UNIVERZA V LJUBLJANI
EKONOMSKA FAKULTETA

MAGISTRSKO DELO

JADRAN GORJAN
MAGISTRSKO DELO

OBVLADOVANJE TVEGANJ S SIMULACIJAMI
PRIMER ELEKTROMOTORJA PROIZVAJALCA
ISKRE AVTOELEKTRIKE D. D.

Ljubljana, julij 2007

JADRAN GORJAN
IZJAVA

Študent ___________________________ izjavljam, da sem avtor tega magistrskega dela, ki sem ga napisal pod mentorstvom ____________________________, in skladno s I. odstavkom 21. člena Zakona o avtorskih in sorodnih pravicah dovolim objavo magistrskega dela na fakultetnih spletnih straneh.

V Ljubljani, dne 12.7.2007

Podpis: ____________________________
Kazalo vsebine

1. UVOD ..1
2. PROBLEMATIKA IN NAMEN MAGISTRSKEGA DELA ..1
3. CILJI DELA ..5
4. PRESTAVITEV PODJETJA IN IZDELKA ...5
 4.1 PRESTAVITEV ISKRE AVTOELEKTRIKE ...5
 4.2 PRESTAVITEV SPE MEHATRONIKA ...7
 4.3 PRESTAVITEV IZDELKA IN APLIKACIJE SERVOVOLANA9
 4.3.1 EPS-SERVOVOLAN ...10
 4.3.2 PRESTAVITEV PROJEKTA ..12
 4.3.3 KONSTRUKCIJA IZDELKA ...14
 4.3.4 PROIZVODNI PROCES ...15
5. TEORETSKI OKVIR ..17
 5.1 SPLOŠNO O OBRAVNAVANI TEMATIKI ...17
 5.2 OPREDELITEV POLNE LASTNE CENE IZDELKA ..18
 5.3 TVEGANJE ...21
 5.4 SIMULACIJA OBČUTLJIVOSTI, SCENARIJEV IN MONTE CARLO SIMULACIJA ..24
 5.5 EXTEND PROGRAMSKI PAKET ZA IZDELAVO SIMULACIJE29
 5.6 KRIVULJA UČENJA IN KRIVULJA IZKUŠENOSTI30
6. PRIPRAVA PODATKOV ZA SIMULACIJE ...32
 6.1 ZASNOVA SIMULACIJ ..32
 6.2 ANALIZA TRENDOV CEN STRATEŠKIH SUROVIN IN OSTALIH
 VPLIVNIH VELIČIN ...36
 6.2.1 GLOBALNI EKONOMSKI POLOŽAJ ..39
 6.2.2 MENJALNO RAZMERJE EUR/US$...39
 6.2.2.1 DOLOČANJE MENJALNEGA RAZMERJA39
 6.2.2.2 NAPOVED ...40
 6.2.3 BAKER (NAPOVED) ..42
 6.2.4 ALUMINIJ (NAPOVED) ..44
6.2.5 JEKLO (NAPOVED) .. 44
6.2.6 MAGNETI IZ REDKIH ZEMELJ (NAPOVED) .. 45
6.3 ANALIZA TRENDOV GIBANJA CEN OSTALIH VELIČIN 48
6.3.1 STROŠKI DELA .. 48
 6.3.1.1 SLOVENIJA .. 48
 6.3.1.2 ITALIJA, FRANCIJA IN NEMČIJA ... 49
6.3.2 STROŠKI ENERGENTOV ... 49
 6.3.2.1.1 NAFTA (NAPOVED) ... 49
 6.3.2.2 ELEKTRIČNA ENERGIJA (NAPOVED) ... 52
6.4 KRIVULJE UČENJA .. 53
 6.4.1 KRIVULJE UČENJA KAKOVOSTI .. 54
 6.4.1.1 VHODNI PODATKI ZA KRIVULJE UČENJA KAKOVOSTI 55
 6.4.2 KRIVULJE UČENJA PRODUKTIVNOSTI .. 56
 6.4.3 KRIVULJE UČENJA IZKORIŠČENOSTI NAPRAV 57
 6.4.4 KRIVULJE UČENJA NABAVNIH VIROV IN TEHNOLOGIJE 57
6.5 SPREMEMBA POGODBENIH KOLIČIN .. 58
7 IZDELAVA SIMULACIJ ... 59
 7.1 KALKULACIJA NA IZHODIŠČNI DAN (08. 11. 2006) 59
 7.1.1 STRUKTURA LASTNE CENE ... 59
 7.1.2 ANALIZA KOMPONENT MOTORJA .. 60
 7.1.3 NATANČNA ANALIZA »PARETO« KOMPONENT 60
 7.1.3.1 ŽICA LAKIRANA .. 61
 7.1.3.2 MAGNETI ... 61
 7.1.3.3 STATORSKI PAKET .. 62
 7.1.3.4 PREDNJI POKROV ... 62
 7.1.3.5 GRED ... 62
 7.1.3.6 OKROV .. 63
 7.1.3.7 LEŽAJI ... 63
 7.1.3.8 ZALIVNA MASA .. 63
 7.1.3.9 JEDRO ... 63
 7.1.3 SIMULACIJA OBČUTLJIVOSTI, SIMULACIJA SCENARIJEV 63
Kazalo tabel

Tabela 1: Lastniška struktura Iskre Avtoelektrike d. d. na 31. 12. 2006 (%) 6
Tabela 2: Pogodbene količine ... 12
Tabela 3: Struktura polne lastne cene in prodajne cene .. 20
Tabela 4: Obstoječe stopnje rasti BDP in napoved za izbrane države (%)................................. 39
Tabela 5: Porast cen oksidov redkih zemelj med letom 2005 in 2006 v odstotkih (%) 46
Tabela 6: Letni porast cen neodijevega oksida (%) in cena po letih (US$ za tono) 46
Tabela 7: Nominalna rast bruto plač branže za Slovenijo med 2007 in 2012 (%) 48
Tabela 8: Struktura tehnologij pridobivanja električne energije v letu 1973 in 2002 v % ... 52
Tabela 9: Izbrani parametri za simulacijo .. 55
Tabela 10: Izbrani parametri za simulacijo ... 55
Tabela 11: Elementi lastne cene izdelka z grafom ... 59
Tabela 12: Struktura nabavne cene v % .. 61
Tabela 13: Strušek komponent glede na vhodne surovine z grafom (EUR/kos) 64
Tabela 14: Analiza občutljivosti (EUR/kos) ... 65
Tabela 15: Analiza scenarijev (EUR/kos) .. 68
Tabela 16: Analiza zmnožkov vrednosti posameznih trendov surovin 76
Tabela 17: Prikaz koreliranosti/nekoreliranosti trendov v simulaciji 77
Tabela 18: Primerjava robnih predpostavk simulacij ... 77

Kazalo formul

Formula 1: Pričakovana vrednost .. 22
Formula 2: Standardna deviacija ... 23
Formula 3: Koeficient variabilnosti .. 23
Formula 4: Formula krivulja učenja ... 30
Formula 5: Formula krivulja izkušenosti ... 31
Formula 6: Nabavne cena komponente ... 34
Formula 7: Kazalnik celovite izkoriščenosti opreme ... 53
Kazalo dodatkov

Dodatek A: Trendi, uporabljeni v simulaciji

Dodatek B: Analiza trendov strateških surovin in ostalega

Dodatek C: Opis izdelanih elementov v programskem paketu Extend

Dodatek D: Rezultati Monte Carlo simulacije

Dodatek E: Izgled Monte Carlo simulacije
1 UVOD

Pri določitvi teme magistrske naloge se je izbira vsilila praktično sama. Takoj sem pomisilil na vsebino, ki bi bila povezana z računalniškimi simulacijami. Prvotno sem si zamisilil Monte Carlo simulacijo denarnih tokov projekta, kot eno izmed metod obvladovanja tveganj, ki bi jo izdelal s pomočjo programskega orodja Extend. Pozneje sem odločitev spremenil in izbral simulacijo polne lastne cene izdelka skozi življenjsko dobo projekta. To odločitev sem sprejel, ker sem za podjetje, iz katerega izhajam, želel prikazati trenutno stanje na področju priprave kalkulacij in možne simulacije, ki so kakovostno na višji ravni. Postaviti sem želel osnovo za dvig kakovosti analiz, kjer bi predvsem pri večjih projektih bilo smiselno izvajati tudi analize denarnih tokov preko Monte Carlo simulacije (poleg obstoječih analiz). Zasnova simulacije in namensko zasnovani elementi v programskem paketu Extend bodo omogočali izdelavo poljubnih Monte Carlo simulacij.

V nalogi je obravnavan tudi vidik krivulj učenja. Podjetja premalo upoštevajo učinke, ki jih te krivulje imajo. Tudi Iskra Avtoelektrika ni izjema in menim, da je veliko projektov lahko spornih, če pri sprejemanju odločitev omenjenega vidika ne upoštevamo.

2 PROBLEMATIKA IN NAMEN MAGISTRSKEGA DELA

Trendi razvoja so šli v smer čistih električnih pogonov EPS. Sam sistem je danes stalnica v vsakem novem avtomobilu, ki se pojavijo na trgu. Nudi nam varčnejše delovanje, preprosto konstrukcijo, neslišnost, veliko možnosti regulacije in nenazadnje tudi stroškovno ugodnejšo sliko, ko govorimo o celotnem sistemu in ne zgolj o motorju. Sistem uporablja brezkontaktni motor, ki nudi vrsto prednosti pred predhodniki. Te prednosti se nanašajo predvsem na manjšo porabo električne energije, manjše izgube, večje možnosti regulacije in daljšo življenjsko dobo (TRW, 2006).

Projekt sam je pokazal tudi problematiko medčloveških odnosov. V mislih imam metodologijo dela, ki jo predpisuje APQP-priročnik, kjer je ves čas govora o sočasnom razvoju. Zaposleni v podjetju so orientirani pretežno na individualno delo, kar je zelo značilno tudi za slovensko okolje, in zato je nedvomno rezultat dela slabši, kot bi lahko bil. Poleg tega je treba poudariti veliko formalizacijo vseh faz projekta, ki jo predpisuje priročnik, kupec pa tudi dejansko zahteva. V preteklosti podjetje s tako striktnimi pravili še ni imelo opravka in tudi to dejstvo je vplivalo na samo izvajanje projekta.

Obstoječi izdelek je vzeti kot osnova za magistrsko nalogo, zato da:

- poteka delo na realnih podatkih,
- se lahko naloga osredotoča na bistvo (simulacijo) in ne na zbiranje oziroma pripravo vhodnih podatkov.

Pri bodočih projektih, kjer bo bistveno prav zbiranje podatkov, ki jih v nalogi privzemam kot dane, bo pristop Monte Carlo simulacije že postavljen. Izdelava bo tako časovno povsem nepotratna, če jo primerjamo s samim zbiranjem vhodnih podatkov.

Predpostavil bom, da je trenutno podjetje na pragu zmogljivosti, ki jih nudi režim dela. Povečanje je možno z uvedbo dodatnih izmen, kar pa pomeni skok v fiksnih stroških (večji del stroškov dela je treba obravnavati kot fiksen). Seveda se bo s časom zaradi krivulje učenja pojavila določena rezerva v zmogljivostih (te danes praktično nimamo), ki bo omogočila morebitno večjo količino proizvodnje (če bo kupec povpraševal po njej).

V simulacijo nameravam uvesti pojav, poznan pod pojmom krivulje učenja. Izdelane bodo na podlagi obstoječih podatkov, ki se trenutno dnevno zbirajo in obdelujejo, vse od zagona proizvodnje. Nanašale se bodo na različne vidike (porabo človeškega dela na enoto proizvoda, delež izmeta, nabavne vire, izkoriščenost opreme). Pri človeškem delu bom izhajal iz trenutne porabe na kos in predpostavil, da se bo čez čas obstoječa poraba spustila na raven, ki bo ocenjena na podlagi realnih predvidevanj (še vedno pa bo občutna razlika...

Zavedam se, da bom za zbiranje podatkov porabil večji del časa, kar praktično lahko pomeni, da bodo uporabljene vrednosti že del preteklosti. V primeru magistrskega dela menim, da je to sprejemljivo, saj posvečam pozornost pristopu izdelave simulacije in ne absolutni natančnosti in ažurnosti podatkov. Slednji dve lastnosti bosta pomembni za nadaljnje simulacije v podjetju, ki se bodo izdelovale po zasnovanem pristopu. Prav natančnost in ažurnost bosta povzročali največjo težavo, ker glede na načelo »garbage in – garbage out« postane lahko še tako dobra simulacija popolnoma neuporabna, če so vhodni podatki napačni.

Pri izdelavi simulacije bo treba imeti veliko mero kreativnosti, če hočem, da bodo cilji, ki jih podajam v nadaljevanju, tudi doseženi. Vsaka komponenta simulacije se bo analizirala posebej in skušal bom utemeljiti pravilnost izbrane rešitve.

Poudaril bi rad, da bi v primeru izdelave analiz in nastopa pred potencialnim kupcem s pristopom, ki je bolj napreden, pridobili na kredibilnosti. Seveda pa se takoj postavi vprašanje, koliko je le-ta pomemben dejavnik pri sklepanju posla. Poleg tega moram omeniti še problematiko, do katere privedejo statične kalkulacije po načelu »na današnji dan«. Lahko, da podjetje zaradi trenutnih razmer in rezultatov, ki jih kaže kalkulacija, odstopi od projekta, ker je s stroški nad ciljno ceno, ki jo postavi kupec. Jasno je, da če se stroški v prihodnosti znižajo, zavržemo potencialno dober projekt, kar je posledica neupoštevanja časovne komponente. Tudi v tem primeru je predlagana simulacija (celoten pristop magistrske naloge) dobra rešitev. Celo v primeru, ko se prodajna cena v pogodbi določa na drugačen način (preko formul), lahko kupcu prikažemo boljšo sliko, če
razpolagamo z bolj naprednimi analizami. Če smo edini izmed možnih dobaviteljev, ki smo to storili, imamo vsaj nekaj več možnosti, da posel pridobimo.

3 CILJI DELA

Glavni cilj magistrske naloge je ugotovitev, ali je pristop izdelave Monte Carlo simulacije pravilen, oziroma ali daje sprejemljive rezultate. Do tega bom prišel s primerjavo z ostalimi analizami, ki jih bom izdelal. Poleg tega bom seveda moral rezultate tudi statistično ovrednotiti. Glede na posamezne verjetnostne porazdelitve vplivnih veličin in algoritmem preračuna lastne cene izdelka bom moral vzorcem rezultatov določiti, kateri porazdelitvi ustrezajo. Veliko pozornost pa nameravam posvetiti sami simulaciji z vidika njene »arhitekture«. Cilj s tega vidika bo izpolnjen, če mi bo uspelo izdelati in pripraviti tako simulacijo, da bo podjetje za primerljive simulacije v prihodnosti potrebovalo 1/2 dneva (izključno za izdelavo simulacije, ne pa še za zbiranje potrebnih podatkov, ki traja veliko več časa), kar se mi zdi sprejemljiv rezultat. To nameravam storiti z izdelavo standardnih blokov, ki jih bo moč zlagati v novo simulacijo. Če bi že moral opisati zamisel, potem bi reklo, da bo pri novih simulacijah šlo za »zlaganje lego kock«.

V sami nalogi bom imel tudi vmesne cilje. Nedvomno je med njimi določitev matematičnih funkcij gibanja cen strateških surovin skozi čas, ravno tako tudi gibanja drugih dejavnikov, ki jih bom opredelil.

Cilj je tudi dokazati, da je današnji pristop izdelave kalkulacij zelo vprašljiv, ker ne upošteva določenih dejavnikov, kot na primer krivulje učenja (produktivnost, kakovost), ki je tem bolj izrazita, čim bolj gre za nepoznano tehnologijo. Vse kalkulacije, ki se delajo v fazi snovanja ponudbe za kupca, kažejo vedno le optimalno stanje, ki ga pa dosežemo šele po določenem času od pričetka proizvajanja izdelka. Ta časovni okvir optimiranja lahko traja 20 do 30 % trajanja projekta, česar ne bi smeli zanemarjati.

4 PREDSTAVITEV PODJETJA IN IZDELKA

4.1 PREDSTAVITEV ISKRE AVTOELEKTRIKE

Tabela 1: Lastniška struktura Iskre Avtoelektrike d. d. na 31. 12. 2006 (%)

<table>
<thead>
<tr>
<th>Delničar</th>
<th>Število delnic</th>
<th>Delež v %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areal d. o. o.</td>
<td>390.686</td>
<td>24,29</td>
</tr>
<tr>
<td>KAD</td>
<td>228.379</td>
<td>14,20</td>
</tr>
<tr>
<td>NFD 1 Delniški investicijski sklad, d. d.</td>
<td>191.574</td>
<td>11,91</td>
</tr>
<tr>
<td>Notranji lastniki - zaposleni v skupini</td>
<td>189.261</td>
<td>11,77</td>
</tr>
<tr>
<td>SOD, d. d.</td>
<td>113.853</td>
<td>7,08</td>
</tr>
<tr>
<td>Zvon ena ID, d. d.</td>
<td>79.179</td>
<td>4,92</td>
</tr>
<tr>
<td>Bivši zaposleni in upokojenci</td>
<td>72.759</td>
<td>4,52</td>
</tr>
<tr>
<td>Bazalt d. o. o.</td>
<td>68.149</td>
<td>4,24</td>
</tr>
<tr>
<td>Vzajemni sklad delniški Evropa Vipa Invest</td>
<td>60.664</td>
<td>3,77</td>
</tr>
<tr>
<td>Delniški vzajemni sklad Triglav steber I</td>
<td>46.257</td>
<td>2,88</td>
</tr>
<tr>
<td>Zavarovalnica Triglav, d. d.</td>
<td>44.717</td>
<td>2,78</td>
</tr>
<tr>
<td>Vipa Holding, d. d.</td>
<td>36.963</td>
<td>2,30</td>
</tr>
<tr>
<td>Ostali</td>
<td>85.872</td>
<td>5,34</td>
</tr>
</tbody>
</table>

Vir: http://www.iskra-ae.com

Iskra Avtoelektrika d. d. proizvaja zaganjalnike in generatorje za motorje z notranjim zgorevanjem, avtonomno napajane enosmerne električne pogonske sisteme in druge zahtevnejše komponente za avtomobilsko industrijo ter hladno kovane dele. Obvladujočo družbo Iskro Avtoelektriko d. d. tvorijo strateške poslovne enote (v nadaljevanju SPE) in direkcije ter razvojni center, ki so med seboj povezane matrično. Delniška družba Iskra

4.2 PREDSTAVITEV SPE MEHATRONIKA

Izraz mehatronika (Mechatronics) je leta 1960 uvedlo japonsko podjetje Yaskava Electric, ki je proizvajalo električne motorje za robotiko in industrijsko avtomatizacijo. Ime je v bistvu sestavljen iz besed:

- Mechanics = motorji in aktuatorji (mehanski sklopi),
- Electronics = senzorji,
- Software.

Mehatronika je skupni izraz za mehaniko in elektroniko. V zadnjih desetletjih je prisotna v skoraj vseh industrijskih vejah, še posebno pa v avtomobilski industriji. Skoraj ni več dela avtomobila, ki ne bi poleg mehanskega dela vseboval tudi elektronski nadzor. Mehatroniko v avtomobilu delimo glede na aplikacije, ki so lahko vezane na zunanjost, notranjost in šasijo avtomobila (glej sl. 1 na str. 8).
Slika 1: Segmentacija mehatronike v avtomobilski industriji

Podjetje se uvršča med t. i. dobavitelje TIER2, ki dobavljajo podsisteme dobaviteljem TIER1. Slednji so direktni dobavitelji avtomobilskim proizvajalcem. Organiziranost v obliki SPE omogoča optimalno učinkovitost glede na dane razmere (glej sl. 2). Znotraj SPE so vse ključne funkcije podjetja, ki preko neposrednega sodelovanja pripomorejo k uspešnemu poslovanju.

Slika 2: Organiziranost SPE Mehatronika

Vir: PNO Iskra Avtoelektrika d. d., 2006

Vizija SPE Mehatronika (SN MEH Iskra Avtoelektrika d. d., 2004):
»Hočemo biti med vodilnimi svetovnimi dobavitelji elektromotorjev in delov za mehatronske sisteme v avtomobilski industriji.«
Strategije SPE Mehatronika (SN MEH Iskra Avtoelektrika d. d., 2004):

- graditev partnerskih odnosov z našimi odjemalci, dobavitelji in zunanjimi institucijami, kar omogoča hitro in učinkovito izvajanje nalog v procesu razvoja in industrializacije proizvodov,
- projektni pristop in timsko delo ob podpori informacijskih tehnologij,
- uvajanje sodobnih metod in orodij za doseganje višje kakovosti in poslovne odličnosti,
- stalno izobraževanje in spodbujanje inovativnosti za doseganje konkurenčnih prednosti,
- globalni pristop pri pridobivanju cenejših nabavnih virov in proizvodnja delov v deželah z nižjo ceno dela.

Glede strategij je treba poudariti, da opredeljene strategije ne izhajajo iz uveljavljenih izhodišč iz literature. Tako na primer Michael Porter opredeljuje tri generične strategije (Kotler, 2003, str. 106):

- stroškovno vodstvo,
- diferenciacija,
- osredotočenje.

Iz opisanege bi lahko sklepali, da podjetje ubira strategijo diferenciacije. Teorija pozna še natančno opredelitev strategij, ki se nanašajo na organizacijsko področje, funkcijo, tržni segment, smer razvoja in tržne odnose (Pučko, 1996, str. 176). Na podlagi opredeljenih strategij SPE bi iz nabora poznanih iz literature lahko zaključili, da gre za področje strategij rasti (razvoja) podjetja in natančneje za:

- strategijo razvoja proizvoda,
- strategijo omejene produktno/tržne diverzifikacije.

4.3 PREDSTAVITEV IZDELKA IN APLIKACIJE SERVOVOLANA

V predhodni točki (4.2 Predstavitev SPE Mehatronika) je bilo opredeljeno, kaj pojem mehatronika pomeni in na katere aplikacije se nanaša. Za magistrsko nalogo je smiselno izvesti kratak pregled razvoja servovolanov in trendov na tem segmentu mehatronike. Smiselno je tudi opisati delovanje obravnavanega motorja in predstaviti konstrukcijo letega, opisati proizvodni proces in splošne podatke o projektu.

Razvoj krmilnih mehanizmov je šel podobno pot kot ostale komponente pri avtomobilih. To pomeni, da se je iz čistih mehanskih sistemov (brez servopomoči) prešlo na servomehanske sisteme (hidravlični servovolani) in nato na sisteme, ki uporabljajo kot pomoč elektromotorje. V prihodnosti se pričakujejo t. i. »steer-by-wire« sistemi (popolna odprava mehanske povezave med volanom in aktuatorjem), ki so še v fazi razvoja. Osnovni namen razvoja so seveda izboljšave sistemov z vidika koristnosti za uporabnika

4.3.1 EPS-SERVOVOLAN

EPS je nadgradnja servosistemov, ki so prvotno potrebovali pomoč hidravlike za delovanje. Vmesno fazo so predstavljali EHPS-sistemi, ki so pomenili določen korak naprej od čistih hidravličnih servosistemov. Danes je v uporabi v segmentu malih in srednjih vozil CEPS (angl. Column mounted Electrically Powered Steering), kot ena izmed verzij EPS-sistemov. Ta sistem ne potrebuje nobene hidravlične črpalke in aktuatorjev za delovanje in je zato danes najboljša možna rešitev. Delovanje je preko elektronike optimirano tako, da se servoučinek iz elektromotorja uporablja samo takrat, ko elektronika zazna potrebo po njem, kar privede do manjše porabe vozila. Sistem je sestavljen iz klasičnega volanskega mehanizma z zobato letvijo, elektromotorja z elektroniko in senzorike, ki je nameščena na različnih mestih avtomobila (glej sl. 3 na str. 11).

Slika 4: Položaj CEPS-sistema glede na življenjski cikel

Vir: Frost & Sullivan, 2002, str. 23
4.3.2 PREDSTAVITEV PROJEKTA

Slika 5: Elektromotor in avtomobil, v katerega je elektromotor vgrajen

Vir: Interni vir Iskre Avtoelektrike

Potrebno je poudariti, da so za podjetje zahteve, ki jih postavljajo kupci, kar velik zalogaj z vidika glavnih in podpornih procesov. Samo izvajanje projekta, ki je opisano v nadaljevanju, to tudi potrjuje. Tabela 2 prikazuje količine po letih za dve izvedbi motorja, ki ga v Iskri Avtoelektriki izdelujemo. Konstrukcija tega motorja je podana v nadaljevanju.

Tabela 2: Pogodbene količine

<table>
<thead>
<tr>
<th>Izvedenka motorja</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0</td>
<td>98.080</td>
<td>411.126</td>
<td>422.773</td>
<td>415.999</td>
<td>389.357</td>
<td>380.087</td>
<td>268.413</td>
<td>2.385.835</td>
</tr>
<tr>
<td>Skupaj</td>
<td>102.340</td>
<td>430.473</td>
<td>442.700</td>
<td>435.600</td>
<td>407.700</td>
<td>398.000</td>
<td>274.400</td>
<td>2.491.213</td>
<td></td>
</tr>
</tbody>
</table>

Vir: Interni vir podjetja

Projekt je sledil fazam, ki jih predvideva APQP-postopek, opredeljen v posebnem priročniku, znotraj standarda kakovosti QS9000. Ta standard so postavila severnoameriška podjetja (Chrysler, Ford, GM) v devetdesetih letih prejšnjega stoletja, danes pa ga postopoma nadomešča ISO/TS 16949. Ta predvideva vzporedno izvajanje faz razvoja konstrukcije in tehnologije izdelave izdelka in ne več zaporednega, kot je bilo to v navadi (glej sl. 6 na str. 13). Gre za t. i. sočasni razvoj (concurrent engineering), katerega osnovni namen je skrajšanje potrebnega časa vstopa na trg. Tudi sestava članov projektnega tima je zato podrejena osnovnemu cilju. Ta je multidisciplinaren, to pomeni, da so vanj vključene že takoj praktično vse funkcije podjetja.
Slika 6: Zaporedje izvajanja faz razvoja in industrializacije izdelka po APQP-priročniku

Vir: APQP Iskra Avtoelektrika d. d., 1994, str. 14

Posamezni sklopi proizvodnega procesa so bili načrtovani sočasno z nastajanjem konstrukcije izdelka, kar nam je omogočilo, da smo julija 2005, z izjemo linije zalivanja, imeli proizvodnjo praktično že postavljeno. Velika pozornost je bila in je še posvečena doseganju načrtovanih časov ciklov po operacijah, kajti ob zagonu proizvodnje so se pojavljale velike težave z vidika zanesljivosti delovanja opreme, neoptimalnih metod dela in nepriučenosti delavcev na delovne operacije. Pri zaposlovanju le-teh se je razvila posebna metoda testiranja, po zgledu podjetij v avtomobilski industriji.

Načrtovanje izdelka in proizvodnega procesa je potekalo neobičajno hitro. To je mnenje, ki ga imamo v podjetju, in tudi kupec priznava, da je to res. Običajno trajata fazi pol leta dlje, v našem primeru pa je bil ta čas zaradi zapoznele izbire dobavitelja s strani kupca za vedno izgubljen. To je predstavljalo velik pritisk na vse, tako kupca kot tudi Iskro Avtoelektriko, saj bi kasnitev dobav motorjev lahko povzročila zamude pri vstopanju novega avtomobila na trg. Posledica pozega zagona projekta je bila tudi spreminjanje konstrukcije izdelka (celo že v fazi rednih dobav kupcu!!!), ko smo dejansko že naročali opremo. Dodatne
preglavice je povzročalo nepoznavanje nekaterih tehnologij, vsi omenjeni dejavniki pa so se v končni fazi izkazali kot veliko večji stroški proizvodnje ob njenem zagonu.

Velja omeniti še velika odstopanja z vidika pogodbenih (glej tab. 2 na str. 12) in dejansko izdelanih količin (glej sl. 7) ter uvedbo nove izvedenke motorja, ki ni bila predvidena v pogodbi. Vse to je sicer dobrodošlo z vidika porazdelitve investicije na čim več poslovnih učinkov (stroškovnih nosilcev), vendar je povzročilo nemalo problemov na proizvodnji in logistični strani. Podatek navajam, ker je smiselno prikazati, kakšna je lahko stopnja negotovosti pri taki vrsti projektov, saj je bil nov avtomobil očitno sprejet bistveno bolje, kot so pri proizvajalcu predvideli, vse to pa lahko močno vpliva na samo dobičkonosnost projekta (seveda tudi v primeru negativnega scenarija).

Slika 7: Pogodbene in dejansko izdelane količine v letu 2006

Vir: Podatki iz tabele 2 in dejansko izdelane količine iz poslovno-informacijskega sistema

4.3.3 KONSTRUKCIJA IZDELKA

Z vidika celotnega volanskega mehanizma je treba poudariti, da je podjetje dobavitelj zgolj elektromotorja. Elektronsko vezje, ki vsebuje logiko (ključna komponenta celotnega sistema), se vgrajuje pri kupcu v obratu na Poljskem. Motor z elektroniko pa potrebuje še vse ostale mehanske dele med volanom in kolesi, da lahko deluje kot celota.

Motor je BLPM-izvedbe. Konstrukcija je klasična (glej sl. 8 na str. 15), torej imamo fiksni stator (zunanji), vrtljivi rotor (notranji) in prednji pokrov. Rotor je sestavljen iz gredi (na izhodni strani je ozobljena), na katero je natisnjeno jedro in nanj zalepljeni magneti (12 segmentov). Jedro z magneti je nato zalito z zalivno maso, ki služi dimenzijski stabilnosti in preprečevanju izpadanja magnetov zaradi centrifugalnih sil. Stator je sestavljen iz navitja, ki je vtišnjeno v okrov in zalito z maso (operacija zalivanja ali t.i. »potting-a«). Žično navitje je sestavljeno iz statorskega paketa, utorovne izolacije, bakrene žice (tri različne barve – vsaka faza svoja barva) in raznih manjših komponent, ki so potrebne za kompletiranje (spojka, priključki, izolacijske cevke, vrvica). V prednji pokrov in okrov sta vtišnjena ležaja, ki sta zato, da se prepreči izpadanje, zakovana (manjša lokalna plastična deformacija okrova in statorja). Prednji pokrov in stator sta vijačena preko dveh vijakov.
Rotorju preprečuje gibanje sam način vležajenja, ki predvideva uporabo vskočnika in valovite podložke, ter popolno fiksiranje v ležaju prednjega pokrova.

Slika 8: Glavni sestavni deli motorja

Vir: Interni vir podjetja

Dejansko imamo tri različne izpeljanke istega motorja z določenimi razlikami, ki pa za namen, ki ga ima magistrsko delo, niso pomembne, saj je bistvena le kumulativna količina motorjev, ki jih mora v okviru projekta podjetje dobaviti kupcu.

4.3.4 PROIZVODNI PROCES

Detajlnega opisa proizvodnega procesa v delu ne navajam, ker je tehnologija poslovna skrivnost in ker je za razumevanje dela nepotrebno. Omeniti velja le pristop podjetja k organizaciji proizvodnje. Skušalo se je uvesti kar največ pristopov, ki jih poznamo pod pristopi vitke proizvodnje ali proizvodnje svetovnega razreda. Veliko vzpodbudo smo in še vedno dobivamo s strani kupca, ki ima v ta namen razvit obsežen priročnik (Delphi manufacturing system, okrog 1000 strani). Pri snovanju konstrukcije in še posebej proizvodnega procesa je kupec nudil brezplačna izobraževanja na lokaciji Iskre Avtoelektrike s strani svojih strokovnjakov, vseskozi je potekala presoja ustreznosti rešitev, tako da je podjetje s tega vidika pridobilo zelo veliko koristi. V podjetju smo na nekaterih segmentih proizvodnje dokaj dobro uspeli z implementacijo pristopov (embalažne enote, tloris proizvodnje), kar je lahko osnova za razširitev dobre prakse na ostale proizvodne lokacije.

Proizvodni proces motorja je sestavljen iz štirih ločenih delov (glej sl. 9 na str.16). Prvega predstavlja navijanje statorja. Poenostavljeno povedano, gre za vstavljanje navitja v statorski paket. Ta tehnologija je za podjetje nova in tudi ključna, saj je izredno zahtevna. V podjetju se za to skupino strojev uporablja izraz nazivalna celica, ki je sestavljena iz naprave za vstavljanje izolacije in šestih naprav (3-krat nazivalna + kalibrirna).

Naslednji segment predstavlja aranžiranje odcepow statorja in dokončevanje le-tega. Pri aranžiranju odcepow gre za veliko ročnega dela, torej zelo delovno intenzivne operacije, ki
so obenem tudi neprimerne z vidika ergonomije. Podjetje je zato šlo v razvoj naprav, ki bodo odpravile to problematiko in hkrati zmanjšale številno izvajalcev. Po aranžiranju je potrebno odcepe na fazah in zvezdičnih še obdelati (operacije krimpanja in kompaktiranja), izvesti moramo tudi formiranja ter povezovanje navitja. Po teh operacijah se izvede kontrola in dobre statorje se vstavi v okrove.

Slika 9: Tloris proizvodnje z glavnimi podprocesi

Vir: Interni vir podjetja

Naslednji sklop predstavljajo operacije zalivanja (angl. potting), rezkanja ostankov zalivanja in nameščanja izolacijskih cevk. Tehnologija zalivanja je za podjetje nova in je v začetnih fazah povzročala veliko težav. Danes so v fazi preizkušanja rešitve z vidika tehnologije in organizacije dela. Če bodo preizkusi uspešni, se obeta racionalizacija tega dela proizvodnega procesa, s prihranki na vhodnih materialih in neposredem delu. Pri zalivanju se na palete namesti največ 12 okrovov z vstavljenimi statorji. Nanje se nato pritrdi t. i. »maska«, ki preprečuje, da bi notranjost motorja zalila zalivna masa. Tako pripravljeni okrovi gredo skozi proces zalivanja, kjer gre za faze segrevanja, vakuumiranja, zalivanja z maso in nato ohlajanja. Po teh fazah se maske odstranijo, zaliti okrovi pa prenesemo na operacijo rezkanja. Po rezkanju se na le-te namestijo termokrčljive izolacijske cevke. Z zaključkom zadnje operacije govorimo o statorju motorja. Zaradi tehnologije in samih meritev na končni montaži morajo statorji čakati 6 ur, preden se jih lahko uporabi v naslednjih fazah procesa.

Izredno velik pomen je dan sledljivosti. Pod tem pojmom razumemo nadzor nad vsako vgrajeno komponento in nad parametri ključnih operacij. Za razumevanje vzemimo primer reklamacije. Za serijsko številko motorja moramo biti sposobni odgovoriti, pod katerimi pogoji se je izdelal in kateri materiali so vanj vgrajeni (datum dobave s strani dobavitelja).

5 TEORETSKI OKVIR

5.1 SPLOŠNO O OBRAVNAVANI TEMATIKI

Preučiti je potrebno tudi različne vrste analiz, ki nam omogočajo obvladovanje tveganja, in sicer analizo občutljivosti, analizo scenarijev in končno še Monte Carlo analizo. Seznaniti se je potrebno tudi z načinom vrednotenja rezultatov, kjer pridejo v poštev statistične metode.

Seveda je smiselno natančneje analizirati zgolj tiste elemente strukture lastne cene, ki predstavljajo velik del v njej, kar lahko storimo na podlagi Pareto analize in pravila 80/20.
Simulacije, ki so cilj magistrske naloge, potrebujejo vhodne podatke, vse do ravni strateških surovin. To je najtežavnejši del magistrske naloge, saj je potrebno opredeliti trende gibanja cen le-teh v prihodnosti. V ta namen je potrebno poznavanje teorije z vidika tržnega oblikovanja cen in tržnih nepopolnosti, česar pa ne bom posebej obravnaval.

Pomemben del končne simulacije bodo opredeljevale tudi krivulje učenja. Spoznati je potrebno, kaj opredeljuje ta pojem, ki je pri ocenjevanju tveganja zelo pomemben, a prepogosto prezrt. To pa je ob že tako nizkih stopnjah dobičkonosnosti projektov v avtomobilski industriji lahko zelo problematično.

Inkrementalne analize ne bom vključil v magistrsko delo. Prisotna je sicer pri zamenjavi obstoječih dobaviteljev z novimi, kjer pa se zanašam na oceno prihrankov, ki jih je izdelala SPE. Z vidika tehnologije in konstrukcije izdelka ni pričakovati sprememb, kjer bi bilo potrebno upoštevati omenjeno analizo. Razlog leži v naravi panoge, kjer radikalne spremembe niso dopustne. Na primer, zamenjava tehnologije zalivanja s tehnologijo impregniranja, ki predstavljaa možen substitut, je za kupca nesprejemljiva, pa čeprav nudi stroškovne prihranke in manjše ekološke težave.

Opisano bo tudi programsko orodje, v katerem bo izdelana simulacija Monte Carlo. Gre za v slovenskem okolju praktično nepoznani Extend in upam, da bo prav ta naloga pripomogla k večji uveljavitvi tega izrednega programskega orodja tako v podjetju kakor tudi izven njega.

5.2 OPREDELITEV POLNE LASTNE CENE IZDELKA

Ta točka je pomembna, saj predstavlja osnovo oziroma izhodišče za vse simulacije. Poleg same strukture polne lastne cene in vrst stroškov je nujno opredeliti vse pojme, ki se bodo pogosto pojavljali znotraj teksta. Izhodišče za določitev polne lastne cene so stroški, povezani z izdelkom. Za same simulacije je pomembno tudi, kako se ti stroški obnašajo z vidika obsega proizvodnje. Zato navajam splošen pregled vrst stroškov in njihovo delitev.

Kaj sploh so stroški, lahko zelo nazorno izrazimo s formulacijo »v denarni enoti mere izražena poraba prvin poslovnega procesa pri nastajanju poslovnih učinkov« ali drugače »cenovno izraženi potroški delovnih sredstev, delovnih predmetov, delovne sile in tujih sprotnih storitev, ki nastajajo pri reprodukcijskem procesu v podjetju« (Tekavčič, 1997, str. 13).

Stroške lahko razvrstimo glede na različne načine. Za nalogo je važna delitev glede na prvine poslovnega procesa, saj vodi do naravnih oziroma načelnih vrst stroškov. Ločimo stroške:

- delovnih sredstev,
- predmetov dela,
- dela,
- tujih storitev.
Za nalogo najvažnejša delitev je tudi, kako stroške pripisujemo posameznim stroškovnim objektom. Stroškovni objekti so lahko proizvod (izdelek), obrat, proizvodna linija ali kako drugače opredeljeni objekti. Ločimo posredne (splošne) in neposredne stroške. Neposredni so tisti, za katere lahko brez težav ugotovimo, kateri stroškovni objekt jih povzroča. Posredne stroške moramo na stroškovne objekte razporejati prek različnih metod (najpogosteje ključi), z določeno mero arbitrarnosti. Posredne stroške delimo v dve glavni kategoriji, in sicer na:

- splošne proizvajalne stroške in
- splošne nabavne, prodajne in upravne stroške.

Važna delitev stroškov je tudi na stalne in spremenljive, saj prek nje preračunavamo prag rentabilnosti. V simulacijah znotraj naloge se pojavlja primer odstopanja proizvedenih motorjev od tistih, predvidenih v pogodbi, kjer je potrebno opredeliti, kaj je stalen in kaj spremenljiv strošek. Polna lastna cena je sestavljena iz:

- dobička,
- spremenljivih stroškov na proizvod,
- stalnih stroškov na proizvod.

Polno lastno cenno oziroma celotne stroške lahko v grobem razčlenimo tudi na naslednje elemente (Hočevar, Igličar, 1997, str. 294):

- neposredni stroški materiala,
- neposredni stroški dela,
- posredni proizvajalni stroški,
- stroški prodaje,
- stroški uprave in drugi splošni stroški.

Strukturo polne lastne cene in prehod na prodajno cenno prikazuje tabela 3 na strani 20. Za razliko od predhodnega vira je nekoliko drugače opredeljena, za namen naloge pa je bistven prehod iz polne lastne cene na prodajno cenno.
Tabela 3: Struktura polne lastne cene in prodajne cene

<table>
<thead>
<tr>
<th>Stružski pravih predmetov dela</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Strožski direktnega dela</td>
</tr>
<tr>
<td>+ Amortizacija</td>
</tr>
<tr>
<td>+ Posredni strožki izdelave (obratna režija)</td>
</tr>
<tr>
<td>+ Posredni strožki nabave, prodaje, uprave</td>
</tr>
<tr>
<td>= Lastna cena</td>
</tr>
<tr>
<td>+ Dobiček na enoto</td>
</tr>
<tr>
<td>= Prodajna cena</td>
</tr>
<tr>
<td>+ Prometni davek</td>
</tr>
<tr>
<td>= Prodajna cena z vključenim prometnim davkom</td>
</tr>
</tbody>
</table>

Vir: Pučko, Rozman, 1996, str. 183

V nalogi bom sestavine lastne cene povzemal po Koletniku (Koletnik, 2004, str. 215). Polno lastno ceno opredeljuje kot:

- neposredne strožke materiala,
- neposredne strožke dela,
- druge neposredne strožke,
- posredne proizvajalne strožke,
- posredne strožke nabave, uprave, prodaje,
- posredne strožke obresti,
- neposredne strožke prodaje.

Material v ožjem pomenu razvrščamo kot (Koletnik, 2004, str. 215):

- surovine in osnovni material,
- nabavljeni proizvodi, sestavni deli, nadomestni deli,
- gorivo in mazivo,
- pomožni,
- nepotreben in zastarel material.

V magistrski nalogi bo namesto pojma material uporabljena besedna zveza komponente motorja, ki bo zajemala vse zgoraj opisano z izjemo surovine in osnovnega materiala, saj ga v proizvodnem procesu ni. Pod pojmom komponente motorja razumemo vse potrebne sestavne dele za izdelavo motorja in nekatere pomožne materiale, ki so nujno potrebni v tehnološkem procesu. V stroških komponent motorja je zajeta normativna poraba. Ta predvideva minimalno potrebno količino z dodanim t. i. tehnološkim izmetom, ki je pogojen s samimi lastnostmi proizvodnega procesa in dodatnim deležem izmeta, ki je posledica »nekakovosti« proizvodnega procesa in komponent motorja ter subjektivnega vpliva delavcev. Pojem strateških surovin bo uporabljen za opredelitev kovin oziroma drugih surovin, ki so osnova za izdelavo komponent motorja. Strožki dela zajemajo kosmato plačo, nadomestilo redne plače, dajatve v naravi, darila in nagrade, povračila,

5.3 TVEGANJE

Tveganje je pri odločanju managerjev stalnica. Kako ga zmanjšati, je nedvomno eno osrednjih vprašanj pri sprejemanju odločitev o poslovanju. To se seveda da v določeni meri storiti preko odločitvenih dreves, kjer imamo za neugoden izid v določeni fazi življenjskega cikla projekta pripravljeno opcijo (alternativno pot).

Slika 10: Primer porazdelitve polne lastne cene projektov A in B (norm. porazdelitvi)

Vir: Lasten vir
Če imamo dva projekta (glej sl. 10 na str. 21), kjer ta pojav grafično predstavimo, je jasno, da ni vseeno, katerega naj management izbere (v primeru, ko lahko izbere samo enega). Enako pravilo velja za levi in desni del slike. Veljajo ugotovitve glede nenaklonjenosti tveganju in zakon »vrabca v roki«.

Pričakovana vrednost (formula 1) je tehtano povprečje vrednosti, kjer uteži predstavljajo njihove verjetnosti pojava (Brigham, Daves, 2004, str. 31).

Formula 1: Pričakovana vrednost

\[\hat{r} = \sum_{i=1}^{n} P_i \cdot r_i \]

\(P_i \)... verjetnos t pojava i - tega rezultata
\(r_i \)... i - ti rezultat
\(n \)... število vseh možnih rezultatov

Pri verjetnostni porazdelitvi, kot je normalna, lahko imamo ob isti pričakovani vrednosti, različno širino razpona med maksimalno in minimalno vrednostjo. Ta razpon okarakteriziramo s standardno deviacijo (formula 2, na str. 23), ki nam predstavlja tudi merilo tveganja. Večja kot je, večje je tveganje, da bo dobljeni rezultat ležal daleč proč od pričakovane vrednosti.
Formula 2: Standardna deviacija

\[\sigma = \sqrt{\sum_{i=1}^{n} (r_i - \hat{r})^2 \cdot P_i} \]

\(P_i\)... verjetnost pojava i - tega rezultata
\(r_i\)... i - ti rezultat
\(\hat{r}\)... pricakovana vrednost
\(n\)... število vseh možnih rezultatov

Standardna deviacija je v bistvu tehtano povprečje razlike od pričakovane vrednosti. Z razponom ±3σ opisemo 99,74 % vseh možnih rezultatov pri dani normalni porazdelitvi.

Ko imamo opravka z dvema porazdelitvama z različno pričakovano vrednostjo, se pojavi problem vrednotenja tveganja, ker preko standardne deviacije ne dobimo jasnega odgovora. Zato se poslužujemo koeficienta variabilnosti (formula 3). Ta nam v bistvu definira merilo tveganja na enoto opazovane veličine.

Formula 3: Koeficient variabilnosti

\[CV = \frac{\sigma}{\hat{r}} \]

\(\sigma\)... standardna deviacija
\(\hat{r}\)... pricakovana vrednost

Slika 11: Primer porazdelitve polne lastne cene projektov A in B (normalna in beta)

Vir: Lasten vir

Kolmogorov-Smirnov test uporablja vrednotenje razlike med kumulativno porazdelitvijo vzorca podatkov in verjetnostne porazdelitve, ki najbi mu ustrezala. Anderson-Darling test poudarja ekstreme porazdelitev. Gre za test, kjer je osnova prav tako kumulativna porazdelitev vzorca podatkov in verjetnostne porazdelitve, ki najbi mu ustrezala.
5.4 SIMULACIJA OBČUTLJIVOSTI, SCENARIJEV IN MONTE CARLO SIMULACIJA

- klasična diferencialna optimizacija (pri kateri ugotavljamo minimume in maksimume namenskih funkcij ob pomoči odvajanja; na primer optimalna zaloga ali obseg proizvodnje),
- linearno programiranje,
- nelinearno programiranje.

Takšni modeli so pogosti, saj so z matematičnega vidika uporabniku prijazni, ker jih je lahko razumeti in ker dajejo točne rezultate. Za omejeno uporabo v praksi pa je kriva njihova omejitve po definiciji, ker predpostavlja popolno informiranost in izpušča slučajnostne vplive ter s tem povezano tveganje.

Za stohastične modele velja, da je vsaj ena od spremenljivk slučajna, torej nanjo delujejo slučajni vplivi. To ne pomeni, da smo obsojeni na popolno nevednost, saj lahko ugotovimo, kakšen je vzorec teh slučajnih vplivov, oziroma, v jeziku verjetnostnega računa, vsaki stohastični spremenljivki pripišemo ustrezno verjetnostno porazdelitev. To
storimo na podlagi zgodovinskih podatkov in izkušenj ter z njimi povezane intuičije strokovnjakov za področje obnašanja te spremenljivke.

Prednosti uporabe stohastičnosti so torej v boljši oceni tveganja oziroma nihanja vrednosti okoli rezultatov, ki so nam jih dali deterministični modeli (recimo statične kalkulacije). Rezultate stohastičnega modela je mogoče dobiti na dva načina:

- analitični pristop (pri njem skušamo matematično dobiti verjetnostno porazdelitev izhodne spremenljivke; zaradi kompleksnosti modelov pa je po tej poti rešitve težko oziroma včasih tudi nemogoče dobiti),
- simulacijski pristop (vsaki slučajni spremenljivki pripišemo vrednost iz pripadajoče verjetnostne porazdelitve, izračunamo in zabeležimo vrednost izhoda ter nato postopek večkrat ponovimo (iteriramo), zato da dobimo (simulirano) verjetnostno porazdelitev izhoda).

Analiza občutljivosti nam v končni fazi pove, kako bo končni rezultat nihal, v odvisnosti od spremenem neke vhodne spremenljivke. Rezultat, ki ga dobimo, je opredelitev najvplivnejših spremenljivk na končni rezultat. Z analizo občutljivosti ugotavljamo, kako na izid vplivajo spremembe predpostavk, ki smo jih uporabili (Prašnikar, Debeljak, 1998, str. 55). Na primeru polne lastne cene lahko povemo, da analiza občutljivosti dejansko pove, koliko se bo le-ta spremenila, če se določena vhodna spremenljivka spremeni za nek

Slika 12: Primer elastičnosti polne lastne cene v odvisnosti od različnih veličin

Že pogled na zgornjo sliko pove, da je rezultat tem bolj občutljiv na spremembo nekega vhodnega parametra, čim bolj strm je naklon daljice. Jasno je, da je tveganje prav tako večje v primeru, ko je daljica neke vplivne veličine strmnejša. Analogno lahko zaključimo, da če, na primer, izdelamo podobno analizo za dva projekta, med katerima odločamo (lahko izberemo samo enega), bi tisti, kjer bi bile daljice strmnejše, predstavljal za podjetje večje tveganje (seveda je to zgolj en vidik pri odločanju, katereg o sprejeti).

Slika 13: Primer rezultata analize scenarijev

Vir: Lasten vir (izdelano glede na opredelitve v literaturi)
Monte Carlo analiza pa nam vnese pravo dinamiko v simulacijo, saj predvideva hkratno spreminjanje vseh vplivnih sprememljivk, ki smo jim opredelili verjetnostne porazdelitve. Zato je tudi rezultat neka porazdelitev, ki smo jo sposobni identificirati in oceniti stopnjo tveganja. Različni avtorji navajajo podobne opredelitve, kot na primer:

- Monte Carlo simulacija je po definiciji tista simulacija, ko statičnim sprememljivkam dodelimo naključno obnašanje in nato vrednotimo rezultate preko vzorčenja (eden ali več prehodov simulacije). Naključno obnašanje sprememljivk imenujemo tudi stohastično (Krahl, 2002).
- Monte Carlo simulacije so računski algoritmi za simulacijo obnašanja različnih fizikalnih in matematičnih sistemov in ostalih preračunov. Od ostalih analiz se razlikuje, ker je po naravi stohastična (uporablja naključno ali psevdonaključno izbiro vrednosti sprememljivk). Metoda je primerna za izdelavo v različnih programskih orodjih in je pridobila na uporabnosti predvsem z razvojem računalnikov (Wikipedia, december, 2006).

Z razvojem računalnikov je metoda pridobila na uporabnosti. Danes obstajajo specializirani programi (Slam, Arena, SlimScript, Extend) ali pa programi s preglednicami, kot je Excel, prek katerih enostavno izvajamo simulacije (Marolt, junij, 2002, str. 16).

Pri izdelavi simulacije lahko že intuitivno ugotovimo, kakšno je zaporedje izvajanja korakov. Smiselno pa je navesti vir, ki te korake nazorno opredeljuje. Ti so (Marolt, junij, 2002, str. 15):

- načrtovanje predmeta preučevanja (opišemo glavne značilnosti problema, želene informacije kot rezultat preučevanja in podatke, ki jih že imamo na voljo),
- zamišljanje modela (matematičen opis modela kot najpomembnejši kreativni korak v načrtovanju),
- zbiranje podatkov (glede na prejšnji korak določimo informacije in podatke, ki jih je treba dodatno zbrati; pri tem je treba upoštevati tako vidik stroškov zbiranja kot vidik koristi, ki jih imamo v obliki natančnejših rezultatov v bolj izpopolnjenem modelu),
- izgradnja modela (prevajanje matematičnega opisa modela v naš računalniški program),
- testiranje rešitev in izpopolnjevanje modela (model preizkusimo, da bi ugotovili, če se kje v modelu, podatkih ali prikazu pojavljajo napake, in jih odpravimo ter ob predlogih uporabnikov model še dodatno izpopolnimo),
- pravilna uporaba modela (zagotoviti je potrebno ustrezno podporo uporabnikom modela, da bodo sposobni pravilno interpretirati rezultate modela).
Kot že omenjeno, pridemo pri tej simulaciji preko spreminjanja vseh vplivnih spremenljivk (določena populacija, ki izhaja iz izbrane verjetnostne porazdelitve za spremenljivko) v algoritmu do končnega rezultata, ki je prav tako v obliki neke populacije. Ob tem se je potrebno zavedati določenih dejstev.

1. Pričakovana vrednost; povprečna vrednost, ki jo dobimo na podlagi populacije rezultatov, ne ustreza popolnoma pričakovani vrednosti, ki smo jo uporabili za definicijo verjetnostne porazdelitve (na primer normalna porazdelitev s pričakovano vrednostjo in standardno deviacijo). Težiti je potrebno k čim manjši razliki med obema.

4. Pomembno pri izdelavi Monte Carlo simulacije je, da skušamo zmanjšati varianco. Tehnike, kako to storiti, so poznane kot "metode zmanjševanja variance".

5. Korelacija med spremenljivkami je zelo pomembna. Če imamo spremenljivki a in b, ki sta popolnoma pozitivno korelirani, potem je smiselno, da vzorčimo spremenljivko a, b pa okarakteriziramo kot (trenutno) vrednost spremenljivke a, povečano (zmanjšano) za razliko med a in b, namesto da vzorčimo a in b ločeno.

5.5 EXTEND PROGRAMSKI PAKET ZA IZDELAVO SIMULACIJE

Extend je programski paket, ki omogoča izredno širok spekter različnih simulacij. Te lahko izdelamo zanesljivo in hitro, brez uporabe programiranja. To je možno prek standardiziranih elementov (t. i. bloki). Osnovni jezik je ModL, uporabnik lahko z njim programira lastne elemente, kar pa skoraj nikoli ni potrebno, ker so že standardni dovolj.

Glavne lastnosti Extenda so:

- t. i. primi in spusti logika (angl. »Drag and drop«),
- elementi za komunikacijo z ostalimi programskimi paketi (dll, ActiveX …),
- možnost hierarhičnega modeliranja simulacije,
- optimizacijski elementi (možno izvajati optimiziranje parametrov),
- možnost razvoja lastnih elementov v ModL-jeziku.

Extend je bil prvi software take vrste, ki se ga je dalo uporabljati na preprostih PC-jih. Prva različica se je pojavila v letu 1988 in njegova osnovna logika (grafični vmesnik kot osnova za izdelavo simulacije) je še danes aktualna.

Simulacije (modeli) se izdelujejo z uporabo standardnih elementov, ki se nahajajo v 19 knjižnicah (elementi so v nje razvrščeni glede na sorodnost delovanja). Vsak element ima v ozadju neke matematične funkcije, ki spremenijo vhod v izhod. Elementi imajo vplivne parametre, ki jih je mogoče spremenjati prek nadzornih menijev. Iz knjižnic je na delovno polje modela mogoče elemente vključiti prek »primi in spusti« logike. Elemente povezujemo tako, da potegnemo povezavo med konektorji.

Ločimo dve vrsti pretokov informacij med elementi, in sicer tiste, pri katerih se »pretakajo« stvari (predmeti), drugi pa so tisti, kjer se pretakajo vrednosti. Ko imamo opravka s stvarmi, le-tem lahko dodeljujemo atribute, prioritete in podobno. Važno je, da se na vmesnikih elementov (vhodi ali izhodi) povezujejo med seboj kompatibilni. Povezave predstavljajo logični pretok in glede na prej definirano vrsto informacij ločimo povezavo z dvojno črto (stvari) ali pa z enojno črto (vrednosti).

Detajlno opisovanje nastajanja simulacije ni smiselno, ker predstavlja velik zalogaj. So pa omembe vredne še nekatere stvari, ki uporabniku močno olajšajo delo. Te se nanašajo
predvsem na zagon simulacije, sprotno spremljanje poteka, zajemanje podatkov in vrednotenje. Pri samem zagonu simulacije lahko uporabnik nastavi želene vrednosti, ki se nanašajo na trajanje simulacije, enote, natančnost izvajanja (povezana z zahtevnostjo strojne opreme). To se lahko stori na zelo preprost način prek vmesnika. Sprotno spremljanje izvajanja je elegantno rešeno, ker lahko simulacijo animiramo, zaustavljamo, ponovno poganjamo, skratka imamo možnost popolnega nadzorovanja poteka. Pri zajemanju podatkov je prav zaradi velike povezljivosti z ostalimi programskimi paketi zelo širok nabor možnosti, upal bi si reči, da celo prevelik, ker uporabnik išče najprimernejšega med primernimi. Imamo 5 možnosti sprotne komunikacije z ostalimi aplikacijami in še dodatnimi elementi, ki nudijo možnost izvoza in uvoza podatkov na začetku ali pa koncu simulacije. Posebno koristni elementi so t. i. tiskalniki (angl. »plotterji«), ki sprotno grafično prikazujejo rezultate simulacije. Extend je tudi programski paket odprte kode (angl. »open source«), kar omogoča poljubno prilagajanje rešitve s strani uporabnika. Omeniti velja še možnost izdelave nadzorne plošče simulacije, ker nam prav te podatke delimo vse parametre preko operacij kloniranja vnosnih polj elementov.

5.6 KRIVULJA UČENJA IN KRIVULJA IZKUŠENOSTI

Formula 4: Formula krivulja učenja

\[y_x = K \cdot x^{\log b} \]

\[y,\ldots \text{potrebno število ur za proizvodnjo x te enote} \]
\[K,\ldots \text{neposredno število ur za proizvodnjo prve enote} \]
\[x,\ldots \text{proizvedena enota} \]
\[b,\ldots \text{ucinek učenja} \]

Krivulja izkušenosti je sorodna zamisel, ki pa ima širše meje kot krivulja učenja (ta govori zgolj o povprečnih stroških dela). Krivulja izkušenosti predpostavlja, da so z večanjem

- učinkovitost delovne sile (priučenost),
- standardizacija, specializacija in izboljšanje metod,
- tehnološko pogojeno učenje,
- boljša izkoriščenost opreme,
- izboljšave konstrukcije izdelkov,
- izboljšave toka dodajanja vrednosti.

Zamisel je mogoče opisati prek matematične formule (formula 5).

Formula 5: Formula krivulja izkušenosti

\[C_n = C_1 \cdot n^{-\alpha} \]

\(C_1 \) ... strošek proizvodnje prve enote
\(n \) ... kumulativna proizvedena količina
\(\alpha \) ... elasticnost stroškov v odvisnosti od kumulativne količine

Krivulja izkušenosti ima tudi svoje posebnosti. Ko imamo opravka z močno konkurenco (proizvajalci mobilnih telefonov), krivulja učenja sploh ne doseže asimptotične vrednosti, temveč se prekine kot posledica prilagajanja podjetja konkurenci (na trg pošlje nove modele). Ta pojav je prikazan na sliki 14. Podobno se zgodi lahko tudi zaradi najrazličnejših scenarijev, povezanih z dobavitelji.

Slika 14: Grafični prikaz krivulje izkušenosti

Vir: Lasten vir

Prašnikar in Debeljak (Prašnikar, Debeljak, 1998, str. 211) opisujeta, da se učinek učenja nanaša na zmanjševanje povprečnih celotnih stroškov s kumulativnim obsegom proizvodnje določenega izdelka, od začetka proizvodnje naprej. Do tega učinka prihaja
zaradi povečevanja produktivnosti in učinkovitosti porabe proizvodnih sredstev. Pomembna je ugotovitev, ki jo ta vir navaja glede uvajanja novih tehnologij, ko pravi, da bi se morali managerji zavedati, da so stroški v začetnih fazah lahko bistveno višji. Dopolnitev vpliva krivulje učenja na stroške izdelka podaja vir (The learning curve, 2006), ki navaja, da na efekt izkušenosti vpliva:

- učenje izvajalcev,
- izboljšave metod, orodij, postopkov,
- izboljšave konstrukcije izdelka,
- izboljševanje upravljanja s strani managerjev,
- razhroščevanje inženirskih podatkov,
- proizvajalni takt (izhaja iz večanja prodaje).

Zaradi opisanih izboljšav se zgodi, da potrebna poraba delovne sile na enoto proizvoda pada. Zgodi pa se tudi, da se zniža poraba materialov, kjer je vzrok boljša metoda dela (manj tehnološkega in ostalega izmeta) in izboljšave konstrukcije (manjša poraba materiala, cenejši material).

Z vidika krivulj učenja literatura omenja naslednje možnosti uporabe (Gooden, 2006):

- ocenjevanje stroškov proizvoda znotraj življenjskega cikla,
- opredeljevanje strategij trženja,
- opredeljevanje stroškov dela pri projektih z visoko stopnjo tehnološke zahtevnosti.

Krivulje učenja so pomembne pri določanju krivulj stroškov na dolgi rok. Na krivulji učenja in ostalih podatkov se lahko v primeru vstopa na nov trg odločamo, kako velik obrat naj odpremo, kar ugotovimo iz količine, ki jo želimo dati na trg (Pindyck, 1995, str. 237).

Sporočili krivulje učenja in krivulje izkušenosti sta jasni in ne glede na to, na kateri zamisli se osredotočimo, velja, da učinka nista zanemarljiva. Pri projektih tako lahko na primer predvidimo krivuljo učenja za stroške dela, kjer glede na različne parametre predpostavimo, kakšna bo. Literatura torej zamisli ne zanemarja. Kako pa je v praksi?

6 PRIPRAVA PODATKOV ZA SIMULACIJE

6.1 ZASNOVA SIMULACIJ

sem se odločil za analize v različnih fazah življenjskega cikla proizvoda, je opredeljeno v točki 8 Primerja simulacij na strani 77.

Monte Carlo simulacija bo izdelana v programskem paketu Extend, na podlagi kalkulacije, ki jo predvideva kupčeva metodologija. Simulacija bo izvedla 40.000 preračunov lastne cene motorja, za 20 tromesečij (5 let). To pomeni, da bo v vsakem tromesečju vzorec 2.000 rezultatov. Naredil sem poenostavitev, ker bom analiziral dve leti manj, kot sicer trajal projekt, in to zaradi dveh dejstev, in sicer:

- za obdobje, daljše od 5 let, so napovedi zelo nezanesljive,
- s trajanjem 5-ih let (20 tromesečij) skozi simulacijo v Extendu pridobim robne pogoje, ki omogočajo veliko manjšo kompleksnost (predvsem za namensko izdelani element vrednotenja).

V kalkulaciji lastne cene motorja poznamo različne elemente le-te, ki bodo posebej analizirani. Ti elementi bodo razgrajeni na sestavine (baker, električna energija, stroški dela ...), kjer bo načeloma vsaka, za katero bom tako ali drugače opredelil pomembnost za končni rezultat, dobila napoved gibanja v prihodnosti (trend) in verjetnostno porazdelitev, ki bo to gibanje dopolnjevala.

Slika 15 na strani 34 prikazuje fizičen izgled simulacije. Ta bo vizualno taka, da bodo na skrajni levih strani prisotni elementi iz obstoječe kalkulacije lastne cene. Ti so:

- komponente motorja,
- stroški neposrednega dela,
- splošni proizvajalni stroški,
- amortizacija,
- stroški energije,
- ostali stroški.

Ti elementi se bodo razgradili na elementarne sestavine. Za primer neke komponente motorja bodo to elementarne sestavine nabavne cene, ki jo plačuje Iskra Avtoelektrika, za ostale elemente kalkulacije bo opredeljeno nekoliko drugače. Za razgradnjo na elementarne sestavine so izdelani namenski elementi v Extend-u, opisani v dodatku C.

Kot že omenjeno, bom za vsako komponento motorja (določeno na podlagi Pareto analize in pravila 80/20) definiral strukturo nabavne cene za Iskro Avtoelektriko (glej sl. 16).

Slika 16: Struktura nabavne cene naključne komponente motorja

Vir: Lasten vir

Iz slike 16 in razlage, podane v nadaljevanju, ki opisuje trende, lahko definiramo nabavno ceno materiala X_i v i-tem trenutku kot (formula 6):

Formula 6: Nabavne cena komponente

$$X_i = \sum_{j=1}^{n} X_{0j} \cdot d_j \cdot Tr_{ij},$$

kjer je X_{0j} izhodiščna nabavna cena komponente motorja, d_j izhodiščni delež j-te elementarne sestavine nabavne cene (vsota deležev je 100 %; deležev je n) in Tr_{ij} vrednost
trenda j-te elementarne sestavine nabavne cene v i-tem trenutku (koraku simulacije). Trend je edina veličina, ki se spreminja s časom in povzroča spremembo nabavne cene komponente motorja.

Predhodno je bilo že zapisano, da bom za elementarne sestavine elementov kalkulacije, definiral trend gibanja v prihodnosti in določeno verjetnostno porazdelitev, ki bo opredeljevala stopnjo tveganosti. Grafično obliko opisane napovedi prikazuje slika 17.

Slika 17: Trend gibanja in ključni podatki

Vir: Lasten vir

Kalkulacijo bom nadgradil tudi s krivuljami učenja. Pri teh bo v primeru krivulje kakovosti logika nekoliko drugačna, saj bo postavljen trend, ki se bo iz obstoječe približeval do želene (asimptotične) vrednosti, ki bo vsekakor višja od 0 %. Kot primer vzemimo, da se iz izhodiščnih 5 % izmeta spustimo po določenem času na 2 %, kar predstavlja asimptotično vrednost. To vrednost dosežemo prav zaradi učinka učenja.

V nalogi privzemam, da je podjetje sposobno proizvajati pogodbene količine in 10 % odstopanje le-neh navzgor (na letni ravni), ob trenutnem pragu kapacitet, kar pomeni, da se
ne pojavljajo dodatne investicije in/ali delo v nadurah oziroma tretji izmeni, ki bi povzročale poznan učinek omejeno stalnih stroškov (Tekavčič, 1997, str. 29). Seveda velja tudi nasprotno, torej zmanjšanje povpraševanja s strani kupca ne pomeni sprememb z vidika trenutnega praga inštaliranih kapacitet oziroma stroškov dela.

Vsi namensko izdelani elementi v programskem paketu Extend in njihovo delovanje so opisani v dodatku C. Vse vrednosti za tredne, ki so uporabljeni v Monte Carlo simulaciji, so prisotne v dodatku A. Skupni imenovalec določenega trenda je ikona, ki nastopa povsod, kjer se ta trend obravnava (glavno delo, simulacija, dodatek A in dodatek C).

6.2 ANALIZA TRENDOV CEN STRATEŠKIH SUROVIN IN OSTATLJH VPLIVNIH VELIČIN

Za potrebe simulacij je potrebno raziskati trende cen strateških surovin in ostalih pomembnih elementarnih sestavin, ki nastopajo v kalkulaciji lastne cene. Pri kovinah izhajam iz vsebnosti le-teh v zlitinah, ki se uporabljajo za izdelavo komponent motorja. Predpostaviti je potrebno, da so pogodbe z dobavitelji vezane na ceno strateških surovin prek neke formule. V tem primeru je pristop Monte Carlo simulacije pravilen. V primeru, ko pogodbe niso tako sestavljene, je pristop manj natančen, vendar je jasno, da se z dobavitelji v primeru bistvenih sprememb cen strateških surovin pogajamo o popravku nabavnih cen.

Za nekatere strateške surovine (nafta, neodijev oksid, baker, aluminij) je potrebno pridobiti tudi pričakovano menjalno razmerje EUR/US$. To je izredno pomembno predvsem zaradi magnetov, ki predstavljajo kar velik del stroškov izdelka, saj so vodilni svetovni proizvajalci surovin locirani na Kitajskem, kjer je tečaj lokalne valute vezan na ameriški dolar.

Pri kovinah in energentih je potrebno že na začetku poudariti, da so trendi praktično enotni. Kot posledica ugodnih globalnih gospodarskih razmer in posledično gospodarske rasti se
pojavlja primanjkljaj ponudbe glede na povpraševanje. V preteklosti je šlo za t. i. cikle visokih cen, ki so v kratkem roku padle spet na sprejemljive ravni, danes pa se ti dogodka (umirjanje) še niso pojavili. Ta pojav je predvsem izrazit pri bakru. Prav zato bom skušal analitične rezultate interpretirati in v simulaciji uporabiti intuitivno oceno, ki se bo lahko razlikovala od analitične. European confederation of iron and steel industries (European confederation of iron and steel industries, november, 2006) sicer ocenjuje globalne razmere v letu 2006 in napoveduje upočasnitev gospodarske rasti v letu 2007 v EU in ZDA ter dvig obrestnih mer, kar bi dejansko lahko pomenilo zasuk trendov v nasprotno smer, kar se na primeru nekaterih surovin in energentov počasi že kaže.

Glede na zgoraj opisani način nihanja nabavnih cen, kjer gre za določeno korelacijo med surovinami in opisom o tem statističnem pojavu (točka 5.4 Simulacija občutljivosti, scenarijev in Monte Carlo simulacija, str. 24), je potrebno narediti še eno predpostavko. V neki meri bo na podlagi analiz ponudbe in povpraševanja prišlo do korelacije trenda, korelacije verjetnostnih porazdelitev, ki bodo »obešene« na trende, pa ne bodo prisotne. Korelacija je ena od pomembnih veličin Monte Carlo simulacije in potrebuje razjasnitev, saj je pri mojem pristopu s tega vidika stanje nekoliko drugačno, kot je to pri običajnih Monte Carlo simulacijah. Ta odstavek bo detajlnje obravnavan v točki 7.3.2 Rezultati simulacije in interpretacija na strani 71.

Trendi bodo matematične funkcije, odvisne od koraka simulacije. Ker je model diskretna narave in ker morajo biti znotraj tromesečj vrednosti konstantne, je potrebno trende diskretizirati, kar v simulaciji pomeni, da trend za nadaljnjih 5 let opisuje 20 vrednosti (tromesečj). Uporabim lahko tri možne definicije trednov (tri namensko izdelani elementi v Extendu), vendar bom uporabil prva dva, ki sta v nadaljevanju predstavljena, ker menim, da je tretji problematičen z vidika obdelave končnih rezultatov. Ti so:

- Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj tromesečj (glej sl. 18); pomeni, da bom dobileno krivuljo, ki bo popisovala trend, diskretiziral in nanjo vezal največ 5 različnih verjetnostnih porazdelitev. Te so znotraj določenega tromesečja/tromesečj fiksne.

Slika 18: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj tromesečj

Vir: Lasten vir (izmišljeni podatki in prikaz iz simulacije)
Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj tromesečij (glej sl. 19); se razlikuje od predhodno opisane možnosti po tem, da ima na trend »obešeno« določeno porazdelitev, ki se ji zvezno spreminjajo parametri skozi tromesečja (korake simulacije). Za primer normalne porazdelitve pomeni, da spreminjam standardno deviacijo od izhodiščne, preko določene funkcije do končne, kar se lepo vidi na sliki 19. Pristop je kakovostno najprimernejši in bo zato v simulaciji prevladujoč.

Slika 19: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj tromesečij

Vir: Lasten vir (izmišljeni podatki in prikaz iz simulacije)

Zvezna krivulja, variabilne verjetnostne porazdelitve znotraj tromesečij (glej sl. 20) pomeni, da krivulje, ki popisuje trend, ne diskretiziram, temveč jo pustim zvezno, kjer so njegove vrednosti odvisne od koraka simulacije. Porazdelitev se obnaša zvezno, kot je bilo že prikazano v predhodnem primeru.

Slika 20: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj tromesečij

Vir: Lasten vir (izmišljeni podatki in prikaz iz simulacije)

Primer, ko bi vse spreminjal zvezno, ni najprimernejši in ga ne bom uporabil v simulaciji. Zgodilo bi se namreč, da bi znotraj nekega tromesečja dobil velik raztros vrednosti. Ta raztros bi bil posledica spreminjajoče vrednosti samega trenda znotraj tromesečja in samega raztrosa, ki je posledica »obešene« verjetnostne porazdelitve na ta trend.
6.2.1 GLOBALNI EKONOMSKI POLOŽAJ

Stanje na trgu strateških surovin je zelo odvisno od stanja gospodarstev. Zato v tem sklopu navajam nekaj relevantnih podatkov. Iz njih bo razvidno, da se, globalno gledano, pojavlja rast gospodarstev z zelo ugodnimi vrednostmi, kar postavlja pritisk na stran povpraševanja.

Tabela 4: Obstoječe stopnje rasti BDP in napoved za izbrane države (%)

<table>
<thead>
<tr>
<th>OECD / IMF poprečja</th>
<th>Poročilo</th>
<th>Napoved</th>
<th>Napoved</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDA</td>
<td>3,6</td>
<td>3,5</td>
<td>3,3</td>
</tr>
<tr>
<td>Japonska</td>
<td>2,6</td>
<td>2,4</td>
<td>2,1</td>
</tr>
<tr>
<td>EU</td>
<td>1,6</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>Kitajska</td>
<td>9,9</td>
<td>9,5</td>
<td>9,0</td>
</tr>
<tr>
<td>Indija</td>
<td>8,3</td>
<td>7,3</td>
<td>7,0</td>
</tr>
<tr>
<td>Latinska Amerika</td>
<td>4,3</td>
<td>4,3</td>
<td>3,6</td>
</tr>
<tr>
<td>Rusija</td>
<td>5,4</td>
<td>5,3</td>
<td>4,8</td>
</tr>
</tbody>
</table>

Vir: PN Iskra Avtoelektrika d. d., december, 2006

6.2.2 MENJALNO RAZMERJE EUR/US$

6.2.2.1 DOLOČANJE MENJALNEGA RAZMERJA

Pri ekonomski rasti se analitiki ukvarjajo z analiziranjem nezaposlenosti, izvozu/uvozu in BDP. Jasno je, da večanje nezaposlenosti, padec BDP in zmanjšanje izvoza, negativno vplivajo na vrednost valute.
Valuta teži k sledenju obrestnim meram. Če se obrestne mere dvignejo, to privabi kapital, saj se obetajo večji zaslužki. Investitorji pri oceni dogajanja na področju obrestnih mer gledajo na inflacijo, kakor tudi na izjave vplivnih osebnosti v državi. Ponavadi se spremembe obrestnih mer dogajajo na bolj ali manj znane datume, kot na primer zasedanja centralnih bank.

6.2.2.2 NAPOVED

Napoved je težko oblikovati, saj obstaja cela vrsta le-teh, ki pa se med seboj močno razlikujejo. V nalogi sem se odločil, da bom izdelal napoved na podlagi zgodovinskih podatkov. Metoda sicer ni najprimernejša, a za potrebe naloge dovolj dobra.

Pred mojo napovedjo pa navajam še dve, ki bosta služili kot potrditev pravilnosti izbranega trenda gibanja tečaja. Po napovedi Financial Forecast Center (Financial Forecast Center, 2006) naj bi se v prihodnje pol leta menjalno razmerje gibalo okrog 1,27 US$ za 1 EUR (glej sl. 21).

Vir: Financial Forecast Center, september, 2006

Vir: Watt, oktober, 2006

Slika 23: Menjalno razmerje EUR/US$ za obdobje 01. 01. 2004 do 01. 11. 2006

Vir: Lasten vir (izdelano na podlagi predstavljenih podatkov)

Pri napovedi je potrebno poudariti, da je obravnavano obdobje petih let. Nepredvidenih dogodkov je lahko veliko in zato je napovedovanje praktično nemogoče. Temu primerno sem izbral tudi porazdelitev, ki predvideva v letu 2007 manjše odstopanje od napovedi, v nadaljevanju pa večje. Uporabil bom diskretizirano krivuljo, variabilne verjetnostne porazdelitve znorj tromesečij, ki je opisana v točki 6.2 Analiza trendov cen strateških surovin in ostalih vplivnih veličin na strani 33. Za potrebe simulacije moram določiti matematično funkcijo, ki bo iz izhodiščne standardne deviacije 0,02, prek 40.000 korakov simulacije privedla do končne standardne deviacije 0,05. Ta funkcija je seveda enostavna:
σ=σ₁+(σ₂-σ₁)*korak simulacije/40.000. Rezultat prikazuje slika 1 dodatka A, ki je pridobljena direktno iz simulacije. V simulaciji bo izhodiščna vrednost 1,32 US$/EUR. Tabelarična oblika parametrov je razvidna iz tabele 1 dodatka A.

6.2.3 BAKER (NAPOVED)

Baker je zelo neugoden z vidika postavljanja napovedi. Razlog je v koncentraciji proizvajalcev, kar privede do podobnih razmer, kot velja to za nafto. Ne gre za prepovedano dogovarjanje o cenah, a razvidno je, da bi morala biti cena, glede na podobne razmere, kot jih poznamo pri aluminiju, bistveno nižja, oziroma bi morala bolj odzivno reagirati na povečanje svetovnih rezerv. Poleg tega so se pojavljali tudi neugodni dogodki, kot na primer večmesečne stavke, ki so cene še bolj potisnile v nebo. Podrobna analiza stanja se nahaja v dodatku B, točka 1.

Po Anni Campopiano (Campopiano, 2006) so razlogi za močan dvig cen bakra in tudi vseh ostalih kovin enaki, kot so bili že opisani. Navedene informacije so bolj detajlna, omeniti velja špekulacije s strani investitorjev, ki so videli v rasti cen potencialne zaslužke, kar je povzročilo »navidezno« povečanje povpraševanja. Za odločitev o vhodnih podatkih simulacije povzemaš še najnovejšo napoved s strani LME v času izdelave analiz (oktober, 2006). Gibanje cen v prihodnjih obdobjih prikazuje slika 25 na strani 43.

Slika 26: Grafična oblika podatkov za simulacijo (baker)
6.2.4 ALUMINIJ (NAPOVED)

Slika 27: Grafična oblika podatkov za simulacijo (aluminij)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)

Izbran trend padanja cen sovпадa s podatki, pridobljenimi iz vira (Campopiano, 2006), ki se nanašajo na napoved s strani LME in so bili uporabljeni tudi pri izdelavi predvidevanj za baker (to so najnovejši podatki, ki so bili na voljo v času pisanja magistrske naloge). Tudi že uporabljeni vir (Smith, Shi, 2006) navaja za aluminij podobno dinamiko, in sicer znižanje povprečne cene na LME z 1,12 US$/kg v 2006 na 0,97 US$/kg v 2007, kar sovпадa z izbrano napovedjo.

6.2.5 JEKLO (NAPOVED)

navaja, da je stanje glede prihodnjih gibanj precej negotovo. Ta vir navaja tudi potrebne surovine in energente za pridobivanje jekla. Poleg železove rude in odpadnega jekla so zelo pomembni tudi energenti (naravni plin, premog, koks), ki jih v nalogi ne analiziram. Predpostavljam, da bodo bolj ali manj konstantni. Iz vsega opisanega lahko definiram trend. Izbrati bom moral večji razpon verjetnostne porazdelitve, ki jo bom uporabil, prav zaradi nezanesljivosti podatkov.

Slika 28: Grafična oblika podatkov za simulacijo (jeklo)

Slika 28: Grafična oblika podatkov za simulacijo (jeklo)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)

6.2.6 MAGNETI IZ REDKIH ZEMELJ (NAPOVED)

Slika 29: Ponudba in povpraševanje med 2004 in 2010 za okside redkih zemelj v tonah

Vir: Sinton, junij, 2006

Napovedi, ki jo ta vir navaja, gre kar verjeti, še posebej, če pogledamo porast cene med letom 2005 in 2006 za praktično vse okside (glej tab. 5).

Tabela 5: Porast cen oksidov redkih zemelj med letom 2005 in 2006 v odstotkih (%)

<table>
<thead>
<tr>
<th>Ime</th>
<th>Enota</th>
<th>2006</th>
<th>2005</th>
<th>% spr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-oksid</td>
<td>US$/t</td>
<td>2.150</td>
<td>1.400</td>
<td>53,6 %</td>
</tr>
<tr>
<td>Ce-oksid</td>
<td>US$/t</td>
<td>1.600</td>
<td>1.200</td>
<td>33,3 %</td>
</tr>
<tr>
<td>Nd-oksid</td>
<td>US$/t</td>
<td>10.350</td>
<td>5.900</td>
<td>75,4 %</td>
</tr>
<tr>
<td>Pr-oksid</td>
<td>US$/t</td>
<td>10.300</td>
<td>7.550</td>
<td>36,4 %</td>
</tr>
<tr>
<td>Sm-oksid</td>
<td>US$/t</td>
<td>2.500</td>
<td>2.600</td>
<td>-3,8 %</td>
</tr>
<tr>
<td>Dy-oksid</td>
<td>US$/t</td>
<td>64</td>
<td>35</td>
<td>82,9 %</td>
</tr>
<tr>
<td>Eu-oksid</td>
<td>US$/t</td>
<td>250</td>
<td>290</td>
<td>-13,8 %</td>
</tr>
<tr>
<td>Tb-oksid</td>
<td>US$/t</td>
<td>410</td>
<td>300</td>
<td>36,7 %</td>
</tr>
</tbody>
</table>

Vir: Sinton, 2006

Študija navaja, da naj bi se cene oksidov do leta 2008 spremenile za 40 do 80 % (povprečje oksidov), poudarja pa, da je omejitev proizvodnje na Kitajskem verjetno kratkoročna, ker se je že izkazalo, da država ni bila v stanju nadzirati postavljenih omejitev. Pri napovedi za obravnavano obdobje izhajam iz tabele, kjer sem opredelil letno rast cen neodijevega oksida (glej tab. 6).

Tabela 6: Letni porast cen neodijevega oksida (%) in cena po letih (US$ za tono)

<table>
<thead>
<tr>
<th>leto</th>
<th>letni porast</th>
<th>cena Nd oksida (US$/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 2007</td>
<td>80,00 %</td>
<td>18630,00</td>
</tr>
<tr>
<td>L 2008</td>
<td>60,00 %</td>
<td>29808,00</td>
</tr>
<tr>
<td>L 2009</td>
<td>35,00 %</td>
<td>40240,80</td>
</tr>
<tr>
<td>L 2010</td>
<td>20,00 %</td>
<td>48288,96</td>
</tr>
<tr>
<td>L 2011</td>
<td>10,00 %</td>
<td>53117,86</td>
</tr>
<tr>
<td>L 2012</td>
<td>5,00 %</td>
<td>55773,75</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (predpostavka na podlagi opravljenih analiz)

Na podlagi zgornje tabele sem izdelal graf in določil matematično funkcijo, ki opisuje izbrane podatke (glej sl. 30 na str. 47). Gre za polinom tretje stopnje.
Slika 30: Določitev matematične funkcije trenda rasti cene neodijevega oksida

\[y = -261.7x^3 + 3200.7x^2 - 2602.2x + 5250.4 \]

\[R^2 = 0.9991 \]

Vir: Lasten vir (izhodišče grafa je tabela 6 na strani 46)

Z dobljeno matematično funkcijo sem dobil gibanje cen po tromesečjih znotraj obravnavanega obdobja. V tabeli 5 dodatka A so podatki pripravljeni v taki obliki, da to ustreza simulaciji (slika 5 dodatka A prikazuje grafične podatke iz simulacije). Slika 31 prikazuje celovito obliko izbranega trenda in verjetnostne porazdelitve.

Slika 31: Grafična oblika podatkov za simulacijo (Nd-oksid)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)

Krivulja, ki sem jo določil, je zelo neugodna, vendar na podlagi razpoložljivih podatkov obstaja resna bojazen, da bo to realen scenarij. Tudi to, da imamo, globalno gledano, zgolj par proizvajalcev, ki se lahko gredo cenovno voditeljstvo, ne govori v prid kupcem. V prepričanje glede izbranega trenda me pelje tudi Lynas Corporation (Lynas Corporation, 2006) z najnovejšimi podatki na datum izdelave analize (03. 11. 2006), kjer navaja letno rast cene neodijevega oksida za 130 % (tretje tromesečje 2005, tretje tromesečje 2006). Prav zato sem se tudi pri izbiri porazdelitve, ki sem jo dodelil izbranemu trendu, odločil, da bo to beta porazdelitev s takimi parametri, ki privilegirajo še večjo stopnjo rasti, kot sem jo določil.
6.3 ANALIZA TRENDOV GIBANJA CEN OSTALIH VELIČIN

6.3.1 STROŠKI DELA

Trende stroškov dela je potrebno opredeliti za različne države, saj dražje komponente motorja, ki se analizirajo v simulacijah, prihajajo iz različnih koncev sveta. V prvi vrsti je seveda Slovenija, saj se poleg stroškov komponent motorja, ki se nabavljajo v Sloveniji, pojavlja tudi strošek dela, ki ga ima podjetje s proizvodnjo izdelka. V splošnem bi si upal reči, da z vidika stroškov dela ni posebnih negotovosti oziroma tveganj za države EU (iz njih prihajajo vse dražje komponente motorja). Špekulativno bi lahko reklo, da bo strošek dela sledil inflaciji posamezne države (upoštevati velja še ostale dejavnike, kot je na primer produktivnost ali pa pritisk držav z nižjimi stroški dela na pogajalsko moč sindikatov). V simulacijo je potrebno vključiti nominalno rast/ upadanje plač in ne realne.

6.3.1.1 SLOVENIJA

Vsebina tega segmenta je povzeta v celoti iz Poročila o konjunktturnih gibanjih (GZS, 2006, od strani 16 do strani 20). V letu 2006 je bila rast plač dokaj umirjena, tako da sta bruto in neto plača realno porastli za 2,2 %. Napoved za leto 2007 pravi, da se bo v glavnem plača usklajevala z inflacijo. Sprememma stopnje davka na izplačane plače ne bo bistveno vplivala na stroške dela, tako da naj bi bila rast bruto plač 2,1 %. Treba pa je gledati na podatke, ki so kar se da primerljivi s podjetjem, torej na predelovalno dejavnost in, še boljše, na panogo. V predelovalni dejavnosti je bila realna rast bruto plače v prvih devetih mesecih 2006 2,9 %. Panoga proizvodnje kovin in kovinskih izdelkov je imela v istem obdobju 3,1 % realno rast bruto plač. Vir napoveduje, da bo v obeh letih stopnja inflacije približno enaka (2,5 % letno).

Tabela 7: Nominalna rast bruto plač branža za Slovenijo med 2007 in 2012 (%)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Realna rast</td>
<td>3,1%</td>
<td>2,9%</td>
<td>2,6%</td>
<td>2,4%</td>
<td>2,1%</td>
</tr>
<tr>
<td>Inflacija</td>
<td>2,5%</td>
<td>2,5%</td>
<td>2,4%</td>
<td>2,4%</td>
<td>2,4%</td>
</tr>
<tr>
<td>Nominalna rast</td>
<td>5,7%</td>
<td>5,4%</td>
<td>5,1%</td>
<td>4,8%</td>
<td>4,6%</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (predpostavka na podlagi opravljenih analiz)

Pri opredelitvi negotovosti, povezane s to vhodno veličino, ni smotrno pretiravati. Predpostavil bom normalno porazdelitev s povprečjem 1 in standardno deviacijo 0,02. Za

Slika 32: Grafična oblika podatkov za simulacijo (stroški dela Slovenija)

Vir: Lasten vir (izračun na podlagi tabele 7 na strani 48)

Pri definiranju podatkov, ki se vnesejo v simulacijo, je potrebno tiste, ki so bili predhodno predstavljeni, modificirati, kjer je osnova tromesečni in ne letni porast stroškov dela (v tabeli 6 dodatka A so podatki pripravljeni v taki obliki, da to ustreza simulaciji, prikaz dopolnjuje še slika 6 dodatka A).

6.3.1.2 ITALIJA, FRANCIJA IN NEMČIJA

Napoved trenda stroškov dela za Italijo in Francijo je potrebno opredeliti zaradi določenih komponent, ki izhajajo iz teh držav. Razpoložljivih podatkov je zelo malo. Dobro bi bilo, če bi imel natančne podatke predvsem za Italijo, ker podjetje od tam kupuje bakreno žico. V bistvu se lahko naslanjam na zgolj en vir podatkov pri opredelitvi nominalne rasti stroškov dela v teh dveh državah, in sicer na poročilo na ravni EU (European Commission - Directorate General ECFIN, 2006, str. 87), kjer je navedena nominalna rast plač za leto 2007 za članice EU. To je celotna rast in ne rast za branžo, ki bi bila primernejša za moje delo. Za Francijo velja napoved za leto 2007 o 3,2 % nominalnem letnem porastu stroškov dela, za Italijo velja napoved 2,7 % nominalnega porasta, za Nemčijo pa je ta vrednost –0,1 %. Predpostavil bom konstantne vrednosti tudi za ostala leta trajanja analize, s tem da trenda za Nemčijo sploh ne bom izdelal (na rezultat simulacije bi imelo zanemarljiv vpliv). Vsi podatki za trend stroškov dela v Franciji se nahajajo v tabeli 7 dodatka A (dodatni prikaz nudi slika 7 dodatka A), za Italijo pa glej tabelo 8 dodatka A (dodatni prikaz nudi slika 8 dodatka A).

6.3.2 STROŠKI ENERGENTOV

6.3.2.1.1 NAFTA (NAPOVED)

predpostavlja scenarij svetovne gospodarske rasti glede na razpoložljive podatke in napoveduje povpraševanje po energetih. Analizira tudi stanje tehnologije in stanje svetovnih zalog in kapacitet pri proizvodnji različnih energetov ter vlaganjih. Za nafto, ki bo tudi v prihodnosti glavni vir pogona za transportni segment in še posebej za težja vozila, je podan ugoden trend, vsaj kar se tiče obdobja, ki ga obravnava (glej sl. 33). V nalogi povzemam zgolj končne rezultate analize. Ista slika vključuje tudi projekcije Claudea Mandila (Mandil, 2005), ki so nekoliko bolj optimistične.

Slika 33: Napoved cene za sodček (Us$ za sodček)

Vir: Lasten vir (predpostavka na podlagi opravljenih analiz)

Slika 34: Določitev matematične funkcije, ki opisuje trend

\[y = -0.43x^4 + 3.93x^3 - 7.83x^2 - 8.68x + 73.00 \]

\[R^2 = 1.00 \]

Vrednost za sod (US$)

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2010</th>
<th>2014</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>49.0</td>
<td>48.3</td>
<td>56.0</td>
<td>60.0</td>
<td></td>
</tr>
</tbody>
</table>

Vir: Lasten vir (izračun na podlagi slike 33 na strani 50)

Sledilo je določanje vrednosti za posamezno tromesečje (na podlagi funkcije), kjer sem v funkcijo za »x« vstavljal vrednosti med 1 (prvo tromesečje 2007) in 3 (zadnje tromesečje 2011), kjer so vmesne vrednosti ustrezno interpolirane. Dobil sem vrednosti cene v US$ za sodček po tromesečjih. Za potrebe simulacije sem nato še določil izhodiščno vrednost, ki je glede na metodologijo izdelave simulacije 1 (normaliziranih 60 EUR za sodček) in ostale vrednosti po tromesečjih, ki so prav tako normalizirane z izhodiščno vrednostjo za sodček. Končna faza je določitev verjetnostnih porazdelitev za posamezno tromesečje. Tudi to oceno sem določil arbitrarno, kar pomeni, da ni statistične metode, prek katere bi porazdelitve definiral. Izbral sem tri različne beta porazdelitve, kjer so parametri definirani nekoliko bolj pesimistično. Odločil sem se, da bo porazdelitev favorizirala vrednosti, ki so večje od določenih, preko funkcije, in sicer različno, glede na oddaljenost opazovanega tromesečja od izhodiščnega, kar je prikazano v tabeli 9 dodatka A (slika 9 dodatka A prikazuje grafične podatke iz simulacije). Grafična upodobitev vrednosti, ki bodo uporabljene v simulaciji, je prikazana na sliki 35.

Slika 35: Grafična oblika podatkov za simulacijo (nafta)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)
6.3.2.2 ELEKTRIČNA ENERGIJA (NAPOVED)

Napovedi za trende cen električne energije bi bilo potrebno narediti za različne države (izvor dobaviteljev). Ker pa je elektrika relevanten element cene samo pri nekaterih komponentah motorja, je smiselno opredeliti napoved zgolj za Slovenijo in Nemčijo.

Na ceno električne energije poleg zakonitosti ponudbe in povpraševanja nedvomno vpliva tudi liberalizacija trga električne energije v EU. Tudi ostali dejavniki, kot napovedi gradnje jedrskih central v nekaterih državah EU, energetska odvisnost EU od drugih držav (z vidika nafte, zemeljskega plina), davek na emisije CO₂, povezan s kvotami, pomagajo pri oblikovanju cene.

Zgodovinski podatki z vidika pridobivanja električne energije kažejo, kako se je spremenila struktura uporabljenih tehnologij za pridobivanje električne energije po letih (glej tab. 8). Razvidno je, da je nuklearna elektrarna racionalen način, čeprav smatran kot nevaren, saj je delež uporabe jedrske energije zelo narastel. Tudi z vidika emisij je zelo prijazna.

Tabela 8: Struktura tehnologij pridobivanja električne energije v letu 1973 in 2002 v %

<table>
<thead>
<tr>
<th>Tehnologija</th>
<th>L.1973</th>
<th>L.2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafta</td>
<td>25 %</td>
<td>7,2 %</td>
</tr>
<tr>
<td>Jedrska energija</td>
<td>3 %</td>
<td>16,6 %</td>
</tr>
<tr>
<td>Premog</td>
<td>38 %</td>
<td>39 %</td>
</tr>
<tr>
<td>Hidrocentrale</td>
<td>21 %</td>
<td>16,2 %</td>
</tr>
<tr>
<td>Zemeljski plin</td>
<td>12 %</td>
<td>19,1 %</td>
</tr>
<tr>
<td>Ostalo</td>
<td>0,7 %</td>
<td>1,9 %</td>
</tr>
</tbody>
</table>

Vir: Financial Forecast Center, september, 2006, str. 3

Commission Of The European Communities (Commission Of The European Communities, 2007, str. 4) prikazuje cene električne energije v EU15 od leta 1997. Iz grafa se lahko razbere, da se je v tem obdobju cena električne energije zelo malo spreminjala. Opazovana je zgolj cena za gospodinjstva, ki ni nujno korelirana s ceno za industrijo.

Slika 36: Grafična oblika podatkov za simulacijo (električna energija)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)

6.4 KRIVULJE UČENJA

Iz teorije poznan učinek krivulj učenja se v praksi, vsaj v podjetju, iz katerega izhajam, premalo upošteva. Preko uporabe tega učinka bi podjetje bolje obvladovalo tveganje, kot je to sedaj. Povsem samoumevno je, da se lahko ob zagonu projekta pojavijo težave, kot so stroški višji, kot so tisti, ki smo jih načrtovali. Načrtovani stroški so osnovani na optimalnem stanju, ki se doseže šele po določenem času od pričetka proizvodnje, kar je posledica pridobivanja izkušenj vpletene. Neko empirično obliko krivulje bi bilo moč določiti iz izkušenj na preteklih projektih. Krivuljo bi nato pri novih projektih uporabili pri kalkulacijah. Seveda bi bilo to krivuljo potrebno popraviti glede na vplivna dejstva (stopnja nepoznavanja tehnologije, trga, dobaviteljev …). Tako bi prišli do veliko zanesljivejših ocen o stroški čas trajanja projekta (v primeru moje simulacije skozi tromesečja). Uporabljeni bodo štiri krivulje učenja, in sicer za:

- kakovost,
- produktivnost,
- izkoriščenost opreme,
- prihranke zaradi cenejših nabavnih virov in izboljšav tehnologije.

Zadnja od navedenih krivulj vpliva zgolj na stroške materiala. Poudariti je potrebno, da gre za popolnoma neodvisne krivulje.

Krivulje za kakovost, produktivnost in izkoriščenost opreme/dela izhajajo iz teorije, povezane s kazalnikom o celoviti izkoriščenosti opreme (angl. Overall equipment efficiency – OEE). Kazalnik je danes standard v industriji in je sestavljen iz treh členov (formula 7 na str. 53 in 54).

Formula 7: Kazalnik celovite izkoriščenosti opreme

\[
OEE = \frac{\text{razpoložljivost} \times \text{učinkovitost} \times \text{kakovost}}{\text{razpoložljiv čas - zastroji}}
\]

\[
\text{razpoložljivost} = \frac{\text{razpoložljiv čas}}{\text{razpoložljiv čas}}
\]

6.4.1 KRIVULJA UČENJA KAKOVOSTI

Ko govorimo o kakovosti, je potrebno jasno opredeliti ta pojem. Glede na TQM-načela je kakovost zelo širok pojem, ki se stopnja od nič pa do praktično vseh dogodkov v podjetju. Pojem kakovosti se tudi geografsko razlikuje. Tako je na primer v Evropi pojmovanje kakovosti drugačno kot v ZDA ali Japonski (Shiba, Graham, Walden, 1990, str. 5). Pri krivuljah učenja kakovosti je končni rezultat določitev treh različnih krivulj, ki bodo predstavljale različne velikosti nekakovost (izmet) glede na fazo proizvodnega procesa. Dejstvo je, da je potrebno za neko količino dobrih motorjev porabiti večjo ali v najboljšem primeru enako porabo materialov (na primer za 1 motor porabimo 1 rotor). Slednji scenarij je praktično nemogoč, težimo lahko le k optimalni velikosti, ki jo opredelimo kot normativno. Vedeti moramo, da je z vidika proizvodnega procesa najbolje, da odkrijemo napako čim bližje trenutku nastanka in takoj izločimo defekten kos, ne pa da nanj še dodajamo vrednost in napako odkrijemo pozneje. Proizvodni proces za obravnavani izdelek, ki je predstavljen v točki 4.3.4 na strani 15, ima tri glavne faze, kjer se ugotavlja ustreznost.

V simulaciji ne bo zajetih še morebitnih vmesnih točk nastajanja in izločanja defektnih izdelkov, kar pa predstavlja praktično neobstoječi delež. Omenjene točke so kontrola po navijanju, zalivanju in končni montaži. Skladno z navedenim bom izdelal tri parcialne krivulje kakovosti (glej sl. 37).
V nadaljevanju je nujno razložiti ozadje treh krivulj. Omenil sem že, da je za en dober izdelek, predvsem v zagonskih fazah, potrebna več kot le normativna poraba komponent motorja, ki jo praviloma izkazujejo kalkulacije. Predpostavimo, da je na montaži v zagonski fazi projekta x_0, na zalivanju y_0 in na podprocesu izdelave statorja z_0 % izmeta. Ciljne vrednosti, ko smo proces izboljšali, so potem x_1, y_1, z_1. Za montažo je prikazano na sliki 37 na strani 54, da za 1 dober izdelek potrebujemo v zagonski fazi $1/(1 - x_0)$ komponent motorja, ki se tam vgrajujejo. Ko je proces optimiran, potrebujemo $1/(1 - x_1)$ teh komponent. Enako je tudi na podprocesih. Iz povedanega lahko sklepamo, da je v zagonski fazi potrebno $1/(1 - x_0)(1 - y_0)$ komponent motorja, ki vstopajo v podproces zalivanja in $1/(1 - x_0)(1 - y_0)(1 - z_0)$ komponent motorja, ki vstopajo v podproces izdelave statorja, in skladno s predstavljenim so tudi potrebe, ko smo proces optimirali. Opisani pristop je le nekoliko spremenjen glede na tistega, ki ga predstavljata Meyers in Stephens (Meyers, Stephens, 2000, str. 20), vendar »pisan na kožo« obravnavanemu izdelku.

6.4.1.1 VHODNI PODATKI ZA KRIVULJE UČENJA KAKOVOSTI

Zagotavljanje kakovosti je pomemben dejavnik, ko govorimo o projektih v avtomobilski industriji. Pod tem pojmom razumemo aktivnosti zagotavljanja kakovosti preko delavcev, z zasnovo ustreznega proizvodnega sistema in proizvodnih metod (Hirano, 1987, str. 158).

Tabela 9: Izbrani parametri za simulacijo

<table>
<thead>
<tr>
<th>Koledarski teden</th>
<th>I9</th>
<th>I40</th>
<th>I41</th>
<th>I42</th>
<th>I43</th>
<th>I44</th>
<th>I45</th>
<th>I46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linija statorja</td>
<td>38433</td>
<td>27251</td>
<td>45084</td>
<td>39587</td>
<td>23873</td>
<td>19482</td>
<td>23921</td>
<td>23514</td>
</tr>
<tr>
<td>Lijija zalivanja</td>
<td>35000</td>
<td>34793</td>
<td>22381</td>
<td>54523</td>
<td>27142</td>
<td>46039</td>
<td>30624</td>
<td>22000</td>
</tr>
<tr>
<td>Montaža</td>
<td>70761</td>
<td>115240</td>
<td>103075</td>
<td>74909</td>
<td>61590</td>
<td>55961</td>
<td>80403</td>
<td>52396</td>
</tr>
</tbody>
</table>

Vir: Interni vir podjetja (poročila o kakovosti)

Funkcije, ki popisujejo zgornje podatke, so prikazane v tabeli 10.

Tabela 10: Izbrani parametri za simulacijo

<table>
<thead>
<tr>
<th>Funkcija</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linija statorja</td>
<td>$y = 39112 x^{-0.272}$</td>
</tr>
<tr>
<td>Linija zalivanja</td>
<td>$y = 53388 x^{-0.390}$</td>
</tr>
<tr>
<td>Montaža</td>
<td>$y = 131793 x^{-0.567}$</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (preračun na osnovi podatkov v tabeli 9)
Kot pri vseh analizah je bilo tudi pri kakovosti potrebno funkcije diskretizirati in tako določiti vrednosti za posamezno tromesečje (za slikovni prikaz glej sliko 11 dodatka A, v tabelarični obliki pa tabelo 11 dodatka A). Izbrana porazdelitev, s katero napovedujem tveganje, ima dokaj velik razpon, vendar menim, da je tako prav, ker je kakovost precej težko nadzorovati, sploh pa pri tako nizkih vrednostih. Ta porazdelitev je bila izbrana predvsem na podlagi poznanja razmer v proizvodnem procesu, kjer se največ napak odkrije na montaži. Izbirani trend krivulje učenja je mogoče nekoliko preveč pesimističen in bomo pri prihodnosti prej dosegli zastavljene vrednosti. Privzeti je pač potrebno, da se tu pojavlja neka rezerva, ki bo kompenzirala večja odstopanja in izredne dogodke (na primer slaba dobava s strani dobavitelja). Teh prek standardne deviacije ne zajamemo, ker je premajhna. Skupok izbranih parametrov prikazujem tudi na sliki 38.

Slika 38: Grafična oblika podatkov za simulacijo (krivulja učenja – kakovost)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)

Pri krivuljah učenja kakovosti, ki sem jih določil za posamezne segmente proizvodnega procesa, v praksi podjetje posveča veliko pozornost temu vprašanju, saj se zaveda, da je poslovni izid, poleg same izkoriščenosti opreme in delavcev, odvisen v veliki meri tudi od kakovosti. Na cene strateških surovin se žal ne da vplivati.

6.4.2 KRIVULJA UČENJA PRODUKTIVNOSTI

delavcev (33*0,79). Ta logika velja tudi za ostale segmente proizvodnje (izhodiščno število delavcev za montažo je 13, za zalivanje pa 10). Deleži sameznih segmentov proizvodnje glede neposrednih stroškov dela so 58,9 % stator, 17,8 % zalivanje in 23,2 % montaža. Izbrana verjetnostna porazdelitev je dokaj ozka, kar je posledica relativno velike predvidljivosti bodočih dogodkov. Grafično prikazujem skupaj izbranih parametrov na sliki 39.

Slika 39: Grafična oblika podatkov za simulacijo (krivulja učenja – produktivnost)

Vir: Lasten vir (izbrani vhodni podatki za simulacijo na podlagi opravljenih analiz)

6.4.3 KRIVULJA UČENJA IZKORIŠČENOSTI NAPRAV

Ta krivulja opisuje trend gibanja razpoložljivosti opreme. To bo bil del že predstavljenega kazalnika OEE (glej točko 6.4 na strani 53), ki predstavlja, koliko časa znotraj predpisane obratovalne časa oprema dejansko proizvaja. Mogoče je z zanesljivostjo opredeliti končno stanje, in sicer proizvodnjo v dveh izmenah in brez nadur (celo z določeno rezervo), če seveda ostajajo pogodljive količine kot posledica povečanja povpraševanja in neučinkovitosti proizvodnje). Vse izbrane parametre prikazuje tabela 13 dodatka A (za slikovni prikaz glej sliko 13 dodatka A). Porazdelitev, ki opisuje negotovost, je izbrana tako, da v prvih fazah predvideva bolj negotovo stanje, potem pa rahlo umirjanje, ki je posledica večje priučenosti delavcev in znanja tehnologov in vzdrževalcev.

6.4.4 KRIVULJA UČENJA NABAVNIH VIROV IN TEHNOLOGIJE

Ta krivulja se nanaša zgolj na tehnološke izboljšave, ki bodo privedle do prihrankov na komponentah motorja (stroških materiala). Dodatno zajema še potencialne prihranke zaradi zamenjave nabavnih virov oziroma nabavnih sinergij s prihodnjimi projekt (realno pričakovani za leto 2008) ter prihodnjih povezovanj med podjetji (Rotomatika – projekt izdelave sorodnega motorja teče tudi v tem podjetju). Nastopanje pred dobavitelji z boljšimi pogajalskimi izhodišči (bakrena žica ali statorski paket), ki se odražajo v obsegu skupne nabave, nedvomno pomeni nižanje nabavnih cen za kos. Za ovrednotenje prihrankov je potrebno seveda poznati načrete, ki jih ima SPE in ki jih

6.5 SPREMEMBA POGODBENIH KOLIČIN

Pogodbene količine so po mojem mnenju pri takih projektih, kot je ta, zelo važen vplivni parameter. Ker je motor sestavni del avtomobila, kjer je napoved prodaje sicer izdelana, vendar ji ni moč popolnoma zaupati, je jasno, da povpraševanje trga lahko pomeni razliko med dobičkom ali pa izgubo. Enako velja za trajanje projekta, ki posledično vpliva na amortizacijsko dobo (podjetje ima s tem že pozitivne izkušnje s predhodnim projektom EHPS za kupca BMW). Narava izdelka je taka, da je po prenehanju proizvajanja oprema praktično neuporabna za druge izdelke. To pomeni, da za opremo ne moremo iztržiti prihodkov z njeno prodajo ali jo že amortizirano uporabiti za izdelavo drugih izdelkov.

Dinamika projekta z vidika pogodbenih in dejansko izdelanih količin je bila že predstavljena (glej sl. 7 na str. 14) in kaže na nenormalno odstopanje (71,4 %). Takega razkoraka v prihodnjih letih ni pričakovati, tako da se bodo dejansko izdelane količine gibale bliže pogodbenim. Vseeno pa je pričakovati določena odstopanja. Kupec sicer predpisuje zgolj kratkoročno odstopanje od dnevnih potreb (+15 %) in pričakuje pripravljenost dobavitelja, da proizvaja v tretji izmeni ali med vikendi. Stroški dela se lahko v tem primeru smatrajo kot variabilni, saj proizvajajo isti delavci v podaljšanem času.

Trenutna slika proizvodnje je taka, da bi podjetje lahko povečalo sposobnost dobav kupcu. To potegne seveda posledice v strukturi stroškov. V simulaciji se držim predpostavke iz točke 6.1 Zasnova simulacij, na strani 30 (prag preskoka fiksnih stroškov še ni dosežen, povečanje ne predstavlja spremembe v strukturah izmen, rezerva je 10 %). Pri amortizaciji je izračun preprost, saj se investicija razdeli na več poslovnih učinkov. Stroški dela so zaradi narejene predpostavke obravnavani kot fiksen strošek. Če se povpraševanje zmanjša za 10 %, lahko obravnavamo delo ravno tako kot fiksen strošek, saj odpuščanja zaposlenih
ni, potrebno je še vedno proizvajati ob trenutni strukturi izmen. Večja zmanjšanja pa bi že pomenila potrebo po racionalizaciji proizvodnje (zmanjšanje števila zaposlenih).

V simulaciji bom predpostavil, da se lahko pogodbene količine znotraj predvidenega trajanja projekta zaradi opisanega spremenja za ±10 %, kar bom okarakteriziral z normalno porazdelitvijo s povprečno vrednostjo 1 in standardno deviacijo 0,03. Predpostavil bom, da so amortizacija in stroški neposrednega dela fiksni (glej tabelo 15 dodatka A, za slikovni prikaz glej sliko 15 dodatka A). To pomeni, da se bo amortizacija delila na več/manj poslovnih učinkov. Enako bo veljalo za skupne stroške dela, ki so opredeljeni kot stroški neposrednega dela in stroški režije.

Z vidika podaljšanja trajanja projekta (povečanja kumulativno izdelanih količin v primerjavi s pogodbenimi) se investicija razdeli na več poslovnih učinkov, stroški dela pa ostanejo nespremenjeni znotraj strukture stroškov (za skrajšanje trajanja projekta je z vidika investicije slika obratna). Monte Carlo simulacija bo upoštevala povečanje povpraševanja znotraj predvidenega trajanja projekta.

7 IZDELAVA SIMULACIJ

7.1 KALKULACIJA NA IZHODIŠČNI DAN (08. 11. 2006)

7.1.1 STRUKTURA LASTNE CENE

Za izhodiščne vrednosti je vzeta kalkulacija lastne cene izdelka na dan 8. 11. 2006. Narejena je po metodologiji, ki jo je predpisal kupec in ta kalkulacija se bo v nadaljevanju uporabila za izdelavo simulacije občutljivosti in Monte Carlo simulacije. Posamezni elementi lastne cene in vsebina teh elementov je definirana v točki 5.2 Opredelitev polne lastne cene izdelka na strani 18.

Tabela 11: Elementi lastne cene izdelka z grafom

<table>
<thead>
<tr>
<th>Element</th>
<th>eur/kos</th>
<th>Delež</th>
<th>Kumul. delež</th>
<th>Kumul. eur/kos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponente motorja</td>
<td>15,82</td>
<td>57,7%</td>
<td>58%</td>
<td>15,82</td>
</tr>
<tr>
<td>Neposredno delo</td>
<td>4,13</td>
<td>15,1%</td>
<td>73%</td>
<td>19,95</td>
</tr>
<tr>
<td>Ostalo</td>
<td>2,89</td>
<td>10,5%</td>
<td>83%</td>
<td>22,84</td>
</tr>
<tr>
<td>Amortizacija</td>
<td>2,36</td>
<td>8,6%</td>
<td>92%</td>
<td>25,20</td>
</tr>
<tr>
<td>Spl. Stroški SPE</td>
<td>1,96</td>
<td>7,1%</td>
<td>99%</td>
<td>27,16</td>
</tr>
<tr>
<td>Energija</td>
<td>0,26</td>
<td>1,0%</td>
<td>100%</td>
<td>27,42</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (osnova je kalkulacija lastne cene po kupčevi metodologiji)

Tabela 11 prikazuje elemente lastne cene in Pareto diagram. Razvidno je, da je delež komponent motorja dokaj visok. Elementi, ki ustrezajo Pareto pravilu, so trije, in sicer.
komponente motorja, neposredno delo in ostalo. Razvidno pa je, da tudi komponent amortizacije in splošnih stroškov SPE ne gre zanemarjati, saj so po vrednostih dokaj visoki. Zanemarljiv je zgolj delež energije.

7.1.2 ANALIZA KOMPONENT MOTORJA

Z analizo posameznih komponent motorja želim opredeliti tiste, ki jim je potrebno posvetiti večjo pozornost pri nadaljnjih analizah. Stroški vseh komponent motorja so bili že predstavljeni in dejstvo, da znašajo 57,7 % lastne cene, vsiljuje nadaljnjo razčlenitev.

Slika 40: Pareto diagram stroškov sestavnih delov

Vir: Lasten vir (osnova je kalkulacija lastne cene po kupčevi metodologiji)

Na sliki 40 je prikazan Pareto diagram za komponente motorja. Razvidno je, da je razmejitev po pravilu 80/20 komponenta okrova, vendar menim, da je pomembno natančneje analizirati vse komponente, do vključno jedra. Tem komponentam je potrebno določiti strukturo nabavne cene za Iskro Avtoelektriko d. d.

7.1.3 NATANČNA ANALIZA »PARETO« KOMPONENT

zanesljivosti podatkov (na podlagi razpoložljivih virov). Posamezne komponente so v tabeli prikazane z zaporedno točko številčenja poglavij.

Tabela 12: Struktura nabavne cene v %

<table>
<thead>
<tr>
<th>Element</th>
<th>7.1.3.1</th>
<th>7.1.3.2</th>
<th>7.1.3.3</th>
<th>7.1.3.4</th>
<th>7.1.3.5</th>
<th>7.1.3.6</th>
<th>7.1.3.7</th>
<th>7.1.3.8</th>
<th>7.1.3.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopnja zanesljivosti</td>
<td>↑↑↑↑↑</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
<td>/</td>
<td>↑</td>
<td>↑↑↑</td>
<td>↑↑↑</td>
</tr>
<tr>
<td>Material</td>
<td>80 %</td>
<td>25 %</td>
<td>65 %</td>
<td>35 %</td>
<td>45 %</td>
<td>50 %</td>
<td>40 %</td>
<td>60 %</td>
<td>/</td>
</tr>
<tr>
<td>Amortizacija</td>
<td>6 %</td>
<td>10 %</td>
<td>8 %</td>
<td>5 %</td>
<td>15 %</td>
<td>10 %</td>
<td>/</td>
<td>5 %</td>
<td>10 %</td>
</tr>
<tr>
<td>stroški dela</td>
<td>7 %</td>
<td>40 %</td>
<td>17 %</td>
<td>30 %</td>
<td>20 %</td>
<td>25 %</td>
<td>/</td>
<td>35 %</td>
<td>12 %</td>
</tr>
<tr>
<td>Stroški energije</td>
<td>1 %</td>
<td>10 %</td>
<td>1 %</td>
<td>7 %</td>
<td>1 %</td>
<td>2 %</td>
<td>/</td>
<td>5 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Ostalo</td>
<td>1 %</td>
<td>10 %</td>
<td>4 %</td>
<td>18 %</td>
<td>6 %</td>
<td>8 %</td>
<td>/</td>
<td>10 %</td>
<td>3 %</td>
</tr>
<tr>
<td>Dobíček</td>
<td>5 %</td>
<td>5 %</td>
<td>5 %</td>
<td>5 %</td>
<td>13 %</td>
<td>5 %</td>
<td>/</td>
<td>5 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>

↑↑↑↑↑ ... visoka stopnja zanesljivosti predvidevanja
↑↑↑ ... srednja stopnja zanesljivosti predvidevanja
↑ ... nizka stopnja zanesljivosti predvidevanja

Vir: Lasten vir (osnova so predpostavke opisane v nadaljevanju)

7.1.3.1 ŽICA LAKIRANA

Sama tehnologija izdelave žice je preprosta in široko dostopna. Ocenjujem, da so potrebne investicije v opremo dokaj visoke (primerljive s sorodnimi tehnologijami preoblikovanja), z vidika amortizacije pa menim, da je tu močan vpliv ekonomij obsega. Zato menim, da v žici, ki jo podjetje nabavlja pri dobavitelju, amortizacija ni prevladujoči strošek. To je vhodni material. Energija ne more biti relevanten strošek, dobiček pa je verjetno na ravni dobičkov panoge (5 %). Izdelava bakrene žice različnih premerov in oplaščen je komplementarna dejavnost podjetja dobavitelja. Za definicijo strukture si lahko pomagam z dvema viroma, in sicer formulo iz poslovnoinformacijskega sistema, ki opredeljuje nabavno ceno (ta je funkcija materiala in fiksnega pribitka na strošek materiala), in podatkov iz SPE. Glede na večjo zanesljivost podatkov iz poslovnoinformacijskega sistema sem se odločil, da privzamem slednje. Materiala (bakra) je približno 80 %, ostalih 20 % pa je potrebno porazdeliti med opredeljene kategorije.

7.1.3.2 MAGNETI

Magneti se izdelujejo s tehnologijo sintranja. Tehnologija je prisotna na trgu že veliko časa, z leti pridobiva na veljavnosti, saj se je toliko izboljšala, da so komponente, izdelane s sintranjem, za določene izdelke nepogrešljive. Material se naknadno še brusi, da se doseže potrebna dimenzija oblika. Delež amortizacije opreme je verjetno dokaj nizek. Delež stroškov dela je nedvomno visok, saj gre za zelo napredne tehnologije priprave materialov (velika vlaganja v razvoj). Predvidevam, da je dobavitelj pod zelo hudim pritiskom kitajske industrije in ne dosega pozitivnih ekonomskih dobičkov. Delež materiala je po podatkih SPE nizek (20 %). Energija, potrebna za izdelavo magnetov, je tudi pomemben dejavnik, saj tehnologija sloni na stiskanju prahu pri povečani temperaturi.
7.1.3.3 STATORSKI PAKET

7.1.3.4 PREDNJI POKROV

Dobavitelj prednjega pokrova je Livarna Komen d. o. o., ki je del Skupine Iskre Avtoelektrike. Tehnologiji izdelave pokrova sta tlačno litje in naknadna mehanska obdelava. Tlačno litje zahteva uporabo električne energije za raztaljevanje zlitine in ta strošek znotraj izdelka ni zanemarljiv. Podatke, iz katerih ugotavljam strukturo, iščem v več virih, in sicer:

- kalkulacija iz Livarne Komen: podatki so na voljo v Iskri Avtoelektriki d.d. in so najprimernejši za uporabo,
- bilanca stanja Livarne Komen: iz nje bi dobil okvirno strukturo »povprečnega« izdelka,
- podatki SPE: najmanj natančni,
- poslovnoinformacijski sistem: pridobim lahko strukturo nabavne cene, ki se preračunava enako kot bakrena žica (formula).

Pri primerjanju podatkov iz bilance stanja in tistih iz poslovnoinformacijskega sistema sem prišel do praktično enakega deleža materiala (35 % oziroma 36 %). Zato bom v simulacijo vnesel kar strukturo, ki jo dobim iz bilance stanja.

7.1.3.5 GRED

energije niso relevantni, ravno tako ne stroški ostalega. Težko pa je reči, kakšen je dobiček. Špekulativno bi lahko rekel, da dosega pozitivne dobičke (na račun majhnosti in fleksibilnosti).

7.1.3.6 OKROV

7.1.3.7 LEŽAJI

Ležaji so sicer zajeti znotraj Pareto pravila, a jih ne bom analiziral z vidika strukture stroškov. Dejstvo je, da je na tem področju izredna konkurenca in se še veča z vstopom novih ponudnikov (predvsem Kitajska). Tudi če bi strukturo razčlenil na elemente, je dejstvo, da, recimo, trenda za zelo specifičen material (posebno jeklo) nimam.

7.1.3.8 ZALIVNA MASA

7.1.3.9 JEDRO

Jedro se izdeluje iz jekla. Tehnologiji izdelave sta struženje in vrtanje. Glede na samo konstrukcijo tega sestavnega dela bi lahko sklenil, da je material dokaj visoka postavka v strukturi nabavne cene. Tehnologija to ne more biti, ker je splošno poznana in cenovno zelo dostopna. Dobavitelj je relativno majhen, urne postavke države izvora so nizke, tako da so stroški dela nekje enakovredni amortizaciji. Stroški energije niso relevantni, stroški ostalega prav tako ne. Glede dobička pa velja zelo verjetno enako kot velja za gred.

7.2 SIMULACIJA OBČUTLJIVOSTI, SIMULACIJA SCENARIJEV

Že v točki 6.1 Zasnova simulacij na strani 32, je bilo opredeljeno, kako bodo izdelane simulacije. Simulacija scenarijev bo narejena tako, kot jo običajno izdelamo v fazi pripravljanja ponudbe. To pomeni, da se kalkulacija lastne cene vzame kot osnova za predvidevanje različnih možnih dogodkov, ki bi lahko vplivali nanjo. Pri komponentah motorja bo za deleže materialov v njih vzeta ocena, ki bi jo lahko podal v fazi izdelave

7.2.1 SIMULACIJA OBČUTLJIVOSTI

Glavni namen te simulacije je prikazati spremembo polne lastne cene, ko spreminjamo določeno veličino v določenem območju (v mojem primeru ±10 %), ob konstantni vrednosti ostalih. Veličine se lahko razdelijo v dve glavni skupini, in sicer v komponente motorja in ostale elemente (stroški dela, amortizacija …). Za komponente motorja je potrebno vsaki definirati, iz katere surovine je izdelana, in v končni fazi združiti tiste, ki spadajo skupaj, kar prikazuje tabela 13. Zaradi dejstva, da surovina ne predstavlja 100 % nabavne cene komponente motorja za Iskro Avtoelektriko, je potrebno opredeliti, kolikšen je v povprečju delež posamezne surovine prisoten v nabavljenih komponentah, kar je prikazano v tabeli 14, na strani 65 (polje delež).

Tabela 13: Strošek komponent glede na vhodne surovine z grafom (EUR/kos)

<table>
<thead>
<tr>
<th>Strošek materialov glede na vhodne surovine</th>
<th>strošek (eur/kos)</th>
<th>kumulativno (eur)</th>
<th>kumulativno (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeklo</td>
<td>4,994</td>
<td>4,994</td>
<td>31,6%</td>
</tr>
<tr>
<td>Baker</td>
<td>4,586</td>
<td>9,580</td>
<td>60,6%</td>
</tr>
<tr>
<td>Magneti</td>
<td>3,264</td>
<td>12,844</td>
<td>81,2%</td>
</tr>
<tr>
<td>Aluminij</td>
<td>1,393</td>
<td>14,237</td>
<td>90,0%</td>
</tr>
<tr>
<td>Masa</td>
<td>0,823</td>
<td>15,060</td>
<td>95,2%</td>
</tr>
<tr>
<td>Drugo</td>
<td>0,715</td>
<td>15,774</td>
<td>99,7%</td>
</tr>
<tr>
<td>Guma</td>
<td>0,036</td>
<td>15,810</td>
<td>99,9%</td>
</tr>
<tr>
<td>Plastika</td>
<td>0,009</td>
<td>15,819</td>
<td>100,0%</td>
</tr>
<tr>
<td>Skupaj</td>
<td>15,819</td>
<td>15,819</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (osnova je kalkulacija lastne cene po kupčevi metodologiji)

Poleg komponent motorja je potrebno, kot že omenjeno, identificirati še ostale elemente, ki vplivajo na spremembo polne lastne cene. Kot prvi dodaten element sem izbral pogodbene količine. Predpostavil sem, da na enak način, kot je to pri Monte Carlo simulaciji, vplivajo na amortizacijo in stroške dela. V tabeli 13 se opisana predpostavka kaže kot osnova (8,45 EUR/kos), ki sestoji iz:

- neposrednega dela: 4,13 EUR/kos
- splošnih stroškov SPE: 1,96 EUR/kos
- amortizacije: 2,36 EUR/kos
Bistvena je predpostavka o omejeno fiksnih stroških, opredeljena v točki 6.5 Sprememba pogodbenih količin na strani 58. Ta pravi, da se znotraj vzetih meja za analizo občutljivosti obnašajo opredeljeni stroški kot fiksni. To pomeni, da bodo v primeru večjih dejanskih količin od načrtovanih podeljeni na več poslovnih učinkov. Seveda velja tudi obratno. Variabilni stroški, kot na primer tisti, povezani s komponentami motorja, znotraj strukture lastne cene ne spremenijo vrednosti.

Dodatno sem se odločil še za kakovost in stroške dela v Sloveniji. Pri kakovosti sem predpostavil, da vpliva samo na stroške komponent motorja, kar seveda v praksi ni popolnoma res. Glede na to, da se odpadni materiali prodajo, lahko predpostavim, da to zmanjšuje napako (krije del variabilnih stroškov dela, ki so posledica slabe kakovosti). Dodatna predpostavka, ne spremenimo pa bistveno analize, je, da sem pri kakovosti privzel, da trenutno predstavlja izmet 7 % stroškov nabavljenih komponent motorja. To privede do tega, da so stroški komponent motorja v analizi občutljivosti 15,82 EUR/kos * 107 % = 16,93 EUR/kos. Zaradi tega znaša polna lastna cena izdelka 28,524 EUR/kos. V primeru +10 % spremembe vhodnega parametra kakovosti to pomeni, da bi imeli 7,7 % izmet, pri spremembi –10 % pa 6,3 % izmet. Predpostavko sem naredil zato, da lahko realno prikažem, kako vpliva kakovost na polno lastno ceno. Sprememba stroškov dela vpliva na skupne stroške dela v izdelku, ki so sestavljeni iz:

- neposrednega dela 4,13 EUR/kos
- splošnih stroškov SPE 1,96 EUR/kos

Dodatno je smiselno zajeti še vpliv menjalnega razmerja med EUR in US$, saj so določene surovine (baker, aluminij, neodijev oksid) vezane na US$. S tega vidika sem za te surovine sešel vrednosti iz tabele 13 na strani 64. Osnova, na katero menjalno razmerje vpliva, je 5,5 EUR/kos. V simulaciji je predvideno, da se tečaj spreminja za določen delež (kot vse ostale veličine). Izhodiščna vrednost, ki niti ni bistvena za simulacijo, je 1,32 US$/EUR.

Pri izdelavi analize sem izbral možno odstopanje od izhodiščnega stanja za –10 % in +10 %. Nato sem glede na predpostavke izračunal, kolikšna bi bila polna lastna cena izdelka, in to prikazal v tabeli 14, grafično obliko rezultatov prikazuje slika 41, na strani 65.

Tabela 14: Analiza občutljivosti (EUR/kos)

<table>
<thead>
<tr>
<th>Vplivni dejavniki</th>
<th>delež</th>
<th>vrednost EUR/kos</th>
<th>Spr.PLK kot posledica spr. elementov (EUR/kos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Pogodbene količine</td>
<td>100%</td>
<td>6,459</td>
<td>28,524</td>
</tr>
<tr>
<td>Kakovost</td>
<td>7%</td>
<td>16,926</td>
<td>28,524</td>
</tr>
<tr>
<td>Utro posavitev stroškov dela</td>
<td>100%</td>
<td>6,088</td>
<td>28,524</td>
</tr>
<tr>
<td>Menjalno razmerje EUR/US$</td>
<td>/</td>
<td>8,500</td>
<td>28,524</td>
</tr>
<tr>
<td>Jaklo</td>
<td>50%</td>
<td>2,497</td>
<td>28,524</td>
</tr>
<tr>
<td>Baker</td>
<td>60%</td>
<td>2,752</td>
<td>28,524</td>
</tr>
<tr>
<td>Magneti</td>
<td>85%</td>
<td>2,122</td>
<td>28,524</td>
</tr>
<tr>
<td>Aluminij</td>
<td>45%</td>
<td>0,627</td>
<td>28,524</td>
</tr>
<tr>
<td>Masa</td>
<td>65%</td>
<td>0,494</td>
<td>28,524</td>
</tr>
<tr>
<td>Drugo</td>
<td>50%</td>
<td>0,357</td>
<td>28,524</td>
</tr>
<tr>
<td>Guma</td>
<td>40%</td>
<td>0,014</td>
<td>28,524</td>
</tr>
<tr>
<td>Plastika</td>
<td>40%</td>
<td>0,004</td>
<td>28,524</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (analiza narejena na podlagi že predstavljenih predpostavk)
Slika 41: Diagram občutljivosti (EUR/kos)

Analiza pokaže, kaj pomeni negotovost o uresničitvi pogodbenih količin. Zgolj z majhnim razponom vrednosti dobimo veliko spremembo v lastni ceni izdelka. Ta primer velja zgolj za razmere, ko količine zadovoljimo s trenutnimi kapacitetami (človeške, strojne), kar je bila že ena izmed temeljnih predpostavk. V primeru, da bi kupec podaljšal pogodbo za eno leto, bi se ta vpliv poznal zgolj na amortizaciji. To bi predstavljalo 20 % povečanje količin in bi močno spremenilo sliko.

Naslednji elementi, ki nekoliko manj vplivajo na spremembo stroškov izdelka, so surovine...
Surovine so problematične, ker je njihova cena na svetovnih trgih zelo volatilna (bistveno bolj kot tista od ostalih dveh do sedaj obravnavanih elementov). Zato bi bilo priporočljivo, da bi podjetje pri naslednjih projektnih upoštevalo napovedi gibanja cen surovin.

Kakovost je naslednji element, ki sodi med tiste, ki še močneje vplivajo na cen. Kaj pomeni 10 % izboljšanje tega elementa (s 7 na 6,3 %; v bistvu gre za majhno izboljšanje), je najenostavneje prikazati skozi prihranke, ki jih dosežemo na letni osnovi. Če letno proizvedemo 450.000 motorjev in prihranimo 0,11 EUR/kos (28,524 EUR/kos - 28,415 EUR/kos), znaša skupni prihranek okrog 50.000 EUR. Izgubili bi sicer del oportunitetnih prihodkov (prodaja izmeta), a sem že predhodno opredelil, da privzamem, da se to izničuje z dodatnimi neposrednimi stroški dela, ki so potrebni zaradi izmeta. Ostali elementi ne vplivajo bistveno na stroške izdelka in niso podrobneje analizirani.

Ta analiza daje dobro podlago za odločanje, kateremu področju posvetiti največjo pozornost, glede na to, da imamo v podjetju omejene vire. Če vodstvo na primer oceni, da je v največji meri možno izboljšati produktivnost, obenem pa stroški dela spadajo med tiste dejavnike, na katere je lastna cena izdelka najbolj občutljiva, potem je nedvomno smiselno delovanje na tem področju.

7.2.2 SIMULACIJA SCENARIJEV

Pri analizi občutljivosti se pojavlja problem, ker spreminjamo zgolj eno vhodno veličino ob konstantni vrednosti vseh ostalih. Smisel analize je pokazati intenzivnost vpliva posameznih veličin. Simulacija scenarijev privzema, da spreminjamo istočasno vse parametre in tako dobimo sliko o verjetnem, najboljšem in najslabšem scenariju. Analizo običajno izvedemo tako, da izdelamo verjeten scenarij in na podlagi tega, preko analiz ali pa mnenj različnih odgovornih v podjetju, pridemo do pesimističnega ali pa optimističnega stanja. Običajno se pesimističnemu scenariju dodeli verjetnost dogodka 0,25, verjetnemu 0,5 in optimističnemu 0,25.

Problem pri izdelavi te analize je podoben kot pri analizi občutljivosti. Postavljena je v nek trenutek in ne predvideva časovne komponente (trenda). Simulacijo bom postavil v čas, ko smo podpisali pogodbo s kupcem, to je bilo v marcu 2004. Takrat je bilo še precej nedorečenih in nepoznanih stvari, tako da menim, da bo tak način izdelave simulacije zanimiv in nenazadnje tudi zelo realen, saj bi pri novih projektih imeli točno take pogoje. Pri definiranju scenarijev bom namenoma skušal pozabiti na analize trendov strateških surovin (za primer bakra glej sliko 5 na strani 5 dodatka B) in na poznana dejstva v zvezi z zagonom proizvodnje.

Podatke sem združil v tabeli 15 na strani 68. V času, ki ga opisuje stanje »verjetno« v tabeli, smo že razpolagali s podatki o komponentah motorja in dobaviteljih. Tudi vsebnost teh v izdelku je bila znana. Strateške surovine, z izjemo jekla, še niso pričele z nenormalno rastjo, tako da bi se pri optimističnem in pesimističnem scenariju opredelil za zmerne spremembe. Pri neposrednem delu sem dejansko razmišljal tako, kot je prikazano v tabeli.
Menil sem, da obstajajo možnosti racionalizacij, vendar sem bil zaradi velike količine ročnega dela na statorju, glede na »verjetne« ocene, nekoliko bolj pesimističen. V praksi pa se je zgodilo kar nekaj sprememb, ki so sliko z vidika neposrednega dela popolnoma porušile (dejanske količine, problemi pri zaposlovanju in priučevanju zaposlenih, nedoseganje načrtovanih časov ciclov, veliko zastojev in nekakovosti).

Tabela 15: Analiza scenarijev (EUR/kos)

<table>
<thead>
<tr>
<th>Element</th>
<th>Pesim. (17.03.2004)</th>
<th>Verjetno (08.11.2006)</th>
<th>Optim. (08.11.2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>13,30</td>
<td>11,00</td>
<td>15,82</td>
</tr>
<tr>
<td>Neposredno delo</td>
<td>1,80</td>
<td>1,45</td>
<td>4,13</td>
</tr>
<tr>
<td>Ostalo</td>
<td>3,10</td>
<td>2,70</td>
<td>2,89</td>
</tr>
<tr>
<td>Amortizacija</td>
<td>2,36</td>
<td>2,36</td>
<td>2,36</td>
</tr>
<tr>
<td>Splošni stroški SPE</td>
<td>2,20</td>
<td>1,96</td>
<td>1,96</td>
</tr>
<tr>
<td>Energija</td>
<td>0,26</td>
<td>0,26</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>23,02</td>
<td>19,57</td>
<td>27,42</td>
</tr>
<tr>
<td>Verjet. dogodka (%)</td>
<td>0,25</td>
<td>0,26</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (osnova je kalkulacija lastne cene po kupčevi metodologiji)

Moja ocena bi takrat kazala odstopanje od lastne cene za približno 9 % navzgor in 7 % navzdol. Iz predpostavljenih podatkov sem lahko na podlagi formule 1 na strani 22 in formule 2 na strani 23 izračunal še povprečno vrednost (formula 8) in stadnardno deviacijo (formula 9). Vhodni podatki se nahajajo v tabeli 15.

Formula 8: Povprečna vrednost

\[\hat{r} = 0,25 \cdot 23,02 + 0,50 \cdot 21,10 + 0,25 \cdot 19,57 \]

\[\hat{r} = 21,20 \text{ EUR/kos} \]

Formula 9: Standardna deviacija

\[\sigma = \sqrt{0,25 \cdot (23,02 - 21,20)^2 + 0,50 \cdot (21,10 - 21,20)^2 + 0,25 \cdot (19,57 - 21,20)^2} \]

\[\sigma = 1,22 \text{ EUR/kos} \]

Že omenjena slabost te analize je v neupoštevanju časovne dinamike in v zgolj par referenčnih scenarijih. Osebno pa vidim še največjo slabost v neupoštevanju učinkov učenja (vidik kakovosti, produktivnosti, razpoložljivosti opreme) in dejanskih količin napram predvidenim. Te veličine bi morale biti zajete v vsaki resni oceni tveganja takšnega ranga, kot je obravnavani projekt. Pri analizi občutljivosti sem do določene mere upošteval tudi te veličine, pri analizi scenarijev pa jih nalaščem vključil (tako bi verjetno zegala analiza scenarijev v podjetju). Hotel sem poudariti problematiko neupoštevanja vseh relevantnih faktorjev, ki vplivajo na rezultate projekta. Če bi te učinke zaključil, bi dobil večji razpon med verjetnim in ekstremnima scenarijema, kar bi bilo bolj realno, vendar se ne bi približal tistim vrednostim, ki jih poznamo danes (mislim, da so bile praktično za vse v podjetju nepojmljive).
7.3 MONTE CARLO SIMULACIJA

V točki 6.1 Zasnova simulacij na strani 32 sem prikazal, kako naj bi izgledal model. To je v bistvu vsiljena logika, saj je najenostavneje tvoriti vse potrebne povezave, ki opredeljujejo algoritmem. Na osnovi vsega predhodno opravljenega dela na vhodnih podatkih (velika večina je opisana v dodatku B) in predpostavkah sem generiral model, ki po mojem mnenju zadovoljivo opisuje dinamiko z vidika vseh vplivnih veličin. Ta model je veliko bolj kompleksen kot tisti, ki bi ga generiral ob pripravi ponudb za določen izdelek, če bi se v prihodnosti pojavila taka zahteva. Omenjeno je tudi že bilo, da je eden glavnih ciljev magistrske naloge prav izdelava modela Monte Carlo simulacije, in to na tak način, da bo v prihodnosti omogočeno hitro izdelovanje podobnih simulacij. Namesto sami arhitekture modela in snovanju namenskih elementov v Extendu se bo raje posvečala pozornost algoritmu in trendom strateških surovin in ostalih elementov. Poudarim naj, da s pristopom lahko izvajamo kakršnokoli Monte Carlo simulacijo, saj je le malo bolj zamudna, kot če izvajali navadne analize v Excelu.

7.3.1 GENERIRANJE MODELA

Izdelava modela je z vidika porabe časa predstavljala 1/3 časa izdelave magistrskega dela. Sami začetki so bili dokaj trivialni in površni. Nepopolnosti sem odpravil do take mere, kot se mi je zdelo še primerno. Omenjeno je že bilo, da je model zastavljen tako, da ima 40.000 korakov (vrednosti), ki predstavljajo 5 let (20 tromesečij). Te vrednosti pridobimo znotraj ene simulacije (enega prehoda). Za vsako tromesečje imamo torej 2.000 podatkov, iz katerih lahko sklepiamo o tveganju. Vsi izdelani elementi modela in tudi vsi zbrani podatki sledijo tej logiki (opis elementov se nahaja v dodatku C). Model je po definiciji programskega paketa diskretn.
Na skrajni levi strani modela so po vertikali razporejene komponente motorja in druge veličine, ki so pomembne za simulacijo. Važno je razumeti, kako pridemo od skrajne leve do skrajne desne strani simulacije, ki predstavlja rezultat. To je v bistvu algoritmem simulacije. V osnovi lahko rečem, da za najpodrobneje obravnavane komponente motorja velja, da:

- je vnesena fiksna nabavna vrednost iz kalkulacije na dan 08. 11. 2006,
- se ta vrednost razdeli na opredeljene elemente nabavne cene (glej dodatek C, elemente delitve na deleže in točko 7.1.3 Natančna analiza »pareto« komponent na strani 60),
- se posamičen element nabavne cene opremi s pripadajočim trendom, če le-ta obstaja (za izdelane namenske elemente, ki generirajo trende, glej dodatek C, za grafičen in tabelaričen prikaz trendov, uporabljenih v simulaciji, glej dodatek A),
- za komponente motorja, ki vstopajo v določen segment proizvodnega procesa, velja, da se njihova vrednost sešteje in nato »opremi« s trendom kakovosti (skladno z opisanim v točki 6.4.1 Krivulja učenja kakovost na strani 54),
- se vse komponente motorja nato seštejejo v skupno vrednost, ki predstavlja strošek materiala v izdelku, ki je »opremljen« še s trendom o nabavnih virih in tehnoških izboljšavah (točka 6.4.4 Krivulja učenja nabavnih virov in tehnologije na strani 57).

Za ostale komponente motorja je lahko uporabljenih zgolj par od opisanih točk (glavna razlika je v delitvi na osnovne elemente nabavne cene).

Stroški energije (električna energija) znotraj polne lastne cene izdelka so opremljeni s pripadajočim trendom za Slovenijo. Privzeto je, da čeprav proizvedene količine nihajo, ostaja skupen strošek enak, saj proizvajamo ob konstantni strukturi delovnega časa (ni nadur ali dodatnih izmen). Stroški amortizacije so ravno tako vzeti iz kalkulacije lastne cene izdelka in predvidevajo njeno spremembo v izdelku, kot posledico razlike v pogodbenih in dejansko izdelanih količinah (glej točko 6.5 Sprememba pogodbenih količin na strani 58). Pri stroških dela je potrebno ločiti dve komponenti, in sicer splošne stroške SPE (režija) in neposredne stroške dela. Pri režiji se predvideva porast stroškov dela skladno z rastjo plač v Sloveniji. Pri neposrednem delu pa moramo upoštevati naslednje dejavnike:

- izboljšanje produktivnosti kot posledico racionalizacij in priučenosti delavcev (opisano v točki 6.4.2 Krivulja učenja produktivnost na strani 56),
- spremembo stroškov neposrednega dela kot posledico razlike med dejanskimi in pogodbenimi količinami, kjer so stroški neposrednega dela obravnavani kot fiksni (opisano v točki 6.5 Sprememba pogodbenih količin na strani 58),
- spremembo stroškov dela zaradi povečanja učinkovitosti opreme, kjer se pojavi optimalno stanje proizvodnje, ko zagotavljamo pogodbene količine z delom v dveh izmenah (opisano v točki 6.4.3 Krivulja učenja izkoriščenost naprav na strani 57),
Spremembo, ki je posledica rasti plač v Sloveniji (opisano v točki 6.3.1.1 Slovenija na strani 48).

V simulaciji so vrednosti surovin, ki kotirajo v US$, pretvorjene v EUR, skladno s trendom menjalnega razmerja, ki je opisan v točki 6.2.2 Menjalno razmerje EUR/US$ na strani 39. Zakaj je to potrebno, je nazorno opisano v točki 7.2.1 Simulacija občutljivosti na strani 64 pri vrednotenju rezultatov.

Vse veličine so nato seštete in poslane v obdelavo v element vrednotenja, katerega delovanje je opisano v dodatku C.

7.3.2 REZULTATI SIMULACIJE IN INTERPRETACIJA

Kot prvi del analize rezultatov je obravnavana Monte Carlo simulacija. Še preden pričnemo s samim vrednotenjem, moramo odgovoriti na par vprašanj, ki so ključna za kakovost simulacije. Prvo med njimi je, ali smo pridobili dovolj zanesljive in kakovostne informacije o vplivnih veličinah (vrednosti, trendi, porazdelitve ...). Želim namreč še enkrat opozoriti na načelo »garbage in – garbage out«. Še tako dobro tehnično izdelana simulacija je neuporabna, če so vhodni podatki nezanesljivi ali netočni. Tako seveda sledi vprašanje o sami simulaciji. Ali smo zajeli dejansko vse vplivne veličine in jih pravilno vključili v algoritem? Menim, da je ta problem vsekakor manjši kot problem vhodnih podatkov. Menim tudi, da sem dejansko zajel 95 % teh veličin (gledano skozi vpliv na polno lastno ceno izdelka). Tretje vprašanje se nanaša na časovno ažurnost podatkov, saj se le-ti v času nastajanja simulacije spremenijo in bi bilo potrebno sprotno popravljanje.

Pri simulaciji in vrednotenju sem se odločil za štiri prehode, kjer v vsakem pridobim 2.000 vrednosti za tromesečje (skupaj 40.000 vrednosti za 20 tromesečij). Tako je torej vrednotenje rezultatov izvedeno na osnovi 160.000 vrednosti ali 8.000 za tromesečje. Rezultati simulacije, ki jo dobimo s programskim paketom Extend, so prikazani v dodatku D, na sliki 1. Ta izpis se pridobi z uporabo enega od standardnih blokov programskega paketa. Vsaka barva pomeni enega izmed izvedenih prehodov. Veliko časa, ki ga je bilo namenjeno razvoju namenskega elementa vrednotenja, se je izkazalo kot odveč, ker je preprosto obdelali vse podatke v Excelu. Tega v začetnih fazah ni bilo mogoče predvideti. Podatke izvozimo v Excel prek enega izmed standardnih elementov. Tako pridobljene podatke je bilo potrebno razvrstiti v tromesečja, saj so v izvorni obliki kar zaporedno navedeni (to se z nekoliko programiranja v Visual Basic for Applications, ki je del Excela, doseže na zelo enostaven način). Za vsako tromesečje sem nato prek aplikacije StatFit, ki je del programskega paketa Extend, izvajal vrednotenje, ki se kaže v opredelitvi, kateri verjetnostni porazdelitvi ustreza vzorec. Izhajam iz dveh omejitvev, in sicer 95 % konfidenčnega intervala in natančnosti 0,003 (vrednosti, ki jih predlaga aplikacija na podlagi vzorca). Za možni porazdelitvi sem izbral beta in normalno. Testiranje se izvaja preko Kolmogorov-Smirnov in Anderson-Darling testa (slednji je zelo strog z vidika vrednotenja ekstremov porazdelitve in ga je treba zato jemati z rezervo).

Rezultati vrednotenja so prikazani v dodatku D, v tabeli 1. Obe izbrani porazdelitvi

Slika 42: Rezultat Monte Carlo simulacije

Vir: Lasten vir
Obliko krivulje definirata v osnovi dve kategoriji trendov, in sicer trendi:

- krivulj učenja in
- cen strateških surovin in ostalega.

Ta dva pojava je smiselno analizirati ločeno, kar pomeni, da je potrebno izdelati dodatni dve simulaciji, kjer bomo pri prvi privzeli odsotnost vpliva krivulj učenja, pri drugi pa odsotnost vpliva trendov cen strateških surovin in ostalega. Dobljeni rezultati bodo pokazali individualen vpliv posamezne kategorije. Povsem samoumevno je, kakšen je kumulativni vpliv krivulj učenja, ker že iz teorije izhaja, da z večanjem kumulativne količine izdelanih kosov povprečni stroški na enoto padajo. Pri trendih cen strateških surovin in ostalega pa ni preproste logike. Kumulativni učinek je odvisen od:

- izrazitosti (naklona) posameznega trenda in
- deleža znotraj strukture polne lastne cene, na katerega ima trend vpliv.

Druga analiza, ko so »zamrznjeni« trendi krivulj učenja, je bila izdelana po popolnoma enaki metodologiji kot predhodna. Izbral sem normalno porazdelitev kot tisto, ki najboljše opisuje vzorce rezultatov za tromesečja. Na sliki 9 dodatka D je prikazano, kako so se nadomestili trendi krivulj učenja s konstantnimi vrednostmi (namesto namenskega elementa je prisoten standarden element »konstanta«; zelen krogec z vrednostjo 1 v njem). Vsi rezultati so prikazani v tabeli 3, slikah 8 in 10 dodatka D. Rezultat pokaže, da se stroški zaradi vpliva trendov strateških surovin in ostalega na koncu obravnavanega
obdobja povečajo za 13,5%. Tudi tukaj je potrebno opozoriti, da trendi vplivajo zgolj na nekatere elemente strukture polne lastne cene in ne na vse, zato je učinek manjši, kot bi lahko pričakovali. Že pri analizi občutljivosti (točka 7.2.1 Simulacija občutljivosti, na strani 64) je razvidno, s kakšno intenzivnostjo posamezni trendi učinkujejo na stroške izdelka. Lahko bi zaključili, da je krivulja polne lastne cene pri simulaciji ob »zamrznjenih« krivuljah učenja relativno konstantna pri svojem trendu. Sam naklon je posledica predvsem gibanja stroškov dela, energije in neodijevega oksida.

Z izdelano Monte Carlo simulacijo je mogoče v par minutah izolirati eno krivuljo učenja in »zamrznit« ostale tako, da ne vplivajo na simulacijo. Trende strateških surovin in ostalega prav tako »zamrznemo«. Tako lahko simuliramo, kakšen je vpliv izbrane krivulje učenja na polno lastno ceno izdelka. Odločil sem se, da v primeru krivulj učenja produktivnosti KU(p) in kakovosti KU(q) opazujem skupni učinek treh ločenih krivulj, ki opredeljujejo vsako kategorijo (glej točko 6.4.2 Krivulja učenja produktivnosti na strani 56, točko 6.4.1 Krivulja učenja kakovosti na strani 54). Ostali dve krivulji učenja (trend A in trend T) sem analiziral posebej. Tako sem dobil v bistvu še štiri dodatne simulacije, kjer pa je potrebno poudariti odsotnost verjetnostnih porazdelitev, tako da so v simulaciji upoštevane zgolj diskretizirane krivulje. Menim, da je na tak način dovolj kakovostno prikazan vpliv posameznih krivulj učenja. Rezultate prikazuje tabela 4 dodatka D, v grafični obliki pa slika 11 dodatka D. Absolutno in relativno spremembo prikazuje tabela 5 dodatka D.

Posebno poglavje terja opredelitev korelacije trendov, čemur se zaradi želje po strokovno pravilnem pristopu ni moč izogniti. Teorija pravi, da moramo pri Monte Carlo simulacijah pri opravku z več vhodnimi veličinami posvetiti veliko pozornost korelacijam spremenljivk. Če sta na primer dve spremenljivki popolnoma pozitivno korelirani, potem ne smemo dopustiti, da se v simulacijah obnašata neodvisno. V takem primeru je smiselno varirati samo prvo spremenljivko in drugo opredeliti kot vsoto prve in »izhodiščne Δ«. Pri
izdelani Monte Carlo simulaciji je z vidika uporabljenih trendov treba ločiti dve vrsti korelacije, in sicer korelacijo:

- trendov (vrednosti skozi čas),
- verjetnostnih porazdelitev, ki so na trend »obešene«.

Slika 43: Časovna korelacija trendov za baker, aluminij in jeklo

![Časovna korelacija trendov za baker, aluminij in jeklo](image)

Vir: Lasten vir (osnova so diskretizirane krivulje uporabljene v simulaciji)

Ko pa obravnavamo verjetnostne porazdelitve, ki so »obešene« na posamezen trend, je slika drugačna. Ker je rezultat, ki je posredovan v simulacijo, zmnožek vrednosti trenda in vrednosti naključno generiranega števila (verjetnostna porazdelitev), je v določenem koraku simulacije možno naslednje:

- uporaba enotnih verjetnostnih porazdelitev za vse trende (so ali pa niso korelirane),
- uporaba različnih verjetnostnih porazdelitev med trendi (nekorelirane vrednosti).

Odvisno od ciljev simulacije lahko izberemo popolno korelacijo porazdelitev in s tem manjšo varianco končnega rezultata ali pa nekorelirane verjetnostne porazdelitve in večjo varianco. V moji simulaciji sem se odločil za slednji scenarij, ki mi omogoča večji nadzor nad predvidevanji. Za aluminij sem na primer smatral, da je v prihodnosti bistveno večja predvidljivost dogodkov kot pa za baker, zato sem temu ustrezno tudi izbral verjetnostne porazdelitve.

Ker imam v prvem tromesečju leta 2007 za vse strateške surovine enako izhodiščno vrednost (ena od ključnih predpostavk simulacije), lahko vidik korelacije dodatno obdelam. Osnovna vrednost za trend je v omenjenem tromesečju 1. Ta vrednost se pri
vsakem od trendov (aluminij, baker, jeklo) množi z naključno generiranim številom. Predpostavil bom tri scenarije, in sicer:

- izhodiščne verjetnostne porazdelitve (glej dodatek; uporabljene so v Monte Carlo simulaciji), popolnoma nekorelirane,
- popolnoma enake verjetnostne porazdelitve, nekorelirane,
- popolnoma enake verjetnostne porazdelitve, popolnoma korelirane.

Do rezultatov sem prišel tako, da sem v določenem koraku simulacije množil vrednosti posameznih trendov med sabo, kar je približek tega, kar se dogaja v pravi simulaciji (tam je algoritem od vhodnih veličin do rezultata bolj kompleksen). Tako sem lahko izvedel vrednotenje na podlagi 2000 rezultatov, kjer je razviden koncept zmanjševanja variance.

Slika 44 prikazuje rezultate v grafični obliki, ki so za oko najbolj razumljivi. Podatkovni del je prikazan v tabeli 16, kjer lahko glede na razpon ustrezne porazdelitve (razlika med minimalno in maksimalno vrednostjo) sklepamo o uspešnosti zmanjševanja variance. Najslabši rezultat je s tega vidika dosežen, ko se uporabi za vse trende ista verjetnostna porazdelitev, vendar se obrašča nekorelirano. To pomeni, da v nekem koraku simulacije ta izbere naključno vrednost opredeljene porazdelitve, vendar za vsak trend ločeno (glej tabelo 17 na strani 76, levi del tabele). Najboljši rezultat je dosežen, kot bi lahko pričakovali, ko imamo neko verjetnostno porazdelitev, kjer so vrednosti korelirane. To pomeni v določenem koraku simulacije isto vrednost za vse tri trende (glej tabelo 17, desni del tabele).

Slika 44: Grafičen prikaz rezultatov (gostota porazdelitve)

Tabela 16: Analiza zmnožkov vrednosti posameznih trendov surovin

<table>
<thead>
<tr>
<th>porazdelitev</th>
<th>nekorel, izh, VP</th>
<th>nekorel, ista VP</th>
<th>korel, ista VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>0,793236</td>
<td>0,975868</td>
<td>0,98615</td>
</tr>
<tr>
<td>max</td>
<td>1,22846</td>
<td>1,59339</td>
<td>1,32752</td>
</tr>
<tr>
<td>p</td>
<td>3,68145</td>
<td>6,70285</td>
<td>2,94963</td>
</tr>
<tr>
<td>q</td>
<td>4,89482</td>
<td>5,53092</td>
<td>2,24179</td>
</tr>
<tr>
<td>razlika max-min</td>
<td>0,435224</td>
<td>0,617522</td>
<td>0,34137</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (obdelani rezultati simulacije na podlagi opredeljenih predpostavk)
Tabela 17: Prikaz koreliranosti/nekoreliranosti trendov v simulaciji

<table>
<thead>
<tr>
<th>korak simulacije</th>
<th>nekorelirane vrednosti iste VP</th>
<th>korelirane vrednosti iste VP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aluminij</td>
<td>baker</td>
</tr>
<tr>
<td>korak 1</td>
<td>1,203434</td>
<td>1,039088</td>
</tr>
<tr>
<td>korak 2</td>
<td>1,145997</td>
<td>1,058156</td>
</tr>
<tr>
<td>korak 3</td>
<td>1,102369</td>
<td>1,055128</td>
</tr>
</tbody>
</table>

Vir: Lasten vir (obdelani rezultati simulacije na podlagi opredeljenih predpostavk)

Stanje, ko imamo opravka z verjetnostnimi porazdelitvami, ki so uporabljene v Monte Carlo simulaciji in popolnoma nekorelirane, je nekje vmes med obema predhodno opisanimi.

Zaključek z vidika zmanjševanja variance bi se lahko glasil, da je zamisel dobro poznati, saj omogoča kakovostnejše rezultate, vendar je za mojo simulacijo njegova uporabnost omejena zaradi same strukture le-te.

Kot zaključek analiz bi rad poudaril, da je zaradi izdelane arhitekture simulacije mogoče zelo hitro izdelovati različne simulacije. Za analizo vseh simulacij (sprememba simulacije, izvedba simulacije z izvozom podatkov v Excel in vrednotenje podatkov), preko katerih sem »izoliral« učinek posamezne krivulje učenja, sem tako potreboval dobro uro. Upal bi si trditi, da poraba časa ni bistveno večja kot pri izdelavi kalkulacij v Excelu. Omenim naj še, da so se hipoteze, ki sem jih naredil skozi nalogo, v tej točki tudi potrdile. Seveda je to zgolj simulacija, dejansko stanje je toliko bolj blizu simulaciji, kolikor boljši so podatki vplivnih veličin in kolikor bolj sem uspel »zadeti« algoritmem simulacije.

8 PRIMERJAVA SIMULACIJ

Tabela 18: Primerjava robnih predpostavk simulacij

<table>
<thead>
<tr>
<th></th>
<th>MC Simulacija</th>
<th>Analiza občutljivosti</th>
<th>Analiza scenarijev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalkulacija PLC</td>
<td>08.11.2006</td>
<td>08.11.2006</td>
<td>Marec 2004</td>
</tr>
<tr>
<td>Časovna dinamika</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Krivulje učenja</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Trendi cen surovin</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Vir: Lasten vir
Izluščil bi tri problematična dejstva. Prvi so načrtovani stroški dela. Analiza simulacije občutljivosti ne upošteva časovne dinamike in učinkov učenja. Ti so bili zaradi nepoznavanja tehnologije postavljeni veliko prenizko, če to primerjamo s stanjem danes (1,52 EUR/kos proti 4,13 EUR/kos). Ta razlika izhaja iz večjega števila potrebnih delavec, ki je posledica tehnologije izdelave in uvedbe dodatne zmage na nekaterih segmentih proizvodnje. Drugo dejstvo so stroški nekakovosti, ki so bili zaradi enakih razlogov kot stroški dela prav tako bistveno podcenjeni. Tretje dejstvo se nanaša na problematiko, povezano s strateškimi surovinami, ki jih je potrebno pri teh projektih nedvomno posvečati več pozornosti. Vsakdo lahko, na primer, pogleda na LME ceno za tono bakra na dan 08. 11. 2006 ali pa v marcu 2004 in vidi, kolikšna je.

Za simulacijo občutljivosti bi rad opozoril predvsem na napačno predpostavko, ki jo ponavadi delamo v podjetju (to svarilo podajam, ker sem napačno izdelal analizo tudi videl). Ne bi smeli privzeti, na primer, da je nabavna cena bakrene žice sestavljena zgolj iz bakra, in v simulaciji upoštevati kot variabilen kar celoten delež nabavne cene žice kot posledico spremembe cene bakra na trgu. Opredeliti bi morali delež materiala (bakra) v ceni žice in operirati z vrednostjo bakra v žici, ki izhaja iz tega podatka.

Simulacijo scenarijev je nedvomno smiselno izvajati, saj nam nudi kakovostnejše podatke kot pa zgolj statično izdelana kalkulacija. Vendar je potrebno opozoriti, da je nabavna cena bakrene žice sestavljena zgolj iz bakra, in v simulaciji upoštevati kot variabilen kar celoten delež nabavne cene žice kot posledico spremembe cene bakra na trgu. Opredeliti bi morali delež materiala (bakra) v ceni žice in operirati z vrednostjo bakra v žici, ki izhaja iz tega podatka.

Simulacijo scenarijev je nedvomno smiselno izvajati, saj nam nudi kakovostnejše podatke kot pa zgolj statično izdelana kalkulacija. Vendar je potrebno opozoriti, da je nabavna cena bakrene žice sestavljena zgolj iz bakra, in v simulaciji upoštevati kot variabilen kar celoten delež nabavne cene žice kot posledico spremembe cene bakra na trgu. Opredeliti bi morali delež materiala (bakra) v ceni žice in operirati z vrednostjo bakra v žici, ki izhaja iz tega podatka.

V primerjavi s simulacijo občutljivosti ali simulacijo scenarijev je Monte Carlo simulacija precej bolj kakovostna. Bistvena razlika v izdelani analizi je upoštevanje časovne dinamike prek krivulj učenja in trendov cen strateških surovin in ostalega. Možno je tudi pri ostalih dveh simulacijah upoštevati omenjena faktorja, vendar bi ob enakem vložku sredstev za izdelavo vsak manager raje videl Monte Carlo simulacijo. Ta vzbuja večje zaupanje od ostalih dveh, ki sta obravnavani v magistrskem delu. Stohastičnost in prikazi, ki iz nje izhajajo (prikazani v dodatku D), dajejo bolj »plastično« informacijo, katere sporočilo je enostavno razumljivo.

9 SKLEP

Temo za magistrsko nalogo sem izbral, ker sem želel imeti opravka s simulacijami. Ker sem po naravi bolj tehnično naravnan, sem želel najti simulacijo iz okvira poslovnih ved, ki bi dopuščala svobodo in kreativnost. Med študijem v programu KMBA sem poznal Monte Carlo simulacijo (to je sicer simulacija, ki je ni mogoče uvrstiti v točno določeno kategorijo), že od prej pa sem poznal programsko orodje (Extend), v katerem bi jo lahko izdelal. Menil sem, da bi bilo relativno enostavno izdelati tako simulacijo, kar se je s pretečenim časom in zastavljenimi cilji izkazalo kot zmot.

Naloga se dotika ocenjevanja tveganja. Potreba po obvladovanju tveganja in podjetju je posledica strateških odločitev po razširitvi dejavnosti v prvo vgradnjo avtomobilsk...
industrije, saj boljše obvladovanje pomeni enega od pomembnih dejavnikov uspeha. Za izhodišče je vzeta kalkulacija lastne cene izdelka, ki sem jo nadgradil s tremi simulacijami (občutljivost, scenariji, Monte Carlo). Izdelavo simulacij sem zastavil tako, da se s primerjavo lahko izlušči bistvo moje trditve glede obvladovanja tveganja na novih projektih v Iskri Avtoelektreni d. d. Trdim namreč, da glede na rast podjetja in obseg novih projektov nezadostno vključujemo metode obvladovanja tveganja v odločanje. S tveganjem v nalogi razumemo verjetnost, da dejanski rezultat (polna lastna cena) ne ustreza načrtovanemu. Izhodiščna kalkulacija je edini dokument, ki govorja o lastni ceni, na podlagi katerega je podjetje podpisalo pogodbo s kupcem (edina osnova za odločanje). Vedeti moramo, da je bila prodajna cena za motor določena s strani kupca, v podjetju smo določali le ciljne stroške in uporabljali zatet. Zato sem moral opredeliti jasen in merljiv cilj glede uporabnosti pristopa. To sem storil s formulacijo, da »bo podjetje za primerljive simulacije v prihodnosti potrebovalo 1/2 dneva« (glej točko 3 Cilji dela na strani 5). Doseganje zastavljene cilja gre preko pristopa izdelane simulacije, ki mora omogočati veliko fleksibilnost.

V ospredje je postavljena Monte Carlo simulacija, ki je po naravi edina med izdelanimi popolnoma stohastične narave. V nalogi je bilo vse podrejeno tej simulaciji, kjer sem želel izdelati pristop, za katerega bi želel, da bi se pričel v podjetju s strani strokovnih služb uporabljati. Zato sem moral opredeliti jasen in merljiv cilj glede uporabnosti pristopa. To sem storil s formulacijo, da »bo podjetje za primerljive simulacije v prihodnosti potrebovalo 1/2 dneva« (glej točko 3 Cilji dela na strani 5). Doseganje zastavljene cilja gre preko pristopa izdelane simulacije, ki mora omogočati veliko fleksibilnost.

S samega vidika izdela kalkulacij sem želel opozoriti še na neupoštevanje učinkov učenja. Krivulje učenja predstavljajo pomemben vidik analiziranja stroškov proizvodnje in mnenja sem, da lahko povzročijo veliko razliko med doseženo in načrtovano donosnostjo projekta. Zato je velik del naloge posvečen definiranju vseh vrst krivulj učenja, za katere menim, da so pri obravnavanem izdelku relevantne.

Dodaten vidik, ki ga v podjetju zanemarjamo in je pravzaprav eden od temeljnih kamnov obvladovanja tveganja projektov, je časovna komponenta. Smiselno jo je upoštevati, kar je v primeru Monte Carlo simulacije tudi storjeno.

Struktura magistrske naloge je podrejena opredeljenemu namenu in ciljem. V začetnih fazah magistrskega dela, po opisu problematike, namena in ciljev, sem izvedel nekaj splošnih predstavitev (podjetje, SPE Mehatronika, konstrukcija izdelka in proizvodni proces). Te so nujne za razumevanje naloge. Nato se delo nadaljuje z obravnavanjem teoretskih izhodišč, ki so v nalogi močno zastopane in ki omogočajo nadaljnje praktično delo. Sledila je opredelitev različnih ciljev Monte Carlo simulacije, kar je z vidika ciljev magistrske naloge ključna točka. Naloge nato opredeli trende cen za strateške surovine in obravnavava krivulje učenja, oboje na podlagi razpoložljivih podatkov. Sledi izdelava samih simulacij na podlagi kalkulacij lastne cene na dva različna datum, kjer so opredeljeni še dodatno potrebni podatki za same simulacije. Po analizah rezultatov Monte Carlo simulacije je izvedena primerjava med vsemi izdelanimi simulacijami, nato sledi še zaključni del naloge (sklep) z analizo in priporočili. Da glavno delo ni preveč nasičeno,

Krivulje učenja so problem zase. Upošteval sem različne možne učinke učenja in dokazal, da niso zanemarljiv dejavnik. Ker sem imel opravka z realnimi podatki obstoječega projekta, ki je v polnem teku, in ker je razvidno, kakšen je razkoren med predvidevanj in dejanskim stanjem (primerjava rezultatov simulacije scenarijev in Monte Carlo simulacije), menim, da je tu potrebno nekaj ukreniti. Predlagal bi, da se v prihodnosti vključi v analize tveganj tudi to zamisel, kjer bi najmanj za produktivnost in kakovost morali opredeliti krivulje učenja. Lahko bi se opredelila krivulja, ki bi bila tem bolj izrazita, čim večje bi bilo nepoznavanje tehnologij.

Smiselno je upoštevati tudi nepoznavanje višine investicije (amortizacijo) in možno odstopanje pogodbenih količin. Ti dve veličini je potrebno vključiti na enak način, kot je bilo storjeno z vidika pogodbenih količin pri analizi občutljivosti.

Da sem prikazal stanje v podjetju, sem same simulacije naravnal tako, da je bilo možno vključiti razne pomanjkljivosti in predpostavke, ki se danes uporabljajo. Želel sem opozoriti, kam to pripelje. Najbolj moteče je neupoštevanje časovnega vidika. Seveda bi lahko kdo rekel, da je to odveč, če imamo pogodbo s kupcem vezano preko formule za prodajno ceno. Ta pristop pri nekaterih poslih pomeni, da bo kupec in dobavitelj dogovorita, da bo prodajna cena funkcija cene relevantnih vhodnih surovin, ki so prisotne v izdelku, katerega prodaja kupcu. Tako se dobavitelj zavaruje pred volatilnostjo ceni na svetovnih trgih in je voljan sprejeti posel ob relativno nizki in stabilni dobičkonosnosti.

Za nadaljnje delo predlagam, da bi podjetje pričelo tudi z izdelovanjem ocene tveganja denarnih tokov. Uporabil bi se nekoliko modificiran pristop, ki je rezultat te magistrske naloge (obvezno upoštevanje krivulj učenja in vseh potencialno zelo variabilnih vplivnih večin). Samo izdelavo simulacije bi lahko z dodatno avtomatizacijo določenih korakov še poenostavili. Mogoče bi podjetje lahko razmislilo o uvedbi specialista za izdelavo tehnično zahtevnejših simulacij. V mislih nimam zgolj Monte Carlo simulacije, ampak tudi ostalih, ki se lahko izdelujejo v programskem paketu Extend.

Kot po vsakem opravljenem delu se je tudi tukaj treba ozreti nazaj in narediti poračun. Priprava naloge je terjala veliko časa. Dejstvo je, da pomoči v obliki že izdelanih podobnih analiz v programskem paketu Extend, ni. Tudi sam uporabljeni koncept Monte Carlo simulacije je svojevrsten, vendar zaradi točno določenih namenov. Menim, da je šlo preveč
časa za definiranje trendov gibanja cen strateških surovin, saj to nikakor ni bistven del nalože. Lahko bi naredil predpostavko, da se ti dajo v vsakem trenutku pridobiti (kupiti) in nekoliko preoblikovati za potrebe nalože. Večji del ostalega časa je vložen predvsem v snovanje same simulacije, kjer sem preko PDCA-kroga (Plan Do Check Act) kar velikokrat zakrožil. Preučevanje teoretskih osnov in priprava izhodiščnih točk nalože nista bila časovno potratna. Ko so bila izhodišča in vsi potrebni podatki za Monte Carlo simulacijo izdelani, sta simulaciji občutljivosti in scenarijev nastali hipoma.

Samo pridobivanje podatkov za simulacije bi lahko razdelil v dva sklopa. Prvi so podatki, ki sem jih pridobil v podjetju. Na zbiranje in kakovost podatkov nimam pripomb, saj sem s tega vidika imel dokaj enostavno delo. Drugi sklop podatkov so tisti, ki sem jih potreboval za definicije trendov cen strateških surovin in sem jih v glavnem pridobil prek svetovnega spleta. Gre za javno dostopne podatke, ki izhajajo iz veliko različnih virov in so do neke mere vprašljivi.

Na koncu lahko rečem, da sem v izdelavi magistrske nalože užival. Tema me je privlačila že od samega začetka in doživljal sem veliko razburljivih trenutkov, ko je že izgledalo, da sem zašel v slepo ulico, vendar sem po prespani noči našel pravi izhod. Če bi se nalože še enkrat lotil, bi na podlagi pridobljenih izkušenj že v začetku posvetil težo sami simulaciji, ker se je zaradi izgubljenega časa pri definiranju trendov naloža precej zavlekla. Upam, da bo izdelani pristop zaživel, kakor tudi upam, da sem izpolnil pričakovanja tistih, ki so me podpirali skozi celoten čas mojega študija.
10 LITERATURA IN VIRI

LITERATURA

3. APQP Iskra Avtoelektrika d.d.: Vnaprejšnje načrtovanje kakovosti izdelka (APQP) in načrt zagotavljanja kakovosti - Referenčni priročnik. Interni vir, 2000
33. The learning curve. [URL:http://ax.losangeles.af.mil/se_revitalization/aa_functions/manufacturing/Atta
chments/18.%20The%20Learning%20Curve.htm

VIRI

17. CRSIL limited: Global and Indian Trends in Metal Industry. [URL: http://www.assocham.org/events/recent/event_72/Global_and_Indian_trends_in_Metal_industry_Ashutosh_Satsangi.ppt], december, 2006

30. GZS: Konjunkturna gibanja - ocena in analiza tekočih gospodarskih gibanj, november, 2006
31. Haid Alfred, Wettig Eberhard: Weltrohstoffmärkte: Intensiver Wettbewerb trotz zunehmender Konzentration. Deutschest institut fur wirtschaftsforschung. [URL: www.diw.de/deutsch/produkte/publikationen/wochenberichte/docs/00-03-1.html#HDR3], maj, 2004

35. International aluminium institute: LME High-Grade Aluminium Inventories. [URL: www.world-aluminium.org/iai/stats/historical.asp?altForm=9&altDataType=129&altPeriod=4&fromYear=1992&fromQuarter=1&fromMonth=1&toYear=&toMonth=1&submitSearch=Find+Stats], november, 2006

40. London Metal Exchange Limited: Copper Industry usage - Copper Grade A. [URL: www.lme.co.uk/copper_industryusage.asp], november, 2006

44. Metalspace. [URL: http://metalsplace.com/metalsnews/?a=6779], november, 2006
49. PN Iskra Avtoelektrika d.d.: Poslovni načrt Iskre Avtoelektrike d.d. 2007, december, 2006
50. PNO Iskra Avtoelektrika d.d.: Pravilnik o notranji organizaciji in poslovanju Iskre Avtoelektrike d.d.. Iskra Avtoelektrika d.d., 2006

64. Westervelt Eileen T., Fournier Donald F.: Energy Trends and Implications for U.S. Army Installations. U.S. Army Engineer Research and Development Center. [URL: www.peakoil.net/Articles2005/ Westervelt_EnergyTrends__TN.pdf], september, 2005

11 SLOVARČEK POJMOV IN OKRAJŠAV

€ evro; uradna plačilna valuta v evropski uniji
ANWR Arctic National Wildlife Refuge
APQP Advanced product quality planning
BDP Bruto domači proizvod
BLPM Brushless permanent magnet motor
BTE BTExact Technologies
CEPS Column mounted electric power steering
dc motor Direct current motor
DFMEA Design failure mode and effect analysis
EIA Energy Information Administration; ameriška vladna organizacija
EPS Electric power steering
EU Evropska unija
GWU George Washington University
IEA International Energy Agency
LME London Metal Exchange
Mtoe Mega ton energijskega ekvivalenta nafte
NISTEP Japanese National Institute for Science and Technology Policy
NZK Načrt zagotavljanja kakovosti
NPV Net present value
OEE Overall Equipment Efficiency
OPEC Organization of the Petroleum Exporting Countries
PEPS Pinnon mounted electric power steering
PFMEA Process failure mode and effect analysis
PPAP Production Part Approval Process
PPM Parts Per Million (enot na milion – enota za merjenje kakovosti)
Snovi periodnega sistema elementov Glej periodni sistem elementov
Sodček nafte 159 litrov
SPE Strateška poslovna enota v Iskri Avtoelektri d.d.
T Tona (metrična enota za težo)
USS ameriški dolar
WACC Weighted average cost of capital
ZDA Združene države amerike
DODATEK A: Trendi uporabljeni v simulaciji

Kazalo vsebine

1 TRENDI STRATEŠKIH SUROVIN IN OSTALEGA ...1
 1.1 EUR/US$..1
 1.2 BAKER ...2
 1.3 ALUMINIJ ...3
 1.4 JEKLO ..4
 1.5 Nd oksid ...5
 1.6 STROŠKI DELA SLOVENIJA ...6
 1.7 STROŠKI DELA FRANCIJA ...7
 1.8 STROŠKI DELA ITALIJA ...8
 1.9 NAFTA ...9
 1.10 ELEKTRIČNA ENERGIJA ...10
2 TRENDI KRIVULJ UČENJA ..11
 2.3 KRVULJA UČENJA KAKOVOST ...11
 2.4 KRVULJA UČENJA PRODUKTIVNOST ..12
 2.5 KRVULJA UČENJA IZKORIŠČENOST NAPRAV ..13
 2.6 KRVULJA UČENJA NABAVNI VIRI IN TEHNOLOGIJA14
 2.7 SPREMENBA POGODBENIH KOLIČIN ...15

Kazalo slik

Slika 1: Grafična oblika podatkov simulacije (menjalno razmerje EUR/US$)1
Slika 2: Grafična oblika podatkov simulacije (baker) ..2
Slika 3: Grafična oblika podatkov simulacije (aluminij) ...3
Slika 4: Grafična oblika podatkov simulacije (jeklo) ..4
Slika 5: Grafična oblika podatkov simulacije (Nd oksid) ..5
Slika 6: Grafična oblika podatkov simulacije (stroški dela Slovenija)6
Slika 7: Grafična oblika podatkov simulacije (stroški dela Francijska)7
Slika 8: Grafična oblika podatkov simulacije (stroški dela Italija)8
Slika 9: Grafična oblika podatkov simulacije (nafta) ..9
Slika 10: Grafična oblika podatkov simulacije (električna energija)10
Slika 11: Grafična oblika podatkov simulacije (krivulja učenja kakovost)11
Slika 12: Grafična oblika podatkov simulacije (produktivnost) ... 12
Slika 13: Grafična oblika podatkov simulacije (izkoriščenost naprav) .. 13
Slika 14: Grafična oblika podatkov simulacije (krivulja učenja nab. viri in tehnologija) 14
Slika 15: Grafična oblika podatkov simulacije (sprememba pogodbenih količin) 15

Kazalo tabel

Tabela 1: Izbrani parametri za simulacijo (Eur / US$) .. 1
Tabela 2: Izbrani parametri za simulacijo (baker) ... 2
Tabela 3: Izbrani parametri za simulacijo (aluminij) ... 3
Tabela 4: Izbrani parametri za simulacijo (jeklo) ... 4
Tabela 5: Izbrani parametri za simulacijo (Nd oksid) ... 5
Tabela 6: Izbrani parametri za simulacijo (stroški dela Slovenija) .. 6
Tabela 7: Izbrani parametri za simulacijo (stroški dela Francija) ... 7
Tabela 8: Izbrani parametri za simulacijo (stroški dela Italija) ... 8
Tabela 9: Izbrani parametri za simulacijo (nafta) ... 9
Tabela 10: Izbrani parametri za simulacijo (električna energija) .. 10
Tabela 11: Izbrani parametri za simulacijo (krivulja učenja kakovost) 11
Tabela 12: Izbrani parametri za simulacijo (krivulja učenja produktivnost) 12
Tabela 13: Izbrani parametri za simulacijo (izkoriščenost naprav) ... 13
Tabela 14: Izbrani parametri za simulacijo (krivulja učenja naba. viri in tehnologija) 14
Tabela 15: Izbrani parametri za simulacijo (sprememba pogodbenih količin) 15

Vsi podatki prikazani v nadaljevanju so osnovani na dodatku B in vsebini v glavnem delu (napovedi). Slikovni prikaz je pridobljen direktno iz simulacije.
1 Trendi strateških surovin in ostalega

1.1 Eur/US$

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj kvartalov

Slika 1: Grafična oblika podatkov simulacije (menjalno razmerje EUR/US$)

Tabela 1: Izbrani parametri za simulacijo (Eur / US$)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>dobiček ponderir. menjalnega razm.</th>
<th>vrsta distribucije</th>
<th>podatki porazdelitve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>korak od</td>
<td>korak do</td>
<td>vrednost</td>
<td>ponderir. vrednost</td>
</tr>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>1,320</td>
<td>1,000</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>1,350</td>
<td>1,023</td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>1,300</td>
<td>0,985</td>
</tr>
<tr>
<td>2007-T4</td>
<td>5000</td>
<td>7999</td>
<td>1,280</td>
<td>0,970</td>
</tr>
</tbody>
</table>

...
1.2 Baker

Simbol v simulaciji:
Vrsta trenda: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj kvartalov

Slika 2: Grafična oblika podatkov simulacije (baker)

Tabela 2: Izbrani parametri za simulacijo (baker)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev ponderjev cene</th>
<th>ponderirana cena</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min</th>
<th>max</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>7650,00</td>
<td>1,0000</td>
<td>0,90</td>
<td>1.10</td>
<td>2.20</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>7512,50</td>
<td>0,9820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>7375,00</td>
<td>0,9641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>7237,50</td>
<td>0,9461</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>7100,00</td>
<td>0,9281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>6900,00</td>
<td>0,9020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>6700,00</td>
<td>0,8758</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>6500,00</td>
<td>0,8497</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>6300,00</td>
<td>0,8235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>6137,50</td>
<td>0,8023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>5975,00</td>
<td>0,7810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>5812,50</td>
<td>0,7598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>5650,00</td>
<td>0,7386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>5525,00</td>
<td>0,7222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>5400,00</td>
<td>0,7059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>5275,00</td>
<td>0,6995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>5150,00</td>
<td>0,6732</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>5075,00</td>
<td>0,6634</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>5000,00</td>
<td>0,6536</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>4925,00</td>
<td>0,6438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3,00 beta 1
1.3 Aluminij

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 3: Grafična oblika podatkov simulacije (aluminij)

Tabela 3: Izbrani parametri za simulacijo (aluminij)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev ponderjev cene</th>
<th>vrsta</th>
<th>ponderirana cena</th>
<th>input v model</th>
<th>podatki porazdelitve</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0 1999</td>
<td>1967,00</td>
<td>1,00</td>
<td>0,04</td>
<td>normalna</td>
<td>1,00</td>
<td>0,06</td>
<td>/</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000 3999</td>
<td>1913,25</td>
<td>0,9727</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000 7999</td>
<td>1859,50</td>
<td>0,9453</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000 9999</td>
<td>1805,75</td>
<td>0,9180</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000 9999</td>
<td>1752,00</td>
<td>0,8907</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000 11999</td>
<td>1705,25</td>
<td>0,8669</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000 13999</td>
<td>1658,50</td>
<td>0,8432</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000 15999</td>
<td>1611,75</td>
<td>0,8194</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000 17999</td>
<td>1565,00</td>
<td>0,7956</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000 19999</td>
<td>1520,25</td>
<td>0,7881</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000 21999</td>
<td>1555,50</td>
<td>0,7806</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000 23999</td>
<td>1520,75</td>
<td>0,7731</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000 25999</td>
<td>1506,00</td>
<td>0,7656</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000 27999</td>
<td>1493,50</td>
<td>0,7593</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000 29999</td>
<td>1481,00</td>
<td>0,7529</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000 31999</td>
<td>1468,50</td>
<td>0,7466</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000 33999</td>
<td>1456,00</td>
<td>0,7402</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000 35999</td>
<td>1439,00</td>
<td>0,7316</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000 37999</td>
<td>1422,00</td>
<td>0,7225</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000 39999</td>
<td>1405,00</td>
<td>0,7143</td>
<td>0,06</td>
<td>normalna</td>
<td>1,00</td>
<td>0,04</td>
<td>/</td>
</tr>
</tbody>
</table>
1.4 Jeklo

Simbol v simulaciji: 🪢

Vrsta trenda: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj kvartalov

Slika 4: Grafična oblika podatkov simulacije (jeklo)

Tabela 4: Izbrani parametri za simulacijo (jeklo)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev ponderjev cene</th>
<th>vrsta distribucije</th>
<th>vrsta trenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0 1999</td>
<td>1,0000</td>
<td>1,0000</td>
<td>min / mean</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000 3999</td>
<td>1,0000</td>
<td>1,0000</td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000 5999</td>
<td>0,9003</td>
<td>0,9003</td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000 7999</td>
<td>0,9766</td>
<td>0,9766</td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000 9999</td>
<td>0,9608</td>
<td>0,9608</td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000 11999</td>
<td>0,9412</td>
<td>0,9412</td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000 13999</td>
<td>0,9209</td>
<td>0,9209</td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000 15999</td>
<td>0,9012</td>
<td>0,9012</td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000 17999</td>
<td>0,8827</td>
<td>0,8827</td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000 19999</td>
<td>0,8662</td>
<td>0,8662</td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000 21999</td>
<td>0,8523</td>
<td>0,8523</td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000 23999</td>
<td>0,8333</td>
<td>0,8333</td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000 25999</td>
<td>0,8285</td>
<td>0,8285</td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000 27999</td>
<td>0,8266</td>
<td>0,8266</td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000 29999</td>
<td>0,8304</td>
<td>0,8304</td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000 31999</td>
<td>0,8349</td>
<td>0,8349</td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000 33999</td>
<td>0,8401</td>
<td>0,8401</td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000 35999</td>
<td>0,8401</td>
<td>0,8401</td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000 37999</td>
<td>0,8401</td>
<td>0,8401</td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000 39999</td>
<td>0,8401</td>
<td>0,8401</td>
<td></td>
</tr>
</tbody>
</table>
1.5 Nd oksid

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj kvartalov

Slika 5: Grafična oblika podatkov simulacije (Nd oksid)

Tabela 5: Izbrani parametri za simulacijo (Nd oksid)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>korak do</th>
<th>vrednost x</th>
<th>cena (US$)</th>
<th>ponderirana cena</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min / mean</th>
<th>max / stddev</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>3</td>
<td>19184,20</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>3,263158</td>
<td>21747,46</td>
<td>1,1365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>3,526316</td>
<td>24399,23</td>
<td>1,2718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>3,789474</td>
<td>27110,84</td>
<td>1,4132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>4,052632</td>
<td>29853,70</td>
<td>1,5562</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>4,315789</td>
<td>32599,10</td>
<td>1,6993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>4,579847</td>
<td>35318,68</td>
<td>1,8410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>4,842105</td>
<td>37983,58</td>
<td>1,9799</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>5,105263</td>
<td>40658,25</td>
<td>2,1145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>5,368421</td>
<td>43035,10</td>
<td>2,2433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>5,631579</td>
<td>45384,49</td>
<td>2,3647</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>5,894737</td>
<td>47524,82</td>
<td>2,4773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>6,157895</td>
<td>49487,46</td>
<td>2,5796</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>6,421053</td>
<td>51223,81</td>
<td>2,6701</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>6,684211</td>
<td>52705,25</td>
<td>2,7473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>6,947368</td>
<td>53903,16</td>
<td>2,8098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>7,210526</td>
<td>54786,94</td>
<td>2,8599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>7,473664</td>
<td>55333,02</td>
<td>2,8843</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>7,736842</td>
<td>55509,56</td>
<td>2,8935</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>8</td>
<td>55287,20</td>
<td>2,8819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.6 Stroški dela Slovenija

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 6: Grafična oblika podatkov simulacije (stroški dela Slovenija)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev nomin. rasti</th>
<th>podatki porazdelitve</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min / mean</th>
<th>stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>1,390%</td>
<td>1</td>
<td>1,01390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>1,390%</td>
<td>1</td>
<td>1,02800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>1,390%</td>
<td>1</td>
<td>1,04229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>1,390%</td>
<td>1</td>
<td>1,05677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>1,329%</td>
<td>1</td>
<td>1,07082</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>1,329%</td>
<td>1</td>
<td>1,08504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>1,329%</td>
<td>1</td>
<td>1,09946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>1,329%</td>
<td>1</td>
<td>1,11407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>1,242%</td>
<td>1</td>
<td>1,12790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>1,242%</td>
<td>1</td>
<td>1,14102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>1,242%</td>
<td>1</td>
<td>1,15610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>1,242%</td>
<td>1</td>
<td>1,17046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>1,181%</td>
<td>1</td>
<td>1,18428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>1,181%</td>
<td>1</td>
<td>1,19826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>1,181%</td>
<td>1</td>
<td>1,21241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>1,181%</td>
<td>1</td>
<td>1,22672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>1,119%</td>
<td>1</td>
<td>1,24044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>1,119%</td>
<td>1</td>
<td>1,25432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>1,119%</td>
<td>1</td>
<td>1,26835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>1,119%</td>
<td>1</td>
<td>1,28254</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.7 Stroški dela Francija

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 7: Grafična oblika podatkov simulacije (stroški dela Francija)

Tabela 7: Izbrani parametri za simulacijo (stroški dela Francija)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev nomin. rasti</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min / mean</th>
<th>stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>obdobje</td>
<td>korak od</td>
<td>korak do</td>
<td>nomin. rast</td>
<td>kumulativno</td>
<td>vrsta porazdelitve</td>
<td>input v model</td>
</tr>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>0,791%</td>
<td>1,00791</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>0,791%</td>
<td>1,01587</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>0,791%</td>
<td>1,02391</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>0,791%</td>
<td>1,03200</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>0,791%</td>
<td>1,04016</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>0,791%</td>
<td>1,04838</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>0,791%</td>
<td>1,05667</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>0,791%</td>
<td>1,06502</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>0,791%</td>
<td>1,07344</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>0,791%</td>
<td>1,08193</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>0,791%</td>
<td>1,09048</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>0,791%</td>
<td>1,09910</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>0,791%</td>
<td>1,10779</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>0,791%</td>
<td>1,11655</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>0,791%</td>
<td>1,12538</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>0,791%</td>
<td>1,13428</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>0,791%</td>
<td>1,14324</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>0,791%</td>
<td>1,15228</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>0,791%</td>
<td>1,16139</td>
<td>normalna</td>
<td>1</td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>0,791%</td>
<td>1,17057</td>
<td>normalna</td>
<td>1</td>
</tr>
</tbody>
</table>
1.8 Stroški dela Italija

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 8: Grafična oblika podatkov simulacije (stroški dela Italija)

Tabela 8: Izbrani parametri za simulacijo (stroški dela Italija)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev nomin. rasti</th>
<th>korak od</th>
<th>korak do</th>
<th>nomin. rasti</th>
<th>kumulativno vrsta distribucije</th>
<th>input v model</th>
<th>min / mean</th>
<th>stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>0.668%</td>
<td>1.00668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>0.668%</td>
<td>1.01341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>0.668%</td>
<td>1.02018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>0.668%</td>
<td>1.02700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>0.668%</td>
<td>1.03386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>0.668%</td>
<td>1.04077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>0.668%</td>
<td>1.04773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>0.668%</td>
<td>1.05473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>0.668%</td>
<td>1.06178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>0.668%</td>
<td>1.06887</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>0.668%</td>
<td>1.07602</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>0.668%</td>
<td>1.08321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>0.668%</td>
<td>1.09045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>0.668%</td>
<td>1.09773</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>0.668%</td>
<td>1.10507</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>0.668%</td>
<td>1.11245</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>0.668%</td>
<td>1.11989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>0.668%</td>
<td>1.12737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>0.668%</td>
<td>1.13491</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>0.668%</td>
<td>1.14249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

normalna | 1 | 1,00 | 0,02 |
1.9 Nafta

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 9: Grafična oblika podatkov simulacije (nafta)

Tabela 9: Izbrani parametri za simulacijo (nafta)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev ponderije cena</th>
<th>vrsta distribucije</th>
<th>vrednost x</th>
<th>cena (US$)</th>
<th>ponderirana cena</th>
<th>vrsta porazdelitve</th>
<th>input v model</th>
<th>min / mean</th>
<th>max / std</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0 1996</td>
<td>1</td>
<td>60,00</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>1 2000</td>
<td>1.06451613</td>
<td>59,00</td>
<td>0,9843</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>2 2001</td>
<td>1.12613226</td>
<td>58,19</td>
<td>0,9699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>3 2007</td>
<td>1,1934839</td>
<td>57,31</td>
<td>0,9552</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>4 2008</td>
<td>1,25806452</td>
<td>56,46</td>
<td>0,9410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>5 2009</td>
<td>1,32358065</td>
<td>55,63</td>
<td>0,9271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>6 2010</td>
<td>1,38909677</td>
<td>54,82</td>
<td>0,9137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>7 2011</td>
<td>1,45516129</td>
<td>54,05</td>
<td>0,9006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>8 2012</td>
<td>1,52129063</td>
<td>53,31</td>
<td>0,8886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>9 2013</td>
<td>1,5884516</td>
<td>52,60</td>
<td>0,8763</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>10 2014</td>
<td>1,65612912</td>
<td>51,94</td>
<td>0,8650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-T1</td>
<td>11 2015</td>
<td>1,72419655</td>
<td>51,31</td>
<td>0,8531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-T2</td>
<td>12 2016</td>
<td>1,79309678</td>
<td>50,72</td>
<td>0,8410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-T1</td>
<td>13 2017</td>
<td>1,86229694</td>
<td>50,17</td>
<td>0,8305</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-T2</td>
<td>14 2018</td>
<td>1,93130585</td>
<td>49,67</td>
<td>0,8200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-T1</td>
<td>15 2019</td>
<td>1,99906545</td>
<td>49,21</td>
<td>0,8097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-T2</td>
<td>16 2020</td>
<td>2,06748547</td>
<td>48,80</td>
<td>0,7975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.10 Električna energija

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 10: Grafična oblika podatkov simulacije (električna energija)

Tabela 10: Izbrani parametri za simulacijo (električna energija)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>dobočev rasti</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min</th>
<th>max</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>Rast Slovenija</td>
<td>Rast Nemčija</td>
<td>beta</td>
<td>1</td>
<td>0.9</td>
<td>1.05</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>Rast Slovenija</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

barva	Država
Nemčija	
Slovenija	
2 Trendi krivulj učenja

2.3 Krivulja učenja kakovost

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 11: Grafična oblika podatkov simulacije (krivulja učenja kakovost)

Tabela 11: Izbrani parametri za simulacijo (krivulja učenja kakovost)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak od</th>
<th>korak do</th>
<th>PPM stator</th>
<th>PPM zalivanje</th>
<th>PPM montaža</th>
<th>vrsta distribucije</th>
<th>podatki porazdelitve</th>
<th>input v model</th>
<th>min / mean</th>
<th>max / stdv</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>19431</td>
<td>16367</td>
<td>39457</td>
<td>beta</td>
<td></td>
<td>1</td>
<td>0,95</td>
<td>1,40</td>
<td>1,70</td>
<td>2,80</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>17350</td>
<td>15307</td>
<td>32468</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>16005</td>
<td>14782</td>
<td>28363</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>6000</td>
<td>7999</td>
<td>14800</td>
<td>14046</td>
<td>25397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>8000</td>
<td>9999</td>
<td>13800</td>
<td>13000</td>
<td>22865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>10000</td>
<td>11999</td>
<td>13000</td>
<td>12000</td>
<td>22169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>12000</td>
<td>13999</td>
<td>13000</td>
<td>12000</td>
<td>22039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>14000</td>
<td>15999</td>
<td>13000</td>
<td>12000</td>
<td>21800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>16000</td>
<td>17999</td>
<td>13000</td>
<td>12000</td>
<td>20950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>18000</td>
<td>19999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>20000</td>
<td>21999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>22000</td>
<td>23999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>24000</td>
<td>25999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>26000</td>
<td>27999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>28000</td>
<td>29999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>30000</td>
<td>31999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>32000</td>
<td>33999</td>
<td>13000</td>
<td>12000</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

barva segment proizvodnje
- montaža
- zalivanje
- stator
2.4 Krivulja učenja produktivnosti

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 12: Grafična oblika podatkov simulacije (produktivnost)

Tabela 12: Izbrani parametri za simulacijo (krivulja učenja produktivnosti)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak od</th>
<th>korak do</th>
<th>določev število delavcev po segmentih</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min</th>
<th>mean</th>
<th>max</th>
<th>stddev</th>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>0,91</td>
<td>0,90</td>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>0,82</td>
<td>0,80</td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>0,82</td>
<td>0,80</td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>0,79</td>
<td>0,80</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela: normal 1 1,00 0,02 / /
2.5 Krivulja učenja izkoriščenost naprav

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj kvartalov

Slika 13: Grafična oblika podatkov simulacije (izkoriščenost naprav)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev trenda</th>
<th>podatki porazdelitve</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>min / mean</th>
<th>stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0 1999</td>
<td>115,000%</td>
<td>115%</td>
<td>normalna</td>
<td>1</td>
<td>1,00</td>
<td>0,03</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000 3999</td>
<td>112,000%</td>
<td>112%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000 5999</td>
<td>109,000%</td>
<td>109%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000 7999</td>
<td>106,000%</td>
<td>106%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000 9999</td>
<td>103,000%</td>
<td>103%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000 11999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000 13999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000 15999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000 17999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000 19999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000 21999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000 23999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000 25999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000 27999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000 29999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000 31999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000 33999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000 35999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000 37999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000 39999</td>
<td>100,000%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.6 Krivulja učenja nabavni viri in tehnologija

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, variabilne verjetnostne porazdelitve znotraj kvartalov

Slika 14: Grafična oblika podatkov simulacije (krivulja učenja nab. viri in tehnologija)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>Stroški materiala</th>
<th>Ponderirani stroški materiala</th>
<th>vrsta distribucije</th>
<th>input v model</th>
<th>podatki porazdelitve</th>
<th>beta</th>
<th>1</th>
<th>1.00</th>
<th>2.00</th>
<th>1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>15.82</td>
<td>1.0000</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>15.54</td>
<td>0.9823</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>15.26</td>
<td>0.9646</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>15.04</td>
<td>0.9507</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>14.82</td>
<td>0.9368</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>14.76</td>
<td>0.9322</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>14.67</td>
<td>0.9275</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>14.60</td>
<td>0.9229</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7 Sprememba pogodbenih količin

Simbol v simulaciji:

Vrsta trenda: Diskretizirana krivulja, fiksne verjetnostne porazdelitve znotraj kvartalov

Slika 15: Grafična oblika podatkov simulacije (sprememba pogodbenih količin)

Tabela 15: Izbrani parametri za simulacijo (sprememba pogodbenih količin)

<table>
<thead>
<tr>
<th>obdobje</th>
<th>korak simulacije</th>
<th>določitev trenda količin</th>
<th>vrsta distribucije</th>
<th>podatki porazdelitve</th>
<th>stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>korak od</td>
<td>korak do</td>
<td>nomin.</td>
<td>rast</td>
<td>kumulativno</td>
</tr>
<tr>
<td>2007-T1</td>
<td>0</td>
<td>1999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>normalna</td>
</tr>
<tr>
<td>2007-T2</td>
<td>2000</td>
<td>3999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2007-T3</td>
<td>4000</td>
<td>5999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2007-T4</td>
<td>6000</td>
<td>7999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2008-T1</td>
<td>8000</td>
<td>9999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2008-T2</td>
<td>10000</td>
<td>11999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2008-T3</td>
<td>12000</td>
<td>13999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2008-T4</td>
<td>14000</td>
<td>15999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2009-T1</td>
<td>16000</td>
<td>17999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2009-T2</td>
<td>18000</td>
<td>19999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2009-T3</td>
<td>20000</td>
<td>21999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2009-T4</td>
<td>22000</td>
<td>23999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2010-T1</td>
<td>24000</td>
<td>25999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2010-T2</td>
<td>26000</td>
<td>27999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2010-T3</td>
<td>28000</td>
<td>29999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2010-T4</td>
<td>30000</td>
<td>31999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2011-T1</td>
<td>32000</td>
<td>33999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2011-T2</td>
<td>34000</td>
<td>35999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2011-T3</td>
<td>36000</td>
<td>37999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
<tr>
<td>2011-T4</td>
<td>38000</td>
<td>39999</td>
<td>0,000%</td>
<td>1,00000</td>
<td>1,00000</td>
</tr>
</tbody>
</table>
DODATEK B: Analiza trendov strateških surovin in ostalega

Dodatek B je namenjen detajlni analizi različnih surovin, energetov in podobnega, na podlagi katerega so v nalogi izvedene napovedi. Napovedi za nekatere vplivne veličine so narejene brez detajlne analize v tem dodatku.

Kazalo vsebine

1 BAKER..1

1.1 PRIDOBIVANJE...1

1.2 PONUDBA IN POVPRAŠEVANJE...1

2 ALUMINIJ ...7

2.1 PRIDOBIVANJE...7

2.2 PONUDBA IN POVPRAŠEVANJE...7

3 JEKLO..12

3.1 PRIDOBIVANJE...12

3.2 PONUDBA IN POVPRAŠEVANJE...12

4 MAGNETI IZ REDKIH ZEMELJ ...15

4.1 PRIDOBIVANJE...15

4.2 STANJE..16

5 STROŠKI ENERGIJE..21

5.1 NAFTA..26

5.1.1 PRIDOBIVANJE...26

5.1.2 STANJE...27

Kazalo slik

Slika 1: Uproaba bakra po kontinetih in panogi (%)...1
Slika 2: Globalna proizvodnja bakra med 2000 in 2012 (mio ton)..4
Slika 3: Globalno povpraševanje po bakru med 2000 in 2012 (mio ton)...4
Slika 4: Uravnoteženje povpraševanja/ponudbe med 2000 in 2012 (mio ton).................................4
Slika 5: Cena bakra na podlagi zaloge na LME (US$/tono)..5
Kazalo tabel

Tabela 1: Pričakovane potrebe aplikacij, ki uporabljajo okside redkih zemelj v tonah19
Tabela 2: Pričakovane potrebe po kovinskih oksidih v tonah ..20
Tabela 3: Pričakovane potrebe po kovinskih oksidih v tonah ..20
Tabela 4: Pričakovana zrelost izbranih tehnologij (leto zrelosti) ..30
1 BAKER

1.1 PRIDOBIVANJE

Obstajajo tudi postopki pridobivanja bakra iz revnejših rud z mokrimi postopki, luženjem in obaranjem. Oksidne rude lahko lužimo neposredno, sulfidne pa je potrebno posebej pripraviti. Iz raztopine (luženje) pridobivamo cementni baker. Za pridobivanje čistega bakra uporabimo običajne postopke rafinacije.

1.2 PONUDBA IN POVPRAŠEVANJE

Baker je bila prva kovina, ki jo je pričel človek pridobivati v bronasti dobi. Zaradi izrednih lastnosti je glede prevodnosti električnega toka zelo uporabljen v industriji vodnikov in električnih naprav vseh vrst. Poleg tega je močno prisoten tudi v gradbeništvu (glej sl. 1).

Slika 1: Uporaba bakra po kontinentih in panogi (%)

Vir: London Metal Exchange Limited, november, 2006

Obstaja tudi podatek, da je trenutno samo na Kitajskem 18 projektov za obrate za pridobivanje bakra s skupno kapaciteto 2.000.000 ton bakra letno. Napoved pravi, da če bi se vsi ti projekti uresničili, bi skupna kapaciteta Kitajskih narastla na 3.700.000 ton letno, in
to že konec leta 2007. Na Japonskem Dowa Mining Co. načrtuje investicijo v obrat s kapaciteto 150.000 ton letno.

V Zambiji se prav tako pričenjajo investicije, ki bodo pomenile 350.000 ton letne kapacitete. Poleg tega že potekajo investicije za 150.000 ton letno.

Maureen Coulas (Coulas, 2005) navaja, da bo od leta 2005 do leta 2010 povpraševanje po bakru rastlo s povprečno 4,4 % letno rastjo na 20,4 mio ton. International Copper Study Group (International Copper Study Group, 2006) ocenjuje, da bo globalna proizvodna kapaciteta v letu 2006 narastla na 17,56 mio ton bakra, kar bo v primerjavi z letom 2005 predstavljalo 1,11 mio ton porasta (6,8 %). V letu 2007 bo ta številka 18,6 mio ton, kar bo napram letu 2006 predstavljalo 630.000 ton povečanja (3,6 %).

Po drugi strani pa isti vir navaja podatek o povpraševanju po bakru, ki se je v letu 2005 zmanjšalo za 1,3 % (16,5 mio ton). Povečanje povpraševanja se pričakuje za leto 2006, in to na 17,3 mio ton (4,9 % letni porast). Največji delež bo pri tem imela Azija, najmanjši pa EU. Za leto 2007 napoveduje ta vir porast povpraševanja za 820.000 ton letno, kar bo globalno pomenilo 18,13 mio ton letno (4,7 % letna rast).

Na podlagi napovedi različnih virov je bila izdelana tudi prognoza povpraševanja po bakru (glej sl. 3).

Iz napovedi povpraševanja in ponudbe lahko izdelamo analizo uravnoteženja povpraševanje/ponudba po letih (glej sl. 4). Razvidno je, da se napoveduje presežek količin, kar je dober obet za podjetja, katerih velik delež stroškov predstavlja prav baker. Med nje nedvomno sodi tudi Iskra Avtoelektrika.

Slika 5: Cena bakra na podlagi zaloge na LME (US$/tono)

Vir: Lastno delo (osnova so podatki LME)

Skladno s teorijo je v primeru večjih zalog cena za tono bakra manjša. Tej soodvisnosti je potrebno določiti zakonitost, ki je v grafični obliki razvidna iz slike 6.

Slika 6: Cena bakra na podlagi zaloge na LME (US$/tono)

Vir: Lasten vir (osnova so podatki iz teksta)

Dobimo eksponentno funkcijo $y = 15411x^{-0.333}$, kjer predstavlja x velikost zaloge, y pa ceno za tono bakra v US$.

Iz dobljene enačbe in napovedanega gibanja zalog v prihodnosti (glej sl. 7, na str. 6), ki je sestavljeno iz treh segmentov, lahko napovemo ceno bakra za tono v US$.
Kot že omenjeno, lahko iz vseh izdelanih analiz zaključimo, da bo cena bakra v prihodnosti padala. V tem koraku je smiselno primerjati napovedi različnih virov, in tisto, ki izhaja iz predstavljene analize.

Slika 8: Cena bakra po letih glede na različne napovedi (US$/tono)

Vir: Lasten vir (osnova so podatki iz teksta)
2 ALUMINIJ

2.1 PRIDOBIvanje

Aluminijev oksid je tako razširjen v glini, kaolinu in ostalih kamninah, da so surovine za pridobivanje aluminija praktično neizčrpne. Iz ekonomskih razlogov pa je primerna surovina izključno boksit. To je preperela kamnina, ki poleg 55-65 % aluminijevega oksida vsebuje še železov oksid, kremen in titanov oksid, v različnih količinah. Priprava boksita je dvostopnjska. Najprej izdelamo čisti aluminijev oksid (Al$_2$O$_3$), ki ga z elektrolizo razstavimo v aluminij in kisik.

Najvažnejši način pridobivanja aluminija je Bayerjev postopek. Boksit sušimo, fino zmeljemo in ga v avtoklavih raztapljamо v natrijevem lugu. Rezultat je čisti oksid, ki ga imenujemo tudi glinica. Ta je, kot že omenjeno, nujen v nadaljnjem postopku pridobivanja, ker bi v nasprotnem primeru dobili v aluminiju tudi železo, silicij in titan. Pridobivanje poteka v nadaljevanju v elektrolitskih pečeh, ki imajo stene obzidane z grafitnimi zidaki. Notranjost peči tvori kopel, z vrha imamo v njo spuščene anode, dno pa predstavlja katodo (prav tako sestavljeno iz grafitnih zidakov). Poznamo dve vrsti anod, obe iz grafita. To so žgane (najčistejši grafit) in take, ki se same žgejo (Soderbergove anode). Celoten postopek pridobivanja je zapleten (gre za elektrolizo), rezultat pa je aluminij, ki se nalaga na dnu kopeli in ki ga občasno odstranjujemo. Poleg tega nastaja še CO$_2$. Da postopek elektrolize poteka nemoteno, dodajamo v kad aluminijev oksid ob enakomernih presledkih. Zanimiv podatek je, da se iz štirih ton boksita pridobi 2 toni aluminijevega oksida in skozi elektrolizo eno tono čistega aluminija (99,5-99,9 %). Za skoraj vse primere uporabe je čistoča zadostna, če pa ni, potrebujemo dodatno rafinacijo. To je postopek elektrolize, ki poteka v treh fazah, za razliko od samega postopka, s katerim pridobimo manj čist aluminij, pa imamo tu nekoliko drugačno konstrukcijo peči. Pri tem ali pa predhodno opisanem postopku iz kadi občasno odstranjujemo aluminij in ga vlivamo v različne oblike.

Aluminij se danes uporablja predvsem zaradi majhne specifične teže, mehanskih in električnih lastnosti in odpornosti na rjo. Danes postaja ta barvna kovina vse bolj moderna in uporabljena, tako da je na LME največji borzni promet ustvarjen prav z njo.

2.2 PONUDBA IN POVPRAŠEVANJE

Največja proizvajalka aluminija je danes Evropa, kar je po eni strani precej presenetljivo (glej sl. 9 na str. 8). Stanje je takšno predvsem zaradi predstavljenega dejstva, da je ruda za proizvodnjo aluminija prisotna praktično povsod. Na strani porabe izstopa sektor transporta.
Slika 9: Uporaba bakra po kontinentih in panogi (%)

World primary aluminium production

- **America**: 29%
- **Asia**: 33%
- **Europe**: 24%
- **Oceania**: 9%
- **Africa**: 5%

Industry consumption

- **Transport**: 26%
- **Packaging**: 8%
- **Construction**: 8%
- **Machinery**: 7%
- **Electrical**: 7%
- **Consumer Durables**: 8%
- **Other**: 22%

Vir: London Metal Exchange Limited, november, 2006

Mary-Lou Considine (Considine, 2006) napoveduje globalno rast povpraševanja s 4,3 %, ki bo leta 2011 dosegla nivo 40,7 mio ton. Tudi ta vir navaja vodilno vlogo Kitajske. Ta vir, podobno kot prejšnji, ugotavlja, da bo Kitajska občutila primanjkljaj in tako postala močna uvoznica te kovine.

Kitajska je po navajanju ABARE (Dickson, Hogan, Huggan, 2006) močno povečevala povpraševanje v prejšnjih letih. Podatki, ki se nanašajo na leto 2005, navajajo, da je bil globalni delež porabe jekla, aluminija, bakra in cinka nad 20 %.

Na podlagi različnih virov kot Robin Bhar (Bhar, 2006), Metal Bulletin (Metal Bulletin, 2006), Internationaal ondernemen en samenwerken (Internationaal ondernemen en
samenwerken, 2006) in Harry Stourton (Stourton, 2005) je mogoče izdelati graf, na katerem so navedeni bodoči trendi v globalni kapaciteti proizvodnje aluminija med 2006 in 2012 (glej sl. 10).

Slika 10: Globalna proizvodnja aluminija med 2006 in 2012 (mio ton)

![Graf globalne proizvodnje aluminija](image10)

Vir: Lasten vir (osnova so podatki iz teksta)

V nadaljevanju je podobno kot za stran ponudbe izdelan graf tudi za stran povpraševanja (glej sl. 11).

Slika 11: Globalno povpraševanje po aluminiju med 2006 in 2012 (mio ton)

![Graf globalnega povpraševanja po aluminiju](image11)

Vir: Lasten vir (osnova so podatki iz teksta)

Podobno kot za baker lahko tudi pri aluminiju izdelamo primerjavo med povpraševanjem in ponudbo in prikažemo, kakšno bo razmerje med obema (glej sl. 12).

Slika 12: Uravnoteženje povpraševanja/ponudbe med 2006 in 2012 (mio ton)

![Graf uravnoteženja povpraševanja/ponudbe](image12)

Vir: Lasten vir (osnova so podatki iz teksta)
Iz predstavljenega grafa lahko razberemo, da vsi viri po letu 2008 pričakujejo večjo ponudbo od povpraševanja. Kot rezultat 0,2 odstotne točke večje rasti ponudbe od povpraševanja lahko pričakujemo v letu 2012 presežek 2,1 mio ton.

Tudi za aluminij je smiselno, podobno kot za baker, izdelati analizo preteklega dogajanja z vidika odnosa velikost zaloge – cena. Vir je LME. Zakonitost, ki je v preteklosti obstajala, pravi, da je cena obratno sorazmerna z velikostjo zaloge, kar je povsem v skladu s teorijo ponudbe in povpraševanja (glej sl. 13).

Slika 13: Uravnoteženje povpraševanja/ponudbe med 2000 in 2012 v mio tonah

Vir: Lastno delo (osnova so podatki iz LME)

Iz analiziranja podatkov lahko potegnemo zaključek, da je na podlagi zaloge mogoče napovedati ceno na LME. Kot primer navajam, da če bi zaloga padla pod 200.000 ton, bi trg reagiral s cenom, ki bi bila nad 3000 US$ za tono povpraševanja (glej sl. 14).

Slika 14: Cena aluminija na podlagi zaloge na LME (US$/tono)

Vir: Lasten vir (osnova so podatki iz teksta)

Nadaljnji korak je določitev cene za tono po letih, na podlagi vseh predhodno predstavljenih podatkov. Ugotovljeno je bilo, da bo presežek na trgu v letu 2012 znašal 2,1 mio tone, kar bi za LME pomenilo 1,260 mio ton (aluminij se ne trži zgolj na LME). Robin Bhar (Bhar, 2006) navaja, da bo v letu 2010 presežek na LME znašal 1,220 mio ton.
Iz vseh navedenih podatkov lahko sestavimo pričakovano velikost zaloge na LME, na podlagi katere bomo določili ceno za tono aluminija (glej sl. 15).

Slika 15: Pričakovana velikost zaloge na LME po letih (mio ton)

Slika 16: Cena aluminija po letih glede na različne napovedi (US$/tono)

Vir: Lastno delo (osnova so podatki iz teksta)
3 JEKLO

3.1 PRIDOBIVANJE

Pridobivanje jekla je v bistvu postopek razogljičevanja grodlja (material, katerega dobimo iz plavža). Poleg tega dodajamo še razne legirne elemente, da jeklo pridobi zanj značilne lastnosti, kot sta elastičnost in trdnost.

Grodelj pridobivamo v plavžu. To je posebna jaškasta peč v obliki dveh presekanih stožcev. Ta peč je visoka okrog 30 m in je v notranjosti obzidana s šamotno opeko, v talilniku (najbolj obremenjen del plavža) pa se uporablja koksna opeka. Zunaj je jekleni plašč, ki je hlajen. Način polnjenja plavža in same dogodke v njem ne bom posebej opisal, omejil se bom zgolj na rezultat, ki ga dobimo iz talilnika, in to je grodelj. Tega občasno spuščamo v ponve ali jaške, od koder gre na ohlajanje. Sestavljen je iz železa, ogljika, mangana, fosforja, silicija in žvepla. Poleg grodlja nastaja tudi žlindra, ki jo uporabljamo za različne namene. Ta je sestavljena iz oksidov in silikatov. Za pridobivanje jekla se uporablja t. i. beli grodelj, ki ima ogljik izločen kot železov karbid.

3.2 PONUDBA IN POVPRAŠEVANJE

Podatke je za jeklo zelo težko najti, ker je te zlitine izredno veliko različnih vrst. Poleg tega ni neke borze materialov, kot je to LME, kjer bi se z jekli trgovalo. Zato je treba pri izdelavi analize vzeti kot merilo železovo rudo in tako zavestno narediti neko napako.

Po AME Mineral Economics (AME Mineral Economics, 2006) bo povpraševanje po železovi rudi krito s strani ponudbe. V poročilu je zapisano, da bo količina trgovanja z železovo rudo rastla s 5% letno stopnjo, do 883 mio ton (govora je zgolj o tistem delu, ki se transportira preko morja, torej gre dejansko za izvoz iz določenih držav), ta številka pa nudi drugačen pogled od predhodnih virov (glej sl. 18). Pri tem viru je smiselno povzeti 5 % stopnjo letne rasti.

Isti vir navaja tudi sliko uvoza železove rude, kjer prednjači Kitajska (glej sl. 19 na str. 14). Zanimiv je trend EU in Japonske, kjer je kljub gospodarski rasti poraba bolj ali manj konstantna, kar kaže na spremembo strukture gospodarstva (iz pretežno proizvodne v
pretežno storitveno). Na drugi strani pa je Kitajska, ki prevzema vedno večji del proizvodnje iz omemljih držav.

Slika 19: Uvoz železove rude preko morja od 2004 do 2011 (mio ton)

Vir: AME Mineral Economics, 2006

Iz obeh predstavljenih analiz se lahko zaključi tudi, da sta Brazilija in Avstralija največji izvoznici med državami. Njihova letna rast izvoza železove rude bo 7,8 % do leta 2011. Ostale izvoznice bodo imele bolj ali manj konstanten izvoz. V letu 2004 je Kitajska predstavljala 35 % delež vseh transportov železove rude po morju (to še ne predstavlja uvoza). Do leta 2011 bo ta delež narastel na 50 %. Ostale države bodo bodo bolj ali manj konstantne pri tej kategoriji.

4 MAGNETI IZ REDKIH ZEMELJ

4.1 PRIDOBIVANJE

raziskave o GdCo₅, ki so dokazale, da je ta spojina feromagnetna (1960). Nadaljnje raziskave so pokazale, da je za industrijsko rabo najprimernejša spojina SmCo₅. V osemdesetih je vse do tedaj poznane magnetne zasenčil t. i. NdFeB (kemična spojina Nd₂Fe₁₄B ali s polnim imenom neodymium-iron-boron). Z izrednimi lastnostmi in že poznano tehnologijo izdelave je postopoma izrinil ostale rešitve. V nadaljevanju bo opisano, da so sicer segmenti aplikacij, kjer se to ni zgodilo.

4.2 STANJE

Slika 21: Trend proizvodnje oksidov redkih zemelj od l. 1950 do l. 2000 v kilotonah (kt)

Vir: Karayannopoulos, 2004
V nadaljevanju zasledimo trend gibanja cen v preteklosti za glavne okside, ki se pridobivajo iz redkih zemelj (glej sl. 22, levi del slike). Cena je normalizirana na leto 1995, podatki pa se nanašajo na cene, ki so jih dosegala kitajska podjetja (rečeno je že bilo, da so le-ta praktično monopolisti).

Slika 22: Trend proizvodnje oksidov redkih zemelj od leta 1995 do leta 2005 v kilotonah (kt) in sestava surovine, iz katere se pridobivajo oksidi

Vir: Karayannopoulos, 2004

Slika 23: Povpraševanje in ponudba po neodim oksidu po letih v tonah (Mton)

Vir: Karayannopoulos, 2004
V prihodnjih letih vir napoveduje, da bo proizvodnja magnetov rastla 15 % letno. V preteklosti so cene neodim oksida dosegale tudi 18 US$/kg, neodim kovine pa 30 US$/kg, vendar se ne napovedujejo podobne razmere za prihodnost. Nekaj pa vendarle govori v prid zmernega povečevanja cene. To je dejstvo, da proizvajalci (v glavnem Kitajska) s proizvodnjo ne dosegajo dobičkov (v preteklosti so na ta način izničili vso svetovno konkurenco), ker so cene na trgu prenizke. Omenejno je že bilo, da se v bistvu celotno proizvodnjo bazira na neodim in da se preko le-tega krije izgubo, ki nastaja pri separaciji vseh ostalih elementov, s cerijem na čelu (50 % vsega), kar pa ni dovolj. To lahko pomeni zapiranje obratov in posledično manjšo ponudbo.

Po Rexu Harrisu in A. J. Williamsu (Harris, Williams, 1999) je letna rast povpraševanja po magnetih iz redkih zemelj (praktično predstavlja vse Nd$_2$Fe$_{14}$B) 12 % za sintrene in okrog 20 % za kompozitne (prah, ki je spojen v končno obliko z vezivom - polimeri). Največji porabnik teh magnetov je še vedno industrija osebnih računalnikov (60 %). Potencial za nadaljnjo rast obstaja na segmentu avtomobilske proizvodnje, mobilnih telefonov in medicinske opreme. Avtor navaja, da če je imel avtomobil v petdesetih letih prejšnjega stoletja en magnet, jih imajo današnji okrog 50. Ti niso Nd$_2$Fe$_{14}$B, vendar se vse bolj pogosto zamenjujejo z njimi. Smiselno je omeniti tudi ostale segmente, kjer je prisotnost omenjenih magnetov močna. Ti so industrija bele tehnike, robotov, elektronike in vesoljska ter vojaška industrija.

Cena za magnet iz redkih zemelj je po Johnu Westu (West, 2006) 60 US$/kg za sintrene Nd$_2Fe_{14}$B-magnete, 90 US$/kg za kompozitne, kar je občutna razlika s podatki, ki jih navaja Constantine E. Karayannopoulos (Karayannopoulos, 2004). Slednji navaja stroške vhodne surovine (neodim oksid), torej nastane vsa razlika v ceni za kg kot posledica tehnologije izdelave magneta. Ta podatek bi lahko prišel prav pri določitvi struktura cene magneta, vendar zaradi različnosti virov in po mojem mnenju nedopustno velike razlike v vrednostih ne dopušča realne ocene. Vir navaja, da je na segmentu avtomobilske industrije povpraševanje po omenjenih magnetih za sintrene 13 %, za kompozitne pa 30 %. Pomešen podatek, ki je bil glede patentov že naveden, je, da so osnovni patenti glede sintranih magnetov (Sumitomo) ravnokar prenehali biti veljavni, z izjemo ZDA, kar bi lahko sprostilo nastanje novih obratov in posledično ugodno razmerje povpraševanje/ponudba. Poleg tega bodo tudi proizvajalci, ki so trenutno plačevali licenčnino, postali bolj konkurenčni.

Tabela 1: Pričakovane potrebe aplikacij, ki uporabljajo okside redkih zemelj v tonah

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NdFeB-magneti</td>
<td>13.650</td>
<td>17.150</td>
<td>18,0 %</td>
<td>31.100</td>
<td>12,64 %</td>
</tr>
<tr>
<td>NiMH-baterije</td>
<td>6.200</td>
<td>7.200</td>
<td>7,6 %</td>
<td>27.300</td>
<td>30,55 %</td>
</tr>
<tr>
<td>Katalizatorji</td>
<td>20.440</td>
<td>21.230</td>
<td>22,3 %</td>
<td>25.960</td>
<td>3,78 %</td>
</tr>
<tr>
<td>Fosfor</td>
<td>3.652</td>
<td>4.007</td>
<td>4,2 %</td>
<td>7.512</td>
<td>13,00 %</td>
</tr>
<tr>
<td>Steklo</td>
<td>13.440</td>
<td>13.590</td>
<td>14,3 %</td>
<td>13.990</td>
<td>0,57 %</td>
</tr>
<tr>
<td>Polirne paste (sestavine)</td>
<td>14.100</td>
<td>15.150</td>
<td>15,9 %</td>
<td>23.500</td>
<td>9,2 %</td>
</tr>
<tr>
<td>Ostalo</td>
<td>15.365</td>
<td>16.935</td>
<td>17,8 %</td>
<td>24.950</td>
<td>8 %</td>
</tr>
<tr>
<td>Skupaj</td>
<td>86.847</td>
<td>95.262</td>
<td>100 %</td>
<td>154.312</td>
<td>10,1 %</td>
</tr>
</tbody>
</table>

Vir: Sinton, 2006

Iz predhodne tabele so izpeljane količine oksidov, potrebne za realizacijo povpraševanih aplikacij (glej tab. 2 na str. 20).
Tabela 2: Pričakovane potrebe po kovinskih oksidih v tonah

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lantanov oksid</td>
<td>26.030</td>
<td>28.041</td>
<td>29.4 %</td>
<td>47.197</td>
<td>11.0 %</td>
</tr>
<tr>
<td>Cerijev oksid</td>
<td>35.893</td>
<td>37.736</td>
<td>39.6 %</td>
<td>53.272</td>
<td>7.1 %</td>
</tr>
<tr>
<td>Prazeodimov oksid</td>
<td>4.862</td>
<td>5.705</td>
<td>6.0 %</td>
<td>11.972</td>
<td>16.0 %</td>
</tr>
<tr>
<td>Neodimov oksid</td>
<td>13.039</td>
<td>15.915</td>
<td>16.7 %</td>
<td>28.331</td>
<td>12.2 %</td>
</tr>
<tr>
<td>Evropijev oksid</td>
<td>238</td>
<td>258</td>
<td>0.3 %</td>
<td>459</td>
<td>12.2 %</td>
</tr>
<tr>
<td>Terbijev oksid</td>
<td>214</td>
<td>259</td>
<td>0.3 %</td>
<td>547</td>
<td>16.1 %</td>
</tr>
<tr>
<td>Disprozijev oksid</td>
<td>1.365</td>
<td>1.715</td>
<td>1.8 %</td>
<td>3.110</td>
<td>12.6 %</td>
</tr>
<tr>
<td>Ostalo</td>
<td>5.207</td>
<td>5.633</td>
<td>5.9 %</td>
<td>9.424</td>
<td>10.8 %</td>
</tr>
<tr>
<td>Skupaj</td>
<td>86.847</td>
<td>95.262</td>
<td>100 %</td>
<td>154.312</td>
<td>10.1 %</td>
</tr>
</tbody>
</table>

Vir: Sinton, 2006

Iz vodilnega oksida (neodimijev) je preračunano, da bi glede na povprečno vsebnost v rudah morali imeti letno kapaciteto izkopa okrog 175.000 ton leta 2010. Avtor poudarja, da te količine zaenkrat ni na voljo.

Isti avtor navaja podatke za leto 2005, kjer je celotna svetovna proizvodnja dosegla 103.000 ton oksidov, kar 95 % vseh količin pa je bilo proizvedenih na Kitajskem. Izvoz je znašal 55.300 ton. Treba je poudariti, da se je veliko končnih proizvajalcev preselilo blizu predelovališč rude, kar je privedlo do koncentracije industrije. To se je zgodilo zaradi nizkih fiksnih stroškov, ki so potrebni za obratovanje in ekoloških zahtev na Kitajskem.

Svetovne rezerve so razporejene dokaj »monopolistično« (glej tab. 3). Bilo je že omenjeno, da to predstavlja iz več vidikov dokaj neugoden položaj za industrijsko razvite države. Kljub predstavljenim količinam pa je iz ekonomskih razlogov moč računati le s 6.200.000 tonami rezerv.

Tabela 3: Pričakovane potrebe po kovinskih oksidih v tonah

<table>
<thead>
<tr>
<th>Država</th>
<th>Rezerve (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitajska</td>
<td>43.000.000</td>
</tr>
<tr>
<td>ZDA</td>
<td>13.000.000</td>
</tr>
<tr>
<td>Indija</td>
<td>1.100.000</td>
</tr>
<tr>
<td>Avstralija</td>
<td>5.200.000</td>
</tr>
<tr>
<td>Brazilija</td>
<td>109.000</td>
</tr>
<tr>
<td>Rusija</td>
<td>19.000.000</td>
</tr>
<tr>
<td>Kanada</td>
<td>940.000</td>
</tr>
<tr>
<td>Južna Afrika</td>
<td>390.000</td>
</tr>
<tr>
<td>Malezija</td>
<td>30.000</td>
</tr>
<tr>
<td>Vietnam</td>
<td>9.000.000</td>
</tr>
<tr>
<td>Ostale države</td>
<td>9.000.000</td>
</tr>
<tr>
<td>Skupaj</td>
<td>100.769.000</td>
</tr>
</tbody>
</table>

Vir: Sinton, 2006

Isti vir navaja tudi trend gibanja cen za tono oksida redke zemlje (glej sl. 24 na str. 21). Padanje cene v preteklosti je bilo posledica vstopanja kitajskih proizvajalcev na trg (do leta 2003), vendar s takim trendom v prihodnosti ne gre računati.
5 STROŠKI ENERGIJE

- razpoložljivost
- cenovna dostopnost
- stabilnost dobav
- varnost

Ocena o svetovni rasti porabe energije je 2,1 % letno (Westervelt, Fournier, 2005). Struktura rezerv tradicionalnih energentov (fosilna goriva) kaže, da je daleč največ premoga, ki pa je problematičen iz ekoloških vidikov, vendar se z napredovanjem tehnologije problematika počasi odpravlja (glej sl. 25). Po istem viru je stanje na področju energentov zelo problematično. Goriva za jedrske centrale naj bi bilo za 20 do 40 let, nafta je za obdobje nastanka poročila problematična, ker povpraševanje presega ponudbo, poleg tega pa naj bi bilo rezerv še za kakih 40 let.

Slika 25: Struktura svetovnih rezerv tradicionalnih energentov (%)

Vir: Westervelt, Fournier, september, 2005
Energenti, ki niso obravnavani v nadaljevanju

Te vire je potrebno navesti, ker bo cena nafte in zelo verjetno tudi električne energije v prihodnosti nedvomno močno odvisna od njih. Predvsem alternativni viri energije, na čelu z vodikom, bodo v prihodnosti diktirali porabo nafte. Napovedi so, da naj bi se v 10 letih tehnologije za predelavo, hranjenje in uporabo toliko izpopolnile, da bo postal vodik eden daleč največjim potencialom. Ne smemo pa pozabiti na jedrsko energijo, ki jo nekatere države vidijo kot rešitev z vidika energetsko neodvisnosti.

Premog

To je dokaj stabilen ener gent, katerega cena bo rastla, podobno kot ostalim energentom (Westervelt, Fournier, 2005). Težava je v pridobivanju, ker gre za nevarne postopke (rudniki), in v sami uporabi, kajti ta ener gent je med vsemi fosilnimi gorivi najbolj ekološko nesprejemljiv. Problem predstavljajo emisije plinov, ki nastajajo pri zgorevanju. Pričakovane rezerve zadoščajo za 109 let ob predpostavki 1,4 % letne rasti.

Jedr ska energija

Obnovljivi viri energije

To področje ener gentov je zanimivo, predvsem zaradi tendence stalnega padanja cen, kar je ravno v nasprotju s cenami tradicionalnih ener gentov (Westervelt, Fournier, 2005). Med
energente štejemo etanol, vodik, biomaso, veter, vodno, geotermalno in sončno energijo. Z vidika prihodnosti in potenciala za nadomeščanje fosilnih goriv je vodik tisti, na katerega se polaga največjo pozornost. Pričakovati je velik porast povpraševanja v naslednjih 10 letih. Problem pa je varnostna problematika ter že omenjeni način pridobivanja (v osnovi se lahko pridobiva s fosilnimi gorivi ali pa jedrsko energijo). Vodik se bo največ uporabljal v gorivnih celicah.

Naravni plin

Peter J. Dortmans (Dortmans, 2004) navaja, da se trenutno posveča pozornost možnostim, da bi naravni plin v prihodnosti kot energent nadomestil tekoča fosilna goriva. Za stimulacijo prehoda bi morale države oblikovati strategije uvajanja, ki bi temeljile na olajšavah. Ta energent naj bi bil vmesna stopnja med fosilnimi gorivi in vodikom.

Vodik

Najekonomičnejši način danes je proizvodnja iz naravnega plina, za katero se napoveduje, da bo ostala glavna tehnologija do okrog leta 2020. Tudi vodna elektroliza je že raziskan in poznan proces, stroški proizvodnje pa so vezani na ceno električne energije (danes je strošek pridobivanja najmanj dvakrat večji kot pri metodi z naravnim plinom). stroške procesa elektrolize bi lahko znižali s koriščenjem jedrskih elektrarn med obdobji, ko ni velikega povpraševanja, in z gradnjo velikih industrijskih objektov za proizvodnjo vodika z elektrolizo vode. Vodik pa lahko, poleg iz tekočih fosilnih goriv in naravnega plina, pridobimo tudi z razogličevanjem premoga, kar daje temu procesu privlačnost, saj se ocenjuje, da je premoga v naravi še največ med vsemi fosilnimi gorivi. Omeniti je potrebno tudi razvoj tehnologij za izničenje emisij CO₂ pri razogličevanju, kjer je ostal še problem skladiščenja, vendar je moč v prihodnosti pričakovati tudi rešitev tega problema. V celotni verigi pridobivanja in porabe vodika je prav pridobivanje tisto, kateremu je potrebno v tem trenutku posvetiti največ pozornosti zaradi že omenjenih emisij.

Problem predstavlja tudi način skladiščenja in distribucije vodika, kakor tudi sama varnost pri uporabi. Danes ni zadovoljnih odgovorov na ta vprašanja. Načina uporabe sta dva, in sicer motorji z notranjim zgorevanjem ali pa gorivne celice. Pozornost je potrebno posvetiti slednjemu, ker bi imel bistvene prednosti z vidika emisij. Treba je tudi opozoriti, da so motorji na notranje zgorevanje, ki uporabljajo vodik, že razviti, kar ni zanemarljivo dejstvo. Poudariti moramo tudi podatke, da se pri gorivnih celicah danes dosega 37 % izkoristek (to je tehnologija v razvoju, torej smo še daleč od optimalnih performans, ki se ocenjujejo na okrog 50 %), kar je v primerjavi z diesel (24 %) in bencinskim (20 %) bistveno bolje. Študija Alternative Fuels Contact Group (Alternative Fuels Contact Group, 2003) ocenjuje, da bodo sistemi gorivnih celic leta 2010 dosegali porabo 0,94 MJ/km, kar je ekvivalent 2,6 l/100 km diesel goriva. Za motorje z notranjim zgorevanjem na vodik je ta ocena slabša (4,7 l/100 km). Isti vir navaja tudi podatek, da je uporaba gorivnih celic smiselna za motorje z manjšimi močmi, motorji z notranjim zgorevanjem s vodikom so primernejši za večje moči. Glede na stopnjo zrelosti obeh tehnoloških rešitev je pričakovati, da se bodo gorivne celice toliko izopolnile, da bodo tudi te primerne za večje moči. Poudariti velja, da so motorji z notranjim zgorevanjem lahko zasnovani tako, da omogočajo delovanje z vodikom ali pa bencinom, kar bo omogočalo mehak prehod na ta tip energenta (rešijo se infrastrukturni problemi, ker ne bo avtomobil odvisen zgolj od vodika). Za široko potrošnjo naj bi sistemi z gorivnimi celicami prišli v uporabo med letoma 2015 in 2020, glede na napovedi (Alternative Fuels Contact Group, 2003). Isti vir podaja stroške pridobivanja vodika, ki so med 10 GJ/€ (iz naravnega plina) in 20 GJ/€ (elektroliza vode). Za isto energijo s strani bencina je potrebno ob ceni nafte 25 US$ za sodček odšteti 7 GJ/€. Ta podatek daje misliti, ker nam pove, da je sam strošek pridobivanja goriva za osnovi vodika manjši kot tisti za bencin (za končnega uporabnika je po tem scenariju bencin še vedno pol cenejši, in to zaradi faktorjev, ki so vezani na distribucijo). V zagonski fazi, bi potrebovali olajšave s strani držav, ko pa bi se enkrat tehnologije uveljavile in bi bili priča ekonomijam obsega, bi teh olajšav ne bilo treba več. Omenjeno je že bilo, da so izkoriščki zgorevanja motorjev z vodikom že sedaj boljši in zato poraba manjša. Vse to so argumenti, zakaj se v bližnji prihodnosti lahko zgodi preobrat.
Seveda pa je pričakovati ukrepanje s strani držav proizvajalk nafte z OPEC-om na čelu, ki bodo pazile, da cena nafte ne poskoči v nebo.

Bioetanol

Ta energent je zelo zanimiv v EU. Obstaja direktiva (biofuels directive) o tem energentu, kjer se opredeljuje prihodnji pomen. Po Ramónu de Miguelu (De Miguel, 2006) se bo v letu 2007 ta direktiva drastično prenovila, predvsem zato, ker se s sedanjo ne dosegajo želene cilje. Ti cilji so bili določeni tudi na podlagi zahtev Kyotskega sporazuma o zmanjševanju emisij. Isti avtor podaja prikaz o letni rasti količin, ki je 40 % (od leta 2001 do 2005). Največja proizvajalka v EU je Španija, kar ni naključje, če vemo, da se ga proizvaja tudi iz surovin, kot je recimo vinski alkohol. Glede porabe prednjačijo Nemčija, Švedska in Velika Britanija, cilje EU pa zaenkrat dosega le Švedska (2 %, 98 % tekočih fosilnih goriv). Ciljev, ki so bili v EU postavljeni do leta 2010 (5,75 %), s takim trendom ne bo mogoče doseči. V svetu sta še dve državi, kjer se ta energent močno razvija, in sicer ZDA in Brazilija. Ciljev je za te države pa so različni. EU ima kot poglaviti cilj postavljeno zmanjševanje onesnaženja (manjše emisije CO₂ do 15 %), ostali dve ogroženi državi pa predvsem navdušniti omejitev vseh fosilnih goriv (sta pretežno uvoznici). Po mnenju tukaj je potrebno tudi dejstvo, da je bioetanol ekonomsko bolj sprejemljiv od biodiesla in da se poraja potreba po spremembah pri proizvajalcih avtomobilov v vidiku delovanja motorjev.

Po raznih avtorjih (Tzimas., Soria., Peteves, 2004) naj bi bioetanol in biodiesel predstavljala 0,3 % porabe bencina in derivatov znotraj EU v letu 2002 (1.400.000 ton). Za doseganje ciljev, ki jih je EU postavila do leta 2010, naj bi bilo po ocenah potrebnih med 6 % in 25 % obdelovane zemlje, da bi bil delež 5,75 % biogoriv med vsemi pogonskimi gorivi (bencin in nafta). Ta številka poraja znotraj stroke vprašanje, ali je EU sposobna zagotavljati take pogoje. Avtorji pa poudarjajo, da je z biogorivi druge generacije mogoče pričakovati ekonomsko bistveno boljše pogoje. Postopki pridobivanja so zaenkrat še laboratorijski, napovedi pa pravijo, da bodo do 2010 že zreli za komercialno uporabo.

5.1 NAFTA

5.1.1 PRIDOBIVANJE

Pogoj za pridobivanje nafte so bila drobna živa bitja in alge, ki so pred 300 milijoni let bivala v morjih. Zaradi klimatskih sprememb so nekatera morja izhlapela. Blato, ki je nastalo iz ostankov, zaradi pomanjkanja kisika ni moglo normalno gniti. V več milijonih let, ki so sledili, je to plast blata prekrila glina in zemlja, tako da je bilo izpostavljeno ogromnim pritiskom. Zaradi takih pogojev so sestavine kemijsko reagirale in nastale so različne spojine (alkani, aromati, žveplene spojine …). Ker pogoji niso bili povsod enaki, poznamo danes posledično zelo različne vrste nafte.

Surovo nafto najprej očistijo, tako da iz nje izločijo sol, vodo in žveplovodik (izpiranje s trietanolaminom). Nato se izloči metan in v nadaljevanju sledijo postopki rafiniranja. V rafineriji se nafta najprej destilira pri atmosferskem pritisku. Destilacija se dogaja ob različnih temperaturah in glede na to se iz nafta izločajo različne sestavine (lahek bencin, težek bencin, plinsko olje). Stranski produkti so še metan, etan, propan in butan. Možno je tudi nadaljnje pridobivanje nekaterih drugih tekočin. Tekočine, ki so se pridobile v prvih fazah, nato še dodatno rafiniramo z namenom zadostitve po določenih kriterijih, kot je to barva ali sestava.

Za pogon reaktivnih motorjev se uporablja težki petrolej, plinsko olje pa se uporablja kot gorivo za dieselske motorje. Za pridobivanje kvalitetnih bencinov se uporabljajo postopki t. i. krekiranja. To so postopki termičnega in katalitičnega cepljenja ogljikovodikov.
5.1.2 STANJE

Cena se ponavadi določa za sodček nafte, ki predstavlja 159 litrov in je izražena v ameriških dolarjih (US$). Določa se na podlagi zakonitosti ponudbe in povpraševanja, kjer je odločilen dejavnik velikost zalog (t. i. strateške naftne rezerve, ki jih imajo posamezne države). Cena nafte je zgolj del cene, ki jo uporabniki plačajo na bencinskih črpalkah. To pomeni, da razmerje med ceno na črpalki in ceno nafte na svetovnem trgu ni 1 : 1, temveč manjše.

Pri oblikovanju cene nafte na trgu ima veliko besedo OPEC (Organization of the Petroleum Exporting Countries), v katero je vključenih 11 držav. EIA (Energy Information Administration) ocenjuje, da OPEC predstavlja 40 % kapacitet na svetovnem trgu in 2/3 svetovnih rezerv nafte. Poleg OPEC-a predstavljajo Kitajska, ZDA, Rusija, Kanada, Mehika, Ekvatorialna Gvineja in Angola še večino preostalega dela svetovnih kapacitet. Glede na vse opisano je normalno pričakovati, da če so strateške naftne rezerve nizke in če se OPEC odloči, da bo zmanjšal dnevno črpanje nafte, bodo cene na svetovnem trgu naraste. Tako se tudi zgodi, vendar je s tem v zvezi kup stranskih učinkov, ki bodo predstavljeni v nadaljevanju (predvsem značilno je prilagajanje potrošnikov in problematika discipline med državami članicami).

Slika 26: Gibanje cen nafte med letoma 1989 in 1999 po različnih državah (US$ za sodček)

Vir: Charles River Associates, 2002

Slika 27: Gibanje cen nafte od leta 1947 do septembra 2006 (v $ za sod)

![Sl. 27: Gibanje cen nafte od leta 1947 do septembra 2006](http://www.wtrg.com/prices.htm)

Vir: http://www.wtrg.com/prices.htm

Kevin Bonsor in Ed Grabianowski (Bonsor, Grabianowski, 2006) podajata ugotovitve, ki se na prvi pogled lahko zdijo znanstvena fantastika, vendar imajo ozadje. Zagovarjata stališče, da bodo z zmanjševanjem svetovnih rezerv (približevanje svetovnih rezerv vrednosti 0) in zapiranjem obstoječih črpališč proizvajalci iskali preostala nahajališča. To bo povzročilo vedno večje cene naft, ki bo postala praktično nekonkurenčen energet. Odvisnost od naft se bo tako morala zmanjšati, in to na račun novejših tehnologij (gorivne celice, električna vozila), ki so sedaj še v povojih. Druga navedba se nanaša na odločitev ameriške administracije, da omogoči črpanje v ANWR (Arctic National Wildlife Refuge) na Aljaski. To je sprožilo burne odzive s strani naravovarstvenikov. Ocene t. i. »1002 area« so, da se tam nahaja 7 milijard sodov naft in da bilo črpanje smiselno, če se za sodček dosega cena nad 20 US$ (pod to ceno je črpanje neprofitabilno). V današnjih razmerah se seveda zdi črpanje zelo smiselno z ekonomskega stališča, saj cene na svetovnih trgih dosegajo vrednost okrog 60 US$ za sodček (na New York Mercantile Exchange je bilo potrebno odšteti 58 US$ za sodček). Opisujeta tudi preteklo trend in dogodke, ki so vplivali na te trende.

Alternative Fuels Contact Group (Alternative Fuels Contact Group, 2003) podaja praktično enake poglede kot predhodno omenjeni avtorji in poudarja, da je v zdajšnjih razmerah moč pričakovati povečanje povpraševanja in nesposobnost proizvajanja naft. Transportni sektor pa je praktično popolnoma odvisen od nje in zato vidi edini način zmanjševanja tveganja v razvoju novih alternativ (naravni plin, vodik, bioetanol).
Podvojitev cen v prihodnosti je mogoča prav tako, kot je bilo to v preteklosti (Westervelt, Fournier, 2005). Vir navaja še dejstvo, da je sposobnost črpanja blizu meje, povpraševanje pa še vedno narašča, in to naj bi bilo razlog. To bo povzročilo številne geopolitične zaplete, kakor tudi tveganka, povezana z naftnimi rezervami.

Peter J. Dortmans (Dortmans, 2004) podaja rezultate različnih studij, ki govorijo o trendih z vidika različnih energentov v prihodnosti. Rezultate za nekatere energente sem povzel (glej tab. 4), ker smatram, da so dobra osnova za postavitev napovedi, poleg vseh predstavljenih dejstev znotraj obravnavane teme.

Tabela 4: Pričakovana zrelost izbranih tehnologij (leto zrelosti)

<table>
<thead>
<tr>
<th>Tehnologija</th>
<th>Napoved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komercialna rabo jedske fuzije</td>
<td>2020</td>
</tr>
<tr>
<td>Gorivne celice v vozilih vsakdanje</td>
<td>2015</td>
</tr>
<tr>
<td>Vodik vodilni energent za proizvodnjo vseh vrst energije</td>
<td>2020</td>
</tr>
</tbody>
</table>

Vir: Dortmans, 2004

Po D. Soeldnerju (Soeldner, 2006) naj bi se znotraj EU struktura energentov spremenila v prid alternativnim virom tako, da bodo le-ti leta 2020 imeli 23 % tržni delež (glej sl. 28). Podatek velja samo za EU, če ga razširimo na svetovno raven in privzamemo, da so deleži enaki, potem lahko zaključimo, da glede na pričakovano povečevanje povpraševanja po nafti v obravnavanem obdobju, cene ne bi smele pretirano naraščati, prav zaradi povečevanja ponudbe alternativnih virov. Seveda je pri teh predpostavkah problematična vloga Indije in Kitajske, kjer ni pričakovati uporabe alternativnih virov energije.

Slika 28: Pričakovana struktura energentov v EU (%)

Vir: Soeldner, 2006

Nafne družbe podajajo diametralno nasprotne ocene, kar si lahko razlagamo z bojaznijo po izgubi moči. Poleg tega se pojavljajo alarmantni podatki glede sposobnosti črpanja v

R. Yagnik (Yagnik, 2005) navaja, da sta realna alternativa tekočim fosilnim gorivom zgolj vodik in elektrika, ko gre za uporabo v segmentu vozil. Vodik se lahko uporablja v motorjih z notranjim zgorevanjem ali pa gorivnimi celicami, električna energija pa je sredstvo za pogon vozil, gnanih z elektromotorji (predvsem AC). Težavo predstavljajo tehnologije, ki so zaenkrat primerne zgolj za aplikacije pri osebnih avtomobilih, in še to v urbanih naseljih (regenerativno zaviranje, preko katerega polnimo baterije in brez porabe, ko avto stoji). Ista študija navaja tudi potencialne prihranke pri uvajanju naravnega plina kot pogonskega goriva pri motorjih z notranjim zgorevanjem. Študija je indijska in na primeru javnega transporta v New Delphiyu ugotavlja, da bi lahko nastroških prihranili okrog 40 % (vir pa navaja, da naravni plin ni energet, na katerega velja velja staviti). Naravni plin ima glede na to študijo tudi velike prednosti z vidika emisij vseh onesnaževalnih spojin. Omejitev je infrastruktura, zato je zaenkrat uporaba smiselna zgolj v urbanih naseljih.

Nicola Pochettino (Pochettino, 2005) govori o trendih v prihodnosti z vidika različnih energentov in napoveduje prevlado energentov na podlagi fosilnih goriv (glej sl. 29). Poleg tega napoveduje tudi problematiko, povezano s povpraševanjem po lahkih fosilnih naftah, ki bodo pričele primanjkovati. To problematiko napovedujejo tudi nekateri drugi viri.

Slika 29: Napoved porabe energentov (Mtoe)

Vir: Pochettino, 2005

Vsi viri, ki so bili obdelani v tem segmentu naloge, kažejo na eno neizpodbitno dejstvo. Države se zavedajo problematike, povezane s fosilnimi gorivi (nafto na prvem mestu), ker se svetovne rezerve izrabljajo. Zato skušajo reagirati s stimulacijo novih tehnologij kot so
naravni plin, vodik, bioetanol in podobne. Predvsem je ta pojav značilen za razvite države, kot so ZDA, EU in Japonska. Če bo povpraševanje večje od ponudbe (veliko napovedi govori tako), se pričakuje, da bo cena poskočila, po najbolj pesimističnih ocenah tudi preko 100 US$ za sodček. To pa zna še bolj pohitriti uvedbo alternativnih virov energije, česar se tudi države proizvajalke nafte močno zavedajo.
DODATEK C: Opis izdelanih elementov v programskem paketu Extend

Kazalo vsebine

1 SPLOŠNO ... 1
2 IZDELANI ELEMENTI .. 1
 2.1 TRENDI .. 1
 2.1.1 PRIPRAVA PODATKOV ZA TRENDE .. 2
 2.1.2 ELEMENTI ZA SIMULACIJO TRENDOV .. 2
 2.2 ELEMENTI ZA DELITEV STRUKTURE NA DELEŽE .. 5
 2.2.1 Delitev na konstantne deleže ... 5
 2.2.2 Delitev na variabilnost deležev, znotraj območja materiala 6
 2.2.3 Delitev na izhodiščne deleže in dopolnitev s trendi ... 7
 2.3 VREDNOTENJE ... 8

Kazalo slik

Slika 1: Splošni element v Extendu ... 1
Slika 2: Postopek generiranja in prenosa podatkov v Extend ... 2
Slika 3: Prikaz generiranja trenda v Extendu ... 3
Slika 4: Struktura elementa DKFP .. 3
Slika 5: Struktura elementa DKVP .. 4
Slika 6: Struktura elementa delitve na konstantne deleže ... 5
Slika 7: Struktura elementa delitve na variabilne deleže ... 6
Slika 8: Struktura elementa delitve na izhodiščne deleže in dopolnitev s trendi 7
Slika 9: Struktura elementa delitve na izhodiščne deleže in dopolnitev s trendi 8
1 SPLOŠNO

Podatke za simulacijo lahko pridobimo na zelo različne načine. Najenostavnejši je nabava kupljenih analiz. Ko smo podatke pridobili, jih moramo pripraviti v primerno obliko za izvedbo simulacije. To izvedemo preko Microsoft Excela, kjer se v končni fazi izpolni posebna tabela, ki definira trend in omogoča enostaven prenos podatkov v elemente Extenda, ki v simulaciji trende opredeljujejo. Vse veličine so časovno odvisne, pri čemer je čas opredeljen s korakom simulacije (treba je določiti, kako območje 40.000 korakov razdeliti na časovna obdobja – v primeru simulacije so to tromesečja).

Slika 1: Splošni element v Extendu

Vir: Lastno delo

Vsak element v Extendu ima v osnovi lahko enega ali več vhodov (točka 1 na sliki 1) in enega ali več izhodov (točka 2 na sliki 1). Lahko so še dodatni vhodi ali izhodi, ki služijo za različne namene, vendar v taki vrsti simulacije, kot je Monte Carlo, niso v uporabi. V programskem paketu poznamo dve vrsti vhodov in izhodov, in sicer tiste, ki upravljajo z veličinami (Monte Carlo simulacija je takove), in tiste, ki upravljajo s predmeti. Če je element izdelan kot »hierarchical block«, ima v ozadju skrito strukturo osnovnih elementov, ki je dosegljiva z dvoklikom na ta element. Osnovni elementi nastopajo v obliki ikon. Vsaka ikona ima strukturo, ki se odpre z dvoklikom na element.

2 IZDELANI ELEMENTI

2.1 TRENDI

Pri vsakem od izdelanih elementov za opredeljevanje trenda v Extendu je v točkah, kjer so ti elementi v nadaljevanju predstavljeni, prikazano preko ikone, za katere strateške surovine oziroma krivulje učenja velja. Ikonam sledi prikaz struktura in opis delovanja in rezultatov.
2.1.1 PRIPRAVA PODATKOV ZA TRENDE

Osnova je tabela, ki je na sliki 2 prikazana na skrajni levi strani in je del Excelove datoteke, kjer pripravljamo podatke za trende. Srednja tabela se generira samodejno, skrajno desno tabela pa dobimo tako, da polja iz srednje tabele v Excelu kopiramo in podatke prilepimo v tabele v izdelanih osnovnih elementih Extenda, ki definirajo trend.

Slika 2: Postopek generiranja in prenosa podatkov v Extend

Vir: Lastno delo

2.1.2 ELEMENTI ZA SIMULACIJO TRENDOV

Ti elementi služijo za izdelavo različnih vrst trendov. Podatke, ki jih pridobimo na podlagi analiz, moramo predhodno vnesti v posebej pripravljeno Excelovo datoteko, ki olajša delo pri izpolnjevanju tabel (glej točko 2.1.1).

Slika 3 na strani 3 prikazuje izgled enega od trendov. Na horizontalni osi je korak simulacije (2.000 korakov je eno tromesečje), na vertikalni osi pa vrednost, ki pove, koliko se bo relativno, glede na izhodiščno vrednost, spremenila trenutna vrednost v določenem tromesečju. Izhajamo iz diskretizirane krivulje trenda (rdeča barva) in verjetnostne porazdelitve (modra barva), ki ima v primeru normalne porazdelitve praviloma izhodiščno povprečno vrednost 1 in določeno standardno deviacijo. Podatek, ki ga element posreduje v simulacijo, je prikazan v sivi barvi in predstavlja zmnožek med »rdečo« in »modro« krivuljo.
Slika 3: Prikaz generiranja trenda v Extendu

Vir: Lastno delo

V uporabi sta dve obliki trenda, ki sta opisani v nadaljevanju.

2.1.2.1 Diskretizirana krivulja, fiksne porazdelitve znotraj kvartalov (DKFP)

Ikone

Slika 4: Struktura elementa DKFP

Vir: Lasten vir
Delovanje in rezultati

V element je mogoče vnesti do 5 različnih verjetnostnih porazdelitev (glej točko 2 na sliki 4). Te porazdelitve so lahko zvezne ali pa diskretni. Od katerega začetnega do katerega končnega koraka simulacije porazdelitev velja, prikazuje točka »1«, korak pa se med simulacijo bere iz elementa pod točko »6«. Gre dejansko za vnosna polja, ki so definirana v elementu pod točko »3« (z dvoklikom na ikono se prikaže tabela). Pod točko »4« je prikazan element, ki opredeljuje t. i. »ponderirano vrednost«. Točka »5« prikazuje tabelo, ki se skriva v tem elementu in je dosegljiva z dvoklikom.

Za razumevanje delovanja elementa je potrebno prikazati, kako pride do vrednosti, ki jo le-ta posreduje v simulacijo (preko izhoda »Con1Out«). Vzemimo primer, da je vrednost v nekem koraku simulacije pod točko »1« enaka 3. To pomeni, da bo izbrana tretja verjetnostna porazdelitev elementa. Predpostavimo, da je v njej definirana normalna porazdelitev s povprečno vrednostjo 1 in standardno deviacijo 0,1. Nadalje predpostavimo, da je za isti korak simulacije predvidena vrednost »ponderirane vrednosti« (točka »5«) enaka 1,5. Rezultat dobimo tako, da množimo vrednost »ponderirane vrednosti« z vrednostjo, ki jo naključno izbere simulacija in ustreza definirani verjetnostni porazdelitvi. V našem primeru bi bilo recimo 1,5*1,05 = 1,575. To se zgodi v vsakem koraku simulacije.

Najbolj plasticno predstavo nudi trend za aluminij v svoji tabelarici in grafični obliki v prilogi A (glej tabelo 3 in sliko 3).

2.1.2.2 Diskretizirana krivulja variabilne porazdelitve znotraj kvartalov (DKVP)

Ikone

Slika 5: Struktura elementa DKVP

Vir: Lasten vir
Delovanje in rezultati

Za ta element velja isto kot vse opisano za predhodni element. Razlika je le v uporabi zgolj prvega osnovnega elementa, ki opredeljuje verjetnostno porazdelitev (točka »1«). Ta element je nekoliko dodelan preko treh konstant (točka »2«) in matematičnega algoritma (točka »3«), ki omogočajo spreminjanje izbrane verjetnostne porazdelitve skozi korake simulacije. Možno je uporabiti normalno ali pa beta porazdelitev (za ostale porazdelitve bi bilo potrebno preveriti izvedljivost).

Za primer normalne porazdelitve predpostavimo povprečno vrednost 1 in standardno deviacijo na začetku simulacije (korak 0) 0,1, na koncu simulacije (korak 39999) pa 0,3. Simulacija bo med obema standardnima deviacijama v vsakem nadaljnem koraku povečala predhodno standardno deviacijo za 1/40.000 razlike med obema (izhodiščno in končno).

Za primer beta porazdelitve pa je smiselno spreminjati meje simulacije in ne toliko same oblike (čeprav bi bilo možno spreminjati tako obliko kot meje). Pri beta porazdelitvi moramo definirati koeficienta p in q, ki definirata obliko. Nato definiramo še minimalno vrednost. Maksimalna vrednost se spreminja od izhodiščne do končne, po enaki logiki, kot to velja za normalno porazdelitev. Definirana je kot seštevec minimalne in razlike med minimalno in maksimalno.

2.2 ELEMENTI ZA DELITEV STRUKTURE NA DELEŽE

2.2.1 Delitev na konstantne deleže

Ikona

Slika 6: Struktura elementa delitve na konstantne deleže

Vir: Lasten vir
Delovanje in rezultati

Element se uporablja za delitev veličin iz kalkulacije na deleže (to funkcijo imajo vsi elementi, ki so vizualno enaki, kot je ta, in so opisani v nadaljevanju). Prikaz strukture elementa je razviden iz slike 6. Osnovna zamisel je, da neko veličino iz kalkulacije (vstopa v element preko točke »3«) razdelimo na komponente (točka »2«). To storimo z vpisom vrednosti v konstante (6 konstant, torej 6 možnih komponent veličine). Vsota je 100 %, vnašamo pa številke od 0 do 100 (točka »1«).

Ta element je primeren za uporabo le v primeru, ko razgrajuje komponento, ki je cenovno zanemarljiva, ali pa elementi komponente nihajo relativno malo. Če imamo na primer bakreno žico, kjer je strateške surovine 80 % v nabavni ceni, in vemo, da baker močno nihata, potem je uporaba tega elementa popolnoma napačna, ker bi kljub velikemu nihanju cene bakra na trgu predvideval, da je delež bakra v nabavni ceni konstanten, kar pa ni res. Zato je potrebno uporabiti enega od elementov, opisanega v nadaljevanju.

V primeru Monte Carlo simulacije so komponente, na katere delimo vstopno veličino, že definirane. Praktično vedno delimo nabavno ceno nekega sestava ali pa sestavnega dela, zato so komponente material, amortizacija, stroški dela, dobiček, energija in ostalo. Če se izkaže potreba po delitvi na druge veličine, to lahko storimo.

2.2.2 Delitev na variabilnost deležev, znotraj območja materiala

Ikon

Slika 7: Struktura elementa delitve na variabilne deleže

Vir: Lasten vir
Delovanje in rezultati

Podobno kot pri predhodno opisanem elementu se tudi pri tem vnese neko izhodiščno delitev strukture vstope veličine na komponente. Ta element se obraja z vidika materiala variabilno, kar pomeni, da vnese izhodiščni delež in območje, v katerem naj se le-ta giblje (preko min-max porazdelitve). Ostali deleži se proporcionalno med sabo spreminjajo, glede na izhodiščene deleže in skupno vsoto, ki je opredeljena kot razlika med 100 % in trenutno vrednostjo deleža materiala.

Ta element vnaša nekaj variabilnosti v simulacijo, vendar še vedno ni optimalen. Res je, da je glavna komponenta, ki se spreminja v praksi, prav material. Vendar element ne upošteva korelacije med trendom, ki ga ima material, in deležem v nabavni ceni (v simulaciji se lahko zgodi primer, da le-ta izbere delež 5 % pod izhodiščnim, v istem koraku pa upošteva vrednost materiala 10 % nad izhodiščno). Tudi ta element je, podobno kot predhodni, primeren za manj variabilne komponente.

2.2.3 Delitev na izhodiščne deleže in dopolnitev s trendi

Ikona

Slika 8: Struktura elementa delitve na izhodiščne deleže in dopolnitve s trendi

Vir: Lasten vir
Delovanje in rezultati

Ta element je najnatančnejši z vidika razdelitve vhodne komponente na deleže. Zato se uporablja predvsem tam, kjer imamo veliko variabilnost trendov in ko imamo opravka z dragimi komponentami. V element vstopa nabavna cena (točka »1«) in do 6 različnih trendov (točka »2«). Preko algoritma se nabavna cena dekomponira in nadgradi s trendi. Izhod predstavlja točka »3«. Sam algoritem zahteva, da opredelimo, kakšni so deleži posameznih elementov nabavne cene ob začetku simulacije. Na podlagi le-teh se cena razgradi in pomnoži z vrednostmi, ki prihajajo iz trendov. Kjer na vhodu na strani trendov le-teh nimamo definiranih, moramo v element povezati (pripeljati) konstantno vrednost 1. Delovanje elementa je zelo preprosto in ne potrebuje obsežne razlage. Vzemimo, da je nabavna cena 100 enot in delež materiala 60 %. Izhodiščna vrednost materiala bo tako 60 enot. Ta vrednost se skozi simulacijo spreminja (množi) z vrednostmi, ki so posredovane s strani elementa, ki opredeljuje trend. V prvem tromesečju je vrednost za trend 1, tako da so stroški materiala kar enaki 60 enot. V nadaljevanju pa imamo, recimo, vrednost 2, kar pomeni, da bodo stroški materiala enaki 120 enot. Enako se obnašajo ostale komponente nabavne cene.

2.3 VREDNOTENJE

Ikona

Slika 9: Struktura elementa delitve na izhodiščne deleže in dopolnitve s trendi

Vir: Lasten vir
Delovanje in rezultati

Vhodni podatek, ki pride v ta element v določenem koraku simulacije, mora biti posredovan tisti veji, ki opredeljuje podatke za neko tromesečje (recimo 3. tromesečje 2007 predstavljajo koraki od 6.000 do 7.999). Za vsako tromesečje imamo tako 2.000 podatkov, ki so preko elementov v povečanem pravokotniku na sliki 9 vrednoteni (povprečna vrednost, standardna deviacija, minimalna vrednost …). Ta element je bil izdelan že na samem začetku snovanja simulacije. Izkazalo se je, da je veliko bolj uporabna metoda, da vseh 40.000 podatkov simulacije izvozimo v zunanjodatoteko in nato obdelamo v Microsoft Excelu (programiranje procedur v Visual Basicu). Razvoj tega elementa ni bil zaman, saj je v fazah »gradnje« simulacije in preverjanja rezultatov omogočal hitro odkrivanje anomalij.
DODATEK D: Rezultati Monte Carlo simulacije

Vse slike in tabele so lasten vir.

Kazalo slik

Slika 1: Grafična oblika skupnih rezultatov simulacije v Extend-u ...1
Slika 2: Skupni rezultati simulacije v grafični obliki na podlagi obdelanih podatkov2
Slika 3: Simul. z variab. trendov kriv. učenja in variab. trendov strat. surovin in ostalega2
Slika 4: Grafična oblika skupnih rezultatov simulacije (obdelani podatki)3
Slika 5: Grafična oblika rezultatov kumulativnega učinka krivulj učenja v Extend-u4
Slika 6: Simul. z variab. tr. kriv. učenja in »zamrznjenim« učinkom tr. strat. surovin5
Slika 7: Grafična oblika rezultatov kumulat. učinka krivulj učenja (obdelani podatki)6
Slika 8: Graf. oblika rezult. kumulat. učinka trendov strat. surovin in ostalega v Extend-u7
Slika 9: Simul. z variab. tr., strat. surovin in ostalega in »zamrzn.« učinkom tr. kriv. uč.8
Slika 10: Graf. obl. rezult. kumulat. učinka trendov strat. surovin in ostalega (obd. podatki)9
Slika 11: Grafični prikaz podatkov iz tabele 4 (eur/kos) ...10

Kazalo tabel

Tabela 1: Tabelarična oblika skupnih rezultatov simulacije (obdelani podatki)2
Tabela 2: Tabelarična oblika rezultatov kumulativnega učinka krivulj učenja (obd. podatki) ...5
Tabela 3: Tabel. oblika rezultatov kumulat. učinka trendov strat. surovin (obd. podatki)8
Tabela 4: Tabelarični podatki za simulacijo z upoštevanjem zgolj enega trenda (eur/kos) ...10
Tabela 5: Primerjava učinka posameznega trenda na spremembo stroškov izdelka10
Slika 1: Grafična oblika skupnih rezultatov simulacije v Extend-u
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>porazdelitev</td>
<td>beta</td>
</tr>
<tr>
<td>min</td>
<td>25,1895</td>
<td>26,7123</td>
<td>22,8457</td>
<td>24,8939</td>
<td>25,3209</td>
<td>24,9074</td>
<td>25,5209</td>
<td>26,3371</td>
<td>25,7813</td>
<td>23,0518</td>
<td>22,3669</td>
<td>24,9209</td>
<td>24,4437</td>
<td>23,4485</td>
</tr>
<tr>
<td>max</td>
<td>36,2812</td>
<td>32,0595</td>
<td>33,9972</td>
<td>32,6895</td>
<td>31,1611</td>
<td>31,9091</td>
<td>30,6575</td>
<td>29,7735</td>
<td>30,8179</td>
<td>33,1759</td>
<td>34,0772</td>
<td>31,8293</td>
<td>33,2268</td>
<td>34,8857</td>
</tr>
<tr>
<td>p</td>
<td>71,3483</td>
<td>18,3661</td>
<td>91,0443</td>
<td>37,353</td>
<td>22,5267</td>
<td>28,7354</td>
<td>16,1082</td>
<td>6,79056</td>
<td>13,6835</td>
<td>57,2193</td>
<td>71,9811</td>
<td>23,1933</td>
<td>34,5675</td>
<td>52,8618</td>
</tr>
<tr>
<td>q</td>
<td>88,225</td>
<td>20,2455</td>
<td>83,2753</td>
<td>43,5906</td>
<td>22,8326</td>
<td>33,9517</td>
<td>15,6568</td>
<td>6,04674</td>
<td>14,0102</td>
<td>51,4396</td>
<td>64,8762</td>
<td>19,493</td>
<td>35,0547</td>
<td>56,6916</td>
</tr>
<tr>
<td>porazdelitev</td>
<td>normala</td>
</tr>
<tr>
<td>stddev</td>
<td>0,435181</td>
<td>0,424267</td>
<td>0,420661</td>
<td>0,429261</td>
<td>0,428837</td>
<td>0,437128</td>
<td>0,448593</td>
<td>0,454817</td>
<td>0,470066</td>
<td>0,482684</td>
<td>0,497973</td>
<td>0,520611</td>
<td>0,522329</td>
<td>0,543511</td>
</tr>
</tbody>
</table>

Slika 2: Skupni rezultati simulacije v grafični obliki na podlagi obdelanih podatkov

Slika 3: Simul. z variab. trendov kriv. učenja in variab. trendov strat. surovin in ostalega
Slika 4: Grafična oblika skupnih rezultatov simulacije (obdelani podatki)
Slika 5: Grafična oblika rezultatov kumulativnega učinka krivulj učenja v Extend-u.
Tabela 2: Tabelarična oblika rezultatov kumulativnega učinka krivulj učenja (obd. podatki)

<table>
<thead>
<tr>
<th>porazdelitev</th>
<th>2007 q1</th>
<th>2007 q2</th>
<th>2007 q3</th>
<th>2007 q4</th>
<th>2008 q1</th>
<th>2008 q2</th>
<th>2008 q3</th>
<th>2008 q4</th>
<th>2009 q1</th>
<th>2009 q2</th>
<th>2009 q3</th>
<th>2009 q4</th>
<th>2010 q1</th>
<th>2010 q2</th>
<th>2010 q3</th>
<th>2010 q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>min beta</td>
<td>28,8658</td>
<td>27,9268</td>
<td>26,5073</td>
<td>26,1192</td>
<td>25,7154</td>
<td>25,5079</td>
<td>25,6982</td>
<td>25,5609</td>
<td>25,4286</td>
<td>25,4094</td>
<td>25,4223</td>
<td>25,3930</td>
<td>25,3034</td>
<td>25,3930</td>
<td>25,2987</td>
<td></td>
</tr>
<tr>
<td>max beta</td>
<td>30,5369</td>
<td>29,4793</td>
<td>28,1730</td>
<td>27,4723</td>
<td>27,2922</td>
<td>27,0546</td>
<td>27,0764</td>
<td>27,0644</td>
<td>27,0272</td>
<td>27,0272</td>
<td>27,0272</td>
<td>27,0272</td>
<td>27,0272</td>
<td>27,0272</td>
<td>27,0272</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>4,39291</td>
<td>3,9431</td>
<td>5,0332</td>
<td>4,9574</td>
<td>3,27051</td>
<td>3,10562</td>
<td>3,44814</td>
<td>3,10562</td>
<td>3,39277</td>
<td>3,42486</td>
<td>2,8125</td>
<td>4,0475</td>
<td>2,44273</td>
<td>2,87768</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>3,9331</td>
<td>3,2693</td>
<td>3,8281</td>
<td>4,4121</td>
<td>3,9399</td>
<td>3,4643</td>
<td>3,0098</td>
<td>2,7173</td>
<td>2,6792</td>
<td>2,7067</td>
<td>2,8525</td>
<td>2,2911</td>
<td>4,0409</td>
<td>2,0663</td>
<td>2,3003</td>
<td></td>
</tr>
</tbody>
</table>

Slika 6: Simul. z variab. tr. kriv. učenja in »zamrznjenim« učinkom tr. strat. surovin
Slika 7: Grafična oblika rezultatov kumulat. učinka krivulj učenja (obdelani podatki)
Slika 8: Graf. oblika rezult. kumulat. učinka trendov strat. surovin in ostalega v Extend-u
Tabela 3: Tabela oblika rezultatov kumulat. učinka trendov strat. surovin (obd. podatki)

<table>
<thead>
<tr>
<th>porazdelitev</th>
<th>2007 q1</th>
<th>2007 q2</th>
<th>2007 q3</th>
<th>2007 q4</th>
<th>2008 q1</th>
<th>2008 q2</th>
<th>2008 q3</th>
<th>2008 q4</th>
<th>2009 q1</th>
<th>2009 q2</th>
<th>2009 q3</th>
<th>2009 q4</th>
<th>2010 q1</th>
<th>2010 q2</th>
<th>2010 q3</th>
<th>2010 q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>28,7647</td>
<td>28,8597</td>
<td>29,2642</td>
<td>29,5417</td>
<td>29,8723</td>
<td>30,0225</td>
<td>30,1624</td>
<td>30,3363</td>
<td>30,4732</td>
<td>30,6219</td>
<td>30,8286</td>
<td>30,9809</td>
<td>31,1548</td>
<td>31,3585</td>
<td>31,5598</td>
<td>31,7309</td>
</tr>
<tr>
<td>stdev</td>
<td>0,3143</td>
<td>0,3189</td>
<td>0,3335</td>
<td>0,3481</td>
<td>0,3505</td>
<td>0,3164</td>
<td>0,3796</td>
<td>0,3847</td>
<td>0,3966</td>
<td>0,4042</td>
<td>0,4155</td>
<td>0,4294</td>
<td>0,4354</td>
<td>0,4557</td>
<td>0,4736</td>
<td>0,4799</td>
</tr>
</tbody>
</table>

Slika 9: Simul. z variab. tr.. strat. surovin in ostalega in »zamrzn.« učinkom tr. kriv. uč.
Slika 10: Graf. obl. rezult. kumulat. učinka trendov strat. surovin in ostalega (obd. podatki)
Tabela 4: Tabelarični podatki za simulacijo z upoštevanjem zgolj enega trenda (eur/kos)

<table>
<thead>
<tr>
<th></th>
<th>2007 q1</th>
<th>2007 q2</th>
<th>2007 q3</th>
<th>2007 q4</th>
<th>2008 q1</th>
<th>2008 q2</th>
<th>2008 q3</th>
<th>2008 q4</th>
<th>2009 q1</th>
<th>2009 q2</th>
<th>2009 q3</th>
<th>2009 q4</th>
<th>2010 q1</th>
<th>2010 q2</th>
<th>2010 q3</th>
<th>2010 q4</th>
<th>2011 q1</th>
<th>2011 q2</th>
<th>2011 q3</th>
<th>2011 q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU (p)</td>
<td>28,392</td>
<td>28,099</td>
<td>27,730</td>
<td>27,730</td>
<td>27,590</td>
</tr>
<tr>
<td>trend T</td>
<td>28,392</td>
<td>28,094</td>
<td>27,797</td>
<td>27,564</td>
<td>27,330</td>
<td>27,174</td>
<td>27,097</td>
</tr>
</tbody>
</table>

Tabela 5: Primerjava učinka posameznega trenda na spremembo stroškov izdelka

<table>
<thead>
<tr>
<th></th>
<th>2007 q1</th>
<th>2011 q4</th>
<th>spr. (eur/kos)</th>
<th>spr. (%)</th>
<th>inkrement (eur/kos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU (p)</td>
<td>28,392</td>
<td>27,590</td>
<td>0,802</td>
<td>97.2%</td>
<td>0,000</td>
</tr>
<tr>
<td>KU (q)</td>
<td>29,394</td>
<td>28,937</td>
<td>0,457</td>
<td>98.4%</td>
<td>1,002</td>
</tr>
<tr>
<td>trend A</td>
<td>29,010</td>
<td>28,392</td>
<td>0,619</td>
<td>97.9%</td>
<td>0,619</td>
</tr>
<tr>
<td>trend T</td>
<td>28,392</td>
<td>27,097</td>
<td>1,295</td>
<td>95.4%</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Slika 11: Grafični prikaz podatkov iz tabele 4 (eur/kos)
DODATEK E: Izgled Monte Carlo simulacije