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1 INTRODUCTION 

Predicting stock market dynamics is perhaps the most researched topic in finance, and 
major advancements in the field are relatively infrequent. Despite this, the use of online 
data about the behavior of large groups of people has opened a new frontier in the study 
of stock markets. The theoretical underpinning of using online data can be traced back to 
the classic Efficient Market Hypothesis (EMH). According to the EMH, new information 
is quickly and efficiently embedded in the stock price, and due to the random arrival of 
new information, stock prices also follow a random path (Fama, 1965). In this view, it is 
the information that drives stock price changes, and therefore, one should be able to use 
newly created or new types of information to predict market dynamics to a certain extent.  

The advent of wider internet use has created a new stream of online information that 
should also be reflected in stock dynamics, as attested by information efficiency. The 
information used in the thesis is the statistics about the frequency of online search words 
in the Google searches. The reason online searches are especially interesting dataset to 
explore as a financial leading indicator can be explained by the consumer and financial 
decision process models, where a purchase decision, such as participation in financial 
markets, is preceded by information search (Engel et al., 1971; Simon, 1955). Therefore, 
information search generally precedes any other observable market action and should, as 
such, be predictive. 

Google search data and other crowd-generated online datasets, such as Wikipedia edits 
and Twitter posts, have been applied numerous times to predict stock returns in the recent 
years, with varied success. Examples of such research include Market sentiment (Tetlock, 
2007), Twitter (Bollen et al., 2011), Wikipedia (Moat et al., 2013), and Google Trends (Preis 
et al., 2013). 

Many authors have noted and superficially analyzed the apparent relationship of volatility 
(squared return) and online activity, but directly using realized volatility and an appropriate 
benchmark volatility model to investigate the issue more in detail is rare. 

The only directly comparable research (as far as I am aware) investigating the relationship of 
realized volatility and search queries comes from Dimpfl et al. (2012) and Hamid et al. 
(2015). In these research studies, they used the search frequency of the index name or closely 
related term as a proxy for investor attention and then used it as a predictor for realized 
volatility. In both cases, the researchers have found that Google Trends is useful in volatility 
prediction.  

My research is aimed at expanding the knowledge base in this area, by expanding the types 
of keywords used and expanding the research to cover more regional markets. The following 
chapter will describe the research question in more detail. 
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In essence, this work aims to investigate the question of whether Google search volume 
can predict future volatility in the stock market. As is immediately evident, such question 
by all account is too broad to be tackled comprehensively, and therefore, this work only 
aims to assess the topic partially.  

The more operational formulation can be articulated as whether or not the search volume 
of words frequently used in the financial context, in the majority language of the location 
where the stock market index originates, improves the step-ahead prediction of realized 
volatility of a stock market index when it is used as an additional predictor in 
Heterogenous Autoregressive (HAR) model. 

To clarify to the reader, below are listed the key aspects of the operational ‘hypothesis’ 
which narrow down the broader aim that the work has.  

- Word selection: Words whose search volume is used as predictors are words 
commonly used in the financial context as opposed to alternative keywords that could 
be chosen. Alternatively, there are numerous words that have certain theoretical 
validity. Examples of possible alternatives are words associated with crisis sentiment 
such as the word “crisis” and “recession”, words referring to the name of the index 
such as “FTSE” and “DAX”, words relating to company names or brands of the 
company being part of the index such as “Volkswagen” and “VW”. In summary, there 
are numerous possibilities of selecting the predictor words some of which might be 
significantly better predictors. 

- Language: The financially significant words are always in the majority language of 
the index ‘Domicile’, and possible minority language or foreign languages are not 
used for prediction. 

- Index versus individual stocks: The work is aiming to predict only the volatility of 
the whole index while it might be more fruitful to focus on the volatility of individual 
stocks. 

- Prediction window: predictions are done only on a 1-step (week) ahead, and any 
possible improvement on longer forecast horizon is not investigated. 

- Improvement in prediction over a benchmark model: It would be fully valid to 
investigate if Google search volume predicts volatility in isolation, but due to the 
limited practical value of such investigation, I have decided to focus on the 
improvement over a benchmark that more realistically reveals the possible practical 
utility of using search volume as a predictor. 

- HAR model as the benchmark: There would be numerous alternatives to be used as 
the benchmark model, but the HAR model (and its log version) is used largely due to 
it being easily expanded with added predictors and being a sufficiently good model 
to be used as a benchmark. 

Note that the hypothesis is explicitly aimed at understanding whether prediction can be 
improved and is by no means meant to estimate any causal or other explanatory 
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relationship. Similarly, the work is not intended to gauge the true properties of the 
volatility process, and thus, the possible bias in the estimated parameters is not of any 
interest. Excellent discussion about this distinction can be found in Shmueli (2010). In 
summary, based on Shmueli: “In explanatory modeling the focus is on minimizing bias 
to obtain the most accurate representation of the underlying theory. In contrast, predictive 
modeling seeks to minimize the combination of bias and estimation variance, 
occasionally sacrificing theoretical accuracy for improved empirical precision” (Shmueli, 
2010, p. 6). 

Also, the hypothesis is not tested in terms of statistical significance, and thus, the 
hypothesis is not formulated in terms of falsification. Instead, the improvement in 
prediction is simply observed in (pseudo) out-of-sample setting. To determine if a 
hypothesis is true, two things need to be considered. First, are the improvements in 
prediction accuracy big enough to be practically useful? Second, do these improvements 
occur consistently across different keywords, languages, and model specifications?  

As noted, the Google Trends has already been applied successfully in volatility 
predictions by previous authors. This work expands prior research by not directly using 
the index name but using search volumes of “financially significant” words instead; an 
approach directly adopted from Preis et al. (2013). This approach allows for the extension 
of Google Trends' usefulness in volatility forecasting to cover markets and indices that 
do not have appropriate names for direct use of the search volume for the index name.  

There are two reasons that a given index might not be suitable to retrieve Google search 
data. The first reason is that the search volume for the index name is not sufficient, which 
occurs frequently with more local indices. The second reason is that the index name might 
get a different meaning in different languages, regions, or contexts. For instance, “S&P” 
might refer to credit ratings or the market index. Similarly, “FTSE” might be used in Italy 
to refer to the local market index instead to its more famous London namesake. Another 
addition to the existing research is the comparison of several regions and languages in the 
context of Google Trends data. 

Before tackling the research question head on, I will lay the theoretical foundations of the 
theme by performing an overview of volatility modelling history, as well as the work of 
other authors that have used Google Trends, or similar data in their research.  
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2 THEORETICAL FOUNDATIONS AND PREVIOUS WORK ON 
THE TOPIC 

2.1 Efficient market hypothesis and modeling financial price dynamics as 
random walk 

The concept of volatility and its measurement or estimation is inherently linked to the 
idea that there is a degree of randomness and dispersion in the dynamics of market prices. 
Although the foundational ideas of modeling financial prices as random walks were 
presented much earlier by Louis Bachelier in his Ph.D thesis "Theory of Speculation" 
(Mandelbrot, 1963, p. 43-58), their mainstream acceptance can be attributed to Eugene 
Fama's seminal work "The Behavior of Stock-Market Prices" in which Fama put forth 
what is now called the Efficient Market Hypothesis (EMH). In summary, the EMH states 
that "current stock prices fully reflect available information about the value of the firm, 
and there is no way to earn excess profits (more than the market overall) by using this 
information" (Clarke et al., 2001, p. 1). While there are several empirical observations 
that do not fully conform to the EMH, it is still considered largely to be a good 
approximation of empirical reality. The EMH is commonly subdivided into three forms 
based on which information is incorporated into market prices: weak-form efficiency, 
semi-strong-form efficiency, and strong-form efficiency (Fama, 1970): 

- Weak-form efficiency roughly states that current price reflects all information about 
the past prices only, meaning that no excess profit can be earned by using past price 
series to predict future prices. 

- Semi-strong-form efficiency roughly states that all publicly available information is 
incorporated in the stock price. 

- Strong-form efficiency states that all information, public or private, is incorporated 
into the prices. 

In most instances, the semi-strong form is thought to hold relatively well, but full strong 
from efficiency is not widely or fully supported. 

As an extension of the EMH being true, one can expect that the market prices fluctuate 
seemingly randomly, a fact which was proven by Samuelson (1965) around the same time 
as Fama published his work. 

As one can observe, the central theme of EMH is how information is incorporated into 
market prices. In effect, the theory is that market prices change upon the arrival of new 
information. This in turn leads to the foundational idea that justifies using Google search 
volume as predictor of volatility; when people are searching financially significant terms, 
in large volumes, this indicates that new information is arriving and being incorporated 
into market prices. 
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2.2 Model of financial and consumer decision relating to information search  

The decision-making related to financial investments can be thought within the frame of 
consumer purchase decision-making. One way to depict such process is to divide it into 
distinct steps that include problem recognition, information search, evaluation of 
alternatives, purchase decision, and post-purchase behavior (Kotler, 2016, p.166) as 
depicted in Figure 1.  

Figure 1: Five-stage model of the consumer buying process 

 
Adapted from Kotler (2016). 

The consumer decision-making process has been applied to investment decisions by Lin 
and Lee (2002) and subsequently extended by her thesis supervisor. In this model, the 
general view is that whenever consumers (or investors) make a choice to invest in 
securities, which, according to Lee and Lin (2004), is analogous to purchasing intangible 
goods, the purchase decision is preceded by some form of information search. Therefore, 
information search plays a key role in the customer purchase process, and nowadays, 
Google is one of the leading ways people search for information. The connection between 
information search and Google search volume in the consumer decision process is 
extensively discussed in 'Quantitative Trendspotting' by Du and Kamakura (2012). 

Based on this framework, prior to making an investment decision in the market, investors 
generate additional Google search volume, followed by incorporating their view into the 
market price by market participation (or lack thereof). Also, as one can observe, for most 
market participants, there is supposed to be a degree of time lag between information 
search and purchase decision that could enable one to use the search as a leading indicator 
for future purchase (or sales) actions. 

While the above makes a compelling chronology of events, I suspect that there are other 
forms of information searches involved. For instance, one can easily conceive a situation 
where the chronology is reversed. Consider, for instance, a situation where another 
information source causes market volatility, which in turn triggers information search 
behavior and subsequent search volume increase that considerably lags the actual 
increased volatility. Considering that the level of volatility tends to be persistent, this 
reversed chronology might lead researchers astray in believing search volume is 
predictive when it is, in fact, reactive. This is why it is essential to fully account for the 
autocorrelation in the level of volatility before one concludes search is in any way 
predictive. 

Problem
recognition

Information
search

Evaluation
of 
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Purchase of 
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2.3 Overview of volatility and volatility modeling 

2.3.1 Defining volatility 

Prior to initiating the discourse on various volatility model, one needs to define the 
concept of volatility in greater detail. In this, I follow Hansen and Lunde’s (2001) paper 
which evaluates the performance of different volatility models.1 The starting point is to 
define the variable interest, which is the continuously compounded return on some time 
interval from t-1 to t on an asset price or index: 

𝒓𝒕 = 𝒍𝒐𝒈(𝒑𝒕) − 𝒍𝒐𝒈	(𝒑𝒕"𝟏)     (1) 

Then, the volatility is defined as the standard deviation of the conditional density of  r$. 
Note that this already implicitly assumes the existence of such standard deviation, which 
is not a trivial assumption in the short time horizon, since there is significant evidence 
that returns are derived from Paretian distribution with tail exponent less than 2, meaning 
that the variance and, by extension, standard deviation are undefined as noted by 
Mandelbrot (2010) and Fama (1965). In addition to this, the standard deviation of the 
conditional density is assumed to be time-changing in a fashion that is not fully 
predictable, meaning that the models discussed here fall in the class of stochastic volatility 
models.  

Before starting the discussion of various volatility models, I want to highlight a fact that 
is often lost in discussions of ‘volatility’ and its modeling. This fact is that volatility is a 
latent variable of the price-generating process that cannot directly be observed from the 
price data. Even more, the observed proxy for volatility, usually squared return, is very 
noisy as is noted by Andersen and Bollerslev (1997) when discussing the problematic of 
‘low explanatory power of volatility models’: “However the realized squared returns are 
poor estimators of the day-by-day movements in volatility as the idiosyncratic component 
of daily returns is large” (Andersen and Bollerslev, 1997, p. 8). This causes several 
difficulties in modeling and evaluating the models, especially historically. To remedy this 
noise in observing the latent variable, the concept of measuring realized volatility from 
intraday returns plays a part, as I shall discuss in the chapter 2.4.  

2.3.2 Historical origins of volatility modeling 

The modeling of volatility has its roots in the empirical observations that the magnitude 
of price changes tends to cluster to cluster in time, so that “large changes tend to be 
followed by large changes -of either sign- and small changes tend to follow small 
changes” (Mandelbrot, 1963, p. 418). The first model to garner serious attention was the 

 

1 This section relies heavily on mentioned paper, and therefore, I want to fully acknowledge its 
significance as a major influence. 
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Autoregressive Conditional Heteroscedasticity (ARCH) model by Engle (1982). The 
ARCH model puts forth a simple autoregressive structure for the errors. The model was 
subsequently extended by Bollerslev (1986) with a moving average component to form a 
Generalized ARCH (GARCH) model. These two models, and especially GARCH, are 
the bedrock of the volatility modeling literature that much of the subsequent work is 
directly based on. In fact, GARCH is still widely used today despite the numerous 
improvements that have been proposed. Despite its success and lasting popularity, the 
models are far from perfect, and below are highlighted some aspects of volatility 
dynamics that are, in some respects, insufficiently captured by the GARCH model. 

2.3.3 Characteristics of volatility 

Volatility modeling has advanced in various ways since the original ARCH and GARCH 
models. In most cases, new models or extensions to the older ones have been developed 
to capture certain aspects of the volatility dynamics that could not be captured by the 
original ARCH or GARCH. Below are some stylized facts about volatility that ought to 
be captured by a good volatility model. The list below largely summarizes the points from 
Engle and Patton (2000), with certain points emphasized and expanded by me. 

2.3.3.1 Volatility exhibits (long) persistence 

The cornerstone of volatility modeling is to capture the so-called volatility clustering, 
usually with some form of autoregressive model. Here, the important aspect that Engle 
and Patton did not emphasize is that the persistence in volatility is rather long, which 
poses challenges to models that are inherently short memory. 

2.3.3.2 Volatility is mean-reverting 

Despite volatility having relatively long persistency the volatility still tends to be mean-
reverting. This effectively means that current volatility should not affect the forecast of 
volatility after a sufficiently long-time horizon, which rules out using any infinitely 
persistent process. 

2.3.3.3 Innovations may have an asymmetric impact on volatility 

It has been documented already by Black (1976) that large declines in the stock market 
tend to increase the subsequent volatility more than large positive returns. This effect has 
then been dubbed the "leverage effect." This means that a volatility model optimally 
would, in some way, also take into account the direction of the returns when forecasting 
future volatility. How the volatility forecast is affected by the most recent return is often 
depicted using the news impact curve introduced by Pagan and Schwert (1990) and 
named by Engle and Ng (1993). 
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2.3.3.4 Exogenous variables may influence volatility 

As it is obvious, financial asset prices do not develop in isolation from other markets 
around it, and therefore, other variables, besides past volatility history of an asset itself, 
should be relevant for future volatility. These exogenous influences may also be 
deterministic, such as scheduled earnings and macroeconomic announcements. 
Optimally, a volatility model would be flexible enough to allow the incorporation of 
external variables. 

2.3.3.5 Fat tails 

Stochastic volatility model produces excess kurtosis in unconditional density, even if the 
conditional return distribution is assumed to be Gaussian. This is because the stochastic 
volatility results in a mixture of conditional Gaussian distributions with different 
volatilities. This is true even if the future volatility is considered to have a conditional 
Gaussian distribution. Still, there are reasons to assume, due to the significant excess 
kurtosis of the return distribution, that even the conditional density of future volatility 
could be non-Gaussian. Thus, an optimal volatility model fits the tail properties of the 
return distribution. 

2.3.3.6 Realized volatility is a noisy estimate of ‘true’ volatility 

As we have already mentioned in section 2.3.1, volatility is a latent variable, and all ex-
post measurements of volatility are always noisy. When observing the realized volatility, 
let's say in daily intervals, the observed value is based on only one realized return that is 
drawn from a distribution defined by the conditional standard deviation, and this 
realization can be very far from the 'true volatility'. This issue is often remedied in 
volatility models by using realized volatility estimated from intraday data. Theoretically, 
volatility can be estimated infinitely precisely by observing realized volatility in 
infinitesimal time intervals, but this approach has practical limitations that will be 
discussed further in section 2.4. 

All in all, this fact has important implications for how accurate the models can be in the 
first place and what methods are used when evaluating the accuracy of models. 

2.3.4 Overview of volatility models 

As one can see from above, there are various aspects that an optimal volatility model 
should capture. Below is a brief summary of the most prominent volatility models in the 
literature. This section follows the notation conventions of Hansen and Lunde (2001), 
which is an important reference material along with Bollerslev (2008). When there are 
competing abbreviations and model names, the names are presented as they occur in 
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Bollerslev's work, since his work provides the widest account of various models and 
explicitly attempts to clarify the naming confusion. 

2.3.4.1 ARCH 

ARCH was introduced by Robert Engle (1982) to describe the volatility of financial 
returns. The basic ARCH model can be represented by the following equation: 

𝝈𝒕𝟐 = 𝝎+∑ 𝜶𝒊𝜺𝒕"𝒊𝟐𝒑
𝒊(𝟏        (2) 

2.3.4.2 GARCH 

GARCH was introduced by Tim Bollerslev in his doctoral thesis under the supervision 
of Engle (1986) as an extension to ARCH by adding a moving average component. The 
basic GARCH model can be represented by the following equation: 

𝝈𝒕𝟐 = 𝝎+∑ 𝜶𝒊𝜺𝒕"𝒊𝟐𝒑
𝒊(𝟏 + ∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒

𝒋(𝟏       (3) 

2.3.4.3 Integrated GARCH 

I-GARCH was introduced by Engle and Bollerslev (1986). Effectively integrated I-
GARCH is simply a special case of the GARCH model with infinite persistency 
property, since the coefficients sum to 1, meaning that the process is a unit root process. 
I- GARCH model can be represented by familiar GARCH equation with an added 
constraint. 

𝝈𝒕𝟐 = 𝝎+∑ 𝜶𝒊𝜺𝒕"𝟏𝟐𝒑
𝒊(𝟏 +∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒

𝒋(𝟏      (4) 

Where: ∑ 𝜷𝒊 +
𝒒
𝒊(𝟏 ∑ 𝜶𝒊

𝒑
𝒋(𝟏 = 𝟏     (5) 

2.3.4.4 Exponentially Weighted Moving Average 

Another notable variation of GARCH is the Exponentially Weighted Moving Average 
model (EWMA), developed by Longerstaey and Spencer (1996), which is again just a 
special case of I-GARCH. This model deserves a special mention because of its extremely 
wide usage in practice. Its wide popularity among practitioners can arguably be traced to 
its origins in JP Morgan, and inclusion in the ‘Risk metrics’ framework, that can be said 
to have spearheaded financial risk management as it is understood today. In fact, the 
approach is so popular that, based on my own experience, many portfolio management 
software come with inbuilt Value at Risk (VaR) estimation tool that uses the multivariate 
version of EWMA as the main way to estimate the time-varying variance-covariance 
matrix. 
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𝝈𝒕𝟐 = 𝝎+∑ 𝜶𝒊𝜺𝒕"𝒊𝟐𝒑
𝟏(𝟏 +∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒

𝒋(𝟏      (6) 

Where: ∑ 𝜷𝒊 +
𝒒
𝒊(𝟏 ∑ 𝜶𝒊

𝒑
𝒋(𝟏 = 𝟏 & 𝝎 = 𝟎   (7) 

2.3.4.5 Taylor-Schwert GARCH 

The Taylor-Schwert GARCH (TS-GARCH) Taylor (1986) and Schwert (1989) is again 
a relatively straightforward variation of the original GARCH that simply dampens the 
effect of large price swings on future volatility by not operating with squared values but 
with absolute values instead. TS-GARCH model can be represented by the following 
equation: 

𝝈𝒕 = 𝝎+ ∑ 𝜶𝒊|𝜺𝒕"𝒊
𝒑
𝒊(𝟏 | + ∑ 𝜷𝒊𝝈𝒕"𝒋

𝒑
𝒋(𝟏      (1) 

2.3.4.6 Exponential GARCH 

Exponential GARCH (EGARCH) is another formulation that was explicitly designed to 
capture the asymmetric nature of positive and negative shocks (Nelson, 1991). The model 
achieves this by including both the absolute value of a normalized return as well as the 
normalized return itself. Thus, the direction of normalized return can affect the future 
volatility. EGARCH model can be represented by the following equation: 

𝒍𝒏(𝝈𝒕𝟐) = 𝝎 + ∑ [𝜶𝒊𝜺𝒕"𝒊
𝒑
𝒊(𝟏 /𝝈𝒕"𝒋𝟐 + 𝜸𝒊(|𝜺𝒕"𝒊/𝝈𝒕"𝒊𝟐 | − 𝑬|𝜺𝒕"𝒊/𝝈𝒕"𝒊𝟐 |)] + ∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒

𝒋(𝟏  
 (9) 

2.3.4.7 Glosten, Jagannathan, and Runkle - GARCH  

Glosten, Jagannathan, and Runkle - GARCH (GJR - GARCH) is one of the most 
influential generalizations of the original GARCH introduced by the named authors 
(Glosten et al., 1993). The main addition to GARCH is to add an extra term that combines 
a binary indicator variable for the direction of the return with the actual squared deviation 
in the previous period. This, in turn, means that the model is able to capture the leverage 
effect, unlike the models discussed above. GJR-GARCH model can be represented by the 
following equation: 

𝝈𝒕𝟐 = 𝝎+∑ 𝜶𝒊𝜺𝒕"𝒊𝟐𝒑
𝟏(𝟏 +∑ 𝜸𝒊𝑰(𝜺𝒕"𝒊 < 𝟎)𝜺𝒕"𝒊𝟐𝒑

𝟏(𝟏 + ∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒
𝒋(𝟏    (10) 

Where: I represents the indicator variable 
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2.3.4.8 Asymmetric -GARCH 

Asymmetric GARCH (AGARCH) is yet another model capturing the asymmetry. Here it 
is achieved by simply augmenting the original GARCH with a non-squared return term 
(Engle and Ng, 1993). AGARCH model can be represented by the following equation: 

𝝈𝒕𝟐 = 𝝎+∑ [𝜶𝒊𝜺𝒕"𝒊𝟐 + 𝜸𝒊𝜺𝒕"𝒊
𝒑
𝒊(𝟏 ] + ∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒

𝒋(𝟏     (11) 

2.3.4.9 Threshold GARCH 

Threshold GARCH (Zakoian, 1994) is closely related to the GJR GARCH model and can 
be considered essentially the same model, except that it is for conditional standard 
deviation instead of conditional variance. The Threshold GARCH model can be 
represented by the following equation: 

𝝈𝒕 = 𝝎+ ∑ 𝜶𝒊𝜺𝒕"𝒊
𝒑
𝟏(𝟏 + ∑ 𝜸𝒊𝑰(𝜺𝒕"𝒊 < 𝟎)|𝜺𝒕"𝒊

𝒑
𝟏(𝟏 | + ∑ 𝜷𝒊𝝈𝒕"𝒋

𝒒
𝒋(𝟏    (12) 

2.3.4.10 Heterogeneous ARCH 

Especially for this paper, Heterogeneous ARCH (HARCH) is very important (Müller et 
al., 1997). The model marks the first instance where the conditional variance is modeled 
to be based on different timescale volatility components, which are formed as a sum on 
various time scales.  One could even say that Corsi’s HAR-RV (2009) is effectively the 
same model applied to realized volatility. HARCH model can be represented by the 
following equation: 

𝝈𝒕𝟐 = 𝝎+∑ 𝜸𝒊(∑ 𝜺𝒕"𝒊)
𝒑
𝒋(𝟏

𝟐𝒏
𝒊(𝟏       (13) 

2.3.4.11 Nonlinear GARCH 

Nonlinear GARCH (NGARCH) model introduced by Engle and Bollerslev (1986), can 
be viewed as a generalization of TSGARCH. The generalization allows the use of an 
arbitrary exponent for the error and volatility, allowing the model to more flexibly capture 
different properties of the volatility process, most notably asymmetry. NGARCH model 
can be represented by the following equation: 

𝝈𝒕𝜹 = 𝝎+ ∑ 𝜶𝒊(>𝜺𝒕"𝒊>)𝜹
𝒑
𝒊(𝟏 +∑ 𝜷𝒋𝝈𝒕"𝒋𝜹𝒒

𝒋(𝟏       (14) 
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2.3.4.12 Asymmetric power ARCH 

Asymmetric power ARCH (APARCH) model is a further generalization that nests several 
previously mentioned models, such as GARCH, TS-GARCH, GJR-GARCH and 
TGARCH, as specific parameterizations (Ding, Granger and Engle, 1993). This makes 
the model very flexible. APARCH model can be represented by the following equation: 

𝝈𝒕𝜹 = 𝝎+ ∑ 𝜶𝒊(>𝜺𝒕"𝒊> − 𝜸𝒊𝜺𝒕"𝒊)𝜹
𝒑
𝒊(𝟏 + ∑ 𝜷𝒋𝝈𝒕"𝒋𝜹𝒒

𝒋(𝟏       (15) 

2.3.4.13 Fractionally Integrated GARCH 

The development of Fractionally Integrated GARCH (FIGARCH) is probably the most 
significant advancement in the original GARCH model to capture the long-term 
persistence (geometric instead of exponential decay) observed in volatility (Baillie, 
Bollerslev and Mikkelsen, 1996). This model applies the autoregressive fractionally 
integrated moving average representation to volatility. FIGARCH model can be 
represented by the following equation: 

𝝓(𝑳)(𝟏 − 𝑳)𝒅𝜺𝒕𝟐 = 𝝎+ (𝟏 − 𝜷(𝑳))𝒗𝒕      (16) 

Where: 	 

- 𝐯𝐭	is restricted to be equal to	ε$/ − σ$/ 
- L stands for the lag operator  
- d stands for the order of fractional differentiation, 0 < 𝑑 < 1 
- 𝛟(𝐋) and 𝛃(𝐋) stand for autoregressive lag polynomials 

2.4 Realized volatility  

Volatility, as defined above, is a latent variable for the price process (Andersen et al., 
2005).  The fact that the variable is latent poses significant difficulties form modeling 
volatility and especially for evaluating the performance of the models. This led to now 
resolved dilemma of why volatility models generally had high statistical significance, 
while still having such low explanatory power. This situation was improved after the 
introduction of realized volatility.  

The basic idea of realized volatility is that, if we observe returns multiple times a day 
instead of observing the realized return once a day, we can better identify the true 
volatility and reduce the effect of random noise. This results in the situation where we 
can effectively treat the volatility as fully observed and model it as such (Andersen et al., 
2001). In fact, volatility can be observed with infinite precision if stock price follows a 
true continuous time diffusion. The theoretical foundations for realized variance (and 
volatility) and how it approximates the integrated variance of a continuous time diffusion 
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were laid out by Andersen et al. in 2001. This work sparked a wide literature on estimating 
realized volatility and using it in modeling.  

Below, I present a similar non-rigorous sketch of how realized volatility relates to 
continuous time diffusion of asset price as Anderson et al. (2001) presented in their 
original paper. 

The starting point is to assume the following price process: 

𝒅𝑺𝒕 = 𝝈𝒕𝑾𝒕 = 𝒓𝒕     (17) 

Where St is the logarithm of continuous price, µt is the drift process and Wt is the standard 
Weiner process. σt is a latent variable of independent stochastic process, which is of the 
prime interest in the model.  

For this diffusion process, the Integrated Variance (IV) for a day is the Ito integral of 
instantaneous variances over the day. 

𝑰𝑽𝒕 = ∫ 𝝈𝝎𝟐𝑾𝝎
𝒕
𝒕"𝟏      (18) 

And the integrated volatility is then given by: 

(𝑰𝑽𝒕)𝟏/𝟐 = 𝝈𝒕      (19) 

The integrated variance for a day can be approximated by sum of intraday squared returns 
from many short time intervals:  

𝑹𝑽𝒕 =	∑ 𝒓𝒕"𝒊∗∆𝟐𝑻"𝟏
𝒊(𝟎      (20) 

Where: Δ = period length/M, and rt− i* Δ = S (t − i * Δ) − S (t − (i + 1) * Δ).  

The weekly realized variance, in turn, can be approximated by summing several daily 
realized variances. By square root we get the weekly realized volatility. 

𝑹𝑽𝒐𝒍𝒕𝑾 = Q∑ 𝑹𝑽𝒕"𝒊𝑻"𝟏
𝒊(𝟏        (21) 

2.4.1 Difficulties in estimating realized volatility 

As noted, if a price process were truly a continuous diffusion, we could reduce the time 
interval in equation 20 above to be arbitrary small to make the estimate of volatility 
infinitely precise. However, this is not the case, meaning that realized volatility is still 
just a (very precise) estimate of the latent volatility. The main issue with reducing the 
time interval in equation 20 below approximately 1 minute is the presence of market 
microstructure noise. Microstructure noise tends to cause the realized variance to be 
significantly overestimated when the sampling frequency is very short. This effect is often 
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observed from volatility signature plots that compare the estimated realized volatility 
between different sampling frequencies. An excellent treatment of market microstructure 
noise and its implications for realized volatility can be found from Hansen and Lunde 
(2006). 

Bid-ask bounce is probably the most widely discussed source of market microstructure 
noise affecting the estimation of realized volatility. Bid-ask bounce is the tendency of 
transaction prices to bounce between prevailing bid and ask prices when observed in very 
short intervals. This, in turn, appears to be part of volatility when naively measured, while 
in reality, the "true" market price remains constant. All of this, in effect, causes negative 
autocorrelation for the price in very short time intervals and thus the sum of squared return 
estimator of variance becomes biased, as is the case in other time series settings. 

Another major cause of noise is the discrete tick sizes that cause the price to always 
change by at least the minimum tick size, which may be more than in the absence of a 
minimum tick size. 

In their work on appropriate sampling frequency, Aït-Sahalia et al. (2005) list numerous 
microstructure effects that can be present: “…bid-ask spread and the corresponding 
bounces, the differences in trade sizes and the corresponding differences in 
representativeness of the prices, the different informational content of price changes 
owing to informational asymmetries of traders, the gradual response of prices to a block 
trade, the strategic component of the order flow, inventory control effects, the 
discreteness of price changes in markets that are not decimalized etc.” (Aït-Sahalia et al., 
2005, p. 355). 

In addition to actual microstructure effects in the financial sense, high frequency data, 
due to its sheer volume, is more prone to errors, which may also exacerbate the errors in 
realized volatility measurement. The challenges related to this, as well as some good 
practices related to the data management and cleaning, are presented by Brownlees and 
Gallo (2006). 

2.4.2 Realized volatility models  

2.4.2.1  GARCH X  

The earliest use of realized volatility/variance measures in forecasting and modeling 
volatility that I have found is Engle’s GARCH X model (2002), which is simply a regular 
GARCH structure with an added component for realized variance. The problem of this 
model is that there is no structure defined for the dynamics of RV, making it incomplete 
and thus impractical for multistep forecasting or for the purpose of simulation. GARCH 
X model can be represented by the following equation: 
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𝝈𝒕𝟐 = 𝝎+∑ 𝜶𝒊𝒓𝒕"𝒊𝟐𝒑
𝒊(𝟏 +∑ 𝜷𝒊𝝈𝒕"𝒋𝟐𝒒

𝒋(𝟏 +∑ 𝜸𝒊𝒔
𝒌(𝟏 𝑹𝑽𝒕"𝒋      (22) 

2.4.2.2 Realized GARCH 

Realized GARCH model by Hansen, Huang and Shek (2012) corrects the significant 
shortfall of GARCH X by completing the system of equations while dropping the term 
for squared return as unnecessary. A notable feature of the model is the flexibility allowed 
by the measurement function, which enables the model to capture the leverage effect. 
Also, this feature nests many of the earlier GARCH models as special cases. For instance, 
regular GARCH is a case where the realized volatility measure is directly the squared 
return. The model can also be applied in its log-linear form, where all the components are 
replaced by their respective logarithms. Since the model relies on realized volatility, the 
problem with (close to) zero returns is eliminated compared to the log-linear 
configuration of regular GARCH. Realized GARCH model can be represented by the 
following set of equations: 

𝒓𝒕 = (𝝈𝒕𝟐)𝟏/𝟐 ∗ 𝑾𝒕      (23) 

𝝈𝒕𝟐 = +∑ 𝜶𝒊𝝈𝒕"𝒕𝟐𝒑
𝒊(𝟏 + ∑ 𝜷𝒋

𝒒
𝒋(𝟏 𝑹𝑽𝒕"𝒋     (24) 

𝑹𝑽𝒕 = 𝒎(𝝈𝒕𝟐,𝑾𝒕, 𝜺𝒕)      (25) 

Where: εt ~𝑖𝑖𝑑(0, 𝜎9/) and m() signifies the measurement function that specifies the 
structure of the ‘error’ based on which the integrated variance is estimated by the realized 
variance measure.  

2.4.2.3 Use of general time series models  

The advent of realized volatility has also meant that one does not need to necessarily 
make a distinction between volatility models and time series models in general. This 
derives from the fact that realized volatility can be treated as fully observed. Thus, any 
timeseries model specification can be utilized in modeling realized volatility. This opens 
up the possibility of using a wide range of techniques. For example, Corsi (2009), in the 
paper where he introduced HAR-RV model, compared its performance to Autoregressive 
Fractionally Integrated Moving Average (ARFIMA) model, which is not a dedicated 
volatility model.  

2.4.3 HAR-RV model 

The volatility model that I have chosen to use in this research is HAR. It was proposed 
by Corsi (2009), and it extends the traditional ARCH and GARCH models by 
incorporating the concept of realized volatility. The basic idea of HAR is to model the 
latent integrated volatility using three historical realized volatility components, Short-



   16 

Term (ST), Medium-Term (MT), and Long-Term (LT). This introduces, in a 
parsimonious way, the empirically observed long persistence while maintaining a simple 
structure. 

𝝈𝒕:𝟏𝑺𝑻 = 𝒄 + 𝜷𝑹𝑽𝒐𝒍𝒕𝑺𝑻+𝜷𝑹𝑽𝒐𝒍𝒕𝑴𝑻+𝜷𝑹𝑽𝒐𝒍𝒕𝑳𝑻 + 𝜺𝒕:𝟏𝑺𝑻     (26) 

The main advantages that lead to the selection of the model as the base model are: 

- HAR model is a parsimonious model that is easy to estimate, which is an advantage 
since the model needs to be re-estimated for each step of the forecast. 

- HAR model can provide more accurate volatility forecasts than traditional ARCH and 
GARCH models. 

- HAR is a realized volatility-based model, which reduces the measurement error 
problem associated with latent volatility models. Eliminating this source of 
uncertainty makes it easier to compare competing models. 

- HAR model is more flexible than the traditional ARCH and GARCH models, making 
it very easy to incorporate exogenous variables to the model. 

- HAR model can capture the long memory of volatility. 

HAR is by no means conclusively the best option for volatility modeling. One of its most 
notable issues is its lack of asymmetric impact from innovations. Additionally, if the 
model is augmented with other factors, it is not a complete model, which makes multistep 
forecasting cumbersome. 

An overview of the volatility models and their properties, in terms of the features 
described in section 2.3.3, is summarized in Table 1. As one can observe, the key 
advantages of facilitating exogenous variables and relying on realized measures separate 
HAR from many of the well-known volatility models. However, note that the binary 
classification of properties into “yes” or “no” is an oversimplification. Also, note that for 
each of the models, there are numerous further variations and extensions that may address 
any of the missing properties.  

HAR model does not dictate the length of the short-term, medium-term, and long-term 
components. Because the Google Trends data has a weekly frequency, in the used model, 
I have chosen to use weekly realized volatility as the short-term component, monthly as 
the medium-term component, and quarterly as the long-term component.  

𝝈𝒕:𝟏𝑾 = 𝒄 + 𝜷𝑹𝑽𝒐𝒍𝒕𝑾+𝜷𝑹𝑽𝒐𝒍𝒕𝑴+𝜷𝑹𝑽𝒐𝒍𝒕
𝑸 + 𝜺𝒕:𝟏𝑾     (27) 

The research question then centres around whether augmenting this model with search 
query terms improves the volatility prediction. A more detailed discussion of the 
methodology employed follows in section 4.
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Table 1: Overview of volatility from the perspective of highlighted properties 

Model Long persistence Mean reverting Asymmetric Exogenous variables Fat Tails Non-latent 
ARCH No Yes No No No No 
GARCH Yes Yes No No No No 
Integrated GARCH Yes No No No No No 

EWMA Yes No No No No No 
Taylor-Schwert GARCH   No Yes No No No No 
Exponential GARCH  No Yes Yes No No No 
GJR - GARCH   No Yes Yes No No No 
Asymmetric -GARCH  No Yes Yes No No No 
Threshold GARCH  No Yes Yes No No No 
Heterogenous ARCH Yes Yes No No No No 
Nonlinear GARCH No Yes Yes No No No 
Asymmetric power ARCH  No Yes Yes No No No 
Fractionally Integrated GARCH Yes Yes Yes No No No 
GARCH X  No Yes No No No Yes 
Realized GARCH No Yes Yes Yes No Yes 

HAR-RV Yes Yes No Yes No Yes 
Source: Own work. 
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2.5 Use of Google Trends data in economic modeling 

Apart from relying on the volatility modeling history, this work draws cues from literature 
that concerns using Google Trends data to predict various economic phenomena. More 
widely, one can include the usage of all crowd-generated online data in economic 
modeling. In this context, crowd-generated data refers to any data that is created by a very 
large group of people either directly with the intention of creating data or indirectly by 
their actions being measured by another party. The classification of such data, types of 
sources, and modeling approaches have been summarized by Blazquez and Domenech 
(2018). The most commonly used examples of such data in the literature apart from 
Google Trends data are data related to Wikipedia views and edits, and data about Tweets. 

The earliest usage of such data that I am aware of is the use of search query data to predict 
unemployment-related statistics by Ettredge et al. (2005). This was still on a time before 
Google Trends data was available. Google Trends data (then also called Google Insights) 
was then used in an article by Google's chief economist Hal Varian and Hyunyoung Choi. 
They initially published their work predicting the present with Google Trends in 2009 in 
a Google technical report, and later officially in 2012. They also showed that Google 
Trends data improves predictions related to unemployment claims and auto parts sales. 
Similarly, unemployment claims data have been modeled with the help of Google Trends 
data by Askitas and Zimmermann (2009) and Choi and Varian (2009). Related to 
unemployment, Castelnuovo and Tran (2017) investigate connection of Google search 
data to proxies of economic uncertainty, among which is also unemployment. They found 
Google Trends to be a reliable and timely indicator for forecasting. 

In all cases, the authors found that Google Trends is useful or showing promise in 
predicting unemployment claims. Later, Joonas Tuhkuri from the research institute of the 
Finnish economy (ETLA) published a study that investigated this in a Europe-wide study. 
The main finding of the study is the following: "Google searches are associated with the 
unemployment rate in the EU — even after controlling for the country level, lagged, and 
seasonal effects" (Tuhkuri, 2014, p. 13).  

This research was part of the ETLAnow project, and the live forecasts can be found from 
the project website (https://www.etla.fi/en/etlanow/). This research is especially notable 
due to the fact that it explicitly deals with Google searches in a multilingual setting in 
European countries, which is also what my research is aiming to do.  

Wu and Brynjolfsson (2009) use Google Trends data for the housing market in the United 
States. They find that future housing purchases are foreshadowed by Google search 
volume. Goel et al. (2010) investigate the predictive ability of Google searches in the 
setting of consumption of games, music, and movies. They find that Google Trends data 
is useful in prediction but only to a marginal degree. Koop and Onorante (2016) use 
Google Trends to nowcast several macroeconomic variables and find Google Trends to 
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improve the nowcasting accuracy. Overall, the published research points towards the 
usefulness of Google Trends as a predictor in various economic settings. 

Google Trends data has also been used to investigate issues related to specific asset 
classes and industries. In the current environment, where the Russian-Ukraine conflict 
has caused havoc in the European energy markets, the use of Google Trends in the energy 
market context is particularly interesting. Yu et al. (2019) found that Google Trends data 
shows promise in predicting oil consumption. 

Since 2022, inflation has made a resurgence in the Western world after a long period of 
relative calm. This has also brought renewed attention to the issue by policymakers. A 
recent European Commission discussion paper (Buelens, 2023) investigates the public's 
attention to inflation with the help of Google Trends data. Again, this shows the power 
of crowd data, as the dreaded inflation spiral is inherently linked to people's inflation 
expectations, which should be reflected in their interest in inflation-related topics online. 
An interesting overview of the types of settings where Google Trends data has been 
applied can be found in Jun et al. (2018). They analyzed 657 papers to understand the 
research trends around the topic. 

2.6 Use of Google Trends and similar data in predicting stock market dynamics 

The use of Google Trends data in stock market analysis is largely believed to originate 
from the analysis of market sentiment. The most influential paper in this field is by 
Tetlock (2007), who used the frequency of words in media articles to successfully predict 
market sentiment and the direction of returns.  

The first instance that Google Trends was applied to the prediction of stock market 
dynamics was by Preis et al. (2010). In their paper, they used the search volume of names 
of S&P 500 index constituent companies and found a linkage to trading volume. Trading 
volume, in turn, has been linked to volatility by a multitude of authors such as Andersen 
(1996), making this a very relevant finding for volatility modeling. 

The most important research, which also garnered major media attention, is the study by 
Preis et al. (2013), where the authors put forth a profitable (in back-testing) trading 
strategy based on the changes in search volume of financially important terms. The 
authors conclude: “We detect increases in Google search volumes for keywords relating 
to financial markets before stock market falls. Our results suggest that these warning signs 
in search volume data could have been exploited in the construction of profitable trading 
strategies” (Preis et al., 2013, p. 5). This would again indicate that realized volatility 
would also be predicted by increased search volumes.  

The mentioned research has also been a target of criticism from various angles by Challet 
and Ayed (2014). The most important criticism is that Preis et al. selected the financially 
significant words (for which Google Trends data is used) by their frequency of usage in 
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financial publications during the testing window. This, in effect, means that one selects 
ex-post the words that turned out to be most important (thus having also the highest 
information value), and ex-ante selection of words would have likely been different. Note 
that since this work shares the same set of keywords, the critique is also partially valid 
for this research. The difference is that Preis et al. used publication frequency during the 
2004-2011 interval, which only partially overlaps with the testing window of this 
research, while in their case the overlap was for the full period. 

Other notable research, especially for this work, are Dimpfl and Jank (2012) and Hamid 
and Heiden (2015). In both works, the HAR-RV model (or its log version) was augmented 
with Google Trends components, an approach identical to this work. One of the works 
found that Google Trends data improved the volatility prediction, and the other found that 
it did not. The differentiating aspect of their research and this work is that they focused 
on the search volume of index name and closely related words instead of general 
financially significant words. Also, both works focused on a single language and index, 
unlike this work. Thus, one might say that the methodology of this work is a synthesis of 
the approach used in Preis et al. (2013) and by Dimpfl and Jank (2012) as well as Hamid 
and Heiden (2015), with an added layer of multilingual approach. 

Another more recent example that has direct implications for this work is by Audrino et 
al. (2020), who used search words relevant to the stock market as proxies for investor 
attention. What makes their work especially applicable is that they use the same HAR as 
the benchmark and base model to which Google search information is incorporated. 
Furthermore, they use realized volatility as the target. They found that: “…attention and 
sentiment variables are able to improve volatility forecasts significantly, although the 
magnitudes of the improvements are relatively small from an economic point of view” 
(Audrino et al., 2020, p. 334). 

In addition to the works directly related to this research, Google Trends has been widely 
investigated in connection with stock market data. For instance, Beer, Hervé and Zouaoui 
(2012) found that the search frequency of negative search words is heightened during 
crises, and that investor sentiment, gauged using Google Trends, contributes to predicting 
short-term market returns. Notably, their research was conducted using French keywords 
and analyzing the French stock market, which is a relatively rare example of using non-
English language keywords. Irresberger et al. (2015) found that the search volume of 
terms related to the financial crisis, along with the bank name and ticker, helped explain 
the performance of bank stocks during the financial crisis.  

Bank et al. (2011) studied the correlation between Google search volume of a company 
name and stock dynamics. They concluded that trading volume and return dynamics had 
a connection to search volume. 
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Closely related to the use of Google search terms in predicting and explaining stock 
market dynamics is the use of other crowd-generated online data. Preis et al. (2013) found 
evidence that Wikipedia site edits of listed companies tend to increase before a major fall 
in stock prices. Bollen et al. (2011) found that Twitter mood, determined from a sample 
of tweets using machine learning techniques, does Granger-cause index returns and, in 
some cases, improve prediction accuracy. Tirunillai and Tellis (2012) found that reviews 
and other online "chatter" predict the stock price dynamics of individual companies: 
"...chatter predicts returns and trading volume. The impact of chatter prevails even after 
controlling for analysts' forecasts, media citations, advertising, and new product 
announcement" (Tirunillai and Tellis, 2011, p. 33). 

An important strand of research is also indirectly related to stock market dynamics. 
Research in this area evaluates the relationship between Google Trends and market 
sentiment. This relationship is also closely related to volatility since uncertainty and crisis 
sentiment are sometimes proxied with stock market volatility metrics like the VIX 
implied volatility index. An example of such research is Nikkinen and Peltomaki's (2020) 
investigation of the connection between searches about "market crash" and the VIX.  

2.7 COVID-19 and use of Google Trends  

The use of online data, such as Google Trends, gained major prominence during the 
COVID-19 pandemic. The key feature making this data very useful, is its relative 
timeliness compared to traditional economic statistics. This feature was a very useful 
source of data in a setting where the COVID-19 and its economic effects appeared 
relatively suddenly. Before this time, it is also notable that Google Trends data has a rich 
research history in epidemiology. Most notably, Ginsberg et al. (2009) used Google 
Trends to track the progress of influenza epidemics across different geographies.  

The combination of the need for near real-time data and the proven track record of using 
Google Trends in an epidemiological context makes Google Trends data a natural 
candidate in modeling. Among the examples is the work by Papadamou et al. (2020), who 
found a link between COVID-19-related searches and volatility in a panel setting that 
included observations from multiple countries around the world.  

Another example where Google Trends data was used is from Szczygielski et al. (2021). 
In their research, the Google search volume was used as a proxy for COVID-19 
uncertainty in the process of explaining the influence of COVID-19 uncertainty on stock 
markets.  

The concepts have also been applied to alternative ‘assets’ such as Bitcoin. Chen et al. 
(2020) found that: “…market volatility has been exacerbated by fear sentiment as the 
result of an increase in search interest in coronavirus” (Chen et al., 2020, p. 2). 
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3 DATA 

3.1 Realized volatility data 

The research combines two data sources. First one is the realized volatility data of stock 
indices compiled by the Oxford-Man Institute of Quantitative Finance2. The data 
illustrated in Figure 2 is a series of daily realized volatilities based on a 5-minute returns. 
This data is widely used by volatility researchers and has already been applied in the 
context of Google search data by Hamid et al. (2015). 

The market indices for which the realized volatility is used, are listed in the Table 2 below. 
Selection of the markets was based on the availability of index data in the above-
mentioned source, aim to limit the research to the European context, and availability of 
assistance from native speakers in the translation of keywords. 

Table 2: Market indices used for the research 

Index Country Majority language 

FTSE 100 United Kingdom English 

DAX Germany German 

OMXHPI Finland Finnish 

IBEX Spain Spanish 

OMXSPI Sweden Swedish 

Source: Own work. 

  

 

2 www.oxford-man.ox.ac.uk 
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Figure 2: Example of the realized variance data for FTSE 100 index  

Source: Own work. 

In addition to the market indices, the research uses data about Google search query 
volumes available through Google Trends. This data runs from January 1, 2004 until the 
date of the analysis.  

3.2 Google search query data 

There are two notable issues that have to be considered when approaching any modeling 
with Google Trends data. The first issue is that the data is normalized to range from 0 to 
100. The highest weekly search volume, compared to total search volume on Google, gets 
the value 100, and remaining weeks get the value proportional to their relative search 
volume. 

𝑺𝑸𝒕𝑻(𝒅𝒆𝒃𝒕) = ]
𝑺𝒆𝒂𝒓𝒄𝒉	𝒗𝒐𝒍𝒖𝒎𝒆𝒕	("𝒅𝒆𝒃𝒕")
𝑻𝒐𝒕𝒂𝒍	𝒔𝒆𝒂𝒓𝒄𝒉	𝒗𝒐𝒍𝒖𝒎𝒆𝒕

𝑴𝒂𝒙a𝑺𝒆𝒂𝒓𝒄𝒉	𝒗𝒐𝒍𝒖𝒎𝒆𝑻("𝒅𝒆𝒃𝒕")
𝑻𝒐𝒕𝒂𝒍	𝒔𝒆𝒂𝒓𝒄𝒉	𝒗𝒐𝒍𝒖𝒎𝒆𝑻

b
c d ∗ 𝟏𝟎𝟎 

 (28) 

This implies that we cannot utilize the exact search volume for analysis or compare the 
levels of different search terms directly. Additionally, there are restrictions on the timing 
and time interval of the data. The dynamics of this is depicted in Figure 3. Presently, 
Google releases data for longer intervals solely on a weekly basis, which encompasses all 
days of the week rather than just from Monday through Friday. Consequently, weekly 
volatility predictions can only be made on Monday morning before the market opens, and 
as such maintaining that past information serves as the only input for the forecast. 

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

1/1
/20
16

2/1
/20
16

3/1
/20
16

4/1
/20
16

5/1
/20
16

6/1
/20
16

7/1
/20
16

8/1
/20
16

9/1
/20
16

10
/1/
20
16

11
/1/
20
16

12
/1/
20
16

1/1
/20
17

2/1
/20
17



   24 

Figure 3: Periodicity of Google Trends and realized volatility data 

Source: Own work. 

In Figure 4 one can observe an example of raw Google Trends data, from a single 
download window. The graph clearly illustrates that the data for each separate download 
has been normalized so that 100 represents the highest value. The practical issues posed 
by combining data from different downloads are discussed later in section 4.2.  

Figure 4: Example of Google search data for the search term "debt” for one download 
window 

 

Source: Own work. 
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4 METHODOLOGY 

In order to assess whether Google Trends data can serve as a useful and valuable leading 
indicator for realized volatility, we will compare a Heterogeneous Autoregressive model 
of Realized Volatility (HAR-RV) introduced by Corsi (2009), to a HAR-RV model 
extended by a Google search component. The approach is similar to the Dimpfl et al. 
(2011). 

4.1 Selection of search terms and research period  

Any discretionary factors by the researcher (me) can be a source of potential bias. 
Example of this are data fishing or p-hacking. To avoid any possibility of this, the 
keywords selected are based directly on the research conducted by Preis et al. (2013). The 
list of words presented in Table 3 is based on their work, where they have developed a 
measure of a given word's financial relevance. The selected words have the highest 
financial relevance based on this metric. 

In addition, the research period was selected to be as extensive as possible. The period 
selected corresponds to the period from earliest data available at the Oxford-Mann 
institute of quantitative finance for the Nordic OMX exchanges (3.10.2005) until the date 
when the data was downloaded (30.8.2022). This ensured the minimum amount of 
discretionary factors in the research period selection. 

4.1.1 Translation of search terms and other language related issues in Google search 
data 

Table 3: Translated search terms 

English German Finnish Spanish Swedish 
hedge Absicherung suojaus cobertura hedge 

dividend Dividende osinko dividendo utdelning 

earnings Einkünfte tulot ganancias förtjänst 

inflation Inflation inflaatio inflación inflation 

markets Märkte markkinat mercados marknader 

bonds Anleihen joukkovelkakirja bonos obligationer 

debt Schuld velka deuda skuld 

gains Gewinne voitto beneficios vinster 

investment Investition investointi inversión investering 
Source: Own work. 
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4.2 Data preparation 

4.2.1 Correcting the inconsistent normalization in Google Trends data 

The first thing to note is that if one wants to download data that is on a weekly frequency, 
one can only download 4 years’ worth of data at one time. Additionally, the data has also 
been normalized so that the highest value in a period (download) gets a value of 100. This 
means that data from different download instances is inconsistent with data from another 
download instance, even if the time periods partially overlap. This inconsistency can be 
observed in the Figure 5 below where differently accented lines originate from different 
download instances. For example, consider the period from 2/10/2009 to 2/10/2010 where 
two data sets have dates for the period but the values are significantly different. This issue 
makes it clear that we cannot use the data without any adjustments. 

Figure 5: Example of the inconsistent normalization between different datasets from 
Google Trends 

Source: Own work. 

There are several ways to make the data compatible given the level shifts between 
datasets. One way is to first convert the data to % growth rates and then recursively apply 
the growth rates to the initial values, thus generating a series that is internally consistent. 
Another way, which I used, is to compare the values from the overlapping periods and 
then adjust the dataset that extends further in the future with the ratio of the means of 
different datasets during the overlapping period. The adjustment ratio for dataset 2 is 
calculated as: 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡	𝑟𝑎𝑡𝑖𝑜//N =
∑ PQ_STUTVWU/#$
#%&

∑ PQ_STUTVWUN#$
#%&

        (29) 

Then, each value in dataset 2 (the dataset that has values further to the future) is multiplied 
by the adjustment ratio: 

𝑆𝑄_𝑑𝑎𝑡𝑎𝑠𝑒𝑡2_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑U = 𝑆𝑄_𝑑𝑎𝑡𝑎𝑠𝑒𝑡2U ∗ Adjustment	ratio//N      
(30) 

The same issue is present for the period where dataset 2 and dataset 3 overlap, and dataset 
3 is not consistent with values from dataset 1 or 2. The adjustment for this is done in an 
analogous way but by replacing dataset 1 in the formulas with the already adjusted dataset 
2, and dataset 3 takes the place of dataset 2. Then, all the subsequent datasets are adjusted 
in this fashion. 

Figure 6: Example of the adjusted datasets resulting from the procedure described 
above 

Source: Own work. 

As one can observe from Figure 6, the procedure results in datasets that are relatively 
continuous in the overlapping period, which was the purpose of the whole adjustment. 
However, I must note that in the overlapping periods, two datasets never match perfectly, 
and there is no direct remedy for this. While some of the inconsistency can be attributed 
to rounding (data is rounded to have no decimals), in certain instances the differences are 
much larger and thus cannot be attributed to rounding. Furthermore, the discrepancy 
cannot be attributed to inappropriate normalizing or scaling since there are instances 
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where the data for week A is notably3 higher than for week B in a given dataset, while in 
another dataset covering the same period, the order is reversed, proving that a difference 
in a simple linear transformation cannot be responsible for the error. Since Google has 
not been too forthcoming about the details of how Google Trends data is collected or 
generated publicly, I had limited possibilities to correct the inconsistency without the 
knowledge of the cause. Thus, the inconsistency between datasets is largely ignored and 
is addressed only by constructing the final dataset as a simple average of two values for 
the periods where two values are available. The final adjustment that is done is performed 
by dividing all values in a dataset by its maximum value and multiplying all values by 
100. This ensures that we get a dataset that again has the property of having 100 as the 
largest value (as in the original data), regardless of whether the highest value for the 
period occurs in the earliest or most recent dataset. 

4.2.2 Seasonality in Google Trends data 

While doing exploratory analysis for the Google Trends data I noticed that for many 
search terms one can identify a pronounced seasonality. For an example, see the Figure 5 
between years 2009 and 2017 which clearly exhibits a regular seasonality. The search 
word in question is ‘hedge’ for which it is hard, in financial context to find a reason for 
seasonality. But as it turns out in British English ‘hedge’ is more regularly used to 
describe a ‘bush fence’ which explains why in certain times of year the search frequency 
would increase.  

Clear seasonality was also observed in the search frequency for the keyword ‘earnings’, 
likely corresponding to quarterly earnings seasons. Similarly, most keywords exhibited a 
pronounced dip during holiday seasons, possibly due to their frequent use mainly in 
professional contexts. Although one could attempt to remove some of the seasonality to 
better isolate the relevant signal, in this study I have opted to leave the seasonality 
unadjusted since the factors causing it may also be relevant for volatility forecasting. 

4.2.3 Observations related to financially related search terms  

During the preliminary analysis of the data, I have also made other observations that may 
or may not be relevant to the results of this analysis or that may help in the future research. 

 

3 By "notable" I mean differences that are not small enough to be attributed to rounding errors. Although 
there are instances where the discrepancies between datasets are clearly not due to rounding errors, I have 
not found serious enough instances of this kind of inconsistency that would be material for the analysis at 
hand. 
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4.2.3.1 Common use of English over the native language 

Another key issue impacting the use of keywords from another languages is the 
widespread use of English as a lingua franca in the Western world, especially in 
professional settings such as finance. This might be a contribution factor for the 
observation that data from languages with fewer speakers is exceedingly noisy, especially 
in the earlier years. 

4.2.3.2 Evolution in the characteristics of Google Trends data 

There is a clear trend towards smoother data over the years. My hypothesis here is that 
this trend reflects the increasing adoption of the internet by the wider population. This 
likely also makes the signal estimation from earlier periods less applicable in the current 
setting. This dynamic is illustrated in Figure 7. 

Figure 7: Example of Google search data where the decreasing noise is visible 

Source: Own work. 

4.2.3.3 Usage of synonyms and declensions 

Another issue that might hinder the use of certain languages is the multitude of alternate 
forms for the same word. For instance, in the Finish language, the word “store” (shop) 
has well over two thousand valid declensions, and a similar number of alternate forms 
can be generated for most nouns (http://www.ling.helsinki.fi/~fkarlsso/genkau2.html). At 
the same time, Google Trends takes into account only exact matches of the specific word 
being part of an expression. For instance, searches for “grocery store” are counted as 
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searching the word “store” while searching for “stores” are not. This results in greatly 
diminished frequency for any expression with multiple commonly used declensions and 
thus the influence of random noise increases, which likely adversely affects the results. 

4.2.4 Matching and aggregating volatility data to the Google Trends data 

As already mentioned, the Google Trends data is published with weekly frequency, 
corresponding always to a Monday to Sunday time horizon, regardless of whether the 
time period contains a holiday or a change in the year. On the other hand, the Realized 
Volatility (RV) data corresponds to trading days. Firstly, I ensured that the RV data was 
correctly matched to the Google Trends data, so that all the trading dates that were after 
the previous week's Google Trends data publishing date and before the current week's 
publishing date were matched with the Google Trends data for the current week. 
Afterwards, all the RV values were averaged using a simple arithmetic average. 

Following Corsi (2009), realized volatility can be averaged to a longer time horizon with 
a simple average, with insignificant convexity error. 

RVol$X = N
Y
(RVol$Z + RVol$"NZ + RVol$"/Z + RVol$"[Z )       (31) 

The model also includes realized volatility that is a longer-term average (monthly, 
quarterly), and in these cases, the terms were arrived at by further averaging the weekly 
components using a simple arithmetic mean. The monthly period included average of 4 
lagged values, whereas the quarterly component included 12. Note that averaging did not, 
in any way, take into account that certain weeks had fewer trading days than others. This 
approach was adopted purely for analytical convenience.  

4.3 Modeling specification and parameter estimation technique 

The models used are based on the HAR-RV models specified in equation (32) and the 
HAR model estimated with the natural logarithm of realized volatility HAR-ln(RV) 
specified in equation (33). 

𝑅𝑉𝑜𝑙U:N\ = 𝑐 + 𝛽N𝑅𝑉𝑜𝑙U\+𝛽/𝑅𝑉𝑜𝑙U]+𝛽[𝑅𝑉𝑜𝑙U
Q + 𝜀U:N\     (32) 

𝑙𝑛(𝑅𝑉𝑜𝑙U:N\ ) = 𝑐 + 𝛽N𝑙𝑛(𝑅𝑉𝑜𝑙U\)+𝛽/𝑙𝑛(𝑅𝑉𝑜𝑙U]) + 𝛽[𝑙𝑛(𝑅𝑉𝑜𝑙U
Q) + 𝜀U:N\    (33) 

These two models are then augmented (extended) with a single Google Trends 
component. Here it is important to note that the model could be extended with 3 Google 
Trends search volume components formed similarly as the 3 volatility components in 
HAR. This was done to avoid possible overfitting. Note that the model structure was 
selected prior to any data analysis, and thus there is a valid concern to expect that the 
‘signal’ from Google Trends data is very weak, and thus having multiple correlated search 
parameters may not provide any additional benefit. 
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𝑅𝑉𝑜𝑙U:N\ = 𝑐 + 𝛽N𝑅𝑉𝑜𝑙U\+𝛽/𝑅𝑉𝑜𝑙U]+𝛽[𝑅𝑉𝑜𝑙U
Q+𝛽Y𝑆𝑄U\+𝜀U:N\    (34) 

𝑙𝑛(𝑅𝑉𝑜𝑙U:N\ ) = 𝑐 + 𝛽N𝑙𝑛(𝑅𝑉𝑜𝑙U\)+𝛽/𝑙𝑛(𝑅𝑉𝑜𝑙U]) + 𝛽[𝑙𝑛(𝑅𝑉𝑜𝑙U
Q)+𝛽Y𝑙𝑛(𝑆𝑄U\) + 𝜀U:N\

 (35) 

Here, the search query terms are specified as simple period averages, similar to RV terms. 
Below one can see the values of short-term, medium-term, and long-term realized 
volatility components throughout the period. The dynamics of each component for all 
markets are depicted in Figure 8 and Figure 9. 

Figure 8: Dynamics of HAR-RV volatility components  

Source: Own work. 
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Figure 9: Dynamics of the logarithm of HAR-RV volatility components 

Source: Own work. 

4.3.1 Estimation window and withholding period 

Another important factor to consider is the estimation window for the models. In this 
research, the estimation window was set to 100 days solely to include the financial crisis 
as part of the (pseudo) out-of-sample evaluation window. However, the 'optimality' of the 
estimation window length was not taken into consideration, which would be sensible 
according to Inoue et al. (2017) if the aim would be to optimize the model performance. 
The process of optimizing the estimation window was omitted, because the primary aim 
of the research was not to perform optimal volatility forecasts, but rather to evaluate 
whether Google search volume contributes to the forecast.  

The two different methods of estimation depicted in Figure 10 are meant to ensure that 
the results are representative whether there is parameter instability present or not (Inoue 
et al., 2017). 
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Figure 10: Schematic representation of the difference between ‘expanding window’ and 
‘rolling window’ estimation. 

Source: Own work. 

4.3.2 Parameter estimation 

All the models were estimated using simple Ordinary Least Squares (OLS) method. 
Parameters were estimated with the help of Matlab 2015b software.  

5 EMPIRICAL RESULTS 

5.1 Performance measures 

The evaluation of whether the Google Trends data improves the prediction is based on 
two criteria. The first criterion is the out-of-sample performance, which is measured by: 

- Mean Squared Error (MSE), 
- Mean Absolute Error (MAE), 
- Mean Absolute Percentage Error (MAPE).  

For these performance measures, lower values indicate more precise forecasts. 

The second criterion is the in-sample and out-of-sample R2 in the Mincer-Zarnowitz 
(1969) regressions of the actual realized volatilities to the predicted integrated volatility. 
This approach has been selected following the examples of Andersen et al. (2003). 

5.1.1 Mean Squared Error 

MSE is a common metric used to measure the difference between a model's predicted 
values and the actual values. MSE performance measure is defined as follows: 

𝑀𝑆𝐸 = N
^
∑ (𝑅𝑉𝑜𝑙U − 𝐹U)/^
U(N          (36) 

where: 
- RVoln stands for Realized Volatility 
- Fn stands for Forecast of Realized Volatility 
- t stands for indicator of time  



   34 

Properties of MSE: 

- MSE is a non-negative value, which means it is always greater than or equal to zero. 
- MSE is sensitive to outliers in the data, which means that extreme values can 

significantly affect the overall measure. 

5.1.2 Mean Absolute Error 

MAE is a statistical metric used to measure the average magnitude of the errors between 
the actual and predicted values in a set of data. It is calculated by taking the average of 
the absolute differences between the actual values and the predicted values. MAE 
performance measure is defined as follows: 

𝑀𝐴𝐸 = N
^
∑ |𝑅𝑉𝑜𝑙U − 𝐹U|^
U(N         (37) 

Properties of MAE: 

- MAE is always a non-negative value. This is because the absolute value of the 
difference between actual and predicted values is always non-negative, which makes 
relative comparison of different models easier. 

- It is a simpler and more intuitive measure of error than other statistical metrics, such 
as MSE, because it is based on the absolute error rather than the squared error. 

- MAE is robust to outliers, as it does not heavily penalize large errors like MSE does. 

Overall, MAE is a useful statistic for evaluating the accuracy of predictions, particularly 
in situations where outliers may be present in the data. 

5.1.3 Mean Absolute Percentage Error 

MAPE is a statistical metric used to measure the accuracy of a forecast or prediction. It 
is calculated by taking the average of the absolute percentage difference between the 
actual and predicted values. MAPE performance measure is defined as follows: 

𝑀𝐴𝑃𝐸 = ^∙]`a
∑ bcde#'
#%(

∙ 100         (38) 

Properties of MAPE: 

- MAPE is always a non-negative value. This is because the absolute value of the 
percentage difference between actual and predicted values is always non-negative. 

- It can be a more intuitive measure of error than other statistical metrics because it is 
based on a relative size of an error rather than absolute size of an error. 

- MAPE is sensitive to large errors or outliers, as these can have a significant impact 
on the percentage difference between the actual and predicted values. 
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It is also important to note that MAPE has some limitations, particularly when the actual 
values are close to zero, as small errors in the predicted values can result in very large 
percentage differences. 

5.1.4 Mincer-Zarnowitz regression  

The Mincer-Zarnowitz regression is a statistical method used to evaluate the predictive 
power of economic forecasting models. It was first proposed by Jacob Mincer and 
Victor Zarnowitz in their paper, "The Evaluation of Economic Forecasts" (1969). 

The Mincer-Zarnowitz regression involves running a linear regression of the forecast 
errors (the difference between the actual values and the predicted values) on the 
forecasted values themselves. The Mincer-Zarnowitz regression is specified as follows: 

𝑅𝑉𝑜𝑙U:N\ = 𝑐 + 𝛽𝐹U:N\ + 𝜀U:N      (39) 

where: 

- c and 𝜷 stand for the coefficients to be estimated  
- 𝜺 stands for the error term 

This model can be used to estimate a wider range of forecast properties, but for this study 
I am only using the R2 of the regression as a comprehensive summary measure of 
forecasting performance. 

5.1.5 Statistical significance of the results 

Note that all predictions are for data that was not part of the estimation sample, and no 
steps were taken to specifically optimize the results for the sample. If the Google search 
data did not have any predictive value, one would expect the share of models where the 
performance improves or deteriorates to be equal. Thus, the confidence level of whether 
or not the inclusion of Google search data improves prediction could be approximated 
using the binomial distribution. 

5.2 Results 

The results in this section are presented in relation to the base model which, does not 
include the Google Trends component as a predictor. It is important to note that each 
language and model configuration has a distinct base model against which the Google 
Trends augmented configuration is benchmarked. A list of distinct base model variations 
is presented in Table 4. 

The results are presented in this manner to facilitate comparison between languages and 
models. For each of the models, the threshold of 100% represents a split between worse 
or better performance than the base model. For MAD, MPA, and MSE, a result lower 
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than 100% indicates better performance than the base model, while for MZ result higher 
than 100% indicates better performance. 

Table 4: List of model variations 

  Base model Calibration data 
Model 1 HAR-RV All the historical data 

Model 2 HAR-RV 100 previous time periods 

Model 3 HAR-ln(RV) All the historical data 

Model 3 HAR-ln(RV) 100 previous time periods 
Source: Own work. 

5.3 Overview 

Overall, as part of the evaluation, a total of 180 model variations were estimated, which 
resulted from the inclusion of 9 search words in 5 markets across 4 model variants. The 
performance comparison is presented in Tables 5, 6, 7, 8, 9. The first way to evaluate if 
the inclusion of Google search data improved the prediction accuracy is to count the 
models where the result improved. There are several key observations that can be made 
based on the results of the analysis: 

Firstly, the inclusion of search data improves the accuracy across all performance 
measures. This is a consistent finding throughout the study. Secondly, the improvement 
can be observed in each model variant. Regardless of the specific model configuration 
used, the inclusion of search data leads to improved accuracy. Finally, the share of models 
where improved performance is observed is clearly above 50%. In other words, in more 
than half of the models examined, the inclusion of search data leads to improved accuracy. 

Table 5: Share of models split to improved and deteriorated prediction by performance 
measure 

 Measure Deteriorated Improved 

MAD 28% 72% 

MAPE 34% 66% 

MSE 12% 88% 

MZ 9% 91% 

Average 21% 79% 

Source: Own work. 
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Table 6: Count of models split into improved and deteriorated prediction performance 
measured by MAD 

MAD >=100% <100% 

HaR-RV  - Moving window 12 33 

HaR-RV  - Expanding window 13 32 

HAR-ln(RV) - Moving window 13 32 

HAR-ln(RV) - Expanding window 13 32 

Total 51 129 

Source: Own work. 

 

Table 7: Count of models split into improved and deteriorated prediction performance 
measured by MAPE 

MAPE >=100% <100% 

HaR-RV  - Moving window 19 26 

HaR-RV  - Expanding window 12 33 

HAR-ln(RV) - Moving window 15 30 

HAR-ln(RV) - Expanding window 16 29 

Total 62 118 

Source: Own work. 

Table 8: Count of models split into improved and deteriorated prediction performance 
measured by MSE 

MSE >=100% <100% 

HaR-RV  - Moving window 2 43 

HaR-RV  - Expanding window 1 44 

HAR-ln(RV) - Moving window 7 38 

HAR-ln(RV) - Expanding window 11 34 

Total 21 159 

Source: Own work. 
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Table 9: Count of models split into improved and deteriorated prediction performance 
measured by MZ 

MSE >=100% <100% 

HaR-RV  - Moving window 43 2 

HaR-RV  - Expanding window 44 1 

HAR-ln(RV) - Moving window 37 8 

HAR-ln(RV) - Expanding window 39 6 

Total 163 17 

Source: Own work. 

5.4 Results split by language  

For each of the languages, the average performance compared to the benchmark is 
calculated for each of the model variants. This is done separately for each of the 
performance measures. The performance results are depicted in Figures 11, 12, 13, 14. 
Overall, the results indicate consistent improvement in prediction accuracy across all 
languages and model configurations and performance measures. No language, measure 
or model configuration stands out in any way even when the results are viewed based on 
the language split. Still, one must note the scale of the improvement is very minor in each 
of the measures. 

Figure 11: Average MAD per language for various model configurations 

Source: Own work. 
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Figure 12: Average MAPE per language for various model configurations 

Source: Own work. 

 

Figure 13: Average MSE per language for various model configurations 

Source: Own work. 
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Figure 14: Average MZ per language for various model configurations 

Source: Own work. 

5.5 Results split by search term  

When split by search term and averaged across languages, the results still indicate a 
consistent improvement in predictive accuracy. Again, no search word or model 
specification stands out as an outlier. The results split by language are depicted in Figures 
15, 16, 17, 18. 

Figure 15: Average MAD per model specification 

Source: Own work. 
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Figure 16: Average MAPE per model specification 

Source: Own work. 

 

Figure 17: Average MSE per model specification 

Source: Own work. 
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Figure 18: Average MZ per model specification 

Source: Own work. 

5.6 Discussion 

Overall, the results indicate that Google search data of financially significant words has 
the potential to enhance volatility predictions. Still, this conclusion comes with major 
caveats. The main caveat is whether or not the improvement in prediction accuracy is 
sufficient to be of any practical significance. In all performance measures, the prediction 
accuracy improvements were in the range of 1%, and no language, model specification, 
or keyword stood out significantly from this pattern.  

Figure 19 shows the difference between the prediction from a model without Google 
Trends keyword, and prediction from a model augmented with the Google Trends 
keyword (Moving window HAR-RV). Additionally, the relative difference of the Google 
Trends augmented model prediction from the model without it is shown as bars. One can 
observe there are mostly small differences between the model results compared to overall 
variability of the RV over time. Still, in relative terms, the predictions are frequently 
different by up to 5%, which may be significant enough difference in some applications 
to warrant the inclusion of the Google Trends component. 
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Figure 19: Illustration of the contribution of Google Trends component 

Source: Own work. 

To contrast the level of difference between the non-search data augmented models and 
the base model, I have also compared the difference between different base model 
configurations. The difference from base performance, which is defined as average 
performance across model specifications for single market, is calculated for each market 
and model specification combination. This is done for each performance statistic 
separately. The results presented in Table 10 indicate that larger performance 
improvements can be achieved by slight changes in the model specification rather than 
from the search word augmentation. 

Table 10: Comparison of average performance metrics across base model 
configurations. 

Model MAD MAPE MSE 1/MZ Average 

HaR-RV  - Moving window 101.50% 101.50% 92.67% 97.20% 98.21% 

HaR-RV  - Expanding 
window 105.19% 105.19% 100.28% 100.32% 102.75% 

HAR-ln(RV) - Moving 
window 95.01% 95.01% 101.65% 100.33% 98.00% 

HAR-ln(RV) - Expanding 
window 98.30% 98.30% 105.40% 102.29% 101.07% 

Source: Own work. 

-40

-20

0

20

40

60

80

100

0.00

0.01

0.02

0.03

0.04

0.05

0.06

20
05

-5
2

20
06

-2
7

20
07

-3
20

07
-3

1
20

08
-7

20
08

-3
5

20
09

-1
1

20
09

-3
9

20
10

-1
5

20
10

-4
3

20
11

-1
9

20
11

-4
7

20
12

-2
2

20
12

-5
0

20
13

-2
6

20
14

-2
20

14
-3

0
20

15
-6

20
15

-3
4

20
16

-1
0

20
16

-3
8

20
17

-1
3

20
17

-4
1

20
18

-1
7

20
18

-4
5

20
19

-2
1

20
19

-4
9

20
20

-2
5

20
21

-1
20

21
-2

9
20

22
-5

Re
la

tiv
e 

di
ffe

re
nc

e 
in

 %

Relative diffrence Actual data Prediction wo. GT

Prediction w. GT  SQ - Inflation



   44 

6 CONCLUSION 

Based on the results, the research question has not been conclusively resolved. On one 
hand, the inclusion of Google search components in the prediction has a consistent effect 
of improving forecast accuracy across all performance measures. The effect can be 
observed in context of different languages, model configurations, markets, as well as 
search terms. On the other hand, the improvements in prediction accuracy are relatively 
minor and of questionable practical significance. 

Still, the analysis presented here was primarily aimed at providing an initial validation of 
the potential usefulness of Google Trends data in volatility estimation. In this regard, 
there are promising indications. This conclusion derives from the fact that the 
investigation presented here purposefully used naïve approach in terms of factor 
selection, treatment of factors, and statistical specification of models. With a more 
rigorous optimization of all aspects of modeling, such as only selecting the most 
promising keywords and model specifications, it is possible that the level of performance 
gains from including Google search factors in the model, could be plausibly increased. 

This work has also brought attention to several important considerations for using Google 
search terms in modeling. Issues such as accounting for synonyms, seasonality, and 
declensions in different languages are all potential areas for optimization. Moreover, the 
appropriate treatment of Google search data is not yet well understood. Further 
investigation is warranted to determine whether removing seasonality, smoothing, or 
removing outliers would significantly improve the model quality. 

The operational hypothesis was specifically directed towards short-term volatility 
predictions, and as such, its applicability to longer-term multi-step forecasts remains 
unclear. It is therefore necessary to conduct further investigations to determine whether 
the model augmentation with search data would prove to be more beneficial for longer-
term predictions. 
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Appendix 1: povzetek v slovenskem jeziku 

Napovedovanje dinamike delniškega trga je verjetno ena izmed najbolj raziskanih tem v 
financah a so večji napredki na tem področju razmeroma redki. Vendar pa je uporaba 
spletnih podatkov o vedenju velikih skupin ljudi odprla novo področje raziskovanja 
borznih trgov. Teoretično osnovo uporabe spletnih podatkov lahko izsledimo v klasični 
hipotezi učinkovitega trga (EMH), ki trdi, da so nove informacije hitro in učinkovito 
vgrajene v ceno delnice, in da cene delnic zaradi naključnega prihoda novih informacij 
sledijo naključni dinamiki (Fama, 1965). S tega vidika so informacije tiste, ki poganjajo 
spremembe cen delnic, zato je mogoče novo ustvarjene ali nove vrste informacij do 
določene mere uporabiti za napovedovanje dinamike trgov. Pojav širše uporabe interneta 
je ustvaril nov tok spletnih informacij, ki naj bi se s potrjeno informacijsko učinkovitostjo 
odražal tudi v borzni dinamiki. 

Cilj tega dela je preučiti vprašanje, ali obseg iskanja na Googlu napoveduje prihodnjo 
volatilnost na trgih vrednostnih papirjev. Vendar je takšno vprašanje na splošno 
preširoko, zato je namen tega dela le delna ocena tega področja. Bolj operativno 
formulacijo lahko artikuliram kot vprašanje ali lahko uporaba obsega iskanj pogosto 
uporabljenih finančnih besed glede na jezik lokacije borznega indeksa  kot dodatnega 
napovednika v heterogenem avtoregresijskem (HAR) modelu izboljša napoved 
realizirane volatilnosti borznega indeksa. 

Raziskava združuje dva vira podatkov. Prvi vir so podatki o realizirani volatilnosti 
delniških indeksov, ki ga je sestavil Oxford-Man Institute of Quantitative Finance. 
Podatki predstavljajo serijo dnevnih realiziranih volatilnosti, ki temeljijo na donosih v 5-
minutnih intervalih. Ti podatki so široko uporabljeni v raziskavah volatilnosti, tudi v 
kombinaciji z Google Trends podatki. Borzni indeksi, uporabljeni v moji raziskavi so 
FTSE 100, DAX, OMXHPI, IBEX in OMXSPI. 

Poleg podatkov borznih indeksov, v raziskavi uporabim tudi podatke o obsegu iskanj na 
Google-u, ki so na voljo preko storitev Google Trends. Ti podatki segajo od 1. januarja 
2004 do datuma analize. Seznam iskalnih izrazov, za katere je bil obseg iskanja pridobljen 
preko Google Trends, temelji na delu Preis et al. (2013). Avtorji so ocenili stopnje 
finančne pomembnosti določenih besed oziroma izrazov. Seznam iskalnih izrazov 
uporabljen v tej raziskavi je sestavljen iz besed, ki imajo ocenjeno najvišjo finančno 
pomembnost. 

Ocena, ali uporaba podatkov Google Trends izboljša napoved, temelji na kriteriju 
uspešnosti napovedne natančnosti izven vzorca, pri čemer uporabim statistične mere kot 
so povprečna kvadratna napaka (MSE), povprečna absolutna napaka (MAE), povprečna 
absolutna odstotkovna napaka (MAPE) in determinacijski koeficient R2 v Mincer-
Zarnowitz regresijah (1969). Napovedno natančnost sem iterativno meril za en teden 
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vnaprej. S to metodo so vse napovedi dejansko izven vzorca, saj čas napovednega 
obdobja za nobeno od napovedi ne vstopa v okno ocenjevanja modela. 

V okviru raziskave sem skupno ocenil 180 različic modelov, ki izhajajo iz vključitve 
devet iskalnih izrazov na petih evropskih trgih v štirih konfiguracijah modelov. 
Vključitev podatkov Google Trends je v 79% primerov analiziranih modelov izboljšala 
napovedno natančnost. V povprečju vključevanje podatkov Google Trends izboljšuje 
natančnost napovedi, če modele ločimo glede na različne dejavnike kot so jezik, 
konfiguracija modela ali statistična mera. Skupni rezultati kažejo, da imajo podatki o 
obsegu iskanj finančno pomembnih besed na Google-u potencial za izboljšanje 
napovedovanja volatilnosti, vprašanje pa je ali je izboljšanje napovedne natančnosti 
dovolj pomembno, da bi bilo tudi praktično uporabno. Pri vseh merilih uspešnosti so se 
izboljšave napovedne natančnosti gibale v razponu 1%, kjer noben jezik, specifikacija 
modela ali ključna beseda ni odstopala iz tega vzorca.  

Glede na dobljene rezultate ostaja raziskovalno vprašanje do neke mere še vedno odprto. 
Po eni strani je raziskava pokazala, da ima vključitev komponent obsega iskanja na 
Google-u v napoved dokaj zanesljiv učinek izboljšanja napovedne natančnosti v vseh 
raziskovanih dimenzijah. Učinek je mogoče opaziti tako v kontekstu različnih jezikov, 
iskanih izrazov, trgov kot tudi konfiguracijah modela. Po drugi strani pa je raziskava 
poakazala, da so izboljšave napovedne natančnosti razmeroma majhne in je njihov 
praktični pomen vprašljiv. 
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Appendix 2: Google search term time series 

 

Figure 20: Index opening prices 

Source: Own work. 
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Figure 21: Google Trends search volume index for English keywords 

Source: Own work. 
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Figure 22: Google Trends search volume index for German keywords 

Source: Own work. 
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Figure 23:Google Trends search volume index for Spanish keywords 

Source: Own work. 
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Figure 24:Google Trends search volume index for Finnish keywords  

Source: Own work. 
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Figure 25: Google Trends search volume index for Swedish keywords 

Source: Own work. 
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Appendix 3: Full predictive accuracy results  

MAD 

Table 11: HAR-RV – Moving window - MAD 

  English German Spanish Finnish  Swedish Average 

HAR-RV - MW 0.00179 0.00174 0.00163 0.00192 0.00151 0.00172 

Average of GT 0.00179 0.00174 0.00163 0.00191 0.00151 0.00171 

hedge 0.001825 0.001713 0.001649 0.001897 0.001511 0.00172 

dividend 0.001780 0.001744 0.001638 0.001918 0.001507 0.00172 

earnings 0.001775 0.001737 0.001630 0.001909 0.001519 0.00171 

inflation 0.001783 0.001753 0.001599 0.001893 0.001501 0.00171 

markets 0.001782 0.001734 0.001607 0.001902 0.001512 0.00171 

bonds 0.001788 0.001740 0.001625 0.001895 0.001507 0.00171 

debt 0.001775 0.001737 0.001635 0.001905 0.001520 0.00171 

gains 0.001790 0.001738 0.001626 0.001922 0.001499 0.00172 

investment 0.001787 0.001730 0.001621 0.001914 0.001505 0.00171 
Source: Own work. 

 

Table 12: HAR-RV – Expanding window - MAD 

  English German Spanish Finnish  Swedish Average 

HaR-RV - EW 0.00182 0.00180 0.00169 0.00195 0.00157 0.00177 

Average of GT 0.00182 0.00179 0.00168 0.00195 0.00156 0.00176 

hedge 0.00181 0.00178 0.00172 0.00195 0.00155 0.00176 

dividend 0.00180 0.00181 0.00167 0.00195 0.00154 0.00175 

earnings 0.00182 0.00179 0.00167 0.00194 0.00156 0.00176 

inflation 0.00182 0.00183 0.00169 0.00195 0.00156 0.00177 

markets 0.00184 0.00177 0.00165 0.00195 0.00157 0.00176 

bonds 0.00180 0.00179 0.00169 0.00195 0.00155 0.00176 

debt 0.00182 0.00179 0.00174 0.00194 0.00157 0.00177 

gains 0.00183 0.00180 0.00165 0.00196 0.00157 0.00176 

investment 0.00181 0.00179 0.00169 0.00195 0.00156 0.00176 
Source: Own work. 
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Table 13: HAR-ln(RV) – Moving window - MAD 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - MW 0.00174 0.00175 0.00160 0.00189 0.00149 0.00169 

Average of GT 0.00174 0.00174 0.00159 0.00188 0.00149 0.00169 

hedge 0.00174 0.00173 0.00160 0.00187 0.00149 0.00168 

dividend 0.00173 0.00175 0.00159 0.00188 0.00149 0.00169 

earnings 0.00174 0.00174 0.00160 0.00189 0.00150 0.00169 

inflation 0.00173 0.00175 0.00158 0.00187 0.00148 0.00168 

markets 0.00172 0.00173 0.00158 0.00188 0.00149 0.00168 

bonds 0.00174 0.00175 0.00159 0.00187 0.00147 0.00169 

debt 0.00173 0.00174 0.00157 0.00187 0.00149 0.00168 

gains 0.00174 0.00175 0.00160 0.00189 0.00149 0.00169 

investment 0.00173 0.00174 0.00160 0.00189 0.00147 0.00169 
Source: Own work. 

 
 

Table 14: HAR-ln(RV) – Expanding window - MAD 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - EW 0.00180 0.00179 0.00162 0.00193 0.00152 0.00173 

Average of GT 0.00179 0.00178 0.00163 0.00193 0.00152 0.00173 

hedge 0.00179 0.00178 0.00165 0.00193 0.00151 0.00173 

dividend 0.00178 0.00179 0.00162 0.00193 0.00151 0.00173 

earnings 0.00180 0.00178 0.00162 0.00193 0.00152 0.00173 

inflation 0.00180 0.00178 0.00164 0.00193 0.00151 0.00173 

markets 0.00179 0.00177 0.00161 0.00193 0.00152 0.00173 

bonds 0.00179 0.00178 0.00162 0.00193 0.00151 0.00173 

debt 0.00180 0.00178 0.00163 0.00193 0.00152 0.00173 

gains 0.00180 0.00179 0.00162 0.00193 0.00152 0.00173 

investment 0.00179 0.00178 0.00163 0.00193 0.00151 0.00173 
Source: Own work. 
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MAPE 

Table 15: HAR-RV – Moving window - MAPE 

  English German Spanish Finnish  Swedish Average 
HaR-RV 
 - MW 19.56% 18.47% 18.38% 17.21% 18.54% 18.43% 

Average of GT 19.60% 18.39% 18.40% 17.11% 18.48% 18.40% 

hedge 20.22% 18.22% 18.65% 17.00% 18.46% 18.51% 

dividend 19.40% 18.62% 18.61% 17.24% 18.40% 18.46% 

earnings 19.37% 18.41% 18.42% 17.18% 18.54% 18.38% 

inflation 19.50% 18.54% 18.08% 16.97% 18.41% 18.30% 

markets 19.64% 18.27% 17.98% 17.09% 18.59% 18.31% 

bonds 19.59% 18.42% 18.40% 16.96% 18.55% 18.39% 

debt 19.43% 18.41% 18.67% 17.12% 18.61% 18.45% 

gains 19.68% 18.38% 18.39% 17.27% 18.31% 18.40% 

investment 19.58% 18.26% 18.39% 17.18% 18.48% 18.38% 
Source: Own work. 

 
 

Table 16: HAR-RV – Expanding window - MAPE 

  English German Spanish Finnish  Swedish Average 
HaR-RV 
 - EW 19.86% 19.13% 19.47% 17.44% 19.63% 19.10% 

Average of GT 19.77% 18.82% 19.27% 17.44% 19.29% 18.92% 

hedge 19.64% 18.54% 19.51% 17.55% 19.18% 18.88% 

dividend 19.15% 19.15% 19.20% 17.41% 18.64% 18.71% 

earnings 19.77% 18.69% 19.12% 17.37% 19.41% 18.87% 

inflation 19.93% 19.10% 19.57% 17.35% 19.03% 19.00% 

markets 20.41% 18.40% 18.38% 17.45% 19.51% 18.83% 

bonds 19.43% 18.81% 19.47% 17.42% 19.17% 18.86% 

debt 19.85% 18.89% 20.49% 17.36% 19.60% 19.24% 

gains 20.06% 19.10% 18.40% 17.59% 19.69% 18.97% 

investment 19.65% 18.73% 19.34% 17.47% 19.36% 18.91% 
Source: Own work. 
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Table 17: HAR-ln(RV) – Moving window - MAPE 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - MW 0.18066 0.17632 0.16963 0.16361 0.17252 0.17255 

Average of GT 0.17998 0.17548 0.16928 0.16278 0.17182 0.17187 

hedge 0.18248 0.17415 0.17055 0.16167 0.17163 0.17210 

dividend 0.17925 0.17716 0.16906 0.16315 0.17198 0.17212 

earnings 0.17941 0.17576 0.16998 0.16390 0.17283 0.17237 

inflation 0.17946 0.17591 0.16814 0.16201 0.17108 0.17132 

markets 0.17945 0.17396 0.16643 0.16254 0.17307 0.17109 

bonds 0.17964 0.17666 0.16969 0.16180 0.17056 0.17167 

debt 0.17943 0.17525 0.16933 0.16241 0.17263 0.17181 

gains 0.18084 0.17645 0.17023 0.16409 0.17183 0.17269 

investment 0.17989 0.17404 0.17013 0.16347 0.17080 0.17166 
Source: Own work. 

 
 

Table 18: HAR-ln(RV) – Expanding window - MAPE 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - EW 0.18708 0.18151 0.17577 0.16787 0.18036 0.17852 

Average of GT 0.18601 0.18019 0.17625 0.16771 0.17901 0.17783 

hedge 0.18521 0.18040 0.17900 0.16757 0.17742 0.17792 

dividend 0.18269 0.18214 0.17561 0.16768 0.17719 0.17706 

earnings 0.18697 0.18073 0.17606 0.16831 0.18054 0.17852 

inflation 0.18725 0.17972 0.17726 0.16777 0.17703 0.17781 

markets 0.18717 0.17812 0.17215 0.16777 0.18006 0.17705 

bonds 0.18410 0.17990 0.17576 0.16736 0.17823 0.17707 

debt 0.18766 0.18021 0.17946 0.16738 0.18070 0.17908 

gains 0.18752 0.18152 0.17471 0.16760 0.18041 0.17835 

investment 0.18549 0.17899 0.17623 0.16798 0.17947 0.17763 
Source: Own work. 
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MSE 

Table 19: HAR-RV – Moving window - MSE 

  English German Spanish Finnish  Swedish Average 
HaR-RV 
 - MW 8.7E-06 8.0E-06 8.8E-06 8.2E-06 6.6E-06 8.1E-06 

Average of GT 8.6E-06 7.8E-06 8.6E-06 8.2E-06 6.5E-06 7.9E-06 

hedge 8.6E-06 7.5E-06 8.6E-06 8.1E-06 6.6E-06 7.9E-06 

dividend 8.6E-06 7.9E-06 8.8E-06 8.2E-06 6.6E-06 8.0E-06 

earnings 8.6E-06 7.9E-06 8.8E-06 8.2E-06 6.6E-06 8.0E-06 

inflation 8.6E-06 7.6E-06 8.4E-06 8.1E-06 6.3E-06 7.8E-06 

markets 8.4E-06 7.9E-06 8.6E-06 8.2E-06 6.6E-06 7.9E-06 

bonds 8.6E-06 7.9E-06 8.7E-06 8.2E-06 6.5E-06 8.0E-06 

debt 8.5E-06 7.9E-06 8.5E-06 8.1E-06 6.6E-06 7.9E-06 

gains 8.6E-06 7.9E-06 8.7E-06 8.2E-06 6.6E-06 8.0E-06 

investment 8.6E-06 7.9E-06 8.6E-06 8.2E-06 6.6E-06 8.0E-06 
Source: Own work. 

 
 

Table 20: HAR-RV – Expanding window - MSE 

  English German Spanish Finnish  Swedish Average 
HaR-RV 
 - EW 9.6E-06 8.8E-06 9.2E-06 9.0E-06 7.1E-06 8.7E-06 

Average of GT 9.5E-06 8.7E-06 9.1E-06 9.0E-06 7.0E-06 8.7E-06 

hedge 9.4E-06 8.6E-06 9.1E-06 9.0E-06 7.1E-06 8.6E-06 

dividend 9.5E-06 8.7E-06 9.1E-06 8.9E-06 7.1E-06 8.7E-06 

earnings 9.5E-06 8.7E-06 9.1E-06 9.0E-06 7.0E-06 8.7E-06 

inflation 9.5E-06 8.6E-06 9.1E-06 8.9E-06 6.9E-06 8.6E-06 

markets 9.5E-06 8.7E-06 9.0E-06 9.0E-06 7.1E-06 8.7E-06 

bonds 9.5E-06 8.7E-06 9.1E-06 9.0E-06 7.0E-06 8.7E-06 

debt 9.5E-06 8.7E-06 9.1E-06 9.0E-06 7.1E-06 8.7E-06 

gains 9.5E-06 8.7E-06 9.1E-06 9.0E-06 7.1E-06 8.7E-06 

investment 9.5E-06 8.7E-06 9.1E-06 9.0E-06 7.0E-06 8.7E-06 
Source: Own work. 
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Table 21: HAR-ln(RV) – Moving window - MSE 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - MW 9.7E-06 9.0E-06 9.4E-06 8.9E-06 7.2E-06 8.8E-06 

Average of GT 9.6E-06 8.9E-06 9.2E-06 8.8E-06 7.1E-06 8.7E-06 

hedge 9.3E-06 8.8E-06 9.1E-06 8.8E-06 7.2E-06 8.6E-06 

dividend 9.7E-06 8.9E-06 9.4E-06 8.8E-06 7.2E-06 8.8E-06 

earnings 9.6E-06 8.9E-06 9.3E-06 8.9E-06 7.2E-06 8.8E-06 

inflation 9.7E-06 8.7E-06 9.0E-06 8.8E-06 6.7E-06 8.6E-06 

markets 9.5E-06 8.9E-06 9.2E-06 8.8E-06 7.2E-06 8.7E-06 

bonds 9.7E-06 8.9E-06 9.3E-06 8.8E-06 7.0E-06 8.7E-06 

debt 9.6E-06 8.9E-06 9.0E-06 8.7E-06 7.2E-06 8.7E-06 

gains 9.6E-06 8.9E-06 9.4E-06 8.9E-06 7.2E-06 8.8E-06 

investment 9.6E-06 9.1E-06 9.2E-06 8.9E-06 7.1E-06 8.8E-06 
Source: Own work. 

 
 

Table 22: HAR-ln(RV) – Expanding window - MSE 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - EW 1.0E-05 9.3E-06 9.6E-06 9.4E-06 7.4E-06 9.2E-06 

Average of GT 1.0E-05 9.3E-06 9.6E-06 9.4E-06 7.3E-06 9.1E-06 

hedge 1.0E-05 9.2E-06 9.5E-06 9.4E-06 7.4E-06 9.1E-06 

dividend 1.0E-05 9.2E-06 9.6E-06 9.4E-06 7.4E-06 9.2E-06 

earnings 1.0E-05 9.3E-06 9.6E-06 9.4E-06 7.3E-06 9.1E-06 

inflation 1.0E-05 9.2E-06 9.6E-06 9.4E-06 7.1E-06 9.1E-06 

markets 1.0E-05 9.3E-06 9.5E-06 9.4E-06 7.3E-06 9.1E-06 

bonds 1.0E-05 9.3E-06 9.6E-06 9.4E-06 7.3E-06 9.1E-06 

debt 1.0E-05 9.2E-06 9.5E-06 9.4E-06 7.3E-06 9.1E-06 

gains 1.0E-05 9.3E-06 9.6E-06 9.4E-06 7.3E-06 9.1E-06 

investment 1.0E-05 9.3E-06 9.6E-06 9.4E-06 7.2E-06 9.2E-06 
Source: Own work. 
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MZ 

Table 23: HAR-RV – Moving window - MZ 

  English German Spanish Finnish  Swedish Average 
HaR-RV 
 - MW 0.72452 0.73809 0.71830 0.67296 0.75672 0.72212 

Average of GT 0.72760 0.74293 0.72262 0.67612 0.76028 0.72591 

hedge 0.72873 0.75272 0.72231 0.67922 0.75799 0.72820 

dividend 0.72727 0.73972 0.71774 0.67538 0.75906 0.72383 

earnings 0.72670 0.74082 0.71801 0.67393 0.75910 0.72371 

inflation 0.72578 0.74998 0.72865 0.67818 0.77097 0.73071 

markets 0.73092 0.74174 0.72381 0.67592 0.75838 0.72616 

bonds 0.72626 0.74064 0.72011 0.67542 0.76039 0.72456 

debt 0.72843 0.73985 0.72797 0.67804 0.75798 0.72645 

gains 0.72704 0.74006 0.71997 0.67577 0.75880 0.72433 

investment 0.72723 0.74081 0.72506 0.67320 0.75986 0.72523 
Source: Own work. 

 
 

Table 24: HAR-RV – Expanding window - MZ 

  English German Spanish Finnish  Swedish Average 
HaR-RV 
 - EW 0.69609 0.71109 0.70628 0.64390 0.74076 0.69962 

Average of GT 0.69802 0.71382 0.70847 0.64485 0.74232 0.70150 

hedge 0.70156 0.71853 0.70851 0.64411 0.74129 0.70280 

dividend 0.69726 0.71337 0.70650 0.64578 0.74170 0.70092 

earnings 0.69714 0.71312 0.70773 0.64510 0.74233 0.70108 

inflation 0.69725 0.71642 0.70836 0.64536 0.74678 0.70283 

markets 0.69813 0.71388 0.71045 0.64492 0.74135 0.70175 

bonds 0.69803 0.71205 0.70695 0.64443 0.74277 0.70084 

debt 0.69749 0.71258 0.71060 0.64547 0.74104 0.70144 

gains 0.69747 0.71229 0.70860 0.64460 0.74102 0.70080 

investment 0.69789 0.71210 0.70851 0.64389 0.74263 0.70100 
Source: Own work. 
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Table 25: HAR-ln(RV) – Moving window - MZ 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - MW 0.69393 0.70898 0.70345 0.65195 0.73964 0.69959 

Average of GT 0.69632 0.71277 0.70756 0.65508 0.74458 0.70326 

hedge 0.70328 0.71531 0.71041 0.65902 0.74156 0.70592 

dividend 0.69326 0.71193 0.70185 0.65712 0.74166 0.70116 

earnings 0.69574 0.71274 0.70388 0.65058 0.74089 0.70077 

inflation 0.69258 0.72250 0.71497 0.65717 0.75970 0.70938 

markets 0.70010 0.71339 0.70871 0.65542 0.74254 0.70403 

bonds 0.69459 0.71109 0.70590 0.65484 0.74595 0.70248 

debt 0.69580 0.71023 0.71333 0.65868 0.74204 0.70402 

gains 0.69490 0.71006 0.70248 0.65187 0.74168 0.70020 

investment 0.69665 0.70763 0.70646 0.65102 0.74520 0.70139 
Source: Own work. 

 
 

Table 26: HAR-ln(RV) – Expanding window - MZ 

  English German Spanish Finnish  Swedish Average 
HAR-ln(RV) 
 - EW 0.67906 0.69680 0.69338 0.62903 0.73268 0.68619 

Average of GT 0.67962 0.69939 0.69480 0.62953 0.73542 0.68775 

hedge 0.68196 0.69986 0.69668 0.62958 0.73357 0.68833 

dividend 0.67944 0.69816 0.69386 0.62940 0.73310 0.68679 

earnings 0.67964 0.69877 0.69223 0.62945 0.73472 0.68696 

inflation 0.67916 0.70682 0.69616 0.62989 0.74376 0.69116 

markets 0.68275 0.69993 0.69744 0.62950 0.73352 0.68863 

bonds 0.67944 0.69811 0.69311 0.63017 0.73568 0.68730 

debt 0.67756 0.69876 0.69608 0.62990 0.73341 0.68714 

gains 0.67906 0.69669 0.69373 0.62952 0.73438 0.68668 

investment 0.67754 0.69736 0.69395 0.62838 0.73667 0.68678 
Source: Own work. 

 


