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INTRODUCTION 

Electricity is a very specific commodity. Due to its nature of non-storability (currently there 
is not cost effective way to store electricity), what is produced it is automatically consumed 
either by households or by the industrial sector (or some other type of consumers). From that 
it is easy to conclude that electricity demand (electricity load) is one of the key factors that 
define the prices in various electricity markets. In today’s dynamic world and market 
liberalization, it is crucial to have on time and good electricity demand forecasts. 
Transmission system operators (hereinafter: TSOs), retailers, producers, electricity traders 
and their short-term strategies, depend on the information what the will be the demand of 
electricity in the next hour, day, week, month, year. 

Forecasting day ahead is classified into (very) short-term electricity demand forecasting. 
Research has shown that there are not many publicly available forecasts of the electricity 
demand. Usually only publicly available forecasts for day-ahead are published by TSOs. 
There are a few problems regarding those forecasts from the perspective of the day-ahead 
trading. Most of those forecasts are published quite late. For example, for Slovenia day ahead 
forecast is published after 10 a.m., for Serbia is published either in the late afternoon or on 
the same day, some countries do not even publish their forecasts (or they publish for previous 
days). Also those forecasts are being adjusted without any notice (Transelectrica – Romania, 
Mavir – Hungary are adjusting their forecasts after publishing first version). Methodology 
behind those forecasts is only known to TSOs who usually are the ones who are making 
those forecasts.  

For trading companies this is a real problem, and that problem is noticed by many companies 
that are offering their forecasting products to energy traders (for example, Thomson Reuters, 
Meteologica, Markedskraft and others). Other option is that a trading company develops its 
own in-house models and use them alone or in conjunction with others. Reason is that the 
commercial models, which are currently offered on the market, are basically black boxes. 
Customers do not have information (or they get limited information) how models are 
working, which information is being used in the model and similar. Electricity demand 
modeling and forecasting (and price forecasting) are quite popular topics and one can find 
many articles. Weron (2014) suggests two main approaches to demand modeling and 
forecasting, artificial intelligence and statistical methods (other categories are mostly used 
in price forecasting). Similar day method or naïve method is the simplest one and most of 
the time used as a benchmark to other methods. Another simple method is exponential 
smoothing (Taylor, 2003). Regression methods (Clements, Hurn, & Li, 2016) are the most 
often used techniques. Time series models like AR, ARX, AR(I)MA(X), SAR(I)MA(X) and 
similar are also often used. It is a very known fact that weather variables influence the daily 
demand and they are used as exogenous variables in numerous articles (Ružić, Vučković, & 
Nikolić, 2003; Clements et al., 2016). In the artificial intelligence category most popular are 
neural networks.  
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In this thesis we propose a statistical model for forecasting day-ahead electricity demand. 
We modeled and tested our model on the most recent real data and compared it to the 
currently publicly available day-ahead electricity demand forecast which is used by 
Slovenian TSO ELES. We based the specifications of the model on the theoretical research 
that we conducted. Also, we simulated the practical limitations in the forecasting procedure 
since the aim of the thesis is that the proposed forecasting model can be used in practice and 
results of the forecasts should be at least equal to the currently used forecasts. Although 
proposed model is not significantly better than the benchmark, results showed that our model 
is good enough to be used in practice.  

The thesis consists of the following sections. We will first present a short overview and 
specifics of the electricity markets and the electricity demand itself. Also, we will discuss 
external factors which influence short-term electricity demand. Short examples from the 
region about the availability of data will show the need for the in-house model building as 
an additional benchmark (or only for some countries), which was the basic motivation to 
present a potential solution to this problem. 

In the data mining and modeling section, we will discuss the data mining process, also the 
process of identifying errors in the data, and aggregating time series for the modeling 
procedure. Also, in this section we will discuss the modelling procedure. 

In the empirical section we will propose two models with the same data and variables, but 
with different approach to hourly data, and compare their forecasting results. We will 
compare the better model to the existing benchmark. Results of the comparison will show if 
our model is “good enough” or better than the benchmark. 

In the final section we conclude with the summary of the results and discuss potential future 
developments. 

1 RESEARCH AND THEORETICAL FRAMEWORK 

1.1 Economics of electricity 

Electricity demand (load) is defined by the behavior of the population of some country, their 
industry and country infrastructure. All activities of one country are considered as 
aggregated electricity demand (or just electricity demand) of some country. Since the 
electricity still does not have any cost effective way to be stored, population behavior has 
direct effect on the electricity demand, and in the end, on the electricity price. That also 
means that the produced electricity is consumed at the same time, and because of that in 
literature and in practice, electricity demand is also called electricity consumption or 
electricity demand (Do, Lin, & Molnár, 2016). 
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As any other price, electricity price is determined by the supply and demand. In this case, 
suppliers are producers or power plants, and the demand represents the population of some 
country, their industry and infrastructure. 

There are different types of power plants. The main types of power plants depend on the fuel 
which they use to produce electricity (for example nuclear, thermal or gas power plants) or 
which renewable source they use (for example hydro, wind or photovoltaic power plants). 
That usually means that their producing price is directly linked to the main source of energy. 
In case of some long-term contracts or some other contracts (reserves and similar), that is 
not the case since the price has been already defined by those special cases. Since power 
plants are also business entities (although a lot of power plants are state owned), they try to 
behave rationally and to work only when the electricity price can cover their costs. 

The supply stacks in figure 1 and figure 2 are simplified examples of the intersection of the 
supply and demand on a day-ahead market in Romania. Both figures are showing working 
days, but with two different scenarios. On the horizontal axis are shown the hours of the day; 
the left vertical axis is the production amount in megawatt-hours (hereinafter: MWh); and 
the right vertical axis is the price. Figure 1 shows the production stack with very high 
renewables (Romania’s main source of renewables is wind production) and figure 2 shows 
the production with very low wind and higher demand (dashed line) for approximately 500 
megawatts (hereinafter: MW) in peak hours (the standard peak product is defined as the 
average from hour 9 to hour 20). Romania’s production consists of: 

• nuclear power plants, 
• thermal power plants, 
• gas power plants, 
• hydro power plants, 
• renewable production (wind, photovoltaic and biomass production). 

When there is a lot of renewables production, the price is much lower. Also, that day’s 
demand is lower comparing to figure 2. Although the price order of the production might 
not be correct, when one compares both figures, it is noticeable that levels of thermal, hydro 
and gas production in the second scenario are much higher. More power plants (or the same 
power plants but in full capacity) had to work to cover increased demand and also to replace 
less wind production. Those two effects are the consequence of such a price change. What 
is also interesting is that those two events are less than week apart. 
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Figure 1. Example of day-ahead prices and realized consumption and production with high 
renewable production for Romania in 2016 

 

Source: Transelectrica. Data for electricity demand, production, exchange, 2016; OKTE. Total STM results 
CZ – SK – HU – RO, 2016. 

Figure 2. Example of day-ahead prices and realized consumption and production with low 
renewable production for Romania in 2016 

 

Source: Transelectrica. Data for electricity demand, production, exchange, 2016; OKTE. Total STM results 
CZ – SK – HU – RO, 2016. 

Romanian day-ahead market price is calculated as an average from all 24 hours. That means 
that for each hour demand and supply are different. Figure 3 shows an example of a price 
formulation for a single hour. In this case vertical axis is the price and horizontal axis is 
production and demand in MW. Dark grey line represents a supply curve, while dark red 
lines represent two different electricity demand levels. 
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The supply curve has different levels depending on the production type. It shows ordered 
available production and prices for each production type. This is called a “merit-order”. 
Although some authors (Sensfuss, Ragwitz, & Genoese, 2008) use the merit-order mostly to 
show how renewables production shifts the supply curve and with that influences the final 
price, we will assume the same production structure and different demand scenarios. 
Renewables production is considered to have the lowest price (0 EUR) and in our example 
their current production level is 400 MW. The most expensive production is usually 
considered to be gas production, and on the supply curve, they can be easily identified by 
quite high price jumps. Two demand lines represent different demand scenarios. In case of 
lower demand (red line), the price is 22 EUR/MWh, but if the demand is higher, the price 
jumps to 40 EUR/MWh. 

To make a similar comparison like in the first example, we can change any of the production 
stack from the merit-order. If we increase any production levels left from our demand lines, 
it automatically shifts whole production to the right and leads to lower prices. That happens 
when there is a lot of renewables production, like high wind or precipitation (run-of-river 
production does not have any accumulation and because of that the amount of production is 
directly correlated with the precipitation). In the case when some certain production unit is 
unavailable, it shifts the merit-order to the left and increases the price.  

Figure 3. Example of supply and demand curves for a single hour 

 

From the aspect of production (at least in the short-term), electricity demand is very inelastic, 
it is given. Depending on the options how to “cover” demand, the final price is formed. 
Although these two examples are quite simplified because we have ignored the transfer of 
electricity between countries they show how much demand is important in electricity 
markets and how electricity price markets can be very volatile in short-term trading. 
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1.2 Specifics of the electricity demand 

Before, forecasting of electricity demand was only important to electric utilities and power 
plants. Now, when markets are deregulated, demand forecasting is important to all market 
participants. That is why now electricity demand is analyzed even more in detail. Here we 
will present some specifics of electricity demand and external factors which have influence 
on short- and long-term basis. 

1.2.1 Seasonalities in electricity demand 
Electricity demand has a specific “shape”, which usually differs from country to country, 
depending on the size of the population, industry specifics, and some other macroeconomic 
variables. There are very noticeable three seasonalities, daily (hourly), weekly, and yearly 
(monthly). All three are important to recognize in order to properly model and forecast 
electricity demand.  

1.2.1.1 Daily demand 
Daily activities of the population can be easily recognized in the shape of the hourly demand. 
An example of the daily hourly demand for working days (without holidays) can be seen in 
figure 4. On horizontal axis are hours of the day, while on vertical axis is the consumption 
in MWh. During the night hours, when there is least activity, demand is lowest. People 
usually wake up between six and seven in the morning and prepare for work. In that time 
period, the slope of the demand starts to be steep. As more and more people are going to 
work, industrial production is starting. All those activities are forming “the first shoulder” in 
the daily curve. Depending on weather factors (which will discuss later), the level of middle 
(peak) hours varies. Around 4 p.m. people usually finish with work and go home and rest 
for a few hours. In that period, there is a drop in electricity demand. In the late evening most 
of the people focus on their household activities like cooking, cleaning, watching television 
and similar which form “second shoulder” in the daily curve. In the late evening, when 
people go to sleep and the second industrial shift ends, the demand starts to drop. 

Figure 4. Example of hourly electricity demand shape for Slovenia 

 

Source: ELES. Load and Generation, 2016. 
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1.2.1.2 Weekly demand 
Daily demand shape is different for almost every day in the week (figure 5). Horizontal axis 
has the hourly scale, divided by the days in a week (from Monday to Sunday). Vertical axis 
is the consumption in MWh. The peak demand is similar for all working days, but Monday 
and Friday are a bit different. Since Monday is the first day in the week, the demand in the 
first hours is lower than for other working days. It is more similar to Sunday. On Friday, the 
second part of the day also tends to be lower than on other working days when people go 
home from work. Although most people are at home during the weekend, Saturdays have 
larger demand than Sundays. 

Figure 5. Example of weekly electricity demand shape for Slovenia 

 

Source: ELES. Load and Generation, 2016. 

1.2.1.3 Yearly demand 
In Slovenia, yearly seasonality is not as much pronounced as in some other countries, but it 
is noticeable. Figure 6 shows hourly demand for Slovenia for the year 2013. Vertical axis 
shows demand in MWh. By visual inspection, it is noticeable that demand has seasonal 
fluctuations due to weather factors (primarily temperature – figure 7). In colder months, 
demand is higher because people use more electricity for heating than for cooling in summer 
months. Also, some weeks have much lower demand due to holiday effects (Christmas, 
Easter and similar). 

Figure 6. Hourly electricity demand for Slovenia in 2013 

 

Source: ELES. Load and Generation, 2016. 
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Figure 7. Hourly temperature for Slovenia in 2013 

 

Source: Ministry of the environment and spatial agency - Slovenian Environment Agency, 2016; own 
calculations. 

1.2.1.4 Special days 
Special events can be defined as abnormal days, during which demand is quite different from 
its normal shape. They are also rare events and, because of that, more difficult to forecast. 
These days are mostly public holidays.  

Not all holidays have the same effect on demand. From that perspective, holidays can be 
categorized as main holidays and other holidays. Also, holidays can have an effect on the 
next day and/or the day before. One of the examples is Serbia. If a particular holiday falls 
on weekend (for example a Saturday), holiday effect is prolonged on the first normal 
working day, but that holiday has the effect on Saturday and Monday, and also on Sunday. 
Other example would be if holiday falls on Thursday, demand on Friday could be lower 
compared to a normal Friday due to extended weekend effect. In some countries, such days 
are considered as holidays. They are called bridge days. Apart from normal holidays, which 
lower the consumption, there are special events which increase the consumption. One of 
those events are working Saturdays. Since bridge days are not regular non-working days, to 
compensate for them, Hungary has working Saturdays. 

Figure 8 shows scatter plots of realized demand in Slovenia by hours, for each day in a week 
and also holidays as special days (holiday 1 and holiday 2). We can see that holidays have 
different demand levels than any other day. The shape is similar to Sunday, but there is a 
noticeable difference, where holidays are mostly lower than Sundays. One can also see a few 
lower shapes on Monday and Friday, which indicates the existence of bridge days. The proof 
that holidays have lower demand compared to other days in a week is reported in table 3.  
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Figure 8. Hourly shapes for each day in a week with holidays as separate categories 

 

Source: ELES. Load and Generation, 2016; own calculations. 

Other abnormal daily patterns could be some random events, like blackouts. Because 
blackouts and different sorts of outages are random and irregular events, they should be 
considered as anomalies since they produce noise to normal demand. 

1.2.2 Weather factors 
Apart from the seasonalities in the model, weather factors are very important for electricity 
demand forecasting. They are mostly used in (very) short-term forecasting, since long-term 
weather forecasts are not always available and are also quite imprecise. Temperature is the 
most common used weather factor. Other factors which can also be used in modeling are 
solar radiation, wind speed, humidity and others. 

1.2.2.1 Temperature 
Seasonal fluctuations during the year are due to weather factors. One of the most important 
weather factors is temperature. A survey by Hippert, Pedreira, & Souza (2001) on models 
for forecasting electricity demand shows that out of 23 papers, in 13 papers authors used 
only temperature, in 3 papers they used temperature and humidity, other 3 used also 
additional weather parameters, and last 3 did not use any weather parameters. One of the 
reasons why authors mostly used temperature is because many of them did not have access 
to other data.  
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Weron (2006) argues that the relationship between demand and temperature is not linear. 
Figure 9 shows scatter plot between electricity demand (vertical axis in MWh) and 
temperature (horizontal axis in Celsius). To make it more clear, it is filtered only for working 
days (without holidays) and for hour 13. It is clearly a non-linear relationship. He explains 
that the shape looks like a hockey stick. The breaking point is approximately around 19 
degrees Celsius. He also suggests that quadratic form is suitable for mimicking the non-
linearity. 

Figure 9. Scatter plot between electricity demand in Slovenia for working days (without 
holidays) and hour 13 and temperature in Celsius. 

 

Source: ELES. Load and Generation, 2016; Ministry of the environment and spatial agency - Slovenian 
Environment Agency, 2016; own calculations. 

MATLAB offers a simple fitting tool which helps to easily approximate which polynomial 
form should be used. Figure 10 shows an example of the MATLAB tool. It consists from the 
two scatter plots. Both of the scatter plot have the same horizontal and vertical axes, where 
horizontal axis is the temperature in Celsius and vertical axis is the demand in MWh. First 
scatter plot shows different fit profiles, in this case linear and quadratic fit. Second scatter 
plot shows the residuals of each fit profile. One can also check polynomials of higher degree 
in this tool. It is visible that quadratic form has better fit than linear where residuals are 
closed to zero in higher temperatures. 

Other solution is to use a piecewise linear regression. Some authors suggest using heating 
and cooling degree days (Valor, Meneu, & Caselles, 2001; Pardo, Meneu, & Valor, 2002; 
Hor, Watson, & Majithia, 2005). 
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Figure 10. MATLAB curve fitting tool example 

 

Source: ELES. Load and Generation, 2016; Ministry of the environment and spatial agency - Slovenian 
Environment Agency, 2016; own calculations. 

1.2.2.2 Solar radiation 
Solar radiation, in plain words, shows how much light is reflected on Earth’s surface. In 
Slovenia, Slovenian Environment Agency (hereinafter: ARSO) measures two type of solar 
radiation, global (which is total radiation) and diffused solar radiation. Global radiation is a 
sum of direct and diffused radiation. In cloudy weather, when there is a little or no direct 
solar radiation, diffused radiation is important. Levels of global solar radiation are naturally 
dependent on the period in the year. 

As any other weather variable, there is no local measurement for the whole country. It is 
measured by number of weather stations throughout the country. In the beginning of 2008, 
ARSO had 29 out of 45 stations which measured solar radiation. 

One of the replacements for solar radiation the electricity trading participants use are 
photovoltaic (solar) production forecasts. They measure the levels of solar energy production 
for the whole country. Since solar radiation and photovoltaic production are directly 
correlated, forecasts of photovoltaic production are based on forecasts of solar radiation. 
Another reason why traders use derived forecast is to be able to forecast the residual load. 
Residual load is defined as the demand from which is subtracted renewables production (like 
photovoltaic and wind). In countries with very high renewables production (Germany), the 
analysis of residual load is very important in price forecasting. 

1.2.2.3 Other weather factors which influence the electricity demand 
There are two weather factors which some authors additionally use (Hyde & Hodnett, 1997; 
Fay, Ringwood, Condon, & Kelly, 2003), humidity and wind. Humidity and wind are mostly 
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used to enhance the effect of the main weather driver, the temperature. They could also help 
to explain non-linearity between the temperature and the electricity demand. During summer 
days, when temperatures are high, high humidity increases temperature effect. In 
consequence, people use more and air-conditioning longer to cool. In winter days, when it 
is cold, high wind speeds “help” to cool buildings even more, so people use additional 
electricity to get warmer. 

1.3 Overview of forecasting models 

We can classify forecasting models from a few perspectives. One perspective is how far 
ahead one forecasts and they are classified as:  

• (very) short term forecasts, 
• medium term forecasts, 
• long term forecasts. 

Very short term forecasts to short term forecasts have a time span from 15 minutes (for 
example for continuous intraday 15 minute markets in Germany or France - EPEX SPOT) 
up to one week ahead. With large amount of renewable energy like wind or photovoltaic 
(solar power production), hourly products are not enough. Intraday markets like 15 minutes 
ahead are developed for the balancing purposes (in case some market participant have excess 
or require energy due to changes in electricity demand or in production). Day ahead demand 
forecasts up to one week are usually used for creating strategies and price forecasts for short-
term trading. In short term forecasting, weather variables have a great impact on the 
electricity demand. 

From the trading perspective, time periods from one week to one year are considered as 
medium term forecasts. For shorter time periods like week up to month ahead it is possible 
to get weather forecasts, but for longer time periods only seasonal effects can be modeled. 

For long term forecasts it is practically impossible to find precise weather forecasts. 
However, it is possible to provide the probability distribution of the electricity demand based 
on historical weather observations (Feinberg & Genethliou, 2005). Large historical datasets 
(for example past 20-30 years of data) are used to create “normal weather variables” (in 
simplistic terms average historical weather) to forecast weather normalized demand. 
Depending on the aim and length of long term forecasts, one can also use macroeconomic 
variables (industry growth). 

Other perspective to electricity demand forecasting is the method which is used. There are 
many different forecasting models, but they can be easily classified into two main categories, 
artificial intelligence models and statistical models. One of the classifications is presented in 
Alfares and Nazeeruddin (2002). Weron (2014) presents a nice classification of models for 
electricity price forecasting. From that paper last two categories are also used in electricity 
demand forecasting. Suganthi and Samuel (2011) have similar categorization. 
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1.3.1 Artificial intelligence models 
In the artificial intelligence category, the most popular models are artificial neural networks, 
support vector machines, fuzzy logic and similar. Artificial intelligence models are known 
for their ability to cope with complexity and non-linearity. Hippert et al. (2001, p. 46) define 
artificial neural networks as: “Artificial neural networks are mathematical tools originally 
inspired by the way the human brain processes information.”. Data is divided into three 
sections: learning (training), validation and estimation. Coefficients are automatically 
estimated through the algorithms. That is also a possible main issue for artificial intelligence 
models. Since learning is being done with hidden layers connecting neurons, the whole 
process is a black box. Also there is a possibility of overtraining the model in order to get 
high r-squared and bad out of sample forecasts. 

Disregarding possible downsides of artificial intelligence models, they are quite popular in 
forecasting literature. Mostly they are used by people with technical background, where 
economists are more prone to statistical models. Since the main focus for this thesis is in the 
field of statistical models, deeper analysis of artificial intelligence models is not necessary. 

Chen and Chang (2004) propose a winning model for the European Network on Intelligent 
Technologies for Smart Adaptive Systems (hereinafter: EUNITE) competition in 2001 for 
medium-term forecasting using a support vector machine. Their task was to forecast 
Slovakian daily maximum for a month ahead (predicting a maximum daily demand for next 
31 days). They also discuss usage of weather factor in medium-term forecasting and they do 
not find any evidence that weather factors could improve their model’s accuracy. 

Some authors conclude that artificial intelligence models should not have any advantages to 
statistical models. Darbellay and Slama (2000) test whether neural networks models are 
indeed better in forecasting when compared to statistical models, in their case ARMA type. 
They test their models on Czech electricity demand and they find that most of the electricity 
demand problems are linear in nature. Because of the linearity, there should not be an 
advantage in using neural networks, which handle non-linearity better than statistical 
models. Linear models in their case perform better at forecasting hourly demand than the 
proposed feed-forward and recurrent artificial neural network. 

1.3.2 Statistical models 
Statistical models are a mathematical model which shows electricity demand as functions of 
various factors. By type, there are two categories, additive and multiplicative models. 
Difference between those models is that additive models are a sum of various factors, and 
multiplicative models are a product. Although multiplicative models can be transformed into 
additive models (by using logarithms), additive models are much more popular. A group of 
statistical models includes: simple one like similar-day method, exponential smoothing, 
linear regression, autoregressive models and others. 
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1.3.2.1 Similar-day 
Similar-day (also called “naïve method”) approach is the easiest method to implement. It is 
based on searching for similar days in history (type of the day, temperature, potential holiday 
effect, etc.) and using them as forecasts for either one of the results or some kind of average. 
Electricity demand of Tuesday or of previous Wednesday can be used as the forecast for 
Wednesday (since both days are working days). Same logic is applied on weekends. Last 
Saturday or Sunday can be used as the forecast for the next weekend. Naïve models are 
useful as an additional tool in forecasting rare events like holidays. Sample size of holidays 
is usually very small, especially if available historical data is not long, advanced models 
could have difficulties with estimating holiday effects. Due to its simplicity it can be used 
as one of the benchmarks for more complicated models but it is also not recommended since 
naïve models tend to be imprecise. 

1.3.2.2 Exponential smoothing 
Exponential smoothing uses exponentially weighted averages of past observations to 
forecast future values. Due to its robustness and accuracy, exponential smoothing is quite 
often used as a forecasting method in various fields. 

In simple exponential smoothing, exponentially smaller weights are assigned to older lagged 
values. Basic formula is 

𝐿" = 𝛼𝐿"%& + 𝛼 1 − 𝛼 𝐿"%* + 𝛼 1 − 𝛼 *𝐿"%+ + ⋯ (1) 

where 𝐿" is forecasted demand at time t, 𝐿"%/ are historical realizations and 𝛼	is a smoothing 
parameter. 

Because simple exponential smoothing cannot capture trend nor seasonalities, it is not a good 
forecasting method to forecast electricity demand. To accommodate for those trends and 
seasonalities more advanced models have been developed (Holt, 1957; Winters, 1960; 
Chatfield & Yar, 1988; Taylor, 2003).  

In his paper Taylor (2003) presents adapted double seasonal exponential smoothing 
forecasting model on the sample of half hourly-demand for England and Wales in 2000. 
Because short-term electricity demand has two seasonalities, daily and weekly, standard 
exponential smoothing is not enough since it cannot capture two seasonalities. Taylor adapts 
the Holt-Winters exponential smoothing that it includes seasonalities in the model. He 
compares the model with the standard Holt-Winters and also to well-specified double 
seasonal ARIMA model. Adapted double seasonal exponential smoothing model 
outperforms the other two models. 

In a similar study Taylor, De Menezes, & McSharry (2006) test very short term forecast 
models up to a day ahead. Apart from the adapted double seasonal exponential smoothing 
model from the paper in 2003, they also include a new model which is based on principal 
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component analysis. Other models which they consider are naïve benchmark, naïve 
benchmark with an error model, a neural network model and a seasonal ARIMA model. 
They use two samples for model comparison, hourly time series of Rio de Janeiro and half-
hourly demand for England and Wales. Although principal components analysis model 
performs well, the best results are again achieved with the double seasonal exponential 
smoothing model. 

1.3.2.3 Multiple regression 
Regression is one the most commonly used in electricity demand forecasting. Main purpose 
of the regression is to learn about the relationship between the dependent variable (in this 
case electricity demand) and independent variables (like weather factors, type of the day, 
hour of the day and similar). Estimation of the coefficients is done by using least squares. 

𝐿" = 𝛼 + 𝛽2 ⋅ 𝑋"& + 𝛽& ⋅ 𝑋"* + ⋯+ 𝛽/ ⋅ 𝑋"/ + e" (2) 
 

In equation (2) 𝛼 is a constant, 𝛽/ are vectors of coefficients, while 𝑋"/ are exogenous 
variables (matrices) and e" is an error term. One of the assumption of the multiple linear 
regression is the linearity between the variables. That is why it is important to check the 
scatter plot of the variables (figure 9). In case it is evident that the relationship between 
variables is not linear, one could try to transform one of the variables. 

Engle, Chowdhury, & Rice (1992) propose a model for forecasting the hourly peak 
electricity demand for one day in the future. Model includes deterministic variables such as 
holidays and lagged holidays variables, stochastic variables such as past daily average 
demands by building bivariate models, and also weather variables which is given a careful 
they transform to account for non-linearity. They tested the model on the one year out-of-
sample period. 

Hyde and Hodnett (1997) propose a multiple regression model for the Irish electricity supply 
system. Proposed model is built for day ahead forecasting and it can be also used for seven 
to ten days ahead. It identifies a normal or a weather-insensitive demand component and a 
weather-sensitive component. For the estimation of the normal demand model, they use 
linear regression of past demand and weather data. 

Ramanathan, Engle, Granger, Vahid-Araghi, & Brace (1997) propose a short-run forecasting 
model of hourly system load and evaluate the forecast performance. The model is applied to 
historical data for the Puget Sound Power and Light Company who did a comparative 
evaluation of various forecasting models for two years in a row. Their approach is based on 
a multiple regression model. Each hour of the day for workdays and weekends is modeled 
separately, which results in 48 models. Simple model structure consists of four types of 
variables, deterministic variables such as day in a week, month and similar, weather 
variables such as temperature and historical temperature, historical realized dependent 
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variables (electricity demand) and historical forecast errors (by using a fifth-order Cochrane-
Orcutt autoregressive error structure). In the first step, they estimate the model by ordinary 
least squares (hereinafter: OLS). Then, they predict the residuals. In next step, they introduce 
lagged residuals into the model, and they estimate again with OLS. Models performed 
extremely well comparing to models of other authors. In the second year, authors of other 
models had the possibility to revise their models, and even then, their models were not still 
able to have better performance compared to authors’ models. 

Ružić et al. (2003) propose a regression-based adaptive weather sensitive short-term load-
forecasting algorithm, which was developed and used in Electric Power Utility of Serbia 
(EPS). The proposed methodology consists of two main steps. In the first step, authors 
forecast the total daily demand independently, then, in the second step they predict hourly 
demand. All model parameters are automatically calculated and updated using realized data 
in the identification period. 

Fan and Hyndman (2012) propose a semi-parametric additive model to estimate the 
relationships between the demand and the driver variables. Input for these models are 
calendar variables (day of the week, holiday effect, day in a year), lagged actual demand 
(demand for the same hour for past two days, maximum and minimum demand for previous 
day as well as average demand for previous seven days) and temperature (forecast of the 
temperature, minimum and maximum from the previous days, lagged half-hourly 
temperature as well as the average temperature for last seven days) from one or more 
measuring points. The proposed methodology has been used to forecast the half-hourly 
electricity demand for up to seven days ahead for power systems in the Australian National 
Electricity Market. They validate the performance of the methodology with out-of-sample 
forecasts with real data from the power system, as well as through on-site implementation 
by the system operator. 

Do, Lin, & Molnár (2016) propose a regression based model on the case of Germany. They 
want to see whether forecasting models are more precise if electricity demand is modeled 
for each hour independently or all hours are modeled together. In the second model they 
forecast electricity demand in two steps. In the first step authors forecast average daily 
consumption and in the second step for each hour they forecast deviation from the average. 
Both models have as similar variable specification as possible to be able to compare them. 
Explanatory variables which they use are temperature, industrial production index, hours of 
daylight, binary variables for days in a week, binary variables for months of the year. They 
separate holidays into two categories: major (official holidays, non-working days) and minor 
(local or religious holidays). For holidays they use separate binary variables and also bridge 
days as independent variables. Industrial production index helps to model the yearly trend. 
With a bonus of simplicity for having less variables in a regression, independent separate 
hour models show better results compared to more complex model. 
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1.3.2.4 Autoregressive model 
Assumption of time series models is that they have an internal structure, like trend, 
seasonality and autocorrelations. Autoregressive models are designed to exploit those 
features and use them to forecast future values. An AR(p) model indicates an autoregressive 
model of order p. 

𝐿" = 𝑐 + 𝜙8𝐿"%8 + 𝜀"

:

8;&

3  

where 𝐿" is electricity demand at time t, c is an constant, 𝜙8 are coefficients of the model 
and 𝜀" is a white noise. The order of p is telling us how many lagged past values are included 
into a model. 

1.3.2.5 Autoregressive (Integrated) Moving Average model 
The moving average is a model where the time series is regarded as a moving average of 
previous error terms 𝜀". A moving average MA(q) model of order q is given by 

𝐿" = 𝜇 + 𝜀" + 𝜃8𝜀"%8

?

8;&

4  

where 𝜇 is a constant and other terms are known from previous equation. 

ARMA processes require that the time series which is being modeled is (weakly) stationary. 
Stationarity is defined that first and second moment should not change over time. If it is not, 
then one should transform the data to make it stationary (for example by using first difference 
or more). 

Box and Jenkins (1976) introduce a general model which contains both AR and MA parts 
and also a differenced part (Integrated – I, usual notation for order is d). Sometimes, 
difference is not enough due to seasonality so additional factor was needed. Seasonal 
Autoregressive Integrated Moving Average model (SARIMA) is introduced. General 
notation is 

SARIMA = ARIMA p, d, q × P, D, Q N. 5  

1.3.2.6 Autoregressive models with exogenous variables (ARX models) 
Autoregressive models are using historical signals to forecast future values. In some cases, 
apart from the signal itself, future values are influenced by some exogenous factors (in the 
electricity demand case one factor could be temperature, for price forecasts, an additional 
factor would be wind production, or transfer capacities and similar).  

In his article Weron (2014) also discusses difficulties with categorization or differentiation 
between regression and ARX models (article is focused on overview of forecasting models 



  18 

for electricity prices, but same logic can be applied to forecast the electricity demand). He 
says that it is often very hard to separate regression and autoregression models since a lot of 
models are called regression models, but they contain previous values of the dependent 
variable. He suggests that difference between those two models could be made from the 
structure of the model. If the number of the fundamentals regressors is large, then it should 
be classified into regression models, and if the autoregressive structure is complex, then they 
should be classified as autoregressive models with exogenous variables.  

2 DATA AND METHODOLOGY 

2.1 Demand data 

Slovenian electricity transmission system operator – ELES publishes two types of data for 
electricity demand in Slovenia, electricity demand per type and aggregated demand data. 
There are two types of consumers, direct consumers and consumers via distribution. Second 
category is more than 80% of the total demand. Aggregated demand data also includes losses 
on the transmission network. Consumption of pump storages is included in the production 
data which makes data mining and forecasting procedures easier. 

Realized hourly data is published with a few hours of delay (most of the time not more than 
two hours of lag). Every working day after 10 a.m. ELES publishes its own hourly forecast 
for day-ahead demand (on Friday late afternoon forecasts for Sunday and Monday are also 
available). On their website there is no available information about the forecasting model. 
Although electricity market for day-ahead in Slovenia is open until 12 p.m., that time for 
trading companies is quite late because all forecasts and strategies for day-ahead are usually 
made much earlier. Data for day-ahead and analysis larger period can be exported to Excel 
(it is HTML table data with a MS Excel extension), XML and CSV formats. 

2.1.1 Some other countries 
Each country has a different methodology of making and publishing their electricity demand 
forecasts. In wholesale trading those differences make those forecasts mostly unusable or 
quite risky to use. First and main issue is that some countries publish their forecasts quite 
late for day-ahead trading. Second issue is that methodology behind those forecast is 
unknown, which parameters are taken into consideration and similar. Third issue is that 
TSOs are changing their forecasts without any notice which leads to losing track of the 
precision of their models. One more issue which must not be ignored is availability of the 
data. Sometimes forecasts are either not published or websites are not available. Below are 
examples for few countries.  
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2.1.1.1 Serbia 
Data for Serbian demand can be downloaded from EMS1 Transparency website. Other 
source is Entso-e. Until February 2016, EMS was publishing realized consumption without 
including Kosovo. Since this change was a silent update (without any notification), a lot of 
data and forecasts providers were not aware of it. Their forecasting models for demand were 
quite imprecise for a week or more since including Kosovo into total Serbian demand 
increased the average daily consumption for approximately 600 MW. Realization of the 
demand is published around 7:30 a.m. for the day before, and forecasts for day-ahead are 
published quite late (either after 4 p.m. or on the same day). It is also worth mentioning that 
if one compares EMS demand forecasts and realizations, it seems that pump consumption is 
only included into forecasts. 

2.1.1.2 Croatia 
Data for Croatian demand can be downloaded from Entso-e. Realizations of the demand is 
published within a few hours of delay. In case of a missing few hours on a certain day, most 
of the time data is being updated backward (errors in published data for yesterday are 
updated today). Forecasts of the electricity demand for day-ahead are available in the late 
afternoon. 

2.1.1.3 Hungary 
MAVIR publishes data on the demand and their forecasts. Frequency of the data is 15 
minutes and it has possibility to be converted into the hourly demand (simple average for a 
specific hour). Forecasts are published around 4 p.m. for the day after tomorrow and for day-
ahead previous forecast is updated. On Friday afternoon MAVIR publishes forecasts for the 
Sunday-Tuesday and it also updates those forecasts. Since on their website one can 
download only last version of the forecasts (which are published after all markets for day-
ahead trading are closed), it is very difficult to measure the precision of their forecasting 
model of the electricity demand. Only solution how to measure accuracy of their initial 
forecasts is to download their day-ahead forecasts on a daily basis which is very time 
consuming. 

2.1.1.4 Romania 
Transelectrica2 publishes week ahead hourly forecasts. Methodology of the forecasts is 
unknown, but by visual inspection of the forecast data, most likely naïve method is used (for 
example similar day from previous week). Those forecasts are updated on a daily basis at an 
unknown time period and also day zero (today) forecasts are updated. 

                                                

1 EMS stands for Elektromreža Srbije (hereinafter: EMS) 

2 One can find electricity demand forecast on Transelectrica. Required Transparency of System Load. 
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2.2 Weather data 

In Slovenia, weather data is published by ARSO. Each year, number of measurement stations 
is increased. Depending on the type of the stations, one can find data on temperature, solar 
radiation, rainfall, wind speed, humidity, air pressure and others. 

The most frequent data which one can download from ARSO is the half-hourly data. That 
data has to be converted to the hourly so that it can be used with the hourly load. Since ARSO 
does not have singular data for Slovenia, data from various stations also have to be 
aggregated into one time-series per type. Number of measuring weather stations increased 
during the past few years (figure 11), but we can only use stations which were in existence 
at the beginning of our modelling procedure.  

Figure 11. ARSO weather data export user interface 

 

Source: Ministry of the environment and spatial agency - Slovenian Environment Agency, 2016. 

2.3 Data mining procedure 

2.3.1 Dealing with erroneous demand data 
To be able to make a good forecasting model or any other analysis, we have to identify and 
correct various data errors. The higher is the data frequency, the higher chance it has some 
errors. There are two type of errors, outliers (strange, most likely incorrect values, spikes) 
and missing data. Single missing entries should not make a problem, but missing days or 
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weeks can cause a problem. In hourly demand data one error is quite common, such as the 
change from normal to the daylight savings time. Methods of reporting demand for that hour 
(or hours) can vary from year to year and it should be checked manually. Reasons for other 
outliers or missing values are unknown, but most likely they are caused by some outages 
and it would take time to identify them manually. 

First step with dealing with outliers is to identify them. One of the methods which Weron 
(2006) suggests is to create an automatic filter using running median. Compared to moving 
average, running median is more robust to outliers. He also advises to use short- and long-
term running medians, since short-term running median can only detect large spikes for 
single hour, and long-term should be able to detect outliers for larger periods (days). Berk 
(2015) is also using same filtering technique, but he suggests that each demand time series 
is unique and one should test different lengths of short- and long-term filters. 

The (2m+1)-hour running median is given by 

𝐿"
QRS,*TU& = median 𝐿"%T,… , 𝐿", … 𝐿"UT . 6  

Next step is to create upper and lower filter bands. 

𝐵" = 𝐿"
QRS,*TU& ± 𝑘 ∙ std 𝐿" − 𝐿"

QRS,*TU& . 7  

Value of k in equation above is usually 3 and std represents standard deviation. Examples 
of 5-hour and 49-hour filtering bands for Slovenia are shown in figure 12.  

Figure 12. Example of 5-hour and 49-hour running median filtering bands for electricity 
demand in Slovenia 

 

Source: ELES. Load and Generation, 2016; own calculations. 

Once errors in data have been identified, they have to be fixed. Easiest way to deal with 
single missing value for period t is to take an average of the t-1 and t+1 observations. To 
deal with more missing values Weron (2006) suggests forecasting them, but since advanced 
forecasting methods usually cannot be estimated and calibrated to the data with missing 
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values, one should use similar-day method instead. Forecasted values should be treated as 
the original ones. 

Filtering models are very helpful in detecting outliers, unfortunately there is also a possibility 
of wrong positives. Neither short- or long-term filter detected this kind of error. In the middle 
of figure 12, two days are connected into one, demand in night hours is unusually high. One 
possible explanation is that in those hours pump production was included by mistake (which 
is, in case of Slovenia, included in the production data). Short- and long-term filters are not 
indicating incorrect data. Easiest way to replace this data is to take an average of same hours 
from previous and leading days (depending on the day in a week, it is also possible to choose 
days from previous and leading week). Since historical day-ahead demand forecasts are 
already publicly available for Slovenia (figure 13), they can be used as a benchmark for 
correcting that error. 

Visual inspection of whole hourly data would be very inefficient and time consuming, 
therefore the correct approach is to look for sudden large deviations from the forecasts. 
Larger errors are more often found during the holidays, so holiday indicator should be 
included into the filtering procedure. In figure 13 dashed red line represents ELES’s forecast 
of the demand, and black line is the realization of the demand. If we also inspect previous 
and leading days, we can easily see that those night hours are most likely incorrect data and 
they should be replaced by forecasts. 

Figure 13. Example of incorrect data for realized electricity demand 

 

Source: ELES. Load and Generation, 2016. 
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2.3.2 Data mining of weather data 
Historical weather data is publicly available on ARSO website. Half-hourly data is the 
closest available timeframe to hourly electricity demand. Primary weather variables which 
are downloaded are half-hourly averages of temperature and global solar radiation3. Per each 
request, one can download up to three to four months of data for one measurement station. 

We checked each dataset for errors. We use similar procedures to those for electricity 
demand. Small sets of missing data (up to a few hours) is forecasted by using a naïve method. 
In case of more missing data than a few hours, there are two solutions: 

• first solution is to find the nearest similar measurement station and replace missing data 
with theirs, 

• in case it is not possible to do that, ignore it in the aggregation process. 

Since correlation between measurement points is quite high, Fan and Hyndman (2012) 
suggest to use simple average on hourly data (table 1). Other method which one can use are 
population weighted averages (Pardo et al., 2002). 

Table 1. Correlation matrix of temperatures across Slovenia from 2010 to April 2016 

 Lešče Bilje 
Novo 
Mesto 

Ljubljana Maribor Celje 
Murska 
Sobota 

Lešče 1.00       
Bilje 0.94 1.00      
Novo 
Mesto 

0.97 0.94 1.00     

Ljubljana 0.97 0.95 0.98 1.00    
Maribor 0.97 0.93 0.97 0.97 1.00   
Celje 0.96 0.93 0.98 0.98 0.98 1.00  
Murska 
Sobota 

0.96 0.92 0.97 0.97 0.99 0.97 1.00 

 
Source: Ministry of the environment and spatial agency - Slovenian Environment Agency, 2016; own 

calculations. 

Solar radiation was collected from same data points and the procedure is the same. One can 
observe lower correlation for solar radiation than for temperatures. Reason for that can be 
quite simple. Because solar radiation measures the amount of sunlight which reaches the 
surface, amount of total radiation can be lower due to the cloud cover in certain regions. 

                                                

3 Definition of each weather variable (in Slovene) is available at 
http://meteo.arso.gov.si/uploads/meteo/help/sl/razlaga_spremenljivk.html 
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Table 2. Correlation matrix of solar radiation across Slovenia from 2010 to April 2016 

 Lešče Bilje 
Novo 
Mesto 

Ljubljana Maribor Celje 
Murska 
Sobota 

Lešče 1.00       
Bilje 0.91 1.00      
Novo 
Mesto 

0.88 0.86 1.00     

Ljubljana 0.90 0.88 0.91 1.00    
Maribor 0.89 0.86 0.91 0.89 1.00   
Celje 0.90 0.86 0.93 0.91 0.95 1.00  
Murska 
Sobota 

0.86 0.83 0.90 0.87 0.94 0.91 1.00 

 
Source: Ministry of the environment and spatial agency - Slovenian Environment Agency, 2016; own 

calculations. 

2.3.3 Daylight savings time 
Before merging the datasets, we have to align (synchronize) time series. Daylight savings 
time is one of the issues. 

For the electricity demand, issues are different. For each year we have to check the data 
manually. In March, demand for whole day could be shifted and last hour could be missing. 
In October, there is no 25th hour, but demand forecast can contain very high value for one 
specific hour. For the consistency of hourly time-series, in March we forecast shifted 
(missing) hour, and in October we remove double hour. 

Weather data is published in Central European Time, so we shift summer hours and we also 
forecast in March shifted hour and, in October, we also remove double hour. This is 
especially important because of the number of solar hours in a year, where electricity demand 
in winter is increased due to less light during the day. 

2.3.4 Merging the datasets 
Both datasets are merged based on the time variable. Merging was done by using one to one 
merge in Stata with key variables: year, month, day and hour. 

2.4 Error measurements 

Popular error measurements which are usually used in comparing of forecasting models are: 

• mean error – ME, 
• mean absolute error – MAE, 
• mean squared error – MSE, 
• mean absolute percentage error – MAPE, 
• Theil’s U-statistic. 
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2.4.1 Mean error 
Mean error is calculated as the average of the sum of all differences between realized values 
and forecasts. According to the assumptions of linear regression, mean should be equal to 
zero. Reason for that is because errors which are used in calculation are not in their absolute 
values, so they cancel each other. We will use mean to look at the seasonalities and try to 
see and understand if some periods are too underestimated or overestimated. In the formula 
below, 𝐿8 − 𝐿8 is difference between real values and forecasts (hat). 

ME =
𝐿8 − 𝐿8/

8;&

𝑛 (8) 

2.4.2 Mean absolute error 
Mean absolute error is similar to mean error, but we sum the absolute differences. This 
measure shows us how close in absolute terms the forecasts are from real values. Because 
mean absolute errors is showing errors in a same scale of data which is measured, it cannot 
be used to compare errors of different data types. Since most of the errors are canceled in 
ME, this measure is more important. Other name for mean absolute error is mean absolute 
deviation. It is calculated as 

MAE =
𝐿8 − 𝐿8/

8;&

𝑛 . 9  

2.4.3 Mean squared error 
Mean squared error is next step of MAE. It is an average of squared errors. Compared to 
MAE it “punishes” extreme errors because of squared errors. 

MSE =
𝐿8 − 𝐿8

*/
8;&

𝑛 10  

2.4.4 Mean absolute percentage error 
Mean absolute percentage errors is used very often in measuring prediction accuracy of a 
forecasting method. It expresses accuracy as a percentage (if it is multiplied by 100). 

MAPE =
1
n

𝐿8 − 𝐿8
𝐿8

/

8;&

11  

Although MAPE is very popular measure, it has a few issues. It cannot be used when the 
realized values are zero. That issue is not applicable to electricity demand. Some papers with 
analysis of MAPE are done by Tofallis (2015) and by Hyndman and Koehler (2006). 

2.4.5 Theil’s U-statistic 
One additional measure for forecast accuracy is Theil’s U-statistic. It is one of the simplest 
measurements. It is most commonly used to compare forecasting model with the simplest 
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forecast procedure, the naïve forecast. Result is a square root ratio between sum of squared 
errors of our forecasting model and the sum of squared errors from the naïve model. Any 
ratio which is close or greater than one should be disregarded, since it is similar (or worse) 
to the naïve model. 

U =

𝐿j − 𝐿8
𝐿8

*
/%&
8;&

𝐿/kïmnj − 𝐿8
𝐿8

/%&
8;&

* 12  

2.5 Building the forecasting model 

After collecting all the required data shown in the previous section, we can start building 
forecasting models. Main motivation for the models are to be simple enough and easy to 
implement for various countries. We will test the models on the data which we collected for 
Slovenia and we will compare the results with the existing forecasting model which 
Slovenian transmission system operator ELES uses. We will use Stata as our main software 
for all estimation and forecasting procedures. Data sample from 2010 until 2012 will be our 
estimation period. We will forecast out of sample for next three years and first four months 
of 2016, from the beginning of 2013 until April 2016.  

2.5.1 Single-equation model 
First model is the single-equation model. In this model we will estimate all hours in a single 
equation. We will build it in steps. Reason for that is practical. As already mentioned before, 
trading companies tend to use derived weather forecasts (for example photovoltaic forecasts, 
wind production forecasts) instead of direct weather forecasts. By doing modeling in steps, 
we will be able to see how much each element influences the precision of the forecasts. 

Model consist of three different group of variables. First group of variables (𝑋o), are defying 
seasonal patterns, second group 𝑋p , are weather variables and third group (𝑋q), are lagged 
demand values. Notation for electricity demand will be L. Simplest formation can be 
presented in the formula below where each X is a matrix and betas are vectors of coefficients. 

𝐿 = 𝛼 + 𝜷𝒅𝑋o + 𝜷𝒘𝑋p + 𝜷𝒍𝑋q + 𝜀 13  

As discussed in previous sections, electricity demand has well defined seasonalities. Easiest 
way to model those seasonalities is by using binary variables for predictors. There should be 
three to four groups of binary variables: 

• first group is for hours in a day, 
• second group is for days in a week, 
• third group is for months in a year, 
• fourth group is for special days. 
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From the hourly data, we use date and time variable to create binary variables. For the 
consistency of the data, we use same values as original date and time variables. Hours are 
defined from 0 to 23, days in a week from 1 to 7, months from 1 to 12. List of holidays in 
Slovenia can be found on website of The Government of the Republic of Slovenia. Following 
discussed articles in section 1.3.2.3, we categorize holidays into two groups, depending on 
the historical effect of the deviation from the normal demand. For example, holidays like 
Christmas, Easter are considered to be major holidays. Most of the other holidays are 
considered to be minor holidays. To see how much effect holidays have compared to a 
normal demand, we create two binary variables, one for major holidays and one for minor 
holidays. Different specification was used for days in a week interaction. It has three 
categories, working days, Saturday and Sunday. Reason for that is that not all holidays have 
the same effect and it also depends on which day in a week is holiday. Additionally, we 
added day before and day ahead binary variables for holidays to measure an additional effect 
of bridge days. 

Table 3. Coefficients from a regression only on time binary variables 

Variable 
name Value Variable 

name Value 

Constant 1,258.30 Hour 3 -92.59 
February 41.77 Hour 4 -80.20 
March -66.54 Hour 5 -17.98 
April -154.75 Hour 6 198.42 
May -160.14 Hour 7 346.56 
June -129.48 Hour 8 404.43 
July -155.71 Hour 9 407.56 
August -187.26 Hour 10 405.41 
September -126.23 Hour 11 426.98 
October -97.25 Hour 12 418.36 
November -64.25 Hour 13 379.95 
December -44.63 Hour 14 351.42 
Tuesday 49.14 Hour 15 325.94 
Wednesday 65.58 Hour 16 341.30 
Thursday 65.74 Hour 17 361.39 
Friday 42.85 Hour 18 401.17 
Saturday -117.29 Hour 19 429.56 
Sunday -215.55 Hour 20 400.16 
Major 
holidays -333.20 Hour 21 308.25 

Minor 
holidays -322.71 Hour 22 208.47 

Hour 1 -56.60 Hour 23 90.48 
Hour 2 -83.29   
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First we regress demand only on binary variables. Table 3 shows the coefficients from the 
regression and we can see a difference between days in a week in daily demand compared 
to Monday. Although Sunday is a non-working day where normal weekly demand is the 
lowest, demand during holidays is even lower (which we expected). R-squared in this 
example is 0.82 and all variables are significant on 95% level. To many other areas, this r-
squared seems to be quite high, aim in electricity demand modelling is to have an r-squared 
above 0.90 or even above 0.95. 

When plotting the prediction against real values it is easy to notice that there is an 
interconnection between weekdays and hours. As it can be seen in figure 5 and in figure 14, 
hourly demand between days in a week is not the same. Solution is to expand binary 
variables into indicator variables for weekdays and hours (figure 14). In their paper Do et al. 
(2016) introduce indicator variables for peak hours, for each weekday and each month. That 
results in 1152 binary variables. In order to reduce a number of variables in a model, one 
can merge working days or some weekdays as one binary variable. Clements et al. (2016) 
show that merging weekday variables can produce inferior results. In our case, trying to treat 
Tuesday, Wednesday and Thursday as one variable (due to similarities between those days) 
is not better either. 

Figure 14 shows two regression results. In first regression electricity demand is regressed 
only on time binary variables (binary variables, red line). In second regression electricity 
demand is regressed on interactions variables between hours and weekdays. Although 
regression on interaction binary variables is an improvement it cannot capture weather 
sensitive elements. Next step is to add weather variables into the regression. 

Figure 14. Line plot sample of binary and interaction variables regressions against real 
values 

 

Source: ELES. Load and Generation, 2016; own calculations. 



  29 

We will add temperature first. In order to try to explain non-linearity between electricity 
demand and temperature, a few temperature variables have been created. Fan and Hyndman 
(2012) suggest using lagged temperatures, for past three hours, and past six days for the same 
hour. In our model, we use temperature and squared temperature, as well as lagged 
temperature for past two hours (tests with using more lags did not produce much better 
results) and for past two days at the same hour. Usage of lagged temperatures Wang, Liu, & 
Hong (2016) are calling as behavioral “recency effect”. It is a psychological aspect where 
people, for example during a summer period, and after a few hours of similarly high 
temperatures, one can feel that it is getting warmer each hour. Additional effect of lagged 
temperatures heating or cooling effect of buildings. In summer periods, if a few days have 
high temperatures, effect on electricity demand is higher on second or third consecutive day 
because it takes some time to increase temperature of buildings. Similar scenario can be 
applied in winter. 

Next step is to add an additional weather variable, solar radiation. It also has its seasonal 
pattern which can be seen in figure 15, although it is not that strong when we compare it to 
the seasonality effect of the temperature. 

Figure 15. Scatter plot between electricity demand and solar radiation (for working days, 
by months) 

 

Source: ELES. Load and Generation, 2016; Ministry of the environment and spatial agency - Slovenian 
Environment Agency, 2016; own calculations. 
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Table 4 shows the error measurements of the regressions. For this example, lagged realized 
demand is not included. Normal scenario is model only with indicator binary variables, 
temperature scenario is normal with added temperature variables, and solar scenario is final 
scenario where we added solar variable in temperature scenario. 

Table 4. Error measurements of predictions for each new variable added in regression 

 Error values 
MAE Normal 61 
MAE Temperature 52 
MAE Solar 51 
MSE Normal 1,320 
MSE Temperature 1,329 
MSE Solar 1,329 
MAPE Normal (in %) 4.53 
MAPE Temperature (in %) 3.91 
MAPE Solar (in %) 3.87 

 

For normal scenario errors are largest and MAPE is 4.53%. We already know that 
temperature has a non-linear effect on demand, and by adding temperature functions demand 
errors significantly decrease for more than a half percent. Errors only slightly changes 
downward if we add a solar variable into a regression. That is why temperature is most used 
weather factor in modeling forecasting electricity demand models. 

After adding indicator variables for modelling seasonalities and weather variables, next step 
is to add lagged realized demand. Since we are interested only in direct forecasting, for day-
ahead forecasting, first available lag for the same hour is 48 hours before. Also, we add one 
more lagged realization, 7 days before for the same hour (168th hour lag). There are two 
reasons for preference of direct forecasting compared to multi-step forecasting. First reason 
is that in theory, direct forecasting models are more robust to the model misspecification 
comparing to the multistep iterative forecasts (Marcellino, Stock, & Watson, 2006; Taieb & 
Hyndman, 2012). Second reason is reason is the speed of the whole process. If a trading 
company currently is interested only in day-ahead demand (which can be the case), then 
direct forecasting model is faster to implement. 

In their paper Clements et al. (2016) discuss possible issues with using lagged working days 
to predict Saturdays and Sundays or lagged Saturdays and Sundays to predict Mondays. 
Because during workdays demand is generally greater than during the weekends, it leads to 
over-prediction of weekends (negative bias in the errors) and under-prediction of Mondays 
(positive bias in the errors). In their case reason for this is that the coefficients on one-day 
(they are using 24th hour lagged demand) lagged demand do not differentiate between days 
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of the week. Solution for this issue is to let lagged values interact with day of the week binary 
variables. 

Final formula is for modelling electricity demand is 

𝐷𝑒𝑚𝑎𝑛𝑑 = 𝛼 + 𝜷𝟏𝐼𝑁𝐷"8Tn	 ~,o,T + 𝜷𝟐𝐼𝑁𝐷~�q + 𝜷𝟑𝑇𝐸𝑀𝑃
+𝛽�𝑆𝑜𝑙𝑎𝑟 + 𝜷𝟓𝐿𝑎𝑔	𝑑𝑒𝑚𝑎𝑛𝑑 ⋅ 𝐼𝑁𝐷"8Tn(o) 14  

2.5.2 Multi-equation model 
Different approach to modeling hourly electricity demand is to treat each hour as individual 
time series. Base for this model is the paper from Ramanathan et al. (1997), with which they 
won the electricity demand forecasting competition. For the comparison purposes, we define 
variables in the model as close as possible to the single-equation model. 

Main difference between our model and the one proposed by Ramanathan et al. (1997) is, 
that in default scenario, all weekdays are included in the model, so the end model has 24 
equations, instead of 48. Also, we will not use lagged errors in the model. 

One practical reason which could be in favor of building a model for individual hours is that 
one does not need to account for complicated interactions between hours and days in a week. 
Direct consequence of that is less variables in each regression and the ability for older 
(slower) computers to process the related regressions. Also, there is a possibility that multi-
equation models can reduce noise in the data. 

Formula for modeling hourly demand is: 

𝐷𝑒𝑚𝑎𝑛𝑑~ = 𝛼 + 𝜷𝟏𝐼𝑁𝐷"8Tn	 o,T + 𝜷𝟐𝐼𝑁𝐷~�q + 𝜷𝟑𝑇𝐸𝑀𝑃
+𝛽�𝑆𝑜𝑙𝑎𝑟 + 𝜷𝟓𝐿𝑎𝑔	𝑑𝑒𝑚𝑎𝑛𝑑 ⋅ 𝐼𝑁𝐷"8Tn o 15  

Both models are estimated using OLS. Although by using lagged dependent variables in a 
OLS regression, assumption of strict exogeneity does not hold. Instead, assumption of weak 
dependence can be used, and in order that this assumption is satisfied, stability condition 
( 𝛽 < 1) must also be satisfied. Estimated coefficients are biased, when sample size is 
small. In case one has a large sample, estimated beta should be a good estimator of true beta. 
Apart from alternatives, OLS regression in forecasting electricity demand is quite popular 
(Ramanathan et al., 1997) and we have a large sample, so we decided to use OLS regression 
as well. 

3 EMPIRICAL RESULTS 

In the previous chapter we explained data structure and we built forecasting models. We kept 
models’ specifications are as close as possible to each other, that we can easily compare 
them. In this section we will first compare models to try to see if there are any differences in 
forecasting results and also, what would be the possible reason for those differences. After 
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that we will introduce benchmark and adjust the models so the final model can be 
comparable to the benchmark. 

In the end, we will investigate whether combining models would produce better forecasting 
results compared to the individual models. 

3.1 Comparison of the models 

For the comparison purposes, both models have the same specification. Ramanathan et al. 
(1997) give an additional advantage to multi-equation models by having the ability of 
making different specifications for each hour, since they expect, that different hours have 
different sensitivities to external factors and using the ability to model each hour 
independently could give an additional advantage to multi-equation models. For our 
comparison, we will keep the specifications of the models the same. Models will be 
compared in-sample and out-of-sample. 

In table 5 and table 6 we present the results of the models for in-sample and out-of-sample 
periods (hourly frequency). Accuracy of any forecasting model depends on the data on which 
the model is specified. It is expected that out-of-sample results are not as good in comparison 
with the estimation period. In our case, average change is not too big. MAPE increased for 
almost half a percent. Out-of-sample change would have been smaller if we had modeled the 
single-equation model without interactions between months and weekdays, which would in 
turn made our overall error larger (for approximately 0.3-0.4%). 

Tables are indicating that multi-equation model is slightly better, but we would like to also 
analyze forecasting errors (primarily out-of-sample) structured by hours in a day, days in a 
week and by months. That could give us a better understanding of the reason why the multi 
equation model is slightly better (since both models have the same specifications). 

Table 5. Error measurements between models (with 48-hour lag) comparison with included 
holidays 

 In-sample errors 
Out-of-sample 

errors 
MAE Single 37 44 
MAE Multi 36 43 
MSE Single 2,533 3,457 
MSE Multi 2,449 3,347 
MAPE Single (in %) 2.80 3.27 
MAPE Multi (in %) 2.73 3.19 
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Table 6. Error measurements between models (with 48-hour lag) comparison without 
holidays 

 In-sample errors 
Out-of-sample 

errors 
MAE Single 35 42 
MAE Multi 34 41 
MSE Single 2,224 3,029 
MSE Multi 2,134 2,840 
MAPE Single (in %) 2.61 3.05 
MAPE Multi (in %) 2.53 2.95 

3.1.1 Mean error 
Figures 16, 17 and 18 show mean errors of both models. Vertical axes show mean errors in 
MWh and horizontal axes show hours of the day (from 1 to 24), days in a week (from 1 to 
7) and months in a year (from 1 to 12) respectively. In figure 16 we can see out-of-sample 
period mean errors of single- and multi-equation models. Mean errors are showing us 
direction of the errors. In most hours, both models are underestimating, but in peak hours, 
where demand is highest, models are overestimating. In both cases, multi-equation model 
has lower error than single-equation model. Only hour 15 has a larger error. Because mean 
error is simple average of positive and negative values, it can only tell us direction of the 
errors. What is also noticeable that the off-peak hours are much less underestimated in the 
multi-equation model. 

Figure 16. Out-of-sample ME of single- and multi-equation models for hours in a day 

 

On a daily basis, mean errors in both models show that working days are better estimated 
than weekends, due to the fact that errors in working days mostly cancel out compared to 
weekends. Interesting is, that Tuesday is quite overestimated in comparison to other working 
days. Also, weekends are on average underestimated, where multi-equation model is more 
suitable from the mean error perspective. 
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Figure 17. Out-of-sample ME of single- and multi-equation models for weekdays 

 

Monthly perspective shows similar pattern as the hourly one. In winter periods forecasts are 
mostly underestimating, while in other months under or overestimation is lesser, while in 
spring and most of the summer periods models are overestimating. Months with smallest 
average errors for both of the models are April and July. 

Figure 18. Out-of-sample ME of single- and multi-equation models for months 

 

3.1.2 Mean absolute error 
Figures 19, 20 and 21 show mean absolute errors of both models. Vertical axes show mean 
absolute errors in MWh and horizontal axes show hours of the day (from 1 to 24), days in a 
week (from 1 to 7) and months in a year (from 1 to 12) respectively. Absolute errors are 
showing how much in nominal values forecast deviates from the real values. Since peak 
hours are higher in comparing to off-peak hours, it is logical to assume that errors will be 
larger in absolute terms. Reason for that is that sensitivity (and with that volatility) of those 
hours is higher during the peak hours. 
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Both models are quite similar regarding the MAE perspective. Main difference is that night 
hours have larger absolute error for the single-equation model. This could be the main reason 
for better overall results of the model. 

Figure 19. Out-of-sample MAE of single- and multi-equation models for hours in a day 

 

According to a daily perspective, for both models smallest errors are on Thursdays and 
Fridays. Multi-equation model is only slightly worse on Sundays. Largest difference is on 
Friday and also multi-equation model has the smallest error. Errors between working days 
are different, although days from Monday to Wednesday are on a similar level. This could 
also be the reason why attempting to reduce the number of variables by merging some of the 
weekdays results in a larger error. 

Figure 20. Out-of-sample MAE of single- and multi-equation models for days in a week 

 

Monthly absolute errors are quite similar for the first seven months. We can see few spikes 
in two months, August and December. Although we have monthly binary variables (or 
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interactions) in our models, most likely there two scenarios which could explains this 
change.  

There is an additional unobserved holiday effect in a certain part of the month. In August, 
for example, lots of people are going abroad for vacations. Since mean errors are low for 
August, that means that some of the errors are canceling each other. Monthly 
binary/indicator variable captures average effect (if we ignore weather factors, we defined 
monthly effect as a binary variable) for the whole month and because of that it cannot capture 
an unobserved effect or that effect influences the level for the whole month. 

Similar explanation can be applied to December. During winter holidays (Christmas and 
New Year) people are usually taking vacations, so instead of few days of official holiday, 
demand could be much lower for a whole week or two. In this case, models are 
underestimating the December month, probably because holiday effect here is much stronger 
so it lowers the whole month. 

Other or additional scenario for December could be interpreted if we look at the neighboring 
months in figure 18. Forecasts for neighboring months are also underestimating. In addition 
to holiday factor, it could mean that some possible unobserved weather factors could have 
some influence. One example could be wind which in cold temperatures “helps” buildings 
cool faster which increases demand for heating and, in the end demand for the electricity. 
Also there could be some behavioral or industrial factor (for example, irrational use of 
heating in winter months). 

Figure 21. Out-of-sample MAE of single- and multi-equation models for months 

 

3.1.3 Mean squared error 
Mean squared error is just an additional confirmation of mean absolute error. Figures 22, 23 
and 24 show mean squared errors of both models. Vertical axes show mean squared errors 
in MWh and horizontal axes show hours of the day (from 1 to 24), days in a week (from 1 
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to 7) and months in a year (from 1 to 12) respectively. Errors seen during the night hours are 
larger in single-equation model than in the multi-equation one. What is interesting to see and 
that is not so noticeable in figure 19 is that mid peak hours are slightly better estimated by 
the single-equation model. There are additional two things which can be seen in figure 22. 

At around seven in the morning, as the activity of the population increase, so do the errors 
of both models (we explained the hourly normal “shape” in section 1.2.1.1). Second errors 
jump happens in the afternoon, when activity temporarily drops (when people are traveling 
home from work, or resting just after work). At the second increase of demand errors are 
lower. 

Figure 22. Out-of-sample MSE of single- and multi-equation models for hours in a day 

 

Possible explanation for better peak estimation of single-equation model lies in figure 23. If 
we check the days in a week again, largest difference between forecast is on Sunday where 
multi-equation model is worse. This was also seen on MAE charts, but since MSE 
“penalizes” larger errors by squaring them, here it is clearer to see the possible reason for 
larger peak errors. 

Figure 23. Out-of-sample MSE of single- and multi-equation models for days in a week 
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Mean squared errors on a monthly basis is not showing different error patterns from mean 
absolute errors. Lower values in September and October are confirming that those two 
months are the most stable ones. 

Figure 24. Out-of-sample MSE of single- and multi-equation models for months 

 

3.1.4 Mean absolute percentage error 
Figures 25, 26 and 27 show mean absolute percentage errors of both models. Vertical axes 
show errors in percentage points and horizontal axes show hours of the day (from 1 to 24), 
days in a week (from 1 to 7) and months in a year (from 1 to 12) respectively. 

Figure 25 shows the hourly mean absolute percentage errors. During the night hours when 
population activity is at its lowest level, MAPE is also lower for the multi-equation model. 
Last hour error is also larger for multi-equation model. 

Figure 25. Out-of-sample MAPE between single- and multi-equation model for hours in a 
day 
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MAPE also shows one interesting thing. Weekends have larger percentage errors than 
working days. That cannot be seen on absolute error charts since errors are shown in absolute 
values, and demand on weekends is lower than demand on working days. Also, from the 
MAPE perspective, Sunday has the largest error, absolute and in percentage points. 

Figure 26. Out-of-sample MAPE between single- and multi-equation model for days in a 
week 

 

On the relative scale of errors, large errors for August and December are also confirmed. 
Additionally, errors in April and May are relatively larger in comparison to other months in 
first half-year. In absolute terms that was not the case. 

Figure 27. Out-of-sample MAPE between single- and multi-equation model for months in 
a year 
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3.2 Choosing the final model 

After checking all errors measurements as well as trying to understand and explain the 
behavior of the model on different time factors (hour of the day, days in a week, months in 
a year), multi-equation model is picked to be better model. There are three main reasons for 
this: 

• with the same specifications of the models, multi-equation model has slightly better 
results, 

• model is more flexible because it gives an option to model each hour differently in order 
to get even better results, 

• since there are less variables in a multi-equation model per equation (and less data for 
each hour), it is easier to estimate and interpret the results. 

It is also worth noting that this is not the universal case. It could be possible that for some 
other country, a single-equation model would be better than a multi-equation one. 
Development of technology gives the analysts the possibility to do more tests faster and in 
situations when one is using only one technique for building a forecasting model, which is 
why we advise testing both variations. 

3.3 Replicating the benchmark 

Now that we have picked the final model, we would like to know how good it is when 
compared to the benchmark. There are lots of articles where benchmark is usually some 
simpler model, like the naïve approach. In the paper, Wang et al. (2016) discuss that using 
naïve approach for benchmark is not a good idea, since naïve models are usually quite 
imprecise. Naïve approach in this case would be considering Monday from previous week 
or some weighted average of a few previous Mondays as forecast for this Monday or some 
similar approach. 

In the case of Slovenia, we do not have to build a benchmark model since there are already 
available historical forecasts from Slovenian TSO. We will use their forecasts as a 
benchmark. As mentioned before in section 2.1, ELES has different leading times for 
publishing forecasts comparing to our models. To be able to compare our model with a 
benchmark, we have to make some additional variations of our model. 

As shortly mentioned before, ELES publishes their forecasts for day-ahead with 14 hours of 
leading time from Tuesday to Saturday. For Sunday and Monday leading time approximately 
increases to 32 and 56 hours respectively (they publish forecasts for Sunday and Monday 
after 4 p.m. on Friday). Replicating forecasting model is a combination of two direct 
forecasting models (variation of a single model by picking first available lagged variable). 

Our model is built with 24 hours of leading time. That means, at midnight today, model is 
forecasting hourly demand for tomorrow. When ELES publishes their forecast, 
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approximately after ten in the morning, they already have the possibility of using information 
from realizations for first ten hours of today. That gives them a certain advantage. In order 
to replicate the benchmark, we will create an additional model which in its structure has the 
same minimal lag structure. 

Since most of the trading companies are working every day increasing minimal lag structure 
(or doing multistep forecasting) for Sunday and Monday is not necessary and we will ignore 
those days in the analysis. 

Replicated and day ahead models will be compared and analyzed in a few ways. We are 
interested how they both handle seasonalities, so we will compare models the same way as 
we tested our initial models (by hours, by days in a week and by months). Also, we want to 
see how much special days have influence on the result. 

After comparing models, we would like to see if there is any additional effect on combining 
benchmark with our forecast in order to try to improve forecast accuracy. Belief that 
combining forecasts will improve their accuracy is not a new approach. It was investigated 
before and there is a number of articles on this topic. One of those articles are from Clemen 
(1989) and Nowotarski, Liu, Weron, & Hong (2016). 

We will combine forecasts in two ways: one way would be to regress the forecasts using 
OLS; other way would be to use the average. 

3.3.1 Mean error of the replicating procedure 
Benchmark’s model has a different hour mean error structure (figure 28). For the first part 
of the day, errors are much lower compared to the afternoon where their model on average 
is quite overestimating. In the hours of second “spike” during the day in the demand, the 
benchmark model better captures the lack that jump. Our model is better using information 
from change in minimal lag structure and for first ten hours decreased errors. 

Figure 28. Out-of-sample ME comparison between benchmark and our model for hour in a 
day (Tuesday-Saturday) 
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Using same day-ahead forecasting structure, we can only compare days from Tuesday to 
Saturday. In days in a week case (figure 29), benchmark model behaves better, more stable. 
In benchmark model Fridays are much more overestimated than other days. Our model is 
overestimating Tuesdays and underestimating Saturdays. Comparing both models mean 
errors on average (on daily basis) are in different directions. 

Figure 29. Out-of-sample ME comparison between benchmark and our model for days in a 
week (Tuesday-Saturday) 

 

On a monthly basis both of the models have similar mean error but in most of the cases they 
also have opposite signs. For the benchmark model much larger errors are seen in February, 
March, July and December, and much smaller errors are in January, June and October. 

Figure 30. Out-of-sample ME comparison between benchmark and our model for months 
in a year (Tuesday-Saturday) 
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3.3.2 Mean absolute error of the replicating procedure 
Shapes of the errors for both models are almost the same. There are two interesting patterns 
which can be noticed in figure 31: 

• proposed model is slightly better using information for night hours, 
• in mid peak hours, the benchmark model has slightly smaller errors, but after hour 17 

proposed model picks up (apart from hour 20). 

Figure 31. Out-of-sample MAE comparison between benchmark and our model for hours 
in a day (Tuesday-Saturday) 

 

Errors of our model are greater for Tuesday and Wednesday, slightly worse for Thursday, 
but errors for Friday are quite large for benchmark model comparing to ours. Saturdays’ 
errors are similar (slightly in favor of our model). 

Figure 32. Out-of-sample MAE comparison between benchmark and our model for days in 
a week (Tuesday-Saturday) 
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Mean absolute errors are showing less monthly volatility in the benchmark model, where 
our model has spikes in August and December. Possible reasons for those errors are 
discussed in section 3.1.2. For other months our model shows better results, only in April 
and May, benchmark model has less mean absolute error. 

Figure 33. Out-of-sample MAE comparison between benchmark and our model for months 
in a year (Tuesday-Saturday) 

 

 

3.3.3 Mean squared error of the replicating procedure 
Since MSE penalizes large errors, from the hourly perspective, it confirms mid peak hours 
mean absolute error results. Since electricity demand in night hours are by default lower, 
changes in mean squared errors should not be much that higher. Still, the differences between 
forecasts in night hours are also greater. 

Figure 34. Out-of-sample MSE comparison between benchmark and our model for hours 
in a day (Tuesday-Saturday) 
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Both models behave similarly, but our model is much more stable on Fridays. For Tuesdays 
and Wednesdays, benchmark model shows better results. 

Figure 35. Out-of-sample MSE comparison between benchmark and our model for days in 
a week (Tuesday-Saturday) 

 

On a monthly basis, benchmark model does not have spikes during summer. August months 
have similar errors to other months. This confirms that August has some unobserved effect 
on demand. Possible approach to solving this issue is to try to model monthly effects. If there 
is some holiday effect, in the beginning of August, demand should be lower disregarding 
other factors. One could create an additional kind of category for holidays which could help 
to identify unobserved August effect and adjust the demand for those specific periods if 
assumption of the error is correct. 

For both models holiday effect in December makes larger average errors. Difference 
between months in our case is much larger compared to the benchmark model, but also errors 
of our model are lower for previous month and also for most of the other months. 

Figure 36. Out-of-sample MSE comparison between benchmark and our model for months 
in a year (Tuesday-Saturday) 
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3.3.4 Mean absolute percentage error of the replicating procedure 
MAPE on hourly basis does not say anything more than MAE and MSE. Our model is better 
in off-peak hours while in mid peak hours the benchmark model has better results. 

Figure 37. Out-of-sample MAPE comparison between benchmark and our model for hours 
in a day (Tuesday-Saturday) 

 

On daily basis results are also consistent with two previous measurement errors. Our model 
better captures Friday effect (on Friday demand in the afternoon is lower when compared to 
other working days). 

Figure 38. Out-of-sample MAPE comparison between benchmark and our model for days 
in a week (Tuesday-Saturday) 

 

MAPE on monthly basis is also similar like MAE and MSE, but there is an additional 
information on this chart. We already suspect that our model has some potential 
misspecification regarding unobserved effects in August and December, but what is also 
interesting is that highest errors in relative terms for the benchmark model are also in those 
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two months. That only confirms that this effect cannot be completely captured with standard 
time factors and one should think about adding some additional variables. 

Figure 39. Out-of-sample MAPE comparison between benchmark and our model for 
months in a year (Tuesday-Saturday) 

 

 

3.4 A short summary of the analysis of measurement errors 

After presenting errors for all seasonalities and comparing them with the benchmark, some 
conclusions are to be made. Models are compared only for day-ahead forecasts, from 
Tuesday to Saturday. 

Firstly, on an hourly basis, our model is much better for the first hours. It better uses 
information gained from changed minimum lag structure and in those hours all error 
measurements are showing better results. In mid peak hours, the benchmark model has a 
slight advantage and also variance of the errors in our model is larger in second jump in the 
demand. Other hours are quite similar to our model or our model has some advantage. On a 
daily basis models are similar, but there is a larger difference on Friday. Difference is larger 
in absolute terms than in relative terms. Also average errors are mostly in opposite direction. 
That would mean that on average, errors could cancel each other if models are combined. 
Absolute errors on monthly basis are confirming that there is some unobservable effect in 
some months which cannot be captured by standard variables. 

Finally, we can look at the scatterplot between the benchmark and our model in figure 40. 
Dark red dots represent proposed model, and black dots represent the benchmark model. On 
the edges of our surface we are able to see black dots from the benchmark model. There is 
not much difference between the shapes or the density of both models. It is easy to see that 
models are quite similar. Visible difference lies in some outliers in the lower region of the 
chart. That suggests that benchmark model better handles special days or bridge days 
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because lower values of the demand suggest at special days or weekends, but since special 
days are rare events it is more likely that forecast errors are larger than for the weekends. 
Table 7 confirms that we have successfully replicated a benchmark model, though, we were 
unable to significantly improve it. Also, errors are smaller in a sample which does not include 
holidays. Theil U-statistic is almost equal to 1 when holidays are included, and it is around 
0.95 without holidays. 

Table 7. Results of the replicating procedure (Tuesday-Saturday) 

 With holidays Without holidays 
MAE Benchmark 40 39 
MAE Our model 39 37 
MSE Benchmark 2,783 2,630 
MSE Our model 2,766 2,413 
MAPE Benchmark (in %) 2.826 2.712 
MAPE Our model (in %) 2.777 2.592 
Theil U-statistic 1.023 0.951 

 
 

Figure 40. Scatterplot between benchmark (dark grey) day-ahead forecasts (Tuesday-
Saturday) and our model (dark red) 
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3.5 Combining forecasts 

So far we have analyzed our model with the benchmark. We presented each seasonality 
through error measurements and discussed the results. Since our beginning model is adjusted 
so it can be forecasted at the same hour, models are closer to the specifications and we would 
like to see if the overall results are improved by combining them. 

3.5.1 Combination using OLS 
For the regression method of combining the forecasts, we will use out-of-sample year 2013 
for the estimation. Estimation is done by OLS regression and we will compare results with 
results from previous section. Estimated coefficients of the regression are shown in equation 
16. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 	5.151082 + 0.5281595 ⋅ 	𝑂𝑢𝑟	𝑚𝑜𝑑𝑒𝑙" + 	0.4671016 ⋅ 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘" 16  

3.5.2 Combination using simple average 
For the simple average we do not require an additional out-of-sample year, but since we used 
year 2013 for regression coefficients estimation, we will report results with and without 
including year 2013 into error measurements. 

Table 8. Error measurement for combined forecasts with and without holiday (period 2013 
and onwards) 

 With holidays Without holidays 
MAE OLS 33 32 
MAE Average 33 32 
MSE OLS 1,940 1,756 
MSE Average 1,937 1,758 
MAPE OLS (in %) 2.349 2.220 
MAPE Average (in %) 2.348 2.221 
Theil’s U-statistic 1.002 1.000 

Table 9. Error measurement for combined forecasts with and without holiday (period 2014 
and onwards) 

 With holidays Without holidays 
MAE OLS 32 32 
MAE Average 32 31 
MSE OLS 1,873 1,734 
MSE Average 1,867 1,732 
MAPE OLS (in %) 2.306 2.199 
MAPE Average (in %) 2.304 2.198 
Theil's U-statistic 1.001 0.999 
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Results are shown in table 8 and table 9. Combining forecasts by both methods show 
significantly better results than using individual forecasts. MAPE is lower for almost half a 
percent by using both methods. A similarly scaled improvement can be seen when holidays 
excluded. 

Results between OLS regression and simple average in this case are very similar. That is 
expected since in previous analysis models did not show any larger difference in results. If 
we regressed models in the in-sample period, larger weights for combining forecasts would 
be assigned to our model. Then results would be in favor of simple average. In this case we 
find no reason to use regression over simple average since two models which are used in 
combination have very close results. That is why regression weights are close to average 
weights. 

Much better forecasting results are a confirmation of our error analysis in previous sections. 
Because most of the average errors from both models have different signs, by combining 
them, some of the errors cancelled each other. That, in the end, resulted in a much more 
precise forecasting model. Also, the benchmark model is handling better special events. This 
in turn led to a decrease in errors in the combined model. 

CONCLUSION 

In the thesis we presented a model which can be used in practice on a daily basis for 
forecasting day-ahead electricity demand. Motivation for the model was lack of the publicly 
available forecasts in practice for this region. In case that they are available, time of the 
publication can be an issue. We have tried to find what the policies are and the timeline of 
publishing forecasts in some neighboring countries (and some countries which have their 
own electricity markets, like Romania) and presented findings.  

Theoretical research has been done by many authors. Since statistical models are more used 
by the economists, we focused on building a statistical model. We analyzed electricity 
demand and presented its specifics, seasonalities and external factors which have influenced 
it. 

Process of data collecting we explained in data mining section. Also we discussed filters for 
error detection and methods to deal with errors in data. Weather factors were a second source 
of data on which we applied similar techniques. In the end data was merged into one time-
series and readied for further analysis. 

Next step was building the model. We proposed two models with same variable 
specification. For the estimation period we used three years of data, from 2010 to end of the 
2012. For the period of 2013 until the April 2016 by using a minimum available lag structure, 
we made day-ahead direct forecasts. Results of the forecasts were compared and we chose 
the better suited one which was also the simpler model. Since electricity demand has three 
distinctive seasonalities, we compared the models on all three of them. Criteria for choosing 
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the better model were error measurements over all seasonalities: mean error which showed 
the direction of over- or underestimation, mean absolute error, mean squared error, mean 
absolute percentage error as well as Theil’s U-statistic. For the benchmark we used 
forecasting data which is published by ELES. Proposed model is adjusted so the minimal 
lag structure criteria is satisfied and models are from that perspective comparable. Results 
showed that our model is very similar to the benchmark and when holidays are excluded, 
our model is slightly better. Also we tested the theory of combining forecasts in order to 
improve forecast accuracy which proved to be true. We tested two scenarios, simple average 
between two models and obtaining coefficients by regression. In this case, there was no proof 
for using regression since simple average produced the same results as regression. 

From the perspective of future improvements, there are few things which we will mention. 
First, as Ramanathan et al. (1997) discuss, by using a 24 hour model with separate equations, 
there is a possibility to model each hour separately. For the comparison purposes we kept 
the model specifications the same for all hours, but we believe that if one would model all 
hours separately by choosing different lags and different variables for different hours, end 
model forecast precision would improve. Also, we estimated the model once, then we used 
the same estimators for whole forecasting period. In real life, model would be re-estimated 
on much shorter time-scale, so forecasting period would be smaller than estimation which 
was not the case in our example. That also could lead to improvement of the precision. For 
further research it would be interesting to see if and how much accuracy of forecasting 
models would be improved if more models with different specifications or estimation 
procedure would be included. Since we combined only two models, regression in my case 
was not necessary for estimation of the weights. Adding more models would find regression 
estimation useful. 

The proposed model is easily applicable in many countries, but in order to get good results, 
research and data mining procedure which we presented should be followed.  
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