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INTRODUCTION 

We currently live in a world ruled by large amounts of data. Organizations’ success is highly 

determined by the way they foresee and assess changes occurring in the future. Predictive 

data analytics is the art of building and using models that create forecasts based on patterns 

extracted from historical data. So, it is a process of making projections about a specific event 

which the outcome is still unknown in the present. One of the main applications is price 

prediction (Kelleher, Namee, & D’Arcy, 2015). Price prediction can be applied in 

innumerous types of business, including the energy sector. Additionally, Big Data has 

created opportunities for development of new energy services and bears a promise of better 

energy management and conservation (Grolinger, L’Heureux, Capretz, & Seewald, 2016). 

Whenever prediction deals with time-series data, it can be designated as forecasting.  

The electricity spot prices (ESP) represent the result of the market bidding prices outcome, 

in the electric wholesale market. Predicting these prices is an important and impactful task 

for market participants, like producers, consumers and retailers, since the principal objective 

for such players is to achieve the lowest cost in comparison with competitors. ESP play a 

huge role in energy market’s decision making. It is important both for developing proper 

bidding strategies as well as for making conscient and sustainable investment decisions 

(Keynia & Heydari, 2019). Additionally, it impacts the decision of the technologies to use, 

for example, choosing between renewable energy generators or classic gas turbines. 

Furthermore, the topic of electricity prices forecasting is extremely relevant for both 

developed and developing countries. Developed countries search for their economic 

prospect’s improvement. Electric energy efficiency is a crucial metric for that improvement. 

Electric energy efficiency can decrease the electricity prices thanks to the reduction of  

consumption, thus decreasing the need of having new expensive power generation and 

diminishing the pressure on energy resources. Therefore, ESP behavior is an important factor 

in their economy. Regarding developing economies, which have faced problems to take the 

populations out of poverty, the electricity sector restructuring has been fundamental for 

helping increase the levels of economic development (Ebrahimian, Barmayoon, 

Mohammadi, & Ghadimi, 2018). 

ESP are represented by a time-series. A time-series investigation starts by careful examining 

recorded data plotted over time. This scrutiny regularly adopted indicates not only the 

method of analysis, but also the statistics that will be of use in summarizing the information 

in the data (Shumway & Stoffer, 2016). There are many different models to forecast ESP, 

and different parameters to select and measure. Essentially, forecasting models can be 

divided in two main groups: Statistical models and Computational Intelligence (CI) models. 

In the literature, statistical methods and CI have been used with success in numerous 

applications of time series forecasting. Also, hybrid models that bring together traditional 

statistical models and CI models have achieved relevant results when it comes of accuracy 

in different fields of application  (Domingos, de Oliveira, & de Mattos Neto, 2019).  
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ESP forecast is a challenging task, since prices show high volatility and the electricity market 

has complex conditions (Qin et al., 2019). Several different factors can influence the prices, 

like overall supply, demand for power, tariff regulations, market conditions, the climate and 

weather conditions of the environment (sun, cloudy days, wind…), making electricity 

market prices increase or decrease over time.  ESP forecasting is also a recent and broad 

topic. There are different approaches that can be adopted to perform an electricity price 

forecasting study, especially taking into account the forecast horizon, the data resolution, the 

historical data available and the market we are dealing with. Therefore, the techniques 

adopted in past studies covering this problem cannot be blindly applied in this dissertation. 

Our literature survey revealed a large gap regarding the number of studies in terms of a mid-

term horizon forecast (several months to one-year time horizon), in contrast to short-term 

price forecasting. The studies that used Portuguese ESP data (Ferreira, Ramos, & Fernandes, 

2019)  are very sparse and in the case of mid-term scope using computational intelligence 

models, do not exist at all, as far as we know. One of the reasons is due to the fact that 

Portuguese electricity market total liberalization just occurred in 2007.  Also, to the best of 

our knowledge, there is no research comparing different statistical and computational 

intelligence techniques in simultaneous in the scope of mid-term forecast in the Iberian 

market (OMIE), using Portuguese electricity spot price data.    

Based on this brief introduction, the primary purpose of this dissertation is to implement and 

compare CI and statistical models to forecast the daily and monthly Portuguese ESP for the 

day-ahead OMIE market, with a one-year horizon period. This contributes to fill the mid-

term Electricity spot prices forecasting research gap. In addition, the results of the predicted 

prices will serve ADENE – The Portuguese Agency for Energy (private non-profit 

association with a public interest), contributing to the consumers empowerment to reduce 

their energy bill, by predicting the energy prices fluctuations so that they are better informed 

when switching energy suppliers with the platform Poupa Energia – Save Energy 

(https://poupaenergia.pt/) through the supplier change logistics operator, OLMC 

(https://olmc.adene.pt/). 

For the purpose in this study, we propose the following Research Questions (hereinafter: 

RQ). RQ1: What are the most used techniques and models in the literature, for a mid-term 

electricity price forecasting?  RQ2: Which models have the best performance and the most 

accurate results, for a mid-term ESP forecasting, in the day-ahead OMIE market, using 

monthly and daily Portuguese data? 

The following Research Hypotheses are proposed (hereinafter: RH). RH1: Computational 

Intelligent models show better performance if compared to Statistical models, when 

forecasting mid-term ESP in the day-ahead OMIE market. RH2: The forecast of mid-term 

ESP in the day-ahead OMIE market, using Computational Intelligent or Statistical models, 

has better performance when using monthly price data than daily price data. RH3: It is 

possible to improve the forecast of mid-term ESP in the day-ahead OMIE market, by 

selecting an ensemble of models, either trained with monthly or daily price data. 

https://olmc.adene.pt/
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To identify and study the papers that implemented a mid-term electricity spot price forecast, 

we used the PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

method (Moher, Liberati, Tetzlaff, & Altman, 2009) literature survey methodology, using 

Web of Science (webofknowledge.com) as the dataset and search engine to implement the 

developed queries. With this approach we aim at finding the relevant papers and identify the 

techniques and models used in them.  

The development of the data exploration and the models’ implementation to come up with 

the best electricity market clearing price forecast for a mid-term scope will mainly be based 

on the CRISP-DM methodology, Cross-Industry Standard Process for Data Mining (Wirth, 

2000). As a data mining methodology, it proposes descriptions of the phases of a project and 

the tasks involved (Business Understanding, Data Understanding, Data Preparation, 

Modeling, Evaluation and Deployment). As a process model, CRISP-DM provides an 

overview of the data mining life cycle (IBM, 2016). All the data processing and analysis will 

be done in Python and R (programming languages). The selection of Python and R is 

justified due to their dynamic, intuitive, well suited to interactive development and 

prototyping characteristics, showcasing good and vast library options, appropriate for time 

series forecasting. Furthermore, since both programming languages were used in different 

courses in the candidate’s master’s degree, the candidate’s proficiency with these languages 

is sufficient for the requirements of this thesis. 

Regarding the Chapter Content Outline, the thesis is divided in three main chapters, in 

addition to the introduction and conclusion chapters. The first main chapter consist in the 

Research Background and Literature Review, where an up-to-date description of the current 

state of European’s electricity market and its participants, as well as an overview of the 

Iberian Electricity Market, are presented. Also, a description of the electricity spot price 

forecasting horizons, types, and models is done. Finally, a Systematic Review and Meta-

analysis of the Literature is explained and the selected statistical and/or CI models to be used 

in this thesis are briefly described. The second main chapter consists in the Data and 

Methodology, where the data is explored, described and prepared and the models are 

implemented. The third main chapter consists in the Results and Discussion, where the 

findings are summarized and the model’s results are compared. Finally, the conclusion of 

this master thesis is presented.  
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1 RESEARCH BACKGROUND AND LITERATURE REVIEW 

This chapter serves as a presentation of the scientific foundation needed for this dissertation. 

This framework contributes to the understanding of important concepts and gives the reader 

the rationality and logic that lies behind this study. First, an overview of how the European 

electricity market is structured is presented, then a deep understanding on how the prices can 

be predicted, followed by a systematic literature review on mid-term electricity prices 

forecasting studies. This chapter sets the background for a better comprehension of the data 

and methodology chapter.  

1.1 European Electricity Market 

Electricity plays a fundamental part on modern societies like European ones, especially due 

to the fact of the fast growth and intensification of industrialization in the last two centuries. 

It gradually became a fundamental resource for many tasks of our everyday life. Therefore, 

it is crucial to have a system available in society that enables electricity’s purchases and 

sales. This system is called electricity market. The main goal of the electricity market is then 

to provide reliable electricity at the lowest possible cost to consumers, be efficient, make the 

best possible use of the available resources, and enable long-run efficient investments 

(Cramton, 2017). 

1.1.1 Physical Characteristics of Electricity 

Electricity is a very singular commodity, having some specific and unique characteristics.  

First and foremost, before the advent of modern battery storage solutions (Ertugrul, 2017) 

and local community-based production, still in its early stages of adoption by consumers, 

electricity has been considered as economically uncapable of being stored in large quantities, 

having to be consumed at the same time that it is being produced. This condition makes 

electricity more similar to a service than to a good (Mäntysaari, 2015). Although, we cannot 

consider it as a proper service, so it is defined as a tradable commodity (Shah & Chatterjee, 

2020). Additionally, electricity’s consumption and production levels are highly volatile, they 

must be controlled and very well balanced. Electricity demand (also known as load) is 

measured in power units (megawatt) and reflects the sum of the quantity needed in a specific 

moment by the consumer plus the losses. The way electricity is transferred and 

commercialized is very specific, considering it must have a conduct material to transfer it 

and a grid and lines to transmit it for transportation from local production or import, and 

distribution to the consumer. Another peculiar characteristic is the fact electricity can have 

two different classifications as a tradable commodity. It can either be defined as the flow of 

electricity (average power) from one point to another in a specific moment and location, or 

it can be defined as the accumulation of the total energy in the grid in a specific moment and 

location (Mäntysaari, 2015). These are some of the main physical characteristics that heavily 

impact the electricity market structure and how it works. The efficiency of electricity market 
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is a challenging task. Minor perturbations can cause huge repercussions in the electrical 

system. 

1.1.2 European Electricity Market Evolution 

In Europe, before the 90’s, electricity was defined as a monopoly utility. This monopoly 

industry had vertically integrated structures for the electrical systems and was defined by the 

inexistence of competition, so big companies could decide and control the electricity’s 

prices. Considering that those companies had the possession of the grid infrastructure too, 

there was no opportunity for new players to enter the market.  Recently the worldwide 

electricity sector suffered an enormous change thanks to the trend of implementing a 

deregulated and liberalized market. This was valid for the European Union too, which 

decided to gradually remove and reduce some state regulations and restrictions, 

implementing a competitive electricity market, starting around 1996. This became a very 

heterogenous and impactful transformation, given the fact each country had its own electrical 

systems and infrastructures (Chicco, 2009). The goal was to achieve a single integrated 

internal European electricity market transversal to all EU states, which is now enforced.  This 

redesign of the electricity sector, currently spreading globally, impacts how the exchange of 

electricity is made around the world. The exchange between each regional market is now 

easier, thanks to the implementation of the electric power exchange (EPX) and market 

coupling operator (MCO) (Mäntysaari, 2015). Furthermore, the competition between private 

players (producers and retailers) emerges, making the prices drop and the monopolies break. 

Consumers can now choose the supplier that is better suited for them. So, for the European 

case, the purpose of creating a single interconnected European market lies on three main 

reasons: give access to energy that is affordable, make electricity prices competitive, and 

create a more sustainable environment (Lam, Ilea, & Bovo, 2018). This results in an 

improved and more efficient European power system. It is important to note that a 

deregulated electricity market is not the same as a free interference of the state in the market. 

1.1.3 Electricity Market Participants and Functions 

According to the EU Electricity Trade Law (Mäntysaari, 2015) and the Electricity Market 

Functions (Energy Community, 2020), an overview of the main participants in the current 

electricity system (i.e. after the energy market liberalization) is presented below. 

 

Producers: The ones who generate electricity in big power generation stations using 

different sources, i.e., power plants that transform primary energy (e.g., coal, gas, renewable 

energy sources such as wind, solar or biomass, nuclear power, etc.) into electric energy. 

 

Large Consumers: End consumers that are big entities that might consume extreme 

quantities of electricity (high-voltage grid level) and, because of that characteristic, are 
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interested in taking part in the electricity market, looking for a better price deal. Public 

institutions, large industrial or commercial firms are examples of large consumers. 

 

Electricity Retailers: The ones that take care of buying electricity from the producers and 

selling electricity to the end consumer. They can be called as load-serving entities (LSE). 

 

Small Consumers: The end consumers represent the domestic, residential households, or 

small businesses. Their role is fundamentally choosing a retailer and consume electricity. 

They might pay the local Distribution System Operator. 

 

Prosumers: The ones that produce and consume electricity as well. A good example are the 

big companies that have their own power generator, or local household communities. 

 

Transmission System Operators (TSO): The entity responsible for the high-voltage 

electricity transportation grid development, exploration, maintenance, and support. Plus, in 

charge to transport electricity from the power generators, by means of the transportation grid. 

 

Distribution System Operators (DSO): Low- and medium-voltage grid operations, 

distributes electricity to the small consumers, via a dedicated network, called the distribution 

grid. Compared to the TSO, requires less monitoring but has more customers.   

 

Market Regulator: Government entities that regulate a fair, clean and economically 

effective electricity trade, according to the rules and legislations, guaranteeing that the free 

market works in a fair and stable way.  

 

Market Operator: Entity that performs the “system” roles in the electricity market. Takes 

care of the means and conditions for an efficient electricity trade in the free market. 

Aggregates and matches all the bids of consumers and sellers, through a computer system.  

 

Electric Power Exchange (EPX): An on-line platform mechanism where market 

participants can submit their demand or supply bids and proceed to their trades. It acts as the 

host for the markets, providing them with relevant information, settling the market clearing 

price (MCP) and addressing financial risks (Shah & Chatterjee, 2020). The EPX operates 

the spot market (Lam, Ilea, & Bovo, 2018). The main principles of power exchanges are 

liquidity, competition/open market, non-discriminatory treatment and anonymity and 

clearing/settlement. Currently, there are fifteen Power exchanges across the EU.  

 

Nominated Electricity Market Operator (NEMO): A NEMO is a market operator (typically 

corresponds to the EPX) designed by the EU to operate and participate in the day-ahead or 

intraday coupling of neighboring markets. A NEMO must be defined per bidding zone. 

Bidding zones are a geographical area where  network constraints are applied (NEMO 

Comitee, 2019). NEMOs act as a form of national or regional market operators.  TSO and 
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NEMO must jointly cooperate in a European level. The existing NEMOs are colored in 

Figure 1. 

Figure 1 Map of the European Nominated Electricity Market Operators 

 

 

Market Coupling Operator (MCO): Cooperation between NEMOs, a way of integrating 

neighboring markets into one coupled market. The main goals are to create an interconnected 

European Electricity market that links and unifies different electricity exchange systems. 

The MCO helps reduce price volatility across Europe and brings advantage to market 

participants, that do not have to acquire a transmission capacity right for a transaction across 

borders. Europe’s Single Day-Ahead Coupling (SDAC) is responsible for integrating all 

day-ahead European markets, unifying them in one single day-ahead market that covers the 

entire EU. All the NEMOs must cooperate. The coupling is based on the Euphemia 

Algorithm (an-European Hybrid Electricity Market Integration Algorithm) (NEMO 

Comitee, 2019). On the other hand, the Single Intraday Coupling Market (SIDC) integrates 

all the continuous markets.  To achieve this, a project called Price Coupling of Regions 

(PCR) was formed in 2009 by seven EPXs in Europe (EPEX SPOT, GME, Nord Pool, 

OMIE, OPCOM, OTE and TGE). The advantages of PCR are enhancing the liquidity of the 

Source: Own Work. 
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market, reach an overall social welfare and implicit allocation management (Lam, Ilea, & 

Bovo, 2018).  

1.1.4 Current Market Design 

With the liberalization, companies stopped having the power of controlling simultaneously 

electricity’s production, transportation, trade, supply, and the transmission and distribution 

networks. So, now we have a vast and complex electric sector that can be divided into two 

main Electricity Markets: The Wholesale Market and the Retail Market. The Wholesale 

Market is the foundation of a restructured electricity market, where producers compete to 

serve load (Cramton, 2017). It gives information about electricity prices. It is where retailers 

and large consumers bids take place, and the power producers trade big quantities of energy 

with the retail suppliers (to later serve their small consumers) and large business 

(Mäntysaari, 2015).  On the other side, the Retail Market is where the small end consumer 

buys his electricity from the retailers (Mäntysaari, 2015). The Wholesale Market is the one 

responsible for the equilibrium of the whole system. The wholesale prices are variable and 

fluctuate over time, while the retail prices are normally presented at a fix rate. Typically, the 

wholesale prices are lower when compared to the retail prices. In this study we will be 

focusing on the Wholesale Market. The electricity market design after liberalization can be 

summarized in Figure 2. 

Figure 2 Schematic diagram of the current electric market structure 

 

 
Source: Own Work. 
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As seen, the key purpose of the wholesale market is to ensure that the electricity levels are 

well controlled and in balance. For that to happen, the wholesale market is built in a way 

that the participants have enough room to commit “errors”, make changes and do some 

adjustments in their planning. To achieve that, the Wholesale Market is organized according 

to how far in advance the electricity is traded. Figure 3 shows the different types of markets 

encompassing the wholesale market. We have a Futures Market; Spot Market (arranged in a 

Day-ahead and an Intraday Market); and finally, a Balancing Market (Mäntysaari, 2015). 

Figure 3 Markets encompassing the wholesale market 

  

1.1.4.1 Futures Market 

Futures Market is where long-term contracts take place (months to years ahead). Forward 

contracts are the most common ones. They consist in establishing in advance the fixed 

quantity and price of electricity for a settle moment in time. Other examples of futures 

markets are base-load contracts, total supply contracts, peak load contracts or reserves 

(Mäntysaari, 2015). The main advantage of this market is the opportunity for the participants 

to better manage their energy security risks (Cramton, 2017). 

1.1.4.2 Day-Ahead Market 

The Day-Ahead Market is where the market participants sell and buy electricity, in a short-

term period, the day before of the transaction happening. The day-ahead market has the 

objective of dealing with the participant’s sale and purchase bids, that must be submitted in 

the day d-1, so the prices of the following day d will be established. Therefore, every day of 

the year at 12:00 CET, a session is taken to establish the next day price and volume for each 

specific hour (OMEL, 2019). So, for each hour of the day, a unique price is defined. The 

electricity spot price, more specifically the day-ahead price, is determined by the Market 

clearing price (MCP). MCP is what is defined by the meeting point between the supply and 

demand bid curve, i.e., where the equilibrium lies. Since suppliers are the ones that want to 

sell more at a higher price and buyers the ones that want to have more quantities at a lower 

price, the bid curves normally reflect a shape similar to the ones seen in Figure 4. The bids 

are made by 1 up to 24 blocks corresponding to each hour of the following day (or 23 or 25 

on the days that the change of hour occurs according to the official calendar), setting up the 

Source: Own Work. 
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volume and prices offered of each block. The bid submissions are done through the NEMO 

of the respective countries.  

Figure 4  Market clearing price by aggregation of supply and demand 

 

 

Matching Procedure on The Day-Ahead Market 

The Market Operator will deal with matching the bids via the Euphemia Algorithm (Pan-

European Hybrid Electricity Market Integration Algorithm). This algorithm was created to 

help with the coupling of the day-ahead electricity markets in the PCR. It is computed at a 

bidding zone level.  It was applied for the first time in 2014. The algorithm consists on the 

optimization of the Social Welfare (SW) and returns the MCP, volumes and net position 

correspondent to each specific bidding zone (NEMO Comitee, 2019). The SW consists on 

the total sum for the planned hour horizon of the Surplus of Submitted Supply (SS), plus the 

Surplus of Demand Bids (SD), plus congestion rent across regions (ST) (Sleisz & Raisz, 

2017). See equation (1). The SS corresponds to the gain from the sale bids and is the 

difference between the marginal price received, i.e the bid’s actual income (INCk for bid K) 

and the bare minimum quantity the seller is willing to receive (IncAsBidK). See equation (2). 

The SD corresponds to the gain from purchase bids, and is the difference between the 

maximum price the consumer is willing to pay (ExpAsBidK) and the actual price paid, 

according to the MCP (EXPk for bid k). See equation(3). The objective is achieving the SW’s 

Maximum value.  

𝑆𝑊 = 𝑆𝑆 + 𝑆𝐷 + 𝑆𝑇 (1) 

𝑆𝑆 =  ∑ (𝐼𝑁𝐶𝑘 − 𝐼𝑛𝑐𝐴𝑠𝐵𝑖𝑑𝑘)

𝑘 ∈ 𝑆𝑢𝑝

 (2) 

Source: Own Work. 

 



11 

𝑆𝐷 =  ∑ (𝐸𝑥𝑝𝐴𝑠𝐵𝑖𝑑𝑘 − 𝐸𝑋𝑃𝑘)

𝑘 ∈ 𝐷𝑒𝑚

 (3) 

1.1.4.3 Intraday Market 

Intraday market is a supplementary platform that supports the day-ahead market. It helps 

adjust and balance the electricity prices traded in the daily market, after the day-ahead 

market. This market lets buyers and sellers react to unforeseen changes and correct their 

position before the physical delivery takes place, balancing the electricity levels of supply 

and demand. The adjustments are done after the results are sent to the system operators. 

Participants can negotiate the contracts with a limit of 1h before the delivery (Shah & 

Chatterjee, 2020). These markets are managed in different sessions throughout the day. The 

market is subdivided in two types: The Intraday Auction Market and The Intraday 

Continuous Market (also known as Single Intraday Market). 

1.1.4.4 Balancing Market 

The system operator must take care of the balance on the grid, planning in advance and doing 

some estimations about the future values of production and load levels. However, the real 

values can only be acceded in real time. So, the system operator must fill the gaps and 

counterbalance the energy levels and reserve in real time while they keep changing. The cost 

of maintaining the equilibrium of the grid is divided by the market entities that created the 

imbalance, i.e. the entities that produced or consumed higher or lower quantities than the 

already established and agreed upon ones, in the previous markets (Mäntysaari, 2015).  

1.1.5 Iberian Electricity Market 

The Iberian Market of Electricity, designated by MIBEL, is constituted by Spain and 

Portugal’s electricity markets and started to operate in the 1st of July 2007 (MIBEL 

Regulatory Council, 2009). It became part of the European Market in 2014 for the day-ahead 

horizon and in 2018 for the intraday horizon. It is managed by OMI (Iberian Market Operator 

– Operador de Mercado Ibérico). MIBEL provides the Iberian consumers a free market for 

any retailer, large consumer or producer in those two countries. OMI is divided into two 

companies, OMIP SGPS (located in Madrid) and OMEL (located in Portugal). Each one of 

them owns 50% of OMIE and 50% of OMIP. OMIE is the Iberian Peninsula’s NEMO. Not 

only it is responsible for the electricity’s day-ahead market and intraday market, but also 

establishes the connection with the other NEMOs of Europe. OMIP is mostly committed to 

the forward market. It deals mainly with derivatives products, like options, swaps, forwards, 

and futures. OMIE manages and puts in order the producers and suppliers’ bids from the 

lowest to the highest. These bids are prices that range from 0 €/Mwh to 180.30 €/Mwh. These 

price limits are designated as instrumental prices (MIBEL Regulatory Council, 2009). Figure 
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5 shows a comparison between the average of the day-ahead electricity spot prices in 26 

European countries in the year 2019. The data was retrieved from (ENTSO-E Transparency 

Platform, 2020). 

Figure 5 Average of the day-ahead ESP in 2019 in Europe 

 

 

Focusing now only in Portugal, based on the information available by ADENE - Agency for 

Energy in the portal “Portugal energy” (https://www.portugalenergia.pt/agentes) and based 

in the latest available report “Statistic Report September 2018” (OLMC, 2018) about the 

retailers in the electricity liberalized market, we can name the main participants in the 

Portuguese electric sector below.  

Producers (ordinary regime, not covered by juridical legislations): EDP, Turbogás, Tejo 

Energia, ELECGAS 

Transmission System Operators (TSO): REN (Redes Energéticas Nacionais). 

Distribution System Operators (DSO): The main one is EDP Distribuição, followed by 

EDA (Eletricidade dos Açores) and EEM (Empresa de Electricidade da Madeira). There are 

11 more small distributors. 

Retailers: EDP Comercial (81,07% share) Endesa Energia, Sucursal Portugal (5,46% share) 

Galp Power, S.A. (5,13% share) Iberdrola Generación - E.S.P.U. (4,31% share) and 37 more 

(total share of 4,03%).  

Source: Own Work, based on (ENTSO-E Transparency Platform, 2020) data. 

 

https://www.portugalenergia.pt/agentes
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1.2 Electricity Spot Price Forecasting 

Electricity spot prices are represented by a succession of values in a specific period of time, 

also known as a time-series. Forecasting utilizing time-series analysis involves the use of 

some substantial model to predict forthcoming outcomes based on known previous results. 

Therefore, electricity spot price forecasting (ESPF) consists in predicting the spot prices in 

the wholesale market on a certain period in the future, based on the prices observed in the 

past.  

In some studies related to electricity forecasting, some authors have pointed that electricity 

spot prices can be influenced by multiple factors such as daily activities, business intensity 

and weather, making them challenging to predict (Peng, Liu, Liu, & Wang, 2018). This 

makes ESPF a difficult task, especially because some of the external factors that might 

influence prices are also hard to predict. Natural gas prices and meteorological variables, 

like temperature, sunshine and precipitation are, to some extent, considered easier to manage 

and predict in a short-term horizon. The same does not apply to variables such as MCP 

bidding strategies, levels of production, levels of consumption, electricity demand and 

supply, spinning reserve market price, transmission loss, business strategies and even 

unethical business behaviors. 

1.2.1 Electricity Spot Price Volatility  

Electricity spot prices are characterized for their fluctuations, nonlinear behavior, 

randomness and non-stationarity (Peng, Liu, Liu, & Wang, 2018). Electricity spot prices of 

the day-ahead market fluctuates a lot, reflecting a high volatility. The occurrence of 

unexpectant pick prices is very common, being an issue to electricity contracts. This 

volatility plays a huge role in the decision making of the electricity market participants of 

any EPX, since the risk of trading is directly correlated to that volatile behavior. If the 

volatility increases, the uncertainty and risk are higher (Shah & Chatterjee, 2020). 

The spot price volatility is a consequence of electricity distinct characteristics. Rapid 

fluctuations in the prices can occur especially due to the imbalance of consumption and 

production levels. When the observed consumption levels are below the expected ones, the 

prices tend to decrease. In the other hand, if the production levels are below the expected, 

the prices rise (Mäntysaari, 2015). Moreover, besides demand and offer instability, the 

volatility is swayed by the limitations of transmission capacity and the expenses of 

production. High expenses can cause a disinterest in electricity production investors. Plus, 

the prices are influenced by the country’s primary energy source that generates electricity, 

the external dependency, and the financial risk (Biçen, 2019). Hence, the market prices levels 

and volatility differ from country to country.  In Figure 6 we represent the day-ahead spot 

prices volatility of the world’s major Electric Power Exchanges. The data is retrieved from 

(Shah & Chatterjee, 2020). OMIE is below average. 
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Figure 6 Volatility of the day-ahead ESP by some of the world's major EPX  

 

 

1.2.2 Forecasting Horizons 

Forecasting the ESP is a vast research topic, that can be narrowed down in different scopes. 

Clearly understanding and describing the horizon of the forecast is extremely relevant, since 

the techniques and models to be selected will be different according to each horizon. Similar 

models and tools can be applied in all of the different horizons, although the way they are 

applied requires distinct approaches and care (Weron, 2014). Unfortunately, there is not an 

official and consensual established definition regarding the electricity prices forecast 

horizon’s scope. So, the horizon’s definition for this study will be defined based on the 

definition adopted by the most referenced, relevant, and prominent authors in this research 

area, like Rick Steinert from Universitat Viadrina, Florian Ziel from Universitat Duisburg-

Essen, and Rafal Weron from Wroclaw University. 

1.2.2.1 Short-term Horizon 

When the forecast goes from minutes up to few days, we are in the presence of a short-term 

horizon. Weather variables are relevant and impactful in the short-term ESPF. It is important 

for day-to-day market operations and system stability (Weron, 2014). Demand and offer 

benefits from this forecast by establishing more accurate bids and efficient trades. 

1.2.2.2 Mid-term Horizon 

A mid-term (or medium-term) forecast covers forecasts from weeks up to one year. Weather 

variables do not have huge relevance in this horizon, since a reliable, useful and accurate 

Source: Own Work, based on (Shah & Chatterjee, 2020) data. 
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forecast of the weather can only go up to 3 to 10 days into the future (Bauer, Thorpe, & 

Brunet, 2015). Also, political and technological uncertainties do not cause a major impact, 

due to the fact that those factors do not have drastic changes during a period of just some 

weeks or months. On the other hand, seasonal consumption impacts this horizon (e.g. 

consumption reduction in holiday period), as well as power generation variables 

(Maciejowska & Weron, 2016). The importance of this forecast horizon mostly lies in the 

need for a mid-term plan, including adjustment of schedules, allocation of resources, 

establishing bilateral contracts, assessing derivatives and managing risk (Weron & Ziel, 

2018). 

1.2.2.3 Long-term Horizon 

A long-term horizon consists in a forecast period superior to one year. Political, cultural, 

technological, social, regulatory, and economic uncertainties heavily impact this horizon. 

All those variables are hard to predict, making a long-term forecast a more difficult and 

challenging task. It is relevant for investment planning and policy making (Ziel & Steinert, 

2018). 

It is important to note that mid-term and long-term forecasts are more complex tasks than 

short-term, since they deal with a longer forecast period and a good accuracy of the 

prediction is harder to achieve. Short-term forecast is a more comprehended task nowadays, 

even though it is still far from being totally understood. Also, it is harder to have good results 

in mid- and long-term horizons compared to short-term, given that historical data is still 

somehow limited. The available data is still recent and not so vast, given that electricity 

liberalization is a recent measure. 

1.2.3 Forecasting Types 

The electricity prices can be forecasted according to three different main forecast types: 

deterministic, probabilistic and ensemble. The majority of ESPF papers are focused in 

deterministic forecast, although thanks to the Global Energy Forecasting Competition – 

GEFCom2014, the number of papers related to probabilistic ESPF has increased (Hong, 

Pinson, Fan, Zareipour, Troccoli, & Hyndman, 2016).Therefore, from 2015 to 2018 15% of 

ESPF studies were based on interval and distribution predictions. Literature that covers 

ensemble forecasts is still very scarce (Weron & Ziel, 2018). 

1.2.3.1 Deterministic 

The deterministic or point forecast approach simply consists in predicting a single desired 

value of the price, given some conditional information, for each time instance. The 

nomenclature related to deterministic forecast is as follows: 𝑃d.h is the electricity price, where 

d represents the day and h the periods (h = 1, 2, …, H). Consequently, the expected value of 
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the price is represented by E(𝑃d.h) and the point forecast by �̂�d.h. Figure 7 serves as an 

example of point forecast of the day-ahead D+1. The downside of the deterministic forecast 

is that it does not cover uncertainties, in contrast to probabilistic forecast. 

Figure 7 Illustration of a deterministic forecast 

 

1.2.3.2 Probabilistic 

Like deterministic forecast, probabilistic forecast is concern in predict events, although this 

one also gives information about the probability of occurrence and magnitude of a specific 

event. With this type of forecast, the probabilities of the possible outcome of a random 

variable can be estimated. So, probabilistic forecast tries to quantify uncertainty and provide 

information about risk exposure. It can be implemented from two different approaches. The 

first one calculates the error distribution of the point forecast. The second one considers the 

probability density function of the prices (Weron & Ziel, 2018). Figure 8 serves as an 

example of the density forecast of the day-ahead D+1.  

Figure 8 Illustration of a probabilistic forecast 

 

Source: Own Work. 
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As stated before, �̂�𝑑,ℎ is considered the future price. So, in this case, we have 𝑃𝑑,ℎ = �̂�𝑑,ℎ+ 

ɛ𝑑,ℎ, where ɛd,h denotates the error. At this point, �̂�𝑑,ℎ is still a single value forecasted. We 

can adjust this definition into a probabilistic forecast by considering the following: 𝐹𝑃(𝑥) =

𝐹ɛ(𝑥 − �̂�𝑑,ℎ ), where 𝐹𝑃 is the distribution of prices and 𝐹ɛ  the distribution of errors.  

To summarize and have a better comprehension of the deterministic and probabilistic 

forecast, Figure 9 depicts a comparison between the two. While deterministic forecast 

implies 100% probability of occurrence, probabilistic forecast has many distributions 

representing different kinds of uncertainties. 

Figure 9 Deterministic forecast VS Probabilistic Forecast.  

 

 

1.2.3.3 Ensemble 

Ensemble forecast is a Monte Carlo instance integration and it is also designated by 

simultaneous prediction intervals, prediction bonds or prediction scenarios (Weron & Ziel, 

2018).  

It consists in producing not one forecast but an ensemble of forecasts, grouping different 

scenarios of how the prices will behave in the future, starting from slightly distinct initial 

conditions. Each path is originated by a collection of single points integrated in space phases 

of specific times in the future, representing a statistical distribution of forecast uncertainty 

(Wilks & Vannitsem, 2018). These points are randomly generated, according to the given 

initial probability density. For each point (i.e. each ensemble sample), deterministic 

trajectories are calculated (Wilks, 2019). See Figure 10 for an example of this type of 

forecast. 

Source: Own Work. 

 

Source: Own Work. 
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Figure 10 Illustration of an ensemble forecast 

 

 

For a better comprehension, an illustration of some concepts in ensemble forecasting are 

plotted in terms of a three-dimensional phase space in Figure 11. In this figure, we have a 

representation of the ensemble forecast, where the rectangles are a representation of each 

space phase plotted in a specific time. The first rectangle is the originated phase of which 

the first prices are originated, by the probability distribution. The small yellow circles 

represent the forecast price’s points, and the grey dashed lines are the possible path of each 

point. The bold dark line provides the best evolution trajectory of the initial price values. In 

the initial time, the ensemble points are more similar, being close to each other. In the future 

time, with the advance of the forecasts, we can observe a more disperse placing of the points 

in each space phase, adopting qualitatively different flows. Each of the lines (ensemble 

members) are possibilities of the price’s values, but it is difficult to know in advance which 

one will be closer to the real prices. 

Figure 11 Schematic representation of an ensemble forecast 

 

 

Source: Own Work. 

 

Source: Own Work. 
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The way the ensemble members are spread reflects the confidence of the price prediction. If 

they are closer and narrow together the prices will have a more accurate and restricted range 

possibility of values. If they reflect a sparser behavior, the possible outcome values of the 

prices will increase, making it a less accurate forecast. As time advances, an accurate forecast 

is harder to achieve. 

1.2.4 Forecasting Models 

In terms of the models the two groups most used to forecast electricity prices are: Statistical 

models and Computational Intelligence models. Nevertheless, Weron & Ziel (2018) state 

that three other models were also employed in some studies: Reduced-form models, 

Fundamental models and Multi-agent models. Furthermore, the literature on this topic 

provides several hybrid solutions. Below, the two universally most used groups of models 

are briefly introduced and described. 

1.2.4.1 Statistical models 

Statistical models, also designated as econometric models, represent the technical analysis 

of ESPF. They are applications of direct traditional statistics techniques (Weron, 2014). 

Normally this type of models consists of a mathematical and weighted combination of past 

price’s values with variables that impact the prices. Autoregressive is an important concept 

in statistical models, it describes the dependence between the forecasted prices with the past 

prices (Weron & Ziel, 2018). Statistical models are mostly based on regression models. The 

downside of statistical models is the challenge of dealing with nonlinear events, being 

limited when it comes to model nonlinear behaviors (Weron & Ziel, 2018).  

1.2.4.2 Computational Intelligence models 

Computational Intelligence (CI) models are also designated as Artificial Intelligence or 

Machine Learning models in the literature. This type of models can solve nonlinear 

problems, with the help of computational intensive tools, that linear statistical models cannot 

solve effectively. They are based on said “intelligent algorithms” that can be influenced by 

biological processes, using approaches that are a combination of learning, evolution and 

fuzziness elements (Weron, 2014). A good characterization of this area is hard to define, 

since some authors classify specific models under CI, while others consider that those same 

models are statistical models (Duch, 2007). “Computational Intelligence is a branch of 

computer science studying problems for which there are no effective computational 

algorithms” (Duch, 2007). Computational Intelligence can be seen as applied statistics. The 

distinction between them is often blurry. 
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1.3 Systematic Review and Meta-analysis of the Literature  

We currently live in a world ruled by constant technological innovations (e.g., internet of 

things; high performance and cloud computing; virtual and augmented reality; artificial 

intelligence; natural and multimodal human-computer interaction; open-source algorithms; 

etc.). Alongside, our world is “flooded” with large amounts of data that increase daily, and 

that is, in most cases, available, with easy, rapid, and instant access. This new big data era is 

characterized by the 5 Vs: Volume: scale of data; Variety: different forms of data; Velocity: 

streaming of data; Veracity:  uncertainty of data; and Value of data (Ishwarappa & Anuradha, 

2015). 

The advantages and advances of this new era, aligned with the rising progress of renewable 

energy sources and the liberalization of different and many electricity markets around the 

world, has impacted the electricity price forecasting research, bringing a new dimension, 

depth and opportunities with it. All of this resulted in the emergence of new papers regarding 

this topic. Weron (2014), stated that before 2000, there was a big gap in the literature, with 

a lack of papers covering this subject. However, that changed, and, from that point forward, 

the number increased through the recent years. Articles addressing electricity price 

forecasting came from different research areas, such as: Energy, Engineering, Computer 

Science, Mathematics, Business, Management and Economics. The majority of them 

focused on a short-term forecast. There is still a considerable gap when it comes to mid- and 

long- term forecast in the literature, and the ones tackling this issue have problems predicting 

accurate values of prices, given the fact they lack realistic price’s time series data (Ziel & 

Steinert, 2018).  

According to Ziel & Steinert (2018), for mid- and long- term approaches, from the year 2000 

till 2017, the most common models used in the literature are SVM - Support Vector Machine 

(CI approach) and Linear Regression (Statistical approach). Most of them include the added 

support of other models, showing variety and diversity in the proposed approaches and in 

the employed quality measures. So, for our study, it was necessary to search and look for the 

most recent used techniques in this specific horizon scope (mid-term). Papers that have a 

long-term scope were also included on this search, since some authors consider 12 months 

as a long-term horizon.  

In order to summarize the studies related to the forecast of electricity spot prices and find 

the most used mid-term techniques in the literature, we adopted and implemented a 

systematic review methodology, following the guidelines of the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA methodology) (Moher, Liberati, 

Tetzlaff, & Altman, 2009). PRISMA consists in the inclusion and exclusion criteria of 

records and is organized in the following way: 

1. Collection and identification of the relevant manuscripts.  

2. Screening of the titles and abstracts. 
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3. Full text screening. 

4. Final papers to be analyzed in detail. 

In order to identify and collect the papers related to this study, we used the scientific paper 

repository Web of Science, which is considered to be the gold standard for research discovery 

and analytics (wokinfo.com). It is well-known, intuitive and has a vast library of scientific 

content. The queries used in the search engine to identify the relevant studies for our survey 

are presented in Figure 12. These queries are words joined by Boolean logical operators 

(“AND” & “OR”) that are used to search and find article’s titles, abstracts and keywords that 

contain the same words presented in those queries. Four queries were applied. The first query 

corresponds to articles related to electricity prices. The second one is related to forecast. The 

third one is focused on the horizon. The last one logically merges those three queries with 

the conjunction “AND”. This final one is the query that gives us the ultimate final list of 

records. This query was applied in April 2019. In order to have a relevant and up to date 

result, the articles were filtered from the last five years (2015 to 2019).  

Figure 12 Queries used in the Web of Science Repository 

 

 

QUERY #1  

TS= ("Energy Price" OR "Energy Prices" OR "Energy Pricing" OR "Energy Tariffs" OR "Energy Market" OR 

"Energy spot market" OR "Energy day-ahead price” OR "Energy day-ahead market” OR "Electricity Price" 

OR "Electricity Prices" OR "Electricity Pricing" OR "Electricity Tariffs" OR "Electricity Market" OR 

"Electricity spot market" OR "Electricity day-ahead price” OR "Electricity day-ahead market” OR "Natural 

Gas Price" OR "Natural Gas Prices" OR "Natural Gas Pricing" OR "Natural Gas Tariffs" OR "Natural Gas 

Market" OE "Natural Gas spot market" OR "Gas Price" OR "Gas Prices" OR "Gas Pricing" OR "Gas Tariffs" 

OR "Gas Market" OR "Gas spot market") 

QUERY #2 

TS= ("Prediction" OR "Predictions" OR "Predicting" OR "Predictive" OR "Predict" OR "Predictability" 

OR "Forecast" OR "Forecasts" OR "Forecasting" OR "Time Series" OR "Artificial Intelligence" OR 

"Machine Learning" OR "Probabilistic") 

QUERY #3 

TS= ("mid-term" OR "mid term" OR "medium-term" OR "medium term" OR "middle-term" OR 

"mid" OR "medium" OR "middle" OR "long-term" OR "long term" OR "long" OR "weeks-ahead" 

OR "weeks ahead" OR "months-ahead" OR "months ahead" OR "monthly horizon" OR "1 year" OR 

"one year" OR "twelve months" OR "12 months") 

QUERY #4 (Final Query) 

#3 AND #2 AND #1 

Source: Own Work. 
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In Figure 13 we present the PRISMA diagram with the number of papers resulted after the 

application of each phase. In the initial phase (identification), after applying the queries, we 

filter the timespan, remove possible duplicates, and set the language preference to English, 

which results in retrieving a total of 393 papers. After that, exclusion criteria was performed 

along the phases, based on principles such as, papers not having an abstract, being classified 

as proceedings or early access papers or were not relevant for this study in particular.  

Figure 13 PRISMA Diagram 

 

From the 393 records we end up with 295, after excluding 97 that were classified as 

Proceeding or Early Access papers. Next, we excluded 180 papers, from those 295, ending 

up with 115, excluding papers with titles that were not related to the aim of this study. From 

those 115, we end up with 40, after reading all the 115 paper’s abstract and consequently 

removing 77 since they were out of scope. After that, we assessed such 40 papers for 

eligibility with full-text reading, removing 26 since they were out of the scope of our 

research, and ending up with a final count of 14. These 14 included articles are summarized 

in Table 1, ordered by publication date. 

Source: Own Work. 
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Table 1 Summary of mid-term ESPF papers, for the timespan 2015 – 2019 

 

No. Reference 
Training Data 

Duration 

Data 

Resolution 
Data dimensions 

Forecast 

Period 

Compared Models 

(Model that 

outperformed in bold) 

Accuracy 

Measures 
Market 

S1 
(Steinert & Ziel, 

2019) 
1 year 

Hourly 

(1h time 
interval) 

Spot prices 

Future Phelix data 
Week Index 

1 month 

AR24-X 

AR24(p) 

AR-HoW(p) 

VAR-X(p) 

- MAE 

- MMAE 

Germany and 

Austria (EPEX) 

S2 
 

 

 
 (Ferreira, Ramos, 

& Fernandes, 

2019) 

6 years 

(1 Jan 2010 – 31 
Dec 2015) 

 

Monthly 

(Average price 

of each month) 

Spot Price s 
Electricity Consumption per capita 

Heating Degree Days 

Cooling Degree Days 
Industrial Production Index 

Hydroelectric Productivity Index 

Europe Brent Spot Price FOB 
Crude Oil Imports per capita 

Renewable Special Regime Production per 

capita 

Electricity Import-Export Balance per capita 

1 year MLRM 
- MAPE 

 

Spain and 

Portugal 

(OMIE) 

S3 (Mujeeb, Javaid, 

Ilahi, Wadud, 
Ishmanov, & 

Afzal, 2019) 

12.5 years 

(1 January 2006 – 

31 March 2018) 

Hourly (1h 
time interval) 

Spot prices 
 

1 month 

DLSTM 

ELM 
NARX 

WT+SAPSO+KELM 

- MAE 
- NRMSE 

New York City 

(NYISO) and 
New England 

(ISO NE) 

S4 

 
 

 (Razak, Ibrahim, 
Abidin, Siah, 

Abidin, & 

Rahman, 2019) 

1 year 

Monthly 

(Average price 
of each month) 

Spot prices 

Month Index 
 

1 month 

LSSVM+BFOA 

SVM 
RBF-NN 

WNN 
MA 

SVM/SVM 

SVM/RBF-NN 
RBF-NN/RBF-NN 

RBF-NN/SVM 

Navigant Co. 

- MAPE 

- MAE 
Ontario, Canada 

S5 

(Windler, Busse, 

& Rieck, 2019) 

5.7 years 

(1 January 2011 – 

17 September 

2016) 

Hourly (1h 

time interval) 

Spot prices 
Hour 

Day of the week 

Week 

Month 

Year 

1 month 

DFNN 

WNN 

TBATS 

 

-RMSE 

-MAPE 

Germany and 

Austria (EPEX) 

S6 

(Ziel & Steinert, 

2018) 

2.5 years 
(1 Nov 2012 – 19 

April 2015) 

Hourly (1h 

time interval) 

Spot prices 
Temperature 

Generation power data (wind, solar, nuclear, 

lignite, coal, natural gas, hydro) 
Electricity load 

Auction data 

Dummy variables (for 
day/week/season/holiday) 

 

3 years. 
X-Model ( LASSO and 

Bootstrap) 

AR-HoW 

- ECP 
Germany and 

Austria (EPEX) 

S7 

 

(Bello, Bunn, 
Reneses, & 

Munoz, 2017) 

1.5 years 
(1 April 2013 – 30 

June 2014) 

Hourly (1h 

time interval) 

Spot prices 

Load 
Wind power generation 

Hydro power generation 
Imports/exports 

Natural gas prices 

Coal prices 
CO2 prices 

Power plant costs 

1 to 2 

months 

Quadratic equilibrium 

model + Quantile 

regression 

GARCH 
CAVIiaR 

 

- WS 

- PBS 
Spain (OMIE) 

S8 

(Cheng, Luo, 
Miao, & Wu, 

2016) 

1 year 
(April 2015 –

March 2016) 

Monthly 
(Average price 

of each month) 

Electricity load 

Electricity export 

Number of generation companies 
Production (hydro, thermal, wind and solar) 

1 month 

 

Grey prediction  

GM(0,N) 

MLR 

Traditional GM(0,N) 

ANN 

- MAE 
- MSE 

- MAPE 

China Yunnan 

New 

S9 

(Bello, Reneses, 
& Muñoz, 2016) 

3 years 

(1 January 2009 – 
3O November 

2011) 

Hourly (1h 
time interval) 

Spot prices 

Hydro and wind 

Electricity load 
Power plant costs 

Natural gas prices 

CO2 prices 
Coal prices 

Weekdays  

Holidays 

3 months 

Logistic regression + 

Quadratic equilibrium 

model 

Decision tree 
MLP 

- BS 
- ECP 

Spain (OMIE) 

(table continues) 
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Concerning the documents type, they all are classified as articles, with the exception of one 

(Ziel & Steinert, 2018), that is also a review paper. As summarized in Figure 14, seven of 

the fourteen papers were published in 2016, five in 2019, and only two papers were published 

in 2017 and 2018. Regarding 2015, no relevant papers were found.   

Figure 14 Number of mid-term ESPF papers per year 

 

 

In Figure 15, the research areas of the 14 papers are summarized. We can observe that the 

research areas related to mid-term ESPF are broad. The majority fits in energy fuels and 

various engineering fields. 

No. Reference 
Training Data 

Duration 
Data Resolution Data dimensions 

Forecast 

Period 

Compared Models 

(Model that 

outperformed in bold) 

Accuracy 

Measures 
Market 

S10 
 

 (Bello, Bunn, 

Reneses, & Muñoz, 
2016) 

7 months (1 May 

2013 – 30 
November 2013 

Hourly (1h time 

interval) 

Spot prices 
Wind 

hydro, 

import and export 
load 

fuel prices, 

power plant costs 

6 months 

GAMLSS 

Quadratic equilibrium 

Quantile regression 
Spatial interpolation 

Cointegration 

- ECP Spain (OMIE) 

S11 

 
(Ortiz, Ukar, 
Azevedo, & 

Múgica, 2016) 

8 years 

(1 January 2004 – 

31 December 
2011) 

Monthly (Average 
price of each month) 

 

Spot prices 
Load forecasted 

Gas prices forecasted 

1 year ANN 

- MAPE 
- MME 

- MeME 

Spain (OMIE) 

S12 

 

(Alonso, Bastos, & 

García-Martos, 

2016) 

6.5 years 

(1 July 2006 – 31 

December 2012) 

Hourly (1h time 
interval) 

Spot prices 2 months 
ARIMA 

 
- MAE 

- MedAE 
Spain (OMIE) 

S13 

(Maciejowska & 
Weron, 2016) 

4.5 years 

(22 April 2009 – 
31 December 

2013) 

Half-hourly (30 
minutes time interval) 

Spot prices 

Natural gas price 

Electricity load 
Coal prices 

CO2 prices 

GDP 

45 business 
days 

AR 

 
- MAPE 
- RMSE 

UK (APX) 

S14 

(Yan, Song, & 

Chowdhury, 2016) 

1 month 

(June 2009) 

Hourly (1h time 

interval) 

Spot Prices 
Natural Gas Price 

Hour Index 
Month Index 

Monthly Price Previous Year 

1 month 
SVM 

LSSVM 

- MAE 

- MAPE 

Pennsylvania, 

Jersey, 
Maryland (PJM) 

Source: Own Work. 

 

Source: Own Work. 

 

(continued) 
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Figure 15 Number of mid-term ESPF papers by research area 

  

 

When it comes to the window size of the training data used in the 14 selected studies, 

different sizes were chosen, going from just one month up to 12.5 years. Regarding the 

granularity of the data used as input for the models, ten papers worked with hourly 

resolution, while the other four with monthly resolution. There is no evidence of daily 

resolution approaches.  

It is important to note that the studies S6, S7, S9 and S10 are probabilistic forecasts. 

Therefore, they have specific accuracy measures (Empirical Coverage Probability (ECP), 

Brier Score (BS), Winkler Score (WS) and Pinball Score/Loss (PBS)) and distinct 

techniques. Regarding the papers that present deterministic forecasts (papers: S1, S2, S3, S4, 

S5, S8, S11, S12, S13, and S14), the most used measures to access and compare the model’s 

performance are: Mean Absolute Percentage Error (MAPE) in 7 of them; Mean Absolute 

Error (MAE) in 6 of them; Root Mean Square Error (RMSE) in 3 of them; and Mean Square 

Error (MSE) in 1 of them. 

The deterministic forecast papers that used hourly resolution (papers: S1, S3, S5, S12, S13, 

and S14) perform forecasts from up to 1 month. With the exception of S12 (Alonso, Bastos, 

& García-Martos, 2016), that goes up to 2 months. The papers that used monthly data 

perform forecasts up to 1 month (papers: S4 and S8) or up to 1 year (papers: S2 and S11). 

The models used to perform forecasting, for our mid-term ESPF case in the last 5 years 

(Table 1), are based either in Computational Intelligence (CI) or in Statistics.   

Regarding the CI modeling approaches analyzed in the literature (papers: S3, S4, S5, S11 

and S14), different techniques were adopted and compared. Some models being 

outperformed by others. The outperformed ones are described below.  

Firstly, in 2016, a model based on Artificial Neural Networks was used by Ortiz, Ukar, 

Azevedo, & Múgica (2016). This paper lacks comparison with other models. In contrast, 

outperforming 9 different existing methods, Razak et al., (2019), develops and introduces a 

Least Square Support Vector Machine (LSSVM) with Bacterial Foraging Optimization 

Source: Own Work. 
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Algorithm (BFOA). The LSSVM and Support Vector Machine (SVM) approaches are also 

implemented in 2016 by (Yan, Song, & Chowdhury, 2016), where, between the two, SVM 

shows a better performance.  In the same year, a Deep Long Short Term Memory network 

(DLSTM) based model, was adopted by Mujeeb et al. (2019). Windler, Busse, & Rieck, 

(2019) shows that Weights Nearest Neighbor (WNN), and Exponential Smoothing State 

Space Model with Box-Cox transformation, Autoregressive Integrated Moving Average 

errors, Trend and Seasonal components (TBATS) lead to very acceptable accuracies. 

Although, Deep Feedforward Neural Network (DFNN) achieved a slightly better accuracy. 

When it comes to the statistical approaches to deal with mid-term ESPF, the models 

presented by the papers (S1, S2, S6, S7, S8, S9, S10, S12, S13) with better results are 

described below.  

Alonso, Bastos, & García-Martos (2016) apply an Autoregressive Integrated Moving 

Average (ARIMA) model, adding forecast combination techniques. Maciejowska & Weron 

(2016) focus on Autoregressive models with and without fundamental variables, lacking a 

comparison with other models. Bello, Reneses, & Muñoz (2016) take advantage of the use 

of Logistic Regression and the Quadratic Equilibrium Model (QEM). Still in 2016, following 

what they have done before,  Bello, Reneses, Muñoz, & Delgadillo (2016) use the QEM with 

the Generalized Additive Model for Location, Scale and Shape (GAMLSS). Also, 

continuing with what they had previously accomplished, (Bello, Bunn, Reneses, & Munoz, 

2017)  use Quantile Regression with the QEM. Differing from all the regression-based 

models used begore, Cheng, Luo, Miao, & Wu (2016) introduce a novel Grey Prediction 

Model with GM(0, N) interval, over the traditional GM(0, N) model. In 2018, Ziel & Steinert 

extend the X-Model, with the LASSO Regression and Bootstrap approaches. Ferreira, 

Ramos, & Fernandes (2019) perform a Multiple Linear Regression Model (MLRM), without 

comparing it with other models. More recently, Steinert & Ziel (2019)  came up with a model 

that not only uses the precision of statistical autoregressive models, but go further by 

combining it with the market participant's prospects reflected in the future prices. They 

present an AR24-X model, where the X represents the external regressors. 

Looking now a little further back, let us enumerate the models used in the papers from 2012 

to 2014.  Based on the literature review made by Ziel & Steinert (2018), the models 

implemented on the papers from that period were: SVM, WNN, Radial Basis Function 

(RBF), Seasonal ARIMA, Gaussian Mixture Models (GMM), K-Nearest Neighbor (k-NN), 

Multilayer Perceptron (MLP) and Linear Regression.  

1.3.1 Models Overview 

As seen in the literature review, different models and techniques were employed to forecast 

the electricity prices in a mid-term horizon, showing different levels of success. It is 

important to keep in mind that all those papers used different approaches and have different 

characteristics, making them unique and distinct studies. The performance of the used 
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models cannot be easily replicated, since each case depends on the training data duration, 

market, country, economic cycle, data dimensions, time evolution, and other micro and 

macrostructure alterations, which turn comparisons hard. Also, even if all these different 

factors were controlled to be the same, the model’s parameter settings can be set differently, 

giving distinct results. 

It is very demanding to implement and compare all the analyzed models for price forecasting, 

due to memory capacity, CPU capacity, and time consumption. In this study, some of the 

most promising were implemented, to be tested and compared. There is only one paper using 

Portuguese data (paper: S2), in which only the MLRM model was implemented. So, all the 

models selected for this study were implemented for the first time using Portuguese data, as 

far as we know. For the purpose of achieving a broader and richer comparison, the models 

selected for our study were not only Computational Intelligence models, but also Statistical 

models, and some hybrid approaches too. 

In this section, a brief presentation and description of each selected model is presented, so 

the reader can have a better understanding of the theory that lies behind each model.  

Implemented Computational Intelligence Models: 

− Autoregressive Neural Network (NNAR) 

− Support Vector Machine (SVM) 

− K-Nearest Neighbor (k-NN) 

− Random Forest (RF) 

 

Implemented Statistical Models: 

− Autoregressive Integrated Moving Average (ARIMA) 

− Exponential Smoothing (ETS) 

− Linear Regression (LR) - LASSO, Elastic Net, and Ridge Regression 

− Prophet  

Implemented Hybrid Models: 

− ARIMA + Extreme Gradient Boosting (XGBoost) 

− Prophet + Extreme Gradient Boosting (XGBoost) 

1.3.1.1 Autoregressive Neural Network (NNAR) 

Artificial Neural Networks (ANN) are computational data-driven models, characterized for 

their robustness, high tolerance to noisy data, flexibility, adaptability do deal with different 

data situations, generalization capabilities and collective computation (Yegnanarayana, 

2006). The first ANN was created in 1958 by psychologist Frank Rosenblatt. ANN form the 

base of deep learning, a subsection of machine learning, where algorithms envisage to 

replicate and recreate the human brain and nervous system. They are called “neural” because 
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they are based in neuroscience, although, traditional mathematical and statistical models are 

crucial for the ANN foundation (Hassoun, 1995).  

The human nervous system is formed by interconnected neurons. The biological neurons 

components are represented and identified in Figure 16. The terminal axon corresponds to 

the pre-synaptic region (output region).  The synapse is where the neural activity is 

transmitted from neuron to neuron. See Figure 18. The neurons interconnection and 

weighted importance is extremely relevant for how the ANN are constituted (Graupe, 2013). 

See Figure 17. The analogy between biological neurons and artificial neurons lies in their 

form and how they connect between each other, where the dendrites and axon represents the 

nodes and the synapses represents the weighted connection (Mohammadhassani, 

Nezamabadi-Pour, Jumaat, Jameel, & Arumugam, 2013). ANN are formed and organized 

by layers of artificial neurons: the input layer, hidden layers and output layer. See Figure 19. 

They receive data in the input layer and, from that data, train themselves, creating patterns 

and predicting outcomes. The neurons (nodes/units) are the ones responsible for processing 

information. Most of the data is processed in the hidden layers. The connection between the 

units can be executed among units of the same layer (intralayer connection) or between units 

form different layers (interlayer connection) (Yegnanarayana, 2006). The data is propagated 

through the network. The values of each neurons correspond to a weight. On the output 

layers, the neuron with the highest value is the chosen one and is the output predicted value. 

Figure 16 Biological neuron 

 

 

Figure 17 Artificial neuron 

 

 

Source: Own Work. 

 

Source: Own Work. 
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Figure 18 Biological synapse 

 

 

Figure 19 ANN synapses 

 

 

The information in the ANN is processed through the multiplication of the inputs (x1, 

x2,…xn) and the respective weights (w1, w2,…wn). When all the inputs are multiplied by 

their weights, the sum is computed. The function f represents the activation function and is 

responsible for giving the output values of each neuron. This process is shown in Figure 17. 

That output can, in addition, serve as an input of another neuron in another layer.  

The NNAR  model is one type of ANN that is inspired by autoregression characteristics, 

using lagged values of time series as input to classify or predict sequences (Ramalheira, 

2019). Generally is represented by NNAR(p,k), where p=lagged inputs and k=the number of 

nodes in the hidden model. But also by NNAR(p, P, k), when we are presented by a seasonal 

NNAR. NNAR is a feedforward neural network, which is formed by a linear combination 

function (equation (4)) and an activation function (equation (5)) (Thoplan, 2014).        

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖𝑗𝑦𝑖𝑗

𝑖

 (4) 

𝑓(𝑦) =  
1

1 + 𝑒−𝑦
 (5) 

The NNAR (p,0) model corresponds to an ARIMA(p,0,0) model, without imposing any 

parameters restrictions to ensure stationarity (Maleki, Nasseri, Aminabad, & Hadi, 2018). 

However relying only on ANN for time-series forecast might not be the best solution, since 

Source: Own Work. 

 

Source: Own Work. 
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they do not incorporate both linear and nonlinear behavior found in the real-world (Zhou et 

al., 2014). 

1.3.1.2 Support Vector Machine (SVM) 

Support Vector Machine (SVM) was introduced for the first time by Vladimir Vapnik 

(1995).  SVM is a supervised model used for solving regression and classification problems, 

it can reduce data over-fitting and deals with high dimensional input spaces. In general, when 

compared to traditional models, SVM has obtained more robust and broad learning (Zhang, 

Wang, & Gao, 2019).  

The three main differences, presented by Cao & Tay (2000), between SVM and other models  

rely on the fact that it uses linear functions set in a high dimension space, also estimates 

regression with risk minimization and, finally, uses a risk function and a regularization term 

based on the risk minimization principle (Cao & Tay, 2000). So, while SVMs applies the 

structural risk minimization (SRM) principle, ANN implements the empirical risk 

minimization (ERM) principle (Mohamed & El-Hawary, 2016). The generic SVR estimating 

function takes the form of the equation (6). 

𝑓(𝑥) = (𝑤 ∗ 𝛷(𝑥)) + 𝑏        𝑤 ∈ 𝑋, 𝑏 ∈  ℛ 

 
(6) 

Φ designates the transformation to a high dimensional space.  

1.3.1.3 k-Nearest Neighbor (k-NN) 

k-Nearest Neighbor (k-NN) was first introduced by Fix and Hodges Jr (1951). The basic 

idea of a k-NN application relies on the creation of groups for similar input objects 

(neighbors) in the training dataset, based on their features (Al-Qahtani & Crone, 2013).  So, 

k-NN groups all the samples that evidence same properties categorized in the same feature 

space. Each group has the most similar k neighboring samples (Fan, Guo, Zheng, & Hong, 

2019). For achieving that, k-NN calculates the distance between the points and then forms a 

set of groups based on the objects that evidence the closest distance between them. Metrics 

like the Euclidean distance or other types of distances are used in order to make that decision 

(Alkhatib, Najadat, Hmeidi, & Shatnawi, 2013). k-NN can be used for classification 

problems but also for regression and time-series forecasting. The idea of using k-NN as a 

time-series forecast model emerged in 1987 (Yakowitz, 1987). Time-series data often 

generates similar patterns, k-NN identifies those patterns and replicates their behavior into 

the future data. So, k-NN groups the k different similar patterns in the past data and, from 

them, a combination of future values emerges (Ban, Zhang, Pang, Sarrafzadeh, & Inoue, 

2013). 
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1.3.1.4 Random Forest (RF) 

Random Forest (RF) is a tree-based method introduced by Leo Breiman (2001). It is 

becoming widely popular and used for different applications including predictive modeling. 

This popularity is due to the fact that RF is very flexible to cope with missing values, handles 

categorical and continuous variables, generalization errors are calculated automatically, and 

the selection of the model’s hyperparameters does not have a huge impact on the model 

performance  (Aldrich, 2020). 

RF consists on an ensemble of decision trees, by fitting multiple trees into a dataset and 

combining their results. Decision trees grow by choosing the best split dimension, 

considering all candidates/split options at each node, creating new branches. In regression, 

the RF prediction is the result of the average prediction values of each tree (Pórtoles, 

González, & Moguerza, 2018). One big advantage of using RF over just a decision trees 

model is the fact that decision trees tend to overfit (Hastie, Tibshirani, & Friedman, 2008). 

1.3.1.5 Autoregressive Integrated Moving Average (ARIMA) 

Introduced by Box and Jenkins in 1976, ARIMA became one of the most chosen models to 

forecast time-series (Masum, Liu, & Chiverton, 2018). The main reasons for that popularity 

came with the model's statistical characteristics, the capacity to apply several different 

exponential smoothing models, and the implementation of the Box-Jenkins methodology 

throughout the training procedure (Papastefanopoulos, Linardatos, & Kotsiantis, 2020).  As 

the name implies, ARIMA is a model founded on both Moving Average and Autoregressive 

models. ARIMA uses a linear function to predict future values, based on past values and 

previous errors, on the basis of the assumption that a relationship between past observations 

and future values exists (Ramalheira, 2019).  

Commonly nonseasonal ARIMA is represented by ARIMA(p,d,q), where p= autoregressive 

order, d=degree of differentiation, and q= the moving average order. Seasonal ARIMA is 

denoted by ARIMA(p, d, q) (P, D, Q)m, where m= number of periods in each season, P= 

autoregressive, D=differencing, and Q=moving average, for the seasonal part of the ARIMA 

model. The model is defined by the equation (7).  

(1 − ∑(𝛷𝑖𝐿
𝑖)

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 − ∑(𝛷𝑖𝐿
𝑗)ℇ𝑡)

𝑞

𝑗=1

 

 

(7) 

Where L is the offset. 

ARIMA is based on the premise that the data used is statistically stationary (i.e. mean, 

variance, and autocorrelation are all constant over time). If not, the model applies a 

differentiation operator to transform the time series (Al-Musaylh, Deo, Adamowski, & Li, 

2018). 
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1.3.1.6 Exponential Smoothing (ETS) 

Exponential smoothing (ETS) was first suggested by Robert Goodell Brown in 1956. It is a 

a model that weighs observed values of historical data, in order to forecast future values, 

taking into consideration time variation (Zhang, Wang, & Gao, 2019). The ETS model 

considers that time series are formed by three main components: the Error (E), the trend (T), 

and the Seasonal components, which can be additive (A), multiplicative (M) or none (N) 

(Yang, Sharma, Ye, Lim, Zhao, & Aryaputera, 2015). According to Panigrahi & Behera 

(2017) the general model entails a state vector 𝑥𝑡 = (𝑙𝑡, 𝑏𝑡, 𝑠𝑡, 𝑠𝑡−1,…, 𝑠𝑡−𝑚+1)′ and the state 

space equations are represented by equations (8) and (9). 

𝑦𝑡 = 𝑤(𝑥𝑡−1) + 𝑟(𝑥𝑡−1)ℇ𝑡 (8) 

𝑦𝑡 = 𝑤(𝑥𝑡−1) + 𝑟(𝑥𝑡−1)ℇ𝑡 (9) 

1.3.1.7 Linear Regression (LASSO, Elastic Net, and Ridge Regression) 

Linear regression is one of the simplest and broadest used methods for predictive models. 

The concept of regression was first introduced by Francis Galton (1885). It can be formulated 

as the following equation (10).  

Where Y is the dependent variable to be predicted, (𝑥1, … , 𝑥𝑝)  represents the independent 

variables, and the vector �̂� = (�̂�0, … , �̂�𝑝) are the coefficients, that attribute weights to the 

features, based on their importance.  

LASSO Regression  

LASSO (Least Absolute Shrinkage and Selection Operator) regression was first introduced 

by Tibshirani in 1996. It comes with two main beneficial functions: regularization and 

variable selection (Tang, Mao, Wang, & Nelms, 2018). This model sets the values of the 

regression coefficients (�̂�) to zero when the respective variables have low importance. Once 

a variable has a 0 coefficient, it has no impact on the model anymore, resulting in its removal. 

Therefore, the model uses only a few variables, having a sparse solution (Tang, Mao, Wang, 

& Nelms, 2018). It uses a L1 penalty. 

Ridge Regression 

Ridge regression was developed by Horel and Kennard in 1970. It is similar to a LASSO 

model, but unlike LASSO, Ridge Regression tends to compress less relevant parameters for 

values close to zero, although never zero (Hao, Zhao, & Wang, 2020). It uses a L2 penalty. 

�̂� = �̂�0 + 𝑥1�̂�1 + ⋯ +  𝑥𝑝�̂�𝑝 (10) 
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Several experiments have been made in order to compare LASSO and Ridge regression, 

concluding that neither of them can clearly dominate the other (J. Li & Chen, 2014). 

Elastic Net 

LASSO and Ridge Regression can be considered as special cases of Elastic Net, developed 

by Zou & Hastie (2005). Elastic Net avoids the extreme approaches used by LASSO and 

Ridge Regression, combining both shrinkage and selection approaches instead (Hao, Zhao, 

& Wang, 2020). 

The penalty of elastic net consists on the mixture between penalty L1 and L2 (Pereira, Basto, 

& Silva, 2016) and it can be formulated by equation (11). 

𝑃𝛼 =  ∑[
1

2
(1 − 𝛼)𝛽𝑗

2 + 𝛼|𝛽𝑗|]

𝑝

𝑖=1

 (11) 

Elastic net can be simplified as a LASSO model when 𝛼 is set as zero and to a ridge 

regression when 𝛼 is equal to one (Ogutu, Schulz-Streeck, & Piepho, 2012). 

1.3.1.8 Prophet  

Prophet is a new and promising model created by Facebook, introduced by Taylor & Letham 

(2018). It consists of a combination of an additive model and fitting trends, and seasonal 

components together. Prophet has proven good results in the literature when forecasting 

time-series. It is evidenced as not being sensitive to missing data, having robust 

characteristics, shifts in the trend and large outliers (Aguilera, Guardiola-Albert, Naranjo-

Fernández, & Kohfahl, 2019)  

Prophet is based on an a Generalized additive model (GAMs) (Hastie & Tibshirani, 1987). 

GAMs allow to model complex patterns, thanks to the sums of smooth functions. Prophet is 

established with three main components represented by equation (12). 

Where g(t) represents the trend function that models non periodic linear and logistic 

regression changes in the time-series, s(t) corresponds to the periodic components (i.e. 

weeks, months, years…), h(t) is the effect of holidays in the values, and 𝜀𝑡 is the error. 

1.3.1.9 Gradient Boosting (XGBoost) 

Extreme gradient boosting (XGboost), proposed by Friedman (2000), is a scalable system 

used for tree boosting, designed for speed and performance (P. Li & Zhang, 2018). The goal 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀𝑡 (12) 
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of the algorithm is to achieve the optimized values of the objective function and minimize 

the error (Zheng, Yuan, & Chen, 2017). It is used for improving models’ performance.  

In this study, XGBoost is used to forecast the residuals of the ARIMA and Prophet model, 

then, the forecasting output for each time series is accomplished from the sum of the 

ARIMA/Prophet and XGBoost models. 

2 DATA AND METHODOLOGY 

The methodology used to implement the intelligent computing models to forecast electricity 

spot prices in this thesis is based on the CRISP-DM (Figure 20), Cross-Industry Standard 

Process for Data Mining (Wirth, 2000). It offers a powerful guidance for even the most 

advanced data science activities that are gaining adoption in our society and our economy. 

It consists in six phases: business understanding, data understanding, data preparation, 

modeling, evaluation, and deployment. We can map the first phase, business understanding, 

with the Introduction and the Research Background and Literature Review chapters of the 

thesis. The remaining phases are mapped in this chapter Data and Methodology and the next, 

Results and Discussion.  The deployment phase was left out of this study.  

Figure 20 The Data Mining Process, according to the CRISP-DM methodology 

 

 

Our data analysis and machine learning modeling were performed using R software version 

3.6.3, and Python and Pandas software version 6.0.1. Packages and extensions used in R, 

were: ‘modeltime’, ‘timetk’, ‘tidymodels’, ‘lubridate’, ‘tidyverse’, ‘randomForest’, 

‘glmnet’, ‘kernlab’, ‘kknn’, ‘nnet’, and ‘modeltime.ensemble’. Packages and libraries used 

in Python were the following: ‘pandas’, ‘numpy’, ‘seaborn’, ‘sklearn’, ‘scipy’, 

‘statsmodels.api’, and ‘matplotlib.pyplot’. 

Source: Own Work. 
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2.1 Data Understanding & Preparation 

Before the Machine Learning models were ready to be created, trained, tested, and 

compared, the data was explored, analyzed, and pre-processed. 

2.1.1 Data Description and Quality 

The hourly data set regarding the Portuguese electricity spot prices is publicly available and 

was extracted from the OMIE website (https://www.omie.es/pt/file-access-list). The OMIE 

files (.csv format) were obtained for each day of the year in the period between July 2007 

and December 2019. Each file represents a day of the year and contains the price values for 

each hour of that same day. All those files were imported, read, integrated and merged 

resulting in one dataset with 2 features: date as index (format: “yyyy-mm-dd HH:MM:SS”) 

and the price value (€/MWh).   

In order to be able to make a proper analysis and forecast, we started by assessing the quality 

of the data. For that, we checked for missing values, wrong data, duplicate data, the range of 

the data and outliers. There were some missing values and wrong values regarding the prices 

of the years between 2007 till 2013. After contacting OMIE, we managed to fix those issues 

with the correct data. Since there is no data for the first half of 2007, all the prices regarding 

this year were not considered and deleted. After that, the duplicates and empty rows were 

removed. In Spain and Portugal, unlike most of European power markets, day-ahead offers 

must range between 0 and 180.3 €/MWh and therefore, negative prices are not allowed. In 

the dataset, we did not find any negative values for the hourly prices and the max value was 

identified as 180.3€/MWh. So, the prices in the dataset lie in the expected interval: [0, 180.3].  

At this point, dataset pre-processing was complete and correct, with 105192 rows × 2 

columns. Each row representing an hour from the period between 2008 to 2019 (12 years). 

Since this study envisages to forecast the ESP using two different approaches (daily and 

monthly), two new datasets were created. In the first one, the hourly prices were transformed 

into daily prices, by averaging the values by the day of the year, resulting in a dataset with 

4383 rows × 2 columns. The date format was set to: “yyyy-mm-dd”. In the second data set, 

the values were averaged by month of the year, resulting on a dataset with 144 rows × 2 

columns. The date format was set to: “yyyy-mm”. 

The description of the prices is summarized in Table 2 and the frequency distribution of the 

daily prices is represented in  

Figure 21. The mean during those 12 years is 48.05€/MWh and the standard deviation is 

14€/MWh. December 8th, 2013 was the day that averaged the highest value (93.11€/MWh). 

March 29th, 2013 was the day that averaged the lowest value for the price (0 €/MWh). 

https://www.omie.es/pt/file-access-list
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 Table 2 Basic descriptive statistics of the portuguese ESP (€/MWh) 

 

Figure 21 Frequency distribution of the portuguese ESP 

 

 

The price average of each year is plotted in Figure 22. The year with the highest price average 

is 2008 (70.90€/MWh). In contrast, 2009 was the year with the lowest average 

(36.94€/MWh). The average of the prices does not change that much from year to year. 

Figure 22 Average of the portuguese ESP by year 

 

 

The time-series of the daily prices is represented in Figure 23, with the found outliers in red 

dots. This series presents high volatility, temporary spikes and frequent extreme values. Even 

though 220 outliers were identified, no operation was performed to remove or change them, 

because, in this study, abnormal values reflect the actual nature of the prices and by 

manipulating them, could lead to lose its informative feature. The outliers with higher value 

Mean Std. Min. 25% (1st Qu.) 50% (Median) 75% (3rd Qu.) Max. 

48.05 14.13 0 39.96 48.53 56.61 93.11 

Source: Own Work. 

 

Source: Own Work. 

 

Source: Own Work. 
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can be called as price spikes. The spikes correspond to periods of unexpected high electricity 

demand, resulting in extreme fluctuations on spot prices. 

Figure 23 Outliers of the portugue ESP time-series 

 

2.1.2 Time-Series Analysis 

A useful approach to get insights into the data is to decompose the original time-series 

(Figure 24 - first panel). STL - Seasonal and Trend decomposition using Loess (Cleveland, 

McRae, & Terpenning, 1990) is a versatile and robust method for decomposing time-series. 

This decomposition results in the trend, seasonality and residuals components (Figure 24 - 

second, third and fourth panel respectively).  The trend captures the slowly moving overall 

level of the series, thanks to the application of a one year rolling mean. The seasonality 

captures patterns that repeat every season.  The residuals represent what is left (residuals = 

original -  trend - seasonality.). 

Figure 24 Portuguese ESP time-serie decompositions 

 

 

Source: Own Work. 

 

Source: Own Work. 

 



38 

The seasonality can be better understood with a seasonal diagnostic represented in Figure 

25 and Figure 26. This diagnostic provides a deeper understanding of the price’s behavior 

during the year and the week. It compares fluctuations of the data of different days and 

months. From Figure 25, the prices show an upward trend on Tuesday and a downward trend 

on Sunday. The weekdays show very similar patterns, the median of the prices of each 

weekday is constant (around 49€/MWh) and the upper and lower fence of each box plot are 

alike. In contrast, in the weekends, we have lower values for the fences and median. One 

possible reason for this event could be the fact that big companies, businesses, and some 

stores are closed during this time.  Sunday presents the lowest prices on average 

(43.34€/MWh). 

Figure 25 Seasonal diagnostic – Week 

 

 

 

In Figure 26, the prices showed a downward trend in February, March and April, while 

December shows the highest peak of the year. The boxplot of December has the highest 

upper fence and median (52.06€/MWh). While February is the month with the lowest lower 

fence and April the month with lowest median (40.12€/MWh). Prices during colder months 

(from October to April), tend to have a much higher standard deviation/volatility when 

compared to prices during hotter months (from May to September).  

Source: Own Work. 
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Figure 26 Seasonal diagnostic - Year 

  

 

 

Another relevant component of a time series is the stationarity. This is fundamental to be 

analyzed, since some forecast models assume the stationarity condition. A time-series is 

considered stationary when it progresses randomly around a constant average, showing some 

stable equilibrium.  

 The Augmented Dickey-Fuller test (ADF) (Dickey & Fuller, 1979) is a type of statistical 

test used to verify if a given time series is stationary. This test was performed in Python. 

Below, in  

Table 3, the results are shown. 

Table 3 Augmented dickey-fuller test (ADF) 

 

 

 

AUGMENTED DICKEY-FULLER TEST 

Null Hypothesis (H0):  The time-series is not stationary 

Alternate Hypothesis (H1):  The time-series is stationary 

ADF Statistic:  -4.292631 

P-Value:  0.000457 

Critical Values: 

1%: -3.432 

5%: -2.862 

10%: -2.567 

AUGMENTED DICKEY-FULLER TEST 

Null Hypothesis (H0):  The time-series is not stationary 

Alternate Hypothesis (H1):  The time-series is stationary 

ADF Statistic:  -4.292631 

P-Value:  0.000457 

Critical Values: 

1%: -3.432 

5%: -2.862 

10%: -2.567 

Source: Own Work. 

 



40 

 

 

We can see that our statistic value of -4.29 is less than the value of -3.432 at 1% and the p-

value is below the threshold (0.10, 0.05, and 0.01). This suggests that we can reject the null 

hypothesis with a significance level of less than 1%. Therefore, the time-series seems to be 

stationary. 

2.1.3 External Factors 

In this study, it was important to understand if external factors impact the electricity spot 

prices, not only to better understand the ESP itself, but also to see if those factors could serve 

as input for the models. Variables like the level of load, level of generation and weather are 

the most used in the literature as input for ESPF models.   

Weather variables might not be a reliable input for a one year ahead ESPF, since a reliable, 

useful and accurate forecast of the weather can only go up to 3 to 10 days into the future 

(Bauer, Thorpe, & Brunet, 2015). Daily temperature forecasts for the next 365 days have 

enormous potential error in perspective. In the literature, models that use forecast weather 

data as an input have a scope where the forecast horizon only goes up to a maximum of one 

month.  

The impact of electric load and generation variables was tested by calculating their 

correlation with the prices. The historical data (from 2007 till 2019) of the Portuguese load 

and generation was retrieved from the REN website (www.mercado.ren.pt) and then a 

Pearson correlation between them and the prices was computed and evaluated by calculating 

the correlation coefficient (Equation (13)).  

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
 (13) 

𝑤ℎ𝑒𝑟𝑒, 

𝑟 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑥𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑥 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 

𝑦𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 

Regarding the results of the Pearson correlation (during the past 12 years), we found that the 

Pearson coefficient between the load and the price is 0.354, which means that there is a 

positive weak correlation between them. Between the renewable sources and prices, we 

found a correlation of -0.334, corresponding to a negative weak correlation between them. 

Finally, the Pearson coefficient between the non-renewable sources and prices is 0.624, 

Source: Own Work. 
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showing that there is a positive moderate/sufficient correlation between them. Figure 27 

shows the result of the correlations evaluated, by year. 

 

Figure 27 Correlation between the Prices with the Load and the Generation variables 

 

 

So, we can conclude the load and generation variables can somehow impact the ESP, 

although they were not used as input features for the models in this study, due to their 

forecast complexity. The mid-term forecast of the electric load and generation levels is a 

very complex and difficult task (Mir, Alghassab, Ullah, Khan, Lu, & Imran, 2020). There 

are different types of renewable and non-renewable electricity production sources: Hydro, 

Wind, Biomass, Solar, Coal, Natural Gas, etc. All those different sources must be studied 

separately in order to be forecasted and to achieve acceptable and reliable forecasts for the 

total generation levels. Forecasting all of those variables goes out of the scope of this study.  

In addition, adding external forecasted variables in the model can be a risk, since it can lead 

to a larger error component (Weron, 2014). Therefore, in this study, it was assumed that 

general fluctuations in energy demand, energy generation and temperature are already 

incorporated in historical electricity prices. 

2.1.4 Train/Test Set 

Our time-series data was split into training and testing sets, according to the adopted CRISP-

DM methodology (Figure 28). The training set is the sample of data utilized to fit the 

machine learning model. It corresponds to 80% of the data and goes from 2008-01-01 to 

2017-08-06. The test set is the sample of data utilized to evaluate the model that was trained 

with the training dataset, delivering an impartial and fair evaluation, while tuning the 

Source: Own Work. 
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models’ hyperparameters. It corresponds to 20% of the data and is mutually exclusive of 

training set, ranging from 2017-08-07 to 2019-12-31. 

 

Figure 28 Train set and Test set 

 

2.1.5 Feature Engineering  

Before creating, fitting, and training the forecast models it is important to create features 

from the existing data as input for the models. This process, called feature engineering, 

consists in extract knowledge from existing data. 

First, 15 features extracted from the date were created, based on the day, month, week and 

year. They are described in Table 4.  

Then in order to handle periodic variables in the forecasting models, we applied sine and 

cosine transformations on the number of time steps elapsed since the beginning of each 

seasonal period. Therefore, such Fourier features were created to model seasonality. For that 

purpose, period and order had to be set.  

The period corresponds to the numeric period of the oscillation frequency. Since we are 

dealing with daily data, three types of frequency were specified: 

− Yearly frequency: 365 

− Quarterly frequency: 365 / 4 = 91.25 

− Monthly frequency: 365 / 12 = 30.42 

K is the number of orders that each sine/cosine Fourier series has. So, the number of complete 

waves in the interval [−π,π] is represented by K. In this study we decided to specify K as 5, 

because the increase of the K leads to the model’s better ability to fit. Although, it can also 

come with the risk of overfitting. Therefore, 5 is a good choice when balancing performance 

with reliability. Fourier features were created by implementing: step_fourier(period = 

Source: Own Work. 
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c(30.42,91.25, 365), K = 5. This scheme returned 30 Fourier series that are described in 

Table 4. 

For the monthly approach, the same was done but considering the monthly data resolution 

characteristics.  

Table 4 Features created as input for the models 

NAME DESCRIPTION 
POSSIBLE 

VALUES 
TYPE 

DATE FEATURES 

year Represents the calendar year. 2008 to 2019. Integer 

year ISO The ISO year number of the year (Monday start) 2008 to 2019. Integer 

half Represents the half of the year. 1 or 2. Integer 

quarter Represents the quarter of the year. 1 to 4 Integer 

month Represents each month of the year. 1 to 12 Integer 

day Represents each day of the month. 1 to 31 Integer 

wday Represents each day of the week. 1 to 7 Integer 

qday Represents each day of the quarter of a year. 1 to 91 Integer 

yday Represents each day of a year. 1 to 365 Integer 

mweek Represents the week of the month. 1 to 5 Integer 

week Represents the week of the year. 1 to 51 Integer 

week2 Represents the modulus for bi-weekly frequency. 0 or 1 Integer 

week3 Represents the modulus for tri-weekly frequency. 0 to 2 Integer 

week4 Represents the modulus for quad-weekly frequency. 0 to 3 Integer 

mday7 Identifies the instance/order in which that the day of 

the week has appeared in the month.  

1 to 5 Integer 

FOURIER FEATURES 

cos365_K1 Cosine with period = 365 and K = 1 -1 to 1 Double  

sin365_K1 Sine with period = 365 and K = 1 -1 to 1 Double  

cos365_K2 Cosine with period = 365 and K = 2 -1 to 1 Double  

sin365_K2 Sine with period = 365 and K = 2 -1 to 1 Double  

cos365_K3 Cosine with period = 365 and K = 3 -1 to 1 Double  

sin365_K3 Sine with period = 365 and K = 3 -1 to 1 Double  

cos365_K4 Cosine with period = 365 and K = 4 -1 to 1 Double  

sin365_K4 Sine with period = 365 and K = 4 -1 to 1 Double  

cos365_K5 Cosine with period = 365 and K = 5 -1 to 1 Double  

sin365_K5 Sine with period = 365 and K = 5 -1 to 1 Double  

cos91.25_K1 Cosine with period = 91.25 and K = 1 -1 to 1 Double  

sin91.25_K1 Sine with period = 91.25 and K = 1 -1 to 1 Double  

cos91.25_K2 Cosine with period = 91.25 and K = 2 -1 to 1 Double  

sin91.25_K2 Sine with period = 91.25 and K = 2 -1 to 1 Double  

cos91.25_K3 Cosine with period = 91.25 and K = 3 -1 to 1 Double  

sin91.25_K3 Sine with period = 91.25 and K = 3 -1 to 1 Double  

cos91.25_K4 Cosine with period = 91.25 and K = 4 -1 to 1 Double  

sin91.25_K4 Sine with period = 91.25 and K = 4 -1 to 1 Double  

cos91.25_K5 Cosine with period = 91.25 and K = 5 -1 to 1 Double  

sin91.25_K5 Sine with period = 91.25 and K = 5 -1 to 1 Double  

cos30.42_K1 Cosine with period = 30.42and K = 1 -1 to 1 Double  

sin30.42_K1 Sine with period = 30.42and K = 1 -1 to 1 Double  

cos30.42_K2 Cosine with period = 30.42and K = 2 -1 to 1 Double  

sin30.42_K2 Sine with period = 30.42 and K = 2 -1 to 1 Double  Source: Own Work. 
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2.2 Models Implementation 

After the data was explored, analyzed, and pre-processed, the Machine Learning models 

were ready to be created, trained, tested, and compared.  

2.2.1 Models Computation 

The models were computed in the R programming environment, using mainly the forecast 

and modeltime packages. The theory behind each model can be read in section 2.1.6 Models 

Overview.  

ARIMA, Prophet, and ETS were computed via the following main steps: 

1. Implementation of the specification function, where the general model algorithm and the 

respective parameters were set up. 

2. Set of the engine, where the specific package-function to use was selected. 

3. Fit of the model to the data, where the date column was set to be a regressor. 

These three models are the only ones that do not use the features created in the feature 

engineering preprocess, i.e., they only use the date and the price columns as input. 

The remaining models (NNAR, SVM, k-NN, RF, ARIMA Boost, Prophet Boost, and LR) 

are more complex, requiring a workflow. These models were computed through the 

following steps: 

1. Creation of the model specification, where the specification function was implemented, 

and the engine was set. 

2. Manual selection and tuning of the parameter’s values (with the exception of the ARIMA 

Boost and Prophet Boost, since their parameters were automatically set by the packages 

in R). 

3. Creation of a workflow, where the model’s specifications and the pre-processed features 

were added. 

4. Fitting the workflow to the data. 

 

Table 5 represents a summary of each created model, respective parameters to tune, the 

function, engine and mode of analysis.  

cos30.42_K3 Cosine with period = 30.42 and K = 3 -1 to 1 Double  

sin30.42_K3 Sine with period = 30.42 and K = 3 -1 to 1 Double  

cos30.42_K4 Cosine with period = 30.42 and K = 4 -1 to 1 Double  

sin30.42_K4 Sine with period = 30.42 and K = 4 -1 to 1 Double  

cos30.42_K5 Cosine with period = 30.42 and K = 5 -1 to 1 Double  

sin30.42_K5 Sine with period = 30.42 and K = 5 -1 to 1 Double  
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Table 5 Summary of the models implemented to forecast the portuguese ESP  

MODEL PARAMETERS  FUNCTION ENGINE MODE 

ARIMA AUTO arima_reg() auto_arima Regression 

Prophet AUTO prophet_reg() prophet Regression 

Exponential 

Smoothing 
AUTO exp_smoothing() ets Regression 

Linear 

Regression: 

-LASSO 

-Elastic Net 

-Ridge 

Regression 

- Penalty 

- Mixture  

linear_reg() glmnet Regression 

Random Forest 

- Mtry (F) 

- Trees (K) 

-  Min Node 

 

rand_forest() randomForest Regression 

Support Vector 

Machine 

- Cost 

- Sigma 
svm_rbf() Kernlab Regression 

k-Nearest 

Neighbor 

- Neighbors 

- Distance Type 
nearest_neighbor() kknn Regression 

Neural Network 

Autoregression  

 

- Non seasonal AR 

(p) 

- Seasonal AR (P) 

- Hidden units (K) 

- Epochs 

nnetar_reg() nnetar Regression 

Prophet Boost AUTO arima_boost() auto_arima_xgboost Regression 

ARIMA Boost AUTO prophet_boost() prophet_xgboost Regression 

 

2.2.2 Parameters Tuning 

As seen in Table 5, the models have different parameters that can and must be tuned, for the 

purpose of achieving the most accurate predictions. The parameters of ARIMA, Prophet, 

Exponential Smoothing, Prophet Boost, and ARIMA Boost were automatically optimized 

and selected thanks to the packages and respective libraries used in R. The parameters of the 

remaining models had to be manually selected. The procedure of picking among different 

parameters is called model “tuning”. Since there is not an available analytical model to find 

the optimal combination, the solution lies on experimentally testing different combinations.  

Once testing all the possible values and combinations of values for all the model’s 

parameters is impractical and time-consuming, a simpler and reliable solution is using a grid 

Source: Own Work. 
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search (Bergstra & Bengio, 2012). Grid search is the most widely implemented scheme for 

parameter optimization (Bergstra & Bengio, 2012). Therefore, to provide robust empirical 

results, such grid search approach was used to find the optimal values for the model’s 

parameters. With such a scheme, not all the possible values are tested but, instead, jumps of 

values are established and tested. Combinations of parameter’s values were performed, 

tested, and compared as individual models.  

It is important to note that as a result of the random nature of some models like RF and 

NNAR, the random seed had to be defined. This was done in order to train different models 

with the same starting point (same seed) and compare the results when the parameters 

changed. The random seed was fixed to 15, making the initial starting weights of the models 

the same each time. Consequently, any variation in the performance of the model can be 

attributed to the parameter tunning.  

Parameters of Linear Regression  

• Mixture: A number between zero and one (inclusive) corresponding to the proportion of 

regularization in the model. When mixture = 1, it is a pure LASSO model while mixture 

= 0 indicates that ridge regression is being used. To implement an elastic net the mixture 

must be set between 0 and 1. In this study it was set as 0.5. Values tested (for monthly 

and daily data) = {0, 0.5, 1} 

• Penalty: A positive number representing the total amount of regularization. There is no 

equation for finding the best penalty value. Thus, we needed to iterate a series of values 

and evaluate prediction performances. In this study jumps of values were tested till the 

accuracy kept constant. Values tested (for monthly and daily data) = {0.01, 0.5, 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 200, 1000, 2000, 5000, 6000, 7000}.  

 

Parameters to tune on Random Forest 

• Mtry (F): An integer of input variables (predictors) that will be randomly sampled at 

each split when creating the tree models. The RF procedure is not overly sensitive to the 

value of F. The value for this parameter is recommended to be set as one-third of the 

predictors for regression. Value used (monthly data) = 15. Value used (daily data) = 21. 

• Trees (K): An integer of the trees contained in the ensemble. Successive trees must be 

experimented until the error stabilizes. Values tested (for monthly and daily data) = {1, 

2, 3, 4, 5, 6, 8, 10, 20, 30, 40, 50, 100, 200, 300, 400, 5000, 6000}. 

• Min_n: An integer for the minimum of data points in a node that are required for the 

node to be split. RF also shows low sensitivity to this parameter. Since the default value 

of the function is five, and since some of the most relevant authors also recommend to 

set it as 5: Value used (for monthly and data) = 5. 
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Parameters to tune on SVM 

• cost:  A positive number for the cost of predicting a sample within or on the wrong side 

of the margin. It is a hypermeter in SVM to control error.  Values tested (for monthly 

and daily data) = {0.001, 0.01, 0.1, 1, 10, 100}. 

• rbf_sigma: A positive number for radial basis function. Values tested (for monthly and 

daily data) = {0.001, 0.01, 0.1, 1, 10, 100}. 

Parameters to tune on k-NN 

• neighbors (k): A single integer for the number of neighbors to consider. I set K min = 2, 

to avoid overfitting and K max = 100 (since the model does not support a larger value 

than 100 for K). Values tested (for monthly and daily data) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 

15, 20, 25, 30, 40, 50, 60, 80, 100}. 

• dist_power: The parameter used when calculating the Minkowski distance. It can be 

specifically set as the Manhattan distance (set value = 1) and the Euclidean distance (set 

value = 2). Values tested (for monthly and daily data) = {1, 2} 

 

Parameters to tune on NNAR 

• non_seasonal_ar (p): The order of the non-seasonal auto-regressive (AR) terms. 

Values tested (for monthly data) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. Values 

tested (for daily data) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.  

• seasonal_ar (P): The order of the seasonal auto-regressive (SAR) terms. The P was set 

to zero when using monthly data, since the ARIMA and ETS models did not consider 

the seasonality. Value used (for monthly data) = {0}. Values tested (for daily data) = {1, 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.  

• hidden_units (k): An integer for the number of units in the hidden model. Values tested 

(for monthly data) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. Values tested (for 

daily data) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. 

• epochs: An integer for the number of training iterations. Value used (for monthly data) 

= 300. Value used (for daily data) = 100. 

2.2.3 Error Measurements 

To measure the quality of the predictions and assess the performance of the forecasting 

models, accuracy metrics were implemented. With these metrics, the expected value and 

predicted value are compared, to assess the error in the prediction. The magnitude of the 

error translates the accuracy of the model’s predictions. In this study, the selected and 

implemented metrics are: Mean Absolute Error (MAE) (Equation (14)), Mean Absolute 

Percentage Error (MAPE) (Equation (15)), Mean Absolute Scaled Error (MASE) (Equation 
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(16)), Symmetric Mean Absolute Percentage Error (SMAPE) (Equation (17)), and Root 

Mean Squared Error (RMSE) (Equation (18)). The underlying expressions of these accuracy 

metrics are given by: 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (14) 

𝑀𝐴𝑃𝐸 =  
100

𝑁
∑ |
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𝑦𝑖
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𝑁

𝑖=1
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𝑀𝐴𝑆𝐸 =  
𝑀𝐴𝐸

1
𝑁 − 1
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1

𝑁
∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 (18) 

where, 

𝑦𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 

�̂�𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 

Even though all the above measures were calculated for all the models, the MAPE metric 

was the selected one to make the comparison between the models, since it was verified in 

the Literature Review of this study to be the most used. The forecast presenting the smallest 

MAPE is the most accurate among the others. 

According to Lewis & C.D.( 1982) if the value of MAPE is inferior to 10% then we can 

classify the forecast as very good, if it is between 11% and 20% it is a good forecast, if it is 

between 21% and 50% then it is a reasonable forecast, and if it is above 50%, it indicates an 

inaccurate forecast.   

2.2.4 Models Combination 

After the twelve models were created and the parameters were tuned, the respective 

predictions were obtained and the accuracy calculated, the models were combined, using an 

“ensemble” approach (Vannitsem, Wilks, & Messner, 2018). The main advantages of 
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combining models’ predictions is achieving a lower error and less overfitting. The top 4 

models with best accuracy were identified and chosen to be combined. The same process 

was repeated using only the top 3 and top 2 models. The performance results were compared. 

The models were combined, by averaging their predictions, using three different approaches: 

a simple average (mean), median average, and a weighted average.  

− Simple Average: Weighs all models with the same proportion. 

− Median Average: No weighting. Selects prediction using the centered value for each 

time stamp.  

− Weighted Average: The weights are manually selected and adjusted according to the 

performance of each specific model. The weights are assigned such that the sum of 

weights must be equal to 1. 

Figure 29 summarizes all the process described in the Data and Methodology chapter. 

Figure 29 Scheme diagram of the process leading to the final forecast 

 

 

3 RESULTS AND DISCUSSION 

This chapter contains the results and discussion of the two implemented approaches: the 

monthly forecast (uses monthly prices data) and the daily forecast (uses daily prices data). 

3.1 Monthly Forecast 

The monthly approach envisages to predict 12 points in the future corresponding to the ESP 

of each month of the next year. 

3.1.1 Test Set Accuracy 

The detailed error measurements results of each parameter combination, in the grid search 

of each model using monthly data, can be seen in the Appendix. Table 6 summarizes the 

parameters with the lowest MAPE by model. In this phase, we compared twelve optimized 

Source: Own Work. 
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models. Prophet is the model with the higher error in its prediction (20.02%), while ARIMA 

Boost has the lowest error (12.39%). Since the MAPE of all the models, using monthly data, 

lies between 10% and 20%, they can be classified as good forecasts (Lewis & C.D., 1982).  

Table 6 Accuracy Table – Monthly approach 

Model Parameters Model Type MAE MAPE MASE SMAPE RMSE 

ARIMA 
AUTO: 

ARIMA(2,0,1) 
Statistical 8.08 14.68 1.73 15.52 10.03 

Prophet AUTO Statistical 11.01 20.02 2.36 22.50 12.81 

Exponential 

Smoothing 

AUTO: 

ETS(A,N,N) 
Statistical 7.84 14.38 1.68 15.03 9.75 

LASSO 
- Penalty: 3 

- Mixture: 1 
Statistical 8.18 15.48 1.75 15.71 9.63 

Elastic Net 
- Penalty: 7 

- Mixture: 0.5 
Statistical 8.51 15.45 1.82 16.42 10.38 

Ridge 

Regression 

- Penalty: 5000 

- Mixture: 0 
Statistical 8.65 15.50 1.85 16.70 10.70 

Random 

Forest 

- Mtry (F): 15 

- Trees (K): 40 

-  Min Node: 5 

Computational 

Intelligence 
8.58 15.82 1.84 16.61 10.11 

Support 

Vector 

Machine 

- Cost: 0.001 

- Sigma: 0.001 

Computational 

Intelligence 
8.48 15.23 1.82 16.34 10.53 

k-Nearest 

Neighbor 

- Neighbors: 2 

- Distance: 1 

Computational 

Intelligence 
7.84 15.07 1.68 15.01 10.77 

Neural 

Network 

Autoregression 

- p: 1 and P: 0 

- K: 2 

- Epochs: 300 

Computational 

Intelligence 
6.42 13.06 1.38 12.41 7.68 

Prophet Boost AUTO Hybrid 7.71 14.97 1.65 15.15 9.11 

ARIMA Boost AUTO Hybrid 6.84 12.39 1.47 13.04 8.62 

 

3.1.2 Test Set Forecast 

It is extremely important to plot the forecasts of the test set, because just analyzing the 

accuracy of the model is not enough to understand if the model predictions are in fact good 

or not. The results of the output forecast of each optimized model presented in Table 6 are 

plotted below in Figure 30. The original time-series is presented in dark grey and the forecast 

of the test data is represented with a different color for each model. The light grey is the 

interval of confidence of each forecast model. In all the models, the real values are inside 

that interval, which can be translated to a good accuracy. We can see that ARIMA, ETS, 

LASSO, Elastic Net, Ridge Regression and SVM present a minimal fluctuation and trend, 

or none at all, having a behavior close to a straight line. In contrast, Prophet, Random Forest, 

k-NN, NNAR, ARIMA Bost and Prophet Bost consider a fluctuation and trend in the price’s 

forecast, being closer to the expected values behavior. We can conclude that the 

Source: Own Work. 
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Computational Intelligence (except the SVM model) and Hybrid models, tend to be sensitive 

to the fluctuation of the prices, in opposition to the Statistical models, in the case of a 

monthly forecast approach. 

Figure 30 Plot of each model test set forecast - Monthly approach 
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3.1.3 12 month-ahead forecast 

Given that ARIMA, ETS, LASSO, Elastic Net, Ridge Regression and SVM showed a poor 

forecast in Figure 30, compared to the remaining, those were not used in the 12 month-ahead 

forecast. The rest of the models were implemented, using the historical data from 2008 to 

2019 to monthly forecast the year of 2020. The plotted results of each model are represented 

in Figure 31.  

Figure 31 Plot of each model 12 month-ahead forecast 

 

3.1.4 Combined Models 

From the 6 models with the best forecast (Prophet, Random Forest, k-NN, NNAR, ARIMA 

Boost and Prophet Boost), the top 4 with lowest MAPE error (k-NN, NNAR, ARIMA Boost 

and Prophet Boost, see Table 6) were selected as input for the creation of the simple average 

model combination (or ensemble) depicted in Figure 32. In the first combined model, these 

top 4 models were selected. In the second combined model, the top 3 models were selected, 

therefore k-NN was excluded. In the third one, the top 2 models 

Prophet Random Forest k-NN 

   

NNAR Prophet Boost ARIMA Boost 

   

Source: Own Work. 

 

Source: Own Work. 
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with better MAPE performance were selected: NNAR and ARIMA Boost. Then, the process 

was repeated but using median average. In total, 6 models were created.  

Figure 32 Diagram of the combined models - Monthly approach 

 

 

For the weighted average model, only the top 2 (NNAR+ ARIMA Boost) were used as input 

for the combination. Therefore, the weights of these models were changed empirically in 

order to find an optimized result. The weight combination with the lowest error was: 

w1=0.28 for NNAR and w2=0.72 for ARIMA Boost.  

Table 7 lists the results of the error calculations of each of the 6 combined models and the 

weighted model.   

Table 7 Accuracy table of the combined models  – Monthly approach 

Model MAE MAPE MASE SMAPE RMSE 

4 models (MEAN) 6.65 12.77 1.43 12.69 7.99 
4 models (MEDIAN) 6.79 13.13 1.46 13.00 8.20 
3 models (MEAN) 6.42 12.34 1.38 12.28 7.46 
3 models (MEDIAN) 6.63 12.94 1.42 12.70 7.98 
2 models (MEAN) 6.26 11.99 1.34 11.96 7.46 
2 models (MEDIAN) 6.26 11.99 1.34 11.96 7.46 
2 models (WEIGHTED) 6.36 11.84 1.36 12.09 7.82 

 

The models tend to have a lower error when the number of models combined is smaller. The 

ensemble model with the lowest error found was the 2 models weighted combination 

(NNAR+ARIMA Boost weighted model) with a MAPE = 11.84%. This model is not only 

better than any combination tested, but is also better than any of the 12 single models, as can 

be seen in Table 6 and Table 7. 

Source: Own Work. 

 

Source: Own Work. 

 



54 

In Figure 33 (a) we plot the price’s forecast of the test data using the NNAR+ARIMA Boost 

combined weighted model and in Figure 33Figure 33 (b) we plot the 12 month-ahead 

forecast of the prices using the NNAR+ARIMA Boost combined weighted model. 

        

 

 

3.2 Daily Forecast 

The daily forecast approach envisages to estimate 365 points in the future corresponding to 

the ESP of each day of the next year. 

3.2.1 Test Set Accuracy 

Much like for the monthly case, the error measurements results of each parameter 

combination in each grid search of each model using daily data can be seen in the Appendix. 

Table 8 summarizes the tunned parameters with the lowest MAPE for each model. As 

expected, the error is much higher when using daily data, since the granularity of the data 

and the estimated points are larger, when compared to the monthly approach. Prophet Boost 

is the model with the highest error in its prediction (27.71%), while Exponential Smoothing 

has the lowest error (24.37%). Since the MAPE of all the models, using daily data, lies 

between 24% and 28%, they can be classified as close to good reasonable forecasts (Lewis 

& C.D., 1982). 

Table 8 Accuracy Table – Daily approach 

Model Parameters Model Type MAE MAPE MASE SMAPE RMSE 

ARIMA 
AUTO: 

ARIMA(4,1,1)(2,0,0)[7] 
Statistical 9.43 25.24 2.48 18.78 11.94 

Prophet AUTO Statistical 9.12 26.06 2.40 18.26 11.09 

Figure 33 Plot of the test set forecast (a) and  12 month-ahead forecast (b) 

Source: Own Work. 

 

(a) (b) 

(table continues) 
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Exponential 

Smoothing 
AUTO: ETS(A,N,A) Statistical 9.19 24.37 2.42 18.39 11.62 

LASSO 
- Penalty: 3 

- Mixture: 1 
Statistical 9.77 25.48 2.57 19.53 12.10 

Model Parameters Model Type MAE MAPE MASE SMAPE RMSE 

Elastic Net - Penalty: 6 

- Mixture: 0.5 

Statistical 9.78 25.47 2.57 19.53 12.14 

Ridge 

Regression 

- Penalty: 5000 

- Mixture: 0 

Statistical 9.89 25.67 2.60 19.74 12.42 

Random 

Forest 

- Mtry (F): 21 

- Trees (K): 500 

-  Min Node: 5 

Computational 

Intelligence 

8.57 25.00 2.25 16.95 11.25 

Support 

Vector 

Machine 

- Cost: 1 

- Sigma: 0.1 

Computational 

Intelligence 

8.44 24.38 2.22 16.84 10.85 

k-Nearest 

Neighbor 

- Neighbors: 5 

- Distance Type: 1 

Computational 

Intelligence 

9.03 25.95 2.37 18.18 11.60 

Neural 

Network 

Autoregression 

- p: 11 

- P 10 

- K: 11 

- Epochs: 100 

Computational 

Intelligence 

8.01 24.58 2.11 15.92 10.51 

Prophet Boost AUTO Hybrid 10.04 27.71 2.64 19.95 12.17 

ARIMA Boost AUTO Hybrid 9.52 24.92 2.50 19.04 11.95 

 

3.2.2 Test Set Forecast 

Like for the monthly case, it is very relevant to plot the daily forecasts of the test set, because 

just analyzing the accuracy of the model is not enough to understand if each model forecast 

is in fact good or not. The results of the output forecast of each optimized model presented 

in Table 8 are depicted below in Figure 34. The original time-series is presented in dark grey 

and the forecast of the test data is represented with a different color for each model. The light 

grey is the interval of confidence of each model forecast. In all the models, there are some 

real values that are outside that interval. These values are mostly spikes that the models failed 

to identify. We can see that ARIMA, ETS, LASSO, Elastic Net, and Ridge Regression 

present a minimal fluctuation and trend, or none at all, having a behavior close to a straight 

line. In contrast, Prophet, Random Forest, SVM, k-NN, NNAR, and ARIMA Bost, Prophet 

Bost consider a fluctuation and trend in the forecasted prices, being closer to the expected 

values behavior. So, the Computational Intelligence and Hybrid models tend to be sensitive 

to the fluctuation of the prices, as opposed to the Statistical models, in a daily forecast 

approach.  

Source: Own Work. 

 

(continued) 
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By comparing the results depicted in Table 6 and Table 8, the models that reflected better 

forecast in the monthly approach are the same ones in the daily approach. The only exception 

was SVM. This model presented a forecast in the range of the best ones in the daily approach, 

and a poor one in the monthly approach.  

Figure 34 Plot of each model test set forecast - Daily approach 
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3.2.3 365 day-ahead forecast 

Since ARIMA, ETS, LASSO, Elastic Net, and Ridge Regression showed a poor forecast in 

Figure 34, those were not used in the 365 day-ahead forecast. The rest of the models were 

implemented, using the historical data from 2008 to 2019 to daily forecast the year of 2020. 

The plotted results of each model are represented in Figure 35. 

Figure 35 Plot of each model 365 day-ahead forecast 
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k-NN NNAR Prophet Boost 

 
 

 

ARIMA Boost 

Source: Own Work. 
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3.2.4 Combined Models 

From the 7 models with the best forecast (Prophet, Random Forest, SVM, k-NN, NNAR, 

ARIMA Boost and Prophet Boost), the top 4 with lowest MAPE error (Random Forest, 

SVM, NNAR, and ARIMA Boost) were selected as input for the creation of the simple 

average model combination (Figure 36). In the first model, these top 4 models were selected. 

In the second combined model, the top 3 models were selected, therefore Random Forest 

was excluded. In the third one, the top 2 models with better MAPE performance were 

selected: NNAR and SVM. Subsequently, the process was repeated but using median 

average. In total, 6 models were created.  

Figure 36 Diagram of the combined models - Daily approach 

 

 

For the weighted average model, only the top 2 (NNAR+SVM) were used as input for the 

combination. Therefore, the weights of these models were changed in order to find an 

optimized result. Although, a lowest error was not found. Therefore, the weight combination 

Source: Own Work. 

 

Source: Own Work. 
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with the lowest error was: w1 = 0.5 for NNAR and w2 = 0.5 for SVM. Table 9 shows the 

results of the error calculations of each of the 6 models and the weighted model.   

Table 9 Accuracy table of the combined models  – Daily approach 

Model MAE MAPE MASE SMAPE RMSE 

4 models (MEAN) 8.19 23.88 2.15 16.32 10.55 
4 models (MEDIAN) 8.28 24.18 2.18 16.50 10.68 
3 models (MEAN) 8.29 23.91 2.18 16.52 10.64 
3 models (MEDIAN) 8.35 24.19 2.19 16.63 10.77 
2 models (MEAN) 8.01 24.07 2.11 15.96 10.42 
2 models (MEDIAN) 8.01 24.07 2.11 15.96 10.42 
2 models (WEIGHTED) 8.01 24.07 2.11 15.96 10.42 

 

Contrary to what resulted in our monthly data approach, the models in the daily data case, 

tend to have a higher error when the number of models combined is lower. The model with 

the lowest error found was the 4 models mean combination, with a MAPE = 23.88%. 

According to our results, this model is not only better than any combination tested, but also 

better than any of the 12 single models. 

In (a) we plot the forecast of the test set using the RF+SVM+NNAR+ARIMA Boost mean 

combined model and Figure 37 (b) is plotted the 365 day-ahead forecast of the prices using 

the RF+SVM+NNAR+ARIMA Boost mean combined model. 

 

Figure 37 Plot of the test set forecast (a) and  365 day-ahead forecast (b) 

  

        

  

(a) 

Source: Own Work. 

 

(b) 

Source: Own Work. 
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CONCLUSION 

A mid-term forecast of the electricity spot prices is a complex task, where the predicted 

results can sometimes be dubious, due to the volatile and complex electricity market 

conditions. However, such forecast is essential for every market participant and for 

investment decision making in electricity markets, helping to reduce the risk of their 

investments, since these predictions give new information about the behavior of the ESP in 

the future. Furthermore, these types of forecasts are very useful for the consumers that have 

their tariffs indexed to the electricity spot prices, to know when to increase or decrease their 

electricity consumption and, also, for the energy storage systems, helping these to determine 

when to store or distribute the energy. 

This study deals with an ESP mid-term forecast problem, attempting to predict the daily and 

monthly ESP for the next year-ahead, using monthly and daily historical data that ranges 

from 2008 till 2019 (12 years). The first part of this study consisted of analyzing the 

characteristics of the electricity as well as the structure of the electricity market, with special 

focus on the Iberian Market. Then the possible forecast techniques and approaches were 

explained. Subsequently, a Systematic Review and Meta-analysis of the Literature of the last 

5 years, related to the mid-term ESPF was implemented, using the PRISMA methodology. 

The number of papers identified was sparse. Only thirteen papers were found, from which 

only five implemented computation intelligence models. Furthermore, from the thirteen 

papers, only four used monthly resolution data and none used daily data. Also, regarding the 

deterministic approach, only one of the 13 papers forecasted up to one-year horizon. There 

is therefore, a large gap in the literature when it comes to mid-term approaches for ESPF.  

In this study, the Portuguese ESP data was explored and analyzed. The data showed high 

volatility and fluctuation, and a weekly and yearly seasonality was identified. After that, 

different forecasting models were implemented. The chosen models were: Statistical models 

(ARIMA, Exponential Smoothing, LASSO Regression, Ridge Regression, Elastic Net 

Regression, and Prophet), Computational Intelligence models (NNAR, RF, SVM, and k-

NN) and hybrid models (ARIMA Boost and Prophet Boost). This study compares the 

forecasting performance derived from these twelve individual and hybrid models, as well as 

from 7 combinations between those models.  

Discussion of the Research Hypotheses 

After testing and comparing the models, when forecasting mid-term ESP in the day-ahead 

OMIE market, the results of the RH were verified and summarized in Table 10. 

 

Table 10 Summary of hypotheses' results. 

Nr. Hypothesis Result 

RH1 

Computational Intelligent models show better performance if compared to 

Statistical models, when forecasting mid-term ESP in the day-ahead OMIE 

market. 

Confirmed 
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RH2 

The forecast of mid-term ESP in the day-ahead OMIE market, using 

Computational Intelligent or Statistical models, has better performance 

when using monthly price data than daily price data. 

Confirmed 

RH3 

It is possible to improve the forecast of mid-term ESP in the day-ahead 

OMIE market, by selecting an ensemble of models, either trained with 

monthly or daily price data. 

Confirmed 

 

 

The RH1 was proved to be true based on the results of this thesis, since Computational 

Intelligence models tend to outperform statistical models, evidencing more accurate results 

when the forecast data is compared to the expected values, by calculating the accuracy 

measures and plotting both time-series. The RH2 was also accepted vis-a-vis the results of 

this thesis. Forecasting the next year with monthly data has a lower error compared to when 

forecasting with daily data. All the 12 models had a lower MAPE (between 12% and 20%) 

when using monthly data compared to when using daily data (between 24% and 

28%). The RH3 was also confirmed by the results of this thesis. The best models using 

monthly or daily data are NNAR and ARIMA Boost. However, by combining models’ 

forecasts, either when using daily or monthly data, we achieved a higher accuracy of the 

forecast, when compared to single models. For a monthly approach, the combination 

of NNAR+ARIMA Boost, using a weighted average, outperformed any other combination 

or individual model with a MAPE=11.84%. Regarding the daily approach, it was the 

combination of RF+SVM+NNAR+ARIMA Boost, by applying a mean average, that 

outperformed any other combination or individual model with a MAPE=24.07%. 

Therefore, we can conclude that the combination of models provides a more accurate and 

reliable prediction, enhancing the chances of capturing the behavior of the ESP in the future, 

compared with the application of single time series forecasting methods. 

Contributions of this study 

This study helps advance the field of forecasting ESP in a mid-term horizon, helping to fill 

the gap of mid-term ESPF focused literature studies, doing things that were never done and 

seen before in the literature, to the best of the authors’ knowledge, like: 

− Implementing and comparing different models that were never tested in a mid-term 

horizon. 

− Implementing and comparing different models that were tested using Portuguese ESP as 

input. 

− Introducing a new ensemble method that consists in combining individual models to 

forecast ESP, resulting in a better accuracy. 

− Introducing a daily approach for forecasting ESP in a mid-term horizon, using daily data 

as input to the models, to forecast the next 365 days-ahead. 

− Comparing two different data resolution approaches (monthly and daily) instead of 

focusing in just one. 

− Comparing different type of models (statistical, computational intelligence and hybrid 

models) in the same study, instead of focusing in just one. 

Source: Own Work. 
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Limitations and difficulties in this study 

Since forecasting ESP in a mid-term horizon is a complex problem, different obstacles were 

encountered like: 

− Forecasting the next entire year with hourly data. The dimension of the data and hourly 

fluctuation is too high to be reliably forecasted. 

− Using external factors for the forecast like weather variables, consumption, and 

production variables. The forecast of these variable in one-year horizon is an extremely 

complex and much needed task, that goes out of the scope of this study. 

− The incapability of the models to extrapolate the forecasts. The accuracy decreases with 

the increase of the forecast horizon window size, since uncertainty and bias tend to grow 

over time. In a mid-term horizon, forecasting one-year ahead is more challenging than 

just weeks or few months ahead. 

− Tuning of many parameters. There are no standardized methods for determining the 

optimal value of the parameters for each model. In practice they are chosen by trial-and-

error and in some models the specific prediction process cannot be explained. 

− This study presented techniques, models, and approaches only using historical ESP from 

Portugal. Other countries’ prices may present different characteristics and behaviors, 

requiring different approaches. So, the methods and models of this study must be 

changed and adjusted in order to be implemented in other markets. 

− The limitation of the local computer capacities to run the models. 

Suggestions for future research  

There is still room for improvement, and the following tasks can be implemented in future 

works: 

− Use the same models and techniques but with data from other countries and electricity 

markets, to test and compare the accuracy of the models. 

− Implement a weekly averaged price one-year forecast and compare the performance of 

the models. 

− Implement more promising models, for example the LSTM model, by leveraging high 

performance computing resources in the cloud. 

− Test and compare more combinations of parameters in some models and automate this 

process. 

− Develop better schemes to further improve the selection of the models’ parameters. 

− Create more hybrid models. 

− Combine more models and compare their performance.  

− Study and try to create reliable forecasts for weather, load, and generation variables for 

the next year in order to use them as input to forecast the ESP, creating multi-dimensional 

data sets to train and test the models. 

− Study and implement techniques that help to forecast the spikes in the ESP during the 

following year.  



63 

REFERENCE LIST 

1. Aguilera, H., Guardiola-Albert, C., Naranjo-Fernández, N., & Kohfahl, C. (2019). 

Towards flexible groundwater-level prediction for adaptive water management: using 

Facebook’s Prophet forecasting approach. Hydrological Sciences Journal, 64(12), 

1504–1518. https://doi.org/10.1080/02626667.2019.1651933 

2. Al-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2018). Short-term electricity 

demand forecasting with MARS, SVR and ARIMA models using aggregated demand 

data in Queensland, Australia. Advanced Engineering Informatics, 35(November 2017), 

1–16. https://doi.org/10.1016/j.aei.2017.11.002 

3. Al-Qahtani, F. H., & Crone, S. F. (2013). Multivariate k-nearest neighbour regression 

for time series data - A novel algorithm for forecasting UK electricity demand. 

Proceedings of the International Joint Conference on Neural Networks, August. 

https://doi.org/10.1109/IJCNN.2013.6706742 

4. Aldrich, C. (2020). Process variable importance analysis by use of random forests in a 

shapley regression framework. Minerals, 10(5), 1–17. 

https://doi.org/10.3390/min10050420 

5. Alkhatib, K., Najadat, H., Hmeidi, I., & Shatnawi, M. K. A. (2013). Stock Price 

Prediction Using K-Nearest Neighbor Algorithm. International Journal of Business, 

Humanities and Technology, 3(3), 32–44. 

6. Alonso, A. M., Bastos, G., & García-Martos, C. (2016). Electricity price forecasting by 

averaging dynamic factor models. Energies, 9(8), 1–21. 

https://doi.org/10.3390/en9080600 

7. Ban, T., Zhang, R., Pang, S., Sarrafzadeh, A., & Inoue, D. (2013). Referential kNN 

regression for financial time series forecasting. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 8226 LNCS(PART 1), 601–608. https://doi.org/10.1007/978-3-642-

42054-2_75 

8. Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather 

prediction. Nature, 525(7567), 47–55. https://doi.org/10.1038/nature14956 

9. Bello, A., Bunn, D., Reneses, J., & Muñoz, A. (2016). ParameTric density recalibration 

of a fundamental market model to forecast electricity Prices. Energies, 9(11), 1–15. 

https://doi.org/10.3390/en9110959 

10. Bello, A., Bunn, D. W., Reneses, J., & Munoz, A. (2017). Medium-Term Probabilistic 

Forecasting of Electricity Prices: A Hybrid Approach. IEEE Transactions on Power 

Systems, 32(1), 334–343. https://doi.org/10.1109/TPWRS.2016.2552983 

11. Bello, A., Reneses, J., & Muñoz, A. (2016). Medium-term probabilistic forecasting of 

extremely low prices in electricity markets: Application to the Spanish case. Energies, 

9(3). https://doi.org/10.3390/en9030193 

12. Bello, A., Reneses, J., Muñoz, A., & Delgadillo, A. (2016). Probabilistic forecasting of 

hourly electricity prices in the medium-term using spatial interpolation techniques. 



64 

International Journal of Forecasting, 32(3), 966–980. 

https://doi.org/10.1016/j.ijforecast.2015.06.002 

13. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. 

Journal of Machine Learning Research, 13, 281–305. 

14. Biçen, Y. (2019). The Price Volatility and Risks in the Electricity Market. 3 Rd 

International Engineering Research Symposium, September. 

15. Breiman, L. (2001). Random forests. Machine Learning, 5–32. 

https://doi.org/10.1201/9780429469275-8 

16. Cao, L. J., & Tay, F. E. H. (2000). Feature selection for support vector machines in 

financial time series forecasting. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

1983, 268–273. https://doi.org/10.1007/3-540-44491-2_38 

17. Cheng, C., Luo, B., Miao, S., & Wu, X. (2016). Mid-term electricity market clearing 

price forecasting with sparse data: A case in newly-reformed yunnan electricity market. 

Energies, 9(10). https://doi.org/10.3390/en9100804 

18. Chicco, G. (2009). Electricity market evolution in Europe. Scientific Bulletin of the 

Electrical Engineering Faculty, 2, 13–22. 

19. Cleveland, R. B., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend 

decomposition procedure based on loess. Journal of Official Statistics, 6(1), 3–73. 

20. Cortes, C., & Vapnik, V. (1995). Photonit neural networks and learning mathines the 

role of electron-trapping materials. Machine Leaming, 20, 273–297. 

https://doi.org/https://doi.org/10.1007/BF00994018 

21. Cramton, P. (2017). Electricity market design. Oxford Review of Economic Policy, 33(4), 

589–612. 

22. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive 

Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 

427. https://doi.org/10.2307/2286348 

23. Domingos, D. S., de Oliveira, J. F. L., & de Mattos Neto, P. S. G. (2019). An intelligent 

hybridization of ARIMA with machine learning models for time series forecasting. 

Knowledge-Based Systems, 175, 72–86. 

24. Duch, W. (2007). What is computational intelligence and where is it going? Studies in 

Computational Intelligence, 63, 1–13. https://doi.org/10.1007/978-3-540-71984-7_1 

25. E, F., & J.L., H. (1951). Estimation Discriminant Analysis Nonparametric Density. 

USAF School of Aviation Medicine, 3, 233–238. 

26. Ebrahimian, H., Barmayoon, S., Mohammadi, M., & Ghadimi, N. (2018). The price 

prediction for the energy market based on a new method. Economic Research-

Ekonomska Istrazivanja , 31(1), 313–337. 

https://doi.org/10.1080/1331677X.2018.1429291 

27. Energy Community. (2020). Electricity market functions – short overview and 

description (Issue March). 

28. ENTSO-E Transparency Platform. (2020). Day-ahead Prices. 

https://transparency.entsoe.eu/transmission-domain/r2/dayAheadPrices/show 



65 

29. Ertugrul, N. (2017). Battery storage technologies, applications and trend in renewable 

energy. IEEE International Conference on Sustainable Energy Technologies, ICSET, 0, 

420–425. https://doi.org/10.1109/ICSET.2016.7811821 

30. Fan, G. F., Guo, Y. H., Zheng, J. M., & Hong, W. C. (2019). Application of the weighted 

k-nearest neighbor algorithm for short-term load forecasting. Energies, 12(5). 

https://doi.org/10.3390/en12050916 

31. Ferreira, Â. P., Ramos, J. G., & Fernandes, P. O. (2019). A linear regression pattern for 

electricity price forecasting in the Iberian electricity market. Revista Facultad de 

Ingenieria, 93, 117–127. https://doi.org/10.17533/udea.redin.20190522 

32. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression. In The 

Annals of Statistics (Vol. 28, Issue 2, pp. 337–374). 

33. Graupe, D. (2013). Principles of Artificial Neural Networks. World Scientific Publishing 

Company. 

34. Grolinger, K., L’Heureux, A., Capretz, M. A. M., & Seewald, L. (2016). Energy 

forecasting for event venues: Big data and prediction accuracy. Energy and Buildings, 

112, 222–233. 

35. Hao, X., Zhao, Y., & Wang, Y. (2020). Forecasting the real prices of crude oil using 

robust regression models with regularization constraints. Energy Economics, 86, 

104683. https://doi.org/10.1016/j.eneco.2020.104683 

36. Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. The MIT Press. 

37. Hastie, T., & Tibshirani, R. (1987). Generalized additive models: Some applications. 

Journal of the American Statistical Association, 82(398), 371–386. 

https://doi.org/10.1080/01621459.1987.10478440 

38. Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning 

(Springer (ed.); 2nd Editio). Springer. 

39. Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). 

Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and 

beyond. International Journal of Forecasting, 32(3), 896–913. 

https://doi.org/10.1016/j.ijforecast.2016.02.001 

40. IBM. (2016). IBM SPSS Modeler CRISP-DM. IBM Corporation. 

41. Ishwarappa, & Anuradha, J. (2015). A brief introduction on big data 5Vs characteristics 

and hadoop technology. Procedia Computer Science, 48(C), 319–324. 

https://doi.org/10.1016/j.procs.2015.04.188 

42. Kelleher, J. D., Namee, B. Mac, & D’Arcy, A. (2015). Fundamentals of Machine 

Learning for Predictive Data Analytics: : Algorithms, Worked Examples, and Case 

Studies. The MIT Press. 

43. Keynia, F., & Heydari, A. (2019). A new short-term energy price forecasting method 

based on wavelet neural network. International Journal of Mathematics in Operational 

Research, 14(1), 1–14. https://doi.org/10.1504/IJMOR.2019.096975 

44. Lam, L. H., Ilea, V., & Bovo, C. (2018). European day-ahead electricity market coupling: 

Discussion, modeling, and case study. Electric Power Systems Research, 155, 80–92. 



66 

45. Lewis, & C.D. (1982). Industrial and business forecasting methods : a practical guide 

to exponential smoothing and curve fitting. Boston: Butterworth Scientific. 

46. Li, J., & Chen, W. (2014). Forecasting macroeconomic time series: LASSO-based 

approaches and their forecast combinations with dynamic factor models. International 

Journal of Forecasting, 30(4), 996–1015. 

https://doi.org/10.1016/j.ijforecast.2014.03.016 

47. Li, P., & Zhang, J. S. (2018). A new hybrid method for china’s energy supply security 

forecasting based on ARIMA and xgboost. Energies, 11(7), 1–29. 

https://doi.org/10.3390/en11071687 

48. Maciejowska, K., & Weron, R. (2016). Short- and mid-term forecasting of 

baseloadelectricity prices in the UK. IEEE -Transactions On Power Systems, 31(2), 994–

1005. https://doi.org/10.1109/TPWRS.2015.2416433 

49. Maleki, A., Nasseri, S., Aminabad, M. S., & Hadi, M. (2018). Comparison of ARIMA 

and NNAR Models for Forecasting Water Treatment Plant’s Influent Characteristics. 

KSCE Journal of Civil Engineering, 22(9), 3233–3245. https://doi.org/10.1007/s12205-

018-1195-z 

50. Mäntysaari, P. (2015). EU Electricity Trade Law: The Legal Tools of Electricity 

Producers in the Internal Electricity Market. Springer International Publishing. 

https://doi.org/10.1007/978-3-319-16513-4 

51. Masum, S., Liu, Y., & Chiverton, J. (2018). Multi-step time series forecasting of electric 

load using machine learning models. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 

10841 LNAI, 148–159. https://doi.org/10.1007/978-3-319-91253-0_15 

52. MIBEL Regulatory Council. (2009). Description of the operation of the mibel (Issue 

November). 

53. Mir, A. A., Alghassab, M., Ullah, K., Khan, Z. A., Lu, Y., & Imran, M. (2020). A review 

of electricity demand forecasting in low and middle income countries: The demand 

determinants and horizons. Sustainability (Switzerland), 12(15). 

https://doi.org/10.3390/SU12155931 

54. Mohamed, A., & El-Hawary, M. E. (2016). Mid-term electricity price forecasting using 

SVM. Canadian Conference on Electrical and Computer Engineering, 2016-Octob. 

https://doi.org/10.1109/CCECE.2016.7726765 

55. Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M. Z., Jameel, M., & 

Arumugam, A. M. S. (2013). Application of artificial neural networks (ANNs) and linear 

regressions (LR) to predict the deflection of concrete deep beams. Computers and 

Concrete, 11(3), 237–252. https://doi.org/10.12989/cac.2013.11.3.237 

56. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items 

for systematic reviews and meta-analyses: The PRISMA statement. BMJ (Online), 

339(7716), 332–336. https://doi.org/10.1136/bmj.b2535 

57. Mujeeb, S., Javaid, N., Ilahi, M., Wadud, Z., Ishmanov, F., & Afzal, M. K. (2019). Deep 

long short-term memory: A new price and load forecasting scheme for big data in smart 

cities. Sustainability (Switzerland), 11(4), 1–29. https://doi.org/10.3390/su11040987 



67 

58. NEMO Comitee. (2019). EUPHEMIA Public Description Single Price Coupling 

Algorithm (Issue April). 

59. Ogutu, J. O., Schulz-Streeck, T., & Piepho, H. P. (2012). Genomic selection using 

regularized linear regression models: Ridge regression, lasso, elastic net and their 

extensions. BMC Proceedings, 6(SUPPL. 2), S10. https://doi.org/10.1186/1753-6561-6-

S2-S10 

60. OLMC. (2018). Statistic Report September 2018. 1–3. 

61. OMEL. (2019). Day-Ahead And Intraday Electricity Market Operating Rules (pp. 1–

177). 

62. Ortiz, M., Ukar, O., Azevedo, F., & Múgica, A. (2016). Price forecasting and validation 

in the Spanish electricity market using forecasts as input data. International Journal of 

Electrical Power and Energy Systems, 77, 123–127. 

https://doi.org/10.1016/j.ijepes.2015.11.004 

63. Panigrahi, S., & Behera, H. S. (2017). A hybrid ETS–ANN model for time series 

forecasting. Engineering Applications of Artificial Intelligence, 66(July), 49–59. 

https://doi.org/10.1016/j.engappai.2017.07.007 

64. Papastefanopoulos, V., Linardatos, P., & Kotsiantis, S. (2020). COVID-19: A 

comparison of time series methods to forecast percentage of active cases per population. 

Applied Sciences (Switzerland), 10(11), 1–15. https://doi.org/10.3390/app10113880 

65. Peng, L., Liu, S., Liu, R., & Wang, L. (2018). Effective long short-term memory with 

differential evolution algorithm for electricity price prediction. Energy, 162, 1301–1314. 

https://doi.org/10.1016/j.energy.2018.05.052 

66. Pereira, J. M., Basto, M., & Silva, A. F. da. (2016). The Logistic Lasso and Ridge 

Regression in Predicting Corporate Failure. Procedia Economics and Finance, 

39(November 2015), 634–641. https://doi.org/10.1016/s2212-5671(16)30310-0 

67. Pórtoles, J., González, C., & Moguerza, J. M. (2018). Electricity Price Forecasting with 

Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies, 11(6). 

https://doi.org/10.3390/en11061588 

68. Qin, Q., Xie, K., He, H., Li, L., Chu, X., Wei, Y. M., & Wu, T. (2019). An effective and 

robust decomposition-ensemble energy price forecasting paradigm with local linear 

prediction. Energy Economics, 83, 402–414. 

69. Ramalheira, L. (2019). Forecasting marine biotoxins in bivalve molluscs based on 

machine learning. Instituto Superior Técnico. 

70. Razak, I. A. W. A., Ibrahim, N. N. A. N., Abidin, I. Z., Siah, Y. K., Abidin, A. A. Z., & 

Rahman, T. K. A. (2019). A hybrid method of least square support vector machine and 

bacterial foraging optimization algorithm for medium term electricity price forecasting. 

International Journal of Integrated Engineering, 11(3), 232–239. 

https://doi.org/10.30880/ijie.2019.11.03.024 

71. Shah, D., & Chatterjee, S. (2020). A comprehensive review on day-ahead electricity 

market and important features of world’s major electric power exchanges. International 

Transactions on Electrical Energy Systems, January, 1–39. 



68 

72. Shumway, R. H., & Stoffer, D. S. (2016). Time Series Analysis and its Applications. In 

International Journal of Forecasting (4th ed.). Springer. 

73. Sleisz, Á., & Raisz, D. (2017). Integrated mathematical model for uniform purchase 

prices on multi-zonal power exchanges. Electric Power Systems Research, 147, 10–21. 

74. Steinert, R., & Ziel, F. (2019). Short- to mid-term day-ahead electricity price forecasting 

using futures. Energy Journal, 40, 105–127. https://doi.org/10.5547/01956574.40.1.rste 

75. Tang, N., Mao, S., Wang, Y., & Nelms, R. M. (2018). Solar Power Generation 

Forecasting With a LASSO-Based Approach. IEEE Internet of Things Journal, 5(2), 

1090–1099. https://doi.org/10.1109/JIOT.2018.2812155 

76. Taylor, S. J., & Letham, B. (2018). Forecasting at Scale. American Statistician, 72(1), 

37–45. https://doi.org/10.1080/00031305.2017.1380080 

77. Thoplan, R. (2014). Simple v / s Sophisticated Methods of Forecasting for Mauritius 

Monthly Tourist Arrival Data. 4(January 2010), 217–223. 

https://doi.org/10.5923/j.statistics.20140405.01 

78. Vannitsem, S., Wilks, D., & Messner, J. (2018). Statistical Postprocessing of Ensemble 

Forecasts. Elsevier. 

79. Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a 

look into the future. International Journal of Forecasting, 30(4), 1030–1081. 

https://doi.org/10.1016/j.ijforecast.2014.08.008 

80. Weron, R., & Ziel, F. (2018). Electricity price forecasting. 

81. Wilks, D. S. (2019). Ensemble Forecasting. In Statistical Methods in the Atmospheric 

Sciences (pp. 313–367). https://doi.org/https://doi.org/10.1016/B978-0-12-815823-

4.00008-0 

82. Wilks, D. S., & Vannitsem, S. (2018). Uncertain Forecasts From Deterministic 

Dynamics. In Statistical Postprocessing of Ensemble Forecasts (pp. 1–13). 

https://doi.org/https://doi.org/10.1016/B978-0-12-812372-0.00001-7 

83. Windler, T., Busse, J., & Rieck, J. (2019). One month-ahead electricity price forecasting 

in the context of production planning. Journal of Cleaner Production, 238, 117910. 

https://doi.org/10.1016/j.jclepro.2019.117910 

84. Wirth, R. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. 

Proceedings of the Fourth International Conference on the Practical Application of 

Knowledge Discovery and Data Mining, 24959, 29–39. 

85. Yakowitz, S. (1987). Nearest‐Neighbour Methods for Time Series Analysis. Journal of 

Time Series Analysis, 8(2), 235–247. https://doi.org/10.1111/j.1467-

9892.1987.tb00435.x 

86. Yan, X., Song, Y., & Chowdhury, N. A. (2016). Performance evaluation of single SVM 

and LSSVM based forecasting models using price zones analysis. Asia-Pacific Power 

and Energy Engineering Conference, APPEEC, 2016-Decem, 79–83. 

https://doi.org/10.1109/APPEEC.2016.7779474 

87. Yang, D., Sharma, V., Ye, Z., Lim, L. I., Zhao, L., & Aryaputera, A. W. (2015). 

Forecasting of global horizontal irradiance by exponential smoothing, using 

decompositions. Energy, 81, 111–119. https://doi.org/10.1016/j.energy.2014.11.082 



69 

88. Yegnanarayana, B. (2006). Artificial Neural Networks. PHI Learning Pvt. Ltd. 

89. Zhang, X., Wang, J., & Gao, Y. (2019). A hybrid short-term electricity price forecasting 

framework: Cuckoo search-based feature selection with singular spectrum analysis and 

SVM. Energy Economics, 81, 899–913. https://doi.org/10.1016/j.eneco.2019.05.026 

90. Zheng, H., Yuan, J., & Chen, L. (2017). Short-Term Load Forecasting Using EMD-

LSTM neural networks with a xgboost algorithm for feature importance evaluation. 

Energies, 10(8). https://doi.org/10.3390/en10081168 

91. Zhou, L., Yu, L., Wang, Y., Lu, Z., Tian, L., Tan, L., Shi, Y., Nie, S., & Liu, L. (2014). 

A hybrid model for predicting the prevalence of schistosomiasis in humans of Qianjiang 

City, China. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0104875 

92. Ziel, F., & Steinert, R. (2018). Probabilistic mid- and long-term electricity price 

forecasting. Renewable and Sustainable Energy Reviews, 94, 251–266. 

https://doi.org/10.1016/j.rser.2018.05.038 

93. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net 

(Journal of the Royal Statistical Society. Series B: Statistical Methodology (2005) 67 

(301-320)). Journal of the Royal Statistical Society. Series B: Statistical Methodology, 

67(5), 768. https://doi.org/10.1111/j.1467-9868.2005.00527.x 





 

APPENDICES



 



1 

Appendix 1: Povzetek (Summary in Slovene language) 

Vmesna napoved električnih cen je precej kompleksna naloga, ne samo, da je električna 

energija edinstveno blago, ampak imajo takšni trgi nekatere posebne in edinstvene 

značilnosti. Je bistvenega pomena za vsakega udeleženca na trgu z električno energijo, za 

vse namene naložb, odločanja, porabe, distrubucije, razporejanja in načrtovanja strategije 

ponudb. 

Primarni namen te disertacije je uvesti in primerjati računalniško inteligenco, statistične in 

hibridne modele za napovedovanje dnevnih in mesečnih portugalskih cen električne 

energije, za dan vnaprej, z obdobjem enega leta. Modeli, uporabljeni v tej disertaciji, so: 

Autoregressive Neural Network (NNAR), Support Vector Machine (SVM), K-Nearest 

Neighbor (k-NN), Random Forest (RF), Autoregressive Integrated Moving Average 

(ARIMA), Exponential Smoothing (ETS), Elastic Net, LASSO Regression, Ridge Regression, 

Prophet , ARIMA + Extreme Gradient Boosting (XGBoost), and Prophet + Extreme 

Gradient Boosting (XGBoost). V magistrskem delu je prikazana napoved uspešnosti 

dvanajstih posameznih in hibridnih modelov, ter tudi iz sedmih kombinacij med temi modeli.  

Ugotovili smo, da računalniški inteligenčni modeli običajno presegajo statistične. Tudi 

uporaba mesečnih podatkov kot vhodnih podatkov za modele, zmanjšuje natančnost napak 

pri rezultatih v primerjavi z uporabo dnevnih podatkov. Ključna ugotovitev nam pove, da je 

z združevanjem napovedi modelov z uporabo dnevnih ali mesečnih podatkov dosežena večja 

natačnost napovedi kot v primerjavi s posameznimi modeli.  
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Appendix 2: Summary in English language 

A mid-term forecast of the electricity spot prices is a complex task, not only electricity is a 

very singular commodity, but also the electricity market has some specific and unique 

characteristics. However, it is essential for every electricity market participant, for electricity 

market investment, decision making, consumption, distribution, scheduling, and bidding 

strategy planning purposes.  

The primary purpose of this dissertation is to implement and compare Computational 

Intelligence, statistical, and hybrid models to forecast the daily and monthly Portuguese 

electricity day-ahead spot prices, with a one-year horizon period. The models used in this 

dissertation are: Autoregressive Neural Network (NNAR), Support Vector Machine (SVM), 

K-Nearest Neighbor (k-NN), Random Forest (RF), Autoregressive Integrated Moving 

Average (ARIMA), Exponential Smoothing (ETS), Elastic Net, LASSO Regression, Ridge 

Regression, Prophet , ARIMA + Extreme Gradient Boosting (XGBoost), and Prophet + 

Extreme Gradient Boosting (XGBoost). This thesis compares the forecasting performance 

derived from these twelve individual and hybrid models, as well as from 7 combinations 

between those models.  

We found out that computational intelligence models tend to outperform statistical ones. 

Also, using monthly data as input for the models lowers the error accuracy of the results, 

compared to when using daily data. Finally, by combining models’ forecasts, either when 

using daily or monthly data, a higher accuracy of the forecast was achieved, when compared 

to single models. 
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Appendix 4: Tables and plots of the results of the parameters tuning 

 

Refer to chapter 2.2.2 Parameters Tuning. Source: Own work. 

LASSO – Monthly Data 

MIXTURE PENALTY MAE MAPE 

1 0.01 53.63 107.44 

1 0.5 25.21 52.13 

1 1 15.64 33.41 

1 2 9.23 19.88 

1 3 8.18 15.48 

1 4 8.63 15.54 

1 5 8.65 15.50 

1 6 8.65 15.50 

1 7 8.65 15.50 

1 8 8.65 15.50 

1 9 8.65 15.50 

1 10 8.65 15.50 

1 20 8.65 15.50 

1 30 8.65 15.50 

1 40 8.65 15.50 

1 50 8.65 15.50 

1 100 8.65 15.50 

 

 

Elastic Net – Monthly Data 

 

 

 

 

 

 

 

 

MIXTURE PENALTY MAE MAPE 

0.5 0.01 53.18 106.28 

0.5 0.5 28.16 57.81 

0.5 1 20.92 43.70 

0.5 2 13.27 28.68 

0.5 3 9.54 20.80 

0.5 4 8.66 17.96 

0.5 5 8.30 16.24 

0.5 6 8.15 15.50 

0.5 7 8.51 15.45 

0.5 8 8.62 15.50 

0.5 9 8.63 15.47 

0.5 10 8.65 15.50 

0.5 20 8.65 15.50 

0.5 30 8.65 15.50 

0.5 40 8.65 15.50 

0.5 50 8.65 15.50 

0.5 100 8.65 15.50 
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Ridge Regression – Monthly Data 

MIXTURE PENALTY MAE MAPE 

0 0.01 29.28 59.79 

0 0.5 28.75 58.75 

0 1 22.41 46.34 

0 2 15.69 33.11 

0 3 12.35 26.43 

0 4 10.64 22.85 

0 5 9.84 20.95 

0 6 9.38 19.75 

0 7 9.27 19.21 

0 8 9.22 18.88 

0 9 9.28 18.76 

0 10 9.34 18.70 

0 20 9.67 18.37 

0 30 9.61 17.89 

0 40 9.61 17.89 

0 50 9.46 17.31 

0 100 9.25 16.72 

0 200 9.03 16.24 

0 1000 8.74 15.67 

0 2000 8.7 15.59 

0 4000 8.67 15.54 

0 5000 8.65 15.5 

0 6000 8.65 15.5 

0 7000 8.65 15.5 

 

Lasso – Daily Data 

MIXTURE PENALTY MAE MAPE 

1 0.01 12.35 28.11 

1 0.5 11.77 27.44 

1 1 11.21 26.84 

1 2 10.21 25.91 

1 3 9.77 25.48 

1 4 9.83 25.55 

1 5 9.89 25.67 

1 6 9.89 25.67 

1 7 9.89 25.67 

1 8 9.89 25.67 

1 9 9.89 25.67 

1 10 9.89 25.67 

1 20 9.89 25.67 

1 30 9.89 25.67 

1 40 9.89 25.67 

1 50 9.89 25.67 

1 100 9.89 25.67 
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Elastic Net – Daily Data 

 

 

 

 

 

 

 

 

 

Ridge Regression – Daily Data 

MIXTURE PENALTY MAE MAPE 

0 0.01 12.31 28.10 

0 0.5 12.31 28.10 

0 1 12.28 28.11 

0 2 12.22 28.11 

0 3 12.16 28.08 

0 4 12.11 28.05 

0 5 12.06 28.02 

0 6 12.00 27.98 

0 7 11.96 27.94 

0 8 11.91 27.90 

0 9 11.86 27.86 

0 10 11.81 27.82 

0 20 11.46 27.48 

0 30 11.20 27.21 

0 40 11.01 27.01 

0 50 10.87 26.85 

0 100 10.48 26.42 

0 200 10.2 26.07 

0 1000 9.94 25.74 

0 2000 9.92 25.7 

0 4000 9.9 25.68 

0 5000 9.89 25.67 

0 6000 9.89 25.67 

0 7000 9.89 25.67 

 

MIXTURE PENALTY MAE MAPE 

0.5 0.01 12.36 28.14 

0.5 0.5 12.03 27.73 

0.5 1 11.74 27.36 

0.5 2 11.16 26.75 

0.5 3 10.63 26.23 

0.5 4 10.19 25.86 

0.5 5 9.81 25.53 

0.5 6 9.78 25.47 

0.5 7 9.80 25.51 

0.5 8 9.84 25.58 

0.5 9 9.89 25.67 

0.5 10 9.89 25.67 

0.5 20 9.89 25.67 

0.5 30 9.89 25.67 

0.5 40 9.89 25.67 

0.5 50 9.89 25.67 

0.5 100 9.89 25.67 
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Random Forest – Monthly Data 

K MAE MAPE 

1 10.4 19.28 

2 10.33 19.05 

3 10.91 20.14 

4 10.45 19.41 

5 10.74 19.94 

6 9.73 18.16 

8 9.94 18.49 

10 9.47 17.48 

20 9.49 17.20 

30 8.70 16.01 

40 8.58 15.82 

50 8.80 16.04 

60 8.80 16.08 

70 9.02 16.49 

80 9.03 16.47 

90 9.04 16.53 

100 9.01 16.37 

200 8.85 16.09 

300 8.81 16.08 

400 8.97 16.38 

500 8.97 16.36 

600 8.98 16.39 
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Random Forest – Daily Data 

K MAE MAPE 

1 9.64 26.80 

2 9.33 27.58 

3 9.15 27.09 

4 8.92 26.61 

5 8.64 26.49 

6 8.66 26.23 

8 8.62 25.51 

10 8.63 25.50 

20 8.64 25.54 

30 8.60 25.42 

40 8.66 25.25 

50 8.58 25.03 

60 8.61 25.21 

70 8.61 25.25 

80 8.60 25.21 

90 8.61 25.14 

100 8.58 25.13 

200 8.56 25.15 

300 8.58 25.06 

400 8.58 25.02 

500 8.57 25 

600 8.57 25 
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Support Vector Machine – Monthly 

COST/ 

SIGMA 
0.001 0.01 0.1 1 10 100 

0.001 
MAE: 8.48 

MAPE: 15.23 

MAE: 8.48 

MAPE: 15.23 

MAE: 8.48 

MAPE: 15.23 

MAE: 8.48 

MAPE: 15.23 

MAE: 8.48 

MAPE: 15.23 

MAE: 8.48 

MAPE: 15.23 

0.01 
MAE: 8.48 

MAPE: 15.24 

MAE: 8.5 

MAPE: 15.27 

MAE: 8.51 

MAPE: 15.28 

MAE: 8.51 

MAPE: 15.28 

MAE: 8.51 

MAPE: 15.28 

MAE: 8.51 

MAPE: 15.28 

0.1 
MAE: 8.51 

MAPE: 15.33 

MAE: 8.59 

MAPE: 15.59 

MAE: 8.66 

MAPE: 15.51 

MAE: 8.65 

MAPE: 15.5 

MAE: 8.65 

MAPE: 15.5 

MAE: 8.65 

MAPE: 15.5 

1 
MAE: 8.48 

MAPE: 15.77 

MAE: 9.23 

MAPE: 17.76 

MAE: 8.69 

MAPE: 15.55 

MAE: 8.73 

MAPE: 15.62 

MAE: 8.73 

MAPE: 15.62 

MAE: 8.73 

MAPE: 15.62 

10 
MAE: 11.31 

MAPE: 24.05 

MAE: 9.34 

MAPE: 18.43 

MAE: 8.62 

MAPE: 15.45 

MAE: 8.67 

MAPE: 15.54 

MAE: 8.67 

MAPE: 15.54 

MAE: 8.67 

MAPE: 15.54 

100 
MAE: 20.3 

MAPE: 42.29 

MAE: 9.34 

MAPE: 18.43 

MAE: 8.62 

MAPE: 15.45 

MAE: 8.67 

MAPE: 15.54 

MAE: 8.67 

MAPE: 15.54 

MAE: 8.67 

MAPE: 15.54 

 

 

Support Vector Machine - Daily 

COST/ 

SIGMA 
0.001 0.01 0.1 1 10 100 

0.001 
MAE: 9.68 

MAPE: 25.47 

MAE: 9.63 

MAPE: 25.42 

MAE: 9.68 

MAPE: 25.45 

MAE: 9.68 

MAPE: 25.46 

MAE: 9.68 

MAPE: 25.46 

MAE: 9.68 

MAPE: 25.46 

0.01 
MAE: 9.67 

MAPE: 25.51 

MAE: 9.57 

MAPE: 25.45 

MAE: 9.64 

MAPE: 25.39 

MAE: 9.68 

MAPE: 25.47 

MAE: 9.68 

MAPE: 25.47 

MAE: 9.68 

MAPE: 25.47 

0.1 
MAE: 9.66 

MAPE: 25.56 

MAE: 9.3 

MAPE: 25.49 

MAE: 9.38 

MAPE: 25.02 

MAE: 9.72 

MAPE: 25.5 

MAE: 9.72 

MAPE: 25.5 

MAE: 9.72 

MAPE: 25.5 

1 
MAE: 9.63 

MAPE: 25.5 

MAE: 8.61 

MAPE: 27.26 

MAE: 8.44 

MAPE: 24.38 

MAE: 9.82 

MAPE: 25.59 

MAE: 9.82 

MAPE: 25.6 

MAE: 9.82 

MAPE: 25.6 

10 
MAE: 9.23 

MAPE: 26.78 

MAE: 14.63 

MAPE: 44.04 

MAE: 8.58 

MAPE: 25.77 

MAE: 9.91 

MAPE: 25.68 

MAE: 9.92 

MAPE: 25.69 

MAE: 9.92 

MAPE: 25.69 

100 
MAE: 10.32 

MAPE: 33.21 

MAE: 23.99 

MAPE: 68.89 

MAE: 8.58 

MAPE: 25.77 

MAE: 9.91 

MAPE: 25.68 

MAE: 9.92 

MAPE: 25.69 

MAE: 9.92 

MAPE: 25.69 

 

 

 

 

 



10 

K-Nearest Neighbor – Monthly (Euclidean Distance: dist_power = 2) 

DISTANCE #NEIGHBORS MAE MAPE 

2 2 7.90 15.06 

2 3 8.12 15.74 

2 4 8.17 15.46 

2 5 8.12 15.35 

2 6 8.07 15.23 

2 7 8.02 15.11 

2 8 8.01 15.08 

2 9 8.00 15.08 

2 10 8.03 15.09 

2 15 8.30 15.48 

2 20 8.59 15.91 

2 25 8.82 16.24 

2 30 9.00 16.52 

2 40 9.16 16.73 

2 50 9.24 16.82 

2 60 9.31 16.92 

2 80 9.32 16.84 

2 100 9.32 16.84 
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11 

K-Nearest Neighbor – Monthly (ManhattanDistance: dist_power = 1) 

DISTANCE #NEIGHBORS MAE MAPE 

1 2 7.84 15.07 

1 3 8.15 15.49 

1 4 8.49 15.99 

1 5 8.73 16.34 

1 6 8.95 16.69 

1 7 9.12 17 

1 8 9.27 17.26 

1 9 9.39 17.47 

1 10 9.50 17.66 

1 15 9.76 18.09 

1 20 9.77 18.07 

1 25 9.74 17.94 

1 30 9.71 17.83 

1 40 9.68 17.71 

1 50 9.67 17.65 

1 60 9.61 17.51 

1 80 9.45 17.11 

1 100 9.35 16.88 
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K-Nearest Neighbor – Daily (Euclidean Distance: dist_power = 2) 

DISTANCE #NEIGHBORS MAE MAPE 

2 2 10.74 30.99 

2 3 10.36 29.73 

2 4 10.06 28.84 

2 5 9.87 28.27 

2 6 9.77 27.93 

2 7 9.69 27.68 

2 8 9.65 27.50 

2 9 9.63 27.38 

2 10 9.63 27.29 

2 15 9.73 27.11 

2 20 9.85 27.12 

2 25 9.96 27.16 

2 30 10.03 27.15 

2 40 10.13 27.08 

2 50 10.02 27.02 

2 60 10.24 26.95 

2 80 10.25 26.87 

2 100 10.23 26.77 
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K-Nearest Neighbor – Daily (ManhattanDistance: dist_power = 1) 

DISTANCE #NEIGHBORS MAE MAPE 

1 2 9.13 26.33 

1 3 9.03 26.21 

1 4 9.01 26.04 

1 5 9.03 25.95 

1 6 9.08 25.98 

1 7 9.17 26.07 

1 8 9.23 26.13 

1 9 9.28 26.15 

1 10 9.32 26.18 

1 15 9.57 26.39 

1 20 9.79 26.52 

1 25 9.93 26.59 

1 30 10.00 26.64 

1 40 10.06 26.64 

1 50 10.05 26.52 

1 60 10.89 26.00 

1 80 9.93 26.11 

1 100 9.89 26.00 
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Neural Networks – Monthly Data 

p P K MAE MAPE 

1 0 1 15.81 32.73 

1 0 2 6.42 13.06 

2 0 1 43.24 83.35 

2 0 2 6.54 13.74 

3 0 2 8.95 18.55 

3 0 3 8.95 19.19 

4 0 3 11.39 24.46 

4 0 4 9.67 20.89 

5 0 4 9.34 19.59 

5 0 5 7.79 16.22 

6 0 5 8.04 17.25 

6 0 6 8.84 18.8 

7 0 6 7.07 14.77 

7 0 7 8.4 17.76 

8 0 7 9.6 19.88 

8 0 8 8.13 17.2 

9 0 8 11.02 21.89 

9 0 9 7.85 16.35 

10 0 9 6.56 13.94 

10 0 10 6.69 14.29 

11 0 10 10.49 20.58 

11 0 11 10.15 19.98 

12 0 11 10.18 20.2 

12 0 12 11.35 22.46 

13 0 12 10.11 19.84 

13 0 13 10.6 20.71 

14 0 13 11.45 22.41 

14 0 14 11.39 22.33 

15 0 14 11.7 22.4 

15 0 15 12.02 23.51 
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15 

Neural Networks – Daily Data 

p P K MAE MAPE 

1 1 11 13.13 32.32 

1 2 11 14.25 33.02 

2 1 11 14.27 32.91 

2 2 11 13.51 32.91 

3 2 11 12.11 30.75 

3 3 11 8.79 24.99 

4 3 11 12.9 31.11 

4 4 11 14.27 34.04 

5 4 11 11.05 29.05 

5 5 11 11.91 30.23 

6 5 11 10.14 27.4 

6 6 11 11.72 30.42 

7 6 11 11.72 30.42 

7 7 11 8.39 25.24 

8 7 11 9.84 26.35 

8 8 11 8.71 24.72 

9 8 11 11.83 30.71 

9 9 11 10.75 28.83 

10 9 11 9.79 26.27 

10 10 11 8.43 25.57 

11 10 11 8.01 24.58 

11 11 11 16.58 37.72 

12 11 11 8.63 25 

12 12 11 9.91 27.15 
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