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INTRODUCTION 

 
Life expectancy has been increasing rapidly in the last 100 years. This progress can be 

attributed to the reduction in infant mortality and medical advancements which make older 

people live longer. Life expectancy at age 60 in advanced European economies was 15 years 

in 1910 and rose to 24 years in 2010 according to the IMF (International Monetary Fund). 

United Nations project that this number will increase to 26 years by 2050. This trend 

positively affects our lives, knowing we live longer. However, governments, pension 

providers and insurance companies providing life annuities must evaluate the financial 

consequences of an ageing population. From their point of view, unexpected longevity 

improvements represent longevity risk. Mortality forecasting and predicting the trend of 

ageing into the future is, therefore, necessary for longevity risk mitigation. Forecasting has 

consistently underestimated the trends in the past, which had a significant impact on the 

financial stability of pension and annuity providers. An IMF report from 2012 projects that 

if everyone in the United States lives three years longer than expected, the living expenses 

of everyone during those unexpected additional years amount to between 25% and 50% of 

the 2010 U.S. GDP (gross domestic product). On the global scale, such underestimation 

means an increase of liabilities by trillions of U.S. dollars. This is especially concerning 

considering the fact that 20-year forecasts made in recent decades by countries such as the 

United States, Canada, Japan, and others have, on average, under-estimated longevity by 

three years (International Monetary Fund, 2012,  pp. 136-139). 

 

The accuracy of mortality and longevity tables is of crucial importance not only for insurance 

companies providing annuities but also for the governments which run their own pension 

schemes that might depend on them. There have been many attempts to project future 

mortality in the literature. The most successful method so far is extrapolation which means 

we assume past trends will continue into the future. The most known extrapolation model is 

the Lee-Carter model, which is regarded as the benchmark in mortality forecasting. Recently 

many new methods and extensions have been developed which eliminate some of the flaws 

of the original Lee-Carter model. One of the most significant weaknesses of this model is 

that it does not include cohort effects which means some cohorts are over and some under-

estimated, which decreases the accuracy of predictions. I will use the Lee-Carter model as 

the basis for mortality forecasting and fit it to Slovenian data to obtain the forecasts. I will 

also use some extensions of the Lee-Carter model, which can include cohort effects for the 

purposes of comparison (Booth & Tickle, 2008, pp. 1-5).  

 

Mortality forecasting is not the only tool used for the protection or prevention against 

longevity risk. Those models can yield expected future mortality rates, but the Solvency II 

regulation also requires that insurance companies are adequately prepared for unexpected 

changes with a sufficient Solvency Capital Requirement (SCR). Pension funds and insurance 

companies that provide annuities can also participate in longevity risk transfer markets 

which enable companies to partially or entirely eliminate unexpected risk through products 
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such as q-forwards, longevity swaps, bonds and others which can decrease the amount of 

SCR. This market is still nascent, and its size is insignificant compared to its potential. I will 

present some of the products used in this market and how insurance companies can use them 

together with reinsurance to mitigate longevity risk.  

 

Risk management has evolved a lot since the 2008 financial crisis. There has been an 

extensive focus on financial companies and how they should manage their risk exposure. 

Exposure to financial risks demonstrates itself quickly due to the volatile environment of 

equity and commodity prices. Therefore, financial derivatives such as options, futures, swaps 

and others are commonly used to mitigate risk. Longevity risk is different. It does not 

become evident as quickly, and has not received as much attention in the past. I believe it is 

essential to emphasize the importance of longevity risk and ways to mitigate it due to 

massive exposures not only for insurance companies but also for the governments. This 

research aims to use up-to-date literature and explain how insurance companies protect 

themselves against longevity risk using mortality forecasting models, risk transfer markets 

and reinsurance. 

 

With regards to mortality forecasting, the purpose is to learn and emphasize its importance 

because predictions those models give are used as the base for constructing mortality and 

longevity tables on which many actuarial calculations rely; furthermore, those models can 

also be used to determine the SCR under Solvency II when an internal model is used, and 

play a crucial role in pricing longevity derivatives where mortality forecasts are necessary. 

For these reasons, I find it meaningful to explore those models. I will start with the Lee-

Carter model, which is regarded as the benchmark, and compare it with other extended 

models to see which one fits the Slovenian data best and how much difference there is 

between their predictions. 

 

The use of derivatives to mitigate financial risks is known and well-established. However, 

longevity risk transfer markets have not received that much attention, and the volume traded 

is still surprisingly low, given that the global size of annuity and pension-related longevity 

risk exposure is between 15 and 25 trillion U.S. dollars. Studying how to price and use 

longevity derivatives might therefore be a valuable contribution and raise awareness of the 

so far underutilized way of managing this risk (Bank for International Settlements, 2013). 

 

My goals are: 

• Explain the importance of mortality in insurance, 

• Fit the Lee-Carter model to Slovenian data and compare it to other forecasting models 

popular in the literature, 

• Review of the products on the longevity risk transfer market and the ways insurance 

companies use those to mitigate longevity risk, 

• Research the role of reinsurance in longevity risk mitigation, 

• Investigate optimal hedging strategies under Solvency II. 
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The master's thesis will be primarily theoretical in nature. Therefore, I will focus on the 

literature review by reading, analyzing and evaluating its relevance to my research area. The 

literature will consist of scientific papers, articles and some textbooks that I have used in 

some of my master's degree courses. I will then synthesize and write about the key findings 

from different sources to achieve the goals of the thesis. This part of the thesis will therefore 

be based on the descriptive method and the method of compilation, where I will present 

longevity risk exposure and its magnitude, as well as possible scenarios assuming 

governments and insurance companies do not mitigate this risk. I will use quantitative data 

analysis to fit the Lee-Carter model to Slovenian data and compare it to other forecasting 

models. First, I will use R as a programming language and collect the Slovenian mortality 

data from the Human mortality database (HMD). Then, I will use R packages StMoMo, 

Lifecontingencies and Demography to fit the model to Slovenian data. 

 

The master's thesis will be divided into three main parts: mortality forecasting, longevity 

derivatives and the use of reinsurance for longevity risk mitigation. All of them will consist 

of multiple subparts. In the first part, I will explain the general role of mortality in insurance 

and give some theoretical underpinnings needed for understanding the importance of 

mortality forecasting. After this, I will proceed with mortality forecasting, its usage and 

compare different models. In the second part, I will focus on presenting longevity derivatives 

that are the most popular in the literature and most often used in practice. Lastly, I will focus 

on the role of reinsurance in managing longevity risk.  

 

1 ROLE OF MORTALITY IN LIFE INSURANCE 

 

Life insurance is constantly evolving, and many new products have emerged due to the 

increase of computational power and development of mathematics in the field of options and 

guarantees by Black, Scholes, and Merton. As a result, actuaries can now design more 

attractive products and give their customers a more comprehensive range of insurance 

contracts to fit their needs. Some of those products include investment components and 

return guarantees. However, the role of mortality is present in all life insurance products, 

and we can understand it better by focusing on simpler products such as whole-life insurance 

and whole life annuities. 

 

When we talk about longevity risk, it is essential to emphasize that longevity improvement 

does not represent a risk in itself; it is the underestimation of it which leads insurance 

companies to set an inadequate price for the product, which in turn causes losses in the future. 

The insurance mechanism uses the contributions of many to finance losses of the few. When 

an insurance company calculates the premium for a life insurance product, the expected 

present value of benefits paid by the insurance company and the expected present value of 

premiums paid by the policyholder must be equal. This is called the principle of equivalence 

which assures that the insurance company can expect to receive as much value from 
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policyholders as it will give back to them. Through this process, the technical premium is 

determined (Bowers, Gerber, Hickman, Jones & Nesbitt, 1997, pp. 167-170). 

 

In whole life insurance, the policyholder is paying the premium, and in return, the 

beneficiary is paid a predetermined amount in case the insured dies. The longer the insured 

lives, the longer the premium payments will be for the insurance company. In the case of 

whole life annuities, people make a single payment or a series of payments, and in return, 

they receive annuity payments later in the future up until they die. To determine the technical 

premium of a whole life insurance product, the insurance company views premiums paid by 

the policyholder as receiving a life annuity since they are paid only if the insured is alive. 

Therefore, insurance companies can expect to receive more premiums due to decreased 

mortality rates. When the insurance company provides a whole life annuity, it has to pay 

annuities as long as the insured lives, where a decrease in mortality rates results in more 

payments by the insurance company. Regardless of which product we look at, the valuation 

of annuities is, therefore, a key ingredient in the pricing of all life insurance products, and it 

also carries the effect of mortality. For this reason, I will explain the role of mortality in life 

insurance through the context of life annuities (Dickson, Hardy & Waters, 2009, pp. 142-

143). 

 

1.1 Effects of mortality on pricing and reserving 

 

Mortality determines the value of annuities used in pricing and reserving for all life insurance 

products. Depending on the product, changes in mortality can increase or decrease the 

longevity risk exposure of an insurance company. A decrease in mortality rates would 

benefit insurance companies focusing on life insurance products instead of life annuities. 

With annuities, a decrease in mortality rates represents a risk, whereas in life insurance this 

increases the probability of premiums being paid. When combining the two lines of business, 

selling life insurance products can be a natural hedge for the longevity risk exposure of the 

annuity business. On the contrary, if mortality rates increase due to an external factor, the 

roles would be reversed. Even though this has not been the case, it would mean less liability 

from the annuity business and less premium income from life insurance. Therefore, the 

annuity line of business would serve as a natural hedge (Dowd, 2003, p. 342). 

 

1.1.1 The use of mortality tables 

 

To use mortality in calculations, actuaries rely on mortality and annuity tables. The choice 

of tables used depends on the line of business. When the insurance company provides life 

annuities or when it relies on receiving them through premium payments in life insurance 

products, the adverse selection impacts the choice of tables chosen in calculations. This is 

the case because we expect that purchasers of annuities are likely to live longer than the 

average population. Therefore, for life annuities, we use tables with lower mortality rates 

(annuity tables) than those we use in pricing life insurance products (mortality tables). 

Longevity, therefore, represents risk regarding annuities and mortality when it comes to a 
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product such as whole life insurance. Because my focal point is longevity risk, I will focus 

on annuity tables used in pricing liabilities of life annuities, not those used in general life 

insurance products where the primary risk is mortality. Although there are different types of 

annuities, all of them serve the purpose of converting asset accumulation into a regular flow 

of income. Longevity represents one of the main risks for annuity providers, and because of 

this, annuity tables are a necessary tool for actuaries when pricing those products. One of 

the problems is that many developing countries lack national mortality statistics and have to 

use the mortality data of other countries. This is the case in Latin America and Asia and has 

been the case in Slovenia in the past. Another issue is that changes in mortality make it 

impossible to rely on the exact data for an extended period. This is why actuaries estimate a 

so-called period table from past data and create a forward-looking table by extrapolating 

future trends in mortality (McCarthy & Mitchell, 2000, pp. 1-5).  

 

Even though mortality improvements have been consistently underestimated in the past, 

many countries still do not have a regulatory framework to ensure that pension plans and 

annuity providers use appropriate tables for pricing and reserving that would account for 

future mortality development. The regulation dealing with annuity tables varies a lot across 

countries; where some require a minimum annuity table for valuing annuity liabilities, and 

others do not. Regulation can also require incorporating mortality improvements even if the 

minimum annuity table is not required. In the U.K., annuity providers are not required to use 

a minimum annuity table set by the regulation but need to include mortality improvements 

in their calculations. In the U.S., the opposite is true: annuity providers are required to use a 

minimum annuity table but do not have to include mortality improvements in their 

calculations. When this is the case, a minimum annuity table usually already accounts for a 

certain amount of future mortality improvement. There are countries where both are 

required, as is the case in France (OECD, 2014).  

 

In the case of Slovenia, the Insurance Supervision Agency set the German annuity tables as 

a minimum standard in the past. However, in 2010 Slovenian annuity tables were created 

and became a standard for valuing annuity liabilities in Slovenia. The table also accounts for 

future mortality improvements through stochastic models using past data (Ahčan, Medved, 

Pittaco, Sambt & Sraka, 2012). 

 

1.1.2 Quantifying the size of longevity risk 

 

Using a particular annuity table significantly impacts the valuation of liabilities. Many 

countries have developed numerous tables in the past which have different mortality rates 

due to different assumptions and models used in their creation. To emphasize how vital the 

assumptions and models used in developing annuity tables are, we need to quantify the size 

of the risk it serves to manage.  

 

Private sector longevity risk exposure arising from annuity and pension liabilities is 

enormous. As an example, in the U.S. ($14,46 trn), the U.K. ($2,685 trn), and the 
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Netherlands ($1,282 trn). Globally this exposure is between 15 in 25 trillion U.S. dollars 

(Pigott & Walker, 2016, p. 6). Michaelson and Mulholland (2014) estimated that the 

potential size of global longevity exposure is between $60 and $80 trillion, where around 32 

trillion were linked to private pension systems, including pension funds, banks, investment 

companies, and insurance companies. An interesting estimation they made is that each 

additional unexpected year of life at the age of 65 amounts to an increase in liabilities by 4-

5%. This is equivalent to a 0.8% increase in annual mortality improvement over ten years. 

The annual improvement of a rate of 0.8% is usually expected, so when they estimated the 

consequences in the tail event being 2.5 standard deviations away or an annual mortality 

improvement of 2% over a decade, the longevity-related liabilities could increase by 10-

12.5%. Going back to the massive longevity risk exposure, this would mean that the global 

liability of pension systems could be more than $6 trillion higher in case mortality improves 

faster than expected (Blake, Cairns, Dowd & Kessler, 2019). 

 

1.1.3 Annuity values and life expectancies under different annuity tables 

 

As stated earlier, countries use different annuity tables, which evolve over time. As a result, 

they have a significant impact both on pricing and reserving for annuity liabilities. For 

example, the U.K. pension funds use tables called Self-Administered Pension Scheme 

(SAPS) tables for funding and accounting purposes, published in 2008. On the other hand, 

insurers tend to use older tables for reserving and calculating the premium, where they 

usually used tables PCMA (Pensioners Combined males amounts) or PCFA (Pensioners 

Combined female amounts) published in 2006, which can include mortality improvements 

published by the Continuous Mortality Investigation (CMI), owned by the U.K. Institute and 

Faculty of Actuaries.  

 

When comparing the annuity factors and life expectancies of different tables across different 

countries, it is evident that assuming mortality improvements dramatically decreases the 

longevity risk and the chance of a shortfall in provisions. Annuity values were based on a 

4.5% discount rate in all cases below. 

 

Using the PCMA 2000 table with a 1.75% rate of improvement, the 2012 life expectancy of 

a male at the age of 65 is 24.1 years, and the annuity factor is 14.5. The SAPS table that uses 

data from 2004 to 2011, and has a 1.5% rate improvement gives us the life expectancy of 

the same-aged male to 23 years and the annuity factor of 14.2. Using the SAPS table instead 

of PCMA 2000 would result in underestimating the life expectancy of a male aged 65 for 

more than one year. Therefore, given the annuity factors, this means that the SAPS 2 table 

would underestimate future liabilities by around 3% compared to PCMA 2000, and we get 

similar results focusing on women aged 65. Even though the difference is subtle, it is still 

significant given the longevity risk exposure in the U.K. stated previously.   

 

The differences are even more pronounced in other countries such as Switzerland, where 

using the ERM 2000 table for 65-year-old males results in a life expectancy of 26 years and 
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an annuity factor of 15.2 and using the EVK 2000 table in the same example results in a life 

expectancy of 17.6 years and an annuity factor of 12. The difference between estimated 

future liabilities would be even higher in such a case. For this reason, the law prescribes an 

additional supplementary reserve in case EVK 2000 table is used. We can see similar results 

in other countries as well, which applies to both genders. The main reason for changes 

between different annuity tables is our assumption about the future longevity improvement 

rate.  

 

Because of the trend of decreasing mortality rates, insurance companies need to select the 

optimal rate of longevity improvement that will provide the best estimates for the future. 

This is crucial to prevent setting aside additional reserves in the future after realizing 

mistakes about mortality assumptions made in the past. Additional reserves are the result of 

underpricing due to wrong mortality assumptions, which means the insurance company 

needs to compensate for the difference to fulfil its obligations. Doing so affects its 

profitability and financial stability. The competitive environment and achieving the needs of 

shareholders force insurance companies and other life annuity providers to seek the correct 

development of future mortality rates to prevent both under and over-estimating reserves. 

Before discussing the models for forecasting future longevity improvements, I will focus on 

essential mortality functions and notations (OECD, 2014).  

 

1.2 Mortality functions and notations 

 

To understand mortality forecasting methods, including mortality functions and notations, it 

is helpful to describe these before presenting the models.  

 

1.2.1 The lifetime distribution [𝐹𝑥(𝑡)] 

 
It represents the probability that 𝑇𝑥, or future years lived by a person aged x, will be less than 

t. In actuarial notation, this is denoted as tqx and is called the mortality rate at age x. 𝑇𝑥 + x, 

therefore, represents the age-at-death random variable. 

 

𝐹𝑥(𝑡) = 𝑃𝑟[𝑇𝑥 ≤ 𝑡] = 𝑡𝑞𝑥 (1) 

 

1.2.2 The survival function [𝑆𝑥(𝑡)] 

 

This represents the probability that 𝑇𝑥, or future years lived by a person aged x, will be larger 

than t. In actuarial notation, this is denoted as tpx. 

 

𝑆𝑥(𝑡) = 1 − 𝐹𝑥(𝑡) = 𝑃𝑟[𝑇𝑥 > 𝑡] = 𝑡𝑝𝑥 (2) 
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1.2.3 The force of mortality [𝜇𝑥] 

 

This can be interpreted as the probability that a person aged x dies before reaching age x+dx 

 

𝜇𝑥 = lim
𝑑𝑥→∞

(
1

𝑑𝑥
) ∙ 𝑃𝑟[1 − 𝑆𝑥(𝑑𝑥)] (3) 

 

(Dickson, Hardy & Waters, 2009, pp. 17-18). 

 

1.2.4 Central mortality rate [𝑚𝑥] 

 

The Lee-Carter model uses the central morality rate which is the rate of probability that a 

life aged anywhere on the interval [x, x+t] dies before reaching age [x+t]. This is not the 

same as a probability of death tqx which can be described as the initial mortality rate. We use 

central mortality because it considers that some lives will die during the year, which means 

𝑚𝑥 is always higher than tqx. The central mortality rate, therefore, represents the ratio 

between deaths during the period, denoted with 𝑑𝑥 and the average population over that 

period, denoted with 𝐿𝑥 below. We will use the logarithmic form in the models because of 

the exponential shape of mortality.  

 

𝐿𝑥 = ∫ 𝑙𝑥+𝑡 ∙ 𝑑𝑡 = ∫ 𝑙𝑥 ∙ 𝑡𝑝𝑥 ∙ 𝑑𝑡
1

0

1

0

  (4) 

 

Therefore: 

 

𝑚𝑥 =
𝑑𝑥

𝐿𝑥

(5) 

 

If we assume the constant force of mortality to hold between [x, x+t], the central death rate 

𝑚𝑥 is generally very close to the force of mortality 𝜇𝑥   in the middle of the interval (Thatcher, 

Kannisto & Vaupel, 1999).  

 

1.2.5 Probability of death [𝑞𝑥] as a function of 𝑚𝑥 

 

Under the assumption that the force of mortality is constant on the intervals [x, x+t] and that 

the number of deaths follows a Poisson distribution then, we can express tqx as follows: 

 

𝑞𝑥 = 1 − 𝑒−𝑚𝑥~1 − 𝑒−𝜇𝑥 (6) 

 

The assumption of the constant force of mortality and Poisson distribution will later be used 

in the Lee-Carter model (Spedicato, 2013a, p. 3). 
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1.2.6 Curtate life expectancy [𝑒𝑥] 

 

Life expectancy represents the additional number of years an individual of a given age x can 

expect to live at time t. This is usually denoted as 𝑒𝑥. When the life expectancy is in whole 

years, we call it the curtate life expectancy, which can be expressed as follows: 

 

𝑒𝑥 = ∑ 𝑘𝑝𝑥

∞

𝑘=1

(7) 

 

I use curtate life expectancy for model comparisons below (Dickson, Hardy & Waters, 2009, 

p. 33). 

 

2 MORTALITY FORECASTING 

 

In the previous chapter, I have defined the importance of mortality through life annuities 

which are a crucial building block for pricing life insurance products. Moreover, because of 

the longevity improvements, the need for forecasting mortality is necessary for longevity 

risk mitigation. Insurance companies recognize this, and in Slovenia and other European 

Union (EU) member countries, they state their exposure to longevity and ways to mitigate it 

in their Own Risk and Solvency Assessment (ORSA). Most insurance companies in Slovenia 

are not exposed to this risk to a large degree, but a few are by providing annuities. They 

typically use stochastic mortality forecasting models to manage their longevity risk 

exposure. In this chapter, I will apply the Lee-Carter model to Slovenian data and compare 

the results to those by newer extended models. The purpose of this chapter is to explain how 

we can forecast mortality by using different models and how the estimates differ depending 

on the one we use. I will compare the results of the Lee-Carter model because it is used in 

some Slovenian insurance companies dealing with longevity risk. This chapter might also 

serve as an insight later when the pricing of longevity derivatives is presented (Insurance 

Supervision Agency, 2022). 

 

2.1 Historical development of mortality models 

 

We have been trying to model mortality for ages. Many models have been proposed since 

Gompertz published his law of mortality in 1825. However, in the last few decades, the 

methods have become more sophisticated and steered away from subjective judgement. The 

most recent introduction of stochastic methods improved the process further, where we can 

produce a forecast probability distribution rather than a deterministic point forecast. There 

are three main approaches to mortality forecasting: extrapolation, explanation and 

expectation.  
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The explanation method tries to make forecasts based on specific causes of death involving 

different disease processes and known risk factors. The expectation is based on experts' 

opinions, and actuaries have relied heavily on this method in the past but are now moving to 

more sophisticated extrapolative methods on which most new models rely. The main idea of 

the extrapolative method is that it assumes that historical trends will continue in the future. 

These models take advantage of regularities in age patterns and trends over time. This is 

usually a reasonable assumption, but exceptions do occur, such as temporary increases in 

young adult male mortality due to deaths from AIDS in the past or the recent pandemic 

(Booth & Tickle, 2008). 

 

Because mortality forecasting has become more critical in the recent past, new models are 

constantly being developed, and extensions of established models are being performed, all 

in order to predict future mortality rates as accurately as possible. In the past, most methods 

were based on the method of explanation and expectation, which were highly subjective. 

However, after Lee and Carter presented their model in 1992, it became a leading statistical 

mortality model and has served as a benchmark of extrapolative mortality models (Lee, 

2000, pp. 80-81). 

 

Many models, following the publication of the original Lee-Carter (LC) model, also referred 

to as the M1 model, were trying to improve the goodness of fit by adding additional terms. 

After 2000 the age period cohort model became popular even though it has been previously 

used in demography, sociology and epidemiology for a long time. Renshaw and Haberman 

extended the LC model, to include the cohort effects. This model, referred to as the M2 

model, will not be discussed here since I will focus on its extended version (M3). The age 

period cohort model (APC or M3 model) encompasses the vast majority of mortality models, 

which can be expressed in terms of generalized linear models or generalized non-linear 

models, as shown by Currie in 2016. The APC model includes cohort effects and is a special 

case of the M2 model. 

 

One of the most prominent variants of the LC model is the Cairns-Blake-Dowd (CBD or 

M5) model, which uses an entirely different approach compared to the LC model. This 

model can also incorporate the cohort effect and a quadratic age term and is then called the 

M7 model in the literature. This improves the model fit on ages of a broader range and 

captures the cohort effects, which we will see in the residual analysis later. We expect that 

the models which include cohort effects (APC and M7 model) will better fit Slovenian data 

than those which do not (LC and CBD model) (Cairns et.al, 2008, p. 2). 

 

2.2 The Lee-Carter model 

 

The model is specified in the following way: 

 

log(𝑚𝑥,𝑡) = 𝛼𝑥 + 𝛽𝑥𝜅𝑡 + 𝜀𝑥,𝑡 (8) 
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We can interpret the parameters of the model as: 

• 𝑚𝑥,𝑡 is the central mortality rate at age x in year t, 

• 𝛼𝑥 is average (over time) log-mortality at age x and it captures the general shape of 

log(𝑚𝑥,𝑡), 

• 𝜅𝑡 is the time-variant variable, and it captures how the mortality has been decreasing 

over time, 

• 𝛽𝑥 shows how different ages respond to declining mortality over time, 

• 𝜀𝑥,𝑡 are independent and identically distributed error terms expected to be distributed 

normally. 

 

The original Lee-Carter model is a two-component model with a single random process 𝜅𝑡 

which drives all the dynamics. The mortality forecasts are obtained using univariate ARIMA 

processes where 𝜅𝑡 follows a one-dimensional random walk with drift.  

 

𝜅𝑡 = 𝛿 + 𝜅𝑡−1 + 𝜉𝑡        𝜉𝑡~𝑁(0, 𝛿𝜅
2) (9) 

 

Here 𝛿 represents the drift parameter and 𝜉𝑡    the Gaussian white noise process with variance 

𝛿𝜅
2
. To ensure the identifiability of the model, Lee and Carter proposed the following 

parameter constraints: 

 

∑ 𝛽𝑥  =  1

𝑥

     𝑎𝑛𝑑     ∑𝑡  =  0

𝑡

(10) 

 

(Villegas, Millossovich & Kaishev, 2017, p. 6).  

 

In practice, insurance companies use the Poisson log-bilinear variant of the Lee-Carter 

model, which is popular since it is computationally more stable, and it does not assume the 

homoscedasticity of the random errors. Therefore, I will also use this variant later. Assuming 

the Poisson distribution for the number of deaths in a given interval, the parameters are 

obtained by an iterative procedure (Insurance Supervision Agency, 2022). 

 

The Lee-Carter model is prevalent due to its simplicity and the fact that it provides an 

excellent fit for historical data in many countries. The term 𝛼𝑥 allows the model to be used 

for all ages, even younger ones, where the shape of a mortality table can be complex. The 

term 𝛽𝑥𝜅𝑡   captures the trend in the evolution of mortality across different ages. There have 

been models with more than one term of 𝛽𝑥𝜅𝑡.   Renshaw and Haberman proposed one such 

model in 2003. However, their proposed model is not widely used because it adds more 

complexity than the fit with historical data. Another benefit of the Lee-Carter method is the 

linear trend in 𝜅𝑡 which is common in most datasets where random walk with drift time 

series structure is used to yield estimates of future central mortality rates.  
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Even though the model is easy to use and has the benefits stated above, it still has some 

severe limitations. One limitation is that the model only has a one-period term 𝜅𝑡. This 

implies that projections through all future years will have the exact change in mortality rates 

for a given age. This assumption that changes in mortality rates are perfectly correlated in 

all future years is unrealistic and presents a problem when determining the riskiness of 

liabilities. Another significant issue is that 𝛽𝑥 can give wrong projections. As said earlier, 

𝛽𝑥 captures how different ages respond to mortality improvements. When we look at the 

extended range of historical data for most countries, 𝛽𝑥 will be high for ages 0 to 50 and 

much lower for ages 60 to 90. This means that most mortality improvements in the past 

occurred due to improvements at younger ages. When using more recent data, 𝛽𝑥  changes to 

reflect the recent patterns of mortality improvements, especially at older ages. This means 

that fitting the LC model to an extended range of historical data will continue to project very 

high rates of improvement at younger ages and lower rates at older ages (OECD, 2014). 

 

Another issue specific to the Lee-Carter model is that it does not include cohort-specific 

effects. Those are the effects which depend on the individual year of birth. This model 

assumes that the sensitivity of log-mortality rates at each age (𝛽𝑥) remains constant, but it 

has been observed that age-time interaction is highly likely and that incorporation of cohort 

effects (age-time interactions) improves the fit of the model (Li, 2019).  

 

2.3 The APC model 

 

The APC model is an extension, or a special case, of the original Renshaw-Haberman (RH) 

model, which is basically a LC model with added cohort effects developed in 2003. The RH 

model is specified in the following way: 

 

log(𝑚𝑥,𝑡) = 𝛼𝑥 + 𝛽𝑥
(1)

𝜅𝑡 + 𝛽𝑥
(0)

𝛾𝑡−𝑥 (11) 

 

Where we assume that 𝜅𝑡 follows a one-dimensional random walk with drift, mortality 

projections of this model are obtained by using time series forecasts of 𝜅𝑡 and 𝛾𝑡−𝑥 which 

are generated by using univariate ARIMA processes assuming that there is independence 

between the period and cohort effects. The APC model differs from the original RH model 

because it sets both 
𝑥
(1)

 and 
𝑥
(0)

 to the value of 1. The APC model is therefore specified as 

follows: 

 

log(𝑚𝑥,𝑡) = 𝛼𝑥 + 𝜅𝑡 + 𝛾𝑡−𝑥 (12) 

 

The identifiability of the model is ensured by imposing the following constraints: 

 

∑ 𝜅𝑡 

𝑡

= 0 ,   ∑ 𝛾𝑐  = 0

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝜅 

,     ∑ 𝑐𝛾𝑐  =  0

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝜅 

(13) 
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The last two constraints ensure that cohort effects fluctuate around zero and that there is no 

noticeable linear trend present (Villegas, Millossovich & Kaishev, 2017, pp. 7-8).  

 

These identifiability constraints allow us to interpret the demographic significance of the 

parameters. The first two constraints mean that 𝛼𝑥  can be interpreted as the average level of 

mortality at age x in a given period where 𝜅𝑡 and 𝛾𝑡−𝑥 would represent deviations from that 

average. The first would capture the effect of mortality improvement, and the second would 

capture the cohort effect. The last constraint ensures that no deterministic trend is randomly 

assigned to the age and period effects (Hunt & Blake, 2020).  

 

The APC model uses cohort effects which means that, in theory, it should provide a better 

basis for forecasting than the model, which does not. In practice, their use is somewhat 

limited because they require a lot of data which is sometimes hard to obtain. The main 

disadvantage of cohort models is that if the entire age range is of interest, data covering one 

hundred years provides estimates for one cohort only, so we need a much longer series of 

annual data for forecasting. We usually focus on older ages when forecasting mortality 

which to some extent eliminates this issue but not entirely (Booth & Tickle, 2008, pp. 20-

21). 

 

2.4 The CBD model 

 

Cairns, Blake and Dowd introduced the CBD model in 2006 to model survivor bonds 

proposed by the European Investment Bank. The purpose was to resolve issues regarding 

the LC model by taking a completely different approach. The CBD model assumes that 

probabilities of death can be modelled as follows: 

 

logit(𝑞𝑥,𝑡) = 𝑡
(1)

+ (𝑥 − 𝑥̅)𝑡
(2)

(14) 

 

Where 𝑥̅ represents the average age in the data. It assumes that the logit of probabilities of 

death is a linear function of age. This can be a reasonable assumption when considering 

higher ages of 50 and above, but it does not hold at younger ages. This is because we have 

high probabilities of death observed for ages between 15 and 25 due to accidents. Mortality 

in ages below 2 is also high due to infant mortality.  

 

This means the CBD model can only be used at older ages. The 𝑡
(1)

 in the model represents 

the level of mortality in a given year and across all ages and 𝑡
(2)

 determines the increase in 

mortality between one age and the next for the year. 

 

The CBD model is widely used to mitigate risks related to liabilities linked to probabilities 

of death at high ages, such as annuities. The model has similar advantages as the LC model, 

such as ease of fit and good interpretability; however, the disadvantages are that below the 

age of 50, the linearity of logit(𝑞𝑥,𝑡) is no longer a reasonable assumption. Another issue it 
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has in common with the LC model is that it does not include cohort effects which might 

decrease the fit of the model (OECD, 2014, pp. 69-70).  

 

2.5 The M7 model 

 

The M7 model is one of the extensions of the CBD model, which includes cohort and the 

quadratic age effect.  

 

The model is specified in the following way: 

 

logit(𝑞𝑥,𝑡) = 𝑡
(1)

+ (𝑥 − 𝑥̅)𝑡
(2)

+ 𝑡
(3)((𝑥 − 𝑥̅)2 − 𝜎𝑥

2) + 𝛾𝑡−𝑥 (15) 

 

Where 𝜎𝑥
2 is the average value of (𝑥 − 𝑥̅)2. To identify the model, Cairns et. al (2008) 

imposed the following restrictions: 

 

∑ 𝛾𝑐  = 0

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝜅

,       ∑ 𝑐𝛾𝑐  = 0 ,      

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝜅 

∑ 𝑐2𝛾𝑐  =  0

𝑡𝑛−𝑥1

𝑐=𝑡1−𝑥𝜅 

(16) 

 

This ensures, just as in the APC model previously, that cohort effects fluctuate around zero 

and that there is no noticeable linear trend or quadratic trend present. The three coefficients 

𝑡
(1)

, 𝑡
(2)

, 𝑡
(3)

 are modelled as a 3-dimensional random walk with drift. The 𝛾𝑡−𝑥 is a cohort 

effect and is modelled as an AR(1) process. (Dowd et.al, 2010). “The third index, 𝜅𝑡
(3)

, 

measures the curvature of the logit-transformed mortality curve.” (Tan, Li, Li & Balasooriya, 

2014, p. 9).  

 

3 MODEL COMPARISONS 

 

In order to compare the models, I obtained the data from the Human mortality database 

(HMD), which is publicly available online. In this database, I obtained mortality rates of the 

Slovenian population from 1983 and 2019 for both males, females and total rates, which 

include both genders. The main objective of comparison is to see which model fits the data 

best and how their estimates for a life expectancy of a cohort born in 1954 differ. Therefore, 

I chose the cohort born in 1954 since those people reached the age of 65 in 2019, and this is 

usually the age for which insurance companies are interested in forecasting life expectancy. 

It is important to understand that the tables obtained by using those models are based on 

population mortality and cannot be used for valuing annuities. For that certain loading 

factors would have to be applied to the predictions since mortality rates in annuity tables are 

lower than the general population mortality rates due to abovementioned reasons.  
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3.1 Slovenian mortality from 1983 to 2019 

 

Slovenian mortality rates have been decreasing in the period from 1983 and 2019. However, 

the level of mortality improvement has not been the same at all ages. We can see that in 

figure 1 where the vertical distance between lines is different across ages.  

 

Figure 1: Slovenian death rates 

  

Source: own work 

 

The figure above shows log-central death rates, which increase as people get older. The 

colour of the lines represents the year in which the data was taken (the red lines are closer to 

data from 1983, and the purple are closer to 2019). Unfortunately, the data after the age of 

90 is unreliable due to the tiny sample of people that reach this age.  

 

Insurance companies are usually only interested in the development of mortality at older 

ages, so I will fit the model to the data from 50 to 90. However, I opt not to include the ages 

beyond 90 due to the abovementioned problem. This means that I assume everyone dies at 

the age of 90 or before. From here onwards I will only present results obtained by using data 

for males, the ones obtained by using the data for females are included in the Appendices. 

 

3.2 Parameters of the LC model 

 

Mortality forecasting models try to capture the shape and movement of mortality rate over 

time and model that process. For example, in the data used in figure 2, we can see the 

parameters of the Lee-Carter model described earlier. The Lee-Carter model I used was the 

Poisson log-bilinear variant, where parameters are obtained by an iterative process.  
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Figure 2: Parameters of the LC model (males) 

 

Source: Villegas, Milossovich & Kaishev (2017, p. 17). 

 

We can see that 𝜅𝑡 is decreasing, showing how mortality has declined over time, however, 

the improvements have not been equal at all ages. The parameter 𝛽𝑥 is stable from age 70 to 

80 and then falls sharply. This means that the longevity of those between 70 and 80 improved 

faster than those aged above 85, for example. This makes sense since mortality can only be 

improved up to a certain point, after which the improvement is less significant due to human 

limitations. The parameter 𝛼𝑥 increases almost linearly between ages 50 and 90 because it 

captures the general shape of log(𝑚𝑥,𝑡), and we know older people have a higher chance of 

dying (both 𝑚𝑥,𝑡 and log(𝑚𝑥,𝑡) increase with age).  

 

If we want to predict how the central rate of mortality will develop in the future, we need to 

simulate the time-dependent variable or variables depending on the model. All other 

variables are assumed to follow the same pattern as they did in the past, which means we 

assume different ages will respond to longevity improvements in the same manner as they 

did in the past. 

 

3.3 Forecasting time dependent variables 

 

Obtaining the future mortality rates requires forecasting variables that are time dependent. 

The assumptions made in forecasting are that 𝜅𝑡 follows a random walk with drift and that 

cohort effects follow an ARIMA processes. Cohort effects are only present in the APC and 

M7 model. Therefore, we use the ARIMA (1,1,0) with zero mean for the APC model and 

ARIMA (0,0,0) for the M7 model which is done by default in StMoMo package. The 

projections are for 35 years into the future. In figure 3, we can see the obtained forecasts of 

time dependent parameters of LC, CBD and M7 model for males. 
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Figure 3: Forecasting time-depending variables (males) 

                       LC                                                                CBD 

 

Source: Villegas, Milossovich & Kaishev (2017, p. 23). 

 

The LC and CBD models do not include the cohort effect; therefore, we only perform the 

forecast using the parameter 𝜅𝑡. The parameter 𝜅𝑡 has a linear trend in figure 2, which is 

expected to continue in the future, meaning mortality rates across all ages will decrease. In 

the CBD model, the 𝑡
(1)

 has the same interpretation as in the LC model; therefore, the 

forecasts look very similar, and we expect that mortality rates will decrease in the future. 

The 𝑡
(2)

 determines the rate of ageing and can, therefore, be interpreted as the rate of 

improvement in longevity. 

 

Figure 4: Forecasting time-dependent variables and cohort effects (males) 

M7 

 

Source: Villegas, Milossovich & Kaishev (2017, p. 23). 

 

Figure 4 shows the forecasts for the M7 model, which also includes cohort effects. Because 

the StMoMo package uses the ARIMA (0,0,0) without a constant, we got a time series with 
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the mean 0. Forecasting of time-dependent variables for APC model and using data for 

females is in the Appendices 5 and 6. 

 

3.4 Forecasting future mortality rates and obtaining life expectancies 

 

We can obtain the forecasts for different models' log-central death rates with the estimated 

parameters and construct cohort mortality tables used for actuarial calculations.  

 

3.4.1 Forecasts of log-central mortality rates 

 

Below are the 35-year forecasts of different models for males aged 65, 75 and 85. The trend 

of a decrease in mortality rates is common in all the models, but there are differences in 

confidence intervals.  

 

Figure 5: Forecasts of log-central death rates (males) 

                                             LC                                                      CBD                                                           

 
       APC                                                       M7 

 

Source: Villegas, Milossovich & Kaishev (2017, p. 29). 

 

Shades of the colours present confidence intervals at 50%, 80% and 95% levels. The dots 

represent historical mortality rates. In figure 5, we can see that the LC model has the 

narrowest projection intervals. This is also one of the drawbacks of the LC, which poses 
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challenges when using the model to assess longevity risk at extreme percentiles. With the 

APC and M7 model, which include cohort effects, we can see a change in the pattern where 

mortality rates slightly increase in some years, which might indicate that cohort effects are 

present in the Slovenian male data (Villegas, Milossovich & Kaishev, 2017). 

 

3.4.2 Forecasts of central mortality rates of a male cohort born in 1954 

 

To calculate life expectancies and annuity values, we need to project the mortality rates of a 

specific cohort. For example, below are the projected central mortality rates of a male cohort 

born in 1954. StMoMo package yields results of 𝑚𝑥 for APC and M7 model as well. The 

relation between 𝑚𝑥 and 𝑞𝑥 which used in these two models is shown in equation 6. 

 

Figure 6: Forecasts of central mortality rates for the 1954 male cohort 

                 LC                             CBD                            APC                             M7 

    

Source: Villegas, Milossovich & Kaishev (2017, p. 30). 

 

Historical mortality rates are in black, starting from the age of 29 since the data obtained 

from HMD started in 1983 when a chosen cohort was 29 years of age and ended in 2019 

when this cohort was 65 years old. The red colour starts in 2020 and represents the forecast 

central death rates for 35 years when the cohort reaches the age of 90.  

 

3.4.3 The life expectancy of a male cohort born in 1954 in 2019 

 

From figure 6, we can calculate the life expectancy of a 65-year-old male in 2019. The results 

of different models for males and females are shown below. The mortality tables produced 

by different models can be found in the Appendix 13. 

 

Table 1: Life expectancies of a 1954 cohort 

Gender LC CBD APC M7 

Male 65 18.146 18.027 18.408 17.715 

Female 65 21.193 20.739 20.726 20.115 

Source: Spedicato (2013b, p. 18). 
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The results of the models are expected to be lower than the actual values because I simplified 

the data and assumed everyone dies at the age of 90 or sooner. Furthermore, insurance 

companies use annuity tables when the risk is longevity and apply selection factors which I 

did not. Because I used the same data for all the models, we can still compare the results and 

recognize that the LC model gives the highest results. One of the reasons for this might be 

that the APC and the M7 include cohort effects which might increase mortality rates at 

certain ages compared to other models, which do not include cohort effects. This is visible 

in figure 5. The differences between the models are not significant but might increase if we 

used them on younger cohorts. The choice of the model is usually determined ad hoc, where 

we compare the models based on their goodness of fit. 

 

3.5 Residual analysis 

 

The choice of the model depends on how well it fits the data, which can vary depending on 

the underlying population. The choice also depends on the presence of cohort effects. In the 

U.K. population, cohort effects are present, and the choice of a model which includes them 

might fit the data better than the LC or CBD model. In Slovenia, the cohort effects are not 

as significant as seen in figure 7 below, where the deviance residuals for males between 50 

and 90 are shown. 

 

Figure 7: Deviance residuals in a colourmap (males) 

                LC                            CBD                          APC                            M7 

   

Source: Villegas, Milossovich & Kaishev (2017, p. 20). 

 

Figure 7 illustrates the difference between the two models, which include cohort effects 

(APC and M7) and those that do not (LC and CBD). The cohorts are on the diagonals, and 

we can see that some cohorts in the LC and CBD model are over and some under-estimated. 

The errors are spread much more randomly in the APC and M7 model, which is expected. 

After all, additional variables that capture cohort effects can explain the variability that the 

other two models cannot. 
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Figure 8: Deviance residuals in a scatter-plot (males) 

                                       LC                                                                  APC 

  

Source: Villegas, Milossovich & Kaishev (2017, p. 21). 

 

The cohort effects can also be seen when plotting the residuals with a scatter plot as seen in 

figure 8 above. We can see a pattern in the LC model, whereas the APC model has more 

random residuals. Because the cohort effects seem to be subtle, we can also compare the 

models based on the information criteria AIC and BIC. The male data was used in the table 

below. 

Table 2: Information criteria (males) 

Inf. criteria LC CBD APC M7 

AIC 12702.67 13234.25 12432.73 12403.19 

BIC 13325.63 13628.26 13242.05 13388.22 

Source: Villegas, Milossovich & Kaishev (2017, p. 22). 

 

The AIC and BIC criteria penalize more complex models with more parameters. We can see 

that the lowest AIC and BIC belong to the M7 and APC model. All of the results are very 

close, which means that adding to the complexity of the model by introducing the cohort 

effect may be unnecessary, and the LC model may be the right choice. This is because the 

cohort effects present in the Slovenian male data from 1983 to 2019 obtained by HMD might 

not be significant enough to justify using a more complex model that captures these effects. 

In addition, similar results are obtained by using data for females (see Appendix 10). This 

also explains why many insurance companies in Slovenia prefer the LC model.  

 

3.6 Drawbacks of mortality forecasting models 

 

The choice of the model depends heavily on the population we are working with. Even 

though stochastic mortality models give us an insight into how future mortality rates might 

improve, they cannot provide complete answers. Therefore, the results obtained from any of 

the models should not be accepted blindly and must be placed in context with the recent 

evolution of mortality. For example, if the mortality improvements have accelerated rapidly 

in the recent decade due to medical advances or other external factors, then forecasts based 

on models likely underestimate future life expectancies because they reflect a more general 

average improvement over the entire historical period. Currie et al. proposed one answer to 
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such a problem in 2004 in the P-spline model, which puts more weight on the recent 

improvements that can help mitigate this issue.  

 

Therefore, the data used for the calculations is vital in forecasting mortality. The OECD 

(Organization for Economic Co-operation and Development) estimated that the life 

expectancy of 65-year-olds has been increasing steadily over the past few decades and 

accelerated since 1990, which means that models such as the LC and CBD, which they 

compared, would lead to a shortfall in provisions for longevity. Another issue is a significant 

difference in mortality for white-collar and higher-income pensioners. Therefore, the 

socioeconomic profile of the population for which standard tables are used should be 

adjusted for the level of mortality. Managing longevity risk with forecasting models only 

cannot provide us with all the answers but can be the first step in managing longevity risk. 

Those models provide us with the answers about expected mortality improvements. 

However, unexpected improvements still represent a risk which needs to be addressed 

(OECD, 2014). 

 

3.7 Application of mortality forecasting models 

 

Mortality forecasting methods do not give us perfect predictions about future mortality; 

hence longevity risk cannot be managed through this tool alone. Unexpected increases in 

mortality are a risk that those models do not hedge against, and insurance companies and 

annuity providers need to evaluate the financial impact of those unexpected improvements. 

A sound risk management strategy for longevity risk is based on correct mortality 

assumptions with future improvements obtained by the stochastic model that fits the data 

best, and evaluating the financial impact of significantly under-estimating future mortality 

improvements, which is done by following Solvency II regulation in the EU.  

 

Under Solvency II, insurance companies need to calculate the Solvency Capital Requirement 

(SCR), which ensures that companies can meet all their obligations in 99.5% of the cases in 

a period of one year. In addition, the SCR requirement considers many risks the insurance 

company is exposed to, which includes longevity risk. This means insurance companies need 

to set aside additional capital, which ensures the company’s solvency even if the future 

mortality improvements using stochastic models have been underestimated.  

 

Solvency II offers two methods to calculate SCR. Companies can use the standard formula 

as it is written in the regulation and use a one-off shock on all mortality rates in the amount 

of 20%. This means investigating the financial impact of underestimating mortality 

improvements for all ages by 20% in a period of one year. Companies can also use internal 

models, which are the stochastic models discussed earlier which are able to estimate future 

mortality rates and the uncertainty in their forecasts. We have seen that those models produce 

confidence intervals that can quantify the uncertainty with respect to death rates. In figure 5, 

we can see that the LC model has the narrowest confidence intervals, which would produce 

the lowest SCR result out of the models discussed. The size of the SCR differs significantly 
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between the standard formula and using stochastic models, where stochastic models yield a 

lower SCR compared to the standard formula, which is also a part of the reason many 

insurance companies use those models for their SCR calculations (Wu, 2015, pp. 6-7). 

 

Mortality forecasting models also play a crucial role in determining the risk premium in 

longevity derivatives. This is because those products are used as a hedge against unexpected 

mortality changes in the future, which is usually estimated by first calculating expected 

changes via the stochastic models and then adding a risk premium based on the volatility of 

those predictions. Therefore, the forecasting model greatly influences longevity derivatives' 

prices (Blake, Cairns, Dowd & Kessler, 2019, pp. 42-44). 

 

4 LONGEVITY DERIVATIVES 

 

New risk management solutions are needed because of the increasing capital required due to 

longevity risk. One solution for companies who try to mitigate unexpected longevity 

improvements might be to use capital markets to hedge those risks. Insurance companies 

could fully or partially eliminate their longevity exposure with financial instruments 

depending on their risk preference.  

 

4.1 Development of longevity risk transfer market 

 

The longevity risk transfer market started in 2006 in the U.K. To follow up on this 

development, the British Actuarial Journal published an article, “Living with mortality”, 

focusing on how insurance companies can use mortality-linked securities and over-the-

counter contracts to manage their longevity risk exposures. This paper included a detailed 

analysis of two such securities: A mortality catastrophe bond issued by Swiss Re in 

December 2003 and a longevity bond issued by BNP Paribas in November 2004. They 

further investigated the potential use of hypothetical mortality-linked securities such as 

bonds, swaps, futures and options. The paper mainly focused on the issues concerned with 

the construction of mortality indices and possible barriers to market development; however, 

further research and discussions followed as this new market emerged. The evidence for the 

existence of global market in longevity risk transfers came when Goldman Sachs announced 

that the best way of dealing with pension liabilities is to remove them altogether, for which 

they set up a buyout company Rothesay Life. As with many other economic activities, the 

progression of this market did not follow a smooth path and instruments such as the one 

proposed by BNP Paribas did not attract sufficient investor interest, and were withdrawn in 

late 2005. A great deal was learned from this failed issue about the requirements needed to 

launch a financial product intended to mitigate longevity risk (Blake & Cairns, 2020, p. 220; 

Blake, Cairns, Dowd & Kessler, 2019, pp. 1-2). 

 

The world’s first longevity market derivative transaction was a q-forward transaction 

executed in January 2008 between J.P. Morgan and the U.K. pension fund buyout company 
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Lucida. The first longevity swap was executed in July 2008, where Canada Life hedged £500 

million of its U.K.-based annuity liabilities. This was a 40-year swap customized to the 

insurer’s longevity exposure of 125.000 annuitants. All the longevity risk was transferred to 

investors (Blake & Cairns, 2020, p. 220). Almost all activity on this market has occurred in 

the U.K., and only few non-U.K. transactions have occurred in the past, some of which are 

a $26 billion pension buyout deal between General Motors and Prudential Insurance, a 

longevity swap between Aegon and Deutsche Bank worth $12 billion and a pension buy-out 

between Verizon Communications and Prudential Insurance in the amount of $7 billion. 

Even though these volumes are impressive, they still represent only a tiny amount in 

comparison to the multi-trillion dollar size of longevity risk (Bank for International 

Settlements, 2013, p. 2).  

 

In Europe, the data shows that longevity risk transfer markets are concentrated in just a few 

countries. This market mainly exists in countries with privately defined benefit pension 

schemes. Countries with a predominant state pension scheme have less activity in this market 

since governments do not tend to transfer longevity risk in this manner.  

 

European Insurance and Occupational Pensions Authority (EIOPA) has analyzed Europe's 

longevity risk transfer market and found that only 5 out of 26 countries participating in a 

questionnaire have reported a sale of longevity derivatives. Those countries are; France, 

Ireland, Liechtenstein, the Netherlands and the U.K. The Netherlands and the U.K. had the 

most significant activity, with $25.4 billion and $52.7 billion, respectively, between 2011 

and 2014, which can be explained by the fact that these two countries have the largest share 

of the European pension market. In addition, participation in this market is generally limited. 

For example, in the Netherlands, only three insurance companies have been active, and three 

transactions have been made, all of which were longevity swaps.  

 

When countries were asked about their impressions of the market prospects for the future, 

three of the five countries expected that the longevity risk transfer market would grow further 

in the coming years. The majority of the countries which are not active in this market did 

not show any interest in it, and did not expect a development in the future. Some countries 

even doubt that this market will exist in their environment since they believe that insurance 

companies and annuity providers know the health and mortality of their customers better 

than players participating in the capital market. Another reason for their doubts is that the 

market is illiquid, and only a few prominent participants are present. It is important to 

mention that this questionnaire was conducted almost ten years ago and that the current 

situation might be different. However, the activity on the market is still not as high as it was 

expected (Dujim, 2015).  

 

There are several financial arrangements which insurance companies, annuity providers and 

pension funds can use to hedge longevity risk. Different types of structures for this 

arrangement are possible. We have insurance-based solutions where a buyout or buy-in 

structure is the most common. This type removes the longevity and investment risks and 
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transfers them to the counterparty which is usually a reinsurance company. This type of 

contract maximizes the risk transfer but requires significant upfront premiums. An 

alternative structure is the use capital market solutions through longevity derivatives which 

pass only the longevity risk to the third party while retaining the investment risk. Longevity 

derivatives are a more economical solution to hedging longevity risk as they typically do not 

require significant upfront premiums and involve more market participants (investment 

banks and other non-insurance related companies or investors). In this chapter I focus on 

longevity derivatives where insurance-based solutions and the use of reinsurance is 

discussed later (OECD, 2014, pp. 176-177). 

 

Before discussing how insurance companies can use those products to mitigate longevity 

risk it is useful to learn how they are priced. Many different research papers discuss the best 

pricing strategy for longevity derivatives, and there is no consensus on the best method. 

Some pricing methods are based on the risk-neutral principle where the underlying 

martingale process is the development of future mortality rates. This method tries to 

determine a risk premium, given that all investors have a different level of risk aversion. 

This method proposes that it is impossible to price derivatives under the original physical 

measure. A solution for this problem that is used in finance is a risk-neutral pricing 

methodology which creates fair prices for derivative products. To obtain this price, we use 

a martingale pricing technique which ensures that the expected rate of return under 

martingale pricing is the risk-free rate one could get when buying a risk-free bond. The 

mortality rate under the martingale measure means that the volatility of the mortality rate is 

considered, and the expected mortality rate change is zero. Another popular method to 

convert expectations under a physical measure into its risk-neutral equivalent is by using 

distortion approach such as the Wang’s transformation discussed in the next section 

(Chuang, 2013). 

 

4.2 Wang’s transformation 

 

The Wang’s transformation is a method which incorporates some of the major pricing 

theories such as the CAPM (Capital Asset Pricing Model), actuarial standard deviation 

approach and option pricing theory. This method uses a distortion function which changes 

the survival function to create suitable risk-adjusted expected values, which we can discount 

with a risk-free rate. This method can transform the best estimates obtained with mortality 

forecasting and get their risk-neutral counterparts. This approach determines the z scores as 

if they were normally distributed and then shifts them uniformly by the amount 𝜆 which 

stands for the market price of risk. The shifted z scores are then transformed back by using 

the standard normal distribution (Wanyama, 2017). 

 

Wang’s transformation is based on the idea that the annuity market considers the uncertainty 

of the annuity table obtained with forecasting models discussed earlier. The higher the 𝜆, the 

lower the probability of death for all ages. This implies that under the distorted mortalities, 

people live longer. 
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We can obtain risk-adjusted mortalities by applying the Wang’s transformation to a given 

mortality or annuity table, which can further be used to price longevity derivatives. I will 

apply this method to pricing longevity bonds, where I will apply the Wang’s transformation 

to the Slovenian annuity tables (SIA 65, 2010). Firstly, I will describe the Wang 

transformation.  

 

Let 𝛷(𝑥) be a standard normal cumulative distribution function with the probability density 

function 𝜙 for all x: 

 

𝜙(𝑥) =
1

√2𝜋
𝑒

−𝑥2

2 (17) 

 

Wang defines the distortion operator as follows: 

 

𝑔𝜆(𝑢) = 𝛷[𝛷−1(𝑢) − 𝜆] (18) 

 

For 0<u<1. The distorted cumulative density function 𝐹∗(𝑡) is determined by 𝜆. 

 

𝐹∗(𝑡) = 𝑔𝜆(𝐹)(𝑡) = 𝑔𝜆(𝐹(𝑡)) (19) 

 

Let's now consider an insurer's liability X over a time horizon [0, T]. The fair price of liability 

X is the discounted expected value under the distorted distribution obtained by Wang's 

transformation. For simplicity, omitting the discounting yields the following formula for the 

price of liability X.  

 

𝐻(𝑋, 𝜆) = 𝔼∗(𝑋) = ∫ 𝑥𝑑𝐹∗(𝑥) (20) 

 

Where: 

  

𝐹∗(𝑥) = 𝑔𝜆(𝐹)(𝑥) = 𝛷[𝛷−1(𝐹(𝑥)) − 𝜆] (21) 

 

(Lin & Cox, 2005). 

 

In general insurance pricing, the distortion operator 𝑔 should meet the following criteria: 

• 0 < 𝑔𝜆(𝑢) < 1,  𝑔𝜆(0)  =  0, and 𝑔𝜆(1) = 1, 

• 𝑔𝜆(𝑢) is increasing (where it exists,  𝑔′𝜆(𝑢) ≥ 0), 

• 𝑔𝜆(𝑢) is concave 𝑔′′𝜆(𝑢) ≤ 0 (where it exists), 

• 𝑔′𝜆(0) = ∞. 
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Under this new probability measure, we can define a risk-adjusted fair value of X and 

discount it back to time zero with the risk-free rate. In terms of annuity, the formula for the 

price in a discrete setting can be written as: 

 

𝐻(𝑋, 𝜆) = 𝔼∗(𝑋) = 𝑠 ∑ 𝑑𝑘
𝑘𝑝∗

𝑙0

𝑛−1

𝑘=0

(22) 

 

Where kp*l0 is the risk-adjusted survival probability obtained from Wang's transformation 

and s is a yearly annuity payment. Combining the formulas (20) and (21), we can get the 

following: 

      𝑘𝑝∗
𝑙0 = 𝑔𝜆(𝑘𝑝𝑙0) 

 

=  𝑔𝜆(𝑢) =  𝛷[𝛷−1(𝑘𝑝𝑙0) − 𝜆] 

 

    = 𝛷[𝛷−1(1 − 𝑘𝑞𝑙0) − 𝜆] (23) 

 

Which implies: 

𝐻(𝑋, 𝜆) = 𝔼∗(𝑋) = 𝑠 ∑ 𝑑𝑘

𝑛−1

𝑘=0

𝛷[𝛷−1(1 − 𝑘𝑞𝑙0) − 𝜆] (24) 

(Torske, 2015). 

 

This equation will later be used to obtain the market price of risk. Before discussing the 

pricing of longevity bonds, we have to determine the market price of risk by applying Wang's 

transformation. In this example, I will closely follow the work by Torske (2015), where the 

inputs I will use will be the same, but I will use the Slovenian annuity tables in my calculation 

for the market price of risk and compare it with the results obtained using 1996 IAM U.S. 

annuity 2000 table used by Torske (2015).  

 

Let's assume the insurance company issues a single premium immediate annuity for 100.000 

EUR (𝜋) where for the discount rate, d=1/(1+r), we will use r = 3%. The monthly payouts 

for different ages and both genders are assumed as follows: 

 

Table 3: Monthly payouts for different ages 

Adapted from Torske (2015, p. 31). 

Age Male (EUR/month) Female (EUR/month) 

55 671.7 627.13 

60 726.44 669.96 

65 804.02 729.13 

70 911.69 812.49 

75 1060.03 936.41 

80 1265.68 1118.95 
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Let's use the equation below to calculate the risk market price. We can solve the equation 

bellow in R with the code listed in the Appendix 11. 

 

𝜋 = 𝑠 × 12 ∑ 𝑑𝑘

𝑛−1

𝑘=0

𝛷[𝛷−1(1 − 𝑘𝑞𝑙0) − 𝜆] (25)  

 

Here, s represents the monthly payment (multiplied by 12 since we have yearly mortality 

data) and 𝜋 a single premium of 100.000 EUR, the data for monthly payments is in table 3. 

In this example, I will calculate the market price of risk (𝜆) by using the Slovenian annuity 

tables (SIA 65, 2010), which were designed to value annuity liabilities in Slovenia. Of 

course, I could also use the tables obtained with the forecasting done in previous chapters, 

but since those are mortality and not annuity tables, it would be hard to compare the results 

with the ones obtained by Torske (2015).  

 

Figure 9: Market price of risk 

 

              Source: Torske (2015, p. 27).                       Adapted from Torske (2015, p. 27). 

 

In figure 9, we can see the results obtained by applying Wang's transformation to SIA 65, 

2010 annuity table on the left and the results obtained from Torske (2015) on the right. The 

results are similar, where the market price of risk decreases as people get older. This is 

obvious since most “risky” annuitants (those who could live longer than expected) have 

already died; therefore, the selection bias will be small as the mortalities for the group of 

annuitants will not deviate too much from the average; hence less risk premium would be 

charged at those ages. We can also see that females have a higher market price of risk, which 

is because females live longer, and more future payouts are expected. The exact results are 

listed below. 
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Table 4: Market price of risk using the Wang’s transformation 

 
Source: Torske (2015, p. 27). 

 

When comparing the results obtained using the SIA 65, 2010 table and the 1996 IAM U.S. 

2000 table, we can see that the market price of risk is higher using the former. This can be 

explained by the fact that SIA 65, 2010 have slightly higher mortality rates at older ages 

compared to the 1996 IAM U.S. 2000 table, which means that comparing the annuity 

payments listed above with equal single premium would lead to higher 𝜆 when SIA 65, 2010 

is used. In other words, using Slovenian annuity tables and performing Wang’s 

transformation would lead to higher distorted mortality rates (fewer annuities expected to be 

paid) compared to the U.S. tables, and if the single premium and monthly annuities are equal, 

this means using Slovenian table charges a higher risk premium (𝜆) (same price for less 

expected payouts). To see how Wang's transformation changes the mortality rates of an 

annuity table into its transformed counterparts, we can plot them side by side. 

 

Figure 10: Mortalities based on Wang’s transformation 

  
Source: Torske (2015, p. 32). 

 

Age 𝜆 (male)_SIA65 𝜆 (female)_SIA 65 𝜆 (male)_IAM U.S 𝜆 (male)_IAM U.S 

55 1.3029 1.6576 1.117 1.261 

60 1.1851 1.5778 0.981 1.098 

65 1.1059 1.4614 0.842 0.938 

70 1.0157 1.2902 0.712 0.781 

75 0.8931 1.0932 0.604 0.632 

80 0.6973 0.8581 0.517 0.504 
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We can see that the transformed mortalities are much lower at higher ages than those found 

in SIA 65, 2010 table. The higher the 𝜆, the higher the difference between the two lines.  

 

4.3 Longevity bonds 

 

The distorted mortality rates and the market price of risk obtained from Wang’s 

transformation can now be used to price longevity bonds. This has been done by Lin and 

Cox (2005) and Torske (2015). 

 

4.3.1 Introduction to longevity bonds 

 

A longevity bond is an instrument insurance companies can use to hedge longevity risk. 

Bonds are securities under which the insurer (the debtor) owes the holder (the creditor) a 

debt and is obligated to repay it at maturity with interest (coupons). When we talk about 

longevity bonds, the insurer buys insurance from the special purpose company (SPC) for a 

premium P, which issues bonds to investors. The SPC invests the money collected from 

sales and premium in risk-free securities (Lin & Cox, 2005). 

 

Figure 11: Longevity bond 

                      Insurance premium (P)                          Proceeds from bonds sales (V) 

                              

                                Payment (B)                                                Coupons (D) 

                                                                                                      Principal 

Adapted from Lin & Cox (2005, p. 5). 

 

4.3.2 Pricing longevity bonds using Wang’s transformation 

 

Suppose that the insurer must pay an immediate life annuity to 𝑛𝑥 annuitants all aged x 

initially. If the payment rate is 1000 EUR per year and we denote the number of annuitants 

alive in year k as 𝑛𝑥+𝑘 then the insurer needs to pay 1000 ∙ 𝑛𝑥+𝑘 at time k. Because of the 

longevity risk, the insurer would benefit from arranging a pre-determined level of 𝑛𝑥+𝑘 so 

that in case fewer people than anticipated die, the insurer does not suffer the losses.  

 

In the case of longevity bonds, such an insurer can buy a contract from a SPC for a premium. 

Such a contract has a fixed trigger level at 𝑋𝑘 where the SPC pays the insurer the excess of 

payments over that trigger. Let us assume the maximum amount the SPC is willing to cover 

over the trigger 𝑋𝑘 is C. This implies that the insurer collects the benefit from the SPC as 

follows: 

 

𝐵𝑘 = {

1000𝐶, 𝑖𝑓  𝑛𝑥+𝑘 > 𝑋𝑘 + 𝐶

1000(𝑛𝑥+𝑘 − 𝑋𝑘), 𝑖𝑓  𝑋𝑘 < 𝑛𝑥+𝑘 ≤
0, 𝑖𝑓  𝑛𝑥+𝑘 ≤ 𝑋𝑘

𝑋𝑘 + 𝐶 (26) 

Insurer 
 

SPC  Investors 
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The insurer's cash flow to annuitants at k is now offset by positive cash flow from the 

insurance: 

 

1000𝑛𝑥+𝑘 − 𝐵𝑘 = {
1000(𝑛𝑥+𝑘 − 𝐶), 𝑖𝑓  𝑛𝑥+𝑘 > 𝑋𝑘 + 𝐶
1000𝑋𝑘, 𝑖𝑓  𝑋𝑘 < 𝑛𝑥+𝑘 ≤
1000𝑛𝑥+𝑘 , 𝑖𝑓  𝑛𝑥+𝑘 ≤ 𝑋𝑘

𝑋𝑘 + 𝐶 (27) 

 

The cash flow from SPC to investors is as follows: 

 

𝐷𝑘 = {

0, 𝑖𝑓  𝑛𝑥+𝑘 > 𝑋𝑘 + 𝐶

1000(𝐶 + 𝑋𝑘 − 𝑛𝑥+𝑘), 𝑖𝑓  𝑋𝑘 < 𝑛𝑥+𝑘 ≤
1000𝐶, 𝑖𝑓  𝑛𝑥+𝑘 ≤ 𝑋𝑘

𝑋𝑘 + 𝐶 (28) 

 

Here the 𝐷𝑘 is the total coupon paid to the investors. The maximum value of 𝑛𝑥+𝑘 is 𝑛𝑥 

which implies that no one has died; therefore, 𝑛𝑥+𝑘 is a random variable on the interval [0, 

𝑛𝑥]. We can denote the market price of a longevity bond as V. The aggregate cash flow out 

of the SPC is therefore: 

 

𝐵𝑘 + 𝐷𝑘 = 1000𝐶 (29) 

 

For the SPC to fulfil the obligation towards the insurance company and investors, the SPC 

can buy a default-free fixed coupon bond for a price W with an annual coupon of 1000C and 

a principal of 1000F. In other words, SPC can buy a straight bond to receive the required 

cashflows to meet all their obligations: 

 

𝑃 + 𝑉 ≥ 1000𝐹𝑑(0, 𝐾) + ∑ 1000 ∙ 𝐶 ∙ 𝑑(0, 𝑘)

𝐾

𝑘=1

(30) 

 

The d(0,k) is the discount factor that can be taken from the bond market when insurance is 

issued. The idea is that the SPC can use the money it generates from the sale and premium 

to buy the straight bond and have precisely the required coupon at each time k to fulfil its 

obligations towards both parties (Torske, 2015). In the following example, I will use the 

same strike levels as Lin and Cox (2005), as well as their mortality improvement forecasts. 

 

Table 5: Change in force of mortality 

Age group Change in force of mortality 

65-74 -0.007 

75-84 -0.0093 

85-94 -0.013 

Adapted from Lin & Cox (2005, p. 11). 
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These improvement levels determine the strike levels: 

 

𝑋𝑘 = {

𝑛𝑥 ⋅ 𝑝𝑥 ∙ 𝑒0.0070𝑡 , 𝑓𝑜𝑟  𝑘 = 1, . . . , 10,

𝑛𝑥 ⋅ 𝑝𝑥 ∙ 𝑒0.0070𝑡 ∙ 𝑒0.0093(𝑡−10), 𝑓𝑜𝑟  𝑘 = 11, . . . ,20,

𝑛𝑥 ⋅ 𝑝𝑥 ∙ 𝑒0.0070𝑡 ∙ 𝑒0.013(𝑡−20), 𝑓𝑜𝑟  𝑘 = 21, . . .30

(31) 

 

Where kpx is the survival probability from SIA 65, 2010 table. 

 

Now we need to calculate the coupon payment 𝔼∗[D] from the equation stated previously: 

 

𝐷𝑘

1000
= {

0, 𝑖𝑓  𝑛𝑥+𝑘 > 𝑋𝑘 + 𝐶
(𝐶 + 𝑋𝑘 − 𝑛𝑥+𝑘), 𝑖𝑓  𝑋𝑘 < 𝑛𝑥+𝑘 ≤
𝐶, 𝑖𝑓  𝑛𝑥+𝑘 ≤ 𝑋𝑘

𝑋𝑘 + 𝐶 (32) 

 

Therefore: 

𝐷𝑘

1000
= 𝐶 − (𝑛𝑥+𝑘 − 𝑋𝑘)++(𝑛𝑥+𝑘 − 𝑋𝑘 − 𝐶)+ (33) 

 

Here (𝑛𝑥+𝑘 − 𝑋𝑘)+ and (𝑛𝑥+𝑘 − 𝑋𝑘 − 𝐶)+ can only take positive values to ensure result for 

𝐷𝑘/1000 is between 0 and C. 

 

Hence: 

1

1000
𝔼∗[𝐷𝑘] = 𝐶 − 𝔼∗[(𝑛𝑥+𝑘 − 𝑋𝑘)+] + 𝔼∗[(𝑛𝑥+𝑘 − 𝑋𝑘 − 𝐶)+] (34) 

 

For the calculation, we have that the distribution of 𝑛𝑥+𝑘 is the distribution of the number of 

survivors from 𝑛𝑥 who survive to age x+k, which happens with the probability kp*x. This 

means that the 𝑛𝑥+𝑘 has a binomial distribution with parameters 𝑛𝑥 and kp*x. Because 𝑛𝑥 is 

a large value we have that 𝑛𝑥+𝑘 is distributed approximately normally with the mean 

𝔼∗[𝑛𝑥+𝑘] = 𝜇∗
𝑘

 = 𝑛𝑥  kp*x, and variance 𝑉∗[𝑛𝑥+𝑘] = 𝜎∗
𝑘
2  = 𝑛𝑥 kp*x  (1- kp*x). For random 

variable X with 𝔼 [X] < ∞ we can obtain the following by integrating “by parts”: 

 

                   𝔼[(𝑋 − 𝑎)+] = ∫ [1 − 𝐹(𝑡)]𝑑𝑡
∞

𝑎

 

 

𝔼[(𝑋 − 𝑎)+] = ∫ [1 − 𝛷(𝑡)]𝑑𝑡
∞

𝑎

(35) 

 

We can also write this as: 

 

                  𝛹(𝑎) = ∫ [1 − 𝛷(𝑡)]𝑑𝑡
∞

𝑎
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= 𝜙(𝑎) − 𝑎[1 − 𝛷(𝑎)] (36) 

 

Here a = (𝑋𝑘 − 𝜇∗
𝑘

)/ 𝜎∗
𝑘
2 . We can now express: 

  

𝔼∗[𝐷𝑘] = 1000 ∙ {𝐶 − 𝜎∗
𝑘[𝛹(𝑎𝑘) − 𝛹(𝑎𝑘 + 𝐶/𝜎∗

𝑘
2)]} (37) 

 

Using equation (37), the bond price V can be calculated, which is the discounted face value 

with added discounted coupon payments under distorted mortality rates: 

 

𝑉 = 𝐹𝑑(0, 𝐾) + ∑ 𝔼∗[𝐷𝑘]𝑑(0, 𝑘)

𝐾

𝑘=1

  (38) 

 

This equation determines the value V of the bond for the investors (Torske, 2015).  

 

Let us use the information from Lin and Cox (2005) and calculate the price of a longevity 

bond. In order to do this, we also need to have a set of values for 𝜆 that represent the market 

price of risk. We have calculated this using the SIA 65, 2010 tables in the previous section, 

so I will use those values. In this calculation, I will again use the SIA 65, 2010 table. All 

other information will be the same as in the example done by Lin and Cox (2005) and is 

listed below: 

 

• 𝜆65,𝑚𝑎𝑙𝑒 = 1.1059 and 𝜆65,𝑓𝑒𝑚𝑎𝑙𝑒 = 1.4614, 

• 𝑛65 = 10.000 for each gender of age 65, 

• s = 1000 EUR per year, 

• F = 10.000.000 EUR, 

• C = 700, 

• The risk-free rate is 3%, 

• W = 10.000.000 EUR with a coupon rate of 7%, 

• K = 30 years (duration of the contract), 

• Changes in force of mortality from table 5. 

 

(Lin & Cox, 2005). 

 

Before calculating the price, I want to clarify why Lin and Cox (2005) used the above data 

since it is essential in understanding how this product is priced. This data is selected in such 

a way that the investors are willing to take the longevity risk of a portfolio of 10.000 

annuitants for each gender of age 65.  

 

C = 700 means that in case longevity improves in a given year, the hedger (investors) is 

willing to pay the yearly annuity worth 1000 EUR for a maximum of 700 people who were 

not expected to survive. As mentioned in equation (29), the SPC needs sufficient funds to 
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cover both parties in all scenarios. They need to invest 10.000.000 EUR with a yearly coupon 

of 7%, which means they receive 700.000 EUR each year.  

 

If longevity improves rapidly and the number of annuitants at the end of a given year is 

higher by 700 or more, then the SPC has the 700.000 EUR needed to cover its obligation. 

On the other hand, if the mortality does not improve in a given year and the number of 

annuitants alive in the end is lower or equal than expected (threshold not hit), then the SPC 

has the 700.000 EUR, which it pays to the investors. This means the SPC also has sufficient 

funds to cover the obligations of all possible scenarios between the two extremes explained. 

 

4.3.3 Results using the SIA 65, 2010 table 

 

The results are: 𝑉𝑚𝑎𝑙𝑒 = 9.701.000 EUR and 𝑉𝑓𝑒𝑚𝑎𝑙𝑒  = 9.456.010 EUR. The code for this 

calculation can be found in the Appendix 12. This is the maximum price investors are willing 

to pay the SPC for the longevity bond, given the values of 𝜆. However, we already know the 

SPC needs 10.000.000 EUR to fulfil its obligations to both parties during the contract. 

Therefore, the insurance company needs to cover the difference, which is precisely the price 

of a longevity bond or a premium the insurance company pays the SPC to mitigate longevity 

risk for 30 years in this example. In symbols, this means: 𝑃𝑚𝑎𝑙𝑒 =  299.000 𝐸𝑈𝑅 and 

𝑃𝑓𝑒𝑚𝑎𝑙𝑒  = 543.990 𝐸𝑈𝑅.  

 

These are the premiums the insurance company needs to pay the SPC at time 0, so the 

liabilities in all 30 years will be covered towards both parties depending on the development 

of mortality. Lin and Cox (2005) did not consider any fee charged by the SPC, which might 

increase the price. We can see that the premium for females is much higher since they live 

longer; hence the risk is more significant. Results by Lin and Cox (2005) are lower since 

they used lower values for the market price of risk and a different annuity table, to begin 

with. These results mean that the insurance company has relatively high initial costs for such 

a hedge which only eliminates the risk partially since the number of annuitants covered by 

the investors is set to a maximum of 700, where for the additional survivors the insurance 

company needs to pay the annuities. They also explain one of the main disadvantages of this 

instrument which is a large up-front payment by the investors to the SPC which makes this 

product less attractive especially when we account for the counterparty risk.  

 

This section presents the longevity bond and how this instrument can be priced using Wang’s 

transformation. This transformation can be used in pricing other longevity derivatives 

discussed in the subsequent chapters; however, the methods used can be complex and unique 

to specific hedge providers; therefore, I will present the other longevity derivatives in a more 

theoretical context and use simplified examples to show how insurance companies can use 

them for longevity risk mitigation. 
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4.4 q-Forwards 

 

A mortality forward, also known as a q-forward because the letter q is the standard actuarial 

symbol for mortality rates, is another instrument used for transferring longevity risk. 

Moreover, this instrument has significant importance in practice since it forms the basic 

building block from which other more complex insurance-related derivatives can be 

constructed.  

 

4.4.1 Introduction to q-forwards 

 

A q-forward contract is an agreement between two parties where they agree that the realized 

mortality rate for a given population is exchanged for the fixed mortality rate at the expiry. 

This contract is similar to an interest rate swap where the counterparties exchange realized 

and fixed mortality rates instead of a floating and fixed interest rate. 

 

Figure 12: q-forward contract 

 Notional ∙ realized mortality rate 

 

 

                                                      Notional ∙ fixed mortality rate 

 

Source: Coughlan, Blake, McMinn, Cairns & Dowd (2013, p. 18). 

 

Figure 12 shows how the insurance company can sell this instrument to hedge longevity risk. 

When a q-forward is fairly priced, there is no payment at the inception of the trade. At 

maturity, one of the two counterparties will make a net payment. There will be no payment 

if the fixed and actual mortality rates are the same, which is usually not the case. The 

settlement, which happens at maturity, is based on the net amount payable and is 

proportional to the difference between the fixed and realized rates. When the realized 

mortality rate in a year is lower than the fixed rate, the settlement is favorable, and the 

insurance company receives the payment, which offsets the increase in the value of its 

liabilities. 

 

On the other hand, if mortality rates increase and, at the end of the contract, the fixed rate is 

lower than the realized rate, then the insurance company needs to make a payment to the 

hedge provider, which will be offset by a fall in the value of liabilities. Using this instrument, 

the net liability value of an insurance company is locked in and will stay the same regardless 

of whether the mortality rates increase or decrease; therefore, the insurance company is 

protected from unexpected changes in mortality. In figure 12, we consider an insurance 

company as a seller of a q-forward and a hedge provider as a buyer (Coughlan, Blake, 

McMinn, Cairns & Dowd, 2013, pp. 11-18). 

 

Insurance 

company 

Hedge 

provider 
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Figure 13: Payout from a q-forward 

                                                            Fixed forward rate 

                                               Expected mortality (best estimate) 

       

                                                          y               x                            Realized              

                                                                                                         mortality  

                                                                                               Risk premium 

 

                                                                                                                             

Source: Coughlan, Blake, McMinn, Cairns & Dowd (2013, p. 18). 

 

In figure 13 above, we can see the payout structure of a q-forward. Forward mortality rates 

are not quite the same as the market’s expected mortality rates. The reasoning is that there 

are more market participants with exposure to longevity risk (those that lose if mortality 

rates decline) than those with the opposite exposure, who would benefit from a decline in 

mortality. When a risk hedger enters such a contract, he expects to be compensated for it 

through a risk premium that compensates him for taking the longevity risk of the insurance 

company; therefore, the mortality forward is below the expected mortality rate, which is a 

risk premium incentivizing the hedger to enter into such a contract. We could also say that 

the insurance company selling q-forwards would have to charge a negative risk premium to 

make buyers interested in purchasing this contract.  

 

In figure 13, the expected mortality rate, which can be produced by the stochastic models 

discussed earlier, is at the x level. Because the hedger expects a risk premium, the (fixed) 

forward mortality rate will be lower and is at the y level in the figure above (Coughlan, 

Epstein, Sinha & Honig, 2007). 

 

4.4.2 Pricing based on the LLMA structure 

 

In section 3, I have presented the mortality forecasting models which yield future mortality 

rates. Those models would have to be transformed to yield mortality rates under a risk-

neutral or martingale measure for pricing longevity derivatives. We have previously applied 

Wang’s transformation to obtain risk-neutral mortality rates for this purpose. For pricing q-

forwards a framework has been established in the past which provides a pricing structure for 

this instrument where previously obtained risk-neutral mortality rates could be applied.   

  

Life and Longevity Markets Association (LLMA) has proposed a standardized framework 

for pricing longevity derivatives. The pricing structure used for q-forwards was the one used 

by J.P. Morgan in 2007. 

 

We can see a realized mortality rate as 𝑚𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  and fixed mortality rate as 𝑚𝑓𝑖𝑥𝑒𝑑. The net 

settlement amount is as follows: 
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𝑛𝑜𝑡𝑖𝑜𝑛𝑎𝑙𝑎𝑚𝑜𝑢𝑛𝑡 ∙ (mrealized − 𝑚𝑓𝑖𝑥𝑒𝑑),       𝑓𝑜𝑟 𝑡ℎ𝑒 ℎ𝑒𝑑𝑔𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 (39) 

 

               𝑛𝑜𝑡𝑖𝑜𝑛𝑎𝑙𝑎𝑚𝑜𝑢𝑛𝑡 ∙ (𝑚𝑓𝑖𝑥𝑒𝑑 − mrealized),     𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 𝑐𝑜𝑚𝑝𝑎𝑛𝑦 (40) 

 

The fixed rate is pre-determined in the contract. Therefore, the hedge provider should 

discount the net settlement with a required rate of return, where the discounted net settlement 

would be the premium the hedger would set. Because the realized mortality is unknown, we 

replace it with the expected mortality rate.  

 

Ideally, the risk settlement is zero, where both realized and fixed rates are equal. However, 

this is usually not the case since the mortality rate varies across contract duration. The hedge 

provider is exposed to this risk and wants to be compensated through a risk premium. For 

this reason, the fixed rate is lower than the expected mortality rate at maturity. It is calculated 

based on the hedge provider’s expected mortality rate and risk tolerance and is called a 

forward rate.  

 

The LLMA structure of a q-forward provides a simple way of evaluating this contract which 

is done as follows: 

 

𝑚𝑥,𝑡 = 𝑚𝑥,0 × ∏ (1 − (𝑚̂𝑥,𝑖 + 𝜉))

𝑡

𝑖=1

(41) 

 

Where x is the age of the group, 𝑚𝑥,𝑡 is the forward (fixed) rate at time t, 𝑚̂𝑥,𝐼  is the best 

estimate of mortality improvement and 𝜉 is the adjustment term for risk appetite. 𝑀̂𝑥,𝑖 

explains how future mortality improves. We can briefly drop the 𝜉 from the equation to 

understand this LLMA structure better.  

 

𝑚𝑥,𝑡 = 𝑚𝑥,0 × ∏(1 − 𝑚̂𝑥,𝑖)

𝑡

𝑖=1

(42) 

 

This is similar to estimating the mortality rate with the improvement rate shown below. 

 

𝑀𝑥,𝑡 = 𝑚𝑥,0 × ∏(1 − 𝑟𝑥,𝑖)

𝑡

𝑖=1

(43) 

 

Here: 

𝑟𝑥,𝑖 ≔ 1 −
𝑚𝑥,𝑖

𝑚𝑥,𝑖−1
(44) 

 

The LLMA structure suggests an average mortality improvement rate as the best estimate of 

mortality improvement rate. If the reference mortality rate is the rate of an age group or 
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group, such as males aged 65 to 69, the best estimate can be the average predicted mortality 

improvement of those who belong to this group. If the reference is for a specific age, the best 

estimate can be obtained by the average predicted mortality improvement rate over a contract 

duration. This can be simplified as follows:  

 

𝑚𝑥,𝑡 = 𝑚𝑥,0 × (1 − 𝑚̂𝑥
𝑡 )𝑡  (45) 

 

Where 𝑚̂𝑥
𝑡  is the average predicted mortality improvement rate over the contract duration t. 

In this equation, the forward rate is the expected mortality rate at maturity and contains no 

information about the hedge provider’s risk appetite. If the hedge provider uses an equation 

above zero payment is expected. The hedge provider is taking all the risk in such a contract 

since a decrease in mortality rates means he will receive less payment from the insurance 

company and pay fixed payment meaning the difference counts as a loss. On the other hand, 

an insurance company is not effectively taking a risk even in case of a mortality rates increase 

and resulting higher payments to the hedge provider since a decrease in liabilities can 

compensate for this. For this reason, a hedge provider sets a forward rate he pays below the 

expected floating rate he receives.  

 

In a standardized q-forward contract such as the one proposed by J.P. Morgan in 2007, a 

forward rate is set to 1.2%, and we can calculate 𝜉 to measure the risk appetite of the 

transaction. For example, if the hedge provider expects higher mortality improvement 

(receiving less at maturity), he increases the value of 𝜉. 

 

The present value of the net settlement or premium can be calculated as follows: 

 

𝑃𝑉 𝑜𝑓 𝑛𝑒𝑡 𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑛𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 ∙
(𝑚𝑥,0 × (1 − (𝑚̂𝑥

𝑡 + 𝜉))
𝑡

− 𝑚𝑥,𝑡)

(1 + 𝑟)𝑡
(46) 

 

From the equation above, we can see that if the hedger assumes higher mortality 

improvement and increases 𝜉 he expects to receive less payment at maturity and, therefore, 

also needs to determine a lower 𝑚𝑥,𝑡 or forward fixed rate before entering the contract to 

expect a positive cash flow for taking the risk (Chuang, 2013). 

 

For determining the correct level of 𝜉 and calculating the resulting premium refer to Chuang 

(2013) where an extended Lee-Carter model with the normal inversed Gaussian (NIG) Lévy 

processes is used together with the Esscher transformation to obtain risk-neutral mortality 

rates and the level of 𝜉. 

 

4.4.3 Pricing q-forwards with classical methods 

 

We have mentioned previously that pricing longevity derivatives can be done by using a 

distortion function to obtain adjusted mortality rates or standard risk neutral pricing used in 
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other financial instruments such as options. Barrieu and Veraart (2016) wrote a paper 

published in the Scandinavian actuarial journal arguing that the standard risk-neutral pricing 

methods cannot be used mindlessly in q-forwards or other longevity derivatives given that 

the underlying mortality rate is not tradable and hence standard arbitrage-free valuation 

formula for forward prices does no longer hold. Furthermore, they point out that the 

longevity risk transfer market, in general, is still immature and lacks liquidity; therefore, a 

classical arbitrage-free pricing methodology is inapplicable as it relies upon the idea of risk 

replication which can only be done when we have high liquidity. 

 

“In a complete market, the price of the contingent claim is the expected future discounted 

cash-flows, calculated by the unique risk-neutral probability measure. In contrast, in an 

incomplete market, such as a longevity-linked securities market, there will be no universal 

pricing probability measure, making the choice of pricing probability measure crucial”. 

(Barrieu & Veraart, 2016, p. 6). Due to the abovementioned reasons, they propose some 

different methods, which I will present here.  

 

• Net premium principle 

 

𝑉𝑎𝑙𝑢𝑒0(𝑁𝑃𝐴(𝑇)) = 𝔼𝑃[𝑒𝑥𝑝(−𝑟𝑇)𝑧(𝑞(𝑇) − 𝐾)] = 0 (47) 

Here NPA(T) stands for “net payoff amount” at time T, exp(-rt) is the discount rate (r0), z 

represents the notional amount agreed at time 0, q(T) is the realized mortality at time T and 

K is the forward mortality rate. 

The formula implies that K (forward mortality rate) is: 

𝐾 = 𝔼𝑃[𝑞(𝑇)] (48) 

Here the time 0 value of the NPA can be derived by the expectation of the NPA under the 

physical probability measure (𝔼𝑃). The authors state that using this expectation for pricing 

can be justified by appealing to the strong law of large numbers where many q-forward 

contracts would make such a limit result applicable. This will only work if the amount of q-

forward contracts is sufficient, which in their opinion seems a less restrictive assumption 

than assuming the replicability of these derivatives.  

• Standard deviation principle 

𝑉0(𝑁𝑃𝐴(𝑇)) = 𝔼𝑃[𝑒𝑥𝑝(−𝑟𝑇)𝑧(𝑞(𝑇) − 𝐾)] + 𝜆√𝑉𝑝[𝑒𝑥𝑝(−𝑟𝑇)𝑧(𝑞(𝑇) − 𝐾)] = 0   (49) 

The 𝑉0 represents time zero value and 𝑉𝑝 denotes the variance under the physical probability 

measure; therefore, its square root is the corresponding standard deviation. This implies that: 
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𝐾 = 𝔼𝑃[𝑞(𝑇)] + 𝜆√𝑉𝑃[𝑞(𝑇)] (50) 

This approach can be interpreted as a market risk premium where 𝜆 can be related to the 

Sharpe ratio of the risky mortality rate q(T). The choice of 𝜆 depends on the various risks 

the hedger is exposed to.  

• Principle of zero utility 

 

𝔼𝑃[𝑈(𝑊0𝑒𝑥𝑝(𝑟𝑇) + 𝑧(𝑞(𝑇) − 𝐾))] = 𝔼𝑃[𝑈(𝑊0𝑒𝑥𝑝(𝑟𝑇))] (51) 

 

Where U represents the utility function where exponential utility is assumed, i.e., U(y) = -

exp(-y) where  > 0 is the constant coefficient of absolute risk aversion. 𝑊0 represents 

initial wealth which we assume to be constant in order to obtain: 

 

𝐾 = −
1

𝑧
log(𝔼𝑃[𝑒𝑥𝑝(−𝑧𝑞(𝑇))]) (52) 

 

This principle of zero utility is also referred to as indifference pricing in a financial context. 

However, the authors state that a more appropriate strategy involves utility maximization in 

an incomplete market where perfect replication is no longer possible. In this context, the 

maximum price depends on the individual preference and is chosen such that the agent is 

indifferent between paying this price and obtaining the q-forward or not.  

 

As discussed by Loeys, Panigirtzoglou and Ribeiro (2007), longevity risk transfer market is 

net short longevity, which means that more participants try to hedge longevity risk than 

overtaking it. This implies that prices of q-forwards will include a risk premium, making 

such products attractive to investors. As already mentioned, this means that the forward rate 

will be lower than the expected forward rate predicted by forecasting models.  

 

We can denote the risk premium as R: 

 

𝐾 = 𝔼𝑃[𝑞(𝑇)] + 𝑅 (53) 

 

The equation above explains that the forward rate K is the expected mortality rate at time T 

under physical probability measure with added R. Here, we assume the insurance company 

is a seller of q-forwards and needs to set a negative risk premium to attract potential investors 

(R<0). The standard deviation principle already has a similar structure where the risk 

premium depends solely on the term .  

 

For insurance companies selling q-forwards to hedge longevity risk  needs to be sufficient 

to make investors interested in purchasing this product. Therefore, a certain Sharpe ratio 

denoted as S is necessary, which can be determined as follows: 
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𝑆 =
𝔼𝑃[𝑞(𝑇)] − 𝐾

√𝑉𝑃[𝑞(𝑇)]
(54) 

 

This means the forward mortality rate is determined as follows: 

 

𝐾 = 𝔼𝑃[𝑞(𝑇)] − 𝑆√𝑉𝑃[𝑞(𝑇)] (55) 

 

We can see that this approach is related to the standard deviation principle in which  is 

replaced by S that ensures the forward mortality rate is below the expected mortality rate by 

a margin large enough to attract buyers of q-forwards who demand a certain risk premium 

(Sharpe ratio). 

 

Authors also use this principle in pricing the q-forward contract where the q(T) is based on 

the LC and the CBD model. The prices those two models yield are very similar. Their main 

conclusion is that the estimation window significantly affects the price of a q-forward 

obtained by this method. They compared the results of both the LC and CBD model based 

on the data of the most recent six years or 21 years, using a Sharpe ratio of 0.1.  

 

The results for the corresponding prices were very different due to the differences in 

confidence intervals depending on the estimation window. They argue that using a linear 

forecasting model such as CBD and LC might be inappropriate and that one would need to 

allow for random changes in this linear trend (Barrieu & Veraart, 2016). 

 

There are many other methods to price q-forwards and longevity derivatives in general. 

However, because longevity derivatives such as a q-forward are used to reduce the amount 

of SCR, other researchers such as Zeddouk and Devolder (2019) have taken a different 

approach to price these contracts. They propose a cost-of-capital approach. The idea of this 

method is that the price of a longevity derivative should not be higher than the cost of holding 

the additional SCR. Otherwise, investors would not be interested in buying it.  

 

4.4.4 A hypothetical example of a q-Forward 

 

Let us assume in a simplified example where the insurance company wants to hedge 

longevity risk with a ten-year q-forward on a population aged between 58 and 60. The cash 

flow at maturity depends on the average mortality rate of ages 68 and 70. I am assuming that 

𝑞𝑥,𝑡 in a given year for the corresponding population are (1.8%, 2%, and 2.2%) respectively. 

This means that the average one-year mortality rate is 2%. To simplify the example, I will 

assume that the best estimate of a one-year mortality decrease is 1.5% per year. This implies 

that the one-year death probability is 98.5% of the rate in the previous year. As a risk 

premium, an additional 1% decrease in mortality rate is considered. The overall 

improvement in mortality is, therefore, 2.5% per year. 
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The forward mortality rate of the group can be calculated as follows: 

 

2% × (1 − 2.5%)10  =  1.553% 

 

The best estimate of the mortality rate is: 

 

2% × (1 − 1.5%)10  =  1.72% 

 

The corresponding risk premium is the difference and is 0.165% which compensates the 

hedger for taking the risk.  

 

Table 6: q-forward settlements for various outcomes 

Realized rate  

(%) 

Fixed-rate  

(%) 

Notional amount 

(in million €) 

Settlement  

(in million €) 

1.2 1.553 50 17.65 

1.553 1.553 50 0 

1.8 1.553 50 -12.35 

2 1.553 50 -22.335 

Source: Coughlan, Epstein, Sinha & Honig (2007, p. 3). 

 

This example is simplified and only meant to outline how insurance companies can use those 

derivatives in practice, not how the actual risk premium is determined. In table 6, we can see 

that the net settlement at maturity of this contract is positive for the hedge provider when the 

realized rate at maturity is lower than the fixed rate, which means the hedge provider needs 

to pay the settlement to the insurance company, which uses this payment to offset the 

negative impact this has on its annuity liabilities. When the reverse is true, the hedge provider 

has a negative settlement which means he receives the payment from the insurance company, 

which is offset by a decrease in annuity liabilities (Coughlan, Epstein, Sinha & Honig, 2007). 

 

4.5 Longevity swaps 

 

Longevity or survivor swaps have been one of the most used longevity derivatives in the 

past. This instrument involves exchanging actual pension or annuity payments for a series 

of pre-agreed fixed payments. Each payment is weighted on the survival rate.  

 

4.5.1 Introduction to longevity swaps 

 

The difference between a q-forward and a longevity swap is that counterparties regularly 

exchange realized and pre-agreed cashflows instead of exchanging realized for a fixed 

mortality rate at expiry based on the notional amount.  
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Figure 14: Structure of longevity swap transaction 

                                                                       Benefit payment 

 

                                                                         

 

               Pre-agreed cashflow                      Realized cashflow 

 

                                                           

 

 

Source: Bank for International Settlements (2013, p. 7). 

 

Figure 14 shows that the insurance company is responsible for providing benefit payments 

to its annuitants. If the longevity improves in the future years, the insurance company has to 

pay annuities to more annuitants, increasing the liability. The insurance company is hedged 

with the longevity swap since it receives a realized cash flow and pays the fixed one. This 

means that the insurance company can make a loss in case mortality increases and the 

realized cash flow is lower than the fixed one. This can be represented in the next figure 

(Blake, 2018). 

 

Figure 15: Exchange of cash flows in a longevity swap 

 

Adapted from Blake (2018, p. 15). 

 

With this contract, the insurance company relies on the payments made by a hedge provider. 

Because of this, longevity swaps are usually collateralized by both parties in the agreement. 

This means the hedge provider and the insurance company need to post collateral depending 

on whether the value of a swap is positive or negative (Biffis, Blake, Sun & Pitotti, 2016, p. 

3). 

 

Insurance company Annuitiants 

Hedge provider 
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4.5.2 Pricing a longevity swap 

 

Pricing of a longevity swap can be described by assuming that the insurance company pays 

a fixed rate 𝑝̅𝑁 ∈ (0,1) against the realized survival rate experienced by the population 

between time 0 and T, T>0 on the initial population of n annuitants. The hedger’s liability 

is, therefore 𝑛 − 𝑁𝑇 where the 𝑁𝑇 represents the number of deaths from [0, T]. If the 

population has a certain force of mortality, we can write the expected number of survivors 

at time T. 

 

𝔼𝑃[𝑛 − 𝑁𝑇] = 𝑛𝑝𝑇
𝑃 (55) 

 

Where the 𝑝𝑇
𝑃 represents the probability of survival under the real-world probability measure: 

 

𝑝𝑇
𝑃 ≔ 𝔼𝑃 [𝑒− ∫ 𝜇𝑡𝑑𝑡

𝑇
0 ] (56) 

 

We can obtain the 𝑝𝑇
𝑃 with the forecasting models discussed earlier. We know that for pricing 

longevity derivatives, we need to transform death rates into their risk-neutral counterparts. 

We assume this can be done by using a risk-neutral measure Q. The liability, therefore, has 

a time zero price: 

 

𝔼𝑄 [𝑒− ∫ 𝑟𝑡𝑑𝑡
𝑇

0 (𝑛 − 𝑁𝑇)] = 𝑛𝔼𝑄 [𝑒− ∫ (𝑟𝑡+𝜇𝑡)
𝑇

0 ] (57) 

 

Where the 𝑟𝑡 is the risk-free rate process used for discounting in continuous time. We will 

ignore the default risk and, for simplicity, consider a single payment instrument. 

 

The hedger’s payout can be written as: 

  

ℎ𝑒𝑑𝑔𝑒𝑟′𝑠 𝑝𝑎𝑦𝑜𝑢𝑡 = 𝑛 (
𝑛 − 𝑁𝑇

𝑛
− 𝑝̅𝑁) (58) 

 

In this equation, we see that the hedger pays the difference between the realized number of 

survivors and the fixed rate 𝑛𝑝̅𝑁 which is agreed on at the contract's inception.  

 

Therefore, the value of the swap at inception is: 

 

𝑆0 = 𝑛𝔼𝑄 [𝑒− ∫ 𝑟𝑡𝑑𝑡
𝑇

0 (
𝑛 − 𝑁𝑇

𝑛
− 𝑝̅𝑁)] 

 

        = 𝑛𝔼𝑄 [𝑒− ∫ (𝑟𝑡+𝜇𝑡)
𝑇

0
𝑑𝑡] − 𝑛𝐵(0, 𝑇)𝑝̅𝑁 (59) 
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Where B(0, T) denotes the time-zero price of a zero-coupon bond maturing at T. Setting 𝑆0 =

0 we get: 

 

𝑝̅𝑁 = 𝑝𝑇
𝑄 + 𝐵(0, 𝑇)−1𝐶𝑜𝑣𝑄 (𝑒− ∫ 𝑟𝑡𝑑𝑡

𝑇
0 , 𝑒− ∫ 𝜇𝑡𝑑𝑡

𝑇
0 ) (60) 

 

Where the 𝑝𝑇
𝑄

 represents the risk-adjusted survival probability we can obtain using Wang’s 

transformation discussed earlier (Biffs, Blake, Sun & Pitotti, 2016). 

 

4.5.3 A hypothetical example of a longevity swap 

 

Let us assume a in simplified example of an annuity provider with 100.000 annuitants of age 

65, each receiving 100 EUR per month. The annuity provider (insurance company) enters a 

longevity swap on January 1st. We assume the following: 

 

Table 7: Outcomes of a longevity swap 

Date Actual pension payment  

(in million €) 

Predefined cashflow  

(in million €) 

Payment to the insurer 

 (in million €) 

Feb. 1st 10  9.8 0.2 

March 1st 9.6 9.5 0.1 

April 1st 9.3 9.35 -0.05 

May 1st 9.15 9.15 0 

Source: OECD (2014, p. 179). 

 

This hypothetical example aimed to show how the insurance company can use this 

instrument to hedge longevity risk. The insurance company and the hedge provider agree on 

the predefined cash flows at time 0. During the contract, the actual number of annuity 

survivors is revealed, and the annuity provider either receives the money or pays the hedge 

provider. In the example above, the annuity provider predicted that 2000 annuitants would 

die between January 1st and February 1st. Therefore, the realized deaths were 0, and they had 

to pay 200.000 EUR more, which they received from the hedge provider. From January 1st 

to April 1st, they assumed that 7500 annuitants will die, where the realized deaths were 7000; 

therefore, the insurance company paid 50.000 EUR to the hedge provider. We can see that 

the longevity swap is essentially a series of forward contracts discussed previously (OECD, 

2014). 

 

4.6 Drawbacks of longevity derivatives 

 

Longevity derivatives can transfer the longevity risk from the insurance companies or 

annuity providers to the counterparty, which accepts to carry this risk for a certain price. As 

discussed previously, these products can help mitigate unexpected mortality improvements 
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that the forecasting models do not capture. However, even though derivatives provide 

solutions for mitigating longevity risk, they have unique issues I have not discussed so far. 

 

I have already mentioned that longevity derivatives can be index based or customized. To 

have a liquid market, index-based longevity derivatives are preferred. This means we need 

to set a base population under which we will price a specific product that might differ from 

the population to which a particular insurance company is exposed. For example, we can 

imagine an index-based q-forward contract where the population mortality used in pricing is 

the Slovenian population. However, if the insurance company is exposed to annuitants of a 

particular group which are not well represented by Slovenian population mortality, such a 

hedge would not be as effective. This basis risk can be reduced by having many different 

contracts unique to specific insurance companies (customized contracts); however, this leads 

to lower liquidity. Blake explains this as a tradeoff between having a liquid market and 

decreasing the basis risk. This means that for higher hedge effectiveness, we need to accept 

a higher basis risk, and in pursuit of a liquid market, we need to accept that the hedge 

effectiveness of these products will be lower. The choice of a mortality model is also crucial, 

where there needs to be a joint agreement between the market participants on which mortality 

forecasting model to use in the design and pricing of longevity derivatives. 

 

There is also a regulatory issue. As mentioned, insurance companies might want to purchase 

such products to decrease the amount of SCR needed. However, this is not always the case 

when the regulator has to be persuaded to offer a capital release when such products are 

added to the balance sheet of an insurance company. Blake (2019) suggests that in the design 

phase of longevity derivatives, it is crucial to work with the regulator from the beginning so 

there is no uncertainty about whether the regulator will accept the product and enable a 

capital release when it is purchased. As mentioned earlier, the longevity bond proposed by 

BNP Paribas, which was withdrawn in late 2005, suffered from this exact reason: it did not 

attract sufficient investors because it did not lead to a capital release which would benefit 

insurance companies. This failure happened because BNP Paribas kept the design process 

private without discussing it with the regulator or potential buyers.  

 

These drawbacks, to an extent, explain why the longevity risk transfer market has not 

evolved as much as it was initially anticipated. Another reason is that insurance companies 

can use reinsurance for the same purpose, which is a much older and a more familiar way of 

transferring risk discussed in the next chapter (Blake, 2019). 

 

4.7 Optimal usage of longevity derivatives 

 
The decision on which longevity derivative product to choose depends a lot on the 

abovementioned drawbacks and the goals of the individual insurance company regarding 

longevity risk. Insurers purchase longevity derivatives first to reduce the uncertainty in 

future cashflows and second to reduce the capital charges imposed by Solvency II regulation. 

Standardized or index-based products offer lower capital release due to the basis risk. Still, 
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they may, on the other hand, provide cost advantages due to being cheaper than customized 

deals which offer higher capital release for a higher price. Therefore, optimal hedging 

decisions must consider both the hedge effectiveness and capital efficiency of the specific 

hedge.  

 

4.7.1 Hedged liability 

 

Let us assume the insurance company wants to hedge a liability of life annuities where all 

premiums have been paid upfront to the insurer. These annuities start at the age 𝑥𝑅  and pay 

one unit of currency at the beginning of every year until the beneficiary dies. We can define 

𝑁𝑠𝑢𝑏 as distinct and sufficiently large subpopulations of different socioeconomic status 

where all individuals within this subpopulation have the same force of mortality where 𝜌 ∈

{1, . . . , 𝑁𝑠𝑢𝑏}.  

 

The time-t random present value of all future unhedged liabilities is as follows: 

 

𝐿(𝑡) ∶=  ∑ 𝐿𝜌(𝑡)

𝑁𝑠𝑢𝑏

𝜌=1

 

 

≔ ∑ ∑(1 + 𝑟)−(𝑠−𝑡)𝐵𝑥0+𝑠,𝑠

𝜌

𝑠>𝑡

,     𝑡 ≥ 0

𝑁𝑠𝑢𝑏

𝜌=1

(61) 

 

Here the 𝐵𝑥0+𝑠,𝑠

𝑝
 represents the number of survivors from population 𝜌 aged 𝑥0 + 𝑠 at time 

𝑠 > 0.  Therefore, the time-t present value of best-estimate unhedged liabilities is: 

 

𝐿̃(𝑡) ≔ ∑ 𝐵𝑥0+𝑡,𝑡
𝜌

∑(1 + 𝑟)−(𝑠−𝑡)

𝑠>𝑡

× ∏(1 − 𝑞̃𝑥0+𝑢,𝑢+1
𝜌

(𝑡))

𝑠−1

𝑢=𝑡

𝑁𝑠𝑢𝑏

𝜌=1

, 𝑡 ≥ 0 (62) 

 

By using longevity derivatives, we can express time-t present value of hedged liability as: 

 

𝐿𝐻(𝑡) ≔ 𝐿(𝑡) − 𝐻(𝑡), 𝑡 ≥ 0 (63) 

 

And the time-t best-estimate hedged liabilities as follows: 

 

𝐿̃𝐻(𝑡) ≔ 𝐿̃(𝑡) − 𝐻(𝑡), 𝑡 ≥ 0 (64) 

 

Where 𝐻(𝑡) represents the time-t best estimate of all future cash flows coming from a chosen 

longevity derivative instrument. This value does not represent the market value of the 

derivative product. Because insurers also need to hold sufficient regulatory capital, the 

adjusted unhedged liabilities can be written as follows: 
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𝛱𝐿
𝑀 ≔ 𝐿(0) + 𝐶𝑜𝐶𝐿

𝑀 , 𝑀 ∈ {𝐼𝑀, 𝑆𝐹} (65) 

 

Where CoCL
M: = ∑

𝑟𝐶𝑜𝐶𝑆𝐶𝑅𝐿
𝑀(𝑡)

(1+𝑟)𝑡+1𝑡≥0  which denotes time zero random present value of all costs 

of capital for the hedged liabilities, which can be done by using the internal model (M=IM) 

or standard formula (M=SF) in Solvency II regulation. 𝑟𝐶𝑜𝐶 reflects the return in excess of 

the risk-free rate shareholders demand for providing equity.  

 

The adjusted hedged liabilities are defined as follows: 

 

𝛱𝐿𝐻

𝑀 ≔ 𝐿𝐻(0) + 𝐶𝑜𝐶𝐿𝐻

𝑀 , 𝑀 ∈ {𝐼𝑀, 𝑆𝐹} (66) 

 

4.7.2 Capital efficiency 

 

Capital efficiency reflects the net cost of capital relief: 

 

𝑁𝑅𝑒𝐶𝑜𝐶𝑀(𝐻) ∶=  𝔼(𝛱𝐿
𝑀) − 𝔼(𝛱𝐿𝐻

𝑀 ) 

 

≔ 𝔼(𝐶𝑜𝐶𝐿
𝑀) − 𝔼(𝐶𝑜𝐶𝐿𝐻

𝑀 ) + 𝔼(𝐻(0)), 𝑀 ∈ {𝐼𝑀, 𝑆𝐹} (67) 

 

Here two opposing effects come into play:  

 

- The hedge usually reduces the insurance company's SCR, which generates a positive cost 

of capital relief: 

 

𝑅𝑒𝐶𝑜𝐶𝑀(𝐻) ≔ 𝔼(𝐶𝑜𝐶𝐿
𝑀) − 𝔼(𝐶𝑜𝐶𝐿𝐻

𝑀 ) ≥ 0 (68) 

 

- On the other hand, the present value of all hedging instrument cashflows is usually 

negative because the hedge provider wants to be compensated for taking the risk: 

𝔼(𝐻(0)) < 0.  

 

In this setting, the insurance company could be hedged entirely, which would result in a zero 

SCR for the longevity risk, and the cost of capital would reduce to zero. Furthermore, if this 

hedge was provided on the best-estimate basis or 𝔼(𝐻(0)) = 0, this would provide a 

maximum net cost of capital relief since the hedger would charge no premium.  

 

With this, we can define the capital efficiency of the hedge H as follows: 

 

𝐶𝐸𝑀(𝐻) ≔
𝑁𝑅𝑒𝐶𝑜𝐶𝑀(𝐻)

𝔼(𝐶𝑜𝐶𝐿
𝑀)

, 𝑀 ∈ {𝐼𝑀, 𝑆𝐹} (69) 
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The condition for a hedge to be capital efficient is 𝐶𝐸𝑀(𝐻) > 0, or simply, the capital 

savings exceed the hedging costs. H1 is more capital efficient than H2 if 𝐶𝐸𝑀(𝐻1) >

𝐶𝐸𝑀(𝐻2).  

 

4.7.3 Hedge effectiveness 

 

We can define the hedge effectiveness of a hedge as the relative reduction of longevity risk 

under a risk measure 𝜌 as follows: 

 

𝐻𝐸𝜌
𝑀(𝐻) ∶=  1 −

𝜌(𝛱𝐿𝐻

𝑀 )

𝜌(𝛱𝐿
𝑀)

 

                                                        ≔ 1 −
𝜌 (𝛱𝐿𝐻

𝑀 − 𝔼(𝛱𝐿𝐻

𝑀 ))

𝜌(𝛱𝐿
𝑀 − 𝔼(𝛱𝐿

𝑀))
, 𝑀 ∈ {𝐼𝑀, 𝑆𝐹}  (70) 

 

Where a perfect hedge yields the maximum hedge effectiveness of one. H1 is more effective 

hedge than H2 if 𝐻𝐸𝜌
𝑀(𝐻1) > 𝐻𝐸𝜌

𝑀(𝐻2). It is important to mention that defining hedge 

effectiveness in this way considers the reduction in uncertainty regarding the future cost of 

capital.  

 

Hedge effectiveness and capital efficiency are essential factors that can help insurers decide 

the optimal hedging strategy in a given situation. For example, high hedge effectiveness 

might reduce SCR significantly but can be low in capital efficiency when the hedge provider 

charges a non-zero premium for taking on the risk. On the other hand, capital-efficient 

hedges might offer a lower reduction in SCR, making them less hedge effective. The 

insurance company must, therefore, find an optimal trade-off between hedge effectiveness 

and capital efficiency to achieve the hedging objective, which can differ depending on the 

specific insurance company (Borger, Freiman & Ruß, 2021). 

 

Meyricke and Sherris (2014) have shown that by using longevity swaps, the cost of hedging 

for earlier ages is lower than the cost of capital required under Solvency II. On the other 

hand, using longevity swaps at ages higher than 90 results in higher costs than savings in 

regulatory capital costs. “The Solvency II capital regulations for longevity risk generates an 

incentive for life insurers to hold longevity tail risk on their own balance sheets, rather than 

transferring this to the reinsurance or the capital markets.” (Meyricke & Sherris, 2014, p. 

154). 

 

Cairns and Boukfaoui (2021) have researched the regulatory capital relief in the presence of 

basis risk and concluded that even though index-based hedges suffer from this drawback, 

their lower hedging costs have a positive impact where the loss of hedge effectiveness due 

to population basis risk is close to zero under Solvency II regulation meaning there is no 

difference between index-based and customized hedge under this regime.  
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Borger, Freimann and Ruß (2021) argue that different hedging instruments have structurally 

different impacts on the hedger's economic capital. They also consider the difference in 

capital relief resulting from using the standard formula in Solvency II with one-off longevity 

stress and a risk-based internal model, as indicated in the abovementioned equations. They 

conclude that the Solvency II standard formula overestimates the efficiency and assigns 

relatively high capital reliefs. They also show that hedge effectiveness can change if the 

uncertainty of future capital charges for longevity risk is considered.  

 

Market-based solutions such as longevity derivatives can help insurers in longevity risk 

mitigation but suffer from various drawbacks, which is why this market has not developed 

as initially expected. Insurers can also use insurance-based solutions where insurers and 

reinsurers act as hedge providers. These solutions have been dominant in longevity risk 

transfer and will be discussed next. 

 

5 LONGEVITY RISK MITIGATION USING REINSURANCE 
 

In the previous chapter, we have seen three of the most popular capital market solutions in 

managing longevity risk (longevity bond, swap and a q-forward). However, those longevity 

derivatives are not the only tools insurance companies and pension providers can use to 

manage this risk. There are also insurance-based solutions where an insurance or reinsurance 

company acts as a hedge provider instead of other market participants. This leads to 

significant implications given that in most jurisdictions, investment banks and other financial 

entities are not allowed to issue or take on longevity risk in the form of annuities. This means 

that hedging strategies, which I will discuss in this chapter, such as pension buy-outs and 

buy-ins, are possible only when the hedge provider is either an insurance or reinsurance 

company. This is because those companies follow a stricter regulation than entities such as 

investment banks and have higher capital requirements, which makes them suitable to carry 

the longevity risk of annuities directly. In contrast, other financial entities can only do it 

indirectly through the derivatives discussed earlier. In this chapter, I will focus on the 

abovementioned insurance-based solutions where reinsurance companies act as hedge 

providers (Bank for International Settlements, 2013, pp. 1-5). 

 

5.1 Introduction to longevity risk mitigation with reinsurance 
 

An essential distinction between hedging solutions involving reinsurance companies as 

hedge providers and longevity derivatives where other financial entities can replace this role 

is in the type of contract between the two counterparties. We have financial contracts when 

we talk about longevity derivatives, where hedgers are investment banks or other non-

insurance-related entities. However, we have an insurance contract when the reinsurance 

takes the longevity risk. This structuring is essential and has implications for an applicable 

regulatory regime concerning insurance and financial contracts, which are regulated under 
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different laws. This is especially important when considering capital release in Solvency II 

regulation (Society of Actuaries, 2014). 

 

The legal form of the contract creates significant differences between longevity derivatives 

and a reinsurance contract, where the latter is recognized differently by the regulator, which 

leads to a capital release under the Solvency II regulation. As discussed earlier, this has not 

always been the case with longevity derivatives. Therefore, regulatory acceptance is one of 

the major advantages of using reinsurance as a longevity hedge. For example, we can look 

at the recent longevity reinsurance between Aegon and Reinsurance Group of America 

(RGA) in 2021, where 7 billion EUR of Dutch pension liabilities was transferred from Aegon 

to the RGA. This reinsurance protects Aegon against the potential financial impact of 

longevity improvement over the entire life of the policies. The benefit of this reinsurance is 

expected to be a lower Solvency II capital requirement of around 15% points for the Dutch 

business or 5% points on a Group's level (Aegon, 2021). When the risk is transferred via a 

reinsurance agreement, these reinsurers are usually large global companies which hedge 

their longevity risk against their mortality risk portfolios. This is one of the reasons why the 

global reinsurance industry has been leading in developing products for pension plans and 

insurance companies that try to hedge longevity risk (Society of Actuaries, 2014). 

 

5.2 Buy-outs 

 

The traditional insurance-based solution for dealing with unwanted longevity risk is the sale 

of all or a part of annuity books to a reinsurer. This is also known as a pension buy-out or 

bulk annuity transfer and is usually used by pension providers and insurance companies that 

provide annuities. This hedging solution removes the pension or annuity liability from the 

insurance company's balance sheet. Buy-outs do not only hedge the longevity risk, as was 

the case with longevity derivatives, as they involve transferring both assets and liabilities to 

the reinsurer. This contract is usually settled with an upfront premium. In this transaction, 

the reinsurer takes full responsibility for making payments to pensioners or annuitants, as 

seen in the next figure. 

 

Figure 16: Buy-out structure 

 

 

 

                      Assets and                       Up-front                            

                       Liabilities                        premium                   Benefit payments              

 

 

 

 

Source: Bank for International Settlements (2013, p. 6). 

Insurance company Annuitants 
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The figure above represents a buy-out structure where the insurer or reinsurer takes over full 

responsibility for making payments to the annuitants. The advantage of buy-outs is that 

annuity liabilities are entirely removed from the insurance company's balance sheet, which 

provides a hedge for other risks such as investment, interest rate, inflation and sometimes 

operational risk, which are then transferred along with the longevity risk. (Bank for 

International Settlements 2013). Even though this agreement is usually paid up by the 

insurance company with an up-front premium, it can also be settled with a loan which is 

(unlike fluctuating annuity liabilities that depend on future longevity) readily understood by 

investment analysts and shareholders. Using this hedging structure enables the insurance 

company to avoid or decrease the volatility in the profit and loss account due to some of the 

annuity liabilities no longer being present on the company's balance sheet (Blake, Cairns, 

Dowd & Kessler, 2019, p. 9). 

 

The reason why only insurance and reinsurance companies can participate in this agreement 

has already been addressed and is also visible from figure 16 above, where the hedge 

provider ((re)insurer) is responsible for benefit payments made to annuitants, which has not 

been the case with longevity derivatives. In addition, because there is a potential risk that 

the hedge provider becomes insolvent (counterparty risk), in which case the pensioners or 

annuitants could be left with no income, it is imperative that those hedge providers are 

heavily regulated entities and maintain sufficient capital levels, which is the case for 

insurance and reinsurance companies. A buy-out is more expensive than market-based 

solutions due to insurance and reinsurance companies being subject to more stringent 

regulation than other financial entities on the risk transfer market. The buy-out liability is, 

therefore, typically more extensive than the accounting liability under International Financial 

Reporting Standards (IFRS) or Generally Accepted Accounting Principles (GAAP) used in 

the U.S. as it reflects higher and often more realistic longevity assumptions, expenses and 

risk premium for taking over investment, inflation, interest rate and longevity risks. 

According to one U.K. pension consultant, the 2011 buy-out premium was approximately 

15% of the accounting liability for pensioners and 25% for non-pensioners (Coughlan, 

Blake, McMinn, Cairns & Dowd, 2013, p. 9). 

 

Figure 17: Buy-out effect on the insurer’s balance sheet 

 

Adapted from Coughlan, Blake, McMinn, Cairns & Dowd (2013, p.16). 
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The figure above represents the difference between the buy-out liabilities, which reflects 

more realistic longevity assumptions and insufficient assets for the reinsurer to take over this 

risk. For this reason, a top-up payment or premium needs to be paid for a buy-out to happen.  

One of the main disadvantages of this structure is its sensitivity to timing due to interest 

rates. A buy-out price depends on the level of interest rates when the policy is signed. If the 

long-term interest rates increase in the future, this leads to a higher discount rate used to 

value annuity liabilities; hence the value of those liabilities would decrease, as would the 

price of the hedge. This means that the cost of hedging longevity in this way dramatically 

depends on timing and the associated interest rate at the time of agreement which makes it 

difficult for insurers and pension providers to decide when it is optimal to enter into such a 

contract due to unknown and often volatile future interest rates. For example, with the recent 

trend of higher interest rates, these agreements can be purchased for a lower premium than 

two or three years ago when interest rates were significantly lower than today. The timing 

of entering into such an agreement is, therefore, essential and must be chosen with due 

diligence since those contracts are usually non-renegotiable after the deal is complete 

(Coughlan, Blake, McMinn, Cairns & Dowd, 2013). 

 

5.3 Buy-ins 

 

Another insurance-based solution for managing longevity is a buy-in structure. When an 

insurance company or a pension fund enters into a buy-in, it purchases a bulk of annuities to 

hedge the risks associated with their own annuity or pension liabilities. The annuities 

purchased, therefore, become an asset and cover specific mortality characteristics of the 

portfolio of annuitants or pensioners regarding age, gender and size of payments. This 

hedging strategy can eliminate the issue of timing that buy-outs suffer from since they can 

be purchased in phases, enabling the insurance company to smooth out annuity rates over 

time and avoid spikes in pricing when it decides to proceed with the buy-out (Blake, Cairns, 

Dowd & Kessler, 2019, p. 9). 

 

Figure 18: Buy-in structure 

                                                        Benefit payment 

 

 

                                                                   

                  Up-front premium                 Benefit payment 

 

 

 

 

Source: Bank for International Settlements (2013, p. 6) 

 

Insurance company Annuitants 

(Re)insurer 



 

 54 
 

Figure 18 represents the structure of a buy-in where the insurance company pays an up-front 

premium to the reinsurer, who then makes periodic payments to the insurance company, 

which are equal to those made by the insurer to annuitants. This policy is therefore held as 

an asset by the insurance company, which guarantees payments even if annuitants have a 

longer life than expected (Bank for International Settlements, 2013, p. 6). The difference 

between a buy-in and a buy-out can be more evident when looking at the insurance 

company's balance sheet, as seen in the next figure. 

 

Figure 19: Buy-in effect on the insurer’s balance sheet 

 

 

Adapted from Coughlan, Blake, McMinn, Cairns & Dowd (2013, p.17). 

 

Figure 19 shows that the buy-in liabilities and buy-in assets remain on the insurance 

company's balance sheet. This structure offers an insurance company or pension provider a 

complete hedge of a portion of the pension liabilities for a much lower or even zero up-front 

cash payment relative to a buy-out. Because the annuity or pension liability remains on the 

company's balance sheet and is not transferred to the reinsurer, as was the case with buy-

outs, the insurer remains responsible for making payments to annuitants or pensioners and 

assures those with benefit payments it receives from the reinsurer. However, the annuitants 

or pensioners are still exposed to the risk of the reinsurer's insolvency indirectly if the buy-

in deal has not been fully collateralized (Coughlan, Blake, McMinn, Cairns & Dowd, 2013, 

pp. 9-10; Blake, Cairns, Dowd & Kessler, 2019, p. 10). 

 

The most common arrangements for transferring the longevity risk in the past have been 

buy-outs and buy-ins. These structures maximize the risk transfer from the insurance 

company to the reinsurer. This hedge’s effectiveness, however, comes with the price where 

these structures are usually more expensive than longevity derivatives. Nevertheless, even 

though their price is higher, their acceptance by the regulator and, consequently, a lower 

SCR still make them a viable solution for managing longevity risk. This is why they have 

dominated the longevity risk transfer market in the past (OECD, 2014, p. 177). Solvency II 

regulation which came into force in January 2016, led to higher capital requirements for 

insurers and reinsurers, which has many positive effects since it leads to a more financially 

stable and secure insurance sector. Consequently, hedges, where insurance entities take over 
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longevity risk, are more reliable due to a lower counterparty risk arising from stricter 

regulation, as discussed previously. However, this means risk transfer where reinsurers take 

over longevity risk will be more expensive due to the higher capital required by reinsurers. 

This represents an issue because the high capital constraint imposed by the regulation limits 

the capacity of reinsurers to mitigate the longevity risk. The main problem of using 

traditional reinsurance for transferring longevity risk is, therefore, the capacity to which 

reinsurers can underwrite this business. Furthermore, due to the enormous size of the annuity 

liabilities and longevity risk in general, reinsurers cannot collectively manage these risks 

alone. Therefore, a popular solution to increase the capacity of reinsurers for taking on a 

larger size of longevity risk is using reinsurance sidecars (D'Amato, Di Lorenzo, Haberman, 

Sagoo & Sibillo, 2018, p. 125). 

 

5.4  Reinsurance sidecars 

 

Because of the enormous size of annuity liabilities and longevity risk in general, insurers 

and reinsurers cannot collectively manage these risks alone. Traditional reinsurance cannot 

be effectively used for longevity risk mitigation due to the limited financial capacity to 

satisfy the risk protection demand fully. For this reason, reinsurance sidecars were developed 

to increase the capacity and capability of managing the longevity risk and to open the 

longevity risk transfer market discussed earlier to a broader spectrum of investors and 

participants. This cooperation of private investors and reinsurers through sidecars can 

provide an adequate capacity for longevity risk mitigation and suggests that market and 

insurance-based solutions must come together. 

 

5.4.1 The development of reinsurance sidecars 

 

A sidecar is a term which denotes the concept of a separate entity which is a part of the main 

reinsurance company and can be easily removed once no longer needed. Sidecars were 

developed to supply additional short-term capital to traditional reinsurance companies and 

provide coverage to their clients without additional capital requirements. They were first 

successfully applied in the U.S. natural catastrophe market, where private investors provided 

the reinsurance companies with the capital needed for coverage and exposed themselves to 

the property-catastrophe insurance risk. This means sidecars enabled private investors to 

invest directly in the insurance risk of their choice. Even though sidecars were developed to 

provide additional short-term capital, many investors have typically reinvested or rolled over 

their investments from year to year; this is because funds that invest in sidecars are managed 

by sophisticated investors with extensive knowledge of the insurance market and can engage 

in a dialogue with the corresponding reinsurer regarding the expected returns. As a result, in 

times of low investment yields in other markets, those investors can achieve better returns 

on reinsurance risks than other investments, leading to a longer-term relationship between 

investors and reinsurance companies. Furthermore, these insurance risks are desirable to 

investors since they are not correlated with other risks facing their portfolios. This opens up 

possibilities of using sidecars in the longevity risk transfer market where risk is long-term. 
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Reinsurance sidecars are special purpose vehicles (SPVs) which usually have to be fully 

funded (the maximum amount of payments, including expenses that may occur, cannot 

exceed its assets). One of the significant benefits of reinsurance sidecars is that Solvency II 

regulation provides a modified and lighter regulation for SPVs that are fully funded. 

However, because the usage of reinsurance sidecars was usually short term and it is often 

challenging to find investors who are willing to invest for a period of 30 or 40 years, the 

reinsurer will need to be sufficiently well capitalized to bear the exposure that exceeds the 

limit of liability under the reinsurance agreement using a sidecar as well as to cover the risks 

which exist after the maturity of a sidecar arrangement. Regardless, there will still be benefits 

to using a sidecar in a long-term transaction due to a greater capacity of a reinsurer to cover 

longevity risks and offer the hedge for a lower price due to no additional capital requirement 

when the sidecar is fully funded (Bugler, Maclean, Nicenko & Tedesco, 2020). 

 

5.4.2 A typical reinsurance sidecar structure 

 

The typical reinsurance sidecar structure in the figure below offers many advantages. In 

many transactions, this structure enables private investors to take a proportionate share of 

profits and losses alongside a reinsurer with its own capital at risk under the same conditions. 

These structures, therefore, enable private investors to co-invest in longevity risk alongside 

insurers and reinsurers.  

 

Figure 20: Typical reinsurance sidecar structure 

 

Adapted from Kessler (2021, p. 22). 

 

Given that market-based solutions have been slow to materialize in practice, sidecar 

arrangements may be a preferred strategy going forward. Private and third-party investors 

who would not have been able to take on longevity risk can partner up with existing 

reinsurers and benefit from the return of specific books of insurance and reinsurance 

business. This offers excellent opportunities to these investors who can benefit from this 



 

 57 
 

venture without insurance or actuarial expertise by relying on big data on historical mortality 

experience that reinsurers use to analyze these opportunities (Kessler, 2021). 

 

On the other hand, the reinsurers would benefit from additional funds to increase the 

reinsurance capacity without needing additional permanent capital. This means reinsurers 

could leverage their underwriting expertise which would provide an additional source of 

income.  

 

5.4.3 Drivers and issues of reinsurance sidecar development 

 

One of the main reasons why these structures are more relevant now than in the past goes 

back to the Solvency II regulation. After its implementation in 2016, the reinsurers have had 

increasingly higher capacity constraints meaning they cannot take advantage of all the 

longevity risk opportunities in the insurance and pension market. The only long-term 

solution to this capacity constraint is to bring in new investors from the capital markets. 

  

These investors can be hedge funds, private equity investors, sovereign wealth funds, 

endowments, family offices and other investors who seek asset classes with low correlation 

to their existing portfolio. Even though this structure provides a solution to the limited 

capacity of reinsurers, two issues need to be resolved for its future development. Firstly, the 

hedger needs some assurance that the solution sold to investors using sidecars provides an 

effective hedge. Secondly, these investors need proof that they are not sold a “lemon”, which 

can be done by the reinsurer having some “skin in the game” by agreeing to share risks with 

the sidecar investors (Blake, Cairns, Dowd & Kessler 2019, pp. 66-67). It is also important 

that investors participating in this market are well educated and informed about potential 

dangers related to investing in insurance risks. This is crucial to prevent events such as the 

massive losses of Lloyds of London investors in the early 1990s, where most investors 

exposed to insurance risk lost their money due to fire on the Piper Alpha oil rig in the North 

Sea and asbestos claims; therefore, participants on this market need to have sufficient 

expertise related to insurance risks (Tuohy & Mulligan, 1994). 

 

With the development of Solvency II and the corresponding limited capacity to which 

reinsurers can take on longevity risk, reinsurance sidecars are gaining momentum, and an 

early sign of the success of this structure came at the beginning of 2019 when RGA and 

ReinsuranceRe announced a new start-up named Langhorne Re that targets in-force life and 

annuity business. The company has secured $780 million of equity capital from RGA, 

ReinsuranceRe and third-party sidecar investors, including pension funds and other life 

companies as of 2019 (Blake, Cairns, Dowd & Kessler, 2019, pp. 66-67).  

 

 

 



 

 58 
 

CONCLUSION 
 
Increasing life expectancy in the last 100 years positively affects our lives, knowing we live 

longer; however, longevity improvement presents a challenge for annuity and pension 

providers, which have to evaluate and manage the financial consequences of an ageing 

population. Managing longevity risk is difficult since it does not demonstrate itself as 

quickly as financial risk, and has been consistently underestimated in the past. Perhaps the 

biggest challenge is the size of longevity risk exposure arising from annuity and pension 

liabilities which ranges between $60 and $80 trillion globally. The extent of exposure and 

the fact that each unexpected additional year of life at the age of 65 amounts to an increase 

in liabilities by 4-5% means that global liability arising from longevity risk can be more than 

$6 trillion higher if longevity improves faster than expected.  

 

Insurance companies can forecast the development of future mortality rates by using 

different mortality models. The Lee-Carter model is the simplest model and comparing it to 

other extended models did not lead to major differences in terms of life expectancies for 65-

year-olds. Because M7 and APC model uses cohort effects, their residuals were spread more 

randomly, which was expected. The AIC and BIC criteria are close in all the models, which 

can explain why the original Lee-Carter model remains popular in practice since it is the 

simplest of them all and easy to interpret. Even though these forecasting models give us 

some insight into future mortality development, their predictions can never be certain and 

depend on the population and timeframe of the data we are working with. While existing 

literature focuses on mortality forecasting and pricing longevity derivatives separately, this 

thesis aims to describe their relationship and how predictions obtained by forecasting models 

can later be transformed to price longevity derivatives.  

 

Because we cannot rely on mortality forecasting models with sufficient certainty, insurance 

companies cannot manage longevity risk with this tool alone. Unexpected increases in 

longevity still represent a risk for which insurers in the EU need to set aside additional SCR. 

To decrease the amount of SCR arising from longevity risk, insurers can also use insurance 

and market-based solutions to transfer the risk.  

 

Insurance-based solutions have dominated the longevity risk transfer market since insurers 

and reinsurers follow stricter regulation. The regulator recognizes the transfer of annuities 

through a buy-out or purchasing bulk annuities in a buy-in, which leads to a capital release 

under Solvency II regulation. Even though these solutions have been successful in the past, 

one of their disadvantages is the capacity to which insurance and reinsurance companies can 

take on longevity risk.  

 

Market-based solutions were proposed to achieve the same result for a lower price. Even 

though these solutions are more capital efficient, the market for them did not grow as 

anticipated. This failure is due to the tradeoff between a liquid market and basis risk. In 

pursuit of a liquid market, we need a lot of standardized contracts, which leads to basis risk 
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where the base population under which we price a specific product might differ from the 

population to which a particular insurance company is exposed to. When the objective is to 

eliminate basis risk, we have many standardized contracts, leading to lower liquidity. 

Another reason for failure is regulatory in nature, where usage of some longevity derivatives, 

such as the one proposed by BNP Paribas, was not recognized favorably by the regulator 

and did not lead to a capital relief. 

 

Even though both market and insurance-based solutions have flaws outlined in this work, 

they can eliminate some of them by working together through a reinsurance sidecar. This 

structure enables participants in the capital markets to invest in longevity risk. These 

investments increase reinsurers' capacity, which has the capital required to take on more 

considerable longevity risk. By managing longevity risk in this manner, insurers do not 

suffer the basis, liquidity and regulatory risk related to longevity derivatives. Questions such 

as: "How to provide the hedger with the assurance that the solution sold to investors using 

sidecars provides an effective hedge?" and "Does using sidecars to take on more longevity 

risk lead to the emergence of new risks?" still remain open for future research.  
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Appendix 1: Povzetek vsebine (Summary in Slovene language) 

 
Pričakovana življenska doba se v zadnjih letih konstantno podaljšuje. Ta trend pozitivno 

vpliva na življenje vseh, vendar pa morajo zavarovalnice, ki ponujajo rente, oceniti finančne 

posledice staranja prebivalstva in posledično izplačevanja večjega števila rent. Z vidika 

zavarovalnic predstavlja nepričakovano izboljšanje življenske dobe tveganje, ki ga je 

potrebno nadzirati in čim bolj zmanjšati. Svetovne obveznosti iz naslova izplačevanja rent 

in pokojnin znašajo med $60 in $80 biljonov, vsako nepričakovano dodatno preživeto leto 

človeka pa poveča obveznost za 4-5%. Po nekaterih študijah so lahko te obveznosti za okoli 

$6 biljonov večje, če se v prihodnje življenska doba podaljša nad pričakovanji.  

 

S tem namenom sem v tem magistrskem delu preučeval vpliv dolgoživosti na zavarovalnice 

in načine kako se te pred tem zaščitijo. Sprva sem opisal problematiko dolgoživosti z vidika 

zavarovalnic, nato pa modele, ki se uporabljajo za napovedovanje smrtnosti v prihodnost. 

Lee-Carterjev model, ki zaradi svoje popularnosti med modeli smrtnosti služi kot merilo, 

sem primerjal z nekaterimi novejšimi modeli, ter prišel do ugotovitev, da med rezultati 

različnih modelov ne prihaja do velikih razlik. Bolj kompleksna modela kot sta APC in M7 

model, imata sicer ostanke bolj neodvisne od kohort, kar je zaželjeno, a je zaradi njune 

kompleksnosti in težje interpretacije Lee-Carterjev model še vedno primeren in posledično 

pogosto uporabljan v slovenskih zavarovalnicah.  

 

V naslednjih poglavjih sem se posvetil raziskovanju uporabe izvedenih finančnih 

instrumentov pri zmanjševanju tveganja dolgoživosti. Najprej sem predstavil problematiko 

vrednotenja teh instrumentov in predstavil Wangovo transformacijo kot način, ki nam to 

omogoča. Nadaljeval sem s predstavitvijo treh izvedenih finančnih instrumentov (longevity 

bonds, q-forwards in longevity swaps). V predstavitvi sem se osredotočil na strukturo 

inštrumenta, izračun njegove cene in ga ponazoril na hipotetičnem primeru. Z raziskovanjem 

sem prišel do ugotovitev, da se trg ni razvil po pričakovanjih, predvsem zaradi slabe 

likvidnosti in neprepoznanje teh produktov s strani regulatorja za zmanjšanje zahtevanega 

solventnostnega kapitala.  

 

V delu sem se na koncu osredotočil tudi na bolj tradicionalne metode zmanjševanja tveganja 

zavarovalnic z uporabo pozavarovanja. Tudi ta način ima omejitev, ki pa je v obsegu, v 

katerem so pozavarovalnice zmožne sprejeti tveganje dolgoživosti. Z razvojem novih 

posebnih oblik pozavarovanja, ki vključujejo tudi ostale investitorje na trgu (“reinsurance 

sidecars”) pa se ta slabost zmanjša, saj imajo pozavarovalnice več kapitala, ki jim omogoča 

sprejemati večji obseg tveganja dolgoživosti.  
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Appendix 2: R-code used for stochastic mortality modelling 
 

 

#we start by downloading the following packages 

install.packages("StMoMo") 

install.packages("Demography") 

install.packages("Lifecontingencies") 

#we activate them 

library(StMoMo) 

library(demography) 

library(lifecontingencies) 

#we get the data from human mortality database: https://www.mortality.org 

#we install Slovenian data for population size and death rates in .txt 

#we delete the 2020 data in population .txt file since both population and 

mortality need to have the same data size 

#we import the data set in the global environment via .txt 

#we obtain the data by using the package demography 

SVNdata <- read.demogdata("Mx_1x1.txt","Population.txt", type="mortality", 

label="SVN") 

#now we have the data to work with 

#Firstly we will plot the data to know what we are working with 

plot(SVNdata, series = "total") 

plot(SVNdata, series = "female") 

plot(SVNdata, series = "male") 

 

 

#1. THE LEE CARTER MODEL 

#we define the model 

LC_model <- lc() 

#we fit the model to the data 

SLO_Female <- StMoMoData(SVNdata, series = "female") 

ages_fit <- 50:90 

LC_model_fit_Female <- fit(LC_model, data = SLO_Female, ages.fit = ages_fit) 

plot(LC_model_fit_Female) 

#we look the goodness of fit trough the residuals 

LC_model_residuals_Female <- residuals(LC_model_fit_Female) 

plot(LC_model_residuals_Female, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(LC_model_residuals_Female, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(LC_model_fit_Female) 

BIC(LC_model_fit_Female) 

#now we start with forecasting 

LC_model_forecast_Female <- forecast(LC_model_fit_Female, h = 35) 

plot(LC_model_forecast_Female) 

#simulation of different mortality projections 

LC_model_sim_Female <- simulate(LC_model_fit_Female, nsim = 1000, h=35) 

library(fanplot) 

mxt <- LC_model_fit_Female$Dxt/LC_model_fit_Female$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- LC_model_fit_Female$Dxt/LC_model_fit_Female$Ext 

matplot(LC_model_fit_Female$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2055), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Female mortality rate (log scale)") 

fan(t(LC_model_sim_Female$rates["65",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(LC_model_sim_Female$rates["75",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(LC_model_sim_Female$rates["85",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Female <- 1954 

LC_historical_rates_Female <- extractCohort(SLO_Female$Dxt/SLO_Female$Ext, cohort 

= chosen_cohort_Female)[1:37]#observed values 

LC_forecasted_rates_Female <- extractCohort(LC_model_forecast_Female$rates, 

cohort = chosen_cohort_Female) 

LC_54_cohort_rates_Female <- c(LC_historical_rates_Female, 

LC_forecasted_rates_Female) 
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plot(29:90, LC_54_cohort_rates_Female, type = "l", log = "y", xlab = "age", ylab 

= "m(x)", main = "Female cohort 1954 mortality rate") 

lines(66:90, LC_forecasted_rates_Female, col = "red") 

LC_mortality_rate_1954_Female <- mx2qx(LC_54_cohort_rates_Female) 

LC_lifetable_1954_Female <- probs2lifetable(probs =LC_mortality_rate_1954_Female, 

type = "qx", name = "LC-1954_Female") #We can obtain the life table and export it 

in excel 

exn(LC_lifetable_1954_Female, x = 36, type = "curtate") #life expectancy of a 

female born in 1954 in 2019 under LC, age = 65 = (29+36)-data starts at 29 

#We do the same for males 

LC_model <- lc() 

#we fit the model to the data 

SLO_Male <- StMoMoData(SVNdata, series = "male") 

ages_fit <- 50:90 

LC_model_fit_Male <- fit(LC_model, data = SLO_Male, ages.fit = ages_fit) 

plot(LC_model_fit_Male) 

#we look the goodness of fit trough the residuals 

LC_model_residuals_Male <- residuals(LC_model_fit_Male) 

plot(LC_model_residuals_Male, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(LC_model_residuals_Male, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(LC_model_fit_Male) 

BIC(LC_model_fit_Male) 

#now we start with forecasting 

LC_model_forecast_Male <- forecast(LC_model_fit_Male, h = 35) 

plot(LC_model_forecast_Male) 

#simulation of different mortality projections 

LC_model_sim_Male <- simulate(LC_model_fit_Male, nsim = 1000, h=35) 

library(fanplot) 

mxt <- LC_model_fit_Male$Dxt/LC_model_fit_Male$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- LC_model_fit_Male$Dxt/LC_model_fit_Male$Ext 

matplot(LC_model_fit_Male$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Male mortality rate (log scale)") 

fan(t(LC_model_sim_Male$rates["65",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(LC_model_sim_Male$rates["75",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(LC_model_sim_Male$rates["85",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Male <- 1954 

LC_historical_rates_Male <- extractCohort(SLO_Male$Dxt/SLO_Male$Ext, cohort = 

chosen_cohort_Male)[1:37]#observed values 

LC_forecasted_rates_Male <- extractCohort(LC_model_forecast_Male$rates, cohort = 

chosen_cohort_Male) 

LC_54_cohort_rates_Male <- c(LC_historical_rates_Male, LC_forecasted_rates_Male) 

plot(29:90, LC_54_cohort_rates_Male, type = "l", log = "y", xlab = "age", ylab = 

"m(x)", main = "Male cohort 1954 mortality rate") 

lines(66:90, LC_forecasted_rates_Male, col = "red") 

LC_mortality_rate_1954_Male <- mx2qx(LC_54_cohort_rates_Male) 

LC_lifetable_1954_Male <- probs2lifetable(probs =LC_mortality_rate_1954_Male, 

type = "qx", name = "LC-1954_Male")#We can obtain the life table and export it in 

excel 

exn(LC_lifetable_1954_Male, x = 36, type = "curtate") #life expectancy of a male 

born in 1954 in 2019 under LC, age = 65 (29+36) 

 

#2. THE CBD MODEL 

#we define the model 

CBD_model <- cbd(link = "log") 

#we fit the model to the data 

CBD_model_fit_Female <- fit(CBD_model, data=SLO_Female, ages.fit = ages_fit) 

plot(CBD_model_fit_Female, parametricbx = FALSE) 

#we look the goodness of fit trough the residuals 

CBD_model_residuals_Female <- residuals(CBD_model_fit_Female) 

plot(CBD_model_residuals_Female, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(CBD_model_residuals_Female, type ="scatter", reslim = c(-3.5, 3.5)) 
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AIC(CBD_model_fit_Female) 

BIC(CBD_model_fit_Female) 

#now we start with forecasting 

CBD_model_forecast_Female <- forecast(CBD_model_fit_Female, h = 35) 

plot(CBD_model_forecast_Female, parametricbx = FALSE) 

#simulation of different mortality projections 

CBD_model_sim_Female <- simulate(CBD_model_fit_Female, nsim = 1000, h=35) 

library(fanplot) 

mxt <- CBD_model_fit_Female$Dxt/CBD_model_fit_Female$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- CBD_model_fit_Female$Dxt/CBD_model_fit_Female$Ext 

matplot(CBD_model_fit_Female$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Female mortality rate (log scale)") 

fan(t(CBD_model_sim_Female$rates["65",,]), start = 2019, probs = probs, n.fan = 

4, fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(CBD_model_sim_Female$rates["75",,]), start = 2019, probs = probs, n.fan = 

4, fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(CBD_model_sim_Female$rates["85",,]), start = 2019, probs = probs, n.fan = 

4, fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Female <- 1954 

CBD_historical_rates_Female <- extractCohort(SLO_Female$Dxt/SLO_Female$Ext, 

cohort = chosen_cohort_Female)[1:37]#observed values 

CBD_forecasted_rates_Female <- extractCohort(CBD_model_forecast_Female$rates, 

cohort = chosen_cohort_Female) 

CBD_54_cohort_rates_Female <- c(CBD_historical_rates_Female, 

CBD_forecasted_rates_Female) 

plot(29:90, CBD_54_cohort_rates_Female, type = "l", log = "y", xlab = "age", ylab 

= "m(x)", main = "Female cohort 1954 mortality rate") 

lines(66:90, CBD_forecasted_rates_Female, col = "red") 

CBD_mortality_rate_1954_Female <- mx2qx(CBD_54_cohort_rates_Female) 

CBD_lifetable_1954_Female <- probs2lifetable(probs 

=CBD_mortality_rate_1954_Female, type = "qx", name = "CBD-1954_Female")#We can 

obtain the life table and export it in excel 

exn(CBD_lifetable_1954_Female, x = 36, type = "curtate") #life expectancy of a 

female born in 1983 in 2019 under CBD 

#we can do the same for male 

#we define the model 

CBD_model <- cbd(link = "log") 

#we fit the model to the data 

CBD_model_fit_Male <- fit(CBD_model, data=SLO_Male, ages.fit = ages_fit) 

plot(CBD_model_fit_Male, parametricbx = FALSE) 

#we look the goodness of fit trough the residuals 

CBD_model_residuals_Male <- residuals(CBD_model_fit_Male) 

plot(CBD_model_residuals_Male, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(CBD_model_residuals_Male, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(CBD_model_fit_Male) 

BIC(CBD_model_fit_Male) 

#now we start with forecasting 

CBD_model_forecast_Male <- forecast(CBD_model_fit_Male, h = 35) 

plot(CBD_model_forecast_Male, parametricbx = FALSE) 

#simulation of different mortality projections 

CBD_model_sim_Male <- simulate(CBD_model_fit_Male, nsim = 1000, h=35) 

library(fanplot) 

mxt <- CBD_model_fit_Male$Dxt/CBD_model_fit_Male$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- CBD_model_fit_Male$Dxt/CBD_model_fit_Male$Ext 

matplot(CBD_model_fit_Male$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Male mortality rate (log scale)") 

fan(t(CBD_model_sim_Male$rates["65",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(CBD_model_sim_Male$rates["75",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(CBD_model_sim_Male$rates["85",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 
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text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Male <- 1954 

CBD_historical_rates_Male <- extractCohort(SLO_Male$Dxt/SLO_Male$Ext, cohort = 

chosen_cohort_Male)[1:37]#observed values 

CBD_forecasted_rates_Male <- extractCohort(CBD_model_forecast_Male$rates, cohort 

= chosen_cohort_Male) 

CBD_54_cohort_rates_Male <- c(CBD_historical_rates_Male, 

CBD_forecasted_rates_Male) 

plot(29:90, CBD_54_cohort_rates_Male, type = "l", log = "y", xlab = "age", ylab = 

"m(x)", main = "Male cohort 1954 mortality rate") 

lines(66:90, CBD_forecasted_rates_Male, col = "red") 

CBD_mortality_rate_1954_Male <- mx2qx(CBD_54_cohort_rates_Male) 

CBD_lifetable_1954_Male <- probs2lifetable(probs =CBD_mortality_rate_1954_Male, 

type = "qx", name = "CBD-1954_Male")#We can obtain the life table and export it 

in excel 

exn(CBD_lifetable_1954_Male, x = 36, type = "curtate") #life expectancy of a male 

born in 1983 in 2019 under CBD 

 

#3. THE AGE PERIOD COHORT (APC) MODEL 

#we define the model 

APC_model <- apc() 

#we fit the model to the data 

APC_model_fit_Female <- fit(APC_model, data = SLO_Female, ages.fit = ages_fit) 

plot(APC_model_fit_Female, parametricbx = FALSE) 

#we look the goodness of fit trough the residuals 

APC_model_residuals_Female <- residuals(APC_model_fit_Female) 

plot(APC_model_residuals_Female, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(APC_model_residuals_Female, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(APC_model_fit_Female) 

BIC(APC_model_fit_Female) 

#now we start with forecasting 

APC_model_forecast_Female <- forecast(APC_model_fit_Female, h = 35, gc.order = 

c(1,1,0), gc.include.constant = FALSE) 

plot(APC_model_forecast_Female, parametricbx = FALSE) 

#simulation of different mortality projections 

APC_model_sim_Female <- simulate(APC_model_fit_Female, nsim = 1000, h=35) 

library(fanplot) 

mxt <- APC_model_fit_Female$Dxt/APC_model_fit_Female$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- APC_model_fit_Female$Dxt/APC_model_fit_Female$Ext 

matplot(APC_model_fit_Female$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Female mortality rate (log scale)") 

fan(t(APC_model_sim_Female$rates["65",,]), start = 2019, probs = probs, n.fan = 

4, fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(APC_model_sim_Female$rates["75",,]), start = 2019, probs = probs, n.fan = 

4, fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(APC_model_sim_Female$rates["85",,]), start = 2019, probs = probs, n.fan = 

4, fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Female <- 1954 

APC_historical_rates_Female <- extractCohort(SLO_Female$Dxt/SLO_Female$Ext, 

cohort = chosen_cohort_Female)[1:37]#observed values 

APC_forecasted_rates_Female <- extractCohort(APC_model_forecast_Female$rates, 

cohort = chosen_cohort_Female) 

APC_54_cohort_rates_Female <- c(APC_historical_rates_Female, 

APC_forecasted_rates_Female) 

plot(29:90, APC_54_cohort_rates_Female, type = "l", log = "y", xlab = "age", ylab 

= "m(x)", main = "Female cohort 1954 mortality rate") 

lines(66:90, APC_forecasted_rates_Female, col = "red") 

APC_mortality_rate_1954_Female <- mx2qx(APC_54_cohort_rates_Female) 

APC_lifetable_1954_Female <- probs2lifetable(probs 

=APC_mortality_rate_1954_Female, type = "qx", name = "APC-1954_Female")#We can 

obtain the life table and export it in excel 
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exn(APC_lifetable_1954_Female, x = 36, type = "curtate") #life expectancy of a 

female born in 1983 in 2019 under APC 

#we can do the same for males 

#we define the model 

APC_model <- apc() 

#we fit the model to the data 

APC_model_fit_Male <- fit(APC_model, data = SLO_Male, ages.fit = ages_fit) 

plot(APC_model_fit_Male, parametricbx = FALSE) 

#we look the goodness of fit trough the residuals 

APC_model_residuals_Male <- residuals(APC_model_fit_Male) 

plot(APC_model_residuals_Male, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(APC_model_residuals_Male, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(APC_model_fit_Male) 

BIC(APC_model_fit_Male) 

#now we start with forecasting 

APC_model_forecast_Male <- forecast(APC_model_fit_Male, h = 35, gc.order = 

c(1,1,0), gc.include.constant = FALSE) 

plot(APC_model_forecast_Male, parametricbx = FALSE) 

#simulation of different mortality projections 

APC_model_sim_Male <- simulate(APC_model_fit_Male, nsim = 1000, h=35) 

library(fanplot) 

mxt <- APC_model_fit_Male$Dxt/APC_model_fit_Male$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- APC_model_fit_Male$Dxt/APC_model_fit_Male$Ext 

matplot(APC_model_fit_Male$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Male mortality rate (log scale)") 

fan(t(APC_model_sim_Male$rates["65",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(APC_model_sim_Male$rates["75",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(APC_model_sim_Male$rates["85",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Male <- 1954 

APC_historical_rates_Male <- extractCohort(SLO_Male$Dxt/SLO_Male$Ext, cohort = 

chosen_cohort_Male)[1:37]#observed values 

APC_forecasted_rates_Male <- extractCohort(APC_model_forecast_Male$rates, cohort 

= chosen_cohort_Male) 

APC_54_cohort_rates_Male <- c(APC_historical_rates_Male, 

APC_forecasted_rates_Male) 

plot(29:90, APC_54_cohort_rates_Male, type = "l", log = "y", xlab = "age", ylab = 

"m(x)", main = "Male cohort 1954 mortality rate") 

lines(66:90, APC_forecasted_rates_Male, col = "red") 

APC_mortality_rate_1954_Male <- mx2qx(APC_54_cohort_rates_Male) 

APC_lifetable_1954_Male <- probs2lifetable(probs =APC_mortality_rate_1954_Male, 

type = "qx", name = "APC-1954_Male")#We can obtain the life table and export it 

in excel 

exn(APC_lifetable_1954_Male, x = 36, type = "curtate") #life expectancy of a male 

born in 1983 in 2019 under APC. 

 

#4. THE M7 MODEL 

#we define the model 

M7_model <- m7(link = "log") 

#we fit the model to the data 

M7_model_fit_Female <- fit(M7_model, data = SLO_Female, ages.fit = ages_fit) 

plot(M7_model_fit_Female, parametricbx = FALSE) 

#we look the goodness of fit trough the residuals 

M7_model_residuals_Female <- residuals(M7_model_fit_Female) 

plot(M7_model_residuals_Female, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(M7_model_residuals_Female, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(M7_model_fit_Female) 

BIC(M7_model_fit_Female) 

 

#now we start with forecasting 

M7_model_forecast_Female <- forecast(M7_model_fit_Female, h=35, gc.order = 

c(0,0,0), gc.include.constant = FALSE) 
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plot(M7_model_forecast_Female, parametricbx = FALSE) 

#simulation of different mortality projections 

M7_model_sim_Female <- simulate(M7_model_fit_Female, nsim = 1000, h=35) 

library(fanplot) 

mxt <- M7_model_fit_Female$Dxt/M7_model_fit_Female$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- M7_model_fit_Female$Dxt/M7_model_fit_Female$Ext 

matplot(M7_model_fit_Female$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Female mortality rate (log scale)") 

fan(t(M7_model_sim_Female$rates["65",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(M7_model_sim_Female$rates["75",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(M7_model_sim_Female$rates["85",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 

chosen_cohort_Female <- 1954 

M7_historical_rates_Female <- extractCohort(SLO_Female$Dxt/SLO_Female$Ext, cohort 

= chosen_cohort_Female)[1:37]#observed values 

M7_forecasted_rates_Female <- extractCohort(M7_model_forecast_Female$rates, 

cohort = chosen_cohort_Female) 

M7_54_cohort_rates_Female <- c(M7_historical_rates_Female, 

M7_forecasted_rates_Female) 

plot(29:90, M7_54_cohort_rates_Female, type = "l", log = "y", xlab = "age", ylab 

= "m(x)", main = "Female cohort 1954 mortality rate") 

lines(66:90, M7_forecasted_rates_Female, col = "red") 

M7_mortality_rate_1954_Female <- mx2qx(M7_54_cohort_rates_Female) 

M7_lifetable_1954_Female <- probs2lifetable(probs =M7_mortality_rate_1954_Female, 

type = "qx", name = "M7-1954_Female")#We can obtain the life table and export it 

in excel 

exn(M7_lifetable_1954_Female, x = 36, type = "curtate") #life expectancy of a 

female born in 1983 in 2019 under M7. 

#we can do the same for male 

#we define the model 

M7_model <- m7(link = "log") 

#we fit the model to the data 

M7_model_fit_Male <- fit(M7_model, data = SLO_Male, ages.fit = ages_fit) 

plot(M7_model_fit_Male, parametricbx = FALSE) 

#we look the goodness of fit trough the residuals 

M7_model_residuals_Male <- residuals(M7_model_fit_Male) 

plot(M7_model_residuals_Male, type = "colourmap", reslim = c(-3.5, 3.5)) 

plot(M7_model_residuals_Male, type ="scatter", reslim = c(-3.5, 3.5)) 

AIC(M7_model_fit_Male) 

BIC(M7_model_fit_Male) 

#now we start with forecasting 

M7_model_forecast_Male <- forecast(M7_model_fit_Male, h=35, gc.order = c(0,0,0), 

gc.include.constant = FALSE) 

plot(M7_model_forecast_Male, parametricbx = FALSE) 

#simulation of different mortality projections 

M7_model_sim_Male <- simulate(M7_model_fit_Male, nsim = 1000, h=35) 

library(fanplot) 

mxt <- M7_model_fit_Male$Dxt/M7_model_fit_Male$Ext 

probs <- c(2.5, 10, 25, 50, 75, 90, 97.5) 

qxt <- M7_model_fit_Male$Dxt/M7_model_fit_Male$Ext 

matplot(M7_model_fit_Male$years, t(qxt[c("65", "75", "85"), ]), xlim = c(1983, 

2049), ylim = c(0.0025, 0.2), pch = 20, col = "black", log = "y", xlab = "year", 

ylab = "Male mortality rate (log scale)") 

fan(t(M7_model_sim_Male$rates["65",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("black", "white")), ln = NULL) 

fan(t(M7_model_sim_Male$rates["75",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("red", "white")), ln = NULL) 

fan(t(M7_model_sim_Male$rates["85",,]), start = 2019, probs = probs, n.fan = 4, 

fan.col = colorRampPalette(c("blue", "white")), ln = NULL) 

text(1985, qxt[c("65", "75", "85"), "1990"], labels = c("x = 65", "x = 75", "x = 

85")) 

#now we calculate life expectancy 
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chosen_cohort_Male <- 1954 

M7_historical_rates_Male <- extractCohort(SLO_Male$Dxt/SLO_Male$Ext, cohort = 

chosen_cohort_Male)[1:37]#observed values 

M7_forecasted_rates_Male <- extractCohort(M7_model_forecast_Male$rates, cohort = 

chosen_cohort_Male) 

M7_54_cohort_rates_Male <- c(M7_historical_rates_Male, M7_forecasted_rates_Male) 

plot(29:90, M7_54_cohort_rates_Male, type = "l", log = "y", xlab = "age", ylab = 

"m(x)", main = "Male cohort 1954 mortality rate") 

lines(66:90, M7_forecasted_rates_Male, col = "red") 

M7_mortality_rate_1954_Male <- mx2qx(M7_54_cohort_rates_Male) 

M7_lifetable_1954_Male <- probs2lifetable(probs =M7_mortality_rate_1954_Male, 

type = "qx", name = "M7-1954_Male")#We can obtain the life table and export it in 

excel 

exn(M7_lifetable_1954_Male, x = 36, type = "curtate") #life expectancy of a male 

born in 1983 in 2019 under M7. 

 

 

Appendix 3: Parameters of forecasting models (males) 
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Appendix 4: Parameters of forecasting models (females) 

LC 

   
 

 

 

 

 

 

 



 

10 
 

CBD 

 

 

APC 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 
 

M7 

 
 

Appendix 5: Forecasting time-dependent variables for males (APC) 
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Appendix 6: Forecasting time-dependent variables (females) 

 
                        LC                                                                  CBD 

     
 

APC 

 
 

  M7 

 



 

13 
 

Appendix 7: Forecasts of log-central death rates (females)                     

                                           LC                                                               CBD 
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Appendix 8: Forecasts of central mortality rates for the 1954 cohort (females) 
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Appendix 9: Deviance residuals in a colormap (females) 

 
                                        LC                                                           CBD 

  
 
 
                                     APC                                                           M7 

  
 

Appendix 10: Information criteria (females) 

 
Inf. criteria LC CBD APC M7 

AIC 12277.4 15110.12 12348.01 12157.88 

BIC 12900.37 15504.13 13157.33 13142.91 
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Appendix 11: R code for applying the Wang’s transformation on SIA 65, 2010 table 

 
q_x = read.table("/Users/svit/Desktop/JMD.txt", header = T) 

L=function (lambda , r , q , s , x0 , le , male) 

{ 

# to be optimalized wrt lambda 

# r = fixed interest rate 

# q = mortality table 

# s = monthly payout from SPIA 

# x0 = initial age 

# le = maximum age set to 115 

# male : TRUE/FALSE 

# dividing with 1000 to get the mortalities 

q_male=q$Male  

q_female=q$Female 

# K = number of time periods 

K=le-x0 

# discount 

d=1 / (1+r) 

# s is monthly , q is in years 

s=s*12 

# calculating k_q_x0 and inserting them in a matrix 

 if (male) q=q_male else 

    q=q_female 

  q_=c ( q , rep (1 ,le) ) 

  kq=matrix (0 ,K+1 ,le) 

  for (l in 0:le) 

  { 

    kq [ 1 : K+1 ,l]=1-cumprod(1-q_ [l : ( l+K-1) ] ) 

  } 

  # the Wang transform 

  A=s*sum(d** ( 0 : K) * (pnorm(qnorm(1-kq [ 1 : ( K+1) ,x0 ] )-lambda) ) ) 

  list (A=A) 

} 

f=function (lambda , r=0.03 ,q=q_x , s=680,x0=65,le=115,male=FALSE) L(lambda , r 

, q , s , x0 

           , le , male) $A 

fzero=function (lambda , pi_x0) f(lambda)-pi_x0 

uni=uniroot (fzero , c (-10 ,10) ,pi_x0=100000) 

 

lambda=uni$root 

lambda 

# initial age 

age=c (55 ,60 ,65 ,70 ,75 ,80) 

 

# row 1=male , row 2=female 

# payouts based on Troske, 2015 

sCL=matrix ( c(671.7 ,726.44 ,804.02 ,911.69 ,1060.03 ,1265.68 ,627.13 ,669.96 

,729.13 ,812.49 ,936.41 ,1118.95) 

             ,byrow=T , ncol =6) 

 

# estimating the Wang transform 

l_male=1:6*0 

l_female=1:6*0 

gender=c (TRUE , FALSE) 

 

for (i in 1: length (age) ) 

{ 

  for (j in 1:2) 

  { 

    f=function (lambda , r=0.03 ,q=q_x , s=sCL[j , i] ,x0=age[i] 

,le=115,male=gender[j ] ) L( 

      lambda , r , q , s , x0 , le , male) $A 

    fzero=function (lambda , pi_x0) f(lambda)-pi_x0 

    uni=uniroot (fzero , c (-10 ,10) ,pi_x0=100000) 

    if (gender[j ] ) l_male[i]=uni$root else 

      l_female[i]=uni$root 
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  } 

} 

 

# plotting the Wang transform 

plot(age,l_male, "o" ,lty=1 ,main="Market Price of Risk using SIA 65 2010 \nwhen 

r = 

3%" ,xlab="Initial age" ,ylab=expression (lambda) ,ylim=c(min(l_male , l_female) 

,  

                                                          max(l_male , l_female) 

) ) 

lines(age , l_female ,"o",lty=2) 

legend ( "topright" , c ( "Male" , "Female " ) ,lty=c (1 ,2) , col =1) 

 

### Basic mortalities versus the transformed mortalities 

q_male=q_x$Male 

q_female=q_x$Female 

Age=q_x$Age 

 

# Wang transform on Males 

q_starm=55:115*0 

 

l_male2=c(rep (l_male [ 1 ] , 5 ) , rep (l_male [ 2 ] , 5 ) , rep (l_male [ 3 ] , 

5 ) , rep (l_male [ 4 ] , 5 ) , 

          rep (l_male [ 5 ] , 5 ) , rep (l_male[ 6 ] , 36 ) ) 

 

for (i in 1: length ( q_starm) ) 

{ 

  q_starm[i]=pnorm(qnorm( q_male[Age[54+i ] ] )-l_male2[i ] ) 

} 

 

# Plotting SIA 65 2010 against Wang's transformed rates 

plot(Age[55:115],q_male[55:115], "l" ,ylim=c(min(q_starm) ,max(q_male)),main= 

"One-year mortalities for males" ,xlab="Initial age" ,ylab="q") 

lines(Age[55:115], q_starm, "l",lty=2) 

legend ( "topleft" , c( "SIA 65 2010 " , "Mortalities based on  

Wang' s Transformation " ) ,col =1,lty=c (1,2)) 

 

#Wang transform on Females 

q_starf=55:115*0 

l_female2=c (rep(l_female[ 1 ],5) , rep(l_female [2], 5) , rep(l_female [3], 5) , 

rep (l_female [ 4 ] , 5 ) , rep (l_female [ 5 ] , 5 ) , rep (l_female[ 6 ] ,36 ) 

) 

 

for (i in 1: length ( q_starf) ) 

{ 

  q_starf[i]=pnorm(qnorm( q_female[Age[54+i ] ] )-l_female2[i ] ) 

} 

# Plotting SIA 65 2010 against Wang's transformed rates 

plot(Age[55:115],q_female[55:115] ,"l",ylim=c(min(q_starf),max(q_female)),main= 

       "One-year mortalities for females",xlab="Initial age",ylab="q") 

lines(Age[55:115],q_starf,"l",lty=2) 

legend ("topleft",c("SIA 65 2010" ,"Mortalities based on 

Wang' s Transformation"), col=1 ,lty=c (1,2)) 

 

Appendix 12: R code for calculating the price of a longevity bond 

q_x = read.table("/Users/svit/Desktop/JMD.txt", header = T) 

 

#FEMALE 

q_male=q_x$Male  

q_female=q_x$Female 

le=115;K1=115 

p_=c(1-q_male , rep (0 ,le+1) ) 

kp=matrix (1 ,K1+1 ,le+1) 

for (l in 0:le+1) 

{ 

  kp [ 1: K1+1 ,l]=cumprod (p_ [l : ( l+K1-1) ] ) 
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} 

 

l_male=1.1059 

l_female=1.4614 

 

q_starm=1: length ( q_male) *0 

 

q_starf=1: length ( q_female) *0 

for (i in 1: length ( q_starm) ) 

{ 

  q_starm[i]=pnorm(qnorm( q_male[i ] )-l_male) 

  q_starf[i]=pnorm(qnorm( q_female[i ] )-l_female) 

} 

 

p_star=c(1-q_starf , rep (0 ,le+1) ) 

kp_star=matrix (1 ,K1+1 ,le+1) 

for (l in 0:le+1) 

{ 

  kp_star [ 1 : K1+1 ,l]=cumprod (p_star[l : ( l+K1-1) ] ) 

} 

 

K=30 

x0=65; n_x=10000 

X=1:K*0 

for (k in 1:10) 

{ 

  X[k]=n_x*kp[k+1 ,x0] *exp (0.0070 *k) 

} 

for (k in 11:20) 

{ 

  X[k]=n_x*kp[k+1 ,x0] *exp ( 0.07 ) *exp (0.0093 * (k-10) ) 

} 

for (k in 21:30) 

{ 

  X[k]=n_x*kp[k+1 ,x0] *exp (0.163) *exp (0.0103 * (k-20) ) 

} 

 

mu=1:K*0 

sigma=1:K*0 

for (k in 1:K) 

{ 

  mu[k]=n_x*kp_star[k+1 ,x0] 

  sigma[k]= sqrt (n_x*kp_star[k+1 ,x0] *(1-kp_star[k+1 ,x0 ] ) ) 

} 

 

psi=function (a) 

{ 

  dnorm(a)-a*(1-pnorm(a) ) 

} 

 

C=700 

E_D=1:K*0 

for (k in 1:K) 

{ 

  a=(X[k]-mu[k ] ) / sigma[k] 

  E_D[k]=1000* (C-sigma[k] * (psi(a)-psi(a+C/ sigma[k ] ) ) ) 

} 

r=0.03 

d=1/(1+r) 

 

F=10000000 

V=F*d**K+sum(d** ( 1 : K) *E_D) 

 

P=F-V 

 

#MALE 

q_male=q_x$Male  

q_female=q_x$Female 
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le=115;K1=115 

p_=c(1-q_male , rep (0 ,le+1) ) 

kp=matrix (1 ,K1+1 ,le+1) 

for (l in 0:le+1) 

{ 

  kp [ 1: K1+1 ,l]=cumprod (p_ [l : ( l+K1-1) ] ) 

} 

 

l_male=1.1059 

l_female=1.4614 

 

q_starm=1: length ( q_male) *0 

 

q_starf=1: length ( q_female) *0 

for (i in 1: length ( q_starm) ) 

{ 

  q_starm[i]=pnorm(qnorm( q_male[i ] )-l_male) 

  q_starf[i]=pnorm(qnorm( q_female[i ] )-l_female) 

} 

 

p_star=c(1-q_starm , rep (0 ,le+1) ) 

kp_star=matrix (1 ,K1+1 ,le+1) 

for (l in 0:le+1) 

{ 

  kp_star [ 1 : K1+1 ,l]=cumprod (p_star[l : ( l+K1-1) ] ) 

} 

 

K=30 

x0=65; n_x=10000 

X=1:K*0 

for (k in 1:10) 

{ 

  X[k]=n_x*kp[k+1 ,x0] *exp (0.0070 *k) 

} 

for (k in 11:20) 

{ 

  X[k]=n_x*kp[k+1 ,x0] *exp ( 0.07 ) *exp (0.0093 * (k-10) ) 

} 

for (k in 21:30) 

{ 

  X[k]=n_x*kp[k+1 ,x0] *exp (0.163) *exp (0.0103 * (k-20) ) 

} 

 

mu=1:K*0 

sigma=1:K*0 

for (k in 1:K) 

{ 

  mu[k]=n_x*kp_star[k+1 ,x0] 

  sigma[k]= sqrt (n_x*kp_star[k+1 ,x0] *(1-kp_star[k+1 ,x0 ] ) ) 

} 

 

psi=function (a) 

{ 

  dnorm(a)-a*(1-pnorm(a) ) 

} 

 

C=700 

E_D=1:K*0 

for (k in 1:K) 

{ 

  a=(X[k]-mu[k ] ) / sigma[k] 

  E_D[k]=1000* (C-sigma[k] * (psi(a)-psi(a+C/ sigma[k ] ) ) ) 

} 

r=0.03 

d=1/(1+r) 

F=10000000 

V=F*d**K+sum(d** ( 1 : K) *E_D) 

 

P=F-V 
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Appendix 13: Mortality tables of a 1954 cohort under different models 

Lee-Carter (Female_1954)           Lee-Carter (Male_1954) 

 
 

 

 

 

 

 

 

 

 

 

year age lx px ex qx

1983 29 10000 0.9991933 54.184624 0.0008067

1984 30 9991.933 0.9995661 53.2283686 0.0004339

1985 31 9987.598 0.9993172 52.2514747 0.0006828

1986 32 9980.778 0.9995101 51.2871747 0.0004899

1987 33 9975.889 0.9993342 50.3123116 0.0006658

1988 34 9969.247 0.9992703 49.3458307 0.0007297

1989 35 9961.972 0.9987787 48.3818663 0.0012213

1990 36 9949.806 0.9991414 47.4410251 0.0008586

1991 37 9941.263 0.9988906 46.4817945 0.0011094

1992 38 9930.234 0.998577 45.5334179 0.001423

1993 39 9916.104 0.9988187 44.5983037 0.0011813

1994 40 9904.39 0.9983793 43.6510501 0.0016207

1995 41 9888.338 0.9982386 42.7219095 0.0017614

1996 42 9870.92 0.9984083 41.7972947 0.0015917

1997 43 9855.208 0.9986559 40.8639309 0.0013441

1998 44 9841.962 0.998009 39.9189299 0.001991

1999 45 9822.367 0.997554 38.9985676 0.002446

2000 46 9798.341 0.997551 38.0941922 0.002449

2001 47 9774.345 0.9983204 37.1877138 0.0016796

2002 48 9757.928 0.9976069 36.250279 0.0023931

2003 49 9734.576 0.9981837 35.3372388 0.0018163

2004 50 9716.895 0.9975301 34.4015404 0.0024699

2005 51 9692.894 0.9971341 33.4867207 0.0028659

2006 52 9665.116 0.9967991 32.5829657 0.0032009

2007 53 9634.179 0.9971172 31.6875944 0.0028828

2008 54 9606.405 0.996252 30.7792087 0.003748

2009 55 9570.401 0.9959761 29.8950021 0.0040239

2010 56 9531.89 0.9962899 29.0157822 0.0037101

2011 57 9496.526 0.9950801 28.1238347 0.0049199

2012 58 9449.805 0.9947269 27.2628843 0.0052731

2013 59 9399.975 0.9944206 26.4074053 0.0055794

2014 60 9347.529 0.9958038 25.5555692 0.0041962

2015 61 9308.305 0.9945628 24.6632568 0.0054372

2016 62 9257.694 0.9946006 23.7980884 0.0053994

2017 63 9207.708 0.9936085 22.927281 0.0063915

2018 64 9148.857 0.9946742 22.0747635 0.0053258

2019 65 9100.132 0.9927921 21.1929583 0.0072079

2020 66 9034.539 0.9926981 20.3468247 0.0073019

2021 67 8968.57 0.9930801 19.4964882 0.0069199

2022 68 8906.509 0.9919723 18.6323413 0.0080277

2023 69 8835.009 0.9916476 17.7831274 0.0083524

2024 70 8761.216 0.991496 16.9329109 0.008504

2025 71 8686.711 0.990041 16.0781428 0.009959

2026 72 8600.2 0.9893368 15.2398753 0.0106632

2027 73 8508.494 0.9887937 14.4041321 0.0112063

2028 74 8413.146 0.9878464 13.5673784 0.0121536

2029 75 8310.896 0.9866834 12.7342992 0.0133166

2030 76 8200.223 0.9849401 11.9061655 0.0150599

2031 77 8076.729 0.9834432 11.0882127 0.0165568

2032 78 7943.004 0.9817449 10.2748885 0.0182551

2033 79 7798.004 0.9786946 9.4659456 0.0213054

2034 80 7631.864 0.9755555 8.6720117 0.0244445

2035 81 7445.307 0.9732194 7.889306 0.0267806

2036 82 7245.917 0.969559 7.1064003 0.030441

2037 83 7025.344 0.9648759 6.3295184 0.0351241

2038 84 6778.585 0.9577459 5.5599299 0.0422541

2039 85 6492.162 0.9511897 4.8052244 0.0488103

2040 86 6175.278 0.9448887 4.0518042 0.0551113

2041 87 5834.951 0.9331143 3.2881286 0.0668857

2042 88 5444.676 0.9215037 2.5238219 0.0784963

2043 89 5017.289 0.915289 1.7388083 0.084711

2044 90 4592.269 0.8997368 0.8997368 0.1002632

year age lx px ex qx

1983 29 10000 0.9977785 47.9446575 0.0022215

1984 30 9977.785 0.9979491 47.0514051 0.0020509

1985 31 9957.321 0.9978852 46.1481009 0.0021148

1986 32 9936.264 0.9978054 45.2459 0.0021946

1987 33 9914.458 0.998011 44.3454145 0.001989

1988 34 9894.738 0.9976577 43.4337942 0.0023423

1989 35 9871.562 0.9975829 42.535766 0.0024171

1990 36 9847.702 0.9978553 41.6388273 0.0021447

1991 37 9826.581 0.9969726 40.7283219 0.0030274

1992 38 9796.832 0.9964244 39.8519977 0.0035756

1993 39 9761.803 0.9968061 38.9950037 0.0031939

1994 40 9730.624 0.9967902 38.1199485 0.0032098

1995 41 9699.391 0.9959104 37.2427015 0.0040896

1996 42 9659.724 0.9963367 36.3956354 0.0036633

1997 43 9624.338 0.9965639 35.529453 0.0034361

1998 44 9591.268 0.9951657 34.6519562 0.0048343

1999 45 9544.901 0.9947986 33.8202874 0.0052014

2000 46 9495.253 0.9954633 32.9971213 0.0045367

2001 47 9452.176 0.9937794 32.1475011 0.0062206

2002 48 9393.378 0.9950762 31.3487294 0.0049238

2003 49 9347.127 0.9934277 30.5038495 0.0065723

2004 50 9285.694 0.9942903 29.7056573 0.0057097

2005 51 9232.676 0.9933452 28.8762402 0.0066548

2006 52 9171.235 0.9927593 28.0696927 0.0072407

2007 53 9104.829 0.9920418 27.2744191 0.0079582

2008 54 9032.371 0.9926789 26.4932158 0.0073211

2009 55 8966.244 0.991186 25.6886058 0.008814

2010 56 8887.215 0.9909224 24.9170382 0.0090776

2011 57 8806.541 0.9904518 24.1452974 0.0095482

2012 58 8722.454 0.990535 23.378064 0.009465

2013 59 8639.896 0.9893184 22.6014515 0.0106816

2014 60 8547.608 0.9887773 21.8454788 0.0112227

2015 61 8451.681 0.9880083 21.0934261 0.0119917

2016 62 8350.331 0.987235 20.3494415 0.012765

2017 63 8243.739 0.9871037 19.6125609 0.0128963

2018 64 8137.425 0.9855097 18.8687949 0.0144903

2019 65 8019.512 0.9850466 18.1462285 0.0149534

2020 66 7899.593 0.9842789 17.4216947 0.0157211

2021 67 7775.403 0.9836682 16.6999571 0.0163318

2022 68 7648.417 0.9823959 15.9772249 0.0176041

2023 69 7513.774 0.981699 15.2635294 0.018301

2024 70 7376.264 0.9804868 14.5480751 0.0195132

2025 71 7232.33 0.9785703 13.8376036 0.0214297

2026 72 7077.343 0.9776766 13.1406337 0.0223234

2027 73 6919.353 0.9745451 12.4406755 0.0254549

2028 74 6743.221 0.9748119 11.7656226 0.0251881

2029 75 6573.373 0.9728554 11.0696336 0.0271446

2030 76 6394.941 0.970067 10.3784979 0.029933

2031 77 6203.521 0.9695211 9.6987436 0.0304789

2032 78 6014.445 0.965407 9.0036432 0.034593

2033 79 5806.387 0.96259 8.3262668 0.03741

2034 80 5589.17 0.9575552 7.6498583 0.0424448

2035 81 5351.939 0.955381 6.9889476 0.044619

2036 82 5113.141 0.9491441 6.3153515 0.0508559

2037 83 4853.107 0.9382429 5.6537335 0.0617571

2038 84 4553.393 0.9359217 5.0258742 0.0640783

2039 85 4261.619 0.9243276 4.369973 0.0756724

2040 86 3939.132 0.9143182 3.7277319 0.0856818

2041 87 3601.62 0.9100184 3.0770621 0.0899816

2042 88 3277.541 0.8943402 2.3813185 0.1056598

2043 89 2931.236 0.8855123 1.6626541 0.1144877

2044 90 2595.646 0.8776182 0.8776182 0.1223818
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  Cairns-Blake-Dowd (Female_1954)     Cairns-Blake-Dowd (Male_1954) 

  
 

 

 

 

 

 

 

 

year age lx px ex qx

1983 29 10000 0.9991933 53.772414 0.0008067

1984 30 9991.933 0.9995661 52.815826 0.0004339

1985 31 9987.598 0.9993172 51.838753 0.0006828

1986 32 9980.778 0.9995101 50.874171 0.0004899

1987 33 9975.889 0.9993342 49.899106 0.0006658

1988 34 9969.247 0.9992703 48.932349 0.0007297

1989 35 9961.972 0.9987787 47.968083 0.0012213

1990 36 9949.806 0.9991414 47.026736 0.0008586

1991 37 9941.263 0.9988906 46.067149 0.0011094

1992 38 9930.234 0.998577 45.118312 0.001423

1993 39 9916.104 0.9988187 44.182606 0.0011813

1994 40 9904.39 0.9983793 43.234861 0.0016207

1995 41 9888.338 0.9982386 42.305045 0.0017614

1996 42 9870.92 0.9984083 41.379695 0.0015917

1997 43 9855.208 0.9986559 40.445665 0.0013441

1998 44 9841.962 0.998009 39.500101 0.001991

1999 45 9822.367 0.997554 38.578903 0.002446

2000 46 9798.341 0.997551 37.673499 0.002449

2001 47 9774.345 0.9983204 36.765988 0.0016796

2002 48 9757.928 0.9976069 35.827843 0.0023931

2003 49 9734.576 0.9981837 34.91379 0.0018163

2004 50 9716.895 0.9975301 33.977321 0.0024699

2005 51 9692.894 0.9971341 33.061451 0.0028659

2006 52 9665.116 0.9967991 32.156473 0.0032009

2007 53 9634.179 0.9971172 31.259733 0.0028828

2008 54 9606.405 0.996252 30.35011 0.003748

2009 55 9570.401 0.9959761 29.464289 0.0040239

2010 56 9531.89 0.9962899 28.583329 0.0037101

2011 57 9496.526 0.9950801 27.689771 0.0049199

2012 58 9449.805 0.9947269 26.826675 0.0052731

2013 59 9399.975 0.9944206 25.968883 0.0055794

2014 60 9347.529 0.9958038 25.114587 0.0041962

2015 61 9308.305 0.9945628 24.220416 0.0054372

2016 62 9257.694 0.9946006 23.352827 0.0053994

2017 63 9207.708 0.9936085 22.479602 0.0063915

2018 64 9148.857 0.9946742 21.624205 0.0053258

2019 65 9100.132 0.9927921 20.739987 0.0072079

2020 66 9034.539 0.992588 19.890565 0.007412

2021 67 8967.575 0.9918769 19.039095 0.0081231

2022 68 8894.73 0.9910923 18.195019 0.0089077

2023 69 8815.499 0.9902262 17.358552 0.0097738

2024 70 8729.338 0.9892698 16.529885 0.0107302

2025 71 8635.67 0.9882129 15.709178 0.0117871

2026 72 8533.88 0.9870446 14.896553 0.0129554

2027 73 8423.32 0.9857524 14.092077 0.0142476

2028 74 8303.308 0.9843227 13.295757 0.0156773

2029 75 8173.134 0.98274 12.507519 0.01726

2030 76 8032.066 0.9809873 11.727191 0.0190127

2031 77 7879.355 0.9790455 10.954478 0.0209545

2032 78 7714.247 0.9768935 10.188936 0.0231065

2033 79 7535.997 0.9745075 9.429936 0.0254925

2034 80 7343.886 0.9718613 8.676617 0.0281387

2035 81 7137.239 0.9689256 7.927834 0.0310744

2036 82 6915.453 0.9656679 7.182088 0.0343321

2037 83 6678.031 0.9620519 6.43743 0.0379481

2038 84 6424.613 0.9580375 5.691354 0.0419625

2039 85 6155.02 0.9535802 4.940638 0.0464198

2040 86 5869.305 0.9486304 4.181146 0.0513696

2041 87 5567.802 0.9431337 3.407561 0.0568663

2042 88 5251.181 0.9370296 2.61302 0.0629704

2043 89 4920.512 0.9302518 1.78862 0.0697482

2044 90 4577.315 0.922727 0.922727 0.077273

year age lx px ex qx

1983 29 10000 0.9977785 47.8490676 0.0022215

1984 30 9977.785 0.9979491 46.9556023 0.0020509

1985 31 9957.321 0.9978852 46.0521013 0.0021148

1986 32 9936.264 0.9978054 45.1496969 0.0021946

1987 33 9914.458 0.998011 44.2489998 0.001989

1988 34 9894.738 0.9976577 43.3371874 0.0023423

1989 35 9871.562 0.9975829 42.4389324 0.0024171

1990 36 9847.702 0.9978553 41.541759 0.0021447

1991 37 9826.581 0.9969726 40.631045 0.0030274

1992 38 9796.832 0.9964244 39.7544254 0.0035756

1993 39 9761.803 0.9968061 38.8970812 0.0031939

1994 40 9730.624 0.9967902 38.0217123 0.0032098

1995 41 9699.391 0.9959104 37.144149 0.0040896

1996 42 9659.724 0.9963367 36.2966782 0.0036633

1997 43 9624.338 0.9965639 35.4301319 0.0034361

1998 44 9591.268 0.9951657 34.5522927 0.0048343

1999 45 9544.901 0.9947986 33.7201398 0.0052014

2000 46 9495.253 0.9954633 32.89645 0.0045367

2001 47 9452.176 0.9937794 32.046371 0.0062206

2002 48 9393.378 0.9950762 31.2469663 0.0049238

2003 49 9347.127 0.9934277 30.4015829 0.0065723

2004 50 9285.694 0.9942903 29.602714 0.0057097

2005 51 9232.676 0.9933452 28.7727059 0.0066548

2006 52 9171.235 0.9927593 27.9654647 0.0072407

2007 53 9104.829 0.9920418 27.1694309 0.0079582

2008 54 9032.371 0.9926789 26.3873854 0.0073211

2009 55 8966.244 0.991186 25.5819949 0.008814

2010 56 8887.215 0.9909224 24.8094792 0.0090776

2011 57 8806.541 0.9904518 24.0367531 0.0095482

2012 58 8722.454 0.990535 23.2684733 0.009465

2013 59 8639.896 0.9893184 22.4908137 0.0106816

2014 60 8547.608 0.9887773 21.7336465 0.0112227

2015 61 8451.681 0.9880083 20.9803244 0.0119917

2016 62 8350.331 0.987235 20.234967 0.012765

2017 63 8243.739 0.9871037 19.4966063 0.0128963

2018 64 8137.425 0.9855097 18.7513254 0.0144903

2019 65 8019.512 0.9850466 18.0270318 0.0149534

2020 66 7899.593 0.9842716 17.3006885 0.0157284

2021 67 7775.345 0.9831285 16.577149 0.0168715

2022 68 7644.163 0.9818919 15.8616308 0.0181081

2023 69 7505.742 0.9805536 15.1541522 0.0194464

2024 70 7359.782 0.9791047 14.45469 0.0208953

2025 71 7205.998 0.9775353 13.7631708 0.0224647

2026 72 7044.117 0.9758347 13.0794614 0.0241653

2027 73 6873.894 0.9739912 12.4033575 0.0260088

2028 74 6695.112 0.9719919 11.734569 0.0280081

2029 75 6507.594 0.9698228 11.0727029 0.0301772

2030 76 6311.213 0.9674688 10.4172431 0.0325312

2031 77 6105.902 0.964913 9.7675239 0.035087

2032 78 5891.664 0.9621373 9.122699 0.0378627

2033 79 5668.59 0.9591218 8.4817016 0.0408782

2034 80 5436.868 0.9558448 7.8431953 0.0441552

2035 81 5196.802 0.9522827 7.205511 0.0477173

2036 82 4948.825 0.9484097 6.5665671 0.0515903

2037 83 4693.514 0.9441977 5.9237666 0.0558023

2038 84 4431.605 0.9396162 5.2738628 0.0603838

2039 85 4164.007 0.934632 4.6127842 0.065368

2040 86 3891.815 0.9292092 3.9354014 0.0707908

2041 87 3616.31 0.9233087 3.2352156 0.0766913

2042 88 3338.97 0.9168882 2.5039372 0.0831118

2043 89 3061.463 0.9099021 1.7309078 0.0900979

2044 90 2785.631 0.9023012 0.9023012 0.0976988
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  Age-Period-Cohort (Female_1954)      Age-Period-Cohort (Male_1954) 

  
 
 

 

 

 

 

 

year age lx px ex qx

1983 29 10000 0.9991933 53.7593675 0.0008067

1984 30 9991.933 0.9995661 52.8027689 0.0004339

1985 31 9987.598 0.9993172 51.8256902 0.0006828

1986 32 9980.778 0.9995101 50.8610993 0.0004899

1987 33 9975.889 0.9993342 49.8860273 0.0006658

1988 34 9969.247 0.9992703 48.9192625 0.0007297

1989 35 9961.972 0.9987787 47.9549866 0.0012213

1990 36 9949.806 0.9991414 47.0136234 0.0008586

1991 37 9941.263 0.9988906 46.0540255 0.0011094

1992 38 9930.234 0.998577 45.1051738 0.001423

1993 39 9916.104 0.9988187 44.1694493 0.0011813

1994 40 9904.39 0.9983793 43.2216885 0.0016207

1995 41 9888.338 0.9982386 42.291851 0.0017614

1996 42 9870.92 0.9984083 41.3664773 0.0015917

1997 43 9855.208 0.9986559 40.4324266 0.0013441

1998 44 9841.962 0.998009 39.4868448 0.001991

1999 45 9822.367 0.997554 38.5656206 0.002446

2000 46 9798.341 0.997551 37.6601836 0.002449

2001 47 9774.345 0.9983204 36.7526397 0.0016796

2002 48 9757.928 0.9976069 35.8144729 0.0023931

2003 49 9734.576 0.9981837 34.9003873 0.0018163

2004 50 9716.895 0.9975301 33.9638939 0.0024699

2005 51 9692.894 0.9971341 33.0479906 0.0028659

2006 52 9665.116 0.9967991 32.1429747 0.0032009

2007 53 9634.179 0.9971172 31.2461905 0.0028828

2008 54 9606.405 0.996252 30.3365287 0.003748

2009 55 9570.401 0.9959761 29.4506566 0.0040239

2010 56 9531.89 0.9962899 28.5696415 0.0037101

2011 57 9496.526 0.9950801 27.6760326 0.0049199

2012 58 9449.805 0.9947269 26.8128682 0.0052731

2013 59 9399.975 0.9944206 25.9550036 0.0055794

2014 60 9347.529 0.9958038 25.1006292 0.0041962

2015 61 9308.305 0.9945628 24.2063998 0.0054372

2016 62 9257.694 0.9946006 23.3387338 0.0053994

2017 63 9207.708 0.9936085 22.4654327 0.0063915

2018 64 9148.857 0.9946742 21.6099443 0.0053258

2019 65 9100.132 0.9927921 20.7256504 0.0072079

2020 66 9034.539 0.9921859 19.876124 0.0078141

2021 67 8963.943 0.9916794 19.0326611 0.0083206

2022 68 8889.358 0.9907335 18.1923521 0.0092665

2023 69 8806.984 0.9901201 17.3625082 0.0098799

2024 70 8719.973 0.9892483 16.535759 0.0107517

2025 71 8626.218 0.9880803 15.7154788 0.0119197

2026 72 8523.396 0.9872079 14.9050623 0.0127921

2027 73 8414.364 0.9860828 14.0982005 0.0139172

2028 74 8297.259 0.9845157 13.2971777 0.0154843

2029 75 8168.782 0.9831831 12.506313 0.0168169

2030 76 8031.408 0.9812096 11.7202282 0.0187904

2031 77 7880.495 0.9795214 10.9446729 0.0204786

2032 78 7719.113 0.9770738 10.1734908 0.0229262

2033 79 7542.143 0.9746269 9.4122036 0.0253731

2034 80 7350.776 0.9720485 8.6572373 0.0279515

2035 81 7145.31 0.9687106 7.9061785 0.0312894

2036 82 6921.738 0.9653114 7.1615485 0.0346886

2037 83 6681.632 0.9615286 6.4189002 0.0384714

2038 84 6424.581 0.9568156 5.6757244 0.0431844

2039 85 6147.139 0.9529459 4.9318894 0.0470541

2040 86 5857.891 0.9483597 4.1754139 0.0516403

2041 87 5555.388 0.9419976 3.4027742 0.0580024

2042 88 5233.162 0.936012 2.6122962 0.063988

2043 89 4898.302 0.9310593 1.790879 0.0689407

2044 90 4560.61 0.9234855 0.9234855 0.0765145

year age lx px ex qx

1983 29 10000 0.9977785 48.1543649 0.0022215

1984 30 9977.785 0.9979491 47.2615795 0.0020509

1985 31 9957.321 0.9978852 46.3587072 0.0021148

1986 32 9936.264 0.9978054 45.4569526 0.0021946

1987 33 9914.458 0.998011 44.5569313 0.001989

1988 34 9894.738 0.9976577 43.6457326 0.0023423

1989 35 9871.562 0.9975829 42.748202 0.0024171

1990 36 9847.702 0.9978553 41.8517779 0.0021447

1991 37 9826.581 0.9969726 40.9417303 0.0030274

1992 38 9796.832 0.9964244 40.0660541 0.0035756

1993 39 9761.803 0.9968061 39.2098282 0.0031939

1994 40 9730.624 0.9967902 38.3354614 0.0032098

1995 41 9699.391 0.9959104 37.4589083 0.0040896

1996 42 9659.724 0.9963367 36.6127301 0.0036633

1997 43 9624.338 0.9965639 35.7473458 0.0034361

1998 44 9591.268 0.9951657 34.8706003 0.0048343

1999 45 9544.901 0.9947986 34.0399937 0.0052014

2000 46 9495.253 0.9954633 33.2179764 0.0045367

2001 47 9452.176 0.9937794 32.3693627 0.0062206

2002 48 9393.378 0.9950762 31.5719797 0.0049238

2003 49 9347.127 0.9934277 30.7282045 0.0065723

2004 50 9285.694 0.9942903 29.9314966 0.0057097

2005 51 9232.676 0.9933452 29.1033764 0.0066548

2006 52 9171.235 0.9927593 28.2983506 0.0072407

2007 53 9104.829 0.9920418 27.5047446 0.0079582

2008 54 9032.371 0.9926789 26.725389 0.0073211

2009 55 8966.244 0.991186 25.9224913 0.008814

2010 56 8887.215 0.9909224 25.1530035 0.0090776

2011 57 8806.541 0.9904518 24.3834243 0.0095482

2012 58 8722.454 0.990535 23.6184865 0.009465

2013 59 8639.896 0.9893184 22.8441714 0.0106816

2014 60 8547.608 0.9887773 22.0908194 0.0112227

2015 61 8451.681 0.9880083 21.3415512 0.0119917

2016 62 8350.331 0.987235 20.6005782 0.012765

2017 63 8243.739 0.9871037 19.8669448 0.0128963

2018 64 8137.425 0.9855097 19.1265023 0.0144903

2019 65 8019.512 0.9850466 18.407725 0.0149534

2020 66 7899.593 0.9841604 17.6871608 0.0158396

2021 67 7774.467 0.9832094 16.9718282 0.0167906

2022 68 7643.929 0.9819849 16.2616622 0.0180151

2023 69 7506.222 0.9807482 15.5599922 0.0192518

2024 70 7361.714 0.9800041 14.8654297 0.0199959

2025 71 7214.511 0.9782874 14.1687418 0.0217126

2026 72 7057.865 0.9774648 13.4832096 0.0225352

2027 73 6898.814 0.9754542 12.7940619 0.0245458

2028 74 6729.477 0.9740866 12.1160049 0.0259134

2029 75 6555.094 0.9721963 11.4383243 0.0278037

2030 76 6372.838 0.9695472 10.7654472 0.0304528

2031 77 6178.767 0.9685316 10.1035824 0.0314684

2032 78 5984.331 0.9659878 9.4318558 0.0340122

2033 79 5780.791 0.9631979 8.7639489 0.0368021

2034 80 5568.046 0.9600286 8.0988041 0.0399714

2035 81 5345.483 0.9561839 7.4360032 0.0438161

2036 82 5111.265 0.9534625 6.7767502 0.0465375

2037 83 4873.399 0.9489889 6.1075163 0.0510111

2038 84 4624.802 0.9453782 5.4358144 0.0546218

2039 85 4372.187 0.9412173 4.7498835 0.0587827

2040 86 4115.178 0.9369234 4.0465321 0.0630766

2041 87 3855.606 0.9330953 3.3189573 0.0669047

2042 88 3597.648 0.9253006 2.5569327 0.0746994

2043 89 3328.906 0.9219671 1.7633534 0.0780329

2044 90 3069.142 0.9125991 0.9125991 0.0874009
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  M7 (Female_1954)                     M7 (Male_1954) 

  
 

 

 
 
 

year age lx px ex qx

1983 29 10000 0.9991933 53.2033549 0.0008067

1984 30 9991.933 0.9995661 52.2463074 0.0004339

1985 31 9987.598 0.9993172 51.2689872 0.0006828

1986 32 9980.778 0.9995101 50.3040158 0.0004899

1987 33 9975.889 0.9993342 49.3286709 0.0006658

1988 34 9969.247 0.9992703 48.3615347 0.0007297

1989 35 9961.972 0.9987787 47.3968515 0.0012213

1990 36 9949.806 0.9991414 46.4548059 0.0008586

1991 37 9941.263 0.9988906 45.4947277 0.0011094

1992 38 9930.234 0.998577 44.5452549 0.001423

1993 39 9916.104 0.9988187 43.6087325 0.0011813

1994 40 9904.39 0.9983793 42.6603085 0.0016207

1995 41 9888.338 0.9982386 41.7295597 0.0017614

1996 42 9870.92 0.9984083 40.8031938 0.0015917

1997 43 9855.208 0.9986559 39.8682451 0.0013441

1998 44 9841.962 0.998009 38.921904 0.001991

1999 45 9822.367 0.997554 37.9995527 0.002446

2000 46 9798.341 0.997551 37.0927277 0.002449

2001 47 9774.345 0.9983204 36.1837907 0.0016796

2002 48 9757.928 0.9976069 35.2446669 0.0023931

2003 49 9734.576 0.9981837 34.3292144 0.0018163

2004 50 9716.895 0.9975301 33.3916817 0.0024699

2005 51 9692.894 0.9971341 32.4743615 0.0028659

2006 52 9665.116 0.9967991 31.5676969 0.0032009

2007 53 9634.179 0.9971172 30.6690654 0.0028828

2008 54 9606.405 0.996252 29.757735 0.003748

2009 55 9570.401 0.9959761 28.8696855 0.0040239

2010 56 9531.89 0.9962899 27.9863232 0.0037101

2011 57 9496.526 0.9950801 27.0905421 0.0049199

2012 58 9449.805 0.9947269 26.2244829 0.0052731

2013 59 9399.975 0.9944206 25.3634992 0.0055794

2014 60 9347.529 0.9958038 24.5058061 0.0041962

2015 61 9308.305 0.9945628 23.6090701 0.0054372

2016 62 9257.694 0.9946006 22.7381386 0.0053994

2017 63 9207.708 0.9936085 21.8615771 0.0063915

2018 64 9148.857 0.9946742 21.0022044 0.0053258

2019 65 9100.132 0.9927921 20.1146564 0.0072079

2020 66 9034.539 0.9919377 19.260694 0.0080623

2021 67 8961.7 0.9911004 18.4172416 0.0088996

2022 68 8881.945 0.9901604 17.582619 0.0098396

2023 69 8794.55 0.9891066 16.7573436 0.0108934

2024 70 8698.748 0.987927 15.9418984 0.012073

2025 71 8593.728 0.9866088 15.1367175 0.0133912

2026 72 8478.647 0.9851386 14.3421678 0.0148614

2027 73 8352.643 0.9835026 13.5585274 0.0164974

2028 74 8214.846 0.9816862 12.7859605 0.0183138

2029 75 8064.401 0.9796751 12.0244883 0.0203249

2030 76 7900.492 0.977455 11.2739551 0.022545

2031 77 7722.376 0.9750122 10.5339888 0.0249878

2032 78 7529.41 0.9723339 9.8039564 0.0276661

2033 79 7321.101 0.969409 9.0829116 0.030591

2034 80 7097.141 0.9662284 8.3695355 0.0337716

2035 81 6857.459 0.9627861 7.6620672 0.0372139

2036 82 6602.266 0.9590792 6.9582242 0.0409208

2037 83 6332.096 0.9551096 6.2551089 0.0448904

2038 84 6047.845 0.950884 5.5491008 0.049116

2039 85 5750.799 0.946415 4.8357287 0.053585

2040 86 5442.643 0.941722 4.1095225 0.058278

2041 87 5125.456 0.9368315 3.3638383 0.0631685

2042 88 4801.689 0.9317777 2.5906547 0.0682223

2043 89 4474.106 0.9266029 1.7803357 0.0733971

2044 90 4145.72 0.9213578 0.9213578 0.0786422

year age lx px ex qx

1983 29 10000 0.9977785 47.5987563 0.0022215

1984 30 9977.785 0.9979491 46.7047337 0.0020509

1985 31 9957.321 0.9978852 45.8007171 0.0021148

1986 32 9936.264 0.9978054 44.8977799 0.0021946

1987 33 9914.458 0.998011 43.9965288 0.001989

1988 34 9894.738 0.9976577 43.0842132 0.0023423

1989 35 9871.562 0.9975829 42.1853643 0.0024171

1990 36 9847.702 0.9978553 41.2875766 0.0021447

1991 37 9826.581 0.9969726 40.3763162 0.0030274

1992 38 9796.832 0.9964244 39.4989231 0.0035756

1993 39 9761.803 0.9968061 38.6406621 0.0031939

1994 40 9730.624 0.9967902 37.7644716 0.0032098

1995 41 9699.391 0.9959104 36.8860799 0.0040896

1996 42 9659.724 0.9963367 36.0375494 0.0036633

1997 43 9624.338 0.9965639 35.1700503 0.0034361

1998 44 9591.268 0.9951657 34.2913144 0.0048343

1999 45 9544.901 0.9947986 33.4578937 0.0052014

2000 46 9495.253 0.9954633 32.6328328 0.0045367

2001 47 9452.176 0.9937794 31.7815524 0.0062206

2002 48 9393.378 0.9950762 30.9804899 0.0049238

2003 49 9347.127 0.9934277 30.133788 0.0065723

2004 50 9285.694 0.9942903 29.3331475 0.0057097

2005 51 9232.676 0.9933452 28.5015913 0.0066548

2006 52 9171.235 0.9927593 27.6925339 0.0072407

2007 53 9104.829 0.9920418 26.8945094 0.0079582

2008 54 9032.371 0.9926789 26.1102585 0.0073211

2009 55 8966.244 0.991186 25.3028241 0.008814

2010 56 8887.215 0.9909224 24.527826 0.0090776

2011 57 8806.541 0.9904518 23.7525197 0.0095482

2012 58 8722.454 0.990535 22.9814998 0.009465

2013 59 8639.896 0.9893184 22.2010981 0.0106816

2014 60 8547.608 0.9887773 21.4408028 0.0112227

2015 61 8451.681 0.9880083 20.6841569 0.0119917

2016 62 8350.331 0.987235 19.9352049 0.012765

2017 63 8243.739 0.9871037 19.1929682 0.0128963

2018 64 8137.425 0.9855097 18.4437203 0.0144903

2019 65 8019.512 0.9850466 17.714904 0.0149534

2020 66 7899.593 0.9835047 16.9838225 0.0164953

2021 67 7769.287 0.982544 16.268674 0.017456

2022 68 7633.667 0.9814885 15.5577046 0.0185115

2023 69 7492.357 0.9803252 14.8511324 0.0196748

2024 70 7344.946 0.979039 14.14919 0.020961

2025 71 7190.988 0.9776125 13.4521216 0.0223875

2026 72 7030 0.9760255 12.7601782 0.0239745

2027 73 6861.459 0.9742546 12.0736116 0.0257454

2028 74 6684.808 0.9722723 11.392666 0.0277277

2029 75 6499.453 0.9700465 10.7175676 0.0299535

2030 76 6304.771 0.9675394 10.0485097 0.0324606

2031 77 6100.115 0.9647068 9.3856332 0.0352932

2032 78 5884.823 0.9614963 8.7290006 0.0385037

2033 79 5658.235 0.9578457 8.0785591 0.0421543

2034 80 5419.716 0.9536817 7.4340921 0.0463183

2035 81 5168.684 0.9489168 6.7951502 0.0510832

2036 82 4904.651 0.9434467 6.160955 0.0565533

2037 83 4627.277 0.9371472 5.530263 0.0628528

2038 84 4336.439 0.9298697 4.9011679 0.0701303

2039 85 4032.323 0.9214362 4.2708117 0.0785638

2040 86 3715.529 0.9116342 3.6349508 0.0883658

2041 87 3387.203 0.9002088 2.9872912 0.0997912

2042 88 3049.19 0.8868559 2.3184425 0.1131441

2043 89 2704.192 0.871213 1.6142267 0.128787

2044 90 2355.928 0.8528497 0.8528497 0.1471503
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Appendix 14: SIA 65, 2010 Annuity table 

 

Age Male Female Male Female

0 1.842% 1.860% 98.158% 98.140%

1 0.149% 0.147% 99.851% 99.853%

2 0.070% 0.081% 99.930% 99.919%

3 0.049% 0.052% 99.951% 99.948%

4 0.042% 0.038% 99.958% 99.962%

5 0.035% 0.029% 99.965% 99.971%

6 0.027% 0.023% 99.973% 99.977%

7 0.021% 0.018% 99.979% 99.982%

8 0.017% 0.014% 99.983% 99.986%

9 0.016% 0.012% 99.984% 99.988%

10 0.018% 0.011% 99.982% 99.989%

11 0.020% 0.011% 99.980% 99.989%

12 0.022% 0.012% 99.978% 99.988%

13 0.025% 0.013% 99.975% 99.987%

14 0.029% 0.016% 99.971% 99.984%

15 0.035% 0.019% 99.965% 99.981%

16 0.042% 0.023% 99.958% 99.977%

17 0.048% 0.025% 99.952% 99.975%

18 0.052% 0.027% 99.948% 99.973%

19 0.056% 0.028% 99.944% 99.972%

20 0.059% 0.027% 99.941% 99.973%

21 0.062% 0.027% 99.938% 99.973%

22 0.064% 0.027% 99.936% 99.973%

23 0.065% 0.026% 99.935% 99.974%

24 0.064% 0.026% 99.936% 99.974%

25 0.063% 0.026% 99.937% 99.974%

26 0.061% 0.027% 99.939% 99.973%

27 0.060% 0.028% 99.940% 99.972%

28 0.058% 0.028% 99.942% 99.972%

29 0.056% 0.029% 99.944% 99.971%

30 0.055% 0.030% 99.945% 99.970%

31 0.055% 0.031% 99.945% 99.969%

32 0.057% 0.033% 99.943% 99.967%

33 0.061% 0.034% 99.939% 99.966%

34 0.068% 0.036% 99.932% 99.964%

35 0.076% 0.037% 99.924% 99.963%

36 0.083% 0.039% 99.917% 99.961%

37 0.089% 0.041% 99.911% 99.959%

38 0.093% 0.043% 99.907% 99.957%

39 0.095% 0.046% 99.905% 99.954%

40 0.097% 0.049% 99.903% 99.951%

41 0.099% 0.053% 99.901% 99.947%

42 0.104% 0.057% 99.896% 99.943%

43 0.110% 0.063% 99.890% 99.937%

44 0.119% 0.069% 99.881% 99.931%

45 0.129% 0.077% 99.871% 99.923%

46 0.140% 0.086% 99.860% 99.914%

47 0.153% 0.096% 99.847% 99.904%

48 0.166% 0.107% 99.834% 99.893%

49 0.180% 0.118% 99.820% 99.882%

50 0.198% 0.128% 99.802% 99.872%

51 0.220% 0.139% 99.780% 99.861%

52 0.245% 0.149% 99.755% 99.851%

53 0.271% 0.158% 99.729% 99.842%

54 0.299% 0.166% 99.701% 99.834%

55 0.328% 0.169% 99.672% 99.831%

56 0.358% 0.173% 99.642% 99.827%

57 0.391% 0.177% 99.609% 99.823%

58 0.431% 0.183% 99.569% 99.817%

59 0.477% 0.189% 99.523% 99.811%

60 0.531% 0.195% 99.469% 99.805%

61 0.590% 0.195% 99.410% 99.805%

62 0.652% 0.197% 99.348% 99.803%

63 0.717% 0.200% 99.283% 99.800%

64 0.753% 0.205% 99.247% 99.795%

65 0.779% 0.214% 99.221% 99.786%

66 0.816% 0.226% 99.184% 99.774%

67 0.859% 0.243% 99.141% 99.757%

68 0.913% 0.266% 99.087% 99.734%

69 0.979% 0.294% 99.021% 99.706%

70 1.055% 0.328% 98.945% 99.672%

71 1.138% 0.367% 98.862% 99.633%

72 1.238% 0.410% 98.762% 99.590%

73 1.345% 0.460% 98.655% 99.540%

74 1.455% 0.518% 98.545% 99.482%

75 1.571% 0.588% 98.429% 99.412%

76 1.701% 0.676% 98.299% 99.324%

77 1.857% 0.788% 98.143% 99.212%

78 2.059% 0.936% 97.941% 99.064%

79 2.318% 1.125% 97.682% 98.875%

80 2.656% 1.366% 97.344% 98.634%

81 3.093% 1.695% 96.907% 98.305%

82 3.648% 2.093% 96.352% 97.907%

83 4.331% 2.582% 95.669% 97.418%

84 5.141% 3.162% 94.859% 96.838%

85 6.091% 3.811% 93.909% 96.189%

86 7.170% 4.452% 92.830% 95.548%

87 8.346% 5.138% 91.654% 94.862%

88 9.441% 5.866% 90.559% 94.134%

89 10.561% 6.643% 89.439% 93.357%

90 11.701% 7.484% 88.299% 92.516%

91 12.805% 8.404% 87.195% 91.596%

92 13.873% 9.423% 86.127% 90.577%

93 16.180% 10.556% 83.820% 89.444%

94 17.717% 11.817% 82.283% 88.183%

95 20.145% 14.103% 79.855% 85.897%

96 22.199% 15.835% 77.801% 84.165%

97 24.386% 17.729% 75.614% 82.271%

98 26.712% 19.797% 73.288% 80.203%

99 29.185% 22.044% 70.815% 77.956%

100 31.804% 24.474% 68.196% 75.526%

101 34.284% 26.840% 65.716% 73.160%

102 36.864% 29.342% 63.136% 70.658%

103 39.537% 31.978% 60.463% 68.022%

104 42.296% 34.742% 57.704% 65.258%

105 45.133% 37.626% 54.867% 62.374%

106 48.038% 40.623% 51.962% 59.377%

107 51.000% 43.721% 49.000% 56.279%

108 54.006% 46.909% 45.994% 53.091%

109 57.044% 50.172% 42.956% 49.828%

110 60.100% 53.495% 39.900% 46.505%

111 63.159% 56.859% 36.841% 43.141%

112 66.205% 60.247% 33.795% 39.753%

113 69.221% 63.636% 30.779% 36.364%

114 72.191% 67.007% 27.809% 32.993%

115 75.096% 70.336% 24.904% 29.664%

116 77.920% 73.599% 22.080% 26.401%

117 80.645% 76.774% 19.355% 23.226%

118 83.252% 79.835% 16.748% 20.165%

119 85.726% 82.759% 14.274% 17.241%

120 100.000% 100.000% 0.000% 0.000%

qx px
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