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t (1) vs Actual . . . . . . . . . . . . . . . . . 48

Figure 12: Aggregate uncertainty Ū Y
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INTRODUCTION

Electricity markets have been subject to growing attention amid their transformation
process over the last twenty to thirty years. Until the nineties, electricity was produced,
sold and transported mainly by vertically integrated state-owned companies, which were
operating in monopoly markets. Additionally, these companies often had full responsibility
of guaranteeing sufficient supply of electricity to all market participants on the demand
side. However, multiple successful liberalizations of some other vertically integrated
markets like railway and telecommunications led to believe that electricity markets could
also benefit from similar market transformation which then started in the mid-nineties.

This notion of belief was also supported by politics and already known “free market”
ideology with the main arguments focusing on the positive effects of competition, which
would be introduced to the market. This transformed market structure was assumed to
stimulate better allocation of resources, boost technological innovation and improve the
efficiency on the supply side, where all was made possible by technological progress in
transmission and generation of electricity (Weron, 2006).

The European energy market is one of those that experienced a significant transformation,
where all EU members have liberalized their electricity markets with the exception of
Malta and Bulgaria. The main goals of liberalization were lower prices, efficiency, and
market transparency, with a final objective to create an EU-wide integrated single energy
market. In order to achieve market integration, differences between member states had to
be removed. This involved a European level competition between suppliers, common sets
of rules, transparent and aligned prices with common environmental objectives.

To support that notion, the EU adopted multiple legislation packages. Their aim was to
support the liberalization and integration of the members’ markets, opening this sector for
competition. First directive1 concerned with common rules for internal markets was adopted
in 1996 and 1998 for electricity and gas respectively. The second directive2 setting up the
legal framework for the liberalized market came in 2003. Further opening of the markets
and an establishment of the Agency for the Cooperation of Energy Regulators (hereinafter:
ACER) was adopted with the third directive in 2009.3

Liberalization of the electricity market has also created a need for organized markets at the
wholesale level where power exchanges have emerged across Europe to facilitate electricity
trading. Due to specific electricity market characteristics resulting in volatile spot prices,

1Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning
common rules for the internal market in electricity.

2Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common
rules for the internal market in electricity.

3Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common
rules for the internal market in electricity.
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trading has become vital for market participants and electricity companies trying to mitigate
the risk of unexpected price movements. This has translated into a growing demand for
derivative products primarily used for hedging, which has become a standard practice of
managing commodity price risk. Many different instruments have therefore been introduced
to the market through the years ranging from forward and future contracts to options on
delivery or consumption of electrical energy.

In general, the main objective of power exchanges is to ensure a transparent and reliable
wholesale price formation mechanism on the electricity market by matching supply and
demand at a fair price and ensure that the trades done at the exchange are finally delivered
and paid.

Exposure to the market price related risk that is not controlled for, can cause overwhelming
problems with costly consequences for market participants in the electricity industry.
History and experience in financial markets suggest that properly utilized and well
understood financial derivatives prove to be valuable for controlling the risks through
well-structured hedging strategies (Deng & Oren, 2006). In order to be able to efficiently
and appropriately utilize these hedging strategies, market participants are faced with the
valuation of financial derivatives. One of the key parameters for derivatives valuation is
also volatility, which measures the degree of variation of a price from its mean. Two main
types of volatility are (actual) historical, focusing on past evolutions of the price, and
implied, which is more forward-looking and derived from an option price. A wide range of
research has also been devoted to estimating, modelling and forecasting the volatility of
financial returns.

The main goal of this thesis is to construct estimates of uncertainty for electricity and
energy commodity futures market by using data-rich environment to encompass multiple
possible sources of uncertainty. For this, I adopt the approach of Jurado, Ludvigson, and
Ng (2015) and their econometric formalization of uncertainty. Individual uncertainty
forecasts are estimated for daily electricity and energy prices defined as continuous
first-nearby futures prices with monthly (quarterly/yearly) delivery. A measure or index of
electricity market uncertainty is then constructed by aggregating individual uncertainties. I
also compare the aggregated uncertainty estimates with aggregated historical volatilities
and with conditional volatilities estimated using a GARCH (p,q) model.

Moreover, as I try to construct a comprehensive measure of electricity market uncertainty I
hypothesize that these uncertainty estimates significantly differ from a conditional
volatility estimates obtained by employing a GARCH model. I also analyze the
out-of-sample predictive accuracy of the two approaches where I argue that by considering
a wide array of exogenous predictors should result in better multi-period ahead predictions
of uncertainty for electricity and commodity prices. Furthermore, I hypothesize that
predictors’ dynamics significantly contributes to the uncertainty estimates.
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The thesis is structured as follows. First, unique electricity market characteristics are
described with their relation to volatility and uncertainty. Next, a short review of existing
empirical literature on volatility modelling is presented. The third section depicts the
econometric framework used in this analysis. The data used for the analysis is described in
section four which is followed by a presentation of key results and concluding remarks.

1 ELECTRICITY MARKET CHARACTERISTICS

In order to provide a better understanding of price movements in electricity markets, the
market structure and the price-setting process of the wholesale market will be first briefly
described. This process includes the bidding mechanism, different market types and the
time dimension of the market design.

Electricity can be traded on different types of wholesale markets (KU Leuven Energy
Institute, 2015):

• In a power exchange or multilateral trading platform, market participants submit
generation and demand bids. The market is cleared once per predefined time period and
a single market price is determined.1

• In bilateral over-the-counter (hereinafter: OTC) trading, a generator and consumer agree
on a trade contract by directly interacting with each other. OTC trading can take the
market price published by the power exchange as a reference price.

• In organized OTC trading, market participants submit generation and demand bids to a
market platform which is cleared continuously; one market player can bilaterally accept
the bid of another market player, resulting in different prices for each trade.

1.1 The time dimension of the electricity market design

Electricity as a tradable good has a special property, which is a physical constraint of storage.
The only exception from this is the conversion of electric energy into hydro potential energy
using hydro pumps. However, those facilities are not common. The main consequence of
this limitation is the fact that generation must equal consumption of electricity (plus grid
losses) at all times. If this is violated, the grid frequency starts deviating from its reference
value. This can result in a collapse of the system. For this reason one of the main roles
of transmission system operators (hereinafter: TSO) is ensuring the balance of supply and
demand, which occurs in a separate market (balancing market).

Different types of electricity markets can be described in sequential order. They start years
before the actual delivery of energy and end after the actual delivery. Figure 1 gives an
overview of the temporal ordering of the different electricity markets. Next, I provide a

1Common “market clearing" refers to the situation when the curve made up of generation bids intersects
with the curve of demand bids, which then determines the quantity to be generated (and consumed) and the
corresponding price.
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Figure 1: Timeline of consecutive electricity markets

Source: KU Leuven Energy Institute (2015).

brief description of the time dimension of electricity market structure presented in Figure 1,
to better depict the role of forward and future markets.

In general, commodities are traded on future/forward markets for delivery in the future.
Strictly speaking, day-ahead markets, intra-day markets, and reserve markets are
forward/future markets as they deal with electricity and reserves for future use. However,
the term forward/future market is principally used in the context of electricity markets to
denote markets that take place before the day-ahead market (KU Leuven Energy Institute,
2015).

1.1.1 Forward and future market

Forward and future markets start years before delivery and end a day before delivery.
Forwards and futures are contracts to consume or deliver a certain amount of electric
energy. Similarly to financial markets, futures are standardized and can be traded on power
exchanges, whereas non-standardized forwards are mainly traded bilaterally giving more
flexibility to the participants.

Typical market participants mainly use those derivatives for hedging. Producers sell
electrical energy on forward and futures markets in order to lock their prices of future
sales. On the other hand, large electricity consumers or retailers can buy electrical energy
on these markets to secure their consumption at known costs. Since in forward and futures
markets, electrical energy can be traded between countries/market zones, where a market
zone mostly coincides with a member country, market participants also trade with
transmission capacity. This means that market participants first buy the right to use the
transmission capacity before buying or selling electrical energy in another country/market
zone (KU Leuven Energy Institute, 2015).
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1.1.2 Day-ahead market

In the day-ahead market, electricity is traded one day before the actual delivery. The main
importance of the day-ahead market is to ensure the balance of the market zone at the end
of the day. This means that scheduled generation in the market zone must equal forecasted
demand in the market zone and net exports to other zones, where the forecasts of demand
are commonly provided by local TSOs. Electricity can be traded day-ahead bilaterally
(over-the-counter trading) or on the day-ahead power exchange. The final stage of the
day-ahead market is the submission of balanced portfolios by Balance Responsible Parties2

(hereinafter: BRPs) to the TSO, which is called nomination. These nominations then
constitute the planned generation or consumption for every unit of BRP (KU Leuven
Energy Institute, 2015).

1.1.3 Intra-day market

In the intra-day market, electricity is traded on the delivery day and the day before after
12 p.m. up to 30 minutes before delivery (which is an example in Germany). This market
allows the market players to adjust for the shifts in their day-ahead nominations due to
changed weather conditions (wind, precipitation), unexpected power plant outages, etc. in
order to ensure the balance between supply and demand. Any imbalances after the intra-day
market in the BRP’s portfolio are further dealt with in the balancing market (KU Leuven
Energy Institute, 2015).

1.1.4 Balancing market

Individual BRPs can face imbalances, which are net differences in 15-minute blocks
between the BRP’s total supply and total offtake. The TSO is in charge of maintaining the
system balance by activating reserves or regulation. There are three types of
reserves/regulation: Primary regulation is activated first to stabilize the frequency within
the time frame; Secondary regulation is activated in range of seconds up to 15 minutes and
is used to stabilize the imbalance; Tertiary regulation is activated in case of major
imbalances, when the first two are unable to stabilize the system. The regulation can be
positive, which means an increase in production or decrease in off-take, or negative, where
production needs to be decreased or demand boosted. TSO also imposes a tariff to BRPs
with imbalanced portfolios. This imbalance settlement takes place after the actual delivery
(KU Leuven Energy Institute, 2015).

2The final responsibility for maintaining the instantaneous generation-consumption balance lies with a
TSO, i.e., ELES in Slovenia. Before the actual delivery, the balance responsibility is passed on to Balance
Responsible Parties (hereinafter: BRP). A BRP is a private legal entity that takes up the responsibility to
compose a balanced portfolio. The portfolio of a BRP may consist of own generation, own consumption,
and/or electricity traded with other BRPs.
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Figure 2: EEX: Total Derivatives Volumes
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1.2 Electricity markets in Europe

Liberalization of electricity markets resulted in significant growth of trading with electrical
energy where but a few energy exchanges were established across Europe. The main markets
or exchanges are Nordpool, the Intercontinental Exchange (hereinafter: ICE), Amsterdam
Power Exchange (hereinafter: APX), European Power Exchange (hereinafter: EPEX) and
European Energy Exchange (hereinafter: EEX). While EPEX provides a multilateral trading
platform on spot market (day-ahead, intraday), derivative contracts as futures and options
are traded on EEX.

Mostly traded contracts on EEX are futures. They are offered for different periods of
delivery, such as monthly, quarterly, yearly and delivery for a calendar year. They contain
the financial balancing of payments, which would occur from the sale or purchase of a
constant volume of electricity during the period of validity, e.g. one month in the case of
monthly futures (Keles, 2014).

Power derivatives trading volume on EEX exchange has been on an upward trend in the
last years reaching record levels in 2016 as presented in Figures 2 and 3. In their annual
report for the year 2016 EEX states that this was mainly due to temporarily very high rates
of volatility combined with a growing market share.

1.3 Electricity price and uncertainty

I now turn to a brief description of some of the main characteristics of electricity prices with
a short depiction of the main sources of uncertainty. With this, I try to provide some insight
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Figure 3: EEX: Options Volumes
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into how these different sources of uncertainty could translate into the electricity prices in
the future markets.

1.3.1 Electricity price characteristics

Electricity wholesale prices have become very volatile since the establishment of trading
on electricity exchanges. This especially holds for spot market prices, where electricity
is traded with hourly or block products. Hourly trade leads to large variations between
different hours of the day since each hour of electricity is a separate and different product
with the main driver of the price being the actual consumption or system load.3 Another
reason for hourly variability of prices is the non-storability constraint. Moreover, the prices
result from the highest marginal costs of production units (merit order), which is driven by
the supply and demand situation (Keles, 2014).

It is not obvious if hourly price variation on the spot market directly translates to the future
market. However, it gives a good indication about the main drivers behind it that do. As
Weron (2006) describes it, load characteristics are directly displayed in electricity prices on
the spot market. That means that prices reach their peaks when the load is the largest (high
prices in the morning or in the evening, and low prices at night).4 Analogously, electricity
prices display weakly pattern, caused by lower demand on weekends, and annual
seasonality, similarly caused by shifts in demand between different seasons.

3An end-use device or customer that receives power from the electric system (NERC Glossary).
4As a consequence of hourly seasonality, the most common hour blocks traded are baseload and peak.
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1.3.2 Commodity prices

According to the Eurostat, almost half (48.7 %) of the net electricity generated in the EU-28
in 2016 came from fossil fuels (such as natural gas, coal, and oil), which is shown in Figure
4. Consequently, their uncertain price movements translate into uncertainty on electricity
markets. It was shown by Bencivenga, Sargenti and D’Ecclesia (2010) that gas, oil, and
electricity markets are integrated. Similarly, Frydenberg, Onochie, Westgaard, Midtsund
and Ueland (2014) have found cointegration between UK electricity prices, Coal and Gas,
and between Nordic electricity prices and Coal. They have also analyzed the stationarity of
spreads between German electricity prices, Gas, Oil, and Coal prices.

Figure 4: Net electricity generation, EU-28, 2016

Combustible 
fuels

48.7 %

Nuclear
25.7 %

Hydro 
12.1 %

Wind
9.7 %

Solar
3.5 %

Geothermal
0.2 %

Other
0.2 %

(% of total, based on GWh)

Source: Eurostat (2018).

As was noted by Frydenberg, Onochie, Westgaard, Midtsund and Ueland (2014), the
relationship between fossil fuels and electricity prices is also market/country dependent.
The main reason for that is country specific generation mix. For example, 46.5 % of net
electricity generation in Germany came from hard coal and lignite in 2016, indicating a
strong relationship with the coal market. On the other hand, almost 40 % of electrical
energy is produced from gas-fuelled power plants in Italy which links electricity prices to
the gas market.

Another important source of uncertainty is price dynamics of EU Emission Allowances
(hereinafter: EUA) or carbon credits used in the European Union Emissions Trading
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Scheme5 (hereinafter: EU ETS). They present an influential part of generation costs,
especially in fossil fuel concentrated markets, like Germany. However, determination or
estimation of EUA price uncertainty is very challenging, since prices are not only market
driven, but also strongly dependant on political and regulatory environments.

1.3.3 Uncertain power generation

The supply side of the electricity market has become more volatile due to the expansion of
electricity generation from renewable energy sources (hereinafter: RES). One of the main
types of RES are wind power, photovoltaics (hereinafter: PV) or solar, and hydropower.
Fluctuations of energy generation from RES complicate the dispatch of conventional power
plants delivering the residual load, which is the difference between system load and fed-in
RES electricity, as was already noted by Schill (2014). The volatility of generation mix
required for the residual load is hence increasing due to volatile feed-in from RES
resources. This, together with non-storability constraint, results in uncertain electricity
prices as described in paragraph 1.3.1.

1.3.4 Other sources of uncertainty

Power plants’ availability is another source of uncertainty on the supply side of the
electricity market. It is true, that planned revisions and scheduled maintenance periods
should not be seen as an uncertain reduction of power plant availability. However, there is a
significant amount of unpredictable outages causing a deficit on the supply side and
contributing to the uncertainty. Power plants most commonly affected by the latter are the
ones powered by fossil fuels like coal, lignite and oil (Keles, 2014).

Power plant outages can be regarded as a short-term source of uncertainty, which mainly
affects the supply of energy and spot market trading. On the other hand, there are also long-
term uncertainties, which in general have an impact on the structural development of the
sector. Those are mainly technological developments, political and regulatory changes, and
the long-term demand outlook (Keles, 2014).

2 RELATED EMPIRICAL LITERATURE

With liberalization and deregulation of electricity markets, there has been an exponential
growth for the need of models, that could give an efficient insight into the new patterns
that have emerged with electricity derivatives market. The main goal was to improve the
decision making for all market participants (Fanelli, Maddalena & Musti, 2016). In this
section I provide a brief overview of related literature, where I try to focus on the work
applicable to derivatives markets and volatility modelling.

5Operators of power generating installations are required to surrender enough allowances to cover all its
CO2 emissions or heavy fines are imposed. The EUA Futures contracts are available on different exchanges
like ICE and EEX.
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As it has been noted by Bauwens, Hafner and Pierret (2013), the main focus of research
on electricity markets has been analyzing and modelling the spot price behaviour. Weron
(2014) has provided a comprehensive overview of the empirical literature on electricity price
forecasting with the focus on spot market.

Despite the growing popularity of electricity price forecasting in the research community,
there is only small number of books on this topic, indicating that this research area is not
yet mature. The three books that appear to be addressing the question of electricity price
forecasting are (Weron, 2014):

• Shahidehpour et al. (2002, Chapter 3, pp. 57–113) discussing the electricity price
forecasting and shedding some light on neural networks.

• Weron (2006, Chapter 4, pp. 101–155) gives an overview of modelling approaches with
focus on practical application of different statistical methods such as ARMA ann
GARCH-type models and turns to stochastic models for derivatives pricing.

• Zareipour (2008, Chapters 3–4) reviews linear time series models (ARIMA, ARMAX)
and nonlinear models (regression splines, neural networks).

Weron (2014) also provides a thorough review of survey articles. He starts in early 2000s,
when Bunn (2000) presented his main conclusion of mutual connection between load and
price forecasting. From that time, a variety of methods and ideas have been tested for
electricity price forecasting. They range from equilibrium (multi-agent) models such as
Nash-Cournot framework used for strategic bidding behaviour in electricity markets
(Ventosa, Baıllo, Ramos & Rivier, 2005), to time series models like ARIMA or seasonal
ARIMA (García-Martos & Conejo, 2001), and AI methods that were reviewed by Hong
(2014) with their applicability for new smart grid markets. There have also been many
classifications of approaches provided by the same group of researches. As a brief
overview I present the classification of Werion (2014) with five groups of models:

• Multi-agent (multi-agent simulation, equilibrium, game theoretic) models, which
simulate the operation of a system of heterogeneous agents (generating units,
companies) interacting with each other, and build the price process by matching the
demand and supply in the market.

• Fundamental (structural) methods, which describe the price dynamics by modelling the
impacts of important physical and economic factors on the price of electricity.

• Reduced-form (quantitative, stochastic) models, which characterize the statistical
properties of electricity prices over time, with the ultimate objective of derivatives
evaluation and risk management.

• Statistical (econometric, technical analysis) approaches, which are either direct
applications of the statistical techniques of load forecasting or power market
implementations of econometric models.
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• Computational intelligence (artificial intelligence-based, non-parametric, non-linear
statistical) techniques, which combine elements of learning, evolution and fuzziness to
create approaches that are capable of adapting to complex dynamic systems, and may be
regarded as “intelligent” in this sense.

As presented, relatively large array of different modelling approaches have been developed
for spot market which Weron (2014) classified into five groups. However, when it comes
to derivatives market and its pricing, the most widely applied approaches are reduced form
and statistical - econometric.

Reduced form models or financial mathematical models are dominating the derivatives
valuation field (Möst & Keles, 2010). Majority of pricing models are expressed as one or
two factor models focused on stochastic behaviour of underlying commodity price with
derivation of future price dynamics by using arbitrage price theory (Biagini, Bregman &
Meyer-Brandis, 2015; Carmona, Coulon & Schwarz, 2013; Mahringer & Prokopczuk,
2015). Some typical types of processes of these factors are mean-reversion (Brownian
Motion), regime switching (Markov models) or jump-diffusion (The Poisson process).
Additionaly, Biagini, Bergman and Meyer-Brandis (2015) have replaced Brownian Motion
with more general Lévy process, also taking into account the occurrence of spikes. The
latter has allowed them to employ well established and known techniques from interest rate
term structure modelling. A new modelling framework has also been proposed by
Barndorff-Nielsen, Benth and Veraart (2014), who showed that the concept of stochastic
tempo-spatial or ambit fields can be used to develop a general framework for electricity
futures. They also show that ambit fields easily incorporate leptokurtic behaviour in price
increments, stochastic volatility and leverage effects, and the observed Samuelson effect in
the volatility.

These models are mainly used for short term forecasts of spot and futures prices and for
financial derivatives pricing (Islyaev & Date, 2015). Some part of the research community
has been using these type of models focusing on seasonality in volatility (Fanelli, Maddalena
& Musti, 2016; Arismendi, Back, Prokopczuk, Paschke & Rudolf, 2016) as it is one of
the main parameters in derivatives valuation. Additionally, due to particular specification
of electricity market (non-storability), it has been shown that including electricity demand
and capacity forecasts can be beneficial in electricity derivatives pricing, thus confirming
the importance of forward-looking information in electricity markets (Füss, Mahringer &
Prokopczuk, 2015).

In contrast, econometric time-series models relate electricity prices to the impact of
explanatory factors as weather, other commodities, etc. This approach is often applied to
electricity demand forecasting. These models are also similar to financial models, as they
apply statistical methods to historical time series. However, their focus is on the impact of
explanatory variables on electricity price, where stochastic processes are not considered in
the same way as in reduced-form models (Möst & Keles, 2010). As already described,
empirical literature so far has been considering econometric and time-series models mainly
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to model spot prices in relation with supply-demand situation with additional explanatory
factors. However, econometric models have also been considered in derivatives electricity
markets where futures price series or volatility dynamics were analysed.

Panel data methods and cointegration analysis have been applied to analyze cointegration
relationships among electricity and fossil fuel prices (Madaleno, Moutinho & Mota, 2015).
Daily settlement prices of monthly futures contracts were modelled as a function of
time-to-maturity using a linear regression model in order to test for Samuelson effect
(Jaeck & Lautier, 2014). They have also implemented VAR framework with different
maturities of the same futures contracts to test for directional volatility spillovers by
employing the method developed by Diebold & Yilmaz (2012). Price returns and volatility
spillovers between electricity and fuel price markets have been investigated also by
combining MGARCH models with VAR and VARMA models, which show for volatility
short and long-run persistence effects (Wei, 2016). Volatility of electricity futures has also
been analysed by Bauwens, Hafner and Pierret (2013), where they propose a new
multivariate volatility model where long-run and short-run components are separated using
Multiplicative Dynamic Conditional Correlation (hereinafter: mDCC) model and for the
short-run dynamics, the Multivariate GARCH model is adopted.

The intention of this thesis is to contribute to the econometric part of empirical research,
where time series of electricity futures are analysed with respect to their past evolutions and
a wide array of exogenous factors. The main goal is to construct an econometric estimate
of conditional volatility and electricity market uncertainty. For that, I adopt the approach
of Jurado, Ludvigson and Ng (2015) and their econometric formalization of uncertainty.
The main forecasting model is represented as a Factor-Augmented Vector Autoregression
(hereinafter: FAVAR) with time-varying variances following some latent stochastic process
and modelled with Stochastic Volatility (hereinafter: SV) model. Main volatility estimates
are also compared to widely used GARCH (p,q) conditional volatility forecasts.

3 ECONOMETRIC FRAMEWORK

This thesis provides an adoption of a recently developed measure of uncertainty proposed
by Jurado, Ludvigson and Ng (2015), which allows for a relation to a wide array of
exogenous factors and sources of uncertainty, as described in section 1.3. Moreover, the
main idea is to provide a comprehensive econometric estimate of uncertainty in the
electricity market relaxed of specific theoretical model structures and restrictive one-factor
dependencies. Additionally, the notion of uncertainty here is not concerned with the
variability of particular economic series (price), but whether the market has become more
or less predictable as it is also described by Jurado, Ludvigson and Ng (2015).

Jurado, Ludvigson and Ng (2015) emphasize two features of this definition. First,
uncertainty has to be distinguished from conditional volatility in a series yt , which requires
removing the forecastable component from E[y jt+h|It ]. If this condition is not met,
forecastable variations can be wrongly categorized as “uncertain”. Second, they also
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provide a distinction between market uncertainty and uncertainty in a single series yt . The
former is defined as a measure of common variation in uncertainty across multiple series.

3.1 Uncertainty

The h-period ahead individual uncertainty in variable y jt ∈ Yt = (y1t , ...,y jt)
′ denoted by

U y
jt(h) is defined as the conditional volatility of purely unforcestable component of the

future value of the series. Specifically,

U y
jt(h)≡

√
E
[
(y jt+h−E[y jt+h|It ])2|It

]
, (1)

where E[·|It ] is the expectation formed with respect to information It available at time t.
Conditional expectations about the squared errors in y jt+h forecasts are hence directly
translated into uncertainty, where higher expected squared errors mean higher uncertainty.
By aggregating individual uncertainties at each t, an index of market uncertainty is
constructed. This is done using the following formula:

U y
t (h)≡ plimNy→∞

Ny

∑
j=1

w jU
y
jt(h)≡ Ew

[
U y

jt(h)
]
, (2)

where w j are aggregation weights.

The main objective of this thesis is therefore to obtain the estimates of (1) and (2) for the
German electricity market. This is done in three key steps. In the first step, an estimate of
the E[y jt+h|It ] is required. Since I have a large set of predictors {Xit}, i = 1,2, ...,N with
N equal to 312, I employ the diffusion index forecast to approximate E[y jt+h|It ], which is
ideal for data-rich environments (Stock & Watson, 1998, 2002b; Jurado, Ludvigson & Ng,
2015). Next, the h - step forecast error is defined as V y

jt+h ≡ y jt+h−E[y jt+h|It ], where an
estimate of conditional volatility of this error is required, namely E[(V y

jt+h)
2|It ]. For this,

a parametric stochastic volatility model is specified for one-step prediction errors in both,
dependent variables y jt and factors. The latter are assumed to follow an AR (p) process.
These volatility estimates are then used to recursively compute the values of E[(V y

jt+h)
2|It ]

for h > 1. As was shown by Jurado, Ludvigson and Ng (2015), an important property
of forecasts for h > 1 is that time-varying volatility in the errors of the predictor set also
contributes to the uncertainty in y jt+h. Finally, an estimate of market uncertainty U y

t (h)
is constructed from individual uncertainties U y

jt(h), where in the base case, this is done by
using a simple equally-weighted average. I now turn to a more detailed description of the
methodology.

3.2 Forecast errors

An important first step in the analysis is to obtain the basis for my (individual) uncertainty
measure. For this, I need to substitute the conditional expectations in (1) with a forecast
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from which forecast errors are constructed. An important assumption here is that the model
forecast errors represent only the unforecastable component, hence a true forecast error. In
order to achieve this, the model has to take into account multiple sources of variability and
uncertainty. Moreover, it was noted by Jurado, Ludvigson and Ng (2015) that an omitted
information bias may occur if relevant information is not used in forming forecasts. This
could lead to spurious estimates of uncertainty and its dynamics, hence a large array of
predictors was constructed and used.

Stock and Watson (2002b) have shown that forecasting with a large number of predictors
which are summarized with a small number of indexes outperform univariate
autoregressions, small vector autoregressions, and leading indicator models. The diffusion
index forecasting introduced by Stock and Watson (1998) is hence employed in this
exercise where in the first step a relatively small number of factors is estimated from a large
set of predictors.

3.2.1 Approximate factor model

Let Xt = (X1t , ...,XNt)
′ denote the full set of predictors used in this analysis where Xt has

been transformed to ensure stationarity. Jurado, Ludvigson and Ng (2015) assume that Xit

has a factor structure represented as

Xit = Λ
F ′
i Ft + eX

it , (3)

for i = 1, ...,N, where eX
it is a vector of idiosyncratic errors, Ft is an rF ×1 vector of latent

common factors and ΛF ′
i is a corresponding rF × 1 vector of latent factor loadings. An

important assumption for this analysis is the allowance of some cross-sectional correlation
in idiosyncratic errors et , which sets up the model to have an Approximate Factor
Structure.

The approximate factor structure in the sense of Chamberlain and Rotshild (1982) requires
the largest egienvalue of the N ×N covariance matrix E(ete′t) to be bounded. Common
factors are estimated by a method of Asymptotic Principal Components as presented by Bai
and Ng (2002). This allows for estimation of min{T,N} number of factors, which is larger
than permitted by state-space models. Estimates of ΛF

i and Ft are obtained by solving the
optimization problem

min
Λ,F

(NT )−1
N

∑
i=1

T

∑
t=1

(Xit−Λ
F ′
i Ft)

2 (4)

subject to normalization of ΛF ′ΛF/N = I, where Λ̂F is constructed as
√

N multiplied with
eigenvectors corresponding to the rF largest eigenvalues of the N ×N matrix X ′X . The
normalization that Λ̂F ′Λ̂F/N = I implies F̂ = XΛ̂F/N. The number of common factors
considered rF and hence the dimensions of F̂ and Λ̂F are determined by information criteria
proposed by Bai and Ng (2002), where the penalty for overfitting is a function of both N
and T .
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3.2.2 Diffusion index forecasts

In the next step, the focus turns to the h-step-ahead forecast. Stock and Watson (2002b)
present two possible approaches for the multi-step forecast. One option is the development
of VAR model, but they note that this entails an estimation of a large number of
parameters, that could erode forecasting performance. Another approach is to recognize
the linear relationship between contemporaneous and lagged values of Ft , yt and the
multi-step forecasts, which is employed in Jurado, Ludvigsona and Ng (2015), as is here.

Let y jt denote the individual series in which I wish to compute uncertainty. The h-step
forecast for h≥ 1 is estimated from factor-augmented forecasting model

y jt+1 = φ
y
j (L)y jt + γ

F
j (L)F̂t + γ

W
j (L)Wt +ν

y
jt+1, (5)

where φ
y
j (L), γF

j (L) and γW
j (L) represent finite-order polynomials in the lag operator L of

orders py, pF and pW respectively. F̂t = (F̂1t , ...F̂rF t) is a vector of common factors from (3).
In addition, I also include Wt , which is an rW ×1 vector consisting of quadratic terms which
are used to capture possible nonlinearities and effects of conditional volatilities. Specifically,
the main components of Wt are the squares of the first component of F̂t and additional
factors in X2

jt collected into the NG× 1 vector Ĝt . Jurado, Ludvigson and Ng (2015) also
stipulate an important feature of this method. Namely, the one-step-ahead forecast errors in
y jt+1 and all predictor series Fk,t+1 and W`,t+1 are permitted to have time-varying volatilities
σ

y
jt+1, σF

kt+1 and σW
`t+1 respectively, which generates time-varying uncertainty in series y jt .

Another representation of (5) would also be in the form of the most general diffusion index
(hereinafter: DI) forecasting function, which has an autoregressive distributed lag
(hereinafter: ARDL) model structure

y jt+1 = α +φ
y
1 y jt + · · ·+φ

y
py

y jt−py +
ki

∑
k=1

(γk
1Ẑk

t + · · ·+ γ
k
qẐk

t−q)+ν
y
jt+1, (6)

where Zt = (F̂t ,Wt)
′. In order to obtain parameter estimates of α , φ y andγk I use two

different approaches.

First, I employ the approach already used by Jurado, Ludvigson and Ng (2015), where the
final predictor set is selected using a conservative threshold rule. Specifically, the idea is
to only include those predictors that have a significant incremental predictive power. I start
with full set of candidate predictors in Zt , which results in ki = rF + rW in (6). In the next
step, a subset of predictors is chosen by first running a regression of y jt+1 on a constant, py

of its own lags (y jt−1, ...,y jt−py) and full set of Zt entering with q number of lags. Next, I
only retain the regressors that have marginal t-statistic greater than 1.96. The model is then
re-estimated with only the final set of predictors. Since one of the main assumptions in the
analysis is the allowance of time-varying volatility in y jt+1 and Zt , the fourth assumption1

1Homoscedasticity and non-autocorrelation: E[ε2
i |X ] = σ2 and E[εiε j|X ] = 0 for i 6= j.
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of the Classical Linear Regression Model is relaxed. For this reason, the Newey-West robust
estimator of the covariance matrix is applied.

Next, I employ the Bayesian Averaging of Classical Estimates (hereinafter: BACE) as
presented by Doppelhofer, Miller and Sala-i-Martin (2004). The main idea of BACE
approach is an operation with a wide range of equations/models per dependent variable,
where each model is assigned a weight reflecting its relative predictive performance.
Weighting the coefficients from all admissible models results in a posterior model. Again, I
start with (6), although, ki = rF + rW does not hold in this case. The array of individual
models is constructed by considering all possible combinations of ki predictors out of
rF + rW set of all possible predictors in Zt , where ki << rF + rW . Next, for each specific
model i with its ki predetermined subset of predictors, an optimal lag structure is chosen for
autoregressive and exogenous terms py and q respectively. This is done by estimating all
possible lag combinations (up to a certain limit set by maximum values of py and q) for
each specific model i, where an optimal model is chosen based on the Akaike Information
Criterion (AIC) and additional model specification tests for multicollinearity, model
stability and unit roots. Finally, the posterior model is obtained first by calculating the
posterior probabilities of each admissible (statistically well-specified) model i using

P(Mi|y) =
P(Mi)T ki/2SSE−T/2

j

∑
I
i=1 P(Mi)T−ki/2SSE−T/2

i

. (7)

Note that in the numerator I use prior probability P(Mi), where I assign an equal prior
to each model. Additional factors appearing in (7) are T ki/2, which can be thought as a
penalty for model complexity and SSE−T/2

i , which represents a model performance factor.
Hence, a posterior probability of model i is a function of its performance with a penalty
for its complexity. Finally, when the model weights are calculated, the posterior means of
parameter estimates can be obtained with

E(Θ |y) =
I

∑
i=1

P(Mi|y)Θ̂i (8)

where Θ = (φ ,γ)′ and Θ̂i = E(Θ |y,Mi) is the Ordinary Least Squares (hereinafter: OLS)
estimate2 for Θ with the predictor set defining model i (Doppelhofer, Miller & Sala-i-Martin
(2004)).

Another non-trivial difference between the two approaches considered is that with BACE I
force a closed-lag (hereinafter: CL) model structure, meaning that lags of all variables on
the RHS of (6) enter without gaps, as opposed to the open-lag (hereinafter: OL) structure
in the first approach. Consequently, this results in a richer model with a greater number of
estimated parameters.

2Θi is the posterior mean conditional on model i.
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3.2.3 Forecast uncertainty

Since the factors have an autoregressive dynamics, I use a more compact representation
of (5). As in Jurado, Ludvigson and Ng (2015), the model can be expressed as a Factor-
Augmented Vector Autoregression (hereinafter: FAVAR). First, I define Zt ≡ (F̂t ,Wt)

′ as
a r = rF + rW vector of rF estimated factors and rW additional predictors and let Zt ≡
(Z′t , ...Z′t−q+1). Next, I also let Yt = (y jt ,y jt−1, ...,y jt−q+1)

′. Finally, the forecast for any
h > 1 can be obtained from the FAVAR system, stacked in the first-order companion form

(
Zt

Yjt

)
(r+1)q×1

=


Φ

Z

qr×qr
0

qr×q

Λ
′
j

q×qr

Φ
Y
j

q×q


(

Zt−1

Yjt−1

)
+

(
V Z

t

V Y
jt

)
(9)

Y jt = Φ
Y
j Y jt−1 +V Y

jt , (10)

with Λ′j and ΦY
j being functions of the coefficients in the lag polynomials in (5) and ΦZ

representing stacked autoregressive coefficients of the predictors in Zt . It is worth noting
that the above specification assumes that the coefficients are time-invariant.

Assuming stationarity, where the largest eigenvalue of ΦY
j is less than one, the h-period

ahead forecast can be expressed as the conditional mean

EtY jt+h = (ΦY
j )hY jt . (11)

The forecast variance at time t is defined as

Ω
Y
jt (h) = Et [(Y jt+h−EY jt+h)(Y jt+h−EY jt+h)

′]. (12)

According to Jurado, Ludvigson and Ng (2015) the source of time variation in squared
forecast error are time-varying variances of shocks in both y jt and the predictors ZT . This
has the following implications.

Note first that for h = 1, the forecast error variance has the form

Ω
Y
jt (1) = Et(V

Y
jt+1V

Y ′
jt+1). (13)

When forecasting for more than one period in the future, meaning for h > 1, the forecast
error variance of Y jt+h evolves according to

Ω
Y
jt (h) = Φ

Y
j Ω

Y
jt (h−1)ΦY ′

j +Et(V
Y
jt+hV

Y ′
jt+h). (14)

As h→ ∞, the forecast converges towards the unconditional mean and the forecast variance
towards the unconditional variance of Y jt , which implies lower variability of ΩY

jt (h) with
higher h (Jurado, Ludvigson & Ng 2015).
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What I am interested in here is the expected uncertainty of a single series y jt+h conditional
on the available information in t, denoted as U Y

jt (h). This is obtained by choosing an
appropriate entry of the forecast error variance ΩY

jt (h) and calculating the square root,

U Y
jt (h) =

√
1′jΩ

Y
jt (h)1 j, (15)

where 1 j is a selection vector. An estimate of market uncertainty is then constructed as a
weighted average of individual uncertainty estimates as

Ny

∑
j=1

w jU
Y
jt (h). (16)

A simple weighting approach is implemented here, where each individual uncertainty
series is given an equal weight of w j = 1/Ny. More complex weighting schemes were also
considered by Jurado, Ludvigson and Ng (2015), but this is not the scope of this thesis, so
only equal weighting is implemented.

3.3 Time-varying volatility

The intention of this section is to show how time-varying volatility in the predictor set Z and
in series y j contributes to the corresponding multi-step ahead forecast of uncertainty. As is
stipulated by Jurado, Ludvigson and Ng (2015), the choice of the stochastic volatility model
is important for one main reason. It allows for the construction of an exogenous shock to
the second moment which is independent of innovations to yt itself. They also note that this
is consistent with the vast majority of the theoretical literature on uncertainty presuming the
existence of an uncertainty shock that independently affects real activity. In contrast, this is
not reflected in GARCH-type models, which instead have a shock that is not independent
from innovations to yt (Jurado, Ludvigson & Ng 2015).

Let us first consider the predictor set Ft (the same holds for Wt). Assuming that elements
of Ft are serially correlated and well described by a first-order univariate autoregressive
process AR (1):

Ft = Φ
FFt−1 +vF

t , (17)

where subscripts are momentarily omitted for simplicity. If νF
t was zero-difference with

constant variance (σF)2, the forecast error variance described in (14) would be ΩF(h) =
ΩF(h− 1) + (ΦF)2(h−1)(σF)2. This means that the variance would increase with h but
remain the same for all t. I on the other hand allow the shocks to F to exhibit time-varying
stochastic volatility as

ν
F
t = σ

F
t ε

F
t , ε

F
t

iid∼ N(0,1), (18)
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with σF
t representing the latent volatility at time t. Following Jurado, Ludvigson and Ng

(2015), the log volatility is assumed to have an autoregressive structure

log(σF
t )2 = α

F +β
F log(σF

t−1)
2 + τ

F
η

F
t , (19)

with ηF
t

iid∼N (0,1). The log volatility log(σF
t )2 is assumed to follow a stationary process

so that |β F |< 1. Moreover, the parameters αF ,β FτF represent the level of the log-variance
αF , the persistence of the log-variance β F and the volatility of the log-variance τF (Kastner,
2016).

Equations (18) and (19) form a stochastic volatility model as presented in Kim, Shephard
and Chib (1998), where the variance is specified to follow some latent stochastic process, in
contrast to a function of the squares of previous observations and past variances which are
represented in ARCH and GARCH type models (Kim, Shephard & Chib, 1998).

Again, an important feature of the stochastic volatility model is also that it allows for a
shock to the second moment that is independent of the first moment (Jurado, Ludvigson &
Ng 2015). The model implies

Et(σ
F
t+h)

2 = exp

[
α

F
h−1

∑
s=0

(β F)s +
(τF)2

2

h−1

∑
s=0

(β F)2(s)+(β F)h log(σF
t )2

]
, (20)

and since I assume εF
t

iid∼N (0,1), it holds that Et(ν
F
t+h)

2 = Et(σ
F
t+h)

2. This allows me the
derivation of the h > 1 forecast error variance for F using the recursion

Ω
F
t (h) = Φ

F
Ω

F
t (h−1)ΦF ′+Et(ν

F
t+hν

F ′
t+h), (21)

where for h = 1 holds that ΩF
t (1) = Et(ν

F
t+1)

2. The h period ahead predictor uncertainty
at time t is then calculated as the square root of the h-step forecast error variance of the
predictor

U F
t (h) =

√
1′FΩF

t (h)1F , (22)

where 1F is again an appropriate selection vector.

To efficiently represent how uncertainty in the predictors effects uncertainty in the individual
variable of interest y j, Jurado, Ludvigson and Ng (2015) assume that the forecasting model
for y j only has a single predictor F̂ . The model is given by

y jt+1 = φ
y
j y jt + γ

F
j F̂t +ν

y
jt+1, (23)

where analogously ν
y
jt+1 = σ

y
jt+1ε

y
jt+1 with ε

y
jt+1

iid∼N (0,1) and

log(σ y
jt+1)

2 = α
y
j +β

y
j log(σ y

jt)
2 + τ

y
j η

y
jt+1, η

y
jt+1

iid∼N (0,1). (24)
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At h = 1, the forecast error V y
jt+1 equals ν

y
jt+1 and is uncorrelated with the one-period ahead

forecast error variance of the predictor F̂t+1, given by V F
t+1 = νF

t+1. In the next step, for
h = 2, the forecast error in the predictor equals V 2

t+1 = ΦFV F
t+1 + νF

t+2. On the other side,
the forecast error for y jt+2 is

V y
jt+2 = ν

y
jt+2 +φ

y
j V

y
jt+1 + γ

F
j V F

t+1, (25)

where the dependence on the one-period-ahead forecast error is obvious. However, V y
jt+1

and V F
t+1 are uncorrelated. When we continue to h = 3, the forecast error evolves to

V y
jt+3 = ν

y
jt+3 +φ

y
j V

y
jt+2 + γ

F
j V F

t+2, (26)

which again depends on forecasting errors made for the preceding period made at time t,
namely V y

jt+2 and V F
t+2. However, unlike in the previous step (h = 2) these two components

are now correlated because they are both dependent on V F
t+1.

Returning to the general case with the full predictor set Zt = (F′,W′)′ and its distributed
lags, the h-step ahead forecasting error variance for Yjt+h decomposes according to

Ω
Y
jt(h) = Φ

Y
j Ω

Y
jt(h−1)ΦY

j +Ω
Z
jt (h−1)+Et(V

Y
jt+hV

Y ′
jt+h)+2Φ

Y
j Ω

Y Z
jt (h−1), (27)

where ΩY Z
jt (h) = Cov(V Y

jt+hV
Z
jt+h). The terms in Et(V Y

jt+hV
Y ′
jt+h) are calculated assuming

that Et(ν
y
jt+h)

2 = Et(σ
y
jt+h)

2, Et(ν
F
t+h)

2 = Et(σ
F
t+h)

2 and Et(ν
W
t+h)

2 = Et(σ
W
t+h)

2.

Breaking down the RHS of (27), it can be observed that the time variation in uncertainty
can be mathematically decomposed into four sources. ΦY

j ΩY
jt(h− 1)ΦY

j represents the
autoregresive component, common predictors are effecting the uncertainty through
ΩZ

jt (h− 1), Et(V Y
jt+hV

Y ′
jt+h) is the source of stochastic volatility with the covariance term

2ΦY
j ΩY Z

jt (h−1) at the end (Jurado, Ludvigson & Ng, 2015).

The uncertainty representation in (27), which is equivalent to (1) for subvector Yt , shows
the importance of the predictor uncertainty through the second term ΩZ

jt (h− 1). Due to
the assumption of stochastic volatility in the innovations of individual factors, it provides
time-variation to the uncertainty. Stochastic volatility in the series y j comes through the
third term with the covariance between the series and the predictor set at the end. Moreover,
computation of the LHS of (27) requires stochastic volatility estimates in the forecast errors
of every series y j and of every factor in the predictor set Z.

3.4 Stochastic volatility model

Kastner (2016) notes that the main feature of the stochastic volatility (hereinafter: SV)
model is that each observation (in this case ν

y
t+1 and νF

t+1) is assumed to have its "own"
contemporaneous variance (σ y

t+1 and σF
t+1 respectively). However, the variance is not

allowed to vary unrestrictedly with time, otherwise, the estimation feasibility would be an
issue. For that reason, the logarithm is assumed to follow an autoregressive process of the
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first order, as in (19) and (24). It is worth noting that this is fundamentally different from
GARCH-type models with deterministic evolution of the time-varying volatility. Now, I
first turn to a brief overview of the SV parametrization methods leading to the Markov
chain Monte Carlo (hereinafter: MCMC) estimation presented by Kastner and
Frühwirth-Schnatter (2014) and applied in this analysis.

The standard SV model presented in Kim, Shephard and Chib (1998) and first introduced
by Taylor (1982) is specified as

yt = βeht/2
εt , t = 1,

ht+1 = µ +φ(ht−µ)+σηηt , (28)

h0 ∼N

(
µ,

σ2

1−φ 2

)
,

where yt is the log return, ht is the log volatility with the initial state h0 drawn from the
stationary distribution. Note that yt and ht in this generalized representation are equivalent
to the one-step forecasting error νt and time-varying volatility σt in my analysis respectively.

Hautsch and Ou (2008) note that the main difficulty of SV framework, compared to the
widely used GARCH-type models, is the availability of the likelihood of the SV model.
Moreover, because the likelihood cannot be computed in closed form, the estimation
becomes all but straightforward. Let θ = (µ,φ ,σ2

η) denote the set of model parameters in
(28). The corresponding likelihood is defined by

p(y|θ) =
∫

h
p(y|h,θ)p(h|θ)dh, (29)

which is an intractable integral with respect to the unknown volatilities h. Harvey, Ruiz and
Shephard (1994) have proposed a Quasi-Maximum Likelihood (hereinafter: QML)
estimation with the state-space representation of the model in (28). This together with the
linear transformation of the model and assumption of normality for the disturbances
allowed them to employ the Kalman filter.3 However, it has been noted that, even though
this QML estimator is consistent and asymptotically normally distributed, it is suboptimal
in finite samples. This is because the logarithm of the disturbance εt in (28) is poorly
approximated by the normal distribution. Consequently, the QML estimator under the
assumption of normality of logεt has poor small sample properties (Kim, Shephard &
Chib, 1998).

Kim, Shephard and Chib (1998) provide the first complete MCMC simulation-based
analysis of the SV model. The idea behind it is to produce variates from a given

3Kalman filter is an algorithm with prediction and correction mechanism. The algorithm predicts a new
state based on a previous estimation and a correction term to the prediction error. Since it rests on the
assumption of normality of the initial state vector and the disturbances of the system, the likelihood function
can be recursively evaluated with the prediction errors generated from the filter (Jalles, 2009).
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multivariate density. This is done with repeated sampling of a Markov chain, whose
invariant distribution is the density of interest.

The goal is a direct analysis of the posterior density π(θ |y) by MCMC method. They also
note that the key issue precluding this is that the likelihood function
f (y|θ) =

∫
f (y|h,θ) f (h|θ) is intractable as already mentioned. However, they present an

approach which overcomes this problem. Instead of analysing π(θ |y) density function,
they focus on the density π(θ ,h|y), where h = (h1, ...,hn) is the vector of latent volatilities.
They show that this density can be sampled without computation of the likelihood function
f (y|θ), by developing an MCMC procedure. The posterior moments and marginal
densities are then estimated by averaging the relevant function of interest over the sampled
variates.

Kim, Shephard and Chib (1998) start with the Gibbs sampler where they employ a
rejection procedure for obtaining the latent volatility samples from f (ht |h−t ,yt ,θ). One of
the main drawbacks of this sampling algorithm is the slow convergence towards stationary
distribution, which can be explained by high correlation in the components of h|y,θ .
Specifically, the sample draws in Gibbs sampler are not independent, which adds to high
inefficiency of the sampler. This has prompted them to improve their MCMC algorithm
with a linear approximation in the form of an offset mixture time series model with normal
densities, which allows for the representation in a conditionally Gaussian state space model
also analyzed by Carter and Kohn (1996) and leads to more efficient sampling. An
important improvement of the sampler was that it allowed joint draws of h and µ .
Additionally, draws of φ and σ2

η were obtained with the Metropolis-Hastings (hereinafter:
MH) sampling algorithm. Kim, Shephard and Chib (1998) also show that it is possible to
correct for the minor approximation error.

Kastner and Frühwirth-Schnatter (2014) note that simulation efficiency in state-space
models can be improved with model reparametrization. The same was observed by Kim,
Shephard and Chib (1998) with their offset mixture representation. In general, the model
presented in (28) is considered a SV model in its centered parametrization (hereinafter: C).
With shifting the level µ of ht from state equation to observation equation by setting
h̄t = ht − µ , one applies a partially non-centered parametrization. As already noted by
Kim, Shephard and Chib (1998), the latter suffers from high inefficiency when sampling µ .
However, the centered parametrization has several disadvantages as well (Kastner &
Frühwirth-Schnatter, 2014).

The fully non-centered paramterization (hereinafter: NC) presented by Kastner and
Frühwirth-Schnatter (2014) is expressed as

yt ∼N

(
0,ωeσ h̃t

)
, (30)

h̃t = φ h̃t−1 +ηt , ηt ∼N (0,1), (31)
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where ω = eµ and h̃t = (ht −µ)/σ . Note that the initial value of h̃0|φ is again drawn from
stationary distribution of the latent process, namely h̃0|φ ∼N (0,1/(1−φ 2)). It has been
noted in the literature, that MCMC sampling and estimation improve when considering the
non-centering or non-centered version of state-space model.

By analyzing the impact of alternative parameterizations, Kastner and Frühwirth-Schnatter
(2014) observe that simulation efficiency depends on the true parameter values. They
conclude that no single “best” parameterization can be identified. For that reason, they
provide a strategy to overcome this deficiency. Moreover, they employ both C and NC by
applying an ancillarity-sufficient interweaving strategy (hereinafter: ASIS) introduced by
Yu and Meng (2011). This results in an efficient and robust sampler that always
outperforms the more efficient parameterization considering all parameters at a small cost
of design and computation.

Regardless of the parametrization method chosen, Kastner and Frühwirth-Schnatter (2014)
note that the likelihood in the SV model still has an intractable form. Hence, Bayesian
inference usually relies on sampling the latent states h and by treating these as known
updating the parameters θ = (µ,φ ,σ). Several sampling methods have been proposed in
the literature (some of which were already mentioned). Kastner and Frühwirth-Schnatter
(2014) adopted the sampling method by Rue (2001). They propose sampling latent
volatilities through Cholesky factorization of the precision matrix within a more general
Gaussian state-space framework by exploiting its band-diagonal structure. This is possible
since the states (conditional distribution of states h given observed variable y) in Gaussian
linear state-space models are recognized as a special case of Gaussian Markov random
fields (McCausland, Miller & Pelletier, 2011). The latent volatilities are sampled “all
without a loop” (hereinafter: AWOL). I now turn to a detailed description of this sampling
algorithm, which is used in this analysis.

3.5 Bayesian inference: Markov Chain Monte Carlo (MCMC)

In this section, the MCMC sampling method presented by Kastner and Frühwirth-Schnatter
(2014), will be described in more detail. The method is employed in this thesis to sample
the latent volatilities of (18) and estimate parameters in (19) and (24).

3.5.1 Prior distributions

To complete the SV model presented in (19) and (24) and be able to perform the Bayesian
inference, a set of prior distributions for parameters4 θ = (µ,β ,τ) needs to be specified.
Following Kim, Shephard and Chib (1998), the components for each parameter in θ are
independent, i.e., p(θ) = p(µ)p(β )p(τ).

4I avoid using superscripts for generalization, since same applies to both SV models for (σF)2 and (σ y)2

and for corresponding sets of parameters θF = (µF ,β F ,τF)′ and θy = (µy,β y,τy)′.
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The level parameter µ ∈ R is assigned with the usual normal prior µ ∼ N (bµ ,Bµ). In
practice, this prior is usually uninformative through setting bµ = 0 and Bµ ≥ 100. It is noted
by Kastner (2016) that this choice is not very influential.

For the persistence parameter β ∈ (−1,1), Kastner amd Frühwirth-Schnatter (2014) follow
Kim, Shephard and Chib (1998) by choosing (β +1)/2∼B(a0,b0), which implies

p(β ) =
1

2B(a0,b0)

(
1+β

2

)a0−1(1+β

2

)b0−1

, (32)

with a0 and b0 being positive hyperparamters and B(x,y) =
∫ 1

0 tx−1(1− t)y−1dt denotes the
beta function. The support for this distribution is the interval (-1,1), which ensures the
stationarity of the autoregressive volatility process.

For the volatility of log-volatility τ ∈ R+, Kastner and Frühwirth-Schnatter choose

τ
2 ∼ Bτ ×χ

2
1 = G

(
1
2
,

1
2Bτ

)
, (33)

which is motivated by Frühwirth-Schnatter and Wagner (2010), so the prior for ±
√

τ2

follows a centered normal distribution, i.e. ±
√

τ2 ∼N (0,Bτ). This specification differs
from usually assumed conjugate Inverse-Gamma prior used in Kim, Shephard and Chib
(1998).

3.5.2 MCMC Methodology

First step in applying the MCMC sampling methodology as Kastner and
Frühwirth-Schnatter (2014) is rewriting my SV model in state-space form with
transformation of observation equation (18) into logarithms as5

ν̃t = σ̃
2
t + logε

2
t , εt ∼N (0,1), (34)

where ν̃t = logνt and σ̃2
t = logσ2

t . Equation (34) now takes the form of non-Gaussian linear
state space model. However, following Kim, Shephard and Chib (1988) and Omori, Chib,
Shephard and Nakajama (2007), the distribution of logε2

t can be approximated by a mixture
of normal distributions, i.e.

logε
2
t |st = i∼N (mi,v2

i ), (35)

P(st = i) = qi, (36)

where st ∈ {1, ...,10} defines the mixture component indicator6 at time t, and N (mi,v2
i )

denotes the density function of a normal distribution with mean mi and variance v2
i of the

5The same logic applies to latent time-varying volatility (σF)2 and (σ y)2 with corresponding parameter
vectors θF and θy.

6Kim, Shephard and Chib (1998) were using K = 7 components whereas Omori, Chib, Shephard and
Nakajama (2007) have shown that a move to K = 10 components leads to a better approximation.

24



st-th mixture component as shown in Omori, Chib, Shephard and Nakajama (2007). This
allows rewriting (34) with corresponding state equation (19) in a form of a linear and
conditionally Gaussian state space model,

ν̃t = mi + σ̃
2
t + zt , (37)

σ̃
2
t = α +βσ̃

2
t−1 + τηt , (38)

where zt ∼N (0,v2
st
), ηt is assumed to be standard normal, α = (1−β )µ and initial value

σ̃2
0 |µ,β ,τ is drawn from stationary distribution N ∼

(
µ,τ2/(1−β 2)

)
. Equations (37) and

(38) represent the C parametrization of the SV model.

Additional NC parametrization of the system above is

ν̃t ∼N (0,ωeτσ̄2
t ) (39)

σ̄
2
t = βσ̄

2
t−1 +ηt , (40)

where ω = eµ , σ̄2
t = (σ̃2

t − µ)/τ and the initial value σ̄2
0 |β is again drawn from stationary

distribution N ∼
(

0,1/(1−β 2)
)

. With this, MCMC AWOL sampling as in Kastner and
Frühwirth-Schnatter (2014) becomes possible by repeating the following three steps:

[Step - 1] Sample latent volatilities AWOL by drawing from
σ̃2
[−0]|ν̃,s,µ,β ,τ

2 or σ̄2
[−0]|ν̃,s,µ,β ,τ

2 respectively, where the initial value is
drawn from σ̃2

0 |σ̃2
1 ,µ,β ,τ

2 or from σ̄2
0 |σ̄2

1 ,β .

[Step - 2] Sample µ,β ,τ2 via Bayesian regression.

• For C, a 2-block sampler is employed where τ2 is drawn from
τ2|σ̃2,µ,β while µ and β are jointly drawn from µ,β |σ̃2,τ2.

• In NC, MH is needed only for updating β by drawing from β |σ̄2, while µ and
τ2 are Gibbs-updated jointly from µ,τ2|ν̃, σ̄2,s.

[Step - 3] Update the indicators s from s|ν̃, σ̃2 in C or s|ν̃, σ̄2,µ,τ2 in NC by employing
inverse transform sampling.

The choice of prior hyperparameters of the parameter vector θ=(α,β ,τ)′ is required before
the first step. These are set as presented by Kastner (2016). Additionally, the indicators
s= (s1, ...,sT )

′ and corresponding constants {qi,mi,v2
i } are set to best approximate the exact

density of logε2
t . Next, the three sampling steps are described in more detail.

3.5.2.1 Step - 1: Sampling the latent volatilities AWOL

Kastner and Frühwirth-Schnatter (2014) note that the joint density for σ̃2 (or σ̄2) conditional
on all other variables is multivariate normal. Since the latent volatility process is assumed
to be well described with an autoregressive process of the first order, this distribution can
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be represented in terms of a tridiagonal precision matrix (inverse covariance matrix) Ω with
corresponding co-vector c, which allows the use AWOL sampling.7 This method presented
in Rue (2001) and McCausland, Miller and Pelletier (2011) is computationally efficient and
convenient as it requires no complex loops in its implementation.

In the case of centered parametrization (C), latent volatilities σ̃2 are drawn from
σ̃2
[−0]|ν̃,s,µ,β ,τ

2 ∼NT (Ω
−1c,Ω−1) where

Ω =



1
v2

s1
+ 1

τ2
−β

τ2 0 · · · 0

−β

τ2
1

v2
s2
+ 1+β 2

τ2
−β

τ2
. . . ...

0 −β

τ2
. . . . . . 0

... . . . . . . 1
v2

sT−1
+ 1+β 2

τ2
−β

τ2

0 · · · 0 −β

τ2
1

v2
sT
+ 1+β 2

τ2


(41)

and

c=



1
v2

s1
(ν̃1−ms1)+

µ(1−β )
τ2

1
v2

s2
(ν̃2−ms2)+

µ(1−β )
τ2

...

1
v2

sT−1
(ν̃T−1−msT−1)+

µ(1−β )
τ2

1
v2

sT
(ν̃T −msT )+

µ(1−β )
τ2


. (42)

For the noncentered parametrization, the latent volatilities are analogously drawn from
σ̄2
[−0]|ν̃,s,µ,β ,τ

2 ∼NT (Ω
−1c,Ω−1) with

Ω =



τ2

v2
s1
+1 −β 0 · · · 0

−β
τ2

v2
s2
+1+β 2 −β

. . . ...

0 −β
. . . . . . 0

... . . . . . . τ2

v2
sT−1

+1+β 2 −β

0 · · · 0 −β
τ2

v2
sT
+1+β 2


(43)

and
7Detailed derivation of both Ω and c is described in Rue (2001) and McCausland, Miller and Pelletier

(2011).

26



c=



τ

v2
s1
(ν̃1−ms1−α)

τ

v2
s2
(ν̃2−ms2−α)

...

τ

v2
sT−1

(ν̃T−1−msT−1−α)

τ

v2
sT
(ν̃T −msT −α)


. (44)

In both cases, C and NC, the precondition is a computation of the Cholesky decomposition
Ω = LL′ using an algorithm that exploits the band-diagonal structure of Ω. It is worth
noting that L also has a tridiagonal structure. To draw the latent volatilities, the algorithm
first draws ε ∼NT (0,IT ). Then La = c is efficiently solved for a which then allows for
computation of h= (L′)−1L−1c+ε using band back-substitution. Finally, the initial values
can be sampled from σ̃2

0 |σ̃2
1 ,µ,β ,τ ∼N (µ +β (σ̃2

1 − µ),τ2) for C and from σ̄2
0 |σ̄2

1 ,β ∼
N (σ̄2

1 β 2,1) in NC.

3.5.2.2 Step - 2 (C): Sampling parameters α , β and τ

Next step is sampling θ = (µ,β ,τ2), for which a conditional AR (1) representation of (19)
is exploited, namely8

σ̃
2
t = α +βσ̃

2
t−1 +ηt , ηt ∼N

(
0,τ2

)
, (45)

where α = (1−β )µ . It is important to note that implied conditional prior p(α|β ) is normal
with mean bµ(1−β ) and variance Bµ(1−β )2.

In the two-block sampler employed here, the first block is sampled from the full
conditional distribution α,β |σ̃2,τ2 ∼ N2(bT ,τ

2BT ) where BT = (X ′X +B−1
0 ) and

bT = BTX
′σ̃2

[−0], with X being a T × 2 design matrix [1, σ̃2
[−T ]] (Kastner &

Frühwirth-Schnatter, 2014). The acceptance probability for MH is given by min(1,R),
where

R =
p(σ̃2

0 |αnew,βnew)p(αnew|βnew)p(βnew)

p(σ̃2
0 |αold,βold)p(αold|βold)p(βold)

× paux(βold,αold)

paux(βnew,αnew)
. (46)

Next, τ2 is drawn from suitable proposal for the full conditional density p(τ2|σ̃2,µ,β ), for
which an auxiliary conjugate prior paux(τ

2) ∝ τ−1, under which Kastner and Frühwirth-
Schnatter (2014) obtain

τ
2|σ̃2,µ,β ∼ G−1(cT ,CT ), (47)

8Analogoulsy, the same applies to the model in (24).
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where cT = T/2 and CT = 1
2

(
∑

T
t=1((σ̃

2
t −µ)−β (σ̃2

t−1−µ))2 +(σ̃2
t −µ)2(1−β 2)

)
. The

acceptance probability is simplified to min(1,R) where

R =
p(τ2

new)

p(τ2
old)
×

paux(τ
2
old)

paux(τ2
new)

= exp

{
τ2

old− τ2
new

2Bτ

}
. (48)

3.5.2.3 Step - 2 (NC): Sampling parameters α , β and τ

For the non-centered case, the state equation is only left with one parameter β , which is
sampled from a flat auxiliary prior paux(β ) ∝ c. This yields in the proposal distribution

β |σ̄2 ∼N

(
∑

T−1
t=0 σ̄2

t σ̄2
t+1

∑
T−1
t=0 (σ̄2

t )
2
,

1

∑
T−1
t=0 (σ̄2

t )
2

)
, (49)

with an acceptance probability of min(1,R), where

R =
p(σ̄2

0 |βnew)p(βnew)

p(σ̄2
0 |βold)p(βold)

. (50)

For sampling µ and τ , Kastner and Frühwirth-Schnatter (2014) rewrite the conditional
observation equation (37) as a regression model with homoscedastic errors

ν̆ =X

[
µ

τ

]
+z, (51)

where z ∼NK(0,IK), and

ν̆ =

 (ν̃1−ms1)/vs1
...

(ν̃T −msT )/vsT

 ,X =

(σ̄1/vs1)
2 1/vs1

...
...

(σ̄T/v2
sT

1/vsT

 . (52)

The joint posterior distribution is bivariate Gaussian with the variance-covariance matrix
BT = (B−1

0 +X ′X)−1 and mean bT =BT (B
−1
0 b0 +X

′ν̆), with b0 = (bµ ,0)′ and B0 =

diag(Bµ ,Bτ) denoting the mean and variance of the joint prior density p(µ,τ), respectively
(Kastner & Frühwirth-Schnatter, 2014).

3.5.2.4 Step - 3: Sampling the indicators s

Following Omori, Chib, Shephard and Nakajama (2007), the next step involves sampling the
indicators s. Kastner and Frühwirth-Schnatter (2014) note that by rearranging the equation
(37) as

ν̃t = mi + σ̃
2
t + z∗t , z∗t ∼N (mst ,v

2
st
) (53)
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the posterior probabilities P(st = i|·) for i ∈ {1, ...,10} and t ∈ {1, ...,T} can be obtained
according to

P(st = i|·) ∝ P(st = i)
1
vi

exp
{
− (z∗t −mi)

2

2v2
i

}
(54)

where P(st = i) denotes the mixture weights of the i-th component.

3.5.2.5 Interweaving C and NC by ASIS

Each parametrization, centered and non-centered, exhibits some sampling inefficiencies
regarding the draws of particular parameters. Moreover, Kastner and Frühwirth-Schnatter
(2014) note that the efficiency of each parametrization depends on the value of β . If β = 0,
the state equation (38) reduces to σ̃2

t ∼N (µ,τ2). Consequently, σ̃2
t becomes informative

for draws µ if the variance τ2 approaches 0, which results in C being inefficient. However,
if β approaches 1, σ̃2

t would be less informative about µ meaning that little information is
lost with σ̃2

t as a latent process. On the other hand, β approaching zero poises no trouble
for NC, since state equation (40) reduces to σ̄2

t ∼N (0,1), which is independent of τ .

Following Yu and Meng (2011), Kastner and Frühwirth-Schnatter (2014) note that the latent
process σ̃2 forms a sufficient statistic for µ and τ , whereas the transformed version σ̄ in NC
forms a ancillary statistic for the same set of parameters. Yu and Meng (2011) observe that
if one parameterization leads to fast convergence, then the other is usualy slow and propose
an ASIS. They also show, that this algorithm in certain situations converges geometrically
when C and/or NC do not, and even outperforms both. Yu and Meng (2011) relate this result
to Basu’s theorem on the independence of complete sufficient and ancillary statistics, and
show that the convergence rate of the interwoven sampler is in general driven by individual
rates of convergence and posterior correlation. This implies the possibility of ancillary-
sufficiency pairs of latent variables reducing sampling inefficiency.

The algorithm itself is simply based on sampling the parameters µ , β and τ twice. In this
analysis the latent volatilities and indicators are drawn once with centered
parameterization, while µ , β and τ are sampled once with each parameterization within
each iteration. Morover, the algorithm starts with choice of appropriate starting values,
then it repeats the following steps:

[Step - 1] Sample latent volatilities σ̃ (C).

[Step - 2] Draw µ,β ,τ (C).

[Step - 2.1] Move to NC with deterministic transformation ¯sigmat =
σ̃t−µ

τ
for all

t.

[Step - 2.2] Redraw µ,β ,τ (NC).

[Step - 2.3] Move back to C by calculationg σ̃t = µ + τ ¯sigmat for all t.

[Step - 3] Sample the indicators s (C).
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It is worth noting that the implementation of individual sampling steps follows the
description in section 3.5.2.

4 DATA

For this empirical analysis, a large dataset with focus on German electricity market was
created, which is comprised of 312 variables and 550 daily observations that range from
February 2015 to April 2017 (see Appendix B). The size of the original dataset was
initially 678 observations of 330 variables, which was later adjusted due to the missing data
issue. First, the data set was truncated, which resulted in significant improvement in terms
of missing observations, where some variables were also omitted due to the same reason.
Next, Piecewise Cubic Hermite Interpolating Polynomial (hereinafter: PCHIP)
interpolation was applied to fill in the rest of the missing observations. Finally, all variables
have been appropriately transformed to ensure stationarity. This was tested by employing
the Augmented Dickey-Fuller (hereinafter: ADF) test. In addition, when forming
forecasting factors, the data was also standardized before performing Principal Component
Analysis (hereinafter: PCA).

Table 1: Variable overview

Vartype Data type # of variables Transformation Adjustment

1 Futures contract 12 ∆ Contract jumps adjustment
2 Electricity Day-ahead price 9 ∆ Day-type weighted standardization
3 Exchange rate 3 ∆

4 Temperature 1 ∆

5 Electricity Consumption 8 ∆

6 Electricity Generation 21 ∆

7 Net Scheduled Commercial exchange of electricity 8 ∆

8 Stock price (DAX) 28 ∆ln
9 49 Industry Portfolios - Returns (FF) 49
10 ETF Price (Energy) 173 ∆ln

Source: Own work.

All 312 variables have been split into 10 groups based on their common characteristics
(e.g. source, type), where the summary of all groups is presented in Table 1. The first
group is selected to represent the derivatives market for electricity with commodities
derivatives relevant for German electricity market, which are API2 Rotterdam Coal,
European Emission Allowances, German NCG Gas and Brent Oil. These variables also
constitute the set of dependent variables for which the conditional volatilities are estimated.
and further aggregated to represent a market level electricity futures market uncertainty
indicator. The dependent variables are also standardized prior model estimation. A
graphical analysis is presented in Appendix C, where standard deviations are calculated for
20 days rolling window and plotted on the right hand side of Figures 16, 17 and 18.
Growing volatilities in 2016 with record highs in the last two quarters of the same year can
be observed for electricity prices. This was also noted by EEX in their 2016 Annual

30



Report, where historically high volatility in the second half of 2016 was explained by
unscheduled production downtime at around one-third of French nuclear power plants.

Table 2 provides some descriptive statistics for the set of dependent variables
(post-adjustment described below), where deviations from normality can be observed.
Specifically, the dependent series, in general, appear to be slightly skewed with significant
excess kurtosis which already sheds some light on possible tail events and their persistence.
Graphical representation of empirical distributions for the dependent variables is reported
in Figure 19 of the Appendix C. I also conducted a Jarqe-Berra (hereinafter: JB) test for
normality, where I reject the null for all series with a significance level of 0,001. It is worth
noting that JB test statistic is asymptotically Chi-squared distributed with two degrees of
freedom. However, an approximation of this distribution tends to be overly sensitive for
small sample sizes and often rejecting the null. That is why I use the MATLAB
implementation of the test, which uses a table of critical values computed using Monte
Carlo simulation for small sample sizes (Deb & Sefton, 1996).

Table 2: Descriptive statistics of dependent variables

Statistic BREM1 AP2M1 NCGM1 EUAY1 BASEY1 BASEQ1 BASEM1 BASEM2 BASEM3 BASEM4 BASEM5

nObs 550 550 550 550 550 550 550 550 550 550 550
Mean -0,043 0,077 -0,005 -0,021 0,000 0,003 0,029 0,005 0,002 0,007 0,002
Std 1,207 0,987 0,165 0,323 0,444 0,373 0,650 0,507 0,478 0,430 0,449
Min -4,59 -4,00 -0,70 -1,34 -2,04 -1,28 -2,89 -2,41 -2,38 -1,65 -2,36
Max 4,42 7,80 0,72 1,03 2,42 1,41 3,44 2,11 2,18 2,56 2,53
Skew 0,164 1,002 0,012 0,017 0,323 0,271 0,286 0,187 0,059 0,492 0,071
Kurt 3,825 11,209 5,412 4,257 7,673 4,773 7,808 7,033 8,429 6,147 7,061

JB 18,0 1636,4 133,4 36,3 509,9 78,8 537,2 375,9 675,8 249,2 378,3
P-Value 0,002 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001

Source: Own work.

The second group of predictors represents the electricity spot market for Germany and all
neighboring and otherwise relevant markets. Temperature is represented in the third group
as a weather indicator related to RES production. Exchange rates are captured in group
four representing possible exchange rate risks. Electricity consumption, generation and
commercial exchange have been represented in groups 5, 6 and 7. The last three groups
represent the financial market with emphasis on German real sector and international
energy sector. First difference transformation (∆) has been applied to all electricity-related
variables, whereas financial variables are transformed using logarithmic returns (∆ln). Due
to some characteristics specific for electricity spot and futures markets, additional
adjustments noted in the last column of Table 1 have been employed and are described
below.

4.1 Contract jumps adjustment

Futures contract prices represent the set of dependent variables used for uncertainty
estimation in this thesis. In order to be able to properly model these prices, continuous
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futures contracts were constructed. That was achieved by concatenating several sequential
futures contracts with the same delivery period. Front-month is the most common
continuous futures price representation, where prices are comprised of the contracts for the
month with the nearest expiration date. However, this is often times not straightforward,
which especially holds for electricity prices.

Figure 5: Contract shift adjustment for DE M+1 (Front Month)
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Source: Own work.

Usually, an adjustment is involved with the concatenation to control for the gaps between
different contracts, which are presented in Figure 5. These gaps have some common
reasons across different markets such as the time premium for example. However, as
already emphasised, seasonality is a very important factor in electricity market. Delivery
for a particular period is effectively a different product with the price driven by its seasonal
load profile. This results in different prices for different months (quarters/years) reflective
of the seasonal demand expectations.

Using the front-month price series as depicted with the orange dotted line in Figure 5, would
result in artificial breaks in price and spikes in historical volatility. Since I transform the
underlying price series into first differences, I want to avoid modeling these spikes and
drops. A simple solution would be to exclude observations where prices jumps from one
contract to another occur. However, this would cause a significant reduction in the number
of observations. For that reason, I adopted a different adjustment. As is presented in Figure
5, the difference between April and May contracts would result in a large drop on 31st of
March. However, this drop is replaced with the difference calculated on the same day, where
as the reference price (t−1), the price for the same (May) contract is used. The same logic is
applied to all products and all delivery periods. This results in a smooth price series without
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breaks between contracts which is especially well depicted with historical volatility on the
right-hand side of Figure 6.

Figure 6: Adjusted price and historical volatility for DE M+1 (Front Month)
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4.2 Day-type standardization

One of the key specific characteristics of electricity spot prices is the seasonal pattern at
the daily, weekly and annual level, which is driven by seasonality in demand with the non-
storability constraint (Weron, 2014; Bessec, Fouquau & Meritet, 2016; Haldrup, Knapik &
Proietti, 2016; Misiorek, Trueck & Weron, 2006). In order to control for daily seasonality,
some researchers have adopted a dummy variable approach in adjusting the time series
models (Haldrup & Nielsen, 2006; Misiorek, Trueck & Weron 2006; deJong & Huisman,
2002). On the other hand, I have controlled for daily seasonality of spot prices by day-type
standardization. With this, I controlled for differences in means and variances of different
days on the spot market. The adjusted daily price at time t for weekday i Pad j

t,i was calculated
using

Pad j
t,i =

Pt,i− P̄i

σi
, (55)

where Pt,i is price at time t on weekday i, P̄i the mean of daily prices for weekday i and σi

the variance of daily prices for weekday i.

5 ESTIMATION AND EMPIRICAL RESULTS

This analysis is centered around the estimation of uncertainty for electricity and
commodity derivatives market. Forecasts are formed for each individual contract, which
are at the end aggregated into an electricity futures market uncertainty indicator. Moreover,
formation of historically accurate volatility estimates is not the main goal of this analysis,
but to provide reliable and accurate multi-period forecasts. The aggregated level of
uncertainty is calculated for German electricity futures market.

For this analysis, a large dataset X was formed with which I try to account for all possible
sources of uncertainty as described in section 1.3. The dataset can be mainly split in two

33



parts. The first part contains 90 variables directly related to German electricity market or
German real sector performance. The second part represents the global financial market
for different industries, where the focus is on the energy and energy related sectors and
commodities in particular. Detailed list of all the variables is presented in Appendix B.

5.1 Estimates of individual volatilities and market uncertainty

Using the full dataset X , I estimate individual uncertainties for the set of dependent
variables y presented in the first 12 rows of Table 12 of Appendix B. This is done by
forming a set of forecast errors representing only the unforecastable component.
Forecasting errors are formed by employing the diffusion index forecasting, where
relatively small set of diffusion indexes or underlying factors Ft is first estimated for the
full datasetX .

5.1.1 Common Factors

The factors used in forming the forecast errors are estimated using a Principal Components
Analysis (hereinafter: PCA). Specifically, the common factors are estimated using an
asymptotic PCA where the number of the factors rF is determined by the information
criteria by Bai and Ng (2002). Using the full X dataset, this criterion suggests rF = 11
factors F̂t . With this dimensionality reduction, the full set of common factors F̂t explains
about 57 percent of variation observed in X , where the first three factors account for 28, 8
and 5 percent respectively. The factor structure and description of F̂t is presented in Table
3.

The first factor loads mainly on the Energy ETF Returns, while the second and third factors
represent price movements on the precious metals markets (e.g. gold, silver). The fourth
factor represents the German real sector with DAX returns, while the fifth factor loads
mainly on electricity spot prices. The next two factors load heavily on electricity
derivatives price. Finally, the last four factors mainly load on the energy and commodity
financial market returns with the exception of tenth factor, which mainly captures the
electricity consumption and generation. Detailed representation of the factor structure for
Ft is provided in Table 18 in the Appendix D.

The common factors F̂t = (F̂1,t , ..., F̂rF ,t) constitute the first subset of potential predictors
used in forecasting models for each y jt . Following Jurado, Ludvigson and Ng (2015), I also
consider an additional subset of predictors Wt . Specifically, Wt consists of two additional
factors. One is calculated as squares of the first common factor of F̂t , while for the second
is the factor with the largest eigenvalue from X2

i,t which were collected into a NG×1 vector
Ĝt . The main purpose of the quadratic terms in Wt is to capture possible nonliniarities or
possible additional effects of conditional volatility on the conditional mean function.

The final set of all possible predictors is at the end summarized with a small number of
indexes F̂t and Wt (and corresponding distributed lags). In the next step, the empirical
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Table 3: F̂t factor structure and description

Factor
Share of

Description
explained variance

1 27,6% Energy, Oil and Gas
2 8,2% Gold
3 4,5% Gold, Silver and other precious metals
4 3,4% German real sector (DAX)
5 2,6% Electricity spot prices
6 2,3% Electricity futures prices
7 2,0% Electricity, coal and gas futures prices
8 1,9% Energy infrastructure
9 1,8% Natural gas market
10 1,6% Electricity consumption and production
11 1,4% Copper, industrial metals, other

Source: Own work.

analysis focuses on the h-step-ahead forecasts to obtain the forecasting error. This is done
by employing the diffusion index forecasting. I now turn to these results.

5.1.2 Diffusion index forecasting

Following Jurado, Ludvigson and Ng (2015), the predictors which were ultimately used in
the forecasting model were chosen based on their incremental predictive power or their
significance. This was done by employing two different methods. The first method is
motivated by Jurado, Ludvigson and Ng (2015), while in the second I employ the Bayesian
averaging of Doppelhofer, Miller and Sala-i-Martin (2004).

5.1.2.1 Open-Lag (OL) models

As Jurado, Ludvigson and Ng (2015), I start with a full set of possible predictors. This
includes all the estimated factors in Xit , the first estimated factor in X2

it and the square of the
first estimated factor of Xit . These constitute my predictor vectors F̂t and Wt = (Ĝ2

1,t , F̂
2
1,t)

respectively.

The ultimate set of predictors using this method is chosen by estimating the model in (6)
for each dependent variable y jt+1. The models are structured by using a constant, five lags
of dependent variable and five distributed lags of predictors in F̂t and Wt . Next a two-step
procedure is employed. The first step involves estimating the model parameters using Least-
squares Regression and a full set of predictors. Since one of the key assumptions is that the
forecast errors exhibit time-varying volatility, the Newey-West estimator of the covariance
matrix is used. In the second step, a threshold rule is employed, where only the predictors
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with t-statistic greater than 1.96 are kept. After excluding all the insignificant predictors,
the models are re-estimated for which an overview of results is presented in Table 4.

Table 4: DI Model estimation results with OL models

Model Predictor (k)

y jt+1 F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8 F̂9 F̂10 F̂11 W1 W2

BREM1 (1) (1) (1) (1) (1)
AP2M1 (2) (1) (1,2) (1) (4) (4)
EUAY1 (1,3) (2) (3) (2) (3)
NCGM1 (2) (3) (2) (1,2) (1,3) (2,4) (2,4)
BASEQ1 (5) (2) (3) (4) (2,4)
BASEY1 (4) (2) (2) (3) (3) (2,4) (2,4)
BASEM1 (2) (3)
BASEM2 (2,4,5) (2,5) (5) (3) (5) (5)
BASEM3 (5) (2) (3) (4) (4) (3,5) (2,5) (2)
BASEM4 (1,5) (2) (1,3) (2,5) (1,5) (1,3,5) (3,5) (4)
BASEM5 (1) (1) (4) (1) (1,5)
BASEM6 (2) (2) (1,5) (1) (1) (1,3) (3)

Notes: The numbers in the brackets represent the vector of lags k ∈ (1, ...,5) with which the predictors listed
in the columns enter (if they enter) particular model summarised in each row.

Source: Own work.

It can be observed that the predictor most frequently selected is the second factor F̂2

describing the gold price movements, followed by the first and eight factors F̂1 and F̂8

mostly correlated with Energy, Oil and Gas related ETF returns and Energy infrastructure
ETF returns respectively. Next, the similarities in terms of lag structure can be observed,
where some of the factors are entering multiple models with the same lags. The second
factor F̂2 representing the movements in gold prices is consistently appearing in the models
with second lag. Same holds for the fourth and eighth factors, which are mainly
represented with the the first and the third lag. It is also important to note that all models
include a constant and five lags of the dependent variable, which were all statistically
significant in each model.

Due to its design, the method described above and used in Jurado, Ludvigson and Ng (2015)
allows for open lag structure which is evident from Table 4. Secondly, in determining the
relevant predictors for each model it solely focuses on their statistical significance, which
alone may not be a good basis for variable selection, especially when used in forecasting
model. This leads me to employ the second model build and variable selection method.

5.1.2.2 Closed-Lag (CL) models

I again start with all possible predictors in F̂t and Wt . Employing the bayesian averaging
methodology, I next construct an array of individual models. This is done by first
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considering all possible combinations of ki regressors for model i out of rF and rW total
predictors. With ki = 2 and rF + rW = 13 this results in 91 distinct models. Next, for each
model i an optimal lag structure is chosen. For this, I consider all possible lag
combinations with up to 5 autoregressive terms and 5 distributed lags and forcing a closed
lag structure. All models are then estimated using an OLS estimator and screened for
statistical validity. Finally only the best model i is chosen based on the Akaike (hereinafter:
AIC) information criterion.

With this method, I obtain 91 statistically well-specified ARDL models for each dependent
variable y jt . Next, posterior probabilities are calculated for the set of final models as shown
in (7). Averaged across the 12 sets of models for each dependent variable, the first 15
models account for almost 88 % cumulative posterior probability, which can be deduced
from Figure (7). Moreover, it is consistent across the set of dependent variables that 10 to
15 models trump the rest in terms of fit statistic and are hence assigned higher posterior
probabilities. Additionally, around 10 models on average share similar and relatively high
level of posterior probability, which results in a rich set of predictors per model.

Figure 7: Ranked average posterior probabilities of well specified ARDL models
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Source: Own work.

Finally, with obtained posterior probabilities, the posterior mean parameters are calculated
as shown in (8). With this, I obtain one posterior model equation for each dependent
variable y jt+1 which has a closed lag structure and is richer in terms of predictors. The
closed lag structure also allows me to describe the models in terms of Long-Run
Multipliers (hereinafter: LRM) with respect to the predictor Zk

t . The LRM for each
predictor Zk

t is calculated using
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∞

∑
l=0

∂E(y jt+l)

∂Zk
t

= (γk
1 + · · ·+ γ

k
q)/(1−

py

∑
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φ
y
py
)≡Θ

k. (56)

Furthermore, summarising the model coefficient estimates on contemporaneous and
distributed lags of a predictor on a multiplier basis enables a comprehensive and concise
interpretation of possibly complex models. Additionally, I also calculate normalised LRMs
or LRMs based on normalized model coefficients. The latter is computed by multiplying
the initial model coefficients by the ratio of the standard deviation of the predictor variable
and the standard deviation of the dependent variable. The resulting coefficients, and hence
the normalized LRMs, are thereby scale-free and comparable in magnitudes across
predictors within each model, which is especially useful if the predictor variables come
with an interpretability constraint. The model results in terms of LRMs are presented in
Table (5).

Table 5: DI Model estimation results with CL models

Model Predictor

y jt+1 F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8 F̂9 F̂10 F̂11 W1 W2

BREM1
-9,76 0,60 -5,53 -1,13 4,06 -0,18 4,12 2,46 -1,38 2,62 0,01 4,78 -6,51

(10,2%) (2,1%) (10,5%) (10,1%) (10,3%) (10,0%) (10,1%) (10,1%) (10,1%) (10,1%) (0,0%) (10,2%) (10,4%)

AP2M1
2,68 2,70 3,13 2,30 -3,55 18,70 3,64 8,24 3,20 0,41 -2,99 -7,57 8,09

(10,0%) (2,1%) (10,3%) (10,3%) (10,4%) (13,0%) (3,3%) (10,4%) (10,1%) (2,3%) (10,3%) (10,6%) (10,7%)

EUAY1
-0,38 3,21 3,29 -3,30 5,20 -0,40 6,36 0,42 4,68 -1,85 11,49 -12,91 15,52

(0,5%) (2,5%) (11,4%) (11,4%) (11,3%) (11,3%) (11,7%) (0,5%) (11,2%) (2,3%) (12,6%) (12,9%) (13,3%)

NCGM1
4,84 3,38 1,69 -3,36 -2,37 5,24 0,62 2,17 -0,66 -0,76 4,77 -3,66 6,88

(12,6%) (2,9%) (12,3%) (12,5%) (2,7%) (12,6%) (2,9%) (0,8%) (12,3%) (2,6%) (12,6%) (12,2%) (12,6%)

BASEQ1
0,00 4,37 6,97 0,77 -1,98 -8,22 5,94 0,94 6,68 -1,96 6,52 -7,82 12,05

(0,0%) (2,5%) (12,0%) (11,6%) (2,3%) (12,0%) (11,8%) (0,5%) (12,0%) (11,7%) (11,9%) (11,8%) (12,3%)

BASEY1
-0,39 3,94 8,38 3,38 -2,04 -3,20 13,19 1,23 4,78 -1,85 1,16 -12,23 15,36

(0,5%) (2,9%) (13,1%) (12,6%) (2,7%) (12,6%) (13,5%) (0,6%) (12,7%) (12,5%) (0,5%) (13,3%) (13,9%)

BASEM1
-0,10 3,25 8,11 2,19 -1,89 4,90 9,84 0,98 2,19 -3,35 2,80 -7,45 11,95

(0,1%) (2,4%) (12,1%) (11,6%) (2,3%) (11,8%) (12,1%) (0,5%) (11,6%) (11,7%) (11,7%) (12,1%) (12,6%)

BASEM2
-0,06 2,78 5,74 1,50 -11,51 7,42 -0,76 1,44 4,40 0,31 6,85 -6,51 11,92

(0,1%) (2,2%) (10,9%) (10,6%) (11,9%) (12,1%) (10,6%) (0,6%) (10,8%) (10,6%) (10,9%) (11,0%) (12,6%)

BASEM3
-4,15 3,66 6,61 0,42 1,41 3,64 3,63 0,96 8,98 0,89 5,44 -6,96 9,00

(10,2%) (2,2%) (9,9%) (10,0%) (10,0%) (10,1%) (9,9%) (0,4%) (10,7%) (10,0%) (10,3%) (10,2%) (10,2%)

BASEM4
-8,04 3,28 6,33 0,79 -2,03 0,93 20,61 0,67 4,72 2,37 2,97 -9,44 13,39

(11,7%) (2,5%) (11,5%) (1,4%) (2,3%) (11,2%) (13,8%) (0,5%) (11,4%) (11,2%) (11,3%) (12,3%) (12,8%)

BASEM5
-9,31 1,95 6,80 6,84 -1,02 16,55 12,16 0,21 2,92 -1,39 0,68 -6,23 8,71

(11,3%) (2,3%) (11,8%) (11,8%) (0,8%) (13,5%) (12,7%) (0,1%) (11,7%) (11,6%) (0,4%) (11,7%) (11,8%)

BASEM6
-3,89 4,70 -0,91 1,31 -0,88 13,10 0,76 10,52 0,94 1,00 0,44 -8,19 3,97

(12,6%) (2,9%) (12,4%) (12,5%) (0,5%) (13,6%) (2,7%) (13,3%) (12,5%) (12,5%) (0,5%) (12,9%) (2,7%)

Avg. Inclusion
(6,7%) (2,5%) (11,5%) (10,5%) (5,6%) (12,0%) (9,6%) (3,2%) (11,4%) (9,1%) (7,8%) (11,8%) (11,3%)

Probability

Notes: Each model is summarised in two rows. The top number represents the normalized LRM multiplied
by a factor 103 for easier representation. The bottom number (in the brackets) represents the probability of
inclusion, which can be thought of as the probability that the predictor enters the final model equation.

Source: Own work.

In line with expectations, the main distinction between the two methodologies is the model
size. By comparing models depicted in Tables 4 and 5, it can be observed that the models in
the second table are richer in structure since all models are taking into account all possible
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predictors in contrast to the models in Table 4. It is also important to note that each model
contains a constant and up to 5 lags of dependent variable.

Next, it can be observed from Table 5 that models are relatively well balanced in terms of
key predictors for each of the dependent variables, meaning that there are no single factors
dominating the models. This observation is based on inclusion probabilities1 for predictors
across the set of models. Averaging across the models, more than 65% of the predictors
have probability of inclusion greater than 10%. However, there are some slight distinctions
between different sets of models. In general, both factors in Wt appear to be one of the
most significant predictors present in all models indicating the relevance of possible
nonlinearities and additional effects of conditional volatility. Additionally, factors F̂6 and
F̂9 representing the electricity futures market and financial returns related to the natural gas
market respectively resemble this notion. However, some differentiation can be observed in
relation to the first factor F̂1 describing Energy, Oil, and Gas ETF Price movements and the
eight factor F̂8 loaded on the energy infrastructure returns. Specifically, these two factors
appear to be more relevant for energy futures prices such as oil, gas, and coal according to
higher inclusion probabilities while in general insignificant for electricity futures prices.
Interestingly, the second factor F̂2 appears to be consistently negligible having a low
probability of inclusion and low normalized LRM. In contrast to being the most frequently
selected factor by using OL models motivated by Jurado, Ludvigson and Ng (2015), gold
price appears to be insignificant once imposing the closed lag structure. To a lesser extent,
similar contrast can be observed for the F̂8 factor.

5.1.3 Individual uncertainty estimates

In this section I present the individual uncertainty estimates Û Y
jt for the 12 dependent

variables listed in Table (12). Using the models presented in the section above allows me to
replace the conditional expectation in (1) by constructing a forecast error which is the basis
for my individual uncertainty measure. An important next step is the estimation of
stochastic and time-varying volatility of the forecast errors and the estimation of the
stochastic volatility parameters2 αF , β F and τF . For the estimation of the SV model,
Markov Chain Monte Carlo (MCMC) method as presented by Kastner and
Frühwirth-Schnatter (2014) is employed. Using the MCMC methodology first requires the
specification of the prior distributions.

For this analysis, the following prior hyperparameters for the parameter vector3 θ=(µ,β ,τ)

are used. For the level parameter µ a rather uninformative prior with (bµ ,Bµ) = (0,100) is
set as proposed by Kastner (2016) for daily log-returns. For the persistence parameter β

the hyperparameters a0 and b0 in (32) must be specified. For these the values proposed by
Kastner (2016) are again used, where a0 = 5 and b0 = 1.5 imply a prior mean of 0.54 and

1Inclusion probability for predictor Zk can also be described as the share of final models used in Bayesian
averaging containing that predictor Zk.

2The same holds for the set of parameters αy, β y and τy.
3The subscripts are ommitted, since the same holds for both sets of parameters.
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a prior standard deviation of 0.31. Finally, for the variance parameter τ shown in (33), the
hyperparameter Bτ = 1 is used. With the estimates of the stochastic volatility and parameter
estimates θ̂, I am able to calculate the h-period ahead expected conditional volatility as
derived in (20) and construct individual uncertainty estimates for each of the dependent
variables.

Expected individual uncertainties for h = 1 are presented in Figures 8 and 9. First, Figure
8 reports the uncertainty estimates for the for commodity front-month prices for the 4 most
relevant commodities in terms of their impact on electricity prices, namely Brent price for
crude oil, API2 (CIF ARA) Rotterdam Coal Futures price, German NCG gas futures price
and CO2 EU Allowances futures price. Electricity futures prices for different products are
reported in Figure 9. The variables present the continuous futures contracts constructed by
combining sequential contracts of products for the same delivery period (next month, next
quarter, etc.).

Figure 8: 1-step ahead individual uncertainty estimates for energy commodities futures
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In both figures, three different series are plotted for each dependent variable. The black
line represents a realized or actual volatility calculated as a squared difference of prices.
The other two lines represent the estimated 1-step ahead individual uncertainty estimates
using two different modelling approaches (OL models and CL models). All three series
are also standardized, which could be thought of as a comparison of relative volatilities.
With the red line I plot the uncertainty estimates based on the forecast errors using the
Jurado, Ludvigson and Ng (2015) motivated methodology with open lag structure and a
hard t-statistic threshold rule for predictors. The blue line on the other hand represents the
uncertainty estimates based on the forecast errors obtained with BACE methodology and
imposing a closed lag model structure.
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Figure 9: 1-step ahead individual uncertainty estimates for electricity futures
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Observing Figures 8 and 9, the two methodologies seem to give similar estiamtes for h = 1,
since the lines appear to be relatively well aligned. Moreover, one can observe that both
methods produce similar predictions of volatility spikes present in the series, apart from a
spike in coal price in Q3 2016, where CL models predicts significantly higher uncertainty
than OL method.

Next, I compare the predicted uncertainties to the realised volatilities. Figure 8 shows that
the a general trend of realised volatility is well described by the uncertainty estimated by the
two modelling methodologies. Looking into the predictions of coal, gas and EUA realised
volatility, it can be observed that the periods of higher volatility are relatively well fitted by
both estimates of uncertainty. Moreover, one can also observe the alignment of the spikes
in individual uncertainty estimates and the spikes in realised volatility, where the latter are
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on average significantly higher. Similar conclusions can be drawn by observing Figure 9.
Additionally, the period of high realized volatility in the second half of 2016 for example
appears to be well described by the uncertainty estimates.

Table 6: In-sample forecasting accuracy

OL modelst CL models

Model MAE RMSE RMSPE MAE RMSE RMSPE

BREM1 0,693 0,923 18,751 0,690 0,923 21,266
AP2M1 0,656 1,081 14,687 0,556 1,115 11,105
NCGM1 0,710 0,988 10,251 0,717 0,997 10,500
EUAY1 0,717 0,984 101,040 0,712 0,966 114,810

BASEY1 0,615 0,973 18,585 0,620 0,972 18,000
BASEQ1 0,680 0,942 10,744 0,683 0,943 10,384
BASEM1 0,581 0,925 20,808 0,568 0,918 19,177
BASEM2 0,600 0,906 39,088 0,583 0,891 40,266
BASEM3 0,602 0,951 23,445 0,594 0,939 22,704
BASEM4 0,639 0,991 18,197 0,633 0,983 20,249
BASEM5 0,655 1,003 71,075 0,663 1,000 72,442
BASEM6 0,685 1,011 177,330 0,660 0,972 137,580

MEAN 0,653 0,973 43,667 0,640 0,968 41,540

Source: Own work.

In order to empirically analyze the in-sample forecast accuracy of the suggested modelling
approaches the following measures of differences between realised and predicted values of
volatility are calculated; Root Mean Squared Error (hereinafter: RMSE), the Mean
Absolute Error (hereinafter: MAE) and the Root Mean Squared Percentage Error
(hereinafter: RMSPE). The results for each model are presented in Table 6. It can be
observed that the difference is not significant. However, the predictive accuracy of the
estimates based on the CL modelling methodology in general outperform the CL based
estimates. Moreover, on average (as reported in the final row) OL models exhibit a better
in-sample fit for h = 1 predictions according to all three measures.

5.2 Electricity futures market uncertainty

In this section I present estimates of electricity futures market uncertainty for German
market. The h period forecast is obtained by employing simple averaging across
corresponding estimates of individual h period uncertainties denoted by

U
Y
t (h) =

1
NY

NY

∑
j=1

Û Y
jt (h). (57)

Estimates of electricity futures market uncertainty for h = 1,5 and 10 are presented in
Figure 10 where the results correspond to CL modelling methodology (with BACE).
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Alongside with the electricity market uncertainty estimates for the three horizons, I also
report the correlation coefficients with squared innovations in electricity price for yearly
product. The coefficients are 0.562, 0.558 and 0.553 for h = 1,5 and 10 respectively. This
indicates decreasing but robust correlation of predictions across the forecasting horizon
where correlation coefficient is slightly decreasing as the forecasting horizon extends from
h = 1 to h = 10. Additionally, I also report the mean and standard deviation of the
estimates for each of the horizons. It can be observed that uncertainty on average increases
with h, while the variability of uncertainty decreases with h. This is because the forecast
trends to the unconditional mean with h approaching infinity.

Figure 10: Aggregate uncertainty Ū Y
t (h) for h = 1,5 and 10
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Source: Own work.

It is evident from Figure 10 that the second half of the year 2016 strikes out as the period
with the highest uncertainty in German electricity market. This results are also in line with
the analysis presented by EEX in their 2016 Annual Report. EEX stated that the main
cause for high volatility and strong price fluctuations was the unscheduled production
downtime of French nuclear power plants. As in 2015 the French Nuclear Safety Authority
(ASN) announced the detection of an anomaly in a nuclear reactor under construction, the
nuclear components came under increased scrutiny. Implications of this were broad based
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and observed across European power markets as the country is traditionally export
oriented. Moreover, the magnitude of investigations that were ordered impacted 22 of the
58 nuclear reactors in the French nuclear fleet (ICIS, 2016). This resulted in price increases
on the power derivatives markets. EEX also notes that causal relationship can be observed
between high volatility and trading activity, since broad ranged price fluctuations in
commodity prices boost the need for adjustments of hedging positions by market
participants.

Following the definition in (1) individual uncertainty presents the volatility of unforecastable
component of the series. However, this volatility can be impacted either by systemic market
uncertainty shocks or by idiosyncratic uncertainty shocks. In order to estimate the relative
impact of systemic market uncertainty in individual uncertainties and consequently in total
uncertainty (summed over individual uncertainties), I compute for each of the 12 estimated
individual uncertainties

R2
jτ(h) =

varτ

(
ϕ̂ jτ(h)Ū

y
t (h)

)
varτ

(
Û y

jt(h)
) , (58)

where ϕ̂ jτ(h) represents the regression coefficient from regressing Û y
jt(h) on Ū y

t (h) (and
a constant). Moreover, R2

jτ(h) represents the coefficient of determination explaining the
share of variation in Û y

jt(h) explained by market uncertainty Ū y
t (h) in subsample τ . This

analysis is carried out for all h= 1, ...,20 and for 3 different samples or subsamples. First the
coefficients were estimated on the full sample. Additionally, the full sample was split in half
where, as can be observed from Figure 10, the first half is intended to represent the period
with low market uncertainty while the subsample with second half of observations represents
the period with high market uncertainty. Finally, the larger as the R2

τ(h) ≡ 1
Ny

∑
Ny
j=1 R2

jτ(h),
the higher importance of market uncertainty shocks in explaining the total uncertainty.

Firstly, Table 7 represents the results of individual regressions. It can be observed that in
general market level uncertainty is more important in explaining the individual
uncertainties for electricity futures prices than prices of other energy commodity futures.
This is an expected result, as electricity prices present larger portion in the sample used for
estimation of market uncertainty. Additionally, in Table 7 I confirm the stylised fact about
importance of coal prices for German electricity prices, as the German market uncertainty
plays a relatively important role in coal price uncertainty compared to uncertainties in other
commodity prices.4 The series with highest R2

jτ(h) across all h is BASEY1 which is the
price of electricity for the front year. With an average and relatively constant R2

jτ(h) of 0.96
it appears to be very strongly explained by market uncertainty. On the other hand, the
series with the lowest R2

jτ(h) is BREM1, which is front month price for Brent Crude oil.
With the R2

jτ(h) ranging from 0.06 to 0.09 it appears to be relatively unrelated to German
electricity market uncertainty.

4Note that the causal relationship is likely to be reversed, but this is not analysed here.
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Table 7: R2
jτ(h) from regressions between uncertainties

h BREM1 AP2M1 NCGM1 EUAY1 BASEY1 BASEQ1 BASEM1 BASEM2 BASEM3 BASEM4 BASEM5

1 0,06 0,82 0,59 0,34 0,89 0,96 0,75 0,83 0,84 0,83 0,86
2 0,06 0,82 0,59 0,34 0,90 0,96 0,75 0,84 0,84 0,84 0,86
3 0,07 0,82 0,59 0,34 0,90 0,96 0,76 0,84 0,85 0,84 0,87
4 0,07 0,82 0,59 0,34 0,90 0,96 0,76 0,85 0,85 0,84 0,87
5 0,07 0,83 0,59 0,34 0,90 0,96 0,76 0,85 0,86 0,85 0,87
6 0,07 0,83 0,59 0,35 0,90 0,96 0,76 0,86 0,86 0,85 0,87
7 0,08 0,83 0,59 0,35 0,91 0,96 0,77 0,86 0,86 0,85 0,87
8 0,08 0,83 0,59 0,35 0,91 0,96 0,77 0,87 0,87 0,86 0,87
9 0,08 0,83 0,59 0,35 0,91 0,96 0,77 0,87 0,87 0,86 0,87
10 0,08 0,84 0,58 0,35 0,91 0,96 0,77 0,88 0,87 0,86 0,87
11 0,08 0,84 0,58 0,34 0,91 0,96 0,78 0,88 0,88 0,87 0,87
12 0,08 0,84 0,58 0,34 0,92 0,96 0,78 0,88 0,88 0,87 0,87
13 0,08 0,84 0,58 0,34 0,92 0,96 0,78 0,89 0,88 0,87 0,87
14 0,09 0,84 0,58 0,34 0,92 0,96 0,78 0,89 0,89 0,87 0,87
15 0,09 0,84 0,58 0,34 0,92 0,96 0,78 0,89 0,89 0,88 0,87
16 0,09 0,84 0,57 0,34 0,92 0,96 0,78 0,90 0,89 0,88 0,86
17 0,09 0,84 0,57 0,34 0,93 0,96 0,79 0,90 0,89 0,88 0,86
18 0,09 0,84 0,57 0,34 0,93 0,96 0,79 0,90 0,90 0,88 0,86
19 0,09 0,84 0,57 0,34 0,93 0,96 0,79 0,90 0,90 0,88 0,86
20 0,09 0,85 0,57 0,34 0,93 0,96 0,79 0,90 0,90 0,89 0,86

Notes: R2
jτ(h) values are from regressions of individual uncertainties Û y

jt(h) on constructed market uncertainty
Ū y

t (h) with a constant and for all forecasting horizons h = 1, ...,20.

Source: Own work.

Next, Table 8 presents the results of R2
τ(h) again for all h = 1, ...,20. It can be observed that

market uncertainty Ū y
t (h) on average explains 72 % of variation in total uncertainty

considering full sample. It is also evident that the relative importance of market uncertainty
in individual uncertainties Û y

jt(h) increases with h. Specifically, the average share of
individual uncertainties explained by market uncertainty increases from 70 % for h = 1 to
73 % for h = 20.

Table 8 also shows the R2
τ(h) values for the two subsamples. The full sample was split into

two equally large (T/2) subsamples, where the First Half subsample is intended to represent
the period with lower uncertainty whereas the Second Half subsample represents the period
with higher uncertainty. Specifically, the mean Ū y

t (1) of the second subsample is for 68
% higher then the mean of the first subsample. It is evident from Table 8 that individual
uncertainties are better explained by market uncertainty in periods with higher uncertainty
than in periods with lower uncertainty. Moreover, these results are showing that in periods
of high uncertainty, significantly larger part of total uncertainty in the market is driven by a
systemic market uncertainty shocks rather than idiosyncratic shocks.

5.2.1 Comparison with GARCH conditional volatility

In this section, I present an assessment and further evaluation of the market uncertainty
estimates as formalized in (57). This was carried out by employing a comparison with results
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Table 8: Averages of R2

h R2
FullSample R2

FirstHal f R2
SecondHal f

1 0,70 0,49 0,66
2 0,71 0,49 0,67
3 0,71 0,50 0,67
4 0,71 0,50 0,67
5 0,71 0,50 0,68
6 0,71 0,50 0,68
7 0,72 0,50 0,68
8 0,72 0,50 0,68
9 0,72 0,50 0,69

10 0,72 0,50 0,69
11 0,72 0,50 0,69
12 0,72 0,50 0,69
13 0,72 0,50 0,69
14 0,72 0,50 0,69
15 0,72 0,50 0,69
16 0,72 0,50 0,70
17 0,72 0,50 0,70
18 0,73 0,50 0,70
19 0,73 0,50 0,70
20 0,73 0,50 0,70

Source: Own work.

from a different modelling approach. Specifically, conditional volatilities were estimated
by employing a GARCH (p,q) model for each of the 12 series that constitute the market
uncertainty. This was carried out in two steps for each of the series. In the first step, an AR
(p) model was estimated, where up to 5 AR terms were considered and the optimal value
for p was chosen based on AIC information criterion. Using the optimal lag structure, the
AR model was estimated to obtain the innovations or disturbances which were then used in
the conditional volatility model. GARCH (p,q) was employed in the second step for each
of the obtained innovations. Analogously the lag structure was determined by considering
all possible combinations with p and q ranging up to 4, and the optimal model was again
chosen based on the AIC. The model structures for all 12 series are presented in Table 9. It
can be observed that in general, using only 1 GARCH term was optimal, while ARCH and
AR terms range from 1 to 4 and 5 respectively.

Obtaining the individual conditional volatility estimates by employing the models
described in Table 9 allows me to analogously construct an estimate of market conditional
volatility or uncertainty. Specifically, by doing a simple average of individual conditional
volatility estimates I construct a benchmark or challenger market uncertainty estimate.
This is similarly done for all h = 1, ...,20.
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Table 9: GARCH Model specifications

Model AR GARCH ARCH

BREM1 1 1 1
AP2M1 5 1 1
EUAY1 5 1 4
NCGM1 3 1 2
BASEQ1 1 1 1
BASEY1 1 1 3
BASEM1 1 1 2
BASEM2 2 1 1
BASEM3 1 1 1
BASEM4 1 1 1
BASEM5 1 1 1
BASEM6 2 1 1

Notes: The numbers in each column
represent AR order (number of time lags) p,
The degree of GARCH polynomial P, which
is composed of lagged conditional variances
and the degree of ARCH polynomial Q,
which is composed of lagged squared
innovations respectively.

Source: Own work.

Key results are depicted in Figure 11, where I plot the estimated market uncertainty Û y
jt(h)

for h = 1 coloured blue against the red line, which is the benchmark market conditional
volatility estimate again for h = 1. The latter is constructed as the average of individual
conditional volatilities estimated with GARCH. Additionally, I also plot the actual or
realized market volatility which is constructed as a simple average of the individual
realized volatilities presented in section 5.1.3. Again, all series are standardized for a
relative comparison.

It can be observed in Figure 11 that both estimates relatively similarly describe the realized
innovations as they, in general, follow the same trend. Both estimates similarly follow the
key increases in volatility with the largest one in H2 2016. However, it can be observed, that
the GARCH estimates are more sensitive to spikes in actual innovations, which results in
more volatile estimates of conditional volatility. Moreover, it can be observed in a few short
periods in the first half of the sample for example, that small spikes in actual innovations
result in spikes in GARCH estimates of conditional volatility, while the estimated market
uncertainty remains relatively stable. This sheds some light on the impact of forecastability
of these spikes as by definition the uncertainty estimate of this thesis is founded only on the
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unforecastable component. Similarly, there are a few relatively significant short drops in
GARCH conditional volatility in the period of high uncertainty in the second half of 2016
while the uncertainty estimate Û y

jt(h) remains relatively stable.

In order to empirically evaluate if the market uncertainty estimate Û y
jt(h) differ from

GARCH conditional volatility, the Diebold-Mariano (hereinafter: DM) test of predictive
accuracy was employed. The null hypothesis of the test is that the predictive accuracy does
not differ between the two competing forecasts (Diebold & Mariano, 1995). Harvey,
Leybourne, and Newbold (1997) have later proposed an adjustment to the DM-statistic that
improved small-sample properties. The test with adjusted DM statistic (HLN) was carried
out for all values of h = 1, ...,20, and the results are presented in Table 10. It is evident, that
I can reject the null for h = 1, which means that the one-period ahead forecasts are
significantly different. It can also be observed that these differences decrease with h as the
forecasts tend towards unconditional means. However, this is only evident for h = 18 and
higher. Prior to that, the differences between the accuracies of the two predictions appear to
be statistically significant.

Figure 11: Aggregate uncertainty Ū Y
t (1) vs Actual
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These results show that on average, the uncertainty estimate Û y
jt(h) follows the same trend

as the conditional volatility from GARCH models. However, the former appears to be more
stable across the sample with smaller or no spikes in the low volatility period and with
smaller or avoided drops in the period with higher volatility.

Table 10: Results of Diebold-Mariano test for predictive accuarcy

h HLN p-value

1 -3,685 0,000
2 -3,784 0,000
3 -3,331 0,001
4 -3,026 0,003
5 -3,019 0,003
6 -3,081 0,002
7 -2,606 0,009
8 -2,587 0,010
9 -2,274 0,023

10 -2,538 0,011
11 -2,625 0,009
12 -2,844 0,005
13 -2,967 0,003
14 -2,506 0,012
15 -2,424 0,016
16 -3,044 0,002
17 -2,409 0,016
18 -1,942 0,053
19 -1,829 0,068
20 -1,680 0,094

Source: Own work.

Next, the out-of-sample (hereinafter: OOS) forecasting accuracy of the two predictions was
investigated. For this, I adopted the idea behind the Walk Forward Analysis (hereinafter:
WFA) used in financial trading and trading strategy optimization (Pardo, 2011). The concept
for the WFA is similarly based on using the in-sample and out-of-sample periods. However,
instead of estimating the parameters on T −h observations and using the last h observations
of data for testing, the OOS testing is done across last k observations where k >> h. This
is done by first estimating the model on T − k subsample and forecasts are formed for the
following h observations.5 In the next step, the estimation subsample is extended with the
actual data for these h observations and the model is re-estimated. With the new model
parameters, the predictions are formed for the next h observations and the two sets of OOS
predictions are combined into one longer (2h) OOS testing window. These steps are then
repeated until all k OOS predictions are formed and combined into one OOS testing sample.

5From T − k+1 to T − k+h.
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Figure 12: Aggregate uncertainty Ū Y
t (h) vs Actual
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The OOS forecasting accuracy was tested in this analysis by setting k = 140, which means
that the period after September 16, 2016 was analysed. The test was performed for all h
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from 1 to 20. The results are presented in Figure 12, where I present the OOS testing results
for h = 5, 10, 15 and 20. Again, the red line depicts the conditional volatility predictions
obtained with GARCH models, while the blue line depicts the estimated market uncertainty
Û y

jt(h). Additionally, the black vertical line shows the start of the OOS analysis.

Table 11: Out-of-sample forecasting accuracy

Û y
jt(h) GARCH(p,q) Û y

jt(h)/GARCH(p,q)

h MAE RMSE RMSPE MAE RMSE RMSPE MAE RMSE RMSPE

1 1,495 1,861 35,552 1,514 1,910 33,295 0,988 0,974 1,068
2 1,515 1,878 33,533 1,516 1,914 31,802 1,000 0,981 1,054
3 1,490 1,849 36,878 1,506 1,904 33,762 0,989 0,971 1,092
4 1,488 1,865 36,980 1,492 1,908 35,977 0,997 0,977 1,028
5 1,454 1,830 38,850 1,477 1,893 38,580 0,985 0,967 1,007
6 1,511 1,841 35,536 1,508 1,899 33,168 1,002 0,969 1,071
7 1,489 1,844 35,891 1,517 1,934 36,658 0,982 0,953 0,979
8 1,481 1,839 36,846 1,494 1,873 35,025 0,992 0,981 1,052
9 1,498 1,840 35,212 1,504 1,887 32,612 0,996 0,975 1,080

10 1,415 1,758 27,428 1,444 1,848 27,803 0,980 0,951 0,987
11 1,474 1,861 29,373 1,498 1,919 29,948 0,984 0,970 0,981
12 1,461 1,839 28,040 1,478 1,906 26,950 0,989 0,965 1,040
13 1,485 1,851 30,837 1,503 1,936 29,724 0,988 0,956 1,037
14 1,481 1,843 37,696 1,514 1,912 36,937 0,979 0,964 1,021
15 1,461 1,840 38,143 1,505 1,912 36,219 0,971 0,962 1,053
16 1,494 1,870 36,454 1,527 1,934 33,055 0,979 0,967 1,103
17 1,441 1,787 40,395 1,486 1,886 35,542 0,970 0,947 1,137
18 1,480 1,843 36,275 1,495 1,941 32,119 0,990 0,950 1,129
19 1,472 1,853 24,925 1,507 1,955 25,704 0,976 0,948 0,970
20 1,444 1,798 24,593 1,491 1,930 23,631 0,968 0,932 1,041

Mean 1,476 1,839 33,972 1,499 1,910 32,426 0,985 0,963 1,046

Source: Own work.

First, it can be observed that the results presented in Figure 12 align with the findings from
Table 10. Specifically, the forecasts appear to differ the most at the beginning of the
forecasting horizon, for h = 1. This could be the result of different models being employed
to estimate the forecast errors, which are used for conditional volatility estimation. Next, it
is also evident from Figure 12 that the dynamic of the predictions is different between the
two models, where the predictions of conditional volatility using GARCH methodology
appear to be relatively flat compared to more dynamic predictions of market uncertainty
Û y

jt(h). The predictive accuracy of the two approaches against squared innovations was
additionally compared using the MAE, RMSE and RMPSE measures for which the results
are presented in Table 11. According to MAE and RMSE, estimates of market uncertainty
Û y

jt(h) outperform GARCH (p,q) conditional volatility forecasts. It can also be observed,
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that the actual volatility measured by squared innovations is better described by Û y
jt(h)

compared to GARCH estimates as h increases.

5.2.2 Decomposition

It was shown that the uncertainty estimates presented in this thesis differ from GARCH
conditional volatility estimates. In this section, I further investigate these differences. For
the purpose of analyzing possible reasons, I turn back to the definition of market uncertainty
estimate, where Jurado, Ludvigson and Ng (2015) emphasize the importance of removing
the predictable variation in order to not assign these fluctuations to uncertainty.

Turning back to the DI forecasting model

y jt+1 = α +φ
y
1 y jt + · · ·+φ

y
py

y jt−py +
ki

∑
k=1

(γk
1Ẑk

t + · · ·+ γ
k
qẐk

t−q)+ν
y
jt+1, (59)

with Zt = (F̂t ,Wt)
′ the future values of predictors F and W are unknown. Additionally, each

predictor’s future value is described by an AR (5) process. As it was already explained, the
time-varying volatility in forecast errors of each of the predictors also contributes to h-step
ahead uncertainty for each dependent variable y jt+1 where h > 1.

Figure 13: The role of predictors: 1-step ahead individual uncertainties for energy
commodities futures
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Another possible reason for the differences in addition to the stochastic volatility effect just
described can also stem from the DI forecasting model itself. Moreover, the predictors
directly translate into the level of the forecast. As noted by Jurado, Ludvigson, and Ng
(2015) an important aspect of this approach is exploiting the data-rich environment which
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Figure 14: The role of predictors: 1-step ahead individual uncertainties for electricity
futures
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allows the possibility to control for any forecastable variation in the predictor set, which is
a consequence not erroneously attributed to uncertainty estimates.

In order to investigate the role that this model specification with the full predictor set plays
in my uncertainty estimates, I re-estimate the uncertainty for each of the dependent series.
For this, I assume the following simple and potentially misspecified model

y jt+1 = µ + ν̃ jt+1, (60)
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where ν̃ jt+1 = σ̃ jt+1ε̃ jt+1, which is a simple model with constant conditional mean. Figures
13 and 14 plot the estimates for 1-step uncertainty using this model against my baseline
uncertainty estimates using the full set of predictors for the 12 dependent variables that
constitute the market uncertainty.

Figure 15: Decomposition of Aggregate uncertainty Ū Y
t (1)
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Both figures suggest that there is significant heterogeneity between the uncertainty
estimates across the variables. This suggests that a significant part of the uncertainty is
series-specific. On the other hand, these figures do not suggest a significant influence by
the inclusion of predictor set into the model. This could mean that removing the
forecastable component does not significantly influence the uncertainty estimates or that
the forecastable component itself is negligible and possibly un-forecastable. However,
there are slight indications that including a predictor set has an impact on the uncertainty
estimates. This is evident in periods with high uncertainty, where the uncertainty is
estimated to be lower with the predictive component removed. These results would suggest
that larger part of the variation is predictable in these periods and should not be attributed
to uncertainty.
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In addition to the simple model described above, I have also tested for the contribution of
the exogenous predictors alone. For this, I assumed additional model specification with
autoregressive terms and a constant only as

y jt+1 = φ̃ j(L)y jt + ν̃ jt+1, (61)

with up to 5 AR terms in each of the series. Figure 15 plots the market uncertainty
estimates using these two simple forecasting models and compares them to the baseline
market uncertainty estimates.

It can be observed that when controlling for the autoregressive component, the difference
between the estimates is even smaller. However, one can again see that the distinction
increases in the periods of high uncertainty. Specifically, the uncertainty estimates using
the model including only constant term are the highest, followed by the model with added
the autoregressive component and when controlling for the predictive component, the
uncertainty estimates are the lowest. These results also suggest, as a relatively small
difference is explained either by variation in predictors or by controlling for the
forecastable component, that employing the SV model for the conditional volatility of the
innovations plays an important role when comparing the results to GARCH conditional
volatility estimates.

CONCLUSION

A new phenomenon that was driven by liberalization and gained much attention in the
electricity market is uncertainty. The importance of uncertainty in electricity markets grew
very fast after liberalization process started. One of the main reasons for such development
are new instruments and markets that were introduced. Another contribution to the growth
of uncertainty in electricity markets came from structural changes brought by intensive
financial support for investment in fluctuant renewable energy sources. So on one hand,
regulated producer prices for electricity were replaced with volatile wholesale prices, and
on the other hand, the carbon market establishment led to uncertain cost on the production
side.

Additionally, volatile electricity generation from renewable sources also leads to
uncertainty regarding the amount of power that has to be supplied by suppliers from
conventional production sources like hard coal, lignite or gas, to serve the residual load
(Keles, 2013). Since the number of uncertain parameters was limited to a specific range in
the past, investment decisions and evaluations were predominantly carried out by using
perfect foresight strategies and models together with sensitivity analyses. However, under
newer market conditions, investment decisions have to be made in a significantly more
uncertain environment. This makes perfect foresight strategies less appropriate. Moreover,
with the consideration of very volatile parameters such as electricity prices and renewable
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power generation, new methodologies have to be developed to better understand and
estimate them (Keles, 2013).

This thesis is centered around the analysis of electricity prices with a focus on their
volatility and uncertainty. The volatility of electricity prices has been gaining attention ever
since the trading on exchanges has been established. Moreover, it plays an important role
in the valuation of standardized products on the derivatives market. It is the aim of this
thesis to contribute to the research community, that is not yet as mature compared to the
research done for financial markets, and on the other hand to provide new insights to
market participants that operate with these products. Specifically, it was the main goal of
this analysis to construct estimates of time-varying future volatility and uncertainty of
electricity prices, where the approach of Jurado, Ludvingston and Ng (2015) and their
econometric formalization of uncertainty was adopted. Moreover, an estimate of market
level uncertainty was constructed to inform about possible price or volatility
misalignments.

As it was suggested in the literature there are numerous possible sources of uncertainty from
seasonality to unpredictable generation and governmental impacts. A data-rich environment
was used in this analysis to best control for all possible drivers of uncertainty. A market level
uncertainty estimate was then constructed by employing DI forecasting where conditional
volatility of innovations were modelled with a stochastic volatility model. Forecasts were
then created for 1 to 20 periods ahead, which were compared to the realized volatility and
to conditional volatility predictions using a simpler GARCH methodology.

First, it was observed that the choice of model structure for DI forecasting impacts the
uncertainty estimates. Forcing a closed lag structure and employing the Bayesian averaging
appeared to slightly outperform the more restrictive model selection procedure used by
Jurado, Ludvingston and Ng (2015). Analyzing the market uncertainty estimates also
shows that the forecasts converge to unconditional mean as the forecasting horizon tends to
infinity. Additionally, it was shown that a larger part of uncertainty in the German
electricity market is driven by a systematic component rather than by idiosyncratic shock.
The results also point to the importance of the coal market as one of the key drivers of
electricity prices in Germany. Comparing these market-level uncertainty estimates to
realized volatility defined as squared innovations shows that the general trend of historical
volatility is well described by the model. Moreover, it implies that the second half of 2016
is a period with the highest uncertainty, which is also in line with the reports by the EEX.

Further analyzing these estimates and comparing them to market level conditional volatility
estimates using a GARCH model, shows that the general trend is similarly described by
both sets of results. However, focusing on 1-period ahead predictions shows greater
sensitivity to spikes in innovations by the GARCH model. The differences were also tested
for statistical significance by employing the Diebold-Mariano test for predictive accuracy.
This showed that the differences between forecasts for h = 1 are statistically significant.
However, these differences tend to zero as the forecasting horizon increases and both
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predictions converge towards unconditional means. Additionally, the OOS analysis shows
that the out-of-sample performance is similar to my market uncertainty estimates slightly
outperforming GARCH predictions according to MAE and RMSE measures. The
differences were further investigated by decomposing the market uncertainty estimates
where it was shown that controlling for the forecastable components results in slightly
lower uncertainty estimates in periods with high overall uncertainty. These results point to
a possible overestimation of volatility by employing simple GARCH models.

In general, reasons explaining possible differences in conditional volatility estimates may be
split on two key parts. First, conditional variance may be impacted through the construction
of forecast errors. This was already analysed and described above. However, the second
and vital part is the methodology applied to model the second moment of the forecast error
series. SV model was employed here which also appears to be the key determinant of
the differences when comparing the conditional volatility estimates to results obtained by
employing a GARCH modelling methodology. Simple SV model as already proposed by
Kim, Shephard and Chib (1998) was employed here with baseline sampling configurations
in terms of prior distributions and sampling algorithms as proposed by Kastner (2016). A
thorough investigation of implications of these configurations with analysis of convergence
to the stationary distribution of the chain would be a next logical step which is not the scope
of this thesis. Additionally, possible modifications to the forecasting model could also be
tested to ensure the robustness of forecasting errors.
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Appendix A: Povzetek v slovenskem jeziku

OCENA IN NAPOVED VOLATILNOSTI CEN TERMINSKIH PRODUKTOV
ELEKTRIČNE ENERGIJE

Trgom z električno energijo je bilo v zadnjih dvajsetih oziroma tridesetih letih posvečeno
vse več pozornosti. Pozitivni učinki liberalizacije in deregulacije nekaterih drugih
vertikalno integriranih trgov, kot so železnice in telekomunikacija, so vodili k začetkom
podobne preobrazbe tudi na trgu električne energije. Do devetdesetih let je bila električna
energija proizvedena, prodana in prenešena predvsem z vertikalno integriranimi podjetji v
državni lasti, ki so delovala na monopolnih trgih. V devetdesetih letih pa je Evropski
energetski trg doživel pomembno preobrazbo, kjer so vse članice EU liberalizirale svoje
trge z električno energijo, z izjemo Malte in Bolgarije. Glavni cilji liberalizacije so bili
nižje učinkovitost, cene in transparentnost trga, končni cilj pa je bil vzpostaviti enoten
energetski trg na ravni EU. Da bi dosegli povezovanje trgov, je bilo treba odpraviti razlike
med državami članicami. Za dosego tega cilja pa je bila potrebna vzpostavitev
konkurenčnega trga dobave na evropski ravni, skupna pravila, transparentnost in uskladitev
cen ter enotno okoljsko politiko. Za ta namen je EU sprejela več svežnjev zakonodaje,
katerih glavni cilj je bila podpora liberalizacije in integracije trgov članic EU s ciljem
spodbuditve in vzpostavitve konkurenčnega trga. Z liberalizacijo trga z električno energijo
pa se je pojavila potreba po organizaciji trga na debelo. V ta namen so bile ustanovljene
številne borze, ki so omogočale organizirano trgovanje z električno energijo.

Električna energija se kot tržno blago od preostalih dobrin razlikuje zaradi njenih posebnih
lastnosti. Električne energije se namreč ne da učinkovito skladiščiti,6 kar pomeni
kontinuirano izenačitev porabe in proizvodnje, ob upoštevanju izgub na prenosnem
omrežju. Poleg omejitev na strani ponudbe in povpraševanja pa h kompleksnosti trga
doprinese še transport električne energije. Prenos energije poteka preko prenosnih vodov,
pri katerih obstaja omejitev prenosa, oziroma njihove zmogljivosti, ki lahko privede do
zamašitev in motenj prenosnih poti. Kot tretje, pa je za trg z električno energijo značilna
tudi neelastičnost odjemalcev, saj ta dobrina nima učinkovitega substituta oziroma je
nadomeščanje električne energije z nekonvencionalnimi viri drago in nefleksibilno.

Specifične lastnosti električne energije se odražajo tudi v gibanju cen. To gre opaziti
predvsem v izredno nestanovitnih cenah na promptmem trgu z elektirčno energijo. Zaradi
tega je trgovanje na organiziranih trgih postalo bistveno za vse tržne udeležence, kjer
elektroenergetska podjetja poizkušajo ublažiti tveganja povzročena z negotovim gibanjem
cen. Slednje je spodbudilo naračšanje povpraševanja po izvedenih finančnih produktih, ki
se uporabljajo predvsem za obvladovanje cenovnih tveganj in varovanje pred nezaželjenimi
izgubami. V ta namen je bilo na trgu uvedenih veliko različnih finančnih inštrumentov, kjer

6Izjema skladiščenja energije v večji meri so črpalne hidroelektrarne.
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pa glavno vlogo igrajo terminske pogodbe na dobavo ali odjem električne energije za v
naprej določeno obdobje v prihodnosti.

Nenadzorovana izpostavljenost tveganj povezanih z nepredvidljivimi premiki tržnih cen
ima lahko drage posledice za udeležence na trgu v elektroenergetski industriji. Na podlagi
zgodovine in izkušenj na finančnih trgih gre sklepati da je lahko pravilna uporaba in
razumevanje izvedenih finančnih inštrumentov izredno dragoceno pri obvladovanju tržnih
tveganj. Za učinkovito in ustrezno uporabo slednjih inštrumentov pa so udeleženci na trgu
soočeni z vrednotenjem le teh, kjer pomembno vlogo igra tudi volatilnost. Volatilnost
ozrioma nestanovitnost, ki je eden ključnih parametrov, meri stopnjo odstopanj cene od
povprečja. Dve gavni vrsti volatilnosti sta dejanska (zgodovinska) in pa implicitna, ki je
usmerjena v prihodnost in izhaja iz vrednotenj opcijskih cen. Z namenom boljšega
razumevanja tega pojava se je širok spekter raziskovalcev in tržnih udeležencev posvetil
ocenjevanju, modeliranju in napovedovanju volatilnosti, vendar predvsem na finančnih
trgih.

Glavni cilj te analize je izdelati oceno negotovosti na trgu s treminskimi produkti električne
energije. V ta namen sem implementiral pristop Jurada, Ludvigson in Ng (2015) ter
njihovo ekonometrično formalizacijo negotovosti. Posamezne negotovosti so ocenjene za
dnevne cene električne energije ter surovin ključnih za ta trg. Nadalje ocenim tudi mero
oziroma indeks negotovosti na terminskem trgu z elektirčno energijo, ki je oblikovan z
agregiranjem posamičnih ocen negotovosti. Tržno mero negotovosti kasneje primerjam z
dejansko volatilnostjo cen na treminskih trgih, s pogojnimi volatilnostmi ocenjenimi z
modelom GARCH (p,q) ter dodatno analiziram njene značilnosti.

Pri ocenjevanju celovite mere negotovosti na terminskem trgu z električno energijo, je
moja hipoteza, da se te ocene razlikujejo od ocen pogojne volatilnosti ocenjene z modelom
GARCH. Hkrati tudi analiziram napovedno natančnost obeh pristopov, pri čemer trdim, da
bi morala ob upoštevanju široke palete eksternih dejavnikov moja ocena tržne negotovosti
doseči boljšo napovedno sposobnost pri napovedovanju izven vzorca. Dodatno
predvidevam, da dinamika pojasnjevalnih spremenljivk pomembno prispeva k ocenam
negotovosti.

Negotovost cen na terminskem trgu električne energije je v tej analizi definirana kot
pogojna volatilnost rezidualov napovednega modela. Natančneje so posamezne napovedi
za h-opazovanj v prihodnost označene z U y

jt(h) in predstavljajo pogojno volatilnost
nenapovedljivega dela vrednosti, ki jo model napoveduje. To pomeni, da pogojna
pričakovanja glede kvadratov napak v napovedih direktno vplivajo na nivo ocene
posamezne negotovosti. Z agregiranjem teh posameznih ocen za vsako opazovanje t pa
kasneje izračunam oceno oziroma indeks negotovosti na nivoju celotnega trga.

Pri tej analizi je v prvem koraku potrebno pridobiti osnovo za oceno posameznih vrednosti
negotovosti – napovedne napake. Za napovedovanje sem uporabil širok nabor prediktorjev
in z njimi poizkušal pojasniti vplive vseh možnih virov negotovosti. Stock & Watson
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(2002b) sta predstavila metodo za napovedovanje z velikim številom pojasnjevalnih
spremenljivk, kjer je celoten spekter spremenljivk opisan z majhnim številom faktorjev
oziroma indeksov. Ta pristop sem uporabil tudi v tej analizi, kjer sem z uporabo metode
glavnih komponent (Principal Component Analysis) zmanjšal dimenzijo matrike
prediktorjev. V naslednjem koraku sem za 12 odvisnih spremenljivk yt generiral napovedi
z uporabo napovednega modela s faktorji, kar mi omogoča izračun napovednih napak.

Za oceno napovedi sem implementiral in primerjal dva različna pristopa. V prvem pristopu
je po vzoru Jurada, Ludvingson in Ng (2015) niz končnih pojasnjevalnih spremenljivk v
vsakem modelu določen z konzervativnim pragom za določanje statistične značilnosti.
Natančneje je vsak model sprva ocenjen z vsemi možnimi prediktorji, kjer so v naslednjem
koraku vse spremenljikve katerih regresijki koeficient ni statistično značilno različen od 0
izpuščene. Pri tem se kot že omenjeno upošteva prag, ki je določen pri t statistiki 1.96. Na
koncu so modeli ponovno ocenjeni z uporabo končnega niza prediktorjev.

V drugem pristopu pa implementiram Bayesiansko povprečenje cenilk regresijskih
koeficientov (Byesian Averaging of Clasical Estimates), ki mi omogoča boljši zajem
širokega spektra pojasnjevalnih spremenljivk (Sala- i-Martin et al., 2004). V prvem koraku
je tu najprej potrebna konstrukcija in ocena vseh možnih kombinacij modelov kjer je
vsakemu modelu dodeljena utež glede na njegovo napovedno natančnost in pri upoštevanju
modelske kompleksnosti. Z uporabo teh uteži (posterior weights) so izračunane
aposteriorna povprečja regresijskih koeficientov, ki so v vsakem od modelov ocenjeni z
metodo najmanjših kvadratov (OLS). Dodatno je pomembna razilka med pristopoma tudi
ta, da imajo v slednjem modeli vsiljeno zaprto obliko odlogov, torej da vmesni odlogi
pojansjevalnih spremenjivk niso izpuščeni.

Ker je predpostavljena avtoregresijka dinamika faktorjev, je končen model predstavljen v
obliki vektorsko avtoregresijskega modela razširjenega s faktorji (FAVAR), kjer so
pridobljene napovedne napake za napovedno obdobje h = 1, ..., 20. V zadnjem koraku pa
sledi modeliranje variance napak napovednega modela z uporabo modela stohastične
volatilnosti (stockastic volatility model). Jurado, Ludvigson & Ng (2015) kot enega
glavnih razlogov za uporabo te metode predstavijo neodvisnost med reziduali v yt in šoki v
varianci, v čemer se metodologija razlikuje od uporabe modelov tipa GARCH. Jurado,
Ludvigson & Ng (2015) hkrati tudi pokažejo, kako volatilnost v prediktorjih vpliva na
končno oceno negotovosti odvisne spremenljivke za napovedi kjer je h > 1.

Za namen te analize je bil pripravljen širok nabor 312 spremenljivk relevantnih za nemški
elektroenergetski trgi, ki so bile po natančnem pregledu združene v matriko X z 550
dnevnimi opazovanji, ki rangirajo od Februarja 2015 do Aprila 2017. Poleg pregleda za
manjkajočimi in pretirano odstopajočimi vrednostmi, so bile vse spremenljivke pretvorjene
v stacionarno obliko z uporabo temeljnih transformacij in testirane za nestacionarnost.
Zaradi specifičnih karakteristik cen električne energije, so bile razvite in implementirane
tudi dodatne transformacije, za zagotovitev nepristranskosti analize.
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Z uporabo obeh pristopov napovedovanja najprej pridobim dva različna niza napak
napovednih vrednosti za vseh 12 odvisnih spremenljikv. Pri primerjavi rezultatov prvega
pristopa povzetega po Jurado, Ludvigson & Ng (2015), ki dovoli odprto strukturo odlogov
(OL), ter pristopa z vsiljeno zaprto strukturo odlogov in Bayesianskim povprečenjem OLS
cenilk regresijskih koeficientov lahko opazimo, da se oblika modelov bistveno razlikuje.
Natančneje gre opaziti, da modeli z OL vsebujejo precej manjše število spremenljik kot
modeli z CL pristopom. Dodatno je potrebno poudariti, da so aposteriorne verjetnosti
modelov pri CL pristopu relativno enakovredne, s čimer se izognem prevladi majhnega
števila faktorjev. Dodatna analiza in primerjava standardiziranih napovedi posameznih
negotovosti obeh pristopov pokaže, da so rezultati primerljivi za h = 1, kjer dodatno obe
oceni relativno dosledno napovesta večje skoke v zgodovinski volatilnosti. Pri primerjavi
napovedne natančnosti z uporabo standardnih mer kot so povprečna absolutna napaka
(MAE), kvadratni koren povprečne kavdratne napake (RMSE) in pa kvadratni koren
povprečne kavdratne odstotne napake (RMPSE) pa lahko opazimo, da CL pristop v
povprečju daje bolj natančne napovedi kot OL pristop.

Nadalje z agregiranjem posamenznih ocen negotovosti izračunam indeks negotovosti za
terminski trg električne energije, kjer se osredotočam na nemški trg. Ocene tržne
negotovosti pokažejo na veliko porast negotovosti v drugi polovici leta 2016, kar sovpada z
ugotovitvami EEX iz njihovega letnega poročila za isto leto. Analzia pokaže tudi na
konvergenco ocen negotovosti k brezpogojni sredini s povečevanjem napovednega
horizonta, saj se z večjim h sredina vzorca povečuje ob padajoči varianci. Po definiciji
negotovosti v tej analizi le ta predstavlja pogojno volatilnost nenapovedljive komponente v
napovedih odivsnih časovnih serj. Dodatno pa Jurado, Ludvigson & Ng (2015) opozarjajo,
da lahko na ocene negotovosti vpliva sistematična tržna negotovost ali pa šoki
idiosinkratične negotovosti posameznih serij. V ta namen sem ocenil vplv sistematične
tržne negotovosti na posamezne negotovosti, kjer za vsako od 12 odvisnih serij ocenim
determinacijski koeficient (R2) pri linearni regresiji tržne negotovosti na posamezno
negotovost vsake serije. V povprečju gre opaziti, da igra tržna negotovost večjo vlogo kot
idiosinkratični šoki pozameznih serij. Dodatno je iz rezultatov razvidno, da je gibanje cen
premoga izredno pomembno pri negotovosti na nemškem trgu električne energije, kar
sovpada z nemško proizvodnjo strukturo, kjer je bilo v 2016 več kot 46 % električne
energije proizvedene v premogovnih termo elektrarnah. Z izračnom povprečnih vrednosti
R2 za vsak h dodatno pokažem, da tržna negotovost v povrpečju pojasni 72 % variance v
celotni negotovosti izračunani kot vsota vseh posameznih ocen. Razvidno je tudi, da se ta
delež povečuje s h. Hkrati pa z oceno R2 na dveh različnih podvzorcih pokažem tudi, da
igra sistematična tržna negotovost pomembnejšo vlogo v obdobjih z višjo negotovostjo.

V zadnjem delu analize izvedem tudi primerjavo ocen negotovosti na trgu električne
energije z ocenami pogojne volatilnosti z uporabo GARCH metode. V ta namen ocenim
AR-GARCH model za vsako od 12 odvisnih časocnih serij, kjer je optimalna struktura
odlogov določena z statistiko Akaike (AIC). Rezulati te primerjave pokažejo na večjo
odvisnost GARCH metode od manjših konic v osnovni seriji, kar rezultira v bolj volatilnih
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ocenah. Za empirično oceno razlik med napovedmi obeh metod sem uporabil
Diebold-Mariano test napovedne natančnosti, ki pokaže, da se napovedi za h = 1 statistično
značilno razlikujejo. Hkrati pa test pokaže tudi, da se ta razlika z h zmanjšuje, kajti obe
oceni tendirata k brezpogojni sredini. Za dodatno primerjavo metod sem izvedel tudi
analizo napovedne natančnosti izven vzorca (out-of-sample). Ta analiza je bila razvita in
prirejena po vzoru “Walk Forward” analize (WFA), kjer z združitvijo večih ocen izven
vzorca primerjam napovedno natančnost. Analiza pokaže, da je napovedna natančnost
izven vzorca na podalgi MAE in RMSE statistik boljša z uporabo tržne ocene negotovosti.
Obratno pa pokaže statistika RMPSE, kjer je napovedna natančnost rahlo boljša z uporabo
GARCH metode.

Razlike so bile dodatno analizirane z dekompozicijo ocen tržne negotovosti kjer se je
pokazalo, da so ob kontroli za prediktabilno kmponento nekoliko nižje ocene negotovosti v
obdobjih z visoko splošno negotovostjo. Ti rezultati kažejo na možno precenjevanje
volatilnosti z uporabo enostavnih GARCH modelov. Vendar pa ti rezultati kažejo tudi, da
je ključna determinanta razlike med obema metodologijama uporaba SV modela za oceno
pogojne volatilnosti inovacij pri napakah v napovedih v primerjavi s pogojno volatilnostjo
GARCH modela.
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Appendix B: Data Description

Table 12: Electricity prices

No Id Name Type Source Vartype

1 BREM1 BRENT Price M+1 Futures contract ICE 1
2 AP2M1 API2 Price M+1 Futures contract ICE 1
3 EUAY1 EUA Y+1 Futures contract ICE 1
4 NCGM1 NCG Price M+1 Futures contract POWERNEXT 1
5 BASEQ1 Baseload price DE Q+1 Futures contract EEX 1
6 BASEY1 Baseload price DE Y+1 Futures contract EEX 1
7 BASEM1 Baseload price DE M+1 Futures contract EEX 1
8 BASEM2 Baseload price DE M+2 Futures contract EEX 1
9 BASEM3 Baseload price DE M+3 Futures contract EEX 1

10 BASEM4 Baseload price DE M+4 Futures contract EEX 1
11 BASEM5 Baseload price DE M+5 Futures contract EEX 1
12 BASEM6 Baseload price DE M+6 Futures contract EEX 1
13 DE_S0 Day-ahead price DE Day-ahead price EPEX 2
14 FR_S0 Day-ahead price FR Day-ahead price EPEX 2
15 NRDPL_S0 Day-ahead price NORDPOOL Day-ahead price NORDPOOL 2
16 AT_S0 Day-ahead price AT Day-ahead price EPEX 2
17 CH_S0 Day-ahead price CH Day-ahead price EPEX 2
18 PUN_S0 Day-ahead price PUN Day-ahead price TERNA 2
19 UK_S0 Day-ahead price UK Day-ahead price APX 2
20 CZ_S0 Day-ahead price CZ Day-ahead price EEX 2
21 PL_S0 Day-ahead price PL Day-ahead price EEX 2

Source: Own work.

Table 13: Spot exchange rates

No Id Name Type Source Vartype

22 EURUSD EUR/USD Exchange rate YahooFinance 3
23 EURGBP EUR/GBP Exchange rate YahooFinance 3
24 EURPLN EUR/PLN Exchange rate YahooFinance 3

Source: Own work.

Table 14: Temperature

No Id Name Type Source Vartype

25 TEMP_DE Temperature DE Temperature Ogimet 4

Source: Own work.
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Table 15: Electricity consumption, production and commercial exchange

No Id Name Type Source Vartype

26 LOAD_DE Total Load DE Consumption ENTSO-e 5
27 LOAD_FR Total Load FR Consumption ENTSO-e 5
28 LOAD_AT Total Load AT Consumption ENTSO-e 5
29 LOAD_NO Total Load NO Consumption ENTSO-e 5
30 LOAD_PL Total Load PL Consumption ENTSO-e 5
31 LOAD_CH Total Load CH Consumption ENTSO-e 5
32 LOAD_CZ Total Load CZ Consumption ENTSO-e 5
33 LOAD_DK Total Load DK Consumption ENTSO-e 5
34 SCHPROD_FR Day Ahead Scheduled Generation FR Scheduled Generation ENTSO-e 6
35 SCHPROD_AT Day Ahead Scheduled Generation AT Scheduled Generation ENTSO-e 6
36 SCHPROD_NO Day Ahead Scheduled Generation NO Scheduled Generation ENTSO-e 6
37 SCHPROD_PL Day Ahead Scheduled Generation PL Scheduled Generation ENTSO-e 6
38 SCHPROD_CZ Day Ahead Scheduled Generation CZ Scheduled Generation ENTSO-e 6
39 SCHPROD_DK Day Ahead Scheduled Generation DK Scheduled Generation ENTSO-e 6
40 WINDFOR_DE Daf-ahead wind generation forecast DE Daf-ahead generation forecast ENTSO-e 6
41 HYD_DE Realised hydro generation DE Realised generation per type ENTSO-e 6
42 HYD_FR Realised hydro generation FR Realised generation per type ENTSO-e 6
43 HYD_AT Realised hydro generation AT Realised generation per type ENTSO-e 6
44 HYD_CZ Realised hydro generation CZ Realised generation per type ENTSO-e 6
45 HYD_PL Realised hydro generation PL Realised generation per type ENTSO-e 6
46 NUC_FR Realised nuclear generation FR Realised generation per type ENTSO-e 6
47 WIND_DE Realised wind generation DE Realised generation per type ENTSO-e 6
48 SOL_DE Realised solar generation DE Realised generation per type ENTSO-e 6
49 WIND_DK Realised wind generation DK Realised generation per type ENTSO-e 6
50 WIND_UK Realised wind generation UK Realised generation per type ENTSO-e 6
51 SOLAR_UK Realised solar generation UK Realised generation per type ENTSO-e 6
52 WIND_FR Realised wind generation FR Realised generation per type ENTSO-e 6
53 SOLAR_FR Realised solar generation FR Realised generation per type ENTSO-e 6
54 TERMO_PL Realised termo generation PL Realised generation per type ENTSO-e 6
55 NETCOMLFW_DE_AT Net scheduled Commercial exchange DE>AT Scheduled Commercial exchange ENTSO-e 7
56 NETCOMLFW_DE_CZ Net scheduled Commercial exchange DE>CZ Scheduled Commercial exchange ENTSO-e 7
57 NETCOMLFW_DE_DK Net scheduled Commercial exchange DE>DK Scheduled Commercial exchange ENTSO-e 7
58 NETCOMLFW_DE_FR Net scheduled Commercial exchange DE>FR Scheduled Commercial exchange ENTSO-e 7
59 NETCOMLFW_DE_LUX Net scheduled Commercial exchange DE>LUX Scheduled Commercial exchange ENTSO-e 7
60 NETCOMLFW_DE_NL Net scheduled Commercial exchange DE>NL Scheduled Commercial exchange ENTSO-e 7
61 NETCOMLFW_DE_PL Net scheduled Commercial exchange DE>PL Scheduled Commercial exchange ENTSO-e 7
62 NETCOMLFW_DE_CH Net scheduled Commercial exchange DE>CH Scheduled Commercial exchange ENTSO-e 7

Source: Own work.

Table 16: Financial market

No Id Name Type Source Vartype

63 LIN Linde Stock price YahooFinance 8
64 VOW3 Volkswagen Group Stock price YahooFinance 8
65 FME Fresenius Medical Care Stock price YahooFinance 8
66 DBK Deutsche Bank Stock price YahooFinance 8
67 DAI Daimler Stock price YahooFinance 8
68 CBK Commerzbank Stock price YahooFinance 8
69 DTE Deutsche Telekom Stock price YahooFinance 8
70 SAP SAP Stock price YahooFinance 8
71 IFX Infineon Technologies Stock price YahooFinance 8
72 DB1 Deutsche Börse Stock price YahooFinance 8
73 ADS Adidas Stock price YahooFinance 8
74 FRE Fresenius Stock price YahooFinance 8

Table continues on next page
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Table 16: Financial market (cont.)

No Id Name Type Source Vartype

75 MRK Merck Stock price YahooFinance 8
76 ALV Allianz Stock price YahooFinance 8
77 RWE RWE Stock price YahooFinance 8
78 TKA ThyssenKrupp Stock price YahooFinance 8
79 LHA Deutsche Lufthansa Stock price YahooFinance 8
80 BMW BMW Stock price YahooFinance 8
81 MUV2 Munich Re Stock price YahooFinance 8
82 PSM ProSiebenSat.1 Media Stock price YahooFinance 8
83 BAYN Bayer Stock price YahooFinance 8
84 HEN3 Henkel Stock price YahooFinance 8
85 EOAN E.ON Stock price YahooFinance 8
86 GDAXI DAX Index Stock price YahooFinance 8
87 DPW Deutsche Post Stock price YahooFinance 8
88 BEI Beiersdorf Stock price YahooFinance 8
89 HEI HeidelbergCement Stock price YahooFinance 8
90 SIE Siemens Stock price YahooFinance 8
91 Agric Agriculture 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
92 Food Food Products 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
93 Soda Candy & Soda 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
94 Beer Beer & Liquor 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
95 Smoke Tobacco Products 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
96 Toys Recreation 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
97 Fun Entertainment 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
98 Books Printing and Publishing 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
99 Hshld Consumer Goods 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
100 Clths Apparel 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
101 Hlth Healthcare 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
102 MedEq Medical Equipment 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
103 Drugs Pharmaceutical Products 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
104 Chems Chemicals 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
105 Rubbr Rubber and Plastic Products 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
106 Txtls Textiles 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
107 BldMt Construction Materials 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
108 Cnstr Construction 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
109 Steel Steel Works Etc 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
110 FabPr Fabricated Products 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
111 Mach Machinery 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
112 ElcEq Electrical Equipment 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
113 Autos Automobiles and Trucks 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
114 Aero Aircraft 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
115 Ships Shipbuilding, Railroad Equipment 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
116 Guns Defense 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
117 Gold Precious Metals 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
118 Mines Non-Metallic and Industrial Metal Mining 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
119 Coal Coal 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
120 OilNg Petroleum and Natural Gas 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
121 Util Utilities 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
122 Telcm Communication 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
123 PerSv Personal Services 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
124 BusSv Business Services 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
125 Hardw Computers 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
126 Softw Computer Software 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
127 Chips Electronical Equipmet 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
128 LabEq Measuring and Control Equipment 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
129 Paper Business Supplies 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
130 Boxes Shipping Containers 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
131 Trans Transportation 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
132 Whlsl Wholesale 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
133 Rtail Retail 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
134 Meals Restaurants, Hotels, Motels 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
135 Banks Banking 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
136 Insur Insurance 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
137 RlEst Real Estate 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
138 Fin Trading 49 Industry Portfolios - Returns Kenneth R. French Data Library 9
139 Other Almost Nothing 49 Industry Portfolios - Returns Kenneth R. French Data Library 9

Source: Own work.
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Table 17: Energy market ETFs

No Id Name Type Source Vartype

140 XOP SPDR S&P Oil & Gas Exploration & Production ETF ETF Price - Energy YahooFinance 10
141 CANE Teucrium Sugar Fund ETF Price - Commodities YahooFinance 10
142 UNG United States Natural Gas Fund LP ETF Price - Oil & Gas YahooFinance 10
143 USAG United States Agriculture Index Fund ETF Price - Commodities YahooFinance 10
144 PALL ETFS Physical Palladium Shares ETF Price - Commodities YahooFinance 10
145 GRU Elements MLCX Grains Index-Total Return ETN ETF Price - Commodities YahooFinance 10
146 DBGR Deutsche X-trackers MSCI Germany Hedged Equity ETF ETF Price - Germany Total Market YahooFinance 10
147 SLVO Credit Suisse X-Links Silver Shares Covered Call ETN ETF Price - Commodities YahooFinance 10
148 DBA PowerShares DB Agriculture Fund ETF Price - Commodities YahooFinance 10
149 JJE iPath Bloomberg Energy Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
150 GLTR ETFS Physical Precious Metals Basket Shares ETF Price - Commodities YahooFinance 10
151 GASL Direxion Daily Natural Gas Related Bull 3X Shares ETF Price - Energy YahooFinance 10
152 UAG ETRACS UBS Bloomberg CMCI Agriculture Total Return ETN ETF Price - Commodities YahooFinance 10
153 DBO PowerShares DB Oil Fund ETF Price - Commodities YahooFinance 10
154 PXJ PowerShares Dynamic Oil & Gas Services Portfolio ETF Price - Energy YahooFinance 10
155 PXE PowerShares Dynamic Energy Exploration & Production Portfolio ETF Price - Energy YahooFinance 10
156 EWGS iShares MSCI Germany Small Cap ETF ETF Price - Germany Total Market YahooFinance 10
157 OLO DB Crude Oil Long ETN ETF Price - Commodities YahooFinance 10
158 GYEN AdvisorShares Gartman Gold/Yen ETF ETF Price - Commodities YahooFinance 10
159 HEVY iPath Pure Beta Industrial Metals ETN ETF Price - Commodities YahooFinance 10
160 GCC WisdomTree Continuous Commodity Index Fund ETF Price - Commodities YahooFinance 10
161 FOIL iPath Pure Beta Aluminum ETN ETF Price - Commodities YahooFinance 10
162 ICLN iShares Global Clean Energy ETF ETF Price - Alternative Energy YahooFinance 10
163 QDEU SPDR MSCI Germany StrategicFactors ETF ETF Price - Germany Total Market YahooFinance 10
164 GSG iShares S&P GSCI Commodity Indexed Trust ETF Price - Commodities YahooFinance 10
165 USO United States Oil Fund LP ETF Price - Commodities YahooFinance 10
166 RYE Guggenheim S&P 500 Equal Weight Energy ETF ETF Price - Energy YahooFinance 10
167 PBD PowerShares Global Clean Energy Portfolio ETF ETF Price - Alternative Energy YahooFinance 10
168 MLPY Morgan Stanley Cushing MLP High Income Index ETN ETF Price - Energy YahooFinance 10
169 MLPJ Global X Junior MLP ETF ETF Price - Energy YahooFinance 10
170 OUNZ VanEck Merk Gold ETF Price - Commodities YahooFinance 10
171 UGA United States Gasoline Fund LP ETF Price - Commodities YahooFinance 10
172 NIB iPath Bloomberg Cocoa Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
173 BLNG iPath Pure Beta Precious Metals ETN ETF Price - Commodities YahooFinance 10
174 IAU iShares Gold Trust ETF Price - Commodities YahooFinance 10
175 OIH VanEck Vectors Oil Services ETF ETF Price - Energy YahooFinance 10
176 IYE iShares U.S. Energy ETF ETF Price - Energy YahooFinance 10
177 YMLI VanEck Vectors High Income Infrastructure MLP ETF ETF Price - Energy YahooFinance 10
178 PSCE PowerShares S&P SmallCap Energy Portfolio ETF Price - Energy YahooFinance 10
179 LIT Global X Lithium & Battery Tech ETF ETF Price - Europe YahooFinance 10
180 MLPS ETRACS 1XMonthly Short Alerian MLP Infrastructure TR ETN ETF Price - Energy YahooFinance 10
181 SBV iPath Pure Beta S&P GSCI-Weighted ETN ETF Price - Commodities YahooFinance 10
182 HEDJ WisdomTree Europe Hedged Equity Fund ETF Price - Europe YahooFinance 10
183 CMDT iShares Commodity Optimized Trust ETF Price - Commodities YahooFinance 10
184 GSC GS Connect S&P GSCI Enhanced Commodity TR Strategy ETN ETF Price - Commodities YahooFinance 10
185 WEET iPath Pure Beta Grains ETN ETF Price - Commodities YahooFinance 10
186 JJC iPath Bloomberg Copper Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
187 KOL VanEck Vectors Coal ETF ETF Price - Energy YahooFinance 10
188 GLDI Credit Suisse X-Links Gold Shares Covered Call ETN ETF Price - Commodities YahooFinance 10
189 FTGC First Trust Global Tactical Commodity Strategy Fund ETF Price - Commodities YahooFinance 10
190 PUW PowerShares WilderHill Progressive Energy Portfolio ETF Price - Energy YahooFinance 10
191 RJZ Elements Rogers Int.Commodity Index-Metals Total Return ETN ETF Price - Commodities YahooFinance 10
192 HEWG iShares Currency Hedged MSCI Germany ETF ETF Price - Germany Total Market YahooFinance 10
193 IXC iShares Global Energy ETF ETF Price - Energy YahooFinance 10
194 ENY Guggenheim Canadian Energy Income ETF ETF Price - Energy YahooFinance 10
195 BOIL ProShares Ultra Bloomberg Natural Gas ETF Price - Oil & Gas YahooFinance 10
196 GAZ iPath Bloomberg Natural Gas Subindex Total Return ETN ETF Price - Oil & Gas YahooFinance 10
197 MLPG ETRACS Alerian Natural Gas MLP ETN ETF Price - Energy YahooFinance 10
198 GEX VanEck Vectors Global Alternative Energy ETF ETF Price - Alternative Energy YahooFinance 10
199 BAL iPath Bloomberg Cotton Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
200 MLPO Credit Suisse S&P MLP Index ETN ETF Price - Energy YahooFinance 10
201 BNO United States Brent Oil Fund LP ETF Price - Commodities YahooFinance 10
202 EMLP First Trust North American Energy Infrastructure Fund ETF Price - Energy YahooFinance 10

Table continues on next page
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Table 17: Energy market ETFs (cont.)

No Id Name Type Source Vartype

203 UGAZ VelocityShares 3X Long Natural Gas ETN ETF Price - Oil & Gas YahooFinance 10
204 NINI iPath Pure Beta Nickel ETN ETF Price - Commodities YahooFinance 10
205 RJI Elements Rogers International Commodity Index-Total Return ETN ETF Price - Commodities YahooFinance 10
206 COPX Global X Copper Miners ETF ETF Price - Europe YahooFinance 10
207 PXI PowerShares DWA Energy Momentum Portfolio ETF Price - Energy YahooFinance 10
208 FUD ETRACS UBS Bloomberg CMCI Food Total Return ETN ETF Price - Commodities YahooFinance 10
209 KOLD ProShares UltraShort Bloomberg Natural Gas ETF Price - Oil & Gas YahooFinance 10
210 MLPI ETRACS Alerian MLP Infrastructure Index ETN ETF Price - Energy YahooFinance 10
211 USCI United States Commodity Index Fund ETF Price - Commodities YahooFinance 10
212 DDG ProShares Short Oil & Gas ETF Price - Energy YahooFinance 10
213 CHOC iPath Pure Beta Cocoa ETN ETF Price - Commodities YahooFinance 10
214 FCG First Trust Natural Gas ETF ETF Price - Energy YahooFinance 10
215 SOYB Teucrium Soybean Fund ETF Price - Commodities YahooFinance 10
216 MLPX Global X MLP & Energy Infrastructure ETF ETF Price - Energy YahooFinance 10
217 GLD SPDR Gold Trust ETF Price - Commodities YahooFinance 10
218 PICK iShares MSCI Global Metals & Mining Producers ETF ETF Price - Europe YahooFinance 10
219 TAN Guggenheim Solar ETF ETF Price - Alternative Energy YahooFinance 10
220 CUPM iPath Pure Beta Copper ETN ETF Price - Commodities YahooFinance 10
221 DJP iPath Bloomberg Commodity Index Total Return ETN ETF Price - Commodities YahooFinance 10
222 PPLT ETFS Physical Platinum Shares ETF Price - Commodities YahooFinance 10
223 ONG iPath Pure Beta Energy ETN ETF Price - Commodities YahooFinance 10
224 AMZA InfraCap MLP ETF ETF Price - Energy YahooFinance 10
225 COW iPath Bloomberg Livestock Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
226 OLEM iPath Pure Beta Crude Oil ETN ETF Price - Commodities YahooFinance 10
227 JJU iPath Bloomberg Aluminum Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
228 SLV iShares Silver Trust ETF Price - Commodities YahooFinance 10
229 IPW SPDR S&P International Energy Sector ETF ETF Price - Energy YahooFinance 10
230 DBC PowerShares DB Commodity Index Tracking Fund ETF Price - Commodities YahooFinance 10
231 GEUR AdvisorShares Gartman Gold/EURO ETF ETF Price - Commodities YahooFinance 10
232 URA Global X Uranium ETF ETF Price - Oil & Gas YahooFinance 10
233 YMLP VanEck Vectors High Income MLP ETF ETF Price - Energy YahooFinance 10
234 UCI ETRACS UBS Bloomberg Con.Maturity Commodity Index TR ETN ETF Price - Commodities YahooFinance 10
235 UBC ETRACS UBS Bloomberg CMCI Livestock Total Return ETN ETF Price - Commodities YahooFinance 10
236 XLE Energy Select Sector SPDR Fund ETF Price - Energy YahooFinance 10
237 DGAZ VelocityShares 3X Inverse Natural Gas ETN ETF Price - Oil & Gas YahooFinance 10
238 PTM ETRACS UBS Bloomberg CMCI Platinum Total Return ETN ETF Price - Commodities YahooFinance 10
239 CAFE iPath Pure Beta Coffee ETN ETF Price - Commodities YahooFinance 10
240 MLPC C-Tracks Miller/Howard MLP Fundamental ETN ETF Price - Energy YahooFinance 10
241 JJS iPath Bloomberg Softs Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
242 QCLN First Trust NASDAQ Clean Edge Green Energy Index Fund ETF Price - Alternative Energy YahooFinance 10
243 WEAT Teucrium Wheat Fund ETF Price - Commodities YahooFinance 10
244 VDE Vanguard Energy ETF ETF Price - Energy YahooFinance 10
245 DIG ProShares Ultra Oil & Gas ETF Price - Energy YahooFinance 10
246 SIVR ETFS Physical Silver Shares ETF Price - Commodities YahooFinance 10
247 VGK Vanguard FTSE Europe ETF ETF Price - Europe YahooFinance 10
248 SGAR iPath Pure Beta Sugar ETN ETF Price - Commodities YahooFinance 10
249 AMU ETRACS Alerian MLP Index ETN ETF Price - Energy YahooFinance 10
250 FILL iShares MSCI Global Energy Producers ETF ETF Price - Energy YahooFinance 10
251 GSP iPath S&P GSCI Total Return Index ETN ETF Price - Commodities YahooFinance 10
252 CPER United States Copper Index Fund ETF Price - Commodities YahooFinance 10
253 DBP PowerShares DB Precious Metals Fund ETF Price - Commodities YahooFinance 10
254 FAN First Trust ISE Global Wind Energy Index Fund ETF Price - Alternative Energy YahooFinance 10
255 LSTK iPath Pure Beta Livestock ETN ETF Price - Commodities YahooFinance 10
256 EWG iShares MSCI Germany ETF ETF Price - Germany Total Market YahooFinance 10
257 CHIE Global X China Energy ETF ETF Price - Energy YahooFinance 10
258 UNL United States 12 Month Natural Gas Fund LP ETF Price - Oil & Gas YahooFinance 10
259 DBS PowerShares DB Silver Fund ETF Price - Commodities YahooFinance 10
260 SGOL ETFS Physical Swiss Gold Shares ETF Price - Commodities YahooFinance 10
261 SGG iPath Bloomberg Sugar Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
262 USL United States 12 Month Oil Fund LP ETF Price - Commodities YahooFinance 10
263 OIL iPath S&P GSCI Crude Oil Total Return ETN ETF Price - Commodities YahooFinance 10
264 REMX VanEck Vectors Rare Earth/Strategic Metals ETF ETF Price - Europe YahooFinance 10
265 FEZ SPDR Euro STOXX 50 ETF ETF Price - Europe YahooFinance 10
266 DXGE WisdomTree Germany Hedged Equity Fund ETF Price - Germany Total Market YahooFinance 10
267 GRN iPath Global Carbon ETN ETF Price - Commodities YahooFinance 10
268 JJG iPath Bloomberg Grains Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
269 FXN First Trust Energy AlphaDEX Fund ETF Price - Energy YahooFinance 10

Table continues on next page
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Table 17: Energy market ETFs (cont.)

No Id Name Type Source Vartype

270 ERY Direxion Daily Energy Bear 3X Shares ETF Price - Energy YahooFinance 10
271 IMLP iPath S&P MLP ETN ETF Price - Energy YahooFinance 10
272 DAX Horizons DAX Germany ETF ETF Price - Germany Total Market YahooFinance 10
273 IEV iShares Europe ETF ETF Price - Europe YahooFinance 10
274 UBM ETRACS UBS Bloomberg CMCI Industrial Metals Total Return ETN ETF Price - Commodities YahooFinance 10
275 JO iPath Bloomberg Coffee Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
276 DBB PowerShares DB Base Metals Fund ETF Price - Commodities YahooFinance 10
277 LEDD iPath Pure Beta Lead ETN ETF Price - Commodities YahooFinance 10
278 RJA Elements Rogers International Commodity Index-Agriculture TR ETN ETF Price - Commodities YahooFinance 10
279 ENFR Alerian Energy Infrastructure ETF ETF Price - Energy YahooFinance 10
280 JJA iPath Bloomberg Agriculture Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
281 DGL PowerShares DB Gold Fund ETF Price - Commodities YahooFinance 10
282 AMLP Alerian MLP ETF ETF Price - Energy YahooFinance 10
283 USV ETRACS UBS Bloomberg CMCI Silver Total Return ETN ETF Price - Commodities YahooFinance 10
284 MLPA Global X MLP ETF ETF Price - Energy YahooFinance 10
285 AMJ J.P. Morgan Alerian MLP Index ETN ETF Price - Energy YahooFinance 10
286 IEO iShares U.S. Oil & Gas Exploration & Production ETF ETF Price - Energy YahooFinance 10
287 NLR VanEck Vectors Uranium+Nuclear Energy ETF ETF Price - Oil & Gas YahooFinance 10
288 UBG ETRACS UBS Bloomberg CMCI Gold Total Return ETN ETF Price - Commodities YahooFinance 10
289 FENY Fidelity MSCI Energy Index ETF ETF Price - Energy YahooFinance 10
290 DBE PowerShares DB Energy Fund ETF Price - Commodities YahooFinance 10
291 CTNN iPath Pure Beta Cotton ETN ETF Price - Commodities YahooFinance 10
292 DUG ProShares UltraShort Oil & Gas ETF Price - Energy YahooFinance 10
293 PZD PowerShares Cleantech Portfolio ETF ETF Price - Alternative Energy YahooFinance 10
294 DBEU Deutsche X-trackers MSCI Europe Hedged Equity ETF ETF Price - Europe YahooFinance 10
295 CORN Teucrium Corn Fund ETF Price - Commodities YahooFinance 10
296 JJM iPath Bloomberg Industrial Metals Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
297 BCM iPath Pure Beta Broad Commodity ETN ETF Price - Commodities YahooFinance 10
298 XME SPDR S&P Metals & Mining ETF ETF Price - Europe YahooFinance 10
299 IEZ iShares U.S. Oil Equipment & Services ETF ETF Price - Energy YahooFinance 10
300 RJN Elements Rogers International Commodity Index-Energy TR ETN ETF Price - Commodities YahooFinance 10
301 GRWN iPath Pure Beta Softs ETN ETF Price - Commodities YahooFinance 10
302 EZU iShares MSCI Eurozone ETF ETF Price - Europe YahooFinance 10
303 DIRT iPath Pure Beta Agriculture ETN ETF Price - Commodities YahooFinance 10
304 ERX Direxion Daily Energy Bull 3x Shares ETF Price - Energy YahooFinance 10
305 XES SPDR S&P Oil & Gas Equipment & Services ETF ETF Price - Energy YahooFinance 10
306 IOIL IQ Global Oil Small Cap ETF ETF Price - Oil & Gas YahooFinance 10
307 PBW PowerShares WilderHill Clean Energy Portfolio ETF ETF Price - Alternative Energy YahooFinance 10
308 JJP iPath Bloomberg Precious Metals Subindex Total Return ETN ETF Price - Commodities YahooFinance 10
309 ATMP Barclays ETN+ Select MLP ETN ETF Price - Energy YahooFinance 10
310 UHN United States Diesel-Heating Oil Fund LP ETF Price - Commodities YahooFinance 10
311 UBN ETRACS UBS Bloomberg CMCI Energy Total Return ETN ETF Price - Commodities YahooFinance 10
312 JJN iPath Bloomberg Nickel Subindex Total Return ETN ETF Price - Commodities YahooFinance 10

Source: Own work.
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Appendix C: Graphical Analysis of the Dependent Series

Figure 16: Electricity - Prices and historical volatilities

Source: Own work.
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Figure 17: Electricity - Prices and historical volatilities

Source: Own work.
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Figure 18: Commodities - Prices and historical volatilities

Source: Own work.
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Figure 19: Dependent variables - empirical distributions

Source: Own work.
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Appendix D: Factor Structure

Table 18: Common factors F̂t of 312 series ofX

Factor Share of explained variance No Vartype Id Marginal R2

1 27,6% 193 10 IXC 0,84
304 10 ERX 0,79
245 10 DIG 0,79
236 10 XLE 0,78
244 10 VDE 0,78
176 10 IYE 0,78
289 10 FENY 0,78
270 10 ERY 0,78
292 10 DUG 0,78
111 9 Mach 0,76

2 8,2% 260 10 SGOL 0,36
217 10 GLD 0,35
174 10 IAU 0,35
253 10 DBP 0,35
281 10 DGL 0,35
170 10 OUNZ 0,34
150 10 GLTR 0,33
86 8 GDAXI 0,31

221 10 DJP 0,31
230 10 DBC 0,30

3 4,5% 150 10 GLTR 0,50
246 10 SIVR 0,50
228 10 SLV 0,49
253 10 DBP 0,48
174 10 IAU 0,42
170 10 OUNZ 0,42
217 10 GLD 0,42
260 10 SGOL 0,42
281 10 DGL 0,41
259 10 DBS 0,39

4 3,4% 86 8 GDAXI 0,15
280 10 JJA 0,13
278 10 RJA 0,13
69 8 DTE 0,13
67 8 DAI 0,12
63 8 LIN 0,12

268 10 JJG 0,12
83 8 BAYN 0,11

121 9 Util 0,11
76 8 ALV 0,11

5 2,6% 16 2 AT_S0 0,43
13 2 DE_S0 0,40
20 2 CZ_S0 0,28
59 7 NETCOMLFW_DE_LUX 0,27
54 6 TERMO_PL 0,25
17 2 CH_S0 0,24
27 5 LOAD_FR 0,22
15 2 NRDPL_S0 0,22
38 6 SCHPROD_CZ 0,20
57 7 NETCOMLFW_DE_DK 0,19

6 2,3% 5 1 BASEQ1 0,35
8 1 BASEM2 0,31
9 1 BASEM3 0,31
6 1 BASEY1 0,30
10 1 BASEM4 0,28
7 1 BASEM1 0,25
11 1 BASEM5 0,21
20 2 CZ_S0 0,16
13 2 DE_S0 0,16
12 1 BASEM6 0,16

Table continues on next page
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Table 18: Common factors F̂t of 312 series ofX (cont.)

Factor Share of explained variance No Vartype Id Marginal R2

7 2,0% 5 1 BASEQ1 0,31
7 1 BASEM1 0,28
8 1 BASEM2 0,27
6 1 BASEY1 0,27
9 1 BASEM3 0,25
10 1 BASEM4 0,24
11 1 BASEM5 0,21
12 1 BASEM6 0,21
2 1 AP2M1 0,10
4 1 NCGM1 0,08

8 1,9% 148 10 DBA 0,20
282 10 AMLP 0,18
197 10 MLPG 0,16
210 10 MLPI 0,15
284 10 MLPA 0,15
278 10 RJA 0,15
249 10 AMU 0,15
285 10 AMJ 0,14
271 10 IMLP 0,14
177 10 YMLI 0,14

9 1,8% 195 10 BOIL 0,69
203 10 UGAZ 0,69
237 10 DGAZ 0,69
142 10 UNG 0,68
258 10 UNL 0,63
209 10 KOLD 0,41
196 10 GAZ 0,30
295 10 CORN 0,08
268 10 JJG 0,07
145 10 GRU 0,06

10 1,6% 26 5 LOAD_DE 0,33
49 6 WIND_DK 0,29
47 6 WIND_DE 0,28
40 6 WINDFOR_DE 0,28
55 7 NETCOMLFW_DE_AT 0,24
30 5 LOAD_PL 0,23
39 6 SCHPROD_DK 0,18
56 7 NETCOMLFW_DE_CZ 0,17
28 5 LOAD_AT 0,15
27 5 LOAD_FR 0,13

11 1,4% 186 10 JJC 0,21
276 10 DBB 0,19
296 10 JJM 0,16
252 10 CPER 0,14
95 9 Smoke 0,13

121 9 Util 0,12
94 9 Beer 0,12
47 6 WIND_DE 0,10
40 6 WINDFOR_DE 0,10
93 9 Soda 0,10

Source: Own work.
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