
UNIVERSITY OF LJUBLJANA

SCHOOL OF ECONOMICS AND BUSINESS

MASTER THESIS

LOW-CODE SOFTWARE DEVELOPMENT PLATFORMS IN

INSURANCE INDUSTRY

Ljubljana, July 2023 EVA GASHTEVSKA

i

AUTHORSHIP STATEMENT

The undersigned Eva Gashtevska, a student at the University of Ljubljana, School of Economics and Business,

(hereafter: SEB LU), author of this written final work of studies with the title Low-code software development

platforms in insurance industry, prepared under supervision of red. prof. dr. Tomaž Turk

D E C L A R E

1. this written final work of studies to be based on the results of my own research;

2. the printed form of this written final work of studies to be identical to its electronic form;

3. the text of this written final work of studies to be language-edited and technically in adherence with the

SEB LU’s Technical Guidelines for Written Works, which means that I cited and / or quoted works and

opinions of other authors in this written final work of studies in accordance with the SEB LU’s Technical

Guidelines for Written Works;

4. to be aware of the fact that plagiarism (in written or graphical form) is a criminal offence and can be

prosecuted in accordance with the Criminal Code of the Republic of Slovenia;

5. to be aware of the consequences a proven plagiarism charge based on the this written final work could

have for my status at the SEB LU in accordance with the relevant SEB LU Rules;

6. to have obtained all the necessary permits to use the data and works of other authors which are (in written

or graphical form) referred to in this written final work of studies and to have clearly marked them;

7. to have acted in accordance with ethical principles during the preparation of this written final work of

studies and to have, where necessary, obtained permission of the Ethics Committee;

8. my consent to use the electronic form of this written final work of studies for the detection of content

similarity with other written works, using similarity detection software that is connected with the SEB LU

Study Information System;

9. to transfer to the University of Ljubljana free of charge, non-exclusively, geographically and time-wise

unlimited the right of saving this written final work of studies in the electronic form, the right of its

reproduction, as well as the right of making this written final work of studies available to the public on the

World Wide Web via the Repository of the University of Ljubljana;

10. my consent to publication of my personal data that are included in this written final work of studies and in

this declaration, when this written final work of studies is published.

11. that I have verified the authenticity of the information derived from the records using artificial intelligence

tools.

Ljubljana, ________________________ Author’s signature: _________________________

(Month in words / Day / Year,

e. g. June 1st, 2012

ii

TABLE OF CONTENTS

INTRODUCTION ... 1

1 LOW-CODE PLATFORM .. 3

1.1 Abstraction concept in software development .. 3

1.2 Model-driven development ... 5

1.3 Low-code platforms ... 9

1.4 Architecture and development process in low-code platforms 12

1.5 Comparison to traditional development ... 14

1.6 Market leaders ... 16

2 INSURANCE INDUSTRY ... 18

2.1 Introduction to the Insurance Sector .. 18

2.2 General terms in non-life insurance ... 22

2.2.1 Insurance product ... 23

2.2.2 Application and Quote .. 23

2.2.3 Policy ... 24

2.2.4 Property Insurance.. 24

2.2.5 Home Insurance ... 24

2.3 Digital transformation of insurance companies ... 25

3 OVERVIEW OF THE ANALYSED LOW-CODE PLATFORMS 28

3.1 AdInsure .. 28

3.1.1 Company background ... 28

3.1.2 AdInsure Platform .. 28

3.1.3 AdInsure Studio ... 30

3.2 Mendix ... 31

3.2.1 Company background ... 32

3.2.2 Mendix Platform .. 32

3.2.3 Mendix Studio and Mendix Studio Pro ... 34

4 IMPLEMENTATION OF HOME INSURANCE PRODUCT IN ADINSURE

STUDIO AND MENDIX STUDIO PRO ... 35

iii

4.1 Business requirements ... 35

4.2 Configuration preconditions ... 37

4.2.1 AdInsure ... 37

4.2.2 Mendix ... 39

4.3 Data modelling ... 39

4.3.1 AdInsure ... 39

4.3.2 Mendix ... 40

4.4 User interface ... 42

4.4.1 AdInsure ... 42

4.4.2 Mendix ... 43

4.5 Workflows and definition of business logic ... 45

4.5.1 AdInsure ... 45

4.5.2 Mendix ... 47

4.6 Integration with other applications ... 50

4.6.1 AdInsure ... 50

4.6.2 Mendix ... 50

4.7 Testing .. 51

4.7.1 AdInsure ... 51

4.7.2 Mendix ... 52

4.8 Security .. 52

4.8.1 AdInsure ... 52

4.8.2 Mendix ... 53

5 MAIN FINDINGS ... 53

6 DISCUSSION .. 59

CONCLUSION .. 60

REFERENCE LIST ... 61

APPENDICES .. 71

LIST OF FIGURES

Figure 1: Abstraction stages of the development process ..3

iv

Figure 2: Search trend for “low-code development platform” over time 9

Figure 3: Main components of low-code development platforms 13

Figure 4: Comparison between the traditional and low-code development stages based

on the agile methodology ... 15

Figure 5: Magic Quadrant for Enterprise Low-Code Application Platforms 17

Figure 6: Types of life and non-life insurance .. 21

Figure 7: Composition of AdInsure platform ... 29

Figure 8: Business requirements for Home insurance ... 36

Figure 9: Generated Household tariff and Home sales product in AdInsure Studio........... 38

Figure 10: Household coverage component in AdInsure Studio – data model 40

Figure 11: Data model in Mendix Studio Pro ... 41

Figure 12: Building component in the UI Editor in AdInsure Studio 43

Figure 13: Participants Tab in UI modeller in the Mendix Studio Pro 44

Figure 14: Premium rule of the Household tariff in AdInsure Studio................................ 46

Figure 15: Document flow of the Home Quote in AdInsure Studio 47

Figure 16: Premium adjustments microflow in Mendix Studio Pro 48

Figure 17: First part of the Premium microflow in Mendix Studio Pro 49

Figure 18: Test scenario in AdInsure Studio .. 51

Figure 19: Test for premium amount in Mendix Studio Pro ... 52

LIST OF TABLES

Table 1: Development stages in LCDPs ... 14

Table 2: Differences in the development of the sales product between Mendix and

AdInsure .. 54

Table 3: Differences in the development of the insurance product between Mendix and

AdInsure .. 56

Table 4: Differences in the development of the insured object between Mendix and

AdInsure .. 57

LIST OF APPENDICES

Appendix 1: Povzetek (Summary in Slovene language) ... 1

Appendix 2: Adapted business requirements and premium calculation for Home

insurance ... 4

v

LIST OF ABBREVIATIONS

sl. – Slovene

LCDP - (sl. malokodno razvojno okolje); Low-code Development Platform

NCDP - (sl. brezkodno razvojno okolje); No-code Development Platform

UI – (sl. uporabniški vmesnik); User Interface

GUI – (sl. grafični uporabniški vmesnik); Graphical User Interface

OMG - Object Management Group

MDD – (sl. modelno vodeni razvoj); Model-Driven Development

MDA – (sl. modelno vodena arhitektura); Model Driven Architecture

CIM – (sl. računsko neodvisni model); Computation Independent Model

PIM – (sl. model neodvisen od računalniškega okolja); Platform Independent Model

PSM – (sl. model odvisen od računalniškega okolja); Platform Specific Model

BPMN – (sl. notacija modeliranja poslovnih procesov); Business Process Modeling

Notation

DMN – (sl. notacija odločitvenih modelov); Decision Model and Notation

IDE – (sl. integrirano razvojno okolje); Integrated Development Environment

API – (sl. aplikacijski programski vmesnik); Application Programming Interface

PaaS – (sl. platforma kot storitev); Platform as a service

RAD – (sl. hitri razvoj programskih rešitev); Rapid Application Development

AI – (sl. umetna inteligenca); Artificial Intelligence

ML – (sl. strojno učenje); Machine Learning

1

INTRODUCTION

In today’s world, technological development is progressing at a high pace, making people’s

lifes simpler. Innovations on the market appear more frequently than before, prompting

companies to follow the newest trends in order to be ahead of their competitors. One of these

innovations, which is in its early phase of popularity, is the low-code development platform

(LCDP).

LCDPs are platforms that enable developers and people with little experience in

development to develop applications with minimal writing of code. Their main advantage is

the efficiency of creating a working application, which enables higher productivity, lower

costs, easier maintenance of applications and involvement of the stakeholders in the

development process (Talesra & Nagaraja, 2021). Considering these benefits, LCDPs

became a very attractive solution for many insurance companies, especially since

digitalisation caused many insurance companies' systems to become outdated and hard to

maintain. By using LCDPs, the dependency of insurance companies on highly skilled

developers is lowered. This means that businesspeople in insurance companies could create

new insurance products or change the existing ones with or without the developer’s help,

making big room for innovations that can be created in a short period of time (Daly, 2020).

On the market for LCDPs, there are many companies racing to offer the best LCDP. Despite

similar architecture and processes of the platforms, the suppliers’ market focus could be

different – some are enterprise platforms, and others are based on a specific industry.

Enterprise platforms are general platforms because they can be used for building applications

for any industry. In the master’s thesis, I will identify the advantages and disadvantages of

two LCDPs. The first platform is Mendix, which is considered a general platform for

building any kind of application. There are three main reasons why I chose Mendix for

analysis in my master thesis. Firstly, this platform is positioned among the leaders with the

highest completeness of vision in the magic quadrant for enterprise LCDPs from Gartner for

2020 (Gartner, 2020). Secondly, Mendix has published many use cases of insurance

companies that used Mendix for the development of products. Thirdly, Mendix was used by

Adacta, the company that developed the AdInsure platform – the second LCDP chosen for

the analysis. Mendix was used for the development of a mobile application for insurance

quote integrated with the AdInsure platform, which confirms Mendix’s compatibility with

the insurance industry.

AdInsure, which is the second LCDP, has a Graphical User Interface (GUI) based low-code

tool called AdInsure Studio. It enables business users and IT professionals in insurance

companies to implement changes in insurance processes and products. I chose AdInsure

because of my experience working with the AdInsure Studio and the easy access to sources

needed for the analysis. Additionally, the LCDPs specialised for particular industries are not

free of charge, which makes them difficult to access.

2

The purpose of the master’s thesis is to contribute to the understanding of LCDPs and their

usage in the insurance sector. The main goal of the master’s thesis is to analyse the

functionalities of industry-based and general LCDPs, compare them and find the main

differences by developing a business software solution called Home insurance product in the

selected platforms.

Home insurance is a type of insurance that covers loss and damage caused to a property by

a harmful event. The financial protection is related to the insured object, which is the

building and could also cover attached buildings, such as a garage, personal belongings

within the buildings, costs associated with a person’s damage that occurred on the insured

property, such as injury, and additional living expenses that appeared because of the loss or

damage of the insured property. Home insurance can be purchased by individuals who own

a home, rent properties, and landlords (Understand Insurance, n.d.). The person that

purchases Home insurance is called a policyholder. Terms related to the insurance package

are specified in an insurance policy that represents a legally binding contract between the

insurance company and the policyholder. The cost of obtaining Home insurance is called

premium, and the policyholder is obliged to pay a certain amount of money to the insurance

company (Fabozzi & Drake, 2010). Many factors affect the insurance premium amount,

which are related to the probability of occurrence of a harmful event. If the probability is

higher, the premium amount will also be higher (Dorfman, 1998). I decided to develop a

Home insurance product because of the availability of data about all calculations related to

the insurance premium.

The main base for comparison will be the implementation of the defined business

requirements into business software solution in both platforms. The business requirements

for the insurance product development are gained by business analysis of the actual needs

of an insurance company that offers Home insurance. They contain general information

about the product as well as coverage calculation specifics, product workflow, contract

participants and User Interface (UI) information, which are common inputs for all insurance

products. The results from the analysis will be used to define what functionalities the

insurance company needs in order to implement and maintain the mentioned insurance

product by the low-code principles.

Goals:

− Define the LCDPs, their general architecture and their development process.

− Define software solution’s development specifications.

− Identify the key functionalities of the LCDPs required for developing an insurance

product.

Research Question: What are the key differences between using industry-oriented and

general LCDPs for developing insurance solution, based on the comparison between Mendix

and AdInsure platforms?

3

The master’s thesis contains a theoretical and a practical part. In the first three chapters, I

present the theoretical part, where I use secondary sources to define the LCDPs, the main

insurance terms that will be used in the practical part, trends in the insurance industry, as

well a description of the analysed LCDPs. In the practical part, I will use primary sources to

make a comparative analysis of the chosen LCDPs by the implementation of the defined

business requirements for the Home insurance software solution. The implementation of the

product will be done in each platform, and its advantages and disadvantages will be analysed

in each cycle of the development process. In the end, I will identify the needed functionalities

of a LCDP in order to have a complete development cycle of the chosen insurance product.

1 LOW-CODE PLATFORM

1.1 Abstraction concept in software development

Nowadays, the “low-code platform” term is classified as a new trend many companies have

not considered a business opportunity due to a lack of conceptual understanding. However,

this concept is not entirely an innovation that has appeared on the market in the last decade.

Besides the specific practices of the LCDPs, it has a common goal, with other software

development technologies introduced throughout history, to increase the level of abstraction

in software development. According to that, the low-code concept can be considered as an

improvement of the previous attempts to create a solution that will minimise the amount of

code during the development of software applications (Bock & Frank, 2021a).

Figure 1: Abstraction stages of the development process

Adapted from ERP-One (2020).

The abstraction concept in the software engineering field has great importance. It represents

the details of the software systems that are exposed to the programmers or other users

involved in the process of software development. This means the higher level of abstraction,

4

the lower complexity of the software systems. Throughout history, the abstraction level in

programming languages has significantly increased, which led to a less error-prone process

of developing new systems, decreased time spent on it, and decreased amount of written

code. Moreover, by hiding many repetitive operations, the languages with higher abstraction

levels widened their circle of users by including non-programmers. The progress toward the

abstraction of processes is depicted in Figure 1, which is divided into six stages. The first

four stages cover the evolution of programming languages, and the last two stages cover the

software development methodologies of model-driven development (MDD), LCDP and no-

code development platform (NCDP) (Damaševičius, 2006).

Stage 1: At the very beginning, the software development was executed in machine code

(binary code in 1s and 0s), which is also known as processor language. The machine

language is considered the first generation of programming languages. Apart from some pros

of using machine language, such as fast processing of the code and lack of necessity for a

translator, there were many cons that led to the development of the Assemble language. The

most important con was the difficulty of the language, which required a lot of energy and

time for people to learn the language. Additionally, a small error costed a significant amount

of time for the programmer since debugging was a difficult task, and it required an

understanding of the architecture of systems (Kahanwal, 2013).

Stage 2: The struggle of writing long code that is not understandable to people led to the

development of Assembly language, which is a low-level programming language that is

translated into machine code. Assembly is the second generation of languages and a step

closer to human understanding since it offers alphanumeric symbols in English language.

However, the Assembly language did not remove all obstacles found by using the machine

code. Despite the improvements in the debugging field and retained efficiency in processing

the code, programmers still needed a great knowledge of computer architecture. Moreover,

the instructions in the Assembly language were different for every computer, which means

the same set of instructions could not be used for many computers (Kahanwal, 2013)

Stage 3: However, the abstraction level was still not satisfying, which caused the emergence

of high-level languages or so-called the third generation of programming languages. The

first member of this group was the FORTRAN programming language, which appeared in

1956. Over time, many other programming languages, which are nowadays among the most

used, joined the group, such as C, C++, Java, Python, C# and so on. The main advantage

was the usage of English language in coding, so the code could be readable and

understandable, which led to higher productivity of programmers (Chen, Dios, Mili, Wu, &

Wang, 2005).

Stage 4: The fourth generation of programming languages, or database languages, are even

more understandable to humans. Apart from being more friendly to programmers and

understandable to non-programmers, they offer higher productivity in data management,

5

reporting, graphics, and end-to-end interface. A member of this group that is widely known

is SQL (Baer, 2010).

Stage 5: The progress towards abstraction did not stop here. The aim of achieving abstraction

took the game to another level by introducing MDD facilitated by using models as a visual

representation of the software structure. In this methodology, the models are a tool that can

visualise the software solution that needs to be developed with all necessary details that are

relevant to developers and business people. Additionally, they can be used to represent the

current situation of an existing system and how it needs to be improved. This means that

these tools can be used before writing code or after the system exists (Brown, Conallen, &

Tropeano, 2005)

Stage 6: There were still negative sides to this paradigm since the developers were required

to define very detailed models. This led to additional efforts and novelty on the market –

LCDPs and NCDPs (Kahanwal, 2013).

The last two stages are not part of programming language evolution as described. However,

these two software development methodologies had a significant impact on the software

development field. In addition to the division of the MDD, and LCDPs and NCDPs as

different paradigms, there are many similarities among them that have opened the question

in academia if these paradigms should be considered separately. The key features of each of

them are described in the next chapters as well as the common features which are the main

reason for the confusion of the terms.

1.2 Model-driven development

The expectations of the customers over the years regarding software solutions have reached

another level. Therefore, the need for more complex products appeared to be a new challenge

for software companies. Along with the expectations for more complex functionalities, the

quality of these software solutions and time for delivery were expected not to be

compromised. These expectations were tackled by the MDD approach and many available

tools facilitating its application (Selic, 2003).

In most cases, developing software starts with a sketch of components that need to be

developed and the relationships between them. These visualisations or so-called “models”

could be made from a technical point of view, serving as an artefact that facilitates

communication and collaboration between developers included in the project or sketch

developed by the business team to communicate the business scenario to developers.

However, this practice does not bring the same level of benefits through the software

development cycle because of two main reasons. Firstly, in the case of developing complex

programs, the documented model at the start of the development process is never the same

as the final result. In order to reach a state where the model depicts the current progress, it

requires constant effort in tracking and changing the model. Secondly, the models that are

6

of a purely technical nature limit the collaboration and communication with the other

stakeholder, such as business people. This also includes technical models that are produced

as a translation of the business model developed by the business people. If the model is

understood by the business people, the need for transformations can be found earlier (Selic,

2003).

MDD is a methodology for software development that is based on models. These models

represent how the software should be structured by incorporating the domain perspective.

Based on the developed model, the source code is generated. There is a conceptual

framework called MDA (Model Driven Architecture) that describes how these models must

be defined in order to have traceability between the model elements’ transformation during

the whole cycle of software development and a possibility for automated transformation of

models (Brown, Conallen, & Tropeano, 2005). This concept is developed by the Object

Management Group (OMG) as one of their modelling standards for visual software design,

maintenance, and implementation. It is also important to note that the MDD and MDA do

not have the same meaning. The MDD is a broader concept than the MDA and includes

MDA. This means that MDD can be implemented by using methodologies other than MDA

(OMG, 2014)

The models are platform independent, which stresses the main characteristic and benefit of

using this MDA standard – isolation of rapid changes in the technology. The developed

model can be translated into platform specific model by any MDA tool. Before further

explaining what MDA represents, some basic concepts need to be laid out (OMG, 2014).

− System – it generally means reaching out to areas other than the software itself. Some

elements that create a set and are related to each other with the purpose of fulfilling a

specific goal are creating a system (OMG, 2014).

− Model – represents a part of the system or the whole system with all terms used with a

detailed description of their meaning and all rules that have to be applied. Depending on

the goal, it can represent part of the system from different aspects, for example, the model

of business processes or the hardware structure. Despite the system’s structure, the model

also specifies the system’s function (OMG, 2014).

− Modelling language – a language used to describe the model that has formalised and

defined meaning. This type of modelling language is called formal language. On the

other hand, there is also informal language, which is used for expressing the model.

However, this type of language does not have terms that are standardised, and the

developer has the freedom to develop the model. This leads to issues which could cause

additional costs because there is a possibility that the model will be misinterpreted

(OMG, 2014).

− Platform – facilitates the implementation of the system. In the MDA glossary, the

platform as a concept is not only viewed from the technical point of view representing

only the software or hardware where the application will be realised, such as Microsoft

7

.NET. This concept is also interpreted from a business and domain perspective, and an

example of a platform from that perspective are company employees (OMG, 2014).

There are three models defined by the MDA standard: Computation Independent Model

(CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM). Each

model defines a different abstraction level (Kardoš & Drozdova, 2010).

The CIM represents the business side of a system, such as the business processes and isolates

the technical terms related to the technology area. This means that the modelers are the

business people, such as the business analyst or other actors with knowledge of the specific

domain. Since the system in this model is presented from a pure business perspective with

the main business terms, processes and relations, this model is a base for people with

insufficient business knowledge. Moreover, the CIM is a starting point and prerequisite for

the development of both other MDA models: PIM and PSM (Kardoš & Drozdova, 2010).

PIMs are independent of the platform that will be used for developing the system. This

means that on this level of abstraction, a model is designed that depicts the set of services

or, in other words, the functionality of the system without covering the technical details of

the platform. For this model is used another popular standard developed by the OMG called

Unified Modeling Language (UML). It is a formal modelling language that visualises the

system that needs to be developed, such as activities, components, external users, and

interactions between all these elements (Kardoš & Drozdova, 2010).

PSMs are the models that are specific to a platform. They are basically a transformation of

the defined PIM for a specific platform. The modellers on this level are software developers,

as the nature of these models is only technical. PSM includes rules and other specific

technical information on how the PIM will be implemented on a specific platform. The PSM

that has the last position in the chain of models is transformed into code for the platform

defined in the PSM (Kardoš & Drozdova, 2010).

The MDA methodology aims for reusability that can be traced among the models, as a PSM

of one system can be used as a PIM of another (Kardoš & Drozdova, 2010).

However, the concept of MDD is not the perfect choice for every software development

project. Like many other methodologies, this one also has some advantages and

disadvantages.

Advantages:

− Among the biggest advantages of using the MDA methodology is the higher productivity

achieved by the minimised time needed for developing software (Mousami, 2014).

− The models are automatically translated into code, which means that they are less error-

prone compared to manually writing code for a specific system. This characteristic is

directly related to the quality of the system (Mousami, 2014).

8

− Since the code is generated automatically, the changes needed to be applied to the system

do not require many resources, which means that the maintenance of the program is not

difficult (Selic, 2003).

− As mentioned before, the MDA includes a model that is platform-independent, which is

later transformed into a model for a specific platform. This means that the model can be

implemented on many technological platforms and is not dependent on one, which

minimises the risk of changes to a specific technology (Selic, 2003).

Disadvantages:

− Using MDD only for some part of the whole system cannot have a significant positive

impact on productivity, as MDD methodology promises. This scenario is not so likely

when there are interrelated models and one of the models is changed. Even though some

changes in the model can be automatically applied to all related models, there are

examples where this is not possible (Hailpern & Tarr, 2006).

− Another negative point is the complexity of the models and the impact of changes in case

of interrelated models. The specialists in these cases are required to have knowledge and

understand the models that they are working on and all related models that might be

affected (Hailpern & Tarr, 2006).

− Companies already have their own system in which they invested a significant number

of resources, so the option to switch to MDD in later phases of the development is not

the most convenient one (Mousami, 2014).

In the research paper “Low-code development and model-driven engineering: Two sides of

the same coin?” (Di Ruscio et al., 2022), the authors have compared MDD and low-code

development and pointed out the differences and similarities. For platforms and tools falling

under the same paradigm umbrella, such as MDD or low-code, it does not mean that they all

have the same functionalities. There are many categories of these platforms that bring

specific benefits to their users. For example, one of the known characterises of LCDPs is

that they are cloud-based, but this is not the case with all LCDPs. A well-known benefit of

tools that incorporate MDD is the minimisation of the amount of code. Some tools do not

offer this feature since they are designed for resolving some other problem, for example,

software optimisation. Additionally, the authors specified three main areas where MDD and

LCDP differentiate: platform, users, and domain. The first area is concerned with whether

the platform is cloud-based or desktop based. The cloud-based platforms are more present

in the low-code field, and desktop-based platforms are more characteristic of MDD. The

second area is about the target users of these two approaches. The focus in LCDP is on

developers and citizen developer, who is a user with a business background. On the other

hand, MDD focuses more on developers and users with software engineering backgrounds.

The third area is the different domains that these approaches have as a target. The area that

LCDP highlights is the business domain since its target is the business user. As mentioned

before, the MDD targets more technical users, so consequentially, the domain is more

technical-oriented, such as the automotive industry.

9

1.3 Low-code platforms

In 2014, Forrester, a research company in the field of technology, came up with a definition

of LCDP, which specifies the benefits and the domain of the newest trend. Minimal time

spent on application development, decreased amount of code, and reduced costs related to

development are the main benefits of using LCDP. Moreover, the domain of these

applications is business, which means the product of LCDP are business applications. With

time, the number of vendors offering this kind of platform has increased, as well as the

popularity of the LCDPs (Clay & Rymerwith, 2016). This is confirmed by Google Trends

as displayed in Figure 2, where it is visible that the term “low-code development platform”

in the Software category started its trend in late 2016 and continued gaining traction over

time (Google Trends).

Figure 2: Search trend for “low-code development platform” over time

Source: Google Trends (n.d.).

However, the definition of LCDP is not strict enough; therefore, the market offers many

solutions that are considered low-code (Maier, Ulrich, & Bock, 2021). This category

includes Integrated Development Environment (IDE) and MDD tools (Bock & Frank,

2021b). The broad definition of LCDP makes room for companies to regard their solutions

as LCDP because they are based on the low-code approach. Besides the fact that they have

common features, there could be many areas where they differ from each other (Maier,

Ulrich, & Bock, 2021).

LCDPs are platforms that enable developers and people with little development experience

to develop applications with minimal time spent on writing code. Their main advantage is

the efficiency of creating a working application that enables many benefits for the business,

such as higher productivity, lower costs, easier maintenance of applications, and

involvement of stakeholders in the development process (Talesra & Nagaraja, 2021). These

platforms are mainly provided as cloud-based platform as a service (PaaS), which shortens

the deployment cycle of the application and consequently shortens the delivery time needed

for production (Sahay, Indamutsa, Di Ruscio, & Pierantonio, 2020). Additionally, the

10

development cycle is shorter since people with little or no technical knowledge are taking

on some of the developer’s tasks. If we take the SCRUM methodology as an example,

business users in a development company will eliminate the time spent on writing scenarios

for improvements or bugs as well as eliminate the time spent on waiting for developers’

availability to tackle the issue. Instead, they could make the needed improvement after some

clicks (Carroll, Móráin, Garrett, & Jamnadass, 2021).

The low-code method can be spotted in many platforms and tools that were used before the

appearance of the LCDPs on the market. It is related to the rapid application development

(RAD) method, whose targeted user group includes business users (Pratt, 2021). RAD is

characterised by the development of business applications by using a combination of

computer-aided software engineering (CASE) tools, GUI builders, data management

systems and programming languages from the 4th generation. Moreover, it has in common

objectives as low-code development: rapid development, low costs, and development of

high-quality system (Beynon-Davies, Mackay, Carne, & Tudhope, 1999). Some of the well-

known RAD tools for developing applications are Excel and Microsoft Access (Pratt, 2021).

In the literature, there are various perspectives on the LCDPs. Some of the authors, such as

Bock & Frank (2021a), claim that the LCDPs are not innovation in the software development

field. The usage of low-code principles has been traced back to the beginning of

programming languages, where the main goal was to raise the level of abstraction and more

efficiently produce code. The main benefit of using LCDPs which is higher productivity,

mainly comes from the integration of various tools and systems into one. However, these

systems are far from innovation since their presence can be traced before the LCDPs’

appearance on the market, such as in data management system or GUI tools for visual

development.

Bock & Frank (2021b), in their research for low-code platforms, found out that the majority

of platforms included in their study were products that existed before and were marketed

under different labels such as RAD, PaaS, MDD platforms or business process management

(BPM). According to them, the main capabilities of LCDPs that are most common are:

− Data modelling – the user can define the data structure visually by using a diagram, for

example, in Entity-Relationship Model (ERM).

− External data sources support – LCDPs support Application Programming Interface

(API) integration with other applications and systems for data access. Moreover, they

also provide an internal database and the option of using an external one.

− GUI designer - it is an important feature that all LCDPs have. This allows users to choose

between a variety of widgets and components in order to customise the interface of the

application by drag-and-drop. These designers are not structured only for one

environment, such as a desktop but offer the possibility to design the UI for other

environments.

11

− Simple deployment – the deployment process is simple and usually done with a single

click.

− Extendibility of application and integration with other applications – extending the

application developed in LCDP by using services from external sources. This

functionality is enabled via APIs.

− Security support – it relates to the definition and assigning specific users and restriction

of access to particular pages and processes.

In addition to the common functionalities of LCDPs, there are platforms with different sets

of additional functionalities that are considered their key functionalities and, at the same

time, present their strengths. These platforms belong to different categories based on their

functionalities. The authors Maier, Ulrich, & Bock (2021), in their research report, analysed

30 platforms that were marketed as low-code and based on that, they defined four categories.

The first category is basic data management platforms, consisting of LCDPs that focus on

data management provided with the help of GUI tools. The second category includes LCDPs

that focus on workflow management, which means visually defining the logic of the

application without writing code. The third category is the extended and GUI-centred IDEs.

It contains LCDPs that are offering IDEs that provide much more development support than

regular IDEs. The fourth category includes multi-use platforms for business application

configuration, integration, and development. These are platforms for mainly business

applications, as the category name suggests, offering a different range of features with a

main focus on application lifecycle support.

Along with the low-code trend, new terms appeared that are closely related to it. One of them

is the “citizen developer”, characterised by people that are directly involved in the

development of an application by using tools that enable application development without

the need for technical knowledge. This is enabled by environment visualisation that helps

business users understand the process flows and application logic, make changes and

innovate without or with little high-skilled developer support. Citizen developers are the

main trigger for digital transformations in companies. Moreover, their involvement in the

product development process also gives them more power to control the quality of the

product. However, aside from the main motive of these tools being easy to use, they cannot

erase the prerequisite for basic knowledge and understanding. If companies invest in

adopting intuitive tools that can be easily used by business people, they must invest in

training to use these tools as well. Investment in citizen developers is reducing the risk of

expanding the market gap for IT people. However, it does not exclude the need for IT

professionals (Carroll, Móráin, Garrett, & Jamnadass, 2021).

An additional concept that is often used in pairs with LCDPs is the NCDP. The reason for

this is the missing conceptualisation of the terms, which makes it difficult to separate these

platforms in the research analysis. NCDPs are marketed as platforms that rely on visual

application development, which are used for developing simple solutions and do not require

the writing of any code (Di Ruscio et al., 2022). The key differences with the LCDPs are:

12

− Target users - LCDPs target group also includes developers; however, NCDP includes

only business users (Pratt, 2021).

− Level of coding – the key feature of the NCDPs is contained in its name, which is no

code. This is also the key difference between the LCDPs and NCDPs (Pratt, 2021).

− Usage – with no coding, the possibility of creating a complex application supporting

some core processes is limited. The main reason is this kind of platform's limited scope

of prebuild templates and connectors. On the other hand, the LCDPs can remove these

limitations by expanding the platform scope with manual code (Cabot, 2020).

In practice, there is a gap between the marketed content from the companies offering this

kind of product and researchers that did use NCDP for practical scenarios. The results show

that developing some scenarios still requires people with technical skills or non-technical

people to invest time in gaining technical knowledge through training. Another reason that

supports the stance of existing one market for LCDPs and NCDPs is that NCDPs are

contained in the LCDPs, which means simple applications without coding and only by visual

development can also be created by using LCDPs (Pratt, 2021).

1.4 Architecture and development process in low-code platforms

As mentioned before, the LCDPs can have a scope of critical functionalities offered to the

user, which can be split into different categories. Despite the various LCDPs offered on the

LCDP market and their different key functionalities, LCDPs are made of the same

architecture blocks.

Figure 3 shows the main components of the LCDPs. In the buttom section, we see the

Application modeller, which consists of many elements that help users build the application.

These elements include widgets, connectors, business logic flows, drag-and-drop

capabilities, data models, and security rules. In other words, this section represents the GUI,

where the user designs the UI and the application logic with the help of the mentioned

elements (Sahay, Indamutsa, Di Ruscio, & Pierantonio, 2020). For example, the user designs

a page with the usage of offered platform widgets by dragging and dropping, and then by

using the workflow element, determines what the application will calculate if a button is

clicked.

The Platform server is placed in the middle section with its main elements: the compiler,

optimizer, code generator and services. Here is where the actions that the user takes from

the GUI are sent and further processed (Sahay, Indamutsa, Di Ruscio, & Pierantonio, 2020).

The compiler takes care of translating the actions that the user will take into a code

(TechTarget, 2022), for example, the action mentioned on the button in the previous

paragraph. Some LCDPs even offer access to the generated code (Sahay, Indamutsa, Di

Ruscio, & Pierantonio, 2020). The optimiser, on the other hand, takes care of finding the

most efficient way to run the program (Bentley, 1982). Furthermore, in this section are

13

present many services such as logging errors and events, deployment services, performance

auditing and version control (Sahay, Indamutsa, Di Ruscio, & Pierantonio, 2020).

Figure 3: Main components of low-code development platforms

Source: Sahay, Indamutsa, Di Ruscio, & Pierantonio (2020).

In the upper section are positioned all other services that the created model by the user

interacts with. The first element is the internal or external database that the model uses. The

second element are the micro-services and integration with external systems through APIs.

The model repository is the third element which contains reusable artefacts that can be used

in the new model for different purposes, such as UI, logic, or data. Finally, there is the

collaboration platform that supports collaboration between different developers working on

the same model (Sahay, Indamutsa, Di Ruscio, & Pierantonio, 2020).

The development process in LCDPs is presented in Table 1 and can be divided into five

stages. However, the sequence of the stages for some LCDPs can be different because, in

some LCDPs, it is better practice to start with the design of the UI since the data model is

generated in the background (Sahay, Indamutsa, Di Ruscio, & Pierantonio, 2020).

14

Table 1: Development stages in LCDPs

Stage Description

Data modelling

Definition of the data model, which represents how the

entities used in the application will be structured and

connected with each other.

UI design
Design of pages, forms, and other UI elements of the

application by using drag and drop.

Business logic definition Definition of what certain user actions on the UI will

trigger.

Integration with other applications Using services from a third party by API integration.

Deployment Deployment of the application on-cloud, on-premises

etc.

Source: Sahay, Indamutsa, Di Ruscio, & Pierantonio (2020).

The development process in LCDPs is a cycle formed from the stages that end only when

the application is built, and its support is done. The flexibility of LCDPs offers users of these

platforms to go back and forth through the development stages with a few clicks and easily

apply changes to the application.

1.5 Comparison to traditional development

As the LCDPs are becoming more visible on the market, the companies are investing in an

analysis of their benefits and downsides compared to their alternatives. The new paradigm

for building applications has its positive and negative sides, and each of them should be

considered before making the final decision about their adoption.

LCDPs include new members in their target group next to the professional developers:

business users with little or no programming skills. This creates an opportunity for

companies using LCDPs to include their available business users in the development process

and to avoid spending time and money finding additional skilled developers (Mendix, n.d. -

g). The non-technical users, called citizen developers, usually stick with the visual

development and creation of simple applications. This means that for more complex

applications whose requirements exceed the visual drag-and-drop application building,

developers are needed (Tozzi, 2021).

In Figure 4, we see displayed the comparison between the traditional and low-code

development stages based on the agile methodology. We can see that the development cycle

in LCDPs is shorter since some development stages are shorter, and some are merged into

one, such as testing and deployment. For example, there is no need to use different software

for producing mock-ups of how the UI should look like. That can be done directly in the

15

LCDP by drag-and-drop capability of offered widgets (Alamin et al., 2021). The reduced

time for development is the biggest benefit of using LCDPs instead of traditional

development. Because the LCDPs are easy to use and their development cycles are shorter,

companies not only save a lot of time intended for development, but they could also save

money intended for development costs (Tozzi, 2021).

Figure 4: Comparison between the traditional and low-code development stages based on

the agile methodology

Source: Alamin et al., (2021).

An additional benefit related to the previous one is the higher productivity. The usage of

LCDP can result in higher productivity since some features can be developed and deployed

very quickly. The citizen developers can make quick changes to the application through GUI

without wasting many resources. Another positive point for the higher productivity of using

LCDP is the included collaboration within the platforms. For example, programmers and

business people can communicate by writing comments directly on the UI widget, which is

more organised and clearer. Additionally, there are fewer repetitive tasks related to problems

caused by the usage of different components (Bock & Frank, 2021b).

The LCDPs help businesses to improve communication with clients by providing the tools

to create prototypes based on customers’ requirements fast and easy. This could be the key

to today’s challenge of customers’ tastes, which are constantly evolving due to the fast-

changing market conditions. The prototypes that can be delivered fast by LCDPs can verify

if the customer’s idea is communicated properly, and estimations on the required work for

delivering the actual functionality can be made (Mendix, n.d. -b).

16

On the other hand, the biggest positive side of traditional development is the opportunity to

customise the features of the applications. This is limited if the application is being

developed in LCDP because some features cannot be built only by drag and drop and they

require writing code. Additionally, only a few LCDPs offer the opportunity to access the

source code generated by the platform, which is a big drawback. This means that there will

be additional costs if the company wants to switch the vendor for LCDPs since it is

dependent on the current one (Alamin et al., 2021).

Companies that use traditional development workflow can develop their solutions in any

programming language. However, this is not the case with the LCDPs, which usually support

only a few programming languages. The most common programming languages used in

LCDPs are Java and JavaScript (Luo, Liang, Wang, Shahin, & Zhan, 2021).

An additional benefit of traditional development is the free choice between a variety of

deployment options. Traditional development offers more flexibility when it comes to

deployment options since some LCDPs could offer a deployment option that could not align

with the client’s plan (Tozzi, 2021).

Finally, traditional programming is included even in the LCDPs. It is mainly used when

companies are building more complex applications where the components offered by the

platforms cannot fulfil the business requirements. In this case, the need for professionals

with technical knowledge and experience is inevitable (Tozzi, 2021).

1.6 Market leaders

There are many suppliers of LCDPs on the market that are continually improving their

products in the fight to stay at the top of the low-code trend. Gartner (2020) defined the

market for enterprise LCDP providers and created a magic quadrant where the top players

are presented. This means that these LCDPs are not only intended for individual use but also

for meeting the needs on the enterprise level. Since Garner does not consider a significant

difference between LCDPs and NCDPs, in their analysis for enterprise LCDPs, NCDPs are

included as well.

As presented in Figure 5, there are two dimensions: the ability to execute and the

completeness of vision. The most popular and used LCDPs are the ones in the leader’s

quadrant. Besides the fact that they are pointed out as leaders in the market for LCDPs, they

have their own strengths and weaknesses that make them better or worse compared to their

rivals (Gartner, 2020).

17

Figure 5: Magic Quadrant for Enterprise Low-Code Application Platforms

Source: Gartner (2020).

Below we can find the enterprise LCDP leaders based on the current analysis:

The Salesforce platform is ranked as the one with the highest ability to execute. It is a known

provider of customer relationship management (CRM) software with strongly established

customer relationships. It incorporates various low-code tools that help developers boost

their productivity and offers an opportunity for business users to be part of the development.

Lightning Flows are one of the many low-code capabilities that Salesforce offers that enable

workflow automation (Sego, 2021). Other functionalities include drag-and-drop builders,

customisable components, one-click deployment, collaboration between the teams and so

on. (Salesforce, 2021).

OutSystems is an LCDP that supports visual development accompanied by Artificial

Intelligence (AI) based tools. The applications built by this platform can be cloud-based or

on-premises based. The platform offers a wide range of pre-built UI components that are

customisable. The product supply is focused on large enterprises for building core systems,

internal apps, and customer portals. They have many successful use cases that include CRMs

and ERPs as well (OutSystems, n.d.).

Mendix is a leader in the completeness of the vision dimension. It is an LCDP that offers

visual development even without writing code. Considering the two groups of users of the

LCDP that have different coding experiences, Mendix developed two tools for each group:

Mendix Studio for citizen developers and Mendix Studio Pro for developer. Mendix Studio

18

Pro offers posibility to create more customised solutions by including code. Moreover, the

platform offers templates for starting a new application and various pre-built components

that can be used in any application (Mendix, n.d. -p).

Microsoft’s platform, called Microsoft Power Apps, offers rapid development of business

applications. This LCDP offers users to use data from various sources, such as the data stored

in SharePoint, Office 356, and other sources. The expression language used in this platform

is very similar to writing formulas in Excel, which makes it very easy for citizen developers

to learn to use it (Gartner, 2020). Since the platform offers integration with Power BI and

Power Automate, users have access to data analysis and easily edit the flow of the application

(Heller, 2021).

The Appian platform offers a creation of process-driven applications, where the UI and

processes can be built quickly and easily. The platform offers a form-based editor with drag-

and-drop functionality and supports the creation of complex logic by using workflows. There

is also a possibility for collaboration between different teams, data integration connectors,

AI, Robotic Process Automation (RPA) and task management (Gartner, 2020).

ServiceNow App Engine platform offers a collaboration of developers and business users in

the same environment. The platform supports a development of web and desktop workflow

applications and includes user-friendly UI, a possibility for integrations and process

automation, which assure scalability and customisation. Other important features of this

platform are chatbots and AI assistance (Torres, 2021).

2 INSURANCE INDUSTRY

2.1 Introduction to the Insurance Sector

Nowadays, the insurance industry can have a significant impact on economic development.

The risk management that is offered by insurance companies helps businesses and

households to avoid the financial impact of unfortunate events to be handled individually.

Mitigation of the losses can have a positive impact on investments, innovation, and

competition (Feyen, Lester, & Rocha, 2011).

Insurance companies have a wide range of products that are offered to their clients. The

nature of their product is a risk bearing in case of a specific event that could cause financial

loss to their clients, and for this purpose, they receive a payment that is called a premium.

The premium can be paid at once or many times, depending on the defined payment

frequency in the contract (Fabozzi & Drake, 2010). This means that people are cooperating

by paying a premium, which is collected by the insurance company and is used to share the

risk and financial consequences that could appear if an insured event occurs (Mishra &

Mishra, 2016).

19

In the book “Introduction to Risk Management and Insurance” (1998), the author has two

definitions for the term insurance based on its nature. The first one is the financial definition

which explains the term as financial compensation for covering a loss that appeared

unexpectedly. The funds for compensation of the insured’s losses are called insurance pools,

and every insured person contributes to these pools, however, not every person that made a

contribution will experience a loss. The premium is calculated by the insurance company

based on their prediction of possible losses. This prediction is called exposure to loss, which

is another important term in the insurance field. This means that the premium is not the same

for every person and event and follows the rule: the higher the expectation of loss, the higher

the premium. However, insurance companies cannot predict which individual will suffer a

loss and how much this will cost the insurance company. The predictions for loss are

basically based on groups of individuals. The second definition is from a legal perspective,

and it points out the liability of one party that must make compensation to the party that

experienced loss based on a previous agreement. The agreement is called an insurance

policy, and the parties included are the insured and the insurer. The insurance policy which

represents a contract is regulated by the contract law.

The key concept in the insurance field is risk. A risk is the potential of a harmful event that

could happen and cause loss, but it is not known the time and place of occurrence of such an

event and if it will happen at all. Other two important concepts are peril and hazard. The first

concept refers to an event or condition that could cause a loss or damage while the second

concept refers to a factor that raises the probability of peril happening or intensifies the

degree of damage that may occur (Rejda, McNamara, & Rabel, 2021).

In the book “Principles of Risk Management and Insurance” (2021), the authors distinguish

four main risk categories. In the first category, there are pure and speculative risks that can

be distinguished by the result of the event happening, which can be harmful or harmful and

beneficial at the same time. The result of the pure risk, if the event occurs, is loss, which

means there are no benefits produced by the event. On the other hand, if the risk is

speculative, it means that despite the result that could be harmful, there is a possibility of the

creation of benefits for other parties. An example of speculative risk is an investment. The

second category consists of diversifiable and non-diversifiable risks, whose definitions are

mainly based on the scope of the people or groups that are affected by the output of the risk

and the chance of diversifying the event outcomes. If the risk does not affect a large group

of people and can be diversified, it is called diversifiable risk; otherwise, it is called non-

diversifiable risk. In the third group, we have enterprise risk, which consists of many risks

that could affect a business’s operations, strategy, and finance. Finally, there are systematic

risks that are non-diversifiable and related to the system as a whole. For this type of risk, it

is specific that the occurrence of an event in one part of the system, such as one market

segment, can negatively affect the whole system and even lead to collapse.

Despite the fact that all of us are exposed to some kind of risk every day, there are some

risks that cannot be insured. The risk can be considered as insurable if specific conditions

20

are satisfied, as described in the following section. The risk must be present and important

to a large number of people. This is linked directly to the insured’s contributions to the pool

of money, and it points out the correlation between the number of insureds and available

money to cover the losses. If there are only a few contributors insured against a specific risk,

then the premium cannot cover many losses, and to do so, the premium must be very high.

An important characteristic of the risks that can be insured is the defensiveness of the caused

event in terms of time and space so that the consequences can be properly measured.

Uncertainty is another condition that must be fulfilled and refers to the occurrence of the

event. Moreover, insurance risks could cause a large loss where the insurance against such

risks provides people with financial aid that they could not afford. Finally, the insurance risk

must have past statistical data that serves as a base for the calculation of insurance premium

and needed pools to cover the losses (Sahoo & Das, 2009).

The insurance sector incorporates three groups of participants:

Group 1. People that use insurance services in order to insure themselves or their assets. In

this group, besides people as natural persons, are included businesses as legal persons

(Kačar, 2010).

Group 2. Regulators responsible for supervising the insurance process and developing and

enforcing rules and regulations in order to enable fair play in the insurance sector. In

Slovenia, the main regulator is the Ministry of Finance. Other bodies influencing the

insurance market that are part of this group are the Slovenian Insurance Association,

Insurance Supervision Agency, and the European Insurance and Occupational Pension

Authority (Kačar, 2010).

Group 3. Institutions that offer insurance services. Establishments present in this group

include insurance companies, insurance intermediaries and reinsurance companies.

Insurance companies are the ones that are legally bonded by the insurance contract to pay

compensation to the insured party if an insured event occurs. The insured can conclude an

insurance contract directly with the insurance company or through an insurance

intermediary, which could be an insurance agent or broker. Insurance agents are people that

work in the insurance company or organisations that have signed contracts with the insurance

company to promote and sell their products. Insurance brokers are intermediaries that are

widely known as experts in the insurance field that can offer clients an insurance product

that is most suitable for them. The difference between these two intermediaries is the side of

the insurance contractors that they support. The agents support the insurer’s interests,

whereas the brokers support the insured’s interests. Moreover, there is another provider of

insurance services that have insurance companies as their client. These providers are called

reinsurance companies, and their services cover the insufficient funds of insurance

companies that are needed to cover the financial loss of their clients. An example of this

situation is when there are many claims registered by the policyholder in the same period of

time, which usually happens in case of natural disasters (Kačar, 2010).

21

Marine insurance was considered the earliest form of risk management, and it started with

the bottomry bonds. These were loans that were provided by the lenders to the ship owners

that were exposed to different types of risks during the transport of their goods. The most

common risks were robbery, pirates and bad weather conditions that caused the ships to be

drawn. These loans were lent to the boat owners who were obligated to return them with

previously agreed interest in case the goods were safely delivered and unfortunate events

that could cause loss did not happen. Later, followed other types of insurance such as fire,

life, and miscellaneous insurance that were in a different form than today’s types (Mishra &

Mishra, 2016).

However, the social progress resulted in changes in people’s behaviour and needs which led

to an expansion of the types of insurance lists. According to Gupta (2008), insurance can be

divided into non-life and life branches, as displayed in Figure 6.

Figure 6: Types of life and non-life insurance

Adapted from Gupta (2008).

The non-life insurance group is also known by the name general insurance group and

includes financial compensation in case of the occurrence of an event that causes loss that is

not death (Acko, 2022). The first group of non-life insurance is the property that includes

protection against risks such as fire, marine, theft and burglary. This type of insurance

provides protections for property owners that can be natural or legal parties. Property

insurance includes home, business, and commercial insurance. Liability is the second group

of non-life insurance that includes the risks of damage and injury of a property or person and

other liabilities. It covers the costs that emerged because of a harmful events. This group

Insurance

Non-life Insurance

Property

Home
Insurance/Domestic

cover

Business Insurance

Commercial
Insurance

Liability

Motor Insurance

Workman
compensation

Liability Insurance

Aviation Insurance

Project and
Engineering

Insurance

Health

Hospital Insurance

Medical Cover

Life Insurance

Money Back

Pension

Women, Girl Child
and Couple

Endowment

Whole Life

Child Insurance

22

consists of motor, workman compensation, liability, aviation and project and engineering

insurance. The last group of non-life insurance is health insurance, where is included

protection against two main risks: injury and illness. Here are included hospital and medical

cover types (Gupta, 2008). However, the insurance market is rapidly expanding, and new

products offered by insurance companies appear on the market. Two of them that are not

included in Figure 6 are travel insurance and fire insurance (Acko, 2022).

The life insurance group includes many insurance types that have its mutual goal: ensuring

human life. The insured person agrees to pay a premium, and in case of his or her premature

death, the beneficiaries stated in the contract receive payment. This means that a certain

amount of money at some point in time will be paid back to the insured person in case of

period expiration stated in the contract or to his or her beneficiaries, which gives this

category of insurance an investment character (Gupta, 2008). The most common types,

regarding Gupta (2008), are money back, pension insurance, women, girl, child, and couple

insurance, endowment, whole life, and child insurance. Other types of life insurance that are

offered by the insurance companies are term life, unit-linked and critical illness insurance

(Acko, 2022).

Referring to the annual insurance report overview that analyses the insurance and

reinsurance sector of the EEA countries for the year 2021, the biggest part of the life

insurance category measured by premium volume by lines of business is taken by Index-

linked and Unit-linked insurance with 39%. In second place comes insurance with profit

participation at 35%, which is followed by health insurance, which counts 10% of the total

premium in the EEA life insurance and reinsurance market. In the non-life category

dominates the medical expenses line of business with 18% of total premiums in the insurance

and reinsurance market of EEA countries, followed by fire and other damage to property

insurance, which counts 17% and motor vehicle liability insurance with 11% (EIOPA, 2022).

2.2 General terms in non-life insurance

In the insurance field, all obligations and rights of the signed parties arise from the insurance

policy, which is a document that must contain elements that are determined by the law. In

the contract must be insured one or more risks and all information regarding the subject

matter of insurance and coverage must be truthfully provided by both parties (Outreville,

1998). However, the insurance process flow does not directly start with the insurance policy.

First, the potential insured or the agent must fill in a form that is usually called an insurance

application. Then, from the application is created an insurance quote where the entered

information can be reviewed, modified, and prepared for the next stage, which is

underwriting (Adacta, 2022a). This stage can be automated for some business lines, which

means that the company can predefine some rules and if some conditions are satisfied, the

quote will be transited to the next status. On the other hand, if any constraint is broken, for

example, if the property insured has a value higher than the maximum possible insured

23

amount, the quote must go through the underwriting stage. The person who approves or

rejects the quote is the underwriter, who represents the person responsible for assessment of

the risk (Gupta, 2008). When the quote is accepted by the underwriter and signed by the

customer, an insurance policy is created. In the following sections, the mentioned documents

are explained, including the insurance product (Adacta, 2022b).

2.2.1 Insurance product

Insurance companies offer a variety of insurance products, which can be sold in the country

where they are based, as well as in other countries. Besides the direct sale to the customer

that takes place in the insurance company or online, they can use other sales channels such

as intermediaries explained in Chapter 2.1. The common customer is often in a situation

where a non-life insurance product is offered to him or her along with the product he or she

will buy. This usually happens for products that are part of the electronics or vehicles

category (Your Europe, 2022). Insurance products are priced based on a calculation that

includes many variables, which are not the same for all product types. For example, for

household insurance, one of the variables that affect the premium can be the location where

the insured property is positioned (Adacta, 2022c).

2.2.2 Application and Quote

The application is a form that contains the main information about the insured party and their

assets that need insurance, as well as information about the needed coverage. For example,

an application for motor insurance includes information about the policyholder, insured

person, vehicle information and information about the vehicle user, coverages that are

requested to be included, payment terms and informative calculation of premium. Regarding

the provided information about the coverages, the application can lead to one or more

different quotes as the next step in the insurance process (Adacta, 2022a).

An insurance quote represents a document that has all the information provided by the

insurance application, including one or more insured objects with information about the

calculated premium. If the insurance quote is signed by the client, it means legally binding

for the client and the insurance company. For some insurance products, the insurance process

does not start with an insurance application but rather with an insurance quote. As mentioned

before, the quote must go through the underwriting process before issuing a policy. When

the quote is in this stage of the insurance process, the underwriter can approve or reject the

quote, and he or she can request additional data from the client or create a counteroffer with

changed terms. However, the process flow is not the same for each insurance product and

differs based on the country and insurance company as well (Adacta, 2022b).

24

2.2.3 Policy

The term policy is used for the contract between the insured and the insurer. It states the

specific rights and obligations of both contractors. Since many insurance products are

offered on the market, some insurance policies are more complex than others. Besides the

fact that the structure of the insurance policy is not identical for every insurance product,

there is some level of standardisation regarding its structure that points out the most common

and necessary elements that must be present in the policy. These elements are (Outreville,

1998):

− Information about the policyholder, insured person, and the insurer

− Information about the insured coverage, including loss events and other important

elements, and their clear definition.

− Contract duration

− Limits (for example, about the maximum amount that the insurance company is going to

pay to the policyholder in case of a claim).

2.2.4 Property Insurance

Property insurance is part of the non-life insurance group whose object of insurance is a

property and its contents. Depending on the risks that will be insured for a particular

property, property insurance has a whole palette of products such as fire, home, earthquake

insurance, etc. Usually, on the insurance quote, the policyholder can choose the coverage

and the perils against which his or her property wants to be insured. However, there is a type

of property insurance where the property is insured against any risk except those specified

on the exclude list (Sahoo & Das, 2009).

2.2.5 Home Insurance

Home insurance is a part of household insurance that is defined as insurance of a property

that the insured owns. It covers the losses that are associated with the insured property and

their attached or detached structures that occurred by an event insured and stated in the

insurance policy. Home insurance also includes legal liability. The insured objects are

buildings, their contents, and outbuilding, depending on the chosen insurance package

(Understand Insurance, n.d.). Usually, the insurance of home contents and insurance against

catastrophic events such as earthquakes are not included in the basic insurance coverage and

could be added additionally to the insurance package (Grace & Klein, 2003). Home

insurance policies include a sum insured, which means in case of financial loss, the insurance

company will cover the financial loss in the amount of the sum insured, which is stated in

the insurance policy. Moreover, there is a type of coverage called total replacement, which

means that the insurance company will cover the whole cost amount (Understand Insurance,

n.d.).

25

Home insurance has changed over time regarding the range of risks insured. Multiperil

Home insurance appeared in the 1960s, presenting a significant step in the evolution of

Home insurance. The present Home insurance product supply on the market results from a

history of unwanted events that cause continual modifications of the offered insurance

products by the insurers. Higher deductibles for some perils or hazards and risk mitigation

credits are an example of modification actions taken by insurers to improve their ability to

cover reported claims from their customers (Grace & Klein, 2003).

An example of Home insurance is provided in Section 4.1, where are explained the business

requirements for Home insurance based on an analysis of an insurance company offering

Home insurance product.

2.3 Digital transformation of insurance companies

Technological development has affected every industry, including the insurance sector. The

incorporation of digital technologies by insurance companies was unavoidable, despite the

slow-changing nature of the insurance industry. For insurance companies to gain a

competitive advantage in the market, they started incorporating new technologies to improve

their business models (McKinsey, 2015). Moreover, other events have had a big influence

on the insurance companies’ success, such as the COVID pandemic. The appearance of the

COVID crisis has sped up the digitalisation of some insurance companies. In order to keep

the current customers and attract new ones, insurance companies have been closely

following tech trends. In such conditions, with many restrictions targeting social contact, the

habits of people and companies have changed. The travel restrictions resulted in a lower

number of concluded travel policies as well as fewer claims reported by policyholders of

travel and motor insurance. On the other hand, the fear of the pandemic resulted in a higher

number of concluded life and health insurance policies and a higher number of reported

claims in both insurance categories (Bloomberg, 2020).

The new technologies used in the insurance market, bringing significant value for insurers

and insureds, are being called InsurTech. The main benefits of the technologies related to

the insurance process are more accurate premium calculations, improved fraud detection and

improved enhanced techniques for delivering services. The beneficiaries are not only the

insurers, but the insureds as well since InsurTech is focusing on improving the experience

of both parties (OECD, 2017). There are definitions of InsurTech that classifies it as an

ecosystem composed of many components that include parties from different industries

(PwC, n.d.). Along with the users of insurance industries, providers such as insurance

companies and intermediaries, there are other parties included in the InsurTech ecosystem

who use technologies that improve the insurance process. These parties are regulators,

institutions from different domains of insurance, such as banks, travel companies, medical

providers, and experts in different fields. A very important role in the ecosystem play the

InsurTech startups and the BigTech firms that collaborate with the insurance companies to

26

facilitate a digitalisation and improvement of their processes by incorporating InsureTech

tools (Volosovych, Zelenitsa, Kondratenko, Szymla, & Mamchur, 2021). A McKinsey

analysis shows that the most innovations in the InsurTech field are mainly present in two

insurance lines: property and casualty insurance, with 17%, and health insurance with 11%.

Regarding the insurance value chain, both insurance lines hold the mentioned percentage in

the distribution field, which includes sales (Catlin, Lorenz, Münstermann, & Ricciardi,

2017). Technologies that are commonly used in the insurance sector are mobile technology

and applications, AI, Blockchain or distributed ledger technology (DLT), and Smart contacts

(OECD, 2017).

The technology of mobiles and mobile applications is used for many purposes such as

notification system that insurance companies use to notify the insureds for premium payment

related matters. An additional example is the mobile application which is used as a platform

where users can register, buy new policies, or access their current ones (OECD, 2017).

AI is another technology that is used by many industries, including insurance. It is

intelligence demonstrated by the machines which take actions in order to achieve a desirable

goal. An example of its usage in insurance are the chatbots that are based on AI. The

potential policyholder can interact with the chatbot and based on the inputs, can get an

insurance quote (OECD, 2017). The main enabler of AI usage in the insurance sector is the

available data on the history of insurance contracts and claims registered in the system.

Moreover, the data gathered from the insured’s smart devices also create a valuable base for

implementing AI-based solutions that improve the experience of insurers and insureds. This

applies to the Internet of Things (IoT) devices that collect data in the insured’s home. The

collected data contributes to more accurate calculation of the premium as well as improved

fraud detection (McKinsey, 2021).

Blockchain is a popular technology, especially in the financial services field (OECD, 2017).

It is known for removing the need for intermediaries in sharing data such as transactions and,

at the same time, ensuring a secure exchange of data within the network between

participants. In other words, it can be described as a chain of immutable blocks that contain

data (Aloqaily, Otoum, Tseng, & Othman, 2020). The reason that it is listed among the

technologies that are often used in the insurance industry is its potential to tackle the

challenges that most insurance companies face. Among the most important challenges are

market saturation, fraud, inefficient processes such as claims, etc. Moreover, the blockchain

has the potential to improve the risk assessment and pricing of insurance products (OECD,

2017). This technology has a big potential for the insurance industry, and yet it is not

exploited to a satisfying level. The preconditions of incorporation of blockchain technology

are a good understanding of the technology, incorporating other technologies such as AI,

advanced analytics, and IoT, and being prepared for making a costly investment that does

not yield results in the short term (Shetty et al., 2022).

27

Smart contacts are closely related to the blockchain since they represent a part of code that

is kept in the blockchain, which is automatically executed if a condition is satisfied. The

obligations, rewards, and penalties owing to either party of a contract can be stated in the

code, which mimics those found in a traditional legal document. An example of smart

contracts used in the insurance industry is the occurrence of a catastrophic event such as a

flood, where automatic payment of coverage is executed when the damage is validated by

gathered data from sensors. (OECD, 2017).

Dealing with the challenge of responding quickly to the changing environment and market

conditions, some insurance companies embraced the LCDPs. Even though the usage of

LCDPs become more frequent in the insurance market with the appearance of the pandemic,

there is evidence that shows LCDPs were used by insurance companies in the past as well

(McLaughlin, 2020). Goldberg (2021) mentions the use of Visual Basic as a low-code

platform for developing insurance platforms by visual development and minimal coding, the

use of Microsoft Access for building databases and SQL language for business rules.

However, the author points out the drawbacks of this approach that are related to the

maintenance of the developed products since there was no hierarchy of development layers.

Moreover, he points out the importance of research that every insurance company has to do

before deciding on a low-code development approach in order to create an application that

will be easy to maintain and avoid a short-lived life.

Today LCDPs in insurance are used for building mobile and web applications as well as

improving some crucial insurance processes such as underwriting, claims and internal

reporting. The focus is on customers’ needs and experience, so the insurance companies

should be prepared for quick responses to the changes in the customer’s field to maximise

their value. The changes could be required in business processes, flows or UI of their

platforms, which are the most important communication channel with their customers.

Moreover, there are low-code and no-code development tools for a chatbots that enable

businesses to create a chatbot without coding in order to communicate with their customers.

The chatbots can be integrated with other platforms, such as Messenger or can be added as

a widget to their official site (Shakeel, 2022).

The power in the insurance field comes from the available data and the ability to analyse it

and discover correlations that could bring a huge advantage to insurance companies.

Insurance companies do not always have direct contact with their customer since there are

insurance intermediaries. In order to improve their market positions, they need to know their

customers, which can be realised by digitalisation and incorporation of different tools.

However, it is also important to mention that digitalisation also brings risks as well, such as

the risk from hackers (McKinsey, 2017).

28

3 OVERVIEW OF THE ANALYSED LOW-CODE PLATFORMS

3.1 AdInsure

AdInsure is an end-to-end platform that is used in the insurance field. Its main characteristics

are high agility and accelerating innovations since it has an open architecture and a low-code

IDE tool called AdInsure Studio that makes it easy for insurance companies to digitalise

their products, configure features tailored to their needs and connect with their stakeholders

(Adacta, 2022e).

3.1.1 Company background

The AdInsure platform is created by the software company Adacta which provides services

in the insurance industry, which include the development and implementation of IT solutions

and consulting. The company was established in 1989 and its headquarters are located in

Ljubljana, Slovenia. The main shareholder is Volpi Capital. In addition to the existing

headquarters in Ljubljana, there are six offices located throughout Europe: Croatia (Zagreb),

Serbia (Belgrade), Czech Republic (Brno), Cyprus (Nicosia), the Netherlands (Amsterdam)

and another one in Slovenia (Maribor). Adacta counts more than 350 employees spread

among different offices in Europe, and it has a goal of broadening its borders. Its presence

on the market for more than 30 years has contributed to successfully concluding many

projects for insurance companies, including more than 20 implementations of their IT

solutions. Moreover, its successful path witnessed the attention of successful research

companies such as Gartner, which included Adacta in its magic quadrant as a niche player

for non-life insurers in Europe (Adacta, 2022e).

3.1.2 AdInsure Platform

AdInsure consists of two main parts: AdInsure platform framework and services and

configuration. Its structure is presented in Figure 7. The platform part consists of three main

parts: process business modules, supporting business modules and infrastructure. On the

bottom are placed the framework and business infrastructure. The framework contains the

definition of all insurance-specific entities, such as documents and master entities. For

example, here is defined the structure of the document, such as the insurance quote.

Therefore, if the configurator does not follow the structure defined in the platform, the

document will be invalid and cannot be published. The business infrastructure includes the

management of activities, printouts, attachments, and users. An example of activity

management is an action that is required from a user to be executed on a document, such as

confirmation of a constraint on a quote that is in status “In Underwriting”. This activity has

to be executed by a user that has an underwriter role, so the quote can transit to the next state.

Above the infrastructure part are placed supporting business modules, such as party and

29

organisation modules. These modules have two usages: they can be used as standalone

modules and as support to the business modules. They contain functionalities that are shared

between the other modules. At the top of the platform are placed the process modules. These

types of modules are related to the business and are concentrated in one business area. Every

module has defined APIs, and there are three types: internal, shared, and public APIs. The

modules communicate through shared APIs. For example: when the policy management

client component searches for parties, it accesses the party module through shared APIs

(Adacta, 2022d).

Figure 7: Composition of AdInsure platform

Source: Adacta (2022d).

The configuration part is a set of business functionalities that are positioned in different

layers. The packages in the standard (country/region) and system layer are, by default,

included in the software. The users have the ability to install any of the system and standard

packages that they need. The packages include a basic configuration of the business modules,

such as Sales, Policy Management, Claims, Billing and Collections, Accounting,

Reinsurance, Party and Organisation. In configuration can be used predefined platform

element types which can be composed of configuration elements. An example of it is a

configuration of the master entity platform element called contract type, which contains the

possible contract types: application, quote, and policy. The master entity is a platform

element, and the configuration items that can be added to the master entity are general

30

properties, data schema, validations, client actions, UI schema, translations, attachments,

and mapping (Adacta, 2022d).

In the implementation layer is positioned configuration specific for an insurance company.

Insurance companies could operate in the same market segment, such as life insurance,

however, their products do differ. They have the ability to use the configuration defined in

the lower layer that is by default included in AdInsure and upgrade it by configuring their

own products and processes. For example, the insurance company could have a specific type

of contract that is not included in the contract type master entity provided by the system

package. Since the implementation teams cannot change the system and standard layers, they

must override the existing master entity contract type in their layer and add their specific

contract types (Adacta, 2022d).

The approach of overriding configurations in higher layer points out one of the top features

of AdInsure, which is extendibility. Moreover, reusability is another feature that is part of

this group. The configurations in the system and standard layer are organised into

components that can be reused in many different configurations. Extending and reusing

platform elements can be achieved with a few clicks in the AdInsure Studio (Adacta, 2022g).

User, configurator, and external application are the three groups of users of the AdInsure

system. The first group includes business users that use the business functionalities of

AdInsure. The second group includes developers or business users that, by using the

AdInsure Studio, add or change new business functionalities of the system. In the third group

are included all systems that access the AdInsure functionalities through APIs (Adacta,

2022f)

3.1.3 AdInsure Studio

AdInsure Studio is a low-code tool for AdInsure Platform that is necessary for customising

the platform elements. It is an extension that can be added to Visual Studio Code, and it

represents an intuitive IDE. It offers the ability to produce new configurations through

wizards and generators as well as edit the existing configuration with user-friendly GUI

editors. Additionally, AdInsure Studio supports publishing and deployment of the produced

or changed configuration. AdInsure can be deployed on the cloud in AWS and Azure, or it

can be deployed on-premises.

In the AdInsure Studio are included wizards for generating life and non-life insurance and

sales products. The biggest value of the wizard is the possibility of producing a sales product

or insurance product within a few steps. Insurance product and sales product are terms used

in AdInsure that refer to a set of configurations of various rules that define a present or future

product that will be offered by the insurance company. The insurance product contains

configurations such as insured object types, coverage attributes, underwriting rules, payer

rules, premium calculation, and function helpers. It is closely related to the term of the tariff,

31

that in AdInsure glossary refers to the evaluation of the contracts such as applications,

quotes, and policies. The sales product contains configurations about the document (for

example, Home insurance quote), including UI definition and other elements used on the

document such as client actions, data sources, data providers etc. Sales products can use one

or more insurance products, depending on the insurance type. They use an already prepared

configuration from standard and system layers, such as components for UI parts and libraries

for client actions which are generated based on the user’s answers in the wizard. However,

the produced files, such as business rules, UI schemas, and data schemas, must be edited by

the user to apply product specification. In other words, the wizards produce the basic

configuration, which can be edited by business users or developers by using user-friendly

editors. This configuration is placed in the implementation layer, which is placed above the

system and standard layers (Adacta, 2022h).

There are many different editors that are available within the AdInsure Studio, such as

general properties editor, workflow editor, form editor, data model editor and rule editor.

Their functionality is described later in this chapter, where I used them to create a Home

insurance product. Despite the mentioned functionalities, the AdInsure Studio provides

many types of explorers (configuration, environment, and gallery explorer), the ability to

write tests for local testing, multi-language support of configuration items and support of

scripts that can be executed on Continuous Integration (CI) (AdInsure, 2022i).

Based on their technical experience, the user of AdInsure Studio can be grouped into two

groups: users with technical experience, which includes developers and tech-savvy business

users and users with no technical experience, which includes business users. Since the

generated code by the AdInsure Studio can be accessed and modified, there are two available

modes for modifying configuration: basic mode and advanced mode. In basic mode, the

configuration is opened by the AdInsure editors and is modified there, for example, by using

the drag-and-drop principle or filling a table that presents a business rule. All configurations

can also be opened in advanced mode as a form of generated JSON and JavaScript files.

3.2 Mendix

Mendix is a leading platform for the creation of web and mobile applications on the LCDP

and NCDP market for enterprises. This fact is also confirmed by its leading position in 2020

in Gartner Magic Quadrant and Forrester Wave. It has two dedicated IDEs for developing

applications for each group of users: Mendix Studio for citizen developers and Mendix

Studio Pro for developers. Today it counts more than 300,000 developers and more than 50

million users (Mendix, n.d. -a).

32

3.2.1 Company background

Mendix was founded in the Netherlands in 2005. The idea of its creation was based on an

issue related to communication between business users and developers. The issue with

understanding the business requirements was overcome by the introduction of visual

development based on the MDD principle, which created plenty of benefits for both sides:

the developers and the business users (Mendix, n.d. -b). Its headquarters are based in

Rotterdam, the Netherlands. Despite the three offices in Europe (the Netherlands, UK, and

France), Mendix offices are present all around the world: North America (Canada, United

States), MESA (UAE, South Africa), Asia (China, Hong Kong, India) and Australia. The

company grew in the next years by selling its main product (Mendix, n.d. -d) - a successful

platform that attracted many investors such as Battery Ventures, Prime Ventures and HenQ.

In 2018 Mendix was acquired by Siemens, which is a company that operates in the fields of

energy, transportation, healthcare, etc (Crunchbase, n.d.). Behind the well-known brand of

Siemens there are three companies, and each of them is concentrated on a particular sector.

These companies are called Siemens AG, Siemens Energy and Siemens Healthineers

(Siemens, n.d.).

3.2.2 Mendix Platform

The Mendix platform consists of three main parts: Developer Portal, Mendix Studio and

Mendix Studio Pro. The Development Portal offers an overview of all created applications

by the user and other users that are part of the same company (Mendix, 2023a). Moreover,

there is enabled collaboration between the team members and management of different

projects by application of Agile methodology which is based on Scrum and Kanban

approaches. The users can track all activities related to a shared project and can communicate

with their team members through the comment section. Users can have different access right

for a project based on their application role. For example, Scrum Master, which is a role

defined in Scrum methodology, has the right to add or remove tasks from the current Sprint

(Mendix, 2023c). An additional feature that is part of the Developer Portal is version control.

It is enabled by the Team Server, which is a plug-in of the Development portal, where are

stored all applications versions that have been committed. The changes in the applications

that are committed can be directly linked to user stories present on the Scrum board, and this

is enabled by the Team Server as well (Mendix, 2023a).

The other two parts of the Mendix platform are Mendix Studio and Mendix Studio Pro,

which are low-code IDEs used for application development. A description of their purpose

and main functionalities can be found in Chapter 3.2.3.

Mendix represents an ecosystem that, besides the mentioned main parts of the platform, it

includes other parts as well: Marketplace, Atlas UI, Data Hub, Support, Community and

Academy (Mendix, 2023a).

33

In the Marketplace are listed reusable components that the users can download and use in

their applications. These components could be modules, widgets, and other features that the

developers and citizen developers use with the purpose of building an application. Despite

the components, there are environments and applications ready to download that are

available to anyone or for a particular group of people that work for the same company. The

users can search for needed components for their applications and filter them by industry,

content type, compatibility, tags, and rating. Additionally, the users can share the content

that they have created with other people (Mendix, 2023a).

Atlas is a UI framework which offers a variety of reusable UI components, templates, and

themes with customisable behaviour. It is a cross-platform framework, which means that it

is compatible with web, native mobile and Progressive Web Apps (PWA). The Mendix

platform includes the Atlas UI framework, and its functionalities can be used through the

two Mendix IDEs (Mendix, n.d. -f).

Mendix Datahub is another component of the Mendix ecosystem that represents a central

hub that contains datasets from different data sources, which connection is made based on

their metadata. Despite sharing data between the applications developed in Mendix, the

Mendix Datahub enables connection to applications that were not built in Mendix (Mendix,

n.d. -e).

The Support component refers to the support team with whom the users can connect and

report issues. The Community component contains channels where the users connect,

inspire, and help each other. This includes Mendix forum, blogs, documentation and other

user with whom the user can connect. If the issues are related to the application development,

the user gets support from other Mendix users on the Mendix forum. It is a place where the

users can post their questions, ideas and answer other user’s questions. Additionally, Mendix

engages its users to contribute to the Mendix forum, documentation, training, and other

activities by rewarding them with points, badges, and credits. There are many leaderboards

based on different activities that rank the top users (Mendix, n.d. -g).

The last component of the Mendix ecosystem is Academy, where the user can sign up for

different courses based on their technical knowledge. Moreover, there is a section with

learning paths on different topics and levels that help users to broaden their knowledge about

Mendix (Mendix, n.d. -e).

Mendix has many successful customer stories from different industries, such as banking,

insurance, education, energy and utilities, logistics, retail etc. Despite them, many templates

for a specific industry are available on the Mendix Marketplace that can be downloaded and

tested for free or used as base configuration. For insurance, Mendix has concentrated on

three key areas: distribution, claims and underwriting. In each area Mendix has offered

solution on the Marketplace with a description of the key functionalities of each of them. An

example of an application created in Mendix for insurance companies is FaceQuote, that

34

incorporates AI and Machine Learning (ML). The customer needs to take a selfie and upload

it through the application. The goal of the application is to offer a premium estimation to the

customer based on the user age analysis of the photo (Mendix, n.d. -h).

3.2.3 Mendix Studio and Mendix Studio Pro

Mendix Studio and Mendix Studio Pro are IDEs used for the Mendix platform. The

differences between these two IDEs are based on the user and their technical experience.

The first one is used by business users or so-called citizen developers, who can build an app

without writing any code. It is a “What you see is what you get” (WYSIWYG) editor, also

known as a web modeler, which enables application building by dragging and dropping

elements that are provided by Mendix. These elements can be related to UI (building blocks

and widgets), domain model or application flow (Mendix, n.d. -e).

On the other hand, Mendix Studio Pro is known as a Desktop modeller and its users are

developers and business people that have experience in application development. It offers

more features than Mendix Studio, which enable the building of application by using ready-

to-use components, creating customised components and extending the application by using

JavaScript, Java, and CSS. Moreover, integration with other applications is also possible

through Mendix Studio Pro (Mendix, n.d. -i).

The UI of the application is modelled in the Page editor, where the user can define the look

of a page by choosing a page layout, template, drag-and-drop elements on each page and add

events. The drag-and-drop elements are called widgets and an example of it is a check box

which belongs to the input elements category. The application logic can be configured

visually in three ways: microflow, nanoflow and workflow. For modelling application

behaviour Mendix uses Business Process Model and Notation standardisation (BPMN). The

data architecture of the application can be modelled in the Domain model that represents all

entities and their relations. During application development, the developers have support

from the Mendix platform through its bots that are driven by AI and ML. This is enabled

through MxAssist Logic Bot, MxAssist Performance Bot, and Validation Assist. A detailed

description of the mentioned editors and functionalities is given in Chapter 4 where is

described the implementation of the insurance product (Mendix, n.d. -e).

Mendix Studio or Mendix Studio Pro are the main modellers in Mendix. One of the great

benefits of using these modellers is improved communication since the models can be

quickly created and effectively communicated with the stakeholders (Mendix, n.d. -b).

35

4 IMPLEMENTATION OF HOME INSURANCE PRODUCT IN

ADINSURE STUDIO AND MENDIX STUDIO PRO

4.1 Business requirements

Analysing business processes and defining business requirements are important stages of

every software development cycle. Depending on the methodology, the analysis of business

processes and definition of business requirements can be done only in the first stage of the

development cycle (e.g., waterfall methodology), or analysis could be done as continuous

activity (e.g., agile development process). The waterfall methodology is a traditional

software development methodology that has a linear development process, which means

when one phase is completed, the next phase can start. Regarding the business requirements,

this means that the analysis of business processes is done in one phase and then begins the

next phase, which is design. Changes in requirements in later phases are unwanted, and they

result in higher costs. In contrast to that, agile development concentrates on short

development cycles and frequent deliveries of software. Since the development process is

not linear and all activities are continuous, the client could change or add new requirements

in later phases of the software development (Waja, Shah, & Nanavati, 2021).

Business analyses are done by business people by gathering information from clients about

their business processes and needs, analysing and translating them into user requirements

that serve as guidance for the development team. This is usually done by business analysts.

The analysis could take several forms: interviews, questionnaires, meetings etc. The quality

of analysis has a big impact on the project duration and costs, so it is very important to have

clear communication with the client. After business analysis, the business requirements are

defined and communicated to the development team as user stories, tasks, etc.

Miscommunication with the client could lead to the development of wrong features and a

waste of valuable recourses (Paetsch, Eberlein, & Maurer, 2007).

Adacta uses Scrum methodology, which belongs to agile software development. For agile

methodologies is typical a small number of documented requirements at the beginning of

the project since the focus is on the delivery of most needed features, and the details are left

for later (Paetsch, Eberlein, & Maurer, 2007).

In Figure 8 is presented an example of business requirements for a Home insurance product.

Since this data is gathered from a real insurance company that is currently active on the

market and its data is confidential, changes to each part of the defined requirements were

made. For this analysis was sent a questionnaire to the client with standard questions for

getting a rough picture of the business process of the insurance company. Additionally,

several meetings with the client were organised to get more details about their processes.

The result of the analysis was a definition of three documents where were defined insurance

36

coverage, insured object, and sales product. The business requirements which were used for

the development of the scenario are attached as Appendix 2.

Figure 8: Business requirements for Home insurance

Source: See Appendix 2.

The business requirements for Home insurance are divided into three parts: insurance

coverage, insured object and sales product.

The insurance coverage part contains general data about the coverage – tariff. It is a set of

business rules that determine how the total premium is calculated. The content is divided

into seven parts: risks, coverage options, base premium rate, multipliers, modifiers, final

premium rate, and final premium. The risk part contains the set of risks covered by the

insurance policy. In coverage options are listed all types of insurance coverage that are

available. Here is also defined the business rule of calculating the sum insured for each

selected coverage option. The base premium, which is used for the calculation of the total

premium, differs based on the chosen building type. Moreover, in this part are defined

business rules, multipliers, and modifiers. Multipliers are determined by the user input about

the main object, which is the building. They can decrease or increase the premium rate.

Every coverage has its own modifier that is fixed and used in the premium rate calculation.

The final premium rate is a business rule that calculates rates for each coverage option.

Premium by coverage is calculated by multiplying the calculated rate with the sum insured

per coverage option. The sum of all calculated premiums results in total premium.

37

The insured object document contains data about the types of insured objects and insured

objects’ attributes. Currently, there is one object type that also represents the main object

type: Building. For each attribute is specified the logical name used in the system, attribute

type, default value (if it exists) and if the attribute is mandatory. The specified data is filled

in by the user directly on the quote.

Finally, the sales product document contains information about the main settings of the sales

product, the available coverages, participants, payment terms and ownership. Main settings

relate to general sales product configuration, such as product name, product code, numbering

prefix and date from which this configuration is valid. For this product is available only one

type of coverage (Household) and its code is specified in the coverages section. Participants

are all parties stated on the insurance contract. They are policyholder and payer and are

mandatory to be specified on each insurance contract. The policyholder is considered an

insured person. Payment terms contain information on available types of payment frequency

and payment modes that need to be specified by the user on the insurance quote. Ownership

is the last part of this document that defines the needed input from the user about the agent.

The expected result of this scenario is the ability of the agent to create a Home insurance

quote in order to prepare an offer to his or her client. There are two main users: agent and

customer. The agent should be able to define all data about the policyholder, contract

duration, insured object, and ownership. When the data is prepared, the quote should be

issued by the agent and ready to be reviewed by the customer. If the customer accepts the

offer, the quote should be signed, otherwise, it should be rejected. There should be also a

user with an administrator role that will have permissions as a customer and agent.

The mentioned scenario is limited to the creation of insurance quotes. In real life, there is an

underwriting process where the quote could be rejected or accepted based on the evaluation

of the property and policyholder. Moreover, the next stage after signing the quote by the

customer is the creation of a policy.

4.2 Configuration preconditions

4.2.1 AdInsure

As mentioned in Section 3.1.3, AdInsure offers wizards that generate configuration files for

insurance and sales products. The insurance product can be defined by using the non-life

insurance product wizard, where the user have to answer predefined questions. The questions

are grouped in several steps, depending on the product type. The wizard for the creation of

a non-life insurance product has the following steps: general properties, object type, object

subtype, coverage attributes, required rules, underwriting and payment terms. When the user

answers all questions, a configuration that corresponds to the user’s choices is generated.

After the generation of the configuration, the user can define the premium calculation, limits,

38

deductibles, and other important details. Moreover, if the user forgot to add some parts by

the wizard, they can always be added after the execution of the wizard. In AdInsure, there

are some predefined rules that are valid for the produced product by the wizard. However, if

the generated product has some characteristics that do not apply to the predefined logic, the

users must define this logic by themselves. These rules could apply to invoicing, currency,

tax rules etc.

I began with the creation of a new workspace called Home insurance. In the new workspace

can be added packages from the system and standard layers which contain all the needed

configurations to start off a new project. This can be done by installing packages from

AdInsure Gallery Explorer, where are listed all available packages. With the creation of the

project, there was a new layer added which was placed above the standard and system. I used

the non-life insurance wizard to create a Home insurance tariff. When I answered all

questions in the wizard, a message in the output console was displayed that the wizard was

executed successfully, and a new folder was generated, as displayed in Figure 9 (left).

Figure 9: Generated Household tariff and Home sales product in AdInsure Studio

Source: Own work.

When I finished with the configuration of the Home insurance product, I created a new sales

product called Home Quote by using the non-life sales product wizard. This wizard has the

same functionalities as the previous one, and the difference is that this wizard generates sales

39

product specific configuration. Additionally, in the second step, the user must select a tariff

that will be used for this sales product. I selected the Household tariff. The generated files

are displayed in Figure 9 (right).

AdInsure Studio displays a warning to users that they must enter data in the generated rules.

The configuration of the rules is explained in the following sections.

4.2.2 Mendix

In Mendix, I started with the creation of a blank application on the Developer portal. Mendix

offers many application templates with feature descriptions of included functionalities and

examples that can be used as starting point for building applications. For the insurance

industry, there was a Claims template available; however, the user could create a new

template that could be used for the creation of the following projects. After the application

creation, Project Buzz is displayed, which represents a board of project activities, and its

main purpose is a collaboration with the company members that have access to the created

project. Then, I opened the project in Mendix Studio Pro, where I continued with the

development of the Home insurance product. All projects contain some default settings and

modules provided by Mendix that can be changed by the user. In the created module, there

are generated empty domain model, a page, and a collection of images, where the user can

add images that could be used on UI, for example, as button icons.

4.3 Data modelling

4.3.1 AdInsure

The data model in AdInsure Studio looks different than in Mendix Studio Pro. The AdInsure

Platform is constructed in a way that every component must have its own data model.

Considering the platform requirement, every component had its own data schema. The

attributes can be added by the AdInsure Studio, and the user has the freedom to define them

without any restrictions. The components can be used on different documents and are usually

created for configurations that are used on many places to prevent duplication of

configuration. For example, data about the policyholder, such as name and address, is

required on every quote. Because of that, there is a component that contains these fields and

is referenced on many quotes.

However, there are many restrictions defined on the platform level. These restrictions are

related to the insurance nature and the user must follow them in order to have a working

insurance or sales product. For example, the user must define specific properties to all sales

and insure products. The defined properties are part of the evaluation process of the

insurance product, and its logic is provided by the platform, which is described in Section

4.5.

40

Figure 10 displays the data model of the Building component. The user can choose elements

or components from the left grid and add them to the middle grid to create a data model. On

the right grid can be specified rules for each property, such as validation rules and value

restrictions. As mentioned, this is a component which means it can be used in many places

in the same or different layers. Despite the Building component that was created for the main

object type, with the help of the non-life product wizard was generated another component

called Coverage Options, which contained properties regarding the coverage options.

AdInsure uses a relational database, and the inputs from the users are saved in tables in a

predefined structure by the platform.

Figure 10: Household coverage component in AdInsure Studio – data model

Source: Own work.

4.3.2 Mendix

In Mendix, the data model is called domain model, and the user can there define the entities

and their attributes. Each module should have its own data model. Every entity defined in

the data model is created as a table in the database, and every attribute inside an entity is

defined as a column inside the table (Mendix, 2022b). Each entity can be connected to

another entity through association. Regarding the defined business requirements, there were

four needed entities in Mendix: agent, party, Home insurance product and home quote.

Figure 11 presents the data model in Mendix Studio Pro. Each entity with its attributes

represents an object stored in the database. For example, the party entity is a blueprint of the

parties included in the insurance contract. This could be an insured person or an agent. Party

41

has a one-on-one association with the Agent entity, which means one party can be registered

as one agent. The reason that these two tables are separate despite their one-on-one

association is because in reality the business scenarios are more complex, and more service

providers are included. The same reason applies for other tables that have one-on-one

relations. The association with the Home Quote entity is one-to-many, which means that one

party can have multiple quotes. The same type of association is present between the Agent

and the Home Quote entity, which means that an agent can create multiple quotes. Since the

Home insurance product in the described scenario can have one insured object, the relation

between the Home Quote and Home insurance Product is one-on-one. The associations

Party_Account and Agent_Account lead outside the Property Insurance module and connect

Party and Agent entities with the Account entity from the Administration module that was

added from Mendix Marketplace. These cross-module associations point out that a party and

agent can have only one account as a user in the application.

Figure 11: Data model in Mendix Studio Pro

Source: Own work.

Changes in entities can be frequently made in the domain model. The existing attributes can

be used in many microflows, however, changes of these attributes in the domain model won’t

cause any issue in the application since Medix will apply these changes in each place the

particular attribute was used. Therefore, the user does not need to care about synchronising

of changes in the database since this is automatically done on publish of the application. In

42

each entity can be defined rules that apply to the whole entity or separate attributes such as

validation rules, access rules, event handlers etc.

4.4 User interface

After the definition of the data model, the next step is the design of the UI form where inputs

are entered by the user. The goal of every application is to have an intuitive UI, which means

the user understands the application’s behaviour and doesn’t need time to think about what

have to be clicked or entered. On the UI must be present the properties and attributes defined

in the data model as inputs required from the user. Not all properties and attributes are

required inputs since some of them are calculated by functions and saved in the database.

4.4.1 AdInsure

In AdInsure Studio, it is desirable to start the configuration of a new product with the UI

design. The reason for this is that for every input field added to the UI is generated a property

in the data model. With the help of the non-life insurance product wizard, two components

were generated: the Building component with insured object type and the Coverage Options

component with coverage attributes type. I started configuring the Building component,

where I created all fields related to the insured building. However, the name generated in the

data model is not related to the given label of the input field in the UI editor, so the user

needs to change that in order to achieve business value. In the Coverage Options component,

I configured a section that contained coverage options that can be added as additional

coverages on the quote.

Figure 12 displays the Building component opened in the UI editor in AdInsure Studio.

There are two modes to view the configured result: design and live. In the design view, the

user can drag and drop elements and components directly to the modelling space displayed

in the middle of the grid. Above the elements and components, it is displayed the structure

of the document or component elements, and the user can easily navigate through them. For

each element can be specified general properties, binding to the data model property,

validation, and interactions such as events, client actions and rules. This can be specified in

the right grid. After adding some inputs in the UI editor and saving, the data model is updated

with properties corresponding to the added inputs in UI editor. The live mode shows how

the UI will look like to the end-user if the application is published. Not all required fields

added on the UI are used for premium calculation, for example, street name, house number,

postal code, and city.

The quote generated by the non-life sales product wizard had a predefined UI built from

standard and system components. The quote contained five tabs: participants, terms, insure

objects, payment terms and ownership. Building and Coverage Options components, that

were generated by the wizard, were referenced in the insured objects tab. However, I needed

43

to change the payment terms component that grouped input fields such as payer, payment

currency, payment frequency, payment until, payment type, first instalment due date and

number of instalments. In the business scenario, I didn’t need to display some of the fields,

such as the number of instalments and payment until date. Additionally, the payment

frequency values were different from the ones provided by the component present in

AdInsure. Since the component was placed in the standard layer and couldn’t be changed by

the user, I overridden the component in the created layer by right-clicking on the component

name and choosing the override option. After that, a component with the same name

appeared in the selected layer, in which I deleted the unwanted input fields in the UI editor.

Figure 12: Building component in the UI Editor in AdInsure Studio

Source: Own work.

4.4.2 Mendix

Figure 13 displays the UI modeller in Mendix Studio Pro, where it is opened the

Quote_ParticipantsTab page. There are also two modes that the user can switch between

while modelling the page: structure and design mode. In structure mode, the user can

configure and see the elements used on the page and their relations. As displayed in Figure

13, the page is opened in design mode, and it is visible that the attributes are used from the

Home Quote entity (PolicyholderName and PolicyholderAddress). On the right side, it is

displayed the summary section that has attributes from Property Insurance Product entity

available over the association HomeQuote-to-HomeInsuranceProduct. The Design mode has

the same function as the live mode in AdInsure Studio, which is a preview of the design of

the page as it will look like in runtime. As mentioned in Section 3.2.2, one of the components

44

in the Mendix Platform is Atlas UI which offers a variety of templates, layouts, widgets and

building blocks. Moreover, if the offered assets are not fulfilling the application

requirements, the user can create new templates and building blocks that can be reused. The

widgets and building blocks are displayed in the right panel in Figure 13 and can be dragged

and dropped to the design area. I used a header building block for each page where are

grouped a header and a drop-down filter. The editing of the fields, such as setting labels,

default values, adding events, visibility conditions and so on, can be handled in the right

panel by switching to the properties tab or in a pop-up window by double-clicking on the

property, which I found very useful. In the left panel in Figure 13 is visible the structure that

I created for the Home Quote. I created a page for each tab, and I grouped all files related to

a page in a folder.

Figure 13: Participants Tab in UI modeller in the Mendix Studio Pro

Source: Own work.

Besides the pages that represent the quote, I also designed the menu, dashboard, overviews,

and pop-up windows used for look-up buttons. In the menu, I added five sections where I

grouped all pages: dashboard, accounts, party, contracts, and agent. On the dashboard, I

displayed the options for the creation of a new home quote, agent, party, and all overviews

such as agent, contract, and party overview. Each overview is related to an entity, and the

user can filter the saved objects in the database. For example, the Contract overview has a

data grid related to the Home Quote entity, and it has four filters: quote number, start date,

state, and policyholder. Pop-up windows were used for look-up buttons, such as the

policyholder button. The pop-up windows contain data grids similar to the ones used on the

overview pages. The difference is that in the pop-up window, the user can select one of the

results displayed in the data grid, and that result will be set as a value to an input field. For

45

example, when the user clicks on the button next to the policyholder, a pop-up window will

open with the overview of entered parties in the database. When the user selects a party, the

party will be set as a policyholder on the quote.

The difference between AdInsure Studio and Mendix Studio Pro UI design is that in the

former were designed insurance-specific components that can be used on documents, and in

the latter were designed building blocks that are not specific to a particular industry and can

be used on pages for many purposes. An example of this is the Organisation component in

AdInsure that I used on the ownership tab of the Quote document. In this component are

grouped input fields for agent and organisation unit. Besides the visible information about

the agent on the UI, such as the agent’s name and organisation unit, there is other information

stored in the database, such as the agent’s code.

4.5 Workflows and definition of business logic

The inputs defined on the UI are needed as inputs in the functions that calculate the main

output of the business scenario: the insurance premium. Since AdInsure and Mendix are

LCDPs, the user is supposed to configure the business logic in the editor with minimal usage

of programming.

4.5.1 AdInsure

In AdInsure terminology, the insurance product is composed of many rules that are required

for the creation of a functional product. Before its definition, there are specific requirements

that must be completed. Firstly, all rules related to the business and technical side of the

product should be defined. For example, rules related to premium duration, invoicing,

currencies, taxes, underwriting, retention etc. Additionally, there should also be defined code

tables that are important for every insurance product, such as risks, object types, insurance

classes etc. Every insurance product is part of an insurance line, so the existence of the

insurance line is also a prerequisite for the creation of an insurance product. Moreover, the

insurance lines have many tariffs groups and similar insurance products are grouped under

the same tariff group.

The business rules in AdInsure are configured in Decision Model and Notation (DMN),

which is a modelling language and notation (OMG, n.d.). AdInsure Studio uses a DMN

viewer and editor for rules preview and configuration. It is used by almost all platform

elements of AdInsure (tariffs, components, views, etc.). The context of the DMN is compiled

to JavaScript.

Figure 14 displays the Premium rule of the Household tariff. Each rectangle represents a

decision that has one of the three types: decision table, literal expression, or context

expression. The decision table type has a table icon in the left corner, and it represents a

46

table, where each row specifies conditions and outcomes. For example, risks are represented

in decision table that determines the risk code and the sum insured of the risks. Literal

expression type is identified by the curly brackets icon in the left corner and is used for

complex calculations. Context expression type has a cube icon and represents a set of

variable names and their calculated values. Total adjustments are calculated in context

expression type. The model of related decisions has a significant advantage because the user

can see and understand how all elements are connected without the need to open different

documents to get to know the structure of the product. The inputs are represented by

rectangles with round corners. They are elements connected to the decisions and they come

from Building and Coverage Options components. The rule contains all calculations for

outputs required by the AdInsure platform, such as premium, tariff rate, risks, currency, etc.,

that are configured in the Premium decision. The user can create a decision for each element

calculation that, at the end, will be used in the Premium decision. Expressions in the

decisions can be written in JavaScript or in FEEL (Friendly Enough Expression Language),

which is a language that is easily understood by business users.

Figure 14: Premium rule of the Household tariff in AdInsure Studio

Source: Own work.

The document flow of the Home Quote is displayed in Figure 15. It is a rule applicable to

sales products only. In the document flow, the user can configure the flow of a particular

document and their relations with other documents. The editor contains states, transitions,

and relations with other documents. Each document state must have a selected actor. The

user can select many options that apply for the selected actor in a particular state, such as

which transitions are available for the selected actor, available operations (such as save,

47

calculate, print etc.), restrictions regarding the available attachments and activities in the

selected state, applicable UI form and commenting availability.

Figure 15: Document flow of the Home Quote in AdInsure Studio

Source: Own work.

4.5.2 Mendix

In Mendix Studio Pro, the business logic is modelled through microflows, nanoflows and

workflows. The first two options are related to some actions that are performed on an object

or page, such as creation, deletion, update etc. The third option is related to the workflow of

the application based on user roles and tasks (Mendix, 2022c). In the configuration of the

business scenario, I only used microflows to define business processes as well as determine

attribute value through calculation, the behaviour of UI elements such as buttons and

integration with other services.

In Figure 16 is displayed the microflow that calculates the premium adjustments. The yellow

parameter indicates the input in the microflow, which is the Home Quote entity. The blue

rectangles are the activities that indicate some action. As displayed in the right panel in

Figure 16, there are a variety of activities which the user can choose from. The figures with

diamond shapes are decisions. The start of this microflow is indicated by the green dot, and

the end with the red dot. The adjustment to the premium is related to the policyholder age

input, which is an attribute of the Party entity, so I retrieved the Party object. The final result

of this attribute is the adjustment value. This microflow is called in the main microflow,

which is CAL_Premium, where is used the adjustment value for the calculation of the

premium for the insured object.

48

In Mendix, there is a market store where the user can download various widgets and upgrade

the UI and the functionality of the app. In my project, I used a module called Community

Commons that contained many useful Java methods which can be used in defining the

application logic. I used the YearsBetween function in order to calculate the age of the

insured person, which was relevant for the adjustments value. This is the third activity in

Figure 16.

Figure 16: Premium adjustments microflow in Mendix Studio Pro

Source: Own work.

Moreover, there is an AI-Assisted development (AIAD) available through MxAssist Logic

Bot, MxAssist Performance Bot and Validation Assist that helps users to develop better

models. One of the biggest benefits of this is the development of models without spending

too much time. In my case, I used the MxAssist Logic Bot the most. Since I didn’t have any

experience with Mendix, it helped me to model microflows faster by suggesting the next

activity (Mendix, 2022a).

Figure 17 displays the first part of the CAL_Premium microflow, where the building sum

insured is calculated. At the beginning of this microflow is called ACT_RiskMultiplier

microflow, which is the third activity. The calculation of the building sum insured starts with

the first decision (Is the building sum populated). The red diamond shape indicates the merge

of the flows, which relation continues to another decision that checks if the sum insured of

the next coverage was populated, which is the cash sum. Since there are many inputs on the

quote that are used for premium calculation, I needed to create a decision for each sum

insured input and then separately calculate sum insured for each coverage, which means I

created six additional flows similar to the building calculation flow. By using the activity

Create Decimal variable, I created a premium rate and coverage modifier variables for each

49

coverage where I calculated their values. This resulted in a big microflow with many

activities and decisions. The logic of premium calculation was not so clear as in the

microflow for adjustments displayed in Figure 16 since the premium calculation was more

complex than the adjustments calculation. In AdInsure, this calculation was handled through

a decision table or context expression that contained all calculations related to a parameter.

For example, the Premium Rate context expression in Figure 14 contained calculations of

the premium rate for each coverage that was used in the Premium Per Coverage decision

table.

Figure 17: First part of the Premium microflow in Mendix Studio Pro

Source: Own work.

Despite using microflows for calculation, I also used them for setting action to lookup

buttons such as policyholder, transition buttons such as action button for a transition of the

quote into a new state and save button. In some activities, I needed to write a simple

expression to achieve the desired result. The functions that I needed were well documented

in the Mendix documentation portal. However, an understanding of basic concepts in

programming is needed to write an expression in microflow. The events triggered with the

50

click of a button in AdInsure are handled through client actions that are written only in

JavaScript.

Changing a name of an element in Mendix, such as microflow or variable, automatically

updates all names of the changed elements in all places. I found this very helpful and time-

saving. This functionality is not present in AdInsure, so the user needs to go through all

errors produced by the Studio and update all elements. Additionally, the property could be

used in some mapping fiction which will consequentially produce errors, so the user needs

to have programming skills and debug in order to find the error.

Another thing worth mentioning in this section that is very important and necessary for

configuration and modelling is the debugging process. During the development of an

application, it is very common that the application will have a bug and it won’t work as

described in the business requirements. To identify the bug, the user must debug it. In

AdInsure, the debugging process is a disadvantage. Since the DMN files are compiled from

dmn.xml to JavaScript files, only the generated JavaScript code can be debugged. In Mendix,

graphical debugging is available by setting breakpoints on specific activities in the

microflow.

4.6 Integration with other applications

The possibility of integration with other applications is an important functionality that

LCDPs should offer. The LCPDs strive to offer options for exposing data and services to

other systems. The modelling and configuration of the Household tariff and Home insurance

quote did not require integration with other applications, so this functionality was not tested

in practice; however, both platforms offer this possibility.

4.6.1 AdInsure

In AdInsure are used Representational State Transfer (REST) APIs. As mentioned in Section

3.1.1, AdInsure is constructed of business modules that are decoupled. The modules use

APIs, called Shared APIs in the AdInsure dictionary, to communicate with each other.

Moreover, the modules can integrate with another system. This means that there is also a

possibility for companies to integrate and use only one of the modules and not use the whole

package, for example, the Claims module (Adacta, 2022d).

4.6.2 Mendix

REST APIs, Simple Object Access Protocol (SOAP) web services, and OData are the tools

provided by Mendix for integration. Moreover, the user can choose and download

connectors from the Marketplace. Additionally, there is also a possibility of developing new

connectors customised to specific requirements. Integration with other systems is a complex

51

activity, and this task involves experienced programmers. However, Mendix has widened

the circle of potential task carriers by including inexperienced programmers since it includes

the modelling principle even in this case (Mendix, n.d. -c).

4.7 Testing

The business scenario that I implemented outputs a calculation of premium per coverage that

is subject to several inputs. If there is an issue with some UI elements or rules, this will be

easily spotted in the runtime by displaying an error message. However, if the premium

calculation is incorrect because of changes in some variables that influence the premium, it

will not be so obvious. Because of that, it is necessary to implement test scenarios that will

test the premium calculation in order to indicate bugs in the early stages.

4.7.1 AdInsure

In AdInsure, this is handled through test scenarios in JSON format where the user sets an

example of inputs and adds what is the expected result if these inputs are used for calculation.

With the generation of tariff through the non-life insurance wizard, an empty test scenario

file is generated. After tariff configuration, the user should also configure the test scenario

to ensure that the tariff is correctly configured. Figure 18 displays a test scenario that tests

the premium result in case the building sum insured is 100.

Figure 18: Test scenario in AdInsure Studio

Source: Own work.

Testing of sales products is also possible through test scenarios that are different from those

used for testing tariffs. Since the quotes have many inputs and outputs, they are split into

two files: an example file for inputs and a scenario for outputs, which is referenced in an

example file. The user must know the platform elements and how the evaluation of the

insured objects is handled by the platform in order to test this result. This type of test is called

52

validation test and it tests the configuration part. There are also API, UI, and performance

tests.

4.7.2 Mendix

In Mendix there are many tools available to the user that can be used for testing the

application. One of them is unit test offered as a module that can be downloaded from

Mendix Marketplace and can be used to test microflows. Figure 19 displays a test microflow

called Test_PremiumAmount that I created by using the Unit Testing module. The

microflow tests the amount of total premium for a combination of inputs. The User Testing

module also contains an overview that lists created unit tests, which I placed on the

dashboard for the administrator user. The tests can be run from the dashboard, and the details

of the test results can be accessed there.

Figure 19: Test for premium amount in Mendix Studio Pro

Source: Own work.

Mendix also offers add-ons used for testing, such as Application Test Suite (ATS), which is

used for automated testing. Since this add-on couldn’t be used for free, it was not tested.

4.8 Security

The process of concluding an insurance contract could include many actors. In the business

requirements, there are two main actors for the Home Quote: agent and customer. They can

see different things in the quote and can take different actions. This is part of the application

security where the user must configure the permissions for each application role. Despite the

customer and agent roles, there is an administrator role that can perform all actions.

4.8.1 AdInsure

Access to configuration elements in AdInsure is managed through permissions that can be

assigned to application roles. Permissions can be configured in the authorisations CSV files

in each folder where there is a concept, such as a document or a view. For each application

role added in the authorisations file must be specified an actor. I added the Sales Person

application role to have permission for Home Quote and assigned the Agent actor to it. There

53

are also application user groups that combine a set of application roles which can be assigned

to specific users. The actions and operations available to a specific document are specified

in the document flow. Hiding or showing of a specific part of the UI for some actors can be

managed through Client actions that are written in JavaScript. Moreover, if UI for the actors

has a lot of differences, it is possible to create a different UI schema for each actor. I used

one UI schema for both actors since the same UI elements should be displayed for the agent

and the customer.

4.8.2 Mendix

In Mendix, there are user and module roles. The module role is related to the access rights

for a specific module, and it can be configured in a security pop-up window that is positioned

in the module artifacts list and is mandatory for each module. A user role is configured on

the project level, and it can have many module roles. For example, I configured the customer

user to have three module roles: System.User, PropertyInsurance.Customer and

CommunityCommoins.Customer. The system module is included by default in Mendix, and

it has a user module role that performs normal actions in the application. The customer user

in the Property Insurance module can access specific pages, microflows, and it has limited

access for reading or writing an entity’s attributes. For example, customers can sign the

quote, but they cannot issue or reject the quote. This action can be executed only by the

agent. The Community Commons module contains functions that are used in microflows

triggered by the customer, so because of that, I also added this module role to the customer

user (Mendix, 2023b).

5 MAIN FINDINGS

While developing the Home insurance product and quote with Mendix Studio Pro and

AdInsure Studio, I noticed many similarities and differences between the tools. In the

following sections are presented three tables for each business requirement group with key

similarities and differences between Mendix and AdInsure in each development stage. There

are two development stages that are excluded from the tables: integration with other

applications and deployment. The reason for its exclusion is that they are general stages that

cannot be analysed on the business requirement level. As described in section 4.6, integration

with other applications was not tested in practice. Regarding the deployment stage, both

applications were deployed on-premises, but they also support other deployment options. In

the development stages, I also added two additional points for comparison: security and

quality assurance. Security is added to each table since I configured security for each group

of business requirements. Quality assurance was tested only on the insurance product level,

and because of that it is placed only in that table.

Before starting with the first development stage, which is data modelling, I generated sales

and insurance products by using the wizard in AdInsure. This was a big plus since I didn’t

54

need to create everything from the ground up. The insurance company can create new sales

and insurance products very easily and fast as long as these products are not complicated. If

the standard or system layer configuration does not cover the business requirements, the

configurators must create new ones, which cannot be done quickly. AdInsure is a complex

system that requires knowledge of insurance. Besides the intuitive editors and fast

configuration of products and tariffs, the user must know what components, libraries or data

sources are available in standard and system layer and for what purpose are used in order to

create the optimal product. Additionally, the knowledge base and documentation that

supports the user are not developed to the level where the configurator can work without any

help from developers that are experienced in using this platform. This means the learning

curve for using this platform is not so fast. Additionally, it is important to mention that the

configuration process was faster in Mendix than in AdInsure Studio.

Mendix, on the other hand, has a very structured and easy-to-understand documentation and

knowledge base. A feature that I found very useful is the help icon on every pop-up window

in Medix that is related to setting or editing a particular element, that leads to the official

documentation site. Additionally, the Mendix community is big, and the user can search for

particular term in Mendix Academy, documentation, forum, or ask a direct question in the

forum. During modelling in Mendix, all questions and issues that I encountered were

explained and answered in the documentation or in the Mendix Forum.

In Table 2 are displayed the key differences between Mendix and AdInsure in each

development stage of the sales product.

Table 2: Differences in the development of the sales product between Mendix and AdInsure

Development

stage
Mendix AdInsure

Data modelling
− Definition of entities and their

associations

− Use of pre-defined insurance-specific

components with ready data models.

− Available extendibility of predefined
components (by overriding)

User Interface

design

− Use of building blocks and
widgets

− Access to Mendix Marketplace

for ready-to-use components

− Use of predefined components by non-

life sales wizard

− Use of predefined insurance-specific

components

− Available extendibility of components

− Sales product is a document with a
sequence number

Business logic

definition
− Logic defined visually with

Microflows.

− Possibility to use Nanoflows

and Workflows

− Defined in JavaScript

− Document flow definition in document

flow editor (BPMN)

table continues

55

Table 2: Differences in the development of the sales product between Mendix and AdInsure

(continued)

Development

stage
Mendix AdInsure

Business logic
definition

− Possibility to use JavaScript

and Java

− Access to Mendix Marketplace
for ready-to-use components

− AI-Assisted development

− Sync of naming changes during

development.

− Debugging

Security − Configuration of security for

each module and element

− Definition of user and module

roles

− Definition of security in authorization file

in .csv format for each platform element.

− Defined application roles and application

user groups

Source: Own work.

In data modelling stage in Mendix was defined the data model with its entities and

associations between them. I did not need to write any expressions or create tables since the

tables are automatically generated. In AdInsure there was no need to create data models for

components related to the sales product, since the sales product was generated by the wizard

and all components referenced there were from standard and system layer and had defined

data models. Regarding the UI of the sales products, I used building blocks and widgets to

build it.

The UI modelling in both platforms is very similar. The UI modelling in Mendix is easy and

intuitive. All properties related to the added widget or building block can be edited in a pop-

up window with a double click on the widget or building block. Compared to the AdInsure

UI editor, in Mendix, the user can set more properties than in AdInsure. Additionally, the

user can choose between many UI templates. The UI editor in AdInsure has a big advantage

since it could automatically generate properties in the data model. Moreover, the generated

sales product is a document with a configurable numbering rule which adds additional

business value.

The definition of the business logic in Mendix and AdInsure was different. In Mendix, I used

microflows and simple expressions within the added activities. However, there were other

ways available for logic definition, such as workflows and nanoflows, as well as JavaScript

and Java functions. The modelling process was simple by using the MxAssist Logic Bot.

Also, changing the names of entities, properties, or microflows did not cause any problems

since the new name was applied in all elements that used the platform element. An additional

feature that Mendix has is a friendly debugging process since the user can add breakpoints

on any microflow activity. In AdInsure, logic regarding sales product was defined in

JavaScript except for the document flow, which was defined in document flow editor. This

means that definition of logic on the sales product level, such as mapping or client actions is

56

not so configurator friendly since they require knowledge of programming. An exception is

the configuration of events and document flow.

Regarding security, both platforms offer an easy way to handle it. In Mendix, this is done by

the configuration of module and user roles. The security in AdInsure is handled through the

definition of the application, application user roles and configuration of authorisation files.

Table 3: Differences in the development of the insurance product between Mendix and

AdInsure

Development

stage
Mendix AdInsure

Data
modelling

− Definition of entities and their

associations

− Generated empty data model by non-

life sales wizard

User Interface
design

− Use of building blocks and

widgets

− Access to Mendix

Marketplace for ready-to-use

components

− Generated empty UI schema by non-life

insurance product wizard

− Used elements in the UI editor for

configuration

Business logic
definition

− Defined visually with

Microflows

− Possibility to write simple

expressions in microflows

− Possibility to use Nanoflows

and Workflows

− Possibility to use JavaScript

and Java

− Used Marketplace module
function.

− AI-Assisted development

− Debugging

− Defined through DMN rules

− Possibility to use JavaScript or define

expressions in FEEL

Security − Configuration of security for
each module and element

− Definition of user and module

roles

− Definition of security in authorization
file in .csv format for each platform

element.

− Defined application roles and

application user groups

Quality

Assurance
− Used UnitTests module from

Mendix Marketplace
− Definition of simple test scenarios in

JSON format.

Source: Own work.

Table 3 displays the key differences in each platform related to configuration of the

insurance product, grouped by development stage.

Data modelling, UI, business logic and security stages in Mendix for insurance product were

the same as in the sales product. In AdInsure, in the data modelling stage, there were no

57

ready-to-use data models. Instead, the wizard generated an empty data model that had to be

defined.

Business logic for the insurance in AdInsure was defined through DMN rules, where the

user can add business logic by using JavaScript or FEEL expressions. Compared with

Microflows, the logic for the insurance product defined in DMN is clearer and easier to

understand. Microflows are a great way for the definition of business logic; however, in the

case of the definition of an insurance product that depends on many variables and has many

combinations, AdInsure performed better. It is also important to consider that AdInsure

accepts only a particular structure of insurance products and documents defined by the

platform, so the insurance companies must follow the guidelines.

The UI of the insurance product covered the configuration of the UI for coverage options.

The UI configuration was similar in both platforms since it included drag-and-drop method

for elements to the empty pages. In Mendix, the modelling was done directly on the

insurance page and in AdInsure, the UI was configured on the component level.

In the development process of the insurance product, quality assurance was added since I

added tests that checked the calculation of the insurance product. In Mendix, that was

achieved by using a module available on Mendix Marketplace. In AdInsure, an empty file

was autogenerated by the wizard for test scenario definition. The tests in AdInsure were

tariff focused and easier to define. However, in both platforms are also available other types

of tests.

Table 4 defines the insured object’s development stages and key differences. The insured

object in AdInsure was created as a component. We can see from Table 4 that for

configuration and modelling of the insured object in Mendix are listed the same features for

each development stage as for the sales product. Compared to the sales product development

in AdInsure, there are differences in data modelling and UI stages since the wizard generated

empty files that needed to be defined. Additionally, the process of development started with

the definition of the UI which automatically generated properties in the data model. In the

other stages were used the same features as in the sales product.

Table 4: Differences in the development of the insured object between Mendix and

AdInsure

Development

stage
Mendix AdInsure

Data modelling
− Definition of entities and their

associations

− Generated empty data model by

non-life insurance product wizard.

− Data properties automatically
generated in the UI editor

table continues

58

Table 4: Differences in the development of the insured object between Mendix and

AdInsure (continued)

Development

stage

Mendix AdInsure

User Interface

design
− Use of building blocks and

widgets

− Generated empty UI schema by non-life

insurance product wizard

− Used elements in UI editor for

configuration

Business logic
definition

− Logic defined visually with

Microflows
− Possibility to use Nanoflows

and Workflows

− Possibility to use JavaScript

and Java

− Access to Mendix
Marketplace for ready-to-use

components

− AI-Assisted development

− Sync of naming changes

during development

− Debugging

Defined in JavaScript

Security − Configuration of security for

each module and element

− Definition of user and module

roles

− Defined in authorisation file in .csv

format for each platform element.

− Defined application roles and

application user groups.

Source: Own work.

In AdInsure, the business users that have the configurator role are people with knowledge in

the insurance field. Their role as configurator is limited since they could create or change

tariffs and simple UI designs of products. For other things, such as setting events or mapping

of some attributes, it is required programming knowledge. In contrast with that, Mendix has

a tool for each user group: Mendix Studio and Mendix Studio Pro. This has an advantage

since the users have an environment dedicated and adapted to their knowledge level. This

means that business users with no technical knowledge are not exposed to advanced

functionality that they do not need and cannot use. In AdInsure, business users have access

to all functionalities, including the code, regardless of their programming knowledge, which

is unnecessary.

59

6 DISCUSSION

This research has shown that an insurance product can be successfully developed in general

and insurance LCDPs. The results from the comparison between the platforms’

functionalities in each development cycle confirmed reaching this research’s main goal,

which was analysing, comparing and finding the main differences between the general and

industry-based LCDPs. The insurance LCDPs offer out-of-the-box functionalities with

insurance context and better editors for business rules. In contrast, general LCDPs offer more

powerful UI editors, a strong community and a variety of basic functionalities that can be

used to configure insurance solutions.

Despite the difference in functionalities, the development of Home insurance product in two

different LCDPs confirmed their main benefits: faster development and lower costs. The

solution was developed for three users in each platform: administrator, agent, and customer.

The product aimed to give customers an informative premium calculation that includes the

chosen coverages. However, creating and issuing a quote is only one piece of the puzzle.

Insurance companies have accounting, billing, claims, policy management, sales, and

reinsurance processes. Not all these processes are created and digitalised in one platform.

AdInsure, as an insurance platform, offers and supports all these processes separated into

modules. The new configuration produced by the AdInsure Studio is structured in a way

compatible with all insurance modules. As previously said, the insurance company could

only need one module to implement in their system and not all modules. In Mendix, the user

could develop an application for any industry. Their focus is not on a specific industry; they

have focused on offering a wider range of functionalities to satisfy the modelling of

applications in each industry. Insurance companies have complex modules, and general

LCDPs are not always the right fit for building a whole core system.

The appearance of new technologies on the market and their influence on the insurance

industry created a space for success of innovative insurance companies. The requirements

for building modern and innovative solutions cross the limits of the insurance LCDPs and

create a need for integration with other platforms that offer building applications by

incorporating new technologies. A typical example is the previously mentioned FaceQuote

application that uses AI and ML. Since the insurance LCDPs support insurance core systems

and their low-code tools support producing configuration within the platform-specific

insurance context, the best way of expanding its ability is integration with general LCDPs

such as Mendix. In this way, the insurance companies could build innovative solutions with

not spending too much time and resources on development. In my opinion, insurance

companies should consider the power of combining insurance and general LCDPs. General

LCDPs are more powerful for building applications with modern UI that are suitable on any

device that targets first contact with potential customers. Combined with APIs from

insurance LCDPs, these applications could be built fast, giving great value to the company.

It is essential to mention that all general and insurance LCDPs do not have the same spectrum

of features. Even the LCDPs placed in the same group, such as industry-based or general

60

LCDPs, differentiate. Choosing a general and insurance LCDP is a significant investment

for the company, and because of that, a previous market analysis is required. Companies

should focus on finding the best combination of platforms to help them build modern and

robust solutions that satisfy their stakeholders’ needs.

There are many limitations related to the research. Comparison of the LCDPs’ functionalities

was based on the developed Home insurance product. This means that this research covered

only the Sales module and the first stage of the insurance process, which is the creation of a

quote. More complex scenarios were not analysed, such as policy creation and its effects on

other related modules, such as Accounting and Billing modules. Additionally, integration

between both platforms was not included in this research. Future research should address the

identified gaps in the current research. It should include integrating industry-based and

general LCDP and measure the benefits of using multiple platforms instead of one. The

challenges during integration should be identified and analysed. Moreover, inclusion of

scenario that covers more business modules is needed. Information about the used time for

developing business solutions in different LCDPs could also be beneficial. I didn’t provide

this information because I had previous experience using AdInsure Studio, and the results

would not be transparent.

CONCLUSION

In my master’s thesis, I compared the development process in two LCDPs by implementing

a Home insurance solution in both platforms. The first platform was an enterprise LCDP

called Mendix, in which I used its low-code tool Mendix Studio Pro. AdInsure Studio was

the low-code tool of the second platform I used, an insurance platform called AdInsure. With

the analysis, I aimed to answer the research question, which was to find the key differences

between using industry-oriented and general LCDPs for developing insurance solution,

based on the comparison between Mendix and AdInsure platforms. At the beginning of my

master’s thesis, was presented the theoretical part, which consisted of three chapters: LCDP,

insurance industry and overview of the analysed LCDPs. In the first chapter, I explained

some concepts closely related to LCDPs, such as abstraction and MDD and continued with

the definition of LCDPs, their architecture and development process, added a comparison of

LCDPs and traditional development and analysis results of market leaders on the enterprise

LCDP market. The second chapter is related to the insurance industry, where I started with

an introduction to insurance, general terms of insurance and digital transformation of

insurance companies. In the third chapter are explained the platforms used for the analysis

and brief information on the companies that developed them is provided. The practical part

is contained in the fourth chapter. At the beginning of the Chapter 4, I added the business

requirements for the developed Home insurance product and continued describing the

required preconditions for starting the configuration of the Home insurance product. After

that, I added a development analysis in each development cycle for both platforms. In the

61

main findings part, I answered the research questions by describing comparison results by

dividing them into three groups: sales product, insurance coverage and object type.

The insurance product was successfully implemented in both platforms. However, I found

out that there are many differences in the development cycles of each platform. The industry-

oriented platform had predefined functionalities with an insurance context ready for use for

building new insurance and sales products, such as data models, UI and business logic

definition of the sales product. For the insured coverage and insured object, files were

generated by the non-life insurance and sales product wizards where the user had to define

the UI, business logic, security, and tests. The UI definition in both platforms was similar

since platforms supported drag-and-drop functionality. However, the general platform offers

a better UI configuration experience for the user since it offers a variety of templates.

Business logic definition for the insurance product was more straightforward in an industry-

oriented platform where it was defined in DMN rules. However, the logic related to events

was better defined in the general platform since it was visually defined in microflows.

Additional criteria for comparison were added security and quality assurance. Security

configuration was easy in both platforms; however, the user experience for the definition of

security was better in the general platform. Quality assurance, which refers to the definition

of the test about calculated premium, was more straightforward in the insurance platform

since the test document had only two objects that could directly define the inputs and the

expected results. Despite the chosen criteria for comparison, remarkable differences related

to the development process were the strong community for developers’ support and the

available marketplace for components, modules and projects that the general platform

provides to its users.

REFERENCE LIST

1. Acko. (2022, October 14). Types of Insurance. Retrieved November 6, 2022, from

https://www.acko.com/articles/general-info/types-of-insurance/#what-is-life-

insurance

2. Adacta. (2022a). Insurance Application. Retrieved from Internal Portal (Adacta):

Unpublished

3. Adacta. (2022b). Insurance Quote. Retrieved from Internal Portal (Adacta):

Unpublished

4. Adacta. (2022c). Insurance Product. Retrieved from Internal Portal (Adacta):

Unpublished

5. Adacta. (2022d). Configurable modular platform. Retrieved from Internal Portal

(Adacta): Unpublished

62

6. Adacta. (2022e). About Adacta. Retrieved December 20, 2022, from

https://www.adacta-fintech.com/about-us

7. Adacta. (2022f). Logical Architecture. Retrieved from Internal Portal (Adacta):

Unpublished

8. Adacta. (2022g). Concepts we follow. Retrieved from Internal Portal (Adacta):

Unpublished

9. Adacta. (2022h). Create non-life insurance product. Retrieved from Internal Portal

(Adacta): Unpublished

10. Adinsure. (2022i). Adinsure Studio. Retrieved from Internal Portal (Adacta):

Unpublished

11. Alamin, M. A., Malakar, S., Uddin, G., Afroz, S., Haider, T., & Iqbal, A. (2021). An

Empirical Study of Developer Discussions on Low-Code Software Development

Challenges. 2021 IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR), (pp. 46-57). doi:10.1109/MSR52588.2021.00018

12. Aloqaily, M., Otoum, S., Tseng, L., & Othman, J. (2020). Blockchain for Managing

Heterogeneous Internet of Things: A Perspective Architecture. IEEE Network.

doi:10.1109/MNET.001.1900103

13. Baer, D. S. (2010). Expectations for a Fourth Generation Language. IBM

Corporation, 755-764.

14. Bentley, J. L. (1982). Writing Efficient Programs. Prentice Hall Ptr.

15. Beynon-Davies, P., Mackay, H., Carne, C., & Tudhope, D. (1999, September). Rapid

application development (RAD): an empirical review. European Journal of

Information Systems, 8, 211-222.

16. Bloomberg. (2020, September 15). COVID-19 Accelerates Insurance Digitalization

to Meet Customer Demand: World InsurTech Report 2020. Retrieved December 10,

2022, from Bloomberg: https://www.bloomberg.com/press-releases/2020-09-

15/covid-19-accelerates-insurance-digitalization-to-meet-customer-demand-world-

insurtech-report-2020

17. Bock, A. C., & Frank, U. (2021a). In Search of the Essence of Low-Code: An

Exploratory Study of Seven Development Platforms. 2021 ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems Compan, 57-66.

18. Bock, A., & Frank, U. (2021b, January). Low-Code Platform. Business &

Information Systems Engineering, 733-740.

63

19. Brown, A. W., Conallen, J., & Tropeano, D. (2005). Introduction: Models, Modeling,

and Model-Driven Architecture (MDA). In S. Beydeda, M. Book, & V. Gruhn (Eds.),

Model-Driven Software Development (pp. 1-16). Berlin, Heidelberg: Springer.

20. Cabot, J. (2020, October). Positioning of the low-code movement within the field of

model-driven engineering. ACM/IEEE 23rd International Conference on Model

Driven Engineering Languages and Systems (MODELS ’20 Companion), (pp. 1-3).

21. Carroll, N., Móráin, L., Garrett, D., & Jamnadass, A. (2021, April). The Importance

of Citizen Development for Digital Transformation. Cutter IT Journal, 34, 5-9.

22. Catlin, T., Lorenz, J.-T., Münstermann, B., & Ricciardi, V. (2017, March 1).

Insurtech—the threat that inspires. Retrieved December 12, 2022, from McKinsey:

https://www.mckinsey.com/industries/financial-services/our-insights/insurtech-the-

threat-that-inspires

23. Chen, Y., Dios, R., Mili, A., Wu, L., & Wang, K. (2005, June). An Empirical Study

of Programming Language Trends. IEEE Software, 22, 72- 79.

24. Clay, R., & Rymerwith, J. R. (2016). The Forrester Wave™: Low-Code

Development Platforms, Q2 2016.

25. Crunchbase. (n.d.). Mendix. Retrieved 28 6, 2023, from Crunchbase:

https://www.crunchbase.com/organization/mendix

26. Daly, M. (2020, April 22). No-Code platforms the beating heart of insurance

innovation. Retrieved July 28, 2021, from InsureTech World:

https://www.insurtechworld.org/post/102g5dz/no-code-platforms-the-beating-heart-

of-insurance-innovation

27. Damaševičius, R. (2006, January). On the quantitative estimation of abstraction level

increase in metaprograms. Computer Science and Information Systems, 3, 53-64.

doi:10.2298/CSIS0601053D

28. Di Ruscio, D., Kolovos, D., Lara, J., Pierantonio, A., Tisi, M., & Wimmer, M.

(2022). Low-code development and model-driven engineering: Two sides ofthe same

coin? Software and Systems Modeling, 21, 437–446.

29. Dorfman, M. S. (1998). Introduction to Risk Management and Insurance (6th ed.).

Prentice Hall, Inc.

30. EIOPA. (2022, September 20). European Insurance Overview 2022. Retrieved

November 6, 2022, from https://www.eiopa.europa.eu/document-

library/report/european-insurance-overview-2022

64

31. ERP-One. (2020, August 14). The rise of no-code. Retrieved February 20, 2022, from

ERP-One: https://erp-one.com/the-rise-of-no-code/

32. Fabozzi, F. J., & Drake, P. P. (2010). Domestic Financial Sector. In The Basics of

Finance: An Introduction to Financial Markets, Business Finance, and Portfolio

Management 1st Edition (Vol. 1, pp. 43-60). Hoboken, New Jersey, United States of

America: John Wiley & Sons.

33. Feyen, E., Lester, R., & Rocha, R. (2011, February). What Drives the Development

of the Insurance Sector? An Empirical Analysis Based on a Panel of Developed and

Developing Countries. Journal of Financial Perspectives, 1, 1-43.

34. Gartner. (2020, September 30). Magic Quadrant for Enterprise Low-Code

Application Platforms. Retrieved March 3, 2021, from

https://www.gartner.com/doc/3991199

35. Goldberg, J. (2021, September 27). Are Low-Code/No-Code Platforms the New

Visual Basic? Retrieved December 4, 2022, from AiteNovarica Group: https://aite-

novarica.com/blogs/jeff-goldberg/are-low-codeno-code-platforms-new-visual-basic

36. Google Trends. (n.d.). Low-code development platforms. Retrieved October 22,

2022, from https://trends.google.com/trends/explore?date=2016-01-01%202022-01-

10&q=%2Fg%2F11c6cx4nrr&hl=en-US

37. Grace, M., & Klein, R. W. (2003, August 28). Homeowners Insurance: Market

Trends, Issues and Problems. SSRN Electronic Journal, 1-98.

doi:http://dx.doi.org/10.2139/ssrn.816927

38. Gupta, P. K. (2008). Fundamentals of Insurance. New Delhi, India: Himalaya

Publishing House.

39. Hailpern, B., & Tarr, P. (2006, February). Model-driven development: The good, the

bad, and the ugly. IBM Systems Journal, 45(3), 451-461.

40. Heller, M. (2021, November 10). Microsoft Power Apps review: Sweeter than

Honeycode. Retrieved October 16, 2022, from InfoWorld:

https://www.infoworld.com/article/3638115/microsoft-power-apps-review-sweeter-

than-honeycode.html

41. Kačar, T. (2010). Osnove zavarovalništva (1st ed.). Ljubljana, Slovenia: Slovensko

zavarovalno združenje.

42. Kahanwal, B. (2013, October). Abstraction Level Taxonomy of Programming

Language Frameworks. International Journal of Programming Languages and

Applications (IJPLA), 3.

65

43. Kardoš, M., & Drozdova, M. (2010, June). Analytical method of CIM to PIM

transformation in Model Driven Architecture (MDA). Journal of Information and

Organizational Sciences, 34, 88-99.

44. Luo, Y., Liang, P., Wang, C., Shahin, M., & Zhan, J. (2021). Characteristics and

Challenges of Low-Code Development: The Practitioners' Perspective. 15th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM). doi:10.1145/3475716.3475782

45. Maier, P., Ulrich, F., & Bock, A. (2021). Low code platforms: Promises, concepts

and prospects. A comparative study of ten systems. Essen: Universität Duisburg-

Essen, Institut für Informatik und Wirtschaftsinformatik (ICB).

46. McKinsey. (2015). Insurance on the threshold of digitization: Implications for the

Life and P&C workforce. Retrieved December 12, 2022, from

https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/financial%20

services/latest%20thinking/insurance/insurance_on_the_threshold_of_digitization.a

shx

47. McKinsey. (2017). Digital disruption in insurance: Cutting throug the noise.

McKinsey. Retrieved March 12, 2022, from

https://www.mckinsey.com/~/media/mckinsey/industries/financial%20services/our

%20insights/time%20for%20insurance%20companies%20to%20face%20digital%2

0reality/digital-disruption-in-insurance.ashx

48. McKinsey. (2021, March 12). Insurance 2030—The impact of AI on the future of

insurance. Retrieved November 28, 2022, from McKinsey:

https://www.mckinsey.com/industries/financial-services/our-insights/insurance-

2030-the-impact-of-ai-on-the-future-of-insurance

49. McLaughlin, C. (2020, December 18). The role of low code development tools in

insurance. Retrieved December 12, 2022, from InsurTech:

https://insurtechdigital.com/technology-and-ai/role-low-code-development-tools-

insurance

50. Mendix. (2022a, November 17). Mendix Assist. Retrieved March 4, 2023, from

https://www.mendix.com/evaluation-guide/app-lifecycle/test-automation-quality-

assurance/

51. Mendix. (2022b, September 16). Domain Model. Retrieved October 22, 2022, from

https://docs.mendix.com/refguide9/domain-model/#1-introduction

52. Mendix. (2022c, September 28). Application Logic. Retrieved Ocober 22, 2022, from

https://docs.mendix.com/refguide9/application-logic/

66

53. Mendix. (2023a, February 20). Developer Portal Guide. Retrieved February 20,

2023, from Mendix: https://docs.mendix.com/developerportal/

54. Mendix. (2023b, April 20). Security. Retrieved April 30, 2023, from

https://docs.mendix.com/refguide9/security/

55. Mendix. (2023c, February 1). App Roles. Retrieved May 15, 2023, from

https://docs.mendix.com/developerportal/collaborate/app-roles/

56. Mendix. (n.d. -a). New Mendix CEO Tim Srock Sets Strategic Direction for Next

Phase of Hypergrowth. Retrieved March 20, 2023, from Mendix:

https://www.mendix.com/press/new-mendix-ceo-tim-srock-sets-strategic-direction-

for-next-phase-of-hypergrowth/

57. Mendix. (n.d. -b). Why Was Mendix Founded? Retrieved January 20, 2023, from

Mendix: https://www.mendix.com/evaluation-guide/why-founded/

58. Mendix. (n.d. -c). Integration. Retrieved February 27, 2023, from Integration:

https://www.mendix.com/evaluation-guide/app-capabilities/integration/

59. Mendix. (n.d. -d). Contact us. Retrieved October 16, 2022, from Mendix:

https://www.mendix.com/contact-us/

60. Mendix. (n.d. -e). Become a Rapid Developer - Universities. Retrieved October 16,

2022, from https://academy.mendix.com/link/modules/550/lectures/4291/1.3-The-

Mendix-Platform

61. Mendix. (n.d. -f). The Mendix Atlas UI Framework. Retrieved May 15, 2023, from

Mendix: https://www.mendix.com/atlas/

62. Mendix. (n.d. -g). Citizen Development. Retrieved October 16, 2022, from

https://www.mendix.com/citizen-developers/

63. Mendix. (n.d. -g). Getting Help with Your App. Retrieved May 15, 2023, from

https://academy.mendix.com/link/modules/550/lectures/4293/1.4-Getting-Help-

with-Your-App

64. Mendix. (n.d. -h). Zurich FaceQuote Goes from Idea to App in Weeks. Retrieved

May 15, 2023, from Mendix: https://www.mendix.com/customer-stories/zurich-

facequote-goes-idea-app-weeks/

65. Mendix. (n.d. -i). App Development. Retrieved January 8, 2023, from

https://www.mendix.com/evaluation-guide/app-lifecycle/app-

development/#:~:text=Users%20of%20Mendix%20Studio%20Pro,branch%20lines

%2C%20and%20manage%20security.

67

66. Mendix. (n.d. -i). Developer Portal Guide. Retrieved May 15, 2023, from

https://docs.mendix.com/developerportal/

67. Mendix. (n.d. -p). The leading enterprise. Retrieved October 16, 2022, from Mendix:

https://www.mendix.com/platform/

68. Mishra, M. N., & Mishra, S. B. (2016). Evolution of insurance. In Insurance

Principles and Practice (22nd ed., pp. 8-15). New Delhi: S Chand Publishing.

69. Mousami. (2014). Model Driven Software Engineering. International journal of

engineering research and technology(IJERT) ETRASCT, 2.

70. OECD. (2017). Technology and innovation in the insurance sector. Retrieved

December 12, 2022, from https://www.oecd.org/pensions/Technology-and-

innovation-in-the-insurance-sector.pdf

71. OMG. (2014, June 1). Model Driven Architecture (MDA). Retrieved August 23,

2022, from MDA Guide rev. 2.0: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

72. OMG. (n.d.). Precise specification of business decisions and business rules.

Retrieved February 26, 2023, from OMG: https://www.omg.org/dmn/

73. Outreville, J. F. (1998). Insurance Concepts. In Theory and Practice of Insurance (1

ed., pp. 131-146). New York: Springer. doi:10.1007/978-1-4615-6187-3

74. OutSystems. (n.d.). Develop more apps in less time with ease. Retrieved October 16,

2022, from OutSystems: https://www.outsystems.com/low-code-

platform/accelerated-development/

75. Paetsch, F., Eberlein, A., & Maurer, F. (2007). Requirements engineering and agile

software development. Proceedings of the IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, (pp. 308 -

313). doi:10.1109/ENABL.2003.1231428

76. Pratt, M. K. (2021, March). Low-code and no-code development platforms. Retrieved

October 22, 2022, from TechTarget:

https://www.techtarget.com/searchsoftwarequality/definition/low-code-no-code-

development-platform

77. PwC. (n.d.). InsurTech’s moment: Legacy companies, startups and the drive for

faster, cheaper and better results. Retrieved December 11, 2022, from PwC:

https://www.pwc.com/us/en/industries/financial-services/library/insurtech-

innovation.html

68

78. Rejda, G. E., McNamara, M. J., & Rabel, W. H. (2021). Principles of Risk

Management and Insurance (14th Global Editon ed.). Pearson.

79. Sahay, A., Indamutsa, A., Di Ruscio, D., & Pierantonio, A. (2020, August).

Supporting the understanding and comparison of low-code development platforms.

46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA) (pp. 171-178). IEEE. doi:10.1109/SEAA51224.2020.00036

80. Sahoo, S. C., & Das, S. C. (2009). Insurance Management: Texts and Cases.

Mumbai, India: Himalaya Publishing House Pvt. Ltd.

81. Salesforce. (2021, June 30). Accelerating Digital Transformation with Rapid App

Development in Low-Code Environments. Retrieved October 16, 2022, from

Salesforce: https://www.salesforce.com/ap/blog/2021/06/accelerating-digital-

transformation-with-rapid-app-development-in-low-code-environments.html

82. Sego, D. (2021, August). Why I’m Sticking with Salesforce: A Developer’s

Perspective on the Low-Code Platform. Retrieved October 16, 2022, from

Salesforce: https://www.salesforce.com/eu/blog/2021/08/developer-perspective-

low-code-platform.html

83. Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20,

19-25.

84. Shakeel, F. (2022, October 17). Low-code in Insurance: Achieving Accelerated

Modernization in 2023. Retrieved December 12, 2022, from Damco:

https://www.damcogroup.com/blogs/accelerate-modernization-with-low-code-

insurance-platforms

85. Shetty, A., Shetty, A. D., Pai, R. Y., Rao, R. R., Bhandary, R., Shetty, J. & Dsouza,

K. J. (2022). Block Chain Application in Insurance Services: A Systematic Review

of the Evidence. SAGE Open, 12. doi:https://doi.org/10.1177/21582440221079877

86. Siemens. (n.d.). 2007–2020: Defining digitalization. Retrieved January 3, 2023, from

Siemens:

https://www.siemens.com/global/en/company/about/history/company/2007-

2018.html

87. Talesra, K., & Nagaraja, G. S. (2021, May). Low-Code Platform for Application

Development. International Journal of Applied Engineering Research, 16, 346-351.

doi:10.37622/IJAER/16.5.2021.346-351

88. TechTarget. (2022, April). Compiler. Retrieved January 22, 2023, from TechTarget:

https://www.techtarget.com/whatis/definition/compiler

69

89. Torres, M. (2021, May 12). ServiceNow named a Leader in Low-Code Development

Platforms. Retrieved October 16, 2022, from ServiceNow:

https://www.servicenow.com/blogs/2021/leader-in-low-code-development-

platforms.html

90. Tozzi, C. (2021, March 1). A practical take on low-code vs. traditional development.

Retrieved October 15, 2022, from TechTarget:

https://www.techtarget.com/searchsoftwarequality/tip/A-practical-take-on-low-

code-vs-traditional-development

91. Understand Insurance. (n.d.). Household insurance. Retrieved October 22, 2022,

from Understand Insurance: https://understandinsurance.com.au/types-of-

insurance/household-insurance

92. Volosovych, S., Zelenitsa, I., Kondratenko, D., Szymla, W., & Mamchur, R. (2021,

January). Transformation of insurance technologies in the context of a pandemic.

Insurance Markets and Companies, 12, 1-13. doi:10.21511/ins.12(1).2021.01

93. Waja, G., Shah, J., & Nanavati, P. (2021, April). Agile software development.

International Journal of Engineering Applied Sciences and Technology, 5.

doi:10.33564/IJEAST.2021.v05i12.011

94. Your Europe. (2022, February 11). Insurance products. Retrieved November 14,

2022, from https://europa.eu/youreurope/citizens/consumers/financial-products-

and-services/insurance-products/index_en.htm

APPENDICES

1

Appendix 1: Povzetek (Summary in Slovene language)

V današnjem svetu tehnološki razvoj napreduje z veliko hitrostjo in poenostavlja življenja

ljudi. Novosti na trgu se pojavljajo vse pogosteje kot prej in spodbujajo podjetja , da sledijo

najnovejšim trendom na trgu, da bi bila pred konkurenco. Ena izmed teh novosti, ki je v

zgodnji fazi priljubljenosti, je malokodno razvojno okolje (LCDP).

LCDP-ji so platforme, ki razvijalcem in ljudem z malo izkušnjami v razvoju omogočajo

razvoj aplikacij z minimalnim pisanjem kode. Njihova glavna prednost je učinkovitost

izdelave delujoče aplikacije, ki omogoča večjo produktivnost, nižje stroške, lažje

vzdrževanje aplikacij in vključevanje deležnikov v razvojni proces (Talesra & S., 2021).

Zaradi teh prednosti so LCDP-ji postali zelo privlačna rešitev za številne zavarovalnice, še

posebej, ker so zaradi digitalizacije mnogi sistemi zavarovalnic zastareli in jih je težko

vzdrževati. Z uporabo LCDP-jev se zmanjša odvisnost zavarovalnic od visoko usposobljenih

razvijalcev. To pomeni, da bi lahko poslovni uporabniki iz zavarovalnic ustvarili nove

zavarovalniške produkte ali spremenili obstoječe z ali brez pomoči razvijalca, s čimer bi

naredili velik prostor za inovacije, ki jih je mogoče ustvariti v kratkem času (Daly, 2020).

Na trgu LCDP-jev za podjetja obstaja veliko podjetij, ki tekmujejo, katero podjetje bo

ponudilo najboljši LCDP. Kljub podobnosti v arhitekturi in procesih platform je tržni fokus

dobaviteljev lahko drugačen – nekatere so podjetniške platforme, druge pa temeljijo na

določeni industrijski panogi. Podjetniške platforme so splošne platforme, ker jih je mogoče

uporabiti za izdelavo aplikacij za katero koli industrijo. V magistrski nalogi bom navedla

prednosti in slabosti dveh LCDP-jev. Prva platforma je Mendix, ki velja za splošno

platformo za izdelavo kakršne koli aplikacije. Obstajajo trije glavni razlogi, zakaj sem za

analizo v svoji magistrski nalogi izbrala Mendix. Prvič, ta platforma je umeščena med

vodilne z najvišjo celovitostjo vizije v čarobnem kvadrantu za podjetniške LCPD-jev

Gartner za leto 2020 (Gartner, 2020). Drugič, Mendix je objavil veliko primerov uporabe

Mendixa s strani zavarovalnic. Tretjič, Mendix platforma je bila uporabljena s strani podjetja

Adacta, ki je razvilo platformo AdInsure – drugi LCDP, izbran za analizo. Mendix plaforma

je bila uporabljena za razvoj mobilne aplikacije za zavarovalniško ponudbo, in je bila

integrirana s platformo AdInsure, kar potrjuje združljivost Mendixa z zavarovalniškim

sektorjem.

AdInsure, ki predstavlja drugi LCDP, ima malokodno orodje, ki temelji na grafičnem

uporabniškem vmesniku (GUI), imenovano AdInsure Studio. Poslovnim uporabnikom in IT

strokovnjakom v zavarovalnicah omogoča vpeljavo sprememb v konfiguracijo

zavarovalniških procesov in produktov.

Razlog za vključitev Adinsure Studia v analizo so moje dosedanje izkušenje pri delu z njim

in zaradi enostavnega dostopa do virov, potrebnih za analizo. LCDP-ji, specializirani za

posamezne panoge, niso brezplačni, zaradi česar so težko dostopni.

2

Namen magistrske naloge je prispevati k razumevanju LCDP-jev in njihove uporabe v

zavarovalništvu. Glavni cilj magistrskega dela je analizirati funkcionalnosti industrijskih in

splošnih LCDP-jev, jih primerjati in poiskati glavne razlike preko razvoj poslovne

programske rešitve , imenovane Zavarovanje d oma v izbranih platformah.

Zavarovanje doma je vrsta zavarovanja, ki krije izgubo in škodo, povzročeno na

nepremičnini zaradi škodnega dogodka. Finančna zaščita je povezana z zavarovanim

predmetom, ki je stavba in lahko zajema tudi prizidane zgradbe, kot je garaža, osebne stvari

v zgradbah, stroške, povezane s škodo osebe, ki je nastala na zavarovani nepremičnini, kot

je poškodba in dodatni življenjski stroški, ki so nastali zaradi izgube ali poškodbe

zavarovanega premoženja. Zavarovanje doma lahko kupijo posamezniki, ki so lastniki hiše,

najemajo nepremičnine in najemodajalci (Understand Insurance, n.d.). Oseba, ki sklene

zavarovanje doma se imenuje zavarovanec. Pogoji v zvezi s paketom zavarovanja so

določeni v zavarovalni polici, ki predstavlja pravno zavezujočo pogodbo med zavarovalnico

in zavarovancem. Plačilo za zavarovanje doma se imenuje premija in je zavarovanec dolžan

plačati zavarovalnici (Fabozzi & Drake, 2010). Na višino zavarovalne premije vpliva veliko

dejavnikov, ki so povezani z verjetnostjo nastanka škodnega dogodka. Če je verjetnost večja,

bo višji tudi znesek premije (Dorfman, 1998). Za razvoj produkta Zavarovanje doma sem se

odločila zaradi razpoložljivosti podatkov o vseh izračunih v zvezi z zavarovalno premijo.

Glavna osnova za primerjavo bo implementacija definiranih poslovnih zahtev v poslovno

programsko rešitev na obeh platformah. Poslovne zahteve za razvoj zavarovalniškega

produkta so pridobljene s poslovno analizo potreb zavarovalnice, ki ponuja zavarovanje

doma Vsebujejo splošne informacije o produktu ter podrobnosti o izračunu kritja, poslovni

proces, pogodbene udeležence in informacije o uporabniškem vmesniku, ki so pogosti vnosi

za vse zavarovalne produkte. Rezultati analize bodo uporabljeni za opredelitev, katere

funkcionalnosti potrebuje zavarovalnica za implementacijo in vzdrževanje omenjenega

zavarovalnega produkta po malokodnem načelu.

Cilji:

− Opredeliti LCDP-je , njihovo splošno arhitekturo in njihov razvojni proces.

− Določiti razvojne specifikacije programskih rešitev.

− Ugotoviti ključne funkcionalnosti LCDP-jev, ki so potrebne za razvoj

zavarovalniškega produkta.

Raziskovalno vprašanje: Katere so ključne razlike med uporabo industrijsko usmerjenih in

splošnih LCDP-jev za razvoj zavarovalniške rešitve, na podlagi primerjave platform Mendix

in AdInsure?

Magistrsko delo vsebuje teoretični in praktični del. V prvih treh poglavjih so predstavljeni

teoretični del, kjer s pomočjo sekundarnih virov opredelim LCDP-jev, glavne zavarovalne

pojme, ki jih bom uporabljala v praktičnem delu, trende v zavarovalništvu ter opis

3

analiziranih LCDP-jev. V praktičnem delu bom s pomočjo primarnih virov naredila

primerjalno analizo izbranih LCDP-jev z implementacijo definiranih poslovnih zahtev za

programsko rešitev Zavarovanje doma . Implementacija produkta bo izvedena na vsaki

platformi, njegove prednosti in slabosti pa bodo analizirane v vsakem ciklu razvojnega

procesa. Na koncu bom identificirala potrebne funkcionalnosti LCDP-ja za popoln razvojni

cikel izbranega zavarovalniškega produkta.

Ta raziskava je pokazala, da je možno zavarovalniški produkt uspešno razviti v splošnih in

zavarovalniških LCDP-jih. Zavarovalniški LCDP-ji ponujajo funkcionalnosti z

zavarovalniškim kontekstom in boljše urejevalnike za poslovna pravila. Splošni LCDP-ji

ponujajo zmogljivejše urejevalnike uporabniškega vmesnika, močno skupnost in splošne

funkcionalnosti, ki jih je mogoče uporabiti za konfiguracijo zavarovalniških rešitev.

Kljub razlikam v funkcionalnostih, je razvoj produkta Zavarovanje doma v dveh različnih

LCDP-jih potrdil njihove glavne prednosti: hitrejši razvoj in nižje stroške. Rešitev je bila

razvita za tri uporabnike v vsaki platformi: administrator, agent in stranka. Namen produkta

je strankam ponuditi informativen izračun premije, ki vključuje izbrana kritja. Vendar je

ustvarjanje in izdajanje ponudbe le en kos sestavljanke. Zavarovalnice imajo računovodske

postopke, fakturiranje, terjatve, upravljanje polic, prodajo in pozavarovanje. Vsi ti procesi

niso ustvarjeni in digitalizirani na eni platformi. AdInsure kot zavarovalniška platforma

ponuja in podpira vse te procese, razdeljene na module. Nova konfiguracija, ki jo je izdelal

AdInsure Studio, je strukturirana tako, da je kompatibilna z vsemi zavarovalniškimi moduli.

Kot je bilo že rečeno, zavarovalnica lahko potrebuje samo en modul za implementacijo v

svoj sistem in ne vseh modulov. V Mendixu lahko uporabnik razvije aplikacijo za katero

koli industrijo. Njihov fokus ni na določeni industriji; osredotočeni so na ponudbo širšega

nabora funkcionalnosti, da bi zadovoljili modeliranje aplikacij v vsaki industriji.

Zavarovalnice imajo zapletene module in splošni LCDP-ji niso vedno primerni za razvoj

celotnega zavarovalniškega sistema.

Po mojem mnenju bi morale zavarovalnice razmisliti o moči združevanja zavarovalniških in

splošnih LCDP-jev. Splošni LCDP-ji so zmogljivejši za izdelavo aplikacij s sodobnim

uporabniškim vmesnikom, ki so primerni za vse naprave, ter ciljajo na prvi stik s

potencialnimi strankami. V kombinaciji z API-ji iz zavarovalniških LCDP-jev bi lahko te

aplikacije razvili hitro, kar bi podjetju dalo veliko prednost. Bistveno je omeniti, da vsi

splošni in zavarovalniški LCDP-ji nimajo enakega spektra funkcionalnosti. Tudi LCDP-ji,

uvrščeni v isto skupino, kot so zavarovalniški ali splošni LCDP-ji, se razlikujejo. Izbira

splošnega in zavarovalniškega LCDP-ja je za podjetje pomembna naložba, zato je potrebna

predhodna analiza trga. Podjetja bi se morala osredotočiti na iskanje najboljše kombinacije

platform, ki bi jim pomagala razviti sodobne in robustne rešitve, ki zadovoljujejo potrebe

njihovih uporabnikov.

4

Appendix 2: Adapted business requirements and premium calculation for Home

insurance

Building attributes

Attribute Attribute type Values Mandatory

Building type List House, Condominium true

Postal code Integer true

City Text true

Street Text true

House number Text true

Located in residential

area Boolean

 true

Construction year Integer true

Building material List Brick, stone true

Total area Number true

Usage type List
Own usage
Leased

true

Building condition List

Adequate

Inadequate

true

Inhabited building Boolean true

Number of occupants Integer true

Risks

Rule number Input Output

 buildingSumInsured riskCode

1. !=0 "Fire", "Explosion",

"Lightning", "Storm",
"Burglary", "Robbery",

"Earthquake"

Coverage options

Rule number Input Output

1. householdContents === true &&
householdContentsSum != 0

householdContentSum

2. highValueContents === true &&

highValueContentsSum != 0

highValueContentsSum

3. artifacts === true && artifactsSum != 0 artifactsSum

4. jewelry === true && jewelrySum != 0 jewelrySum

5. cash === true && cashSum != 0 cashSum

6. liability === true && liabilitySum ===

“Bronze”

10000

7. liability === true && liabilitySum ===
“Silver”

20000

8. liability === true && liabilitySum ===

“Gold”

30000

9. liability === true && liabilitySum ===
“Bronze”

40000

5

Base premium rate

Rule number Input Output

 buildingType Base premium rate

1. Condominium flatBasePremium = 0.09

2. House detachedHouseBasePremium =
0.12

Multipliers

Rule number Input Output

 attribute value value code

1. usageType "Own usage" 1 usageTypeMultiplier

2. usageType =

"Leased Out"

"Leased Out" 1.2 usageTypeMultiplier

3. usageType =

"Leased"

"Leased" 1.4 usageTypeMultiplier

4. buildingNumber

OfOccupants

>4 1.5 numberOfOccupantsMu

ltiplier

5. buildingIsInhabit

ed

false 1.6 isInhabitatedMultiplier

6. locatedInResiden

tialArea

false 1.8 locatedInResidentialAre

aMultiplier

Total multiplier:

usageTypeMultiplier * numberOfOccupantsMultiplier * isInhabitatedMultiplier *

locatedInResidentialAreaMultiplier

Modifiers

Rule number Input Output

 buildingType coverageOption Modifier

1. "Building" 1.0

2. "Outbuilding" 1.1

3. "HouseholdContents" 1.2

4. "HighValueContents" 1.6

5. "Artifacts" 2.0

6. "Jewelry" 3.3

7. "Cash" 2.5

8. "Liability" 5.0

6

Premium rate per coverage

Rule Input Output

 buildingType Code Value

1. "Condominium" buildingRate flatBasePremium * modifier

2. "House" buildingRate detachedHouseBasePremium * modifier

3. householdContentsRate flatBasePremium * totalMultiplier *

modifier

4. highValueContentsRate flatBasePremium * totalMultiplier

5. artifactsRate flatBasePremium * totalMultiplier *
modifier

6. jewelryRate flatBasePremium * totalMultiplier *

modifier

7. cashRate flatBasePremium * totalMultiplier *
modifier

8. liabilityRate flatBasePremium * totalMultiplier *

modifier

Premium per coverage

Rule Coverage Calculation

1. Building buildingSum * buildingRate

2. HouseholdContents householdContentsSum * householdContentsRate

3. HighValueContents highValueContentsSum * highValueContentsRate

4. Artifacts artifactsSum * artifactsRate

5. Jewellery artifactsSum * artifactsRate

6. Cash cashSum * cashRate

7. Liability liabilitySum * liabilityRate

Total premium = Sum of all premiums per coverage

