi odziva s spremembo porabe (angl. demand

response – DR) motivirajo odjemalce, da aktivno odložijo svojo porabo bodisi zaradi ce-

novnih spodbud ali ustreznega nagrajevanja. Odjemalci lahko tudi zgolj izvajajo energetsko

učinkovitost (angl. energy efficciency – EE), ki je pasivna verzija upravljanja s porabo. Šele

nedavno so se pojavile napredne programske rešitve za programe DR, ki povezujejo odje-

malce, porazdeljene vire energije (angl. distributed energy resources – DER) ter operaterje

prenosnega in distribucijskega omrežja preko konceptov pametnega omrežja (angl. smart

grid) z izravnalnim trgom. Imenujemo jih virtualne elektrarne (angl. virtual power plants –

VPP).

S sprejetjem svežnja zakonov z imenomTretji energetski paket (angl. Third Energy Package)

leta 2009 je tudi Evropska unija (v nadaljevanju EU) uvedla zakonodajo, ki je trg električne

energije postopno liberalizirala. Njen namen je doseči zanesljivo in konkurenčno oskrbo.

Konkurenčnost bo dosežena z ločitvijo lastništva proizvodnih, prodajnih in prenosnih kana-

lov ter uvedbo neodvisnega upravljavca sistema in neodvisnih distributerjev. Vzpostavi se

tudi notranji evropski trg električne energije ter izravnalni trg. Vsaka država ustanovi lasten

nacionalni regulatorni organ, vsi organi pa med sabo sodelujejo v okviru Agencije za sode-

lovanje energetskih regulatorjev (angl. Agency for the Cooperation of Energy Regulators, v
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nadaljevanju ACER, kodificirano v ”2009/713/EC ACER Regulation”).

Omenjena zakonodaja povsem očitno vzpodbuja razvoj integriranega evropskega izravnal-

nega mehanizma. V tem kontekstu je ACER leta 2011 pričel razvijati smernice za urav-

noteženje oskrbe z električno energijo. Na njihovi osnovi lahko pričakujemo, da bodo na

prihodnjem integriranem izravnalnem trgu programi DR igrali pomembno vlogo. Smernice

omogočajo nastanek novih poslovnih subjektov, kot so virtualne elektrarne, kjer programi

DR enakovredno konkurirajo porazdeljenim proizvodnim virom (Cordis, b. l.).

V kontekstu virtualnih elektrarn pa je kratkoročno napovedovanje porabe električne energije

ključno, saj mora virtualna elektrarna z namenom uspešnega licitiranja na izravnalnem trgu

natančno poznati porabo svojih sodelujočih (ter količino, ki jo bodo uspeli prihraniti) vsaj

za prihodnjih 24 ur, prav tako pa morebitne vrhove porabe na trgu in s tem primanjkljaje

enegije. Pri kratkoročnem napovedovanju porabe električne energije (angl. short-term load

forecasting – STLF) gre za napovedovanje porabe od ene ure do enega tedna vnaprej. Namen

je zagotoviti nemoteno preskrbo z električno energijo ob sočasnem minimiziranju dnevnih

obratovalnih in distribucijskih stroškov.

Poleg kratkoročnega napovedovanja poznamo še:

• srednjeročno napovedovanje (angl. mid-term load forecasting – MTLF): gre za napove-

dovanje tedenskih, mesečnih in letnih vrhov porabe, kar omogoča učinkovito operativno

načrtovanje, ter

• dolgoročno napovedovanje (angl. long-term load forecasting – LTLF): uporablja se za

napovedovanje od enega do nekaj let vnaprej, kar olajša načrtovanje povečevanja kapa-

citet.

Ti dve obliki napovedovanja nista predmet tega dela. Vsako od omenjenih treh področij ima

svoje značilnosti, ki zahtevajo lastne pristope oziroma metode za reševanje problema.

Medtem, ko je bilo dolgoročno napovedovanje sestavni del sistemskega planiranja vse od

njegovih začetkov, pa je kratkoročno napovedovanje pridobilo na pomenu šele ob pojavu

liberaliziranega trga. Nenehno vzdrževanje predpisane frekvence omrežja ter s tem zago-

tavljanje njegove stabilnosti postaja vse bolj zahtevna naloga, kajti tradicionalno električno

omrežje postopno prehaja v bolj kompleksno obliko, ki vključuje obnovljive vire energije,

mikro omrežja in tako dalje. Za te sodobne oblike omrežij so hitre in predvsem točne na-

povedi porabe ključnega pomena. Pri tem je treba napovedati tudi proizvodnjo obnovljivih

virov, pri napovedi porabe pa upoštevati dogodke DR.

Večina obstoječe literature na področju kratkoročnega napovedovanja porabe električne ener-

2



gije se nanaša na širše prostorsko območje; bodisi na nivoju posamezne elektrarne, distribu-

terja ali celo države. Delo je poskus kratkoročnega napovedovanja porabe za posameznega

industrijskega ali gospodinjskega odjemalca za potrebe virtualne elektrarne. Obsega tako na-

povedovanje na zelo omejenem območju, kot je na primer skupina nekaj deset hiš, kot tudi

na nivoju posameznega odjemalca. V okviru virtualne elektrarne napovedni modul na osnovi

zgodovinskih podatkov za posameznega odjemalca napove njegovo porabo v prihodnjih 24

urah. Rezultati tega modula so vhodni podatki za optimizacijski modul, ki na osnovi napo-

vedane porabe vseh odjemalcev ter nekaterih omejitev določi optimalno aktivacijo (skupino

odjemalcev, ki naj zmanjša porabo) ob dogodku DR.

NAMEN RAZISKAVE

Namen magistrskega dela je raziskati problematiko napovedovanja kratkoročne porabe ele-

ktrične energije, osvojiti statistične metode, primerne za reševanje tega problema, na realnih

podatkih ugotoviti njihovo točnost napovedi ter končno izbrati metodo, ki v povprečju do-

sega največjo točnost napovedi in je primerno robustna za uporabo v avtomatiziranem okolju.

Predvideti in zadovoljivo rešiti je treba tudi druge vidike avtomatizacije, kot so: manjkajoči

podatki, prisotnost izrednih dogodkov ter praznikov.

TEMELJNA RAZISKOVALNA VPRAŠANJA

Zasledovala bom naslednji dve raziskovalni vprašanji:

1. Kako bi z zadovoljivo točnostjo napovedali urno porabo električne energije za prihodnjih

24 ur za poljubnega gospodinjskega ali industrijskega uporabnika?

2. Katere metode so primerne za uporabo v avtomatiziranem okolju?

ORIS CILJEV RAZISKAVE

Temeljni cilj raziskave je določiti statistično/e metodo/e, s katero/imi lahko z zadostno toč-

nostjo za potrebe virtualne elektrarne napovemo porabo električne energije za prihodnjih 24

ur za poljubno posamezno gospodinjstvo ali industrijskega uporabnika. V primeru, da to ni

mogoče, je treba ugotoviti in po možnosti teoretično razložiti, kaj je vzrok, da takšne metode

ni, ter predlagati drugo ustrezno praktično rešitev.

Osrednji cilj je opredeliti, za kakšno vrsto statističnega problema gre, določiti in predstaviti

posamezne statistične metode, ki so primerne za reševanje tega problema, preizkusiti njihovo

učinkovitost na pridobljenih realnih podatkih ter izmed njih določiti tisto, ki v povprečju daje

najbolj točne napovedi. Pri tem vseskozi skušamo ne samo navajati dobljene rezultate, ampak

tudi poiskati vzroke ter razložiti, kaj je najverjetneje teoretični vzrok za takšne rezultate.
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OPREDELITEV METODOLOGIJE RAZISKOVANJA

Pridobljeni podatki so primarni. Gre za 15-minutne anonimizirane meritve porabljene ele-

ktrične energije iz merilnih števcev, ki jih je zagotovilo podjetje Elektro Ljubljana. Podatki

se nanašajo na 235 gospodinjstev in 123 industrijskih uporabnikov med januarjem 2011 in

koncem avgusta 2013.

Najprej smo se seznanili s področjem elektroenergetike ter splošnimi principi napovedova-

nja. Nato smo pregledali obstoječo znanstveno literaturo s podočja kratkoročnega napove-

dovanja porabe električne energije. Profile porabe smo grafično prikazali ter jih razstavili

na komponente. Pri tem smo opazili določene značilnosti profilov in na tej osnovi izbrali

ustrezne statistične napovedne metode, primerne za napovedovanje časovnih vrst. Te smo v

nadaljevanju primerjali.

POVZETEK VSEBINE

Prvo poglavje predstavi širši kontekst dela. Kompaktno je predstavljen elektroenergetski

sistem z vsemi svojimi sestavnimi deli. Pri tem se v funkciji generiranja električne energije

poleg tradicionalnih elektrarn v zadnjem času v vedno večjem obsegu pojavljajo tudi po-

razdeljeni proizvodni viri. Pomembna akterja sta še sistemski operater prenosnega omrežja

(angl. Transmission System Operator – TSO) ter sistemski operater distribucijskega omrežja

(angl. Distribution System Operator – DSO).

V razdelku 1.2 je opisan prehod trga električne energije od tradicionalnega modela, kjer so

bili akterji vertikalno integrirane organizacije in trg praktično ni obstajal, do popolnoma svo-

bodnega trga. Proces je EU pričela v letu 1999 in še poteka. Leta 2009 je bil vpeljan za-

dnji sveženj predpisov, imenovan Tretji energetski paket, kodificiran v direktivi ”Direktiva

2009/72/EC Evropskega Parlamenta in Sveta o skupnih pravilih notranjega trga z električno

energijo”. Celotna zakonodaja vzpostavlja tudi podlago za obstoj notranjega trga električne

energije v EU. Poznamo dolgoročne trge električne energije, kjer se trguje s standardizira-

nimi produkti električne energije, poleg tega pa trgovanje za dan vnaprej (angl. day-ahead),

trgovanje znotraj dneva (angl. intra-day) ter izravnalni trg (angl. balancing market).

V razdelku 1.3 je predstavljen izravnalni trg električne energije. Ker električne energije

ni moč skladiščiti v večjih količinah ter zaradi zagotavljanja konstantne frekvence omrežja

je treba proizvodnjo in porabo usklajevati v realnem času. Sistemski operater prenosnega

omrežja ima zakonsko obveznost zagotavljanja stabilnosti omrežja. Odstopanja pokriva iz

zakupljenih rezerv proizvodnje ali s kratkoročnim nakupom na izravnalnem trgu.

V drugem poglavju prizorišče skrčimo. Predstavljen je koncept upravljanja s porabo ter njena
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aktivna oblika, odziv s spremembo porabe. Pri tem odjemalec ob napovedanem dogodku DR

aktivno zmanjša svojo porabo električne energije kot odziv na cenovno vzpodbudo ali pri-

merno nagrado. Kot ponudnik programov DR se pojavljajo tudi popolnoma novi poslovni

modeli, virtualne elektrarne. Gre za napredne programske platforme, ki povezujejo odje-

malce, porazdeljene proizvodne vire ter operaterje prenosnega in distribucijskega omrežja

preko konceptov pametnega omrežja z izravnalnim trgom.

V razdelku 2.2 so predstavljene faze dogodka DR, ki je osreden v programih DR. Ključen po-

jem predstavlja posameznikova izhodiščna, torej napovedana, poraba v času dogodka (angl.

customer baseline load – CBL). Učinkovitost omejevanja posameznega udeleženca se meri

z razliko med njegovo izhodiščno porabo ter dejansko izmerjeno porabo v času dogodka.

V razdelku 2.3 pojem odjemalčeve izhodiščne porabe natančno definiramo. Gre za količino

električne energije, ki bi jo odjemalec (oziroma vir DR) potrošil, če do dogodka DR ne bi pri-

šlo. Glede na soglasnost ameriških regulatorjev ima “dobra” metoda za izračun odjemalčeve

izhodiščne porabe naslednje lastnosti: točnost, preprostost in celovitost.

Poglavje se zaključi s pregledom programov odziva s spremembo porabe v Združenih drža-

vah Amerike in Evropi v razdelku 2.4 ter vlogo, ki jo igra napovedovanje izhodiščne porabe

v teh programih v razdelku 2.5.

Tretje poglavje uvodoma predstavi problem napovedovanja. Metode so razvrščene v drevo

izbora metode napovedovanja. V tem delu se omejimo zgolj na kvantitativne statistične uni-

variatne metode, ki napovedujejo prihodnost zgolj na osnovi preteklih in sedanje vrednosti

napovedovane količine. Pokazali bomo, da je ta skupina metod veljavna alternativa regresij-

skim modelom, kjer poleg zgodovinskih meritev v napoved vključimo tudi druge napovedne

spremenljivke, kot sta zunanja temperatura in vlažnost. Obrazloženi so “zlati principi napo-

vedovanja”, ki omogočajo točne napovedi.

V razdelku 3.2 se posvetimo napovedovanju porabe električne energije. Zanimalo nas bo

zgolj kratkoročno napovedovanje, pri katerem gre za napovedovanje od ene ure do nekaj

dni vnaprej, ki je namenjeno zmanjšanju operativnih stroškov. Pri procesu napovedovanja

skušamo napovedati prihodnjo porabo odjemalca bodisi s pomočjo napovedne metode, pogo-

steje pa s postavitvijo matematičnega modela, ki obenem tudi razloži opažene zgodovinske

podatke. Model pri tem zgodovinske vrednosti porabe, ki je odvisna spremenljivka, raz-

laga z vplivom neodvisnih (oziroma napovednih) spremenljivk, kot so vreme, čas dneva, dan

v tednu in podobno. Ko izberemo primeren model, ga popolnoma določimo z določitvijo

njegovih parametrov z uporabo ene od optimizacijskih tehnik. Nato dani model uporabimo

onkraj izhodišča napovedovanja za napoved porabe v prihodnosti. Proces imenujemo eks-

trapolacija.
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V razdelku 3.3 kvalitativno vpeljemo matematični model napovedovanja porabe električne

energije. Gre za stohastični model, torej model, ki upošteva negotovost vrednosti časovne

vrste porabe. Časovno vrsto (angl. time series – TS) opaženih zgodovinskih vrednosti pri tem

interpretiramo kot realizacijo stohastičnega procesa; tak pristop k napovedovanju pa imenu-

jemo model časovne vrste (angl. time series model). Poleg tega lahko same časovne vrste

napovedujemo še z regresijskimi (oziroma pojasnjevalnimi) modeli ter mešanimi modeli.

Model časovne vrste zgradimo v treh korakih: model najprej identificiramo, nato ga prire-

dimo zgodovinskim podatkom ter končno preverimo njegovo skladnost z realno situacijo.

Model dobro razlaga zgodovinske podatke, če so napake (oziroma residuali) nekorelirane ter

imajo povprečno vrednost nič.

Razdelek 3.4 predstavi mere točnosti napovedi (angl. forecast accuracy measures) ter pri-

merja njihove lastnosti. Za dani problem napovedovanja porabe izberemo povprečno abso-

lutno odstotno napako (angl. mean absolute percentage error, v nadaljevanju MAPE) zaradi

njene nepristranskosti ter neodvisnosti od velikostnega reda meritev.

V razdelku 3.5 pregledamo dela drugih avtorjev. Raven združevanja podatkov odločilno

vpliva tako na izbor metod, kot tudi na točnost napovedi, ki jo lahko dosežemo. Večina obsto-

ječe literature se nanaša na napovedovanje porabe širšega prostorskega območja. Tu so bile

uspešne tako preproste metode (npr. metoda tipičnih dni, sezonska naivna metoda), kot kla-

sične metode (multipla regresija, eksponentno glajenje, sezonske verzije modelov ARIMA)

ter sodobni modeli na temelju umetne inteligence (npr. umetne nevronske mreže). Najboljša

dosežena mera točnosti MAPE znaša okoli 1,5% na nivoju države.

Poskusi napovedovanja porabe posameznega gospodinjstva so redki in uporabljajo predvsem

sodobne metode umetne inteligence ter so neprimerljivi s pristopi v tem delu. Študije na-

povedovanja porabe manjše skupnosti ali komercialnih stavb so zaenkrat prav tako redke.

Omenimo dve študiji, ki na skupini 90 ter 230 hiš uspešno primerjata šest skupin metod ter

njihovih kombinacij. Točnost teh napovedi je pričakovano nižja kot pri velikih agregacijah.

Četrto poglavje opiše celoten proces priprave in analize podatkov pred samim napovedo-

vanjem. Podatke opišemo v razdelku 4.1. Izhodiščne podatke je dobavilo podjetje Elektro

Ljubljana. Gre za 15-minutne anonimizirane meritve porabljene električne energije iz me-

rilnih števcev za 235 gospodinjstev in 123 industrijskih uporabnikov med januarjem 2011 in

koncem avgusta 2013. Vsebujejo mnogo manjkajočih meritev, ki so nepovratno izgubljene.

V nadaljevanju sem imela na voljo tudi meritve iz tako imenovanih hišnih energetskih pri-

kazovalnikov (angl. home energy hub – HEH), ki so bili vzorčeni na 1 minuto. Izhodiščni

podatki so bili uporabljeni za razvoj modela, meritve iz prikazovalnikov pa za testiranje raz-

vitega napovednega modula. V obeh primerih sem podatke agregirala na eno uro.
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V razdelku 4.2 je opisan postopek nadomeščanjamanjkajočih podatkov. Razvit je bil preprost

postopek, ki nadomešča manjkajoče vrednosti na osnovi povprečja istoležnih vrednosti (isti

dan v tednu ter ura dneva) preteklih štirih tednov. Z odkrivanjem osamelcev (angl. out-

liers) ter obravnavo prazničnih dni se v tem delu nismo posebej ukvarjali, so pa nakazane

programske rešitve.

V razdelku 4.3 za pripravo obdelave podatkov uporabimo programski paketforecast, ki je

del programskega okolja jezika R. Cilj je bil najti vire in najdaljše obdobje, v katerem večina

virov ne bo imela manjkajočih meritev. Obdobje naj bo dolgo vsaj 28 dni ter nadaljnjih 14 dni

za napovedi. Vnaprej smo izločili vse vire z več kot 10 % manjkajočih vrednosti. Preostalo

je 94 industrijskih in 171 gospodinjskih virov, ki smo jih shranili v podatkovne strukture tipa

msts. Časovne oznake smo pretvorili v univerzalni koordinirani čas (angl. coordinated uni-

versal time – UTC). Za primer napovedovanja porabe skupine gospodinjstev smo postopno

ustvarili skupino 69 gospodinjstev, ki je imela najdaljše strnjeno časovno obdobje dolgo čez

štiri mesece. Časovno vrsto skupine označimo s SUM69. Podatke sem agregirala v enourne,

ker so poskusi pokazali, da je nihajnost (angl. volatility) 15-minutnih podatkov prevelika za

uspešno napovedovanje.

V razdelku 4.4 si podatke ogledamo v obliki grafov in poskušamo ugledati značilne vzorce,

ki jih časovne vrste lahko vsebujejo: trend, sezonski vzorec, ciklični vzorec, slučajno kompo-

nento. Grafi industrijskih odjemalcev kažejo značilen sezonski vzorec, ki hkrati ustreza trem

sezonam različnih dolžin: dnevni, tedenski in letni. Tedenski vzorci se skoraj prekrivajo, zato

napovedljivost ni vprašljiva. Grafi gospodinjskih odjemalcev kažejo mnogo večjo nihajnost

ter odsotnost vzorcev. Očitno je, da bo napovedljivost teh signalov vprašljiva. Graf skupine

gospodinjstev spet kaže podobno sliko kot graf posameznega industrijskega odjemalca, to-

rej prisotnost sezonskih vzorcev. Razlogi za ta (intuitivno pričakovan) pojav so statistične

narave.

V razdelku 4.5 pri raziskovalni analizi podatkov signal industrijskega odjemalca s pomočjo

STL dekompozicije razstavimo na posamezne komponente (vzorce) in s tem potrdimo opa-

žanja prejšnjega razdelka. Pri gospodinjskih odjemalcih zaradi odsotnosti vzorcev signala

ne poskušamo razstaviti. Namesto tega primerjamo obnašanje signala skupine gospodinjstev

SUM69 s signali posameznih gospodinjstev, ki ga sestavljajo. Iščemo morebitne korelacije

med signali, vendar jih ni – vsako gospodinjstvo ima vrhove porabe ob drugačnih časih. V

bodoče upamo, da bomo uspeli napovedati vsaj skupine gospodinjstev. Izbrane metode bi

potem lahko uporabili tudi za napovedovanje porabe posameznih industrijskih odjemalcev,

saj je njihov signal kvečjemu bolje napovedljiv.

Peto poglavje temeljito opiše vse uporabljenemetode oziromamodele. Najprej v razdelku 5.1

spoznamo nekaj preprostih metod (povprečno, naivno, drift, sezonsko naivno ter izhodiščno
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porabo tipa I po ameriškem standardu (angl. baseline type I)), ki temeljijo na povprečjih.

Zaradi preprostosti pri prvih treh ne pričakujemo dobre kvalitete napovedi. Slednji dve pa

že upoštevata sezonskost signala in sta primera učinkovite in robustne metode, ki ju lahko

uporabimo za referenčne vrednosti točnosti napovedi.

Razdelek 5.2 uvaja najpomembnejše metode tega dela, modele časovnih vrst. Najprej se te-

meljito posvetimo potrebni teoriji. Definiramo močno in šibko stacionarnost stohastičnega

procesa. Poseben primer je tako imenovani “beli šum” (angl. white noise), ki je popolnoma

naključen proces. Definiramo avtokorelacijsko funkcijo ter njeno sliko, korelogram. Njen

pomen je v odkrivanju stacionarnosti stohastičnega procesa. Kadar proces ni stacionaren,

lahko iz njega z diferenciranjem izločimo stacionaren proces. Stacionarnost lahko prever-

jamo tudi s testi korenov enote. Woldov izrek o reprezentaciji je ključen za določanje po-

gojev enoličnega modela v nekaterih primerih. V ta namen je treba definirati tudi vzročen

ter obrnljiv stohastični proces. V primeru avtoregresijskega procesa definiramo tudi karak-

teristični polinom. Proces ima enolično rešitev v obliki stacionarnega procesa natanko tedaj,

ko vse ničle tega polinoma ležijo izven enotnega kroga. Na osnovi informacijskih kriterijev

izbiramo najbolj optimalen model.

V razdelku 5.3 predstavimo klasično metodo dekompozicije časovne vrste ter napovedovanje

s pomočjo STL dekompozicije.

V razdelku 5.4 predstavljena družina modelov ARIMA (angl. autoregressive integrated mo-

ving average) združuje tako avtoregresijske modele AR, kot modele drsečih povprečij MA,

kot tudi kombinacije ARMA, ARIMA, ter sezonsko obliko SARIMA. Vse modele predsta-

vimo s formulami ter opišemo način identifikacije modela. V programskem okolju R upo-

rabimo funkcijo auto.arima(), ki izmed vseh modelov ARIMA na osnovi kriterija AIC

izbere najbolj primernega ter ga priredi podatkom.

Metode eksponentnega glajenja (angl. exponential smoothing, ES) v razdelku 5.5 so druga

ključna skupina v okviru modelov časovnih vrst. Namenjene so tako glajenju signala kot

napovedovanju. Predstavimo preprosto eksponentno glajenje, linearno Holtovo metodo, se-

zonsko Holt-Wintersovo metodo ter dvosezonsko Holt-Wintersovo metodo. Nato vpeljemo

sodobne stohastične modele stanja-prostora (angl. state-space models). Izpostavimo dve po-

membni funkciji, implementirani v R: bats() ter tbats(), ki se nanašata na istoimenska

modela. Prva vključuje sezonskost, druga pa dvosezonskost.

Za primerjavo si v razdelku 5.6 ogledamo še sodobne avtoregresijske modele umetne ne-

vronske mreže (angl. autoregressive artificial neural network models).

V šestem do osmem poglavju so predstavljeni rezultati napovedovanja porabe električne ener-
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gije posameznega industrijskega odjemalca, posameznega gospodinjskega odjemalca ter sku-

pine gospodinjstev. Učinkovitost metode določamo na osnovi časovne zahtevnosti modela

ter izbrane mere točnosti MAPE. Osmo poglavje obravnava največ metod, kajti v predho-

dnih dveh poglavjih ugotovimo, da je poraba posameznega gospodinjstva nepredvidljiva ter

da bomo metodo, ki jo bomo izbrali za napovedovanje porabe skupine gospodinjstev, lahko

uporabili tudi v procesu napovedovanja porabe posameznega industrijskega odjemalca. Iz-

brana metoda, funkcija tbats(), je zelo izpopolnjen model stanja-prostora, ki je sposobna

obravnavati večsezonskost signala porabe.

REZULTATI

Pri napovedovanju porabe posameznih industrijskih odjemalcev smo testirali nekaj zelo

različnih metod. Pri napovedovanju s pomočjo STL-dekompozicije je MAPE na učni mno-

žici dosegla 4,3 %, na testni množici pa 7,3 %. To vrednost vzamemo za referenco. Od tu

dalje nas zanima in navajamo MAPE samo še za testno množico.

Kljub sezonskosti je (enosezonska) Holt-Wintersova metoda dala nezadovoljive rezultate:

na testni množici je MAPE pri napovedovanju za 1 dan, 2 dneva, 3 dneve ter 14 dni vna-

prej dosegla naslednje vrednosti: 16 %, 19 %, 18 % ter 18 %. To je nezadostno za potrebe

napovedovanja v okolju virtualne elektrarne.

Avtomatska funkcija auto.arima() je dala izredno zadovoljive rezultate: MAPE je pri

eno- oziroma dvodnevni napovedi dosegla 4,5-odstotno oziroma 5-odstotno točnost napovedi

na testni množici. Vseeno se moramo funkciji odpovedati. Samodejna izbira modela je ver-

jetno zaradi prilagajanja več različnih modelov ARIMA zgodovinskim podatkom v danem

primeru tekla kar 5 minut, kar je nesprejemljivo pri napovedovanju večjega števila signa-

lov v realnem času. Kljub temu smo uspeli dokazati napovedljivost porabe posameznega

industrijskega odjemalca.

Pri napovedovanju porabe posameznega gospodinjstva smo testirali štiri metode, ki vklju-

čujejo sezonskost. Pri tem je prišla do izraza težavnost napovedi teh zelo nihajnih signalov.

Testiranje enosezonske Holt-Wintersove metode na več posameznih gospodinjstvih ter pri

dveh različnih vzorčenjih (15 min, 1h) je pokazala, da je v večini primerov točnost napo-

vedi na agregiranih enournih podatkih bistveno boljša zaradi večje gladkosti teh signalov.

Vendar je tudi najboljša opažena točnost pri MAPE = 45 % nezadostna za potrebe virtualne

elektrarne.

Dvosezonska Holt-Wintersova metoda predpostavlja dvosezonsko naravo signalov, vendar

pa so le-ti za posamezno gospodinjstvo zelo nepredvidljivi in ne kažejo izrazitih sezonskih

vzorcev. Metoda povsem očitno ni kos naravi teh signalov in jih ne more zadovoljivo napo-
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vedati. (Zaznana točnost med 45 % in 161 % pomeni, da so rezultati neuporabni; v dveh od

treh primerov pa model tudi ni uspel pojasniti celotne variabilnosti v podatkih.)

Funkcija bats() samodejno izbere najboljši model iz družine modelov BATS na podlagi

vrednosti kriterija AIC. Uspešnost funkcije je bila odvisna od vsakokratnih podatkov. V

enem primeru je model uspel slediti obliki signala, ob 30-odstotni vrednosti MAPE; v dveh

drugih pa ni uspel odkriti sezonskosti signala, izbrani model pa ni uspel pojasniti celotne

variabilnosti. V najslabšem primeru je znašalamera točnostiMAPE nezadovoljivih 120%.

Funkcija tbats() je nadgradnja funkcije tbats() in samodejno izbere najboljši model

iz družin sezosnkih modelov TBATS ter nesezonskih modelov BATS na osnovi najnižje vre-

dnosti AIC. Uspešnost je bila tudi tu zelo različna. Vsi izbrani modeli so bili dvosezonski.

V najboljšem primeru je bila mera točnosti napovedi MAPE 34 %, v najslabšem pa 65 %,

pri čemer model ni uspel napovedati oblike signala, niti pojasniti njegove celotne variabilno-

sti. Funkcija je tudi časovno mnogo manj zahtevna od funkcije bats(), domnevno zaradi

novejše paralelne implementacije. Očitno so signali posameznih gospodinjstev preveč ne-

predvidljivi za napovedovanje, saj jim ob odsotnosti pravilnih vzorcev ni kos niti najbolj

prefinjena metoda.

Pri napovedovanju porabe skupine gospodinjstev je vpliv nepredvidljivega vedenja posa-

meznika zmanjšan, signal pa kaže podobne vzorce kot pri posameznem industrijskem odje-

malcu. testirali smo 12 metod na signalu skupine 69 gospodinjstev.

Preproste linearne povprečne metode (povprečna, naivna ter drift) ne uoštevajo sezosnke na-

rave signala, zato je bila slaba točnost z vrednostmi 29 %, 41 % ter 41 % pričakovana. Drugi

povprečni metodi (sezonska naivna ter izhodiščna poraba tipa I po ameriškem standardu) se-

zonskost upoštevata in njuni zaznani točnosti v višini 14 % ter 9,5 % lahko uporabimo kot

osnovno merilo uspešnosti. Funkcija auto.arima() je uspela poiskati ustrezen sezonski

model ter odkriti 7-dnevni sezonski cikel, vendar pa je bila z mero MAPE v višini 16,3 %

njena uspešnost pod pričakovanji. Poleg tega je bilo prilagajanje več modelov časovno pre-

zahtevno. Čeprav so modeli umetnih nevronskih mrež pri uporabi na širšem prostorskem

območju zelo uspešni, pa se v univariatni obliki za napoved časovnih vrst niso izkazali. Toč-

nost modela, ki ga je izbrala funkcija nnetar(), je znašala nesprejemljivih 18,1 %.

Metode eksponentnega glajenja (enosezonska Holt-Wintersova metoda, dvosezonska Holt-

Wintersovametoda, bats() tertbats()) so bile najbolj uspešne, ob naslednjih vrednostih

mere točnosti: 11 %, 8,5 %, 8,1 % ter 7,3 %. Obe slednji sta uspeli poiskati ustrezen eno-

sezonski oziroma dvosezonski model. Pri funkciji tbats() se je točnost pri podaljšanju

napovednega horizonta na 14 dni poslabšala zgolj na 13 %.
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SKLEPI

Za preciznejše napovedovanje skupin gospodinjstev izberemo funkcijo tbats(), za pri-

mere, ko potrebujemo preprosto in robustno metodo, pa izhodiščno porabo tipa I po ame-

riškem standardu. Izbrani funkciji uporabimo tudi za napovedovanje porabe posameznih

industrijskih odjemalcev, kjer je posledica manjše nihajnosti vhodnega signala kvečjemu ve-

čja točnost metode. Vse testirane funkcije so primerne za uporabo v avtomatiziranem okolju.
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APPENDIX B: Function tbats()

For non-seasonal time series:

1. Apply the non-seasonal BATS model and return the forecasting result.

For seasonal time series:

1. Compute the non-seasonal model by using BATS.

2. Compute a specific seasonal model using the seasonal TBATS model and store it as best

model:

a) For smaller periods:

− generate a few specific TBATS models

− if any of them has a lower or equal AIC than the current best model, store it as the

best model.

b) For larger periods:

− calculate 3 new specific TBATS models (parallel computing may be used)

− choose the one of the three with the lowest AIC and set it as the best model

− attempt to iteratively find a better model of the same type and set it as the best

model

3. Save the current best model as the auxiliary model. It will be used in Item 4.

4. If the model from Item 1 has a lower AIC than the best model from Item 2b, save it as

the best model.

5. Generate further specific seasonal TBATS models:

a) For parallel computing:

− use function parFilterTBATSSpecifics() to generate the TBATS

models.

− Select the one with the lowest AIC and save it as the best seasonal model

− If it has a lower AIC as the current best model, select it as best model.

b) For serialized computing:

− Use function filterTBATSSpecifics() to generate the new model.

− If it has a lower AIC than the current best model, select it as best model.
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APPENDIX C: Acronyms

ACER Agency for the Cooperation of Energy Regulators. 1, 2, 7, 14

ACF Autocorrelation Function. ii, 22, 50, 51, 55, 58–62

ACVF Autocovariance Function. 50

AEIC Association of Edison Illuminating Companies. 19

AIC Akaike Information Criterion. 8, 56, 62, 69

ANN Artificial Neural Network. 28, 70, 71

AR Autoregressive. 22, 54, 58, 59, 61

ARIMA Autoregressive Integrated Moving Average. ii, iii, 5, 21, 29, 47–49, 57, 58, 62, 65,

70, 73, 74, 91, 92

ARMA Autoregressive Moving Average. ii, 55, 56, 60–62, 67–70

BATS Box-Cox transform, ARMA errors, Trend, and Seasonal components. iii, 67–69,

79–81, 89

CBL Customer Baseline Load. 4, 12, 13

ConEd Consolidated Edison. 14

DER Distributed Energy Resources. 1

DR Demand Response. 1–5, 9–15, 45–47

DSHW Double-seasonal Holt-Winters method. 66, 69, 77, 79, 88, 91

DSM Demand Side Management. 1, 2, 9, 10

DSO Distribution System Operator. 1, 2, 4, 6–8, 10, 14, 15, 28

EE Energy Efficiency. 1

EOF Empirical Orthogonal Functions. 32

EPS Electric Power System. 6

EU European Union. 1, 4, 5, 7, 9

FERC Federal Energy Regulatory Commission. 13

HEH Home Energy Hub. 6

HW Holt-Winters method. 87, 88, 91

ICT Information and Communications Technology. 10

IIF International Institute of Forecasters. 17

LOESS Locally weighted smoothing. 57

MA Moving Average. ii, 22, 54–56, 58–62

MAE Mean Absolute Error. 25, 26

MAPE Mean Absolute Percentage Error. 5, 26

MASE Mean Absolute Scaled Error. 26
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ME Mean Error. 24

MPE Mean Percentage Error. 25

NAESB North American Energy Standards Board. 11

NNAR Neural Network Autoregression. 70, 93

NRMSE Normalized Root Mean Square Error. 25, 93

NYISO New York Independent System Operator. 13

PACF Partial Autocorrelation Function. 51, 58, 61

RES Renewable Energy Sources. 1, 2, 6, 8–10, 15, 19

RMSE Root Mean Square Error. 25

SG Smart Grid. 1

SOM Self Organizing Maps. 32

STL Seasonal Decomposition of Time Series by LOESS. ii, 7–9, 57, 71, 72, 74

STLF Short Term Load Forecasting. 2, 4, 95

SVM Support Vector Machines. 28, 30

TBATS Trigonometric Box-Cox transform, ARMA errors, Trend, and Seasonal compo-

nents. iii, 67, 69, 81, 82, 89, 90

TSO Transmission System Operator. 4, 6–8, 10, 15

U.S. United States. 5, 13, 47

UTC Coordinated Universal Time. 33

VPP Virtual Power Plant. 1–3, 10, 13–15, 47, 96
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APPENDIX D: Index

Note: Bold font is used for page numbers that contain a term’s description; plain font in-

dicates the term’s mentioning. Typewriter font is used for annotating R functions and

packages. R functions are given with parentheses, for example bats().

3rd Energy Package . . . . . . . . . . . . . . .14

ACER

see Agency for the Cooperation of

Energy Regulators . . . . . 1, 2, 7

ACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

see autocorrelation function . . . .51

ACVF

see autocovariance function . . . .50

Agency for the Cooperation of Energy

Regulators . . . . . . . . . . . . . . 1, 7

aggregation level . . . . . . . . . . . . . . . . . 23

contemporaneous aggregation . . 23

temporal aggregation . . . . . . . . . . 23

AIC

see Akaike information criterion 56

Akaike information criterion . . . . . . . 56

autocorrelation

coefficient . . . . . . . . . . . . . . . . . . . 51

function . . . . . . . . . . . . . . . . . . . . . 51

autocorrelation coefficient . . . . . . . . . 50

autocovariance

coefficient . . . . . . . . . . . . . . . . . . . 50

function . . . . . . . . . . . . . . . . . . . . . 50

autoregressive artificial neural network

models . . . . . . . . . . . . . . . . . . .70

backshift operator . . . . . . . . . . . . . . . . 52

balancing

electricity balancing . . . . . . . . . . .14

market . . . . . . . . . . . . . . . . . . . . . . . . 1

balancing market . . . . . . . . . . . . . . . . . . 1

baseline . . . . . . . . . . . . . . . . . . . . . . 11, 12

Customer Baseline Load . . . . . . .13

properties of a good . . . . . . . . . . . 13

BATS model . . . . . . . . . . . . . . . . . . . . . 67

Box-Ljung statistic . . . . . . . . . . . . . . . 55

Box-Ljung test . . . . . . . . . . . . . . . . . . . 55

causal process . . . . . . . . . . . . . . . . . . . . 54

CBL

see Customer Baseline Load . . . 13

characteristic equation . . . . . . . . . . . . 55

characteristic polynomial . . . . . . . . . . 54

classical decomposition method . . . . 57

committed capacity . . . . . . . . . . . . . . . 12

Consolidated Edison . . . . . . . . . . . . . . 14

Coordinated Universal Time . . . . . . . 33

correlogram . . . . . . . . . . . . . . . . . . . . . .51

curtailment

customer’s curtailment . . . . . . . . 12

performance . . . . . . . . . . . . . . . . . .12

curtailment performance . . . . . . . . . . 12

Customer Baseline Load . . . . . . . . . . 13

customer’s curtailment . . . . . . . . . . . . 12

data

data aggregation . . . . . . . . . . .31, 34

data preparation . . . . . . . . . . . . . . 33

data transformation . . . . . . . . . . . 33

data visualisation . . . . . . . . . . . . . 35

exploratory data analysis . . . . . . 43

handling data anomalies . . . . . . . 32

holidays and special events . . . . 33

input data . . . . . . . . . . . . . . . . . . . . 31

missing data . . . . . . . . . . . . . . 31, 32

missing values . . . . . . . . . . . . . . . . 34

outliers . . . . . . . . . . . . . . . . . . . . . . 32

selecting data without missing values

33

15



software used . . . . . . . . . . . . . . . . 31

data aggregation . . . . . . . . . . . 27, 31, 34

data visualisation . . . . . . . . . . . . . . . . . 35

patterns . . . . . . . . . . . . . . . . . . . . . . 35

seasonal plot . . . . . . . . . . . . . . . . . 36

time plot . . . . . . . . . . . . . . . . . . . . . 36

Demand Response . . . . . . . . . . . 1, 9, 10

event . . . . . . . . . . . . . . . . . . . . . . 3, 10

event phases . . . . . . . . . . . . . . . . . . 11

model for rewarding . . . . . . . . . . 46

programs . . . . . . . . . . . . . . . . . . . . 10

Demand Side Management . . . . . . . 1, 9

deterministic process . . . . . . . . . . . . . .20

distribution grid . . . . . . . . . . . . . . . . . . . 6

Distribution System Operator . . . . . 1, 6

double-seasonal Holt-Winters method

66

DR

see Demand Response . . . . 2, 9, 10

DSM

see Demand Side Management 2, 9

DSO

see Distribution System Operator . .2,

6

eBadge . . . . . . . . . . . . . . . . . . . . . . . . . . 15

electric power system . . . . . . . . . . . . . . 6

electricity balancing . . . . . . . . . . . . . . 14

electricity market . . . . . . . . . . . . . . . . 5, 6

European . . . . . . . . . . . . . . . . . . . . . 1

Energy Efficiency . . . . . . . . . . . . . . . 1, 9

EPS

see electric power system . . . . . . . 6

explanatory models . . . . . . . . . . . . . . . 21

extrapolation . . . . . . . . . . . . . . . . . 16, 18

Federal Energy Regulatory Commission

13

FERC

see Federal Energy Regulatory

Commission . . . . . . . . . . . . . . 13

fitted model . . . . . . . . . . . . . . . . . . . . . . 22

forecast

ex-ante forecast . . . . . . . . . . . . . . .18

horizon . . . . . . . . . . . . . . . . . . . . . . 18

one-step forecast . . . . . . . . . . . . . . 22

origin . . . . . . . . . . . . . . . . . . . . . . . .18

forecast accuracy . . . . . . . . . . . . . . . . . 23

a posteriori analysis . . . . . . . . . . . 23

ex-ante analysis . . . . . . . . . . . . . . 23

in-sample performance . . . . . . . . 23

out-of-sample performance . . . . 23

forecast accuracy measures . . . . . . . . 24

adjusted MAPE . . . . . . . . . . . . . . .26

mean absolute error . . . . . . . . . . . 24

mean absolute percentage error .25

mean absolute scaled error . . . . . 26

mean error . . . . . . . . . . . . . . . . . . . 24

mean percentage error . . . . . . . . .25

measures based on percentage error

25

normalized measures . . . . . . . . . . 25

normalized root mean square error

25

root mean square error . . . . . . . . 25

scale-dependent measures . . . . . 24

scaled measures . . . . . . . . . . . . . . 26

selected accuracy measure . . . . . 27

symmetric MAPE . . . . . . . . . . . . .26

forecast bias . . . . . . . . . . . . . . . . . . . . . 24

forecast horizon . . . . . . . . . . . . . . . . . . 18

length of . . . . . . . . . . . . . . . . . . . . . 23

forecast origin . . . . . . . . . . . . . . . . . . . .18

forecasting

extrapolation . . . . . . . . . . . . . . 16, 18

Golden Rule of . . . . . . . . . . . . . . . 17

good forecasting practices . . . . . 17

importance of . . . . . . . . . . . . . . . . 17

in business . . . . . . . . . . . . . . . . . . . 17

in general . . . . . . . . . . . . . . . . . . . . 15

method . . . . . . . . . . . . . . . . . . . . . . 18

16



qualitative approach . . . . . . . . . . .15

quantitative approach . . . . . . . . . 15

selection tree for forecasting methods

16

forecasting method . . . . . . . . . . . . . . . 18

biased . . . . . . . . . . . . . . . . . . . . . . . 22

forecasting methods

average . . . . . . . . . . . . . . . . . . . . . . 48

classical decomposition . . . . 56, 57

double-seasonal Holt-Winters . . 66

drift . . . . . . . . . . . . . . . . . . . . . . . . . 48

exponential smoothing methods 63

Holt’s linear trend method . . . . . 65

multivariate methods . . . . . . 16, 28

naïve . . . . . . . . . . . . . . . . . . . . . . . . 48

seasonal naïve . . . . . . . . . . . . . . . . 48

selection tree for . . . . . . . . . . . . . . 16

simple exponential smoothing . .63

single-seasonal Holt-Winters . . .65

STL decomposition . . . . . . . . . . . 57

U.S. standards baseline type I . . 49

univariate methods . . . . . 16, 28, 49

X-11 ARIMA decomposition . . 57

X-11 decomposition . . . . . . . . . . .57

X-12 ARIMA decomposition . . 57

X-13 ARIMA SEATS decomposition

57

function

auto.arima() . . . . 62, 73, 74, 91,

94

bats() . . 63, 69, 79, 81, 83, 84, 89,

94

decompose() . . . . . . . . . . . . . . 57

filterTBATSSpecifics()

12

na.interp() . . . . . . . . . . . . . . 32

nnetar() . . . . . . . . . . . . . . . 70, 93

parFilterTBATSSpecifics()

12

stl() . . . . . . . . . . . . . . . . . . . . . . 58

tbats() . 63, 69, 81, 83, 84, 89, 91,

94

tsoutliers() . . . . . . . . . . . . . 32

Golden Rule of Forecasting . . . . . . . . 17

grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

distribution grid . . . . . . . . . . . . . . . 6

power grid . . . . . . . . . . . . . . . . . . . . 6

smart . . . . . . . . . . . . . . . . . . . . . . . . 10

transmission grid . . . . . . . . . . . . . . 6

Holt’s linear trend method . . . . . . . . . 65

independent variables . . . . . . . . . . . . . 18

information criterion . . . . . . . . . . . . . . 56

AIC . . . . . . . . . . . . . . . . . . . . . . . . . 56

Akaike information criterion . . . 56

innovations . . . . . . . . . . . . . . . . . . . . . . 53

invertible process . . . . . . . . . . . . . . . . .54

lead time . . . . . . . . . . . . . . . . . . . . . . . . 18

load curve . . . . . . . . . . . . . . . . . . . . . . . 18

load forecasting . . . . . . . . . . . . . . . . . . 18

long-term . . . . . . . . . . . . . . . . . . 2, 18

mid-term . . . . . . . . . . . . . . . . . . 2, 18

procedure . . . . . . . . . . . . . . . . . . . . 18

short-term . . . . . . . . . . . . . . . . . 2, 18

the importance of . . . . . . . . . . . . . 19

load forecasting procedure

forecast . . . . . . . . . . . . . . . . . . . . . . 18

forecast horizon . . . . . . . . . . . . . . 18

forecast origin . . . . . . . . . . . . . . . . 18

forecasting method . . . . . . . . . . . .18

historical data . . . . . . . . . . . . . . . . 18

lead time . . . . . . . . . . . . . . . . . . . . .18

load curve . . . . . . . . . . . . . . . . . . . .18

load profile . . . . . . . . . . . . . . . . . . .18

load time series . . . . . . . . . . . . . . . 18

mathematical model . . . . . . . . . . .18

time series . . . . . . . . . . . . . . . . . . . 18

load profile . . . . . . . . . . . . . . . . . . . . . . 18

load time series . . . . . . . . . . . . . . . . . . .18

17



LOESS

smoother . . . . . . . . . . . . . . . . . . . . . 57

smoothing procedure . . . . . . . . . . 57

long-term load forecasting . . . . . . 2, 18

market

balancing market . . . . . . . . . . . . . . 1

electricity market . . . . . . . . . . . . . . 6

European electricity market . . . . . 1

market liberalization . . . . . . . . . 5, 7

market liberalization . . . . . . . . . . . . . 5, 7

second liberalization directives . . 5

mid-term load forecasting . . . . . . . 2, 18

missing data . . . . . . . . . . . . . . . . . . 31, 32

case deletion . . . . . . . . . . . . . . . . . 32

imputation . . . . . . . . . . . . . . . . . . . 32

multiple imputation . . . . . . . . . . . 32

single imputation . . . . . . . . . . . . . 32

mixed models . . . . . . . . . . . . . . . . . . . . 21

model

dependent variable . . . . . . . . . . . . 18

fitted . . . . . . . . . . . . . . . . . . . . . . . . 22

independent variables . . . . . . . . . 18

mathematical model of electricity

load . . . . . . . . . . . . . . . . . . . . . 18

model parameters . . . . . . . . . . . . . 18

stochastic . . . . . . . . . . . . . . . . . . . . 18

model fitting . . . . . . . . . . . . . . . . . . . . . 22

ordinary least squares approximation

22

model uncertainty . . . . . . . . . . . . . . . . 23

model verification . . . . . . . . . . . . . . . . 22

residual analysis . . . . . . . . . . . . . . 22

models

AR models . . . . . . . . . . . . . . . . . . . 58

ARIMA models . . . . . . . . . . . 58, 62

ARMA models . . . . . . . . . . . . . . . 60

autoregressive artificial neural

network models . . . . . . . . . . .70

autoregressive integrated moving

average models . . . . . . . . . . . 62

autoregressive models . . . . . . . . . 58

autoregressive moving average

models . . . . . . . . . . . . . . . . . . .60

BATS model . . . . . . . . . . . . . . . . . 67

explanatory models . . . . . . . . . . . 21

MA models . . . . . . . . . . . . . . . . . . 59

mixed models . . . . . . . . . . . . . . . . 21

arima with regression . . . . . . . 21

dynamic regression models . . 21

longitudinal models . . . . . . . . . 21

panel data models . . . . . . . . . . . 21

transfer function models . . . . . 21

moving average models . . . . . . . 59

regression models . . . . . . . . . . . . .21

SARIMA models . . . . . . . . . . . . . 62

seasonal autoregressive integrated

moving average models . . . .62

state space models . . . . . . . . . . . . 67

stochastic models . . . . . . . . . . . . . 49

TBATS model . . . . . . . . . . . . . . . . 69

time series models . . . . . . . . .20, 49

types for time series forecasting 20

multivariate methods . . . . . . . . . . 16, 28

National Regulatory Authority . . . . . . 7

New York Independent System Operator

13

NRA

see National Regulatory Authority

7

NYISO

see New York Independent System

Operator . . . . . . . . . . . . . . . . . 13

outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 32

PACF . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

see partial autocorrelation function

51

package

18



forecast . . . . . . . . 31–33, 47, 69

seasonal . . . . . . . . . . . . . . . . . . 57

parameter estimation algorithms

least absolute value criterion . . . 23

least-error squares minimization

criterion . . . . . . . . . . . . . . . . . .23

partial autocorrelation function . . . . .51

patterns

cycle . . . . . . . . . . . . . . . . . . . . . . . . 35

irregular fluctuations . . . . . . . . . . 36

seasonal pattern . . . . . . . . . . . . . . 35

trend . . . . . . . . . . . . . . . . . . . . . . . . 35

white noise . . . . . . . . . . . . . . . . . . . 36

period

ramp period . . . . . . . . . . . . . . . . . . 11

recovery period . . . . . . . . . . . . . . . 11

sustained response period . . . . . . 11

polynomial

nth-degree lag polynomial . . . . .53

infinite-degree lag polynomial . 53

power generating facilities

Renewable Energy Sources . . . . . 6

traditional . . . . . . . . . . . . . . . . . . . . . 6

power grid . . . . . . . . . . . . . . . . . . . . . . . . 6

power plant

traditional facility . . . . . . . . . . . . . . 6

prediction interval . . . . . . . . . 19, 23, 49

process

causal . . . . . . . . . . . . . . . . . . . . . . . 54

deterministic . . . . . . . . . . . . . . . . . 20

innovation . . . . . . . . . . . . . . . . . . . 53

invertible . . . . . . . . . . . . . . . . . . . . 54

stochastic . . . . . . . . . . . . . . . . . . . . 19

randomness . . . . . . . . . . . . . . . . . . . . . . 20

regression models . . . . . . . . . . . . . . . . 21

Renewable Energy Sources . . . . 1, 6, 8

RES

see Renewable Energy Sources 6, 8

seasonal period . . . . . . . . . . . . . . . . . . . 34

selection tree for forecasting methods

16

short-term load forecasting . . . . . . 2, 18

at community level . . . . . . . . . . . . . 3

at individual level . . . . . . . . . . . . . . 3

individual households . . . . . . . . . 29

large scale aggregates . . . . . . . . . 28

on a large scale . . . . . . . . . . . . . . . . 2

on a very short scale . . . . . . . . . . . .3

on large scale

ARIMA models . . . . . . . . . . . . 28

classical methods . . . . . . . . . . . 28

exponential smoothing methods

28

method of typical days . . . . . . 28

multiple regression methods . 28

seasonal naïve method . . . . . . . 28

small communities/residential

buildings . . . . . . . . . . . . . . . . . 30

single-seasonal Holt-Winters method

65

Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . 1

smart grid . . . . . . . . . . . . . . . . . . . . . . . .10

smoothing

LOESS smoothing procedure . . 57

state space models . . . . . . . . . . . . . . . . 67

stationary time series . . . . . . . . . . . . . .36

STLF

see short-term load forecasting . . 2

stochastic process . . . . . . . . . . . . . . . . 19

causal process . . . . . . . . . . . . . . . . 54

covariance stationary . . . . . . . . . .50

first-order stationary . . . . . . . . . . 49

invertible process . . . . . . . . . . . . . 54

second-order stationary . . . . . . . .50

stationary . . . . . . . . . . . . . . . . . . . . 50

strictly stationary . . . . . . . . . . . . . 49

strongly stationary . . . . . . . . . . . . 49

weakly stationary . . . . . . . . . . . . . 50

white noise . . . . . . . . . . . . . . . . . . .50

19



system operator

Distribution System Operator . . . 6

Transmission System Operator . . 6

TBATS model . . . . . . . . . . . . . . . . . . . .69

theorem

Wold’s representation theorem . 53

Third Energy Package . . . . . . . . . . . 1, 7

time series . . . . . . . . . . . . . . . . . . . . . . . 18

stationary . . . . . . . . . . . . . . . . . . . . 36

time series decomposition . . . . . . . . . 44

additive model . . . . . . . . . . . . . . . 44

classical seasonal decomposition by

moving averages . . . . . . . . . . 44

error component . . . . . . . . . . . . . . 44

irregular component . . . . . . . . . . .44

random component . . . . . . . . . . . 44

seasonal component . . . . . . . . . . . 44

trend-cycle component . . . . . . . . 44

time series differencing . . . . . . . . . . . 52

backshift operator . . . . . . . . . . . . .52

first difference . . . . . . . . . . . . . . . .52

seasonal difference . . . . . . . . . . . .52

second-order difference . . . . . . . 52

time series model building . . . . . . . . .21

model fitting . . . . . . . . . . . . . . . . . 22

model identification . . . . . . . . . . .22

model verification . . . . . . . . . . . . 22

time series models . . . . . . . . . . . . . . . . 20

transmission grid . . . . . . . . . . . . . . . . . . 6

Transmission System Operator . . . . . . 6

trend

linear . . . . . . . . . . . . . . . . . . . . . . . . 35

non-linear . . . . . . . . . . . . . . . . . . . . 35

TSO

see Transmission System Operator

6

unbundling . . . . . . . . . . . . . . . . . . . . . . . . 7

uncertainty . . . . . . . . . . . . . . . . . . . 20, 23

unit root tests . . . . . . . . . . . . . . . . . . . . 51

Augmented Dickey-Fuller test . 51

Kwiatkowski-Phillips-Schmidt-Shin

test . . . . . . . . . . . . . . . . . . . . . . 51

univariate methods . . . . . . . . . . . . 16, 28

UTC

see Coordinated Universal Time 33

variables

causal . . . . . . . . . . . . . . . . . . . . . . . 18

dependent . . . . . . . . . . . . . . . . . . . .18

explanatory . . . . . . . . . . . . . . . . . . 18

independent . . . . . . . . . . . . . . . . . . 18

vertical separation . . . . . . . . . . . . . . . . . 7

vertically integrated organizations . . . 6

Virtual Power Plant . . . . . . . . . . . . . 1, 14

volatility . . . . . . . . . . . . . . . . . . . . . . . . . 23

visual comparison . . . . . . . . . . . . 45

VPP

see Virtual Power Plant . . . . . 2, 14

forecasting module . . . . . . . . . . . . . 3

optimization module . . . . . . . . . . . 3

white noise . . . . . . . . . . . . . . . . . . . . . . 50

Wold’s representation theorem . . . . . 53

X-11 ARIMA decomposition method

57

X-11 decomposition method . . . . . . . 57

X-12 ARIMA decomposition method

57

X-13 ARIMA SEATS decomposition

method . . . . . . . . . . . . . . . . . . 57

20



APPENDIX E: Author Index

Note: A page number in plain font indicates a citation; italic font indicates a mentioning.

Akaike, Hirotugu . . . . . . . . . . . . . .56, 61

Al-Kandari, Mohammad . . . . . . . . . . 17

Alfares, Hesham K. . . . . . . . . . . . . . . . 28

Andolšek, Andraž . . . . . . . . . . . . . . . . . 8

Armstrong, J. Scott . . . . . . . . . . . . 16, 17

Athanasopoulos, George . . 15, 17, 19–21,

24, 26, 62, 70

Auer, Hans . . . . . . . . . . . . . . . . . . . . . . . . 8

Baliyan, Arjun . . . . . . . . . . . . . . . . . . . 29

Banerjee, Anindya . . . . . . . . . . . . . . . . 51

Behr, Peter . . . . . . . . . . . . . . . . . . . . . . . 14

Bell, William R. . . . . . . . . . . . . . . . . . . 57

Box, George E. P . . . . . . . . . . . . . . . . . 67

Box, George E. P. . . . . . . 55, 58, 68–70

Brown, Goodell . . . . . . . . . . . . . . . . . . 64

Brunner, Helfried . . . . . . . . . . . . . . . . . . 8

Cañizares, C. A. . . . . . . . . . . . . . . 27, 28

Cahill, Vinny . . . . . . . . . . . . . . 27, 30, 93

Chatfield, Chris . . . . . . . . 18, 20, 22, 29

Chen, Bor-Chung . . . . . . . . . . . . . . . . . 57

Chen, Hong . . . . . . . . . . . . . . . . . . 27, 28

Clarke, Siobhán . . . . . . . . . . . 27, 30, 93

Cleveland, Robert B. . . . . . . . . . . . . . . 57

Cleveland, William S. . . . . . . . . . . . . . 57

Cox, David . . . . . . . . . . . . . . . .67, 68–70

Crone, Sven F. . . . . . . . . . . . . . . . . . . . 29

De Livera, Alysha M. . . . . . . . . . .67, 69

Dickey, David A. . . . . . . . . . . . . . .29, 51

Dogum, Estela Bee . . . . . . . . . . . . . . . 57

Dolado, Juan J. . . . . . . . . . . . . . . . . . . . 51

Dusparic, Ivana . . . . . . . . . . . . 27, 30, 93

Edwards, Richard E. . . . . . . . . . . . . . . 29

Esterl, Tara . . . . . . . . . . . . . . . . . . . . . . . .8

Etezadi-Amoli, Mehdi . . . . . . . . . . . . 29

Fadali, M. Sami . . . . . . . . . . . . . . . . . . 29

Faraway, Julian . . . . . . . . . . . . . . . . . . . 29

Findley, David F. . . . . . . . . . . . . . . . . . 57

Fourier, Joseph . . . . . . . . . . . . 67, 69, 70

Friedl, Werner . . . . . . . . . . . . . . . . . . . . . 8

Fung, David Sheung Chi . . . . . . . . . . 32

Gajowniczek, Krzysztof . . . . . . . . . . . 30

Galbraith, John W. . . . . . . . . . . . . . . . . 51

Gaurav, Kumar . . . . . . . . . . . . . . . . . . . 29

Ghofrani, Mahmoud . . . . . . . . . . . . . . 29

Graefe,Andreas . . . . . . . . . . . . . . . . . . .17

Green, Kersten C. . . . . . . . . . . . . . 16, 17

Grimm, Clifford . . . . . . . . . . . . . . . . . . 13

Grose, Simone . . . . . . . . . . . . . . . . . . . 63

Harris, Colin . . . . . . . . . . . . . . 27, 30, 93

Hassanzadeh, Mohammad . . . . . . . . . 29

Hendry, David . . . . . . . . . . . . . . . . . . . 51

Hibon, Michèle . . . . . . . . . . . . . . . . . . .29

Hippert, Henrique Steinherz . . . . . . . 29

Holt, Charles C. . . . . . . . . . . . . . . . 65, 66

Hyndman, Rob J. . .15, 17, 19–21, 24, 26,

31, 47, 62, 63, 67, 69, 70

Jenkins, Gwilym M. . . . . . . . . . . . . . . 58

Jurše, Jurij . . . . . . . . . . . . . . . . . . . . . . . 10

Kathan, Johannes . . . . . . . . . . . . . . . . . . 8

Kendall, Maurice George . . . . . . 56, 57

Kernjak Jager, Maja . . . . . . . . . . . . . . 10

Khandakar, Yeasmin . . . . . . . . . . . . . . 62

Koehler, Anne B. . . . . . . . . . . . . . 26, 63

Kolenc, Mitja . . . . . . . . . . . . . . . . . . . . . 8

Kosmač, Janko . . . . . . . . . . . . . . . . . . . 10

Kwiatkowski, Denis . . . . . . . . . . . . . . 51

Lakota Jeriček, Gašper . . . . . . . . . . . . 10

21



Lettner, Georg . . . . . . . . . . . . . . . . . . . . . 8

Ljung, Greta M. . . . . . . . . . . . . . . . . . . 55

Magliavacca, Gianluigi . . . . . . . . . . . . . 8

Marinescu, Andrei . . . . . . . . . 27, 30, 93

Matvoz, Dejan . . . . . . . . . . . . . . . . . . . 10

McRae, Jean E. . . . . . . . . . . . . . . . . . . .57

McSharry, Patrick E. . . . . . . . . . . . . . . 28

Mishra, Sudhansu Kumar . . . . . . . . . .29

Moisl, Fabian . . . . . . . . . . . . . . . . . . . . . 8

Monsell, Brian C. . . . . . . . . . . . . . . . . .57

Musgrave, John C. . . . . . . . . . . . . . . . . 57

Nazeeruddin, Mohammad . . . . . . . . . 28

Nemček, Peter . . . . . . . . . . . . . . . . . . . . . 8

New, Joshua . . . . . . . . . . . . . . . . . . . . . 29

Nikolopoulos, Konstantinos . . . . . . . 29

Omahen, Gregor . . . . . . . . . . . . . . . . . .10

Ord, Keith . . . . . . . . . . . . . . . . . . . . 56, 57

Otto, Mark C. . . . . . . . . . . . . . . . . . . . . 57

Papič, Igor . . . . . . . . . . . . . . . . . . . . . . . 10

Parker, Lynne E. . . . . . . . . . . . . . . . . . . 29

Pedreira, Carlos Eduardo . . . . . . . . . . 29

Peirce, David A. . . . . . . . . . . . . . . . . . . 55

Phillips, Peter C. B. . . . . . . . . . . . . . . . 51

Pratt, Donna . . . . . . . . . . . . . . . . . . . . . 11

Prüggler, Wolfgang . . . . . . . . . . . . . . . . 8

Rahim, Saqib . . . . . . . . . . . . . . . . . . . . 14

Rajagopal, Ram . . . . . . . . . . . . . . . . . . 27

Reinsel, Gregory C. . . . . . . . . . . . . . . . 58

Said, E. Said . . . . . . . . . . . . . . . . . . . . . 51

Schmidt, Peter . . . . . . . . . . . . . . . . . . . 51

Schwabeneder, Daniel . . . . . . . . . . . . . . 8

Serena, Ricardo . . . . . . . . . . . . . . . . . . . 7

Sevlian, Raffi . . . . . . . . . . . . . . . . . . . . 27

Shin, Yongchelon . . . . . . . . . . . . . . . . . 51

Shiskin, Julius . . . . . . . . . . . . . . . . . . . .57

Singh, Ajay . . . . . . . . . . . . . . . . . . .27, 28

Snyder, Ralph D. . . . . . . . . . . 63, 67, 69

Soliman, S. A. . . . . . . . . . . . . . . . . . . . .17

Sorjamaa, Antti . . . . . . . . . . . . . . . . . . 32

Souvent, Andrej . . . . . . . . . . . . . . . . . . 10

Souza, Reinaldo Castro . . . . . . . . . . . 29

Stuart, Alan . . . . . . . . . . . . . . . . . . 56, 57

Taylor, James W. . . . . . . . 28, 29, 66, 96

Terpenning, Irma . . . . . . . . . . . . . . . . . 57

Thielbar, Melinda . . . . . . . . . . . . . . . . .29

Wattles, Paul . . . . . . . . . . . . . . . . . . . . . 11

Winkler, Eric . . . . . . . . . . . . . . . . . . . . . 11

Winters, Peter R. . . . . . . . . . . . . . . 65, 66

Wold, Herman . . . . . . . . . . . . . . . . 53, 59

Young, Allan H. . . . . . . . . . . . . . . . . . . 57

Zan, Alessandro . . . . . . . . . . . . . . . . . . . 8

Zlatarev, Georgi . . . . . . . . . . . . . . . . . . 10

Ząbkowski, Tomasz . . . . . . . . . . . . . . .30

Činkelj, Justin . . . . . . . . . . . . . . . . . . . . . 8

Šterk, Marjan . . . . . . . . . . . . . . . . . . . . . 8

22


	INTRODUCTION
	ELECTRICITY MARKET
	Electric Power System
	Electricity Market
	The energy market – traditional model
	Liberalization of European electricity market

	Balancing Market

	DEMAND RESPONSE PROGRAMS
	Demand Side Management
	Virtual power plants

	Demand Response Event
	Customer Baseline Load
	An Overview of Demand Response Programs
	Demand response programs in U.S.
	Demand response programs in Europe

	Role of Load Forecasting in Demand Response Programs

	LOAD FORECASTING
	About Forecasting in General
	Load Forecasting
	Forecasting procedure
	The importance of load forecasting

	Mathematical Model of Electricity Load
	The stochastic process
	Types of models for time series forecasting
	Time series model building

	Evaluating Forecast Accuracy
	Forecast accuracy
	Forecast accuracy measures

	Review of Literature
	Large scale aggregates
	Individual households
	Small communities/residential buildings


	DATA
	Software Used
	Input Data
	Handling Data Anomalies
	Missing data
	Outliers
	Holidays and special events

	Data Preparation
	Selecting data without missing values
	Data transformation
	Data aggregation

	Data Visualisation
	Industrial consumers
	Residential consumers
	Group of residential consumers

	Exploratory Data Analysis
	Industrial consumers
	Residential consumers
	Anticipation of forecasting efficiency


	METHODS
	A Few Simple Methods
	Time Series Models – Basic Concepts
	Stationary stochastic processes
	acf, PACF and unit root tests
	Time series differencing
	Seasonal differencing
	Wold's representation theorem
	Causal and invertible stochastic processes
	Characteristic polynomial
	Box-Ljung test
	Information criteria

	Forecasting with Time Series Decomposition
	Classical decomposition method
	Forecasting with stl decomposition

	arima models
	Autoregressive (AR) models
	maMoving average (ma) models
	Autoregressive moving average (arma) models
	ARIMA models
	SARIMA models
	The auto.arima() function

	Exponential Smoothing Methods
	Simple exponential smoothing
	Holt's linear trend method
	Single-seasonal Holt-Winters method
	Double-seasonal Holt-Winters method
	State space models
	BATS model
	TBATS model

	Autoregressive Artificial Neural Network Models

	RESULTS – INDUSTRIAL CONSUMERS
	Forecasting with stl Decomposition
	Single-Seasonal Holt-Winters Method
	ARIMA Models
	Discussion – Industrial Consumers

	RESULTS – RESIDENTIAL CONSUMERS
	Single-Seasonal Holt-Winters Method
	Double-Seasonal Holt-Winters Method
	BATS Model
	tbats Model
	Time Complexity
	Discussion – Residential Consumers

	RESULTS – GROUPS OF RESIDENTIAL CONSUMERS
	Simple Methods
	Average method
	Naïve method
	Seasonal naïve method
	Drift method
	U.S. standards baseline type I
	Discussion – simple methods

	Exponential Smoothing Methods
	Single-seasonal Holt-Winters method
	Double-seasonal Holt-Winters method
	bats model
	tbats model

	arima Models
	Autoregressive Artificial Neural Network Models
	Summary of Results with Discussion – Groups od Residential Consumers

	CONCLUSION
	REFERENCE LIST

