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INTRODUCTION 
 

The thesis reports on the results of a behavioral experiment conducted and funded by 

myself under the supervision of my mentor, dr. Aljoša Feldin. In particular, it focuses on 

the difficult problem of squaring the predictions of game theory with the experimental 

results which show that subjects rarely use the expected equilibrium strategies (McKelvey 

& Palfrey, 1992; Mailath, 1998). In my thesis, I attempt to use various models of learning, 

including fictitious play (Camerer, 2003) and reinforcement learning (Fudenberg & Lavine, 

1998) as well as utilizing concepts of attitudes toward risk to better explain the behavior 

exhibited by subjects in the study. In the experiment, pairs of subjects played a version of 

the Centipede game, first introduced by Robert W. Rosenthal in his 1981 article Games of 

Perfect Information, Predatory Pricing and the Chain-Store Paradox. It is a finite, two-

player game in which players take turns deciding either to take the larger share of an 

increasing pot of money or to pass the pot on to the other player. A detailed explanation 

of the game is provided in Chapter 1. 

The main purpose of the experiment and the master’s thesis is to test the main finding of 

similar experiments – that subjects, on average, do not behave as standard game theory 

predictions dictate. In addition, I test the following specific hypotheses: 

 

1. Players learn from perceived errors in their past plays based on the difference 

between players’ expected payoffs consistent with their chosen strategies and the 

actual payoffs they received. In other words, the bigger the difference between the 

payoffs players expected by playing their strategies and the actual payoff received, 

the less likely players are to pass the pot in subsequent games (on average). 

 

2. Attitudes toward risk are not constant, but are a function of money amounts. There is 

a negative correlation between payoff amounts (the amounts being gambled) and the 

relative frequency of the probability of accepting a fair gamble. 

 

3. More risk-averse individuals are, on average, less likely to pass the pot than risk-loving 

individuals 

 

Chapter 1 introduces the game used in the experiment and provides the theoretical 

background required to understand it. It concludes with a discussion of notable centipede 

experiments conducted in the past. Chapters 2 and 3 describe the design of the 

experiment and provide summary results, respectively. 



2 
 

In Chapter 4, I discuss the various concepts of learning in behavioral game theory. I 

present a simulation of a basic, belief-based learning algorithm, fictitious play, using data 

from the experiment. To test the hypothesis that players learn from perceived errors in 

their past play, the idea which is drawn from the concepts of reinforcement learning, I 

estimate a series of models, including a fixed-effects panel-data model, a mixed-effects 

panel-data model and an ordered logit model. 

Chapter 5 focuses on attitudes toward risk and provides a detailed analysis of the 

centipede game for risk-neutral, risk-averse and risk-seeking players. I attempt to 

estimate players’ attitudes toward risk and test the hypothesis that players’ risk aversion 

is correlated with their strategies – specifically, that players displaying greater risk 

aversion are more likely to end the game sooner.  

 

1 THE CENTIPEDE  
 

The Centipede game was first introduced by Robert W. Rosenthal in his 1981 article 

Games of Perfect Information, Predatory Pricing and the Chain-Store Paradox. It is a finite 

two-player game in which players take turns deciding either to take the larger share of an 

increasing pot or to pass the pot to the other player. Figure 1 shows the extensive form 

representation of a 10 round centipede game. 

 

Figure 1. Extensive form of the centipede game 

 

 

Source: R. W. Rosenthal, Games of Perfect Information, Predatory Pricing and the Chain-Store Paradox, 

1981, p. 96 

 

1.1 Solving the centipede game 
 

The standard method of solving finite sequential games is a process called backward 

induction. Starting at the last move of the game, we determine the player’s optimal 
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strategy. The reasoning is repeated in the next-to-last move of the game in which the 

optimal strategy is determined by taking the last player’s optimal action as given. This 

iterative process is continued until all players’ actions have been determined (Fudenberg 

& Tirole, 1991, pp. 92-93; Broome & Rabinowicz, 1999, pp. 237-242).  

 

Figure 2 shows individual iterations in the process of backward induction for a four-move 

centipede game that was used in our experiment. In the last move of the game, player 2 

has a choice between taking the pot and gaining 3,2€ or passing the pot for a payoff of 

1,6€. If we assume player 2 is rational and maximizes his utility by maximizing his payoffs, 

we see that given the choice between 3,2€ and 1,6€, player 2 will choose 3,2€ - taking the 

pot. Moving one node to the left, player one is now faced with a decision between taking 

the pot (1,6€) or passing, in which case player 2 will take 3,2€, leaving player 1 with only 

0,8€. Therefore, if player 1 is also rational and maximizes his utility, he will choose to take 

the pot. Player 2 in node 2 has a choice between taking the pot (0,8€) or passing, in which 

case player 1 will take the pot, leaving player two with only 0,4€, therefore player 2 takes 

the pot in node 2. Finally, player 1 in the first move of the game faces a decision between 

taking the pot (0,4€) or passing the pot to player 2 who would take the pot, leaving player 

1 with only 0,1€, therefore player 1 takes the pot in the first move of the game. 

 

This type of solution is referred to as a subgame perfect Nash equilibrium (hereinafter: 

SPNE). A Nash equilibrium is "an action profile    with the property that no player   can 

do better by choosing an action different from   
 , given that every other player   adheres 

to   
  (Osborne, 2003, p.32)." A solution is said to be a Nash equilibrium solution if each 

player is making the best decision they can, taking into account the other players' 

decisions. In this sense, the Nash equilibrium represents a steady state solution in which 

none of the players in the game can (or is therefore willing to) change their strategy to 

benefit themselves. A subgame is a part of an extensive game “beginning with a decision 

point and including everything that branches out below it (Nicholson & Snyder, 2010, p. 

197).” Strategies are said to be in SPNE, when they constitute a Nash equilibrium in each 

subgame (Heap & Varoufakis, 1995, p. 84).  

 

The proposed solution might seem quite counterintuitive when we consider that 

practically every other outcome has each of the players receiving higher payoffs. One 

could coin a version of the centipede game with much higher stakes in which players 

would be millionaires after only a few moves, yet as long as each player were even a 

fraction of a cent better-off if they took the pot, the backward induction solution would 

be exactly the same. 
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Figure 2. Backward induction 
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This is the consequence of some very rigid assumptions game theory imposes on players. 

According to Heap and Varoufakis (1995, p. 2) there are three key assumptions in game 

theory:  

- Players are instrumentally rational 

- They have common knowledge of this rationality 

- They know the rules of the game 

 

In addition to these three assumptions we must also assume either that players are self-

interested (maximize payoff) or that the monetary amounts in Figure 2 are actually the 

utilities of the two players in order to come to the proposed solution.  

 

1.1.1 Instrumental rationality  

 

Individuals who are instrumentally rational are those who maximize their (expected) 

utility consistent with their preferences. Individuals have preferences over various things 

but regardless of the ends they pursue, they are instrumentally rational as long as they 

select actions/means that best achieve those ends. A selfish individual will choose actions 

that maximize their own gains while altruistic preferences might result in a very different 

set of actions. So the assumption of rationality does not put any restrictions on how we 

choose our preferences or rather what our preferences are, only on how we go about 

satisfying those preferences (Heap & Varoufakis, 1995). 

 

Frequently, there are additional conditions put on individual preferences, so that they are 

well-ordered (first three axioms) and useful mathematically (continuity), stated by the 

following axioms: 

a) Completeness:     or     for all   and   

b) Reflexivity:     for all   

c) Transitivity: for any  ,  ,  , if     and    , then     

d) Continuity: there are no jumps in people's preferences. In other words, if we prefer A 

to B, something sufficiently close to A should also be preferred to B. 

 

The statement     is read as: “A is at least as good as B”. For the preferences over 

prospects to be consistent, two additional conditions are required (Heap & Varoufakis, 

1995):  
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e) Monotonicity (preference increasing with probability): the prospect improves if the 

probability of a preferred outcome within a prospect increases, while the probability 

of the poorer outcome falls. If outcome A is preferred to outcome B and p1 and 1-p1 

are the respective probabilities of those two outcomes within a lottery,    

             , then a different lottery,                 , is preferred to    

only if       . 

 

f) Independence (substitution): assumes that “the choice between two lotteries, X and 

Y, is independent of the possible existence of a common (and hence “irrelevant”) 

prospect Z (Holt, 1986).” In other words, if outcome A is preferred to outcome B, then 

                              for all Z and        . 

 

Expected utility theory has been criticized extensively, the independence axiom being 

particularly controversial. The Allais paradox (originally designed by Maurice Allais (Allais, 

1953)) and its many variants show that the predictions of expected utility theory are 

inconsistent with observed behavior. Allais proposed two hypothetical experiments 

where participants would choose between two lotteries. In the first experiment, 

participants could choose between a certain payoff of $1 million and a gamble with 89% 

chance of winning $1 million, 10% chance of winning $5 million and a 1% chance of 

winning nothing. In the second experiment, participants could choose between a gamble 

with 89% chance of winning nothing and 11% chance of winning $ 1 million, and a gamble 

with 90% chance of winning nothing and 10% chance of winning $5 million. Most people 

would choose the first option (certain payoff of $1 million) in the first experiment but the 

second gamble in the second experiment (90% chance of winning nothing and 10% 

chance of winning $5 million), yet this violates the independence axiom. Kahneman and 

Tversky (1979) argued that people overvalue certain outcomes relative to merely 

probable ones (certainty effect) and discard components common to all prospects they 

are considering (isolation effect).  

 

The above example demonstrates what is commonly referred to as the framing effect 

which exposes the fact that peoples’ preferences are often not robust to different 

presentations of the same choices – in particular, we are sensitive to whether a 

proposition is phrased in terms of losses or gains. This can be interpreted either as an 

error in our decision-making or perhaps even more challenging - as “frames” being a 

determinant of our preferences (Rabin, 1998). 
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1.1.2 Common knowledge of rationality 

 

A regularly employed assumption in game theory is common knowledge of rationality 

(hereinafter: CKR). In simple terms, each player knows all players are rational and know 

all players are rational and know all players know all players are rational and so on ad 

infinitum (Aumann, 1995). 

This is different from the assumption of mutual knowledge of rationality by which all 

players simply know the other players are rational but don’t necessarily know whether or 

not the other players know all other players are rational. To explain the implications of 

this difference a variant of the following logical puzzle is often employed (Gintis, 2009, p. 

53):  

Imagine an isolated island with a tribe of 100 blue-eyed people. Each person in the tribe 

knows the eye color of every other member of the tribe except their own, and they 

cannot directly establish the color of their eyes (discussion with other members about 

this topic is forbidden, there are no mirrors or other reflective surfaces, etc.). They all 

desperately wish to leave the island, but tradition dictates that only blue-eyed people 

may venture into the world. Every morning, a ferry lands on the island, expecting to carry 

passengers to the mainland and every night it returns empty. One night, as the ferry is 

leaving, the blue-eyed captain, whom they trust implicitly, addresses the entire tribe in 

their own language, saying: “It’s nice to see another blue-eyed person; there are hardly 

any in my hometown!” Exactly 100 days later, all members of the tribe board the ferry 

and travel to the mainland.  

Before the captain’s announcement, it was mutually known that there was at least one 

blue-eyed person on the island (in fact, each of them knew that there were at least 99 

blue-eyed people on the island), but only after the announcement did this fact become 

common-knowledge. That is, each person knew there was at least one blue-eyed person 

on the island, but did not know whether or not other people knew that until the captain’s 

announcement. To solve this riddle, the problem can be reduced to an island with only 

two people. Each of them can see the other person’s eye color but doesn’t know their 

own; therefore they cannot leave the island. After the captain’s announcement, they also 

know that each of them knows that at least one person has blue eyes and therefore each 

of them knows that if the other person saw that their friend’s eyes weren’t blue, they 

would conclude that they must have been the blue-eyed person the captain was talking 

about and would leave the island the next morning. If nobody leaves the next morning, 

both of them know neither of them observed a non-blue-eyed person, therefore both of 

them must have blue eyes and can leave on the next ferry (on the second morning after 

captain’s announcement). 
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The same logic applies for a three-person island. If one of them saw that both of his 

friends had green eyes, for instance, he could conclude that he must have blue eyes and 

would leave on the first morning. If nobody leaves on the first morning, at least two of 

them must have blue eyes – therefore anyone who saw one of their friends having green 

eyes would leave the island on the next morning. If nobody does, each of them concludes 

they must all have blue eyes, and they all leave the island on the third morning. 

Therefore, on an island with k blue-eyed people, nobody leaves for k-1 days and 

everybody leaves together on the k-th day.  

This reasoning might not seem sound at first glance if we apply it past k=2, where one can 

clearly see that in the case of there being only one person with blue eyes on the island, 

the captain’s announcement would truly be new information for one of them as there 

would have been no other blue-eyed people for them to observe and therefore the fact 

that there were blue-eyed people on the island could not have been common knowledge. 

But what new information did the captain convey on the 100-person island? Each of them 

knew there were at least 99 blue-eyed people on the island and each of them must also 

have been able to conclude that those 99 blue-eyed people knew that there were at least 

98 blue-eyed people on the island and so on. It is not immediately clear that “at least one 

person has blue eyes” wasn’t common knowledge all along. But examining the easier 3-

person island example demonstrates that the assumption of common knowledge does 

break down even for k>2. We can denote the three people on the island as A, B and C. 

Figure 3 shows the C’s beliefs from A’s perspective.  

 

Figure 3. A’s knowledge and his knowledge about C’s knowledge 
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Clearly, A knows that there is at least one blue-eyed person on the island, since she sees 

both B and C, who both have blue eyes (A1 in figure 3). A also knows that B and C each 

know that there is at least one blue-eyed person on the island as they are able to observe 

each other. And A knows that C (B) knows that A knows that there is at least one blue-

eyed person on the island, since they should both be able to observe B (C). But A doesn’t 

know whether or not C (B) knows that B (C) knows that there is at least one blue-eyed 

person on the island. 

To simplify, let’s assume A believed he had green eyes, while he could see that B and C 

had blue eyes. From A’s perspective, C could see that B had blue eyes and A had green 

eyes (C2 in figure 4), but since C could not know the color of his own eyes, he could not 

know whether B was seeing two pairs of green eyes or one pair of green eyes and one 

pair of blue eyes (B1 and B2 in Figure 4).  

 

Figure 4. C’s knowledge and his knowledge about B’s knowledge when A has green eyes 

 

 

Obviously, not everyone knows that everyone knows that everyone knows that there is at 

least one person with blue eyes on the island. There is no common-knowledge of this fact 

and it is only made common-knowledge by the captain’s announcement. 

In the centipede game, CKR ensures that all players believe other players are rational and 

think all other players are rational (and so on for as many levels as it takes for common 

knowledge not to break down in that particular game), which allows us to use backward 

induction to come to a specific solution. If player 1 believes player 2 is rational but 
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believes that player 1 is not rational – the same reasoning cannot be applied. Even if we 

assume CKR there are problems with this approach. Backward induction begins at the end 

of the game (player 2’s second turn in Figure 2), but if CKR and the other assumptions 

hold, there is no way for the game to actually reach that point – or any out-of-equilibrium 

point. Should player 2 in node 2 (see: Figure 2) not take the fact that player 1 played pass 

on his first turn into consideration when trying to maximize his utility? Selten (1975) 

proposed the idea of trembles – a small chance of a player making an error on their move 

(a similar concept, the sequential equilibrium, was proposed by Kreps and Wilson in 1982. 

Out-of-equilibrium points could then be reached without necessarily violating CKR. 

However, considering how many out-of-equilibrium beliefs would have to be considered 

in, for example, a 100-move centipede game, the idea of using random trembles as an 

explanation becomes much less plausible. In the unlikely event of a game reaching nodes 

close to the end of the game by random trembles alone, players could interpret this as a 

systematic feature of other players’ strategies rather than random perturbations (Heap & 

Varoufakis, 1995, pp. 87-90). 

 

1.1.2 Players know the rules of the game 

 

The final assumption is that all players know the rules of the game – all possible actions 

and all the utility payoffs (or expected payoffs) a particular action or combination of 

actions is going to bring them and their opponents. This assumption might be reasonable 

in simple, well-structured games, where the set of all possible moves and players’ payoffs 

are reduced to a manageable size.  But in complex or loosely structured interactions 

players often “invent” moves and do not necessarily know exactly how their decisions will 

affect each player’s (expected) payoffs (Heap & Varoufakis, 1995, p. 28).  

 

1.2 Experiments with the centipede game 

 

One of the earlier laboratory experiments utilizing the centipede game was conducted by 

Richard D. McKelvey and Thomas R. Palfrey in 1992. Their study involved seven sessions 

of 18-20 subjects each playing 9-10 games for a total of 662 games. The first three 

sessions subjects played a low-stakes, four-move game with the pot doubling each move, 

three sessions were conducted using a six-move version of the game and one session was 

conducted using a high-stakes version of the four-move game used in the first three 

sessions, with all the payoffs quadrupled. Figure 5 shows the three versions of the 

centipede game used in the experiment. The results of the study confirmed that players 
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rarely take the pot in early nodes as subgame perfect Nash equilibrium predicts, however 

the probability of “take” increases as the game gets closer to the last move.  McKelvey 

and Palfrey suggested that this result could be explained by a small proportion of 

altruistic players (they estimated the level of altruism of the order of 5%) with a utility 

function that was monotonically increasing in the sum of both players’ payoffs (passing 

the pot on each turn would maximize such a player’s utility) and a large proportion of 

selfish players who could use a wide variety of strategies, including mimicking altruistic 

behavior, to maximize their own payoffs. Neither the higher number of moves in a game 

nor higher payoffs seemed to have any significant effect (except, the authors noted, a 

lower estimated initial error rate in the six-move game). 

 

Figure 5. Three versions of the centipede game used by McKelvey & Palfrey (1992) 

 

 

Source: R. D. McKelvey & T. R. Palfrey, An Experimental Study of the Centipede Game, 1992, p. 806. 

 

In 1996, Fey, McKelvey and Palfrey conducted an experiment utilizing a constant-sum 

centipede game. The game started with $3,2 divided evenly among the two players. If 

player one passed, a quarter of the money from their pile would be subtracted from their 

payoff in node 2 and added to player 2’s pile. This process would continue every time a 

player passed the pot and the distribution of payoffs would get ever more uneven as the 

game progressed. Unlike the McKelvey and Palfrey (1992) study, deviations from Nash 

equilibrium solution could not be explained by a percentage of altruistic players (with 

utilities that increase monotonically in the sum of both players’ payoffs), since there are 
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no social gains in passing the pot. Despite this, a surprisingly high percentage of games 

(23% in the ten-move version and 8% in the six move game) continued past node 2. The 

authors proposed a quantal response equilibrium (QRE) model to explain the data. 

 

Figure 6. Constant-sum centipede game 

 

 

Source: M. Fey, R. D.  McKelvey & T. R. Palfrey, An Experimental Study of Constant-sum Centipede Games, 

1996, p. 271.   

 

In 2005, Ho and Weigelt conducted a trust building experiment utilizing a four-move 

centipede game where the payoffs doubled each move. Unlike the standard centipede 

game, where payoff amounts of each player are determined, only the value of the pot 

(the sum of both players’ payoffs) was determined. On their turns, players could decide to 

take and divide the pot between themselves and the other player as they saw fit, ending 

the game, or to “trust” their opponent and pass the pot to them. If they decided to pass, 

the pot would double and their opponent would have to decide whether to pass the pot 

back or to take as much as they wanted. The unique design of the experiment allowed 

individuals to display both trusting (passing the pot to their opponent) and trustworthy 

(depending on how players chose to divide the pot between themselves and their 

opponents) behavior. Results showed that subjects exhibited some trusting behavior, but 

also exhibited a high level of self-interest, with 30% of player 1s taking at the first node 

and 50% of player 2s taking at the second node. Players were also not trustworthy, 

taking, on average, 95% of the social gains. Trusting behavior decreased monotonically 

across decision stages, while trustworthiness monotonically increased. Subjects were 

found to be more trusting as well as more trustworthy when playing for higher stakes. 

Figure 7 shows the design of the game. 
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Figure 7. The trust building game 

 

 

Source: T. Ho & K. Weigelt, Trust Building Among Strangers, 2005, pp. 519-530. 

 

In 2003, Rapoport, Stein, Parco & Nicholas conducted a four-turn, three-person centipede 

game with very high stakes (see: Figure 8) and compared it to the same game with much 

lower stakes. In both cases, a total of sixty students participated in four session of 15 

subjects each. As in the Ho and Weigelt study, results showed a much greater proportion 

of games ending in the first two nodes (around a third in the high-stakes version) 

compared to the results in McKelvey and Palfrey experiment. Camerer (2003, p. 95) 

suggests the difference might be due to the presence of a (0,0) terminal node in the Ho 

and Weigelt and the Rapoport et al. studies. It is also quite difficult to directly compare 

the results of a two-person and a three-person centipede game as the different structure 

of the game might affect players’ strategies in various ways.  

 

Figure 8. Three-person centipede game 

 

 

Source: A. Rapoport, W. E. Stein, J. E. Parco & T. E. Nicholas, Equilibrium play and adaptive learning 

in a three-person centipede game, 2003, p. 240. 
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2 EXPERIMENTAL DESIGN 
 

The experiment was conducted in three sessions in which 38 subjects played a total of 

123 games. Subjects were graduate students from the Faculty of Economics in Ljubljana; 

the third session was conducted exclusively with students from the faculty’s MBA 

programme. All games were played on computers using a simple interface designed 

specifically for this experiment. Figure 9 shows the game interface for player 1. The game 

structure, including payoffs and a short verbose description were available throughout 

the game. The players’ current position (the node at which they were making the 

decision) was clearly marked by an arrow and their payoff for taking on that turn was 

prominently displayed above the take and pass buttons. The interface was designed in 

such a way in an effort to ensure all players were as informed as possible about the 

choices they had, the consequences of each choice and about the structure of the game 

as a whole. Due to capacity constraints and other factors (not all subjects showed up) the 

numbers of subjects participating in the sessions 1-3 were 10, 14, and 14 respectively. In 

each session subjects would draw numbered cards corresponding to numbers assigned to 

the computers to randomize seating order and to divide them into two groups, 

determining whether or not players would get to act first in games. For each game, a 

player from the first group (player 1) was randomly paired with a new player from the 

second group (player 2), ensuring that nobody played with the same person more than 

once. This fact was thoroughly explained to the subjects. As the number of subjects in 

each session determined the number of unique pairs (and consequently, the number of 

games played in the session), students in the second and the third session played 7 games 

each (a total of 49 games per session) while students in the first session played only 5 

games each (for a total of 25 games). Table 1 shows a breakdown of the sessions.  

 

Table 1. Experimental sessions 

 

Session number Subject pool Number of subjects Games per subject Total games 

1 Graduate students 10 5 25 

2 Graduate students 14 7 49 

3 MBA programme 14 7 49 
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In each session, the subjects were given a series of instructions by the experimenter, 

explaining the nature of the experiment and providing a detailed explanation of the game 

about to be played. Subjects were not allowed to communicate with each other except 

via the actions selected while playing the game. For a complete transcription of the 

instructions, see Appendix A.   

 

Figure 9. Game interface for player 1 

 

 

 

The game chosen for the study is a variation on the game introduced in chapter 1, a four-

move (two-round) centipede game with geometrically increasing payoffs. The basic 

payoff structure is similar to the one used in Mckelvey & Palfrey (1992) study (as well as 

some other studies) as it seems to offers a good trade-off between suitable payoff 

amounts and the strictly constrained budget of a student’s self-funded endeavor. The 

extensive-form structure of the game used in the experiment is shown in Figure 10. After 

each game, subjects were given a choice to either collect that game’s winnings or to 

gamble them on a flip of a coin to either double their payoff or lose what they had won in 
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that game. The addition of a fair gamble at the end of each game allowed me to expand 

the study to include attitudes towards risk in reference to individuals as well as varying 

amounts of winnings being gambled.    

 

Figure 10. Centipede game with geometrically increasing payoffs 

 

 

 

3 RESULTS 
 

Table 2. Relative frequencies of end-of-game observations 

 

Session Subjects N                

1 Graduate students 25 0,12 0,20 0,44 0,16 0,08 

2 Graduate students 49 0,24 0,18 0,29 0,20 0,08 

3 MBA students 49 0,02 0,27 0,45 0,16 0,10 

Total 
 

123 0,13 0,22 0,38 0,18 0,09 

 

Table 2 shows the relative frequencies of the game-terminating nodes reached in 123 

games.     corresponds to the frequency of games ending with both players having 

passed on each of their turns. Because of the different number of games in each session, 

the totals are weighted averages of the corresponding relative frequencies in individual 

sessions (  
      ∑      

 
   ). Despite the standard game-theory predictions (      

and                 ), only 13% of all games ended in the first decision node and 

9% of all games ended with none of the players taking the pot. 38% of all games ended in 

decision node three, which was also the mode of all three sessions. The somewhat 

different frequency distribution in session 2 (see: Figure 11) can in large part be 

attributed to a single player’s strategy of consistently taking the pot in the first node in all 

7 games. 
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Figure 11. Distribution of relative “end-of-game” frequencies in individual sessions 

 

 

 



19 
 

Table 3. Relative frequencies of observed take/pass strategies 

 

   
Player 1 Player 2 

Session Subjects N    
     

     
     

     
     

  
1 graduate students   25 0,12 0,52 0,36 0,20 0,44 0,36 
2 graduate students   49 0,24 0,39 0,37 0,20 0,57 0,22 
3 MBA students   49 0,02 0,63 0,35 0,27 0,57 0,16 

Total 
 

123 0,13 0,51 0,36 0,23 0,54 0,23 
 

Table 3 shows the relative frequencies of observed take/pass strategies adopted by the 

two player types. There are three distinct strategies players can adopt for any particular 

game (TT, PT and PP). TT represents the backward-induction predicted strategy of players 

taking the pot in their first turn, PT represents the strategy of passing on the player’s first 

turn and taking the pot in their next turn and PP represents the strategy of players 

passing on both of their turns. Due to the specific way in which data was collected in this 

experiment – allowing each player to play their game regardless of their opponent’s 

decisions - the frequencies presented in Table 2 are the actual frequencies of players of a 

particular player-type having chosen a particular strategy.  Since player 1’s strategy of TT 

directly determines the node at which the game ends, frequencies in column    
  are 

identical to the corresponding frequencies in column    in Table 1. For both player types 

PT was the most frequently selected strategy. While    
     

  for each session, the 

strictly dominated strategy of PP was still chosen by player 2 a surprisingly high 

percentage of the time. This means that faced with the decision to collect their 3,2€ 

(leaving player 1 with 0,8€), player 2, on average, decided to pass the pot back to player 1 

a final time (halving their own payoff but increasing player 1’s payoff to 6,4€) 23% of the 

time. If the standard assumption of players being habitual payoff-maximizers holds, this 

would imply very high errors in action – experimenting with different strategies, failing to 

correctly ascertain their player-type or which round of the game they are in, pressing the 

wrong button etc. (McKelvey & Palfrey (1992), p. 815). Alternatively, some players’ utility 

functions could include other players’ payoffs or they could even gain utility from 

experimenters’ losses. These “altruists” would not necessarily choose the highest payoff 

when maximizing their utility. Table 4 shows the cumulative relative frequencies of end-

of-game observations.   

  

Table 4. Cumulative relative frequencies of end-of-game observations 

 
Session Subjects N                

1 Graduate students   25 0,12 0,32 0,76 0,92 1,00 
2 Graduate students   49 0,24 0,43 0,71 0,92 1,00 
3 MBA students   49 0,02 0,29 0,73 0,90 1,00 
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Total 
 

123 0,13 0,35 0,73 0,91 1,00 

4 LEARNING 
 

In an attempt to explain how equilibrium actually arises in a game, a number of distinct 
theories of learning have been proposed. This chapter provides an overview of these 
different approaches. 
 

4.1 Evolutionary dynamics and belief-based learning 
 

Models of evolutionary learning attempt to study the evolution of strategies in a 

population (or multiple populations) of agents who repeatedly interact to play a game. 

Strategies are subject to selection pressures and payoffs can be interpreted as a measure 

of the relative success (fitness) of a strategy.  The basic idea is that successful strategies 

tend to spread more (are more frequent) than less successful ones. The main mechanisms 

at work in evolutionary models mirror those of biological evolution: selection, replication 

and mutation. Selection favors players who have obtained higher payoffs over those with 

lower payoffs and replication ensures that strategies of selected players are transmitted 

across consecutive generations. Mutation describes the process of experimentation or 

innovation by which new strategies or new patterns of behavior appear (Izquierdo, 

Izquierdo & Vega-Redondo, 2012). 

 

Three common models of evolutionary learning are fictitious play, partial best response 

and the replicator model. All three models can also be categorized as belief-based. In 

fictitious play, which is only vaguely connected with evolutionary ideas, each player 

assumes their opponents are playing stationary strategies, but does not know the 

distribution of those strategies. Players then simply play their best replies against their 

opponents’ past play. This approach is interesting in terms of explaining the convergence 

to equilibrium, because if at any point all players play Nash equilibrium, they will continue 

to do so for all subsequent turns (Battigalli, Gilli & Molinari, 1992). The partial best 

response model is very similar to the process of fictitious play, but here only a fixed 

portion of the players adjust their play. In the replicator model the share of the 

population using a particular strategy increases at a rate proportional with the relative 

payoff advantage of that strategy (Fudenberg & Tirole, 1991). 
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4.2 Reinforcement learning and other models 
 

Reinforcement learning models were largely inspired by developments and 

experimentation in behavioral psychology. The basic premise of reinforcement learning is 

that players’ strategies are reinforced by their previous payoffs. Players learn which 

actions to perform based on the rewards they receive, strategies with satisfactory 

outcomes tend to be repeated and strategies with unsatisfactory results tend to be 

avoided. Payoffs received for a specific strategy may also act as reinforcement for similar 

strategies (reinforcement may “spill-over”). A draw-back of simple reinforcement learning 

models is that they assume players only care about their past payoffs and disregard any 

other information they might have, such as the payoff structure, other players’ payoffs, 

etc (Camerer, 2003, p. 273). 

 

More sophisticated models such as experience-weighted (EWA) learning (Camerer & Ho, 

1999; Camerer, Ho & Chong, 2002), which combines features of reinforcement and the 

weighted fictitious play model, have also been proposed. Models with anticipatory 

learning assume players can use information about other players’ payoffs to reason about 

their future actions. Players might also learn by imitating the strategies of other, more 

successful players. Finally, rule learning allows players to learn which rules, rather than 

specific strategies, to use.  

 

4.3 Simulation of fictitious play in the centipede game 
 

The most rudimentary form of learning players in the centipede game could adopt would 

be a form of fictitious play - assuming players could be made aware of their opponents’ 

strategies after each game. To examine fictitious play as a viable explanation of 

experimental data, I designed a simulation of this model of learning. Every game after the 

initial round, players would simply play the best response to their opponents’ strategies 

(best response to the frequency of the opponents’ past strategies) and the game should 

eventually unravel to the equilibrium with both players taking on their first turns which 

would repeat in every subsequent game. Figure 12 shows a simulation of fictitious play 

using data from the first game in session 1 of the experiment. The y-axis is the average 

number of times player’s passed the pot in the game and the x-axis shows the number of 

iterations of the game. For the purposes of the simulation, players were assumed to be 

fully aware of their opponents’ choices. Players were paired using a rotating matching 

scheme rather than truly randomized.   
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Figure 12. Simulation of fictitious play 

 

 

 

The simulation confirms that the game reaches NSPE, but only after 96 iterations of the 

game. Players 1 lagged behind players 2 who all reached the predicted equilibrium 

strategy within 29 iterations. Expectedly, the fictitious play model is not adequate to 

explain the experimental data, but it does demonstrate the concept of convergence to 

equilibrium. While the centipede game does eventually reach NSPE in this case, a high 

number of iterations was required even in such a simple game which was further 

simplified by assuming players knew their opponents strategies. These facts undermine 

the plausibility of this approach in explaining how we arrive at equilibrium. The last player 

to reach equilibrium strategy in this simulation would have had to keep track of 95 games 

and be able to derive the best response based on the frequency distribution of 95 

opponents’ strategies and at the same time be completely myopic with regards to the 

fact that (at least) the last 67 games his opponents all played the same strategy.  
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Figure 13. Average number of times players passed per game, comparison between 
simulated fictitious play results and experimental data 

 

 

 

Figure 13 shows the comparison between the simulated results of the first five iterations 

of the game and the experimental data. Except for the starting point, which was used as 

input for the simulation, there is little similarity with the observed data. 

 

4.4 Modeling learning in the centipede game 
 

The motivations of players are complex and diverse and it is unlikely that simplifications 

such as treating all individuals as habitual payoff-maximizers would prove effective in 

explaining the data collected in this or similar experiments sufficiently well (Beard & Beil, 

1994). However, it is my contention that while the tendencies of individual players, the 

beliefs and motivations that inform their actions, may be hard to explain adequately, the 

evolution of players’ strategies throughout a session are based on a relatively simple 

approach. Each player has preexisting beliefs that inform their strategy in the first game 

and presumably players choose strategies they believe maximize their utilities – whether 

that’s purely a function of their payoffs or some combination of their payoffs and other 

peoples’ payoffs. Whatever strategy they choose to play, players are immediately 

confronted with their opponent’s strategy in the first game, which brings about two 

possible outcomes; either the game ended in the node in which they chose to end the 

game (they were able to effectively play the strategy they had chosen to maximize their 

utility) or the game ended before they were able to take the pot and end the game. 
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Players observe the error – the difference between the payoff they expected by playing 

their strategy and the actual payoff received and react to it by adjusting their strategies in 

the subsequent games. The bigger the difference between the expected payoff consistent 

with players’ strategies (the payoff associated with the node reached playing a certain 

strategy) and the actual payoff received, the less likely players are to pass the pot.  

 

4.4.1 Fixed effects 

 

To test this hypothesis, the following panel-data fixed effects regression model was 

estimated:  

 

 

                     

 

 (1) 

where     is the number of times subject i passed in game t,        is the error (the 

difference between the expected payoff consistent with the player’s chosen strategy and 

the payoff actually received) of subject i  in t-1,    is the unknown intercept for each 

subject,    is the slope coefficient and     is the error term.  With the subject-specific 

intercepts we can control for any unobserved heterogeneity (effects particular to each 

subject). The fixed effects model was selected as the use of the random effects model 

(generally preferred due to higher efficiency) was counter-indicated by the Hausman test, 

shown in Table 5 (Hausman, 1978). 

 

Table 5. Hausman test performed in Stata 

 
                 ---- Coefficients ---- 

             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 

             |     fixed        random       Difference          S.E. 

-------------+---------------------------------------------------------------- 

  error_lag2 |   -.0623079    -.0396503       -.0226576        .0048083 

------------------------------------------------------------------------------ 

                           b = consistent under Ho and Ha; obtained from xtreg 

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg 

 

    Test:  Ho:  difference in coefficients not systematic 

 

                  chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B)* 

                          =       22.20 

                Prob>chi2 =      0.0000 

 

The null hypothesis of the Hausman test in this case is that both the random-effects and 

the fixed-effects estimators are consistent. We reject the null hypothesis at Prob>chi2 = 

0,0000 and accept the alternative hypothesis that the random-effects estimator is 
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inconsistent and therefore the fixed-effects model is preferred. The model was estimated 

in Stata, the results are shown in Table 6  

 
 

Table 6. Fixed-effects model 

 
Fixed-effects (within) regression               Number of obs      =       208 

Group variable: subject                         Number of groups   =        38 

 

R-sq:  within  = 0.0408                         Obs per group: min =         4 

       between = 0.1503                                        avg =       5.5 

       overall = 0.0039                                        max =         6 

 

                                                F(1,169)           =      7.19 

corr(u_i, Xb)  = -0.2026                        Prob > F           =    0.0081 

 

------------------------------------------------------------------------------ 

        pass |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  error_lag2 |  -.0623079   .0232399    -2.68   0.008    -.1081859     -.01643 

       _cons |   1.181543   .0544271    21.71   0.000     1.074098    1.288987 

-------------+---------------------------------------------------------------- 

     sigma_u |  .40952337 

     sigma_e |  .61704803 

         rho |  .30578365   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

F test that all u_i=0:     F(37, 169) =     2.31             Prob > F = 0.0002 

 

Since the independent variable (the lagged difference between actual end-of-game  and 

the strategy end-of-game) is not applicable to individuals' first games of a session, 10 

games from the first session and 14 games from each of the two consequent sessions are 

omitted from this regression, resulting in the lower number of observations (n=208). 

 

The number of times players passed the pot in a game varied, but on average, they 

passed 1,1815 times per game (with players 1 passing, on average, 1,3043 times per game 

and players 2 passing, on average, 1,0647 times per game). On the basis of the t-value 

(and its corresponding P-value of 0,008) we can conclude that our slope coefficient is 

different from zero. It implies that the as the error (the difference between the expected 

payoff consistent with the player’s chosen strategy and the payoff actually received) in t-1 

increases by 1€, the number of time players pass the pot in a game decreases, on 

average, by 0,0623.  

 

The value of »rho« (             , also known as the intraclass correlation, shows 

that 30,6% of the variance is due to differences across panels.  
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4.4.2 Mixed effects 

 

The fixed effects model cannot be used to estimate time-invariant variables, but it does 

control for them with subject-specific intercepts.  The slope coefficient is fit on the 

population level and does not vary from subject to subject. However, a random slope 

term could be introduced to the model, which would likely improve the fit on the subject 

level. To do this, we can estimate the following mixed effect (multi-level) model: 

 

 

 

(2) 

 

where     is the number of times subject i passed in game t,        is the error (the 

difference between the expected payoff consistent with the player’s chosen strategy and 

the payoff actually received) of subject i  in t-1,    is the fixed effect intercept (the grand 

mean) and   is the fixed effect slope coefficient for       .     is the random effect 

intercept,     is the random slope coefficient for        and     is the error term. The 

model was estimated in Stata, using the maximum-likelihood approach, the results are 

shown in Table 7. 

 

The number of times players passed in a game varied across subjects and games, but on 

average they passed 1,158 times per game; this is the grand mean (population-level 

mean). sd(_cons) is a measure of the between-subject variability for the intercept, the 

standard deviation of subject-specific intercepts from the grand mean was 0,289 passes 

per game. The fixed effects (population level) slope coefficient is statistically significantly 

different from zero (P=0,044), which means that all other things held constant, when the 

error in the previous game (t-1) increases by 1€, the number of times players pass in the 

game (t) decreases, on average, by 0,0486. Sd(error_~g)= 0.0460559 can be interpreted 

as the standard deviation of the random slope for subjects. Figure 14 shows the 

decomposition to fixed and random effects. Instead of retrieving individual random 

effects coefficients, the estimated random effects parameters represent the standard 

deviations of those coefficients assumed to be distributed normally with a mean of zero 

(        ). All random-effects parameters are statistically significantly different from 

zero at the 0.05 alpha level. The LR test’s null hypothesis is that the random-effects equal 

zero, we reject that hypothesis at Prob > chi2 = 0.0024. 
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Table 7. Mixed effect (multi-level) model 

 
Mixed-effects ML regression                     Number of obs      =       208 

Group variable: subject                         Number of groups   =        38 

 

                                                Obs per group: min =         4 

                                                               avg =       5.5 

                                                               max =         6 

 

 

                                                Wald chi2(1)       =      4.04 

Log likelihood =  -209.6558                     Prob > chi2        =    0.0443 

 

------------------------------------------------------------------------------ 

        pass |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   error_lag |  -.0485552    .024147    -2.01   0.044    -.0958825    -.001228 

       _cons |   1.158009   .0711315    16.28   0.000     1.018594    1.297424 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

subject: Independent         | 

                sd(error_~g) |   .0460559   .0414247      .0079009    .2684682 

                   sd(_cons) |   .2890718   .0640319      .1872653    .4462252 

-----------------------------+------------------------------------------------ 

                sd(Residual) |   .6091059   .0348761      .5444461     .681445 

------------------------------------------------------------------------------ 

LR test vs. linear regression:       chi2(2) =    12.06   Prob > chi2 = 0.0024 

 

 

Figure 14. Decomposition to fixed and random effects 
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From the random effects parameters and the standard deviation of the residual, we can 

calculate the intraclass correlation (IC): 

 

 

 

   
      

           
 

      
           

           
 

 
                     

                                
       

(3) 

 

 

IC is a measure of the correlation of cases within a cluster (observations within a group – 

in our case, a subject). An IC close to zero would imply that observations are independent 

therefore there would be no need for a panel data treatment and a standard regression 

would suffice. A high IC (close to 1) means there is little variation of observations within 

each subject and differences between subjects are of more use for statistical inference 

(Snijders & Bosker, 2011, pp. 16-22).  

 

Finally, we can control for the differences between players 1 and players 2 by nesting 

subjects within the two subject-types (the two subject-types can be seen as two different 

treatments, since each type is faced with different decisions and different payoffs in the 

game): 
 

 

 

                                             (4) 
 

 

 

where     is the number of times subject i of type j passed in game t,         is the error 

(the difference between the expected payoff consistent with the player’s chosen strategy 

and the payoff actually received) of subject i  of type j in t-1,    is the fixed effect 

intercept  and   is the fixed effect slope coefficient for        .      is the subject random 

intercept,      is the subject random slope coefficient for       ,      is the type-of-subject 

random intercept and      is the error term. Type-of-subject random slope coefficient was 

omitted from the model as if was not statistically significantly different from zero. The 

model was estimated in Stata, using the maximum-likelihood approach, the results are 

shown in Table 8. 
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Table 8. Expanded mixed effect (multi-level) model 

 
Mixed-effects ML regression                     Number of obs      =       208 

 

----------------------------------------------------------- 

                |   No. of       Observations per Group 

 Group Variable |   Groups    Minimum    Average    Maximum 

----------------+------------------------------------------ 

           type |        2        104      104.0        104 

        subject |       38          4        5.5          6 

----------------------------------------------------------- 

 

                                                Wald chi2(1)       =      4.10 

Log likelihood = -209.51719                     Prob > chi2        =    0.0428 

 

------------------------------------------------------------------------------ 

        pass |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   error_lag |  -.0485338   .0239562    -2.03   0.043    -.0954872   -.0015805 

       _cons |    1.15864   .0869836    13.32   0.000     .9881552    1.329125 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

type: Identity               | 

                   sd(_cons) |   .0725073   .0929892      .0058713    .8954284 

-----------------------------+------------------------------------------------ 

subject: Independent         | 

                sd(error_~g) |   .0434392   .0429416      .0062579    .3015313 

                   sd(_cons) |   .2807612   .0651892      .1781144    .4425631 

-----------------------------+------------------------------------------------ 

                sd(Residual) |   .6097262    .034954      .5449262    .6822319 

------------------------------------------------------------------------------ 

LR test vs. linear regression:       chi2(3) =    12.33   Prob > chi2 = 0.0063 

 

 

The inclusion of type-of-subject level seems to have very little overall effect on the model. 

The number of times players passed in a game varied across subjects and games, but on 

average they passed 1,159 times per game. The standard deviation of subject-specific 

intercepts from the fixed effect intercept, sd(_cons), was 0,281 passes per game. The 

standard deviation of type-specific intercepts from the fixed effect intercept, sd(_cons), 

was 0,0725 passes per game. The fixed effects (population level) slope coefficient is 

statistically significantly different from zero (P=0,043), which means that all other things 

held constant, when the error in the previous game (t-1) increases by 1€, the number of 

times players pass in the game (t) decreases, on average, by 0,0485. The standard 

deviation of the random slope for subjects, sd(error_g), was 0,0434. All random-effects 

parameters are statistically significantly different from zero at the 0.05 alpha level. We 

reject the LR test’s null hypothesis that random-effects equal zero at Prob > chi2 = 0.0063. 

Figure 15 shows the decomposition of the second mixed model to fixed and random 

effects. 
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Figure 15. Decomposition to fixed and random effects (second model) 

 

 

 

 

4.4.3 Ordered logit model 

 

A slightly different approach in analyzing the collected data would be to directly examine 

the adjustments in strategies players made after each game. As each of the players was 

made aware of the actual amount of money they had won in the game compared to what 

they were expecting to make based on their own choices, each player could make one of 

three strategic choices:  

- decrease cooperation by taking the pot sooner in the game 

- continue with the current strategy  

- increase cooperation by taking the pot later in the game (or not at all) 

 

Based on the results of the panel data models we would expect to see a correlation 

between the errors players made in the previous game and the change in cooperation in 

the current game. Table 9 and Table 10 show the cross-tabulated results for each type of 

player as well as the relative frequencies of particular changes of strategy for each 

possible value of error. The numbers in the change in cooperation columns correspond to 

the difference between the number of times the player passed the pot in the current 

game and the number of times a player passed the pot in the previous game. For 

instance, a player changing their strategy from passing the pot twice to passing the pot 

only once corresponds to a change in cooperation of -1.  
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Table 9. Frequencies of strategic choices of player 1 

 

 

Change in  cooperation 

 Error (€) -2 -1 0 1 2 Total 

6,2 2 6 1 0 0 9 

5,6 2 10 6 0 0 18 

1,4 0 2 6 7 0 15 

0,0 0 9 31 20 2 62 

Total 4 27 44 27 2 104 

 

Table 10. Frequencies of strategic choices of player 2 

 

 

Both types of players seem to exhibit the same basic pattern of being more likely to 

increase cooperation after making a smaller error than after making a large error. For 

further analysis, the data for both types of players was combined and the variable 

»change in cooperation« was reduced to only three categories (increase, same, 

decrease):  

 

Table 11. Cross-tabulated results 

 
           |           cooperation 

 error_lag |  decrease       same   increase |     Total 

-----------+---------------------------------+---------- 

       6.2 |         8          1          0 |         9  

       5.6 |        12          6          0 |        18  

       3.1 |         4          2          1 |         7  

       2.8 |        10         12          8 |        30  

       1.5 |         4          1          0 |         5  

       1.4 |         2          6          7 |        15  

       1.2 |         5          3          0 |         8  

        .7 |         0          0          1 |         1  

         0 |        18         56         41 |       115  

-----------+---------------------------------+---------- 

     Total |        63         87         58 |       208  

 

 

Change in  cooperation 

Error (€) -2 -1 0 1 2 

6,2 22,2% 66,7% 11,1% 0,0% 0,0% 

5,6 11,1% 55,6% 33,3% 0,0% 0,0% 

1,4 0,0% 13,3% 40,0% 46,7% 0,0% 

0,0 0,0% 14,5% 50,0% 32,3% 3,2% 

Overall 3,8% 26,0% 42,3% 26,0% 1,9% 

 
Change in  cooperation 

 Error (€) -2 -1 0 1 2 Total 

3,1 0 4 2 1 0 7 

2,8 0 10 12 8 0 30 

1,5 0 4 1 0 0 5 

1,2 3 2 3 0 0 8 

0,7 0 0 0 1 0 1 

0,0 0 9 25 14 5 53 

Total 3 29 43 24 5 104 

 
Change in  cooperation 

Error (€) -2 -1 0 1 2 

3,1 0,0% 57,1% 28,6% 14,3% 0,0% 

2,8 0,0% 33,3% 40,0% 26,7% 0,0% 

1,5 0,0% 80,0% 20,0% 0,0% 0,0% 

1,2 37,5% 25,0% 37,5% 0,0% 0,0% 

0,7 0,0% 0,0% 0,0% 100,0% 0,0% 

0,0 0,0% 17,0% 47,2% 26,4% 9,4% 

Overall 2,9% 27,9% 41,3% 23,1% 4,8% 



33 
 

         Pearson chi2(16) =  59.3835   Pr = 0.000 

 

Pearson's chi-squared test conducted in Stata confirms the association between the 

magnitude of the error in the previous game and the change in strategy in the current 

game, however, since the test is non-directional, it gives no indication as to any 

correlation between the two. To estimate the relationship between the ordered 

dependent variable, change in cooperation, and the independent variable, error in the 

previous game, an ordered logit model (a generalization of the binary logit model) can be 

utilized using Stata’s ologit command, the results are shown in Table 12. 

 

Table 12. Ordinal logit model 

 
Ordered logistic regression                       Number of obs   =        208 

                                                  LR chi2(1)      =      37.69 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -206.30498                       Pseudo R2       =     0.0837 

 

------------------------------------------------------------------------------ 

cooperation2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  error_lag2 |  -.4259064   .0744753    -5.72   0.000    -.5718752   -.2799375 

-------------+---------------------------------------------------------------- 

       /cut1 |  -1.538469   .2056002                     -1.941437     -1.1355 

       /cut2 |   .5032041    .173134                      .1638678    .8425405 

------------------------------------------------------------------------------ 

 

The lagged error variable is expressed in absolute terms. The coefficient is the ordered 

log-odds estimate for a 1€ increase in the error in the previous game on the expected 

change in cooperation in the current game. A 1€ increase in the error in the previous 

game would result in a 0.4259 unit decrease in the ordered log-odds of being in a »higher 

category« of cooperation (choosing to stick to the same strategy instead of decreasing 

cooperation, for instance). Cut1 and Cut2 are the estimated cutpoints on the latent 

variable used to differentiate between the categories of the dependent variable. This can 

be expressed as:   

 

                              (5) 

 

For instance, for an error of 1€ in the previous game, the probability of choosing to 

decrease cooperation can be calculated as follows:  

 

                         (6) 

 

               (7) 
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Since the error term is assumed to be logistically distributed, the probability of 

              is: 

 

   (             )  
 

        
        (8) 

 

 

Table 13. Estimated and actual relative frequencies of strategic choices for particular 
values of errors 

 

 Change in cooperation (model) Change in cooperation (data) Number of 
observations Error (€) Decrease Same Increase Decrease Same Increase 

6,2 75% 21% 4% 89% 11% 0% 9 

5,6 70% 25% 5% 67% 33% 0% 18 

3,1 45% 42% 14% 57% 29% 14% 7 

2,8 41% 43% 16% 33% 40% 27% 30 

1,5 29% 47% 24% 80% 20% 0% 5 

1,4 28% 47% 25% 13% 40% 47% 15 

1,2 26% 47% 27% 63% 38% 0% 8 

0,7 22% 47% 31% 0% 0% 100% 1 

0,0  18% 45% 38% 16% 49% 36% 115 

 
 
Corresponding odds ratios can also be derived by using the or option after the ologit 
command, the results are shown in Table 14. 
  

Table 14. Odds ratios 

 
Ordered logistic regression                       Number of obs   =        208 

                                                  LR chi2(1)      =      37.69 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -206.30498                       Pseudo R2       =     0.0837 

 

------------------------------------------------------------------------------ 

cooperation2 | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  error_lag2 |   .6531775   .0486456    -5.72   0.000     .5644659     .755831 

-------------+---------------------------------------------------------------- 

       /cut1 |  -1.538469   .2056002                     -1.941437     -1.1355 

       /cut2 |   .5032041    .173134                      .1638678    .8425405 

------------------------------------------------------------------------------ 

 
 

For a 1€ increase of the error in the previous game, the odds of increased cooperation 

versus the two other strategic choices are 0,653 times lower. Similarly, for a 1€ increase 

of the error in the previous game, the odds of decreased cooperation versus the 
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combined odds of the two other strategic choices are also 0,653 lower. This is the 

consequence of the proportional odds assumption used in the model, which assumes that 

the relationship between each pair of outcome groups is the same. To test the 

proportional odds assumption, two additional methods can be used, the Brant test (using 

the brant command) and a likelihood ratio test (using the omodel command), the results 

of the tests are shown in Tables 15 and 16. 

 

Table 15. Brant test 

 
Brant Test of Parallel Regression Assumption: 

 

    Variable |      chi2   p>chi2    df 

-------------+-------------------------- 

         All |      0.30    0.585     1 

-------------+-------------------------- 

  error_lag2 |      0.30    0.585     1 

---------------------------------------- 

 

 

 

Table 16. Likelihood ratio test 

 
Approximate likelihood-ratio test of proportionality of odds 

across response categories: 

         chi2(1) =      0.18 

       Prob > chi2 =    0.6701 

 

 

Both results are non-significant, indicating that the proportional odds assumption has not 

been violated. Finally, to test whether or not players’ responses were constant 

throughout the game, an expanded model including a variable game (representing the 

iteration of the game having been played) is estimated, the results are shown in Table 17. 

 

Table 17. Expanded ordinal logit model 

 
Ordered logistic regression                       Number of obs   =        208 

                                                  LR chi2(2)      =      38.58 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -205.85998                       Pseudo R2       =     0.0857 

 

------------------------------------------------------------------------------ 

cooperation2 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  error_lag2 |  -.4280986   .0744624    -5.75   0.000    -.5740423   -.2821549 

        game |      .0767   .0813897     0.94   0.346     -.082821    .2362209 

-------------+---------------------------------------------------------------- 

       /cut1 |  -1.215998   .3967525                     -1.993619   -.4383775 

       /cut2 |   .8333136    .391074                      .0668226    1.599805 
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The coefficient corresponding to the game variable is not statistically significant, 

indicating that the relative frequencies of strategic choices for particular values of errors 

did not change with the number of games players played. In other words, players were 

just as likely to increase/decrease cooperation after observing a particular result in their 

first game as they were in their last game. 

 

The main advantage of the ordered logit model over the panel data models used earlier is 

the proper treatment of the ordinal variable – the exact values the ordinal variable takes 

are irrelevant, but higher values are assumed to correspond to higher outcomes (in this 

case, increasing levels of cooperation). The downside of this model is that, unlike the 

panel data models, it treats observations from the same individual as independent. 

 

4.5 Convergence to equilibrium 
 

Using the figures in Table 9 and Table 10 it is possible to at least approximately simulate 

the game over a large number of iterations, which would otherwise not be feasible due to 

numerous real-world constraints. In every subsequent iteration of the game players know 

the magnitude of their errors in the previous iteration and attempt a change in strategy 

consistent with the relative frequencies in Table 9 and Table 10. If the attempted change 

in strategy is not possible (for instance, if a player attempts to decrease cooperation 

when his previous strategy was already to never pass the pot), no change in strategy is 

made (this is why the simulated relative frequencies are not completely identical to the 

relative frequencies that have been empirically established). In each iteration players of 

one type are randomly paired with players of the other type and the output of the 

previous iteration (error) is used to determine players’ actions in the current iteration. 

The entire code used to run the simulation can be viewed in Appendix B, the results of the 

simulation are shown in Figure 16. 

 

After each iteration, the average number of times players passed the pot is calculated and 

all 100 iterations of the game are repeated 100 times. The red line represents the mean 

value of the 100 simulations at each iteration, while the green lines show the standard 

deviation of those 100 simulations. The jump in the beginning of the graph is due to the 

fact that the initial (first iteration) results of the game are taken from the empirical results 

of the first game of session 2. The starting values are therefore the same for each of the 

100 simulations and there is no variability. Other than that, the variability is fairly 

constant throughout all 100 iterations, meaning that, based on the simulation, the results 

of a game are just as (un)predictable after 100 iterations as they are after 7 iterations and 

there seems to be no convergence to an equilibrium, let alone to an equilibrium based on 

the predictions of game theory.  
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Figure 16. Results of the simulation 

 

 

 

5 ATTITUDES TOWARD RISK 
 

5.1 Introduction to attitudes toward risk 
 

After each game, subjects were individually offered the choice to gamble their winnings 

(in that game) on a flip of a coin. Those who accepted would call out either “heads” or 

“tails” while the experimenter flipped the coin. If they won, their winnings in that game 

would double, if their guess was incorrect, they lost their winnings in that game. The 

frequency of a fair coin landing on either side is 0,5 so the expected value of this gamble, 

irrespective of players’ strategies, is zero. When dealing with attitudes toward risk, 

economists generally put individuals in one of three categories: risk loving, risk averse and 

risk neutral (McCarty & Meirowitz, 2006, pp. 28-40). Risks averse are those individuals 

who, when given a choice between a gamble and the expected value of that gamble, 

choose the latter. This attitude can be explained by assuming a concave utility function 

shown in Figure 17. 
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Figure 17. Concave utility function 

 

 

 

Conversely, a risk-taking individual would prefer the gamble over the expected value of 

the gamble. This does not take into account any utility one might gain from the act of 

gambling itself, it is simply a consequence of a convex utility function – higher money 

amounts offer this individual disproportionately higher utility, therefore the expected 

value of the gamble undervalues higher money amounts in terms of this individual’s 

utility.  

 

Figure 18. Convex utility function 
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A risk neutral individual is completely indifferent between a gamble and a payoff 

equivalent to the expected value of a gamble, his utility as a function of money can 

therefore be represented as a straight line (Figure 19).  

However, these three simple categories are insufficient to fully explain an individual's 

attitude toward risk as this will likely vary as money amounts increase (an individual 

might be risk-taking when smaller amounts of money are involved and might exhibit risk-

aversion when stakes increase), when the probabilities of different outcomes in a gamble 

are distributed, etc.  
 

Figure 19. Linear utility function 

 

 

 

5.2 Attitudes toward risk experimental results 
 

Table 19 shows the conditional relative frequencies of accepting a bet at a given payoff 

amount. Clearly there is a negative correlation between payoff amounts and the relative 

frequency of accepting a bet. Furthermore, the scatterplot diagram in Figure 20 reveals a 

non-linear relationship between the two variables, an exponential curve fitted in SPSS 

confirms there is an exponential increase in conditional relative frequencies of accepted 

bets as money amounts decline.  

 

The results of fitting the log-linearized exponential function    ̂            in Stata 

are shown in Table 18. 
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Table 18. Exponential function 

 

      Source |       SS       df       MS              Number of obs =       7 

-------------+------------------------------           F(  1,     5) =   72.19 

       Model |  4.00268896     1  4.00268896           Prob > F      =  0.0004 

    Residual |  .277233617     5  .055446723           R-squared     =  0.9352 

-------------+------------------------------           Adj R-squared =  0.9223 

       Total |  4.27992258     6   .71332043           Root MSE      =  .23547 

 

------------------------------------------------------------------------------ 

 lnfrequency |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      payoff |  -.3560807   .0419093    -8.50   0.000     -.463812   -.2483494 

       _cons |   -.315195    .117057    -2.69   0.043    -.6160997   -.0142902 

 
 

The slope coefficient is significantly different from zero (at P=0,000). Through anti-

logaritmazation, we can obtain the regression coefficients of the original exponential 

function:  

 

 

          ̂
   ̂ ̂                             (9) 

 

 

Based on our sample, the conditional relative frequency of accepting a gamble, on 

average, decreases by 30%, when payoffs increase by $1.  

 
 

Table 19. Conditional relative frequencies of accepting a bet 

 
Payoff 6,40 € 3,20 € 1,60 € 0,80 € 0,40 € 0,20 € 0,10 € 

Times payoff wagered 1 4 17 28 42 20 14 
Times payoff reached 11 22 58 49 63 27 16 

Relative frequency 0,09091 0,18182 0,2931 0,57143 0,66667 0,74074 0,875 
 

 

Putting individuals in one of the three basic categories according to their attitudes toward 

risk (risk-loving, risk-averse and risk-neutral) clearly does a poor job of explaining these 

results. A risk-averse person would never accept a fair gamble and a risk-loving individual 

would never pass up on one, while the risk-neutral player would simply flip a coin as to 

whether or not to flip the coin. If this were the case, the distribution of conditional 

relative frequencies of accepting the bet would, to a large extent, mirror the relative 

probability of a risk-loving player reaching node i in a particular game (although these 

would not necessarily be identical due to the presence of risk-neutral players). This would 

imply that the vast majority of players to reach the last node in a game were risk-averse 



42 
 

while the majority of players deciding to take in early stages were risk-loving, the exact 

reverse of what one might expect.  It seems much more likely that attitudes toward risk 

are not constant, but rather a function of monetary amounts.  

 

Figure 20. Curve fit in SPSS 

 

 
 

 

These results are consistent with similar experiments dealing with attitudes toward risk 

when stakes increase. Holt and Laury (2002) found that there was a sharp increase in risk 

aversion when stakes were scaled up by factors 20, 50 and 90 from the initial low payoff 

of a couple of dollars and that a large proportion of subjects exhibited risk aversion even 

with low stake. Similar conclusions can be drawn from Kachelmeier and Shehata (1992) 

and Binswanger (1981).  

 

5.3 Risk aversion and the centipede game 
 

The lagged differences between expected payoffs and actual payoffs go far in explaining 

the evolution of players' strategies throughout a session, but provide no insight into 

players' average tendencies. Based on the results of the experiment it is clear that 
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following standard game theory assumptions, in particular common knowledge of 

instrumental rationality, which leads to the backward induction solution discussed in 

Chapter 1, would be of little use in explaining players’ motivations. While a portion of the 

subjects might have altruistic tendencies, it is probably not reasonable to assume an 

overwhelming majority of them would pass the pot to their opponents and forgo a higher 

payoff if they believed with certainty that their opponents would always take. On the 

other hand, passing the pot to one’s opponent could easily be justified if one believed 

there was a high-enough probability of their opponent making a “mistake”, passing the 

pot back to them. For example, player 1 making a decision in node 3 of the game could 

perform a simple odds calculation to determine (at least) how often his opponent would 

have to pass in his next move to make player 1’s strategy of passing profitable. If player 1 

takes, he is guaranteed 1,6€, if he passes, he gets 6,4€ with probability x and 0,8€ with 

probability 1-x, where x is the probability of player 2 passing.  

 

                               
(10) 

 

Player 2 would have to pass at least 14,3% of the time to make player 1’s strategy of 

passing in decision node 3 profitable on average. This is assuming the risk neutrality of 

player 1. 

 

Figure 21. Second half of the centipede game 

 

 

 

In the above example the player only had to consider a single action from his opponent 

after which the game would end, but the same reasoning could be applied for the entire 

game. Based on their beliefs regarding the probabilities of their opponents passing on 

specific decision nodes, players could decide on the appropriate strategy to maximize 

their payoffs. The calculation in (10) has shown that player 1’s decision to pass in node 3 
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is profitable only if player 2 decides to pass in node 4 more than 14,3% of the time. 

However, this explains little about player 1’s overall strategy, as it is not clear whether or 

not node 3 will ever be reached at all. Figure 22 shows the structure of the entire game 

from the viewpoint of player 1, y and x are the probabilities that player 2 decides to pass 

in node 2 and node 4 respectively. 

 

Figure 22. Structure of the game from player 1's perspective 

 

 

 

To simplify the analysis, we can first assume that the probability of player 2 making a 

mistake is constant, such that    . Because the ratio between player 1’s payoffs if 

player 2 decides to take or to pass is the same in decision nodes 2 and 4 (1:3), this implies 

that the only feasible strategies for player 1 are PP (if            or TT if 

(          . If        , then there is no    , such that: 

 

                            (11) 

 

There is no reason to assume player 2 would be just as likely to pass in decision node 4, 

where he is directly giving up half his payoff to quadruple player 1’s payoff, as he is to 

pass in decision node 2, where he has a real prospect of gaining greater payoff later in the 

game. Figure 23 shows player 1’s most profitable strategies as a function of probabilities x 

and y of player 2 passing the pot. Clearly, if both probabilities are greater than 14,3%, 

passing on both turns (PP) is most profitable, whereas taking on player 1’s first turn (TT) is 

most profitable if both x and y are lower than 14,3%. Passing once and taking on the next 

turn (PT) is the most profitable strategy when         and        . If the 

probability of player 2 passing on his first turn is lower than 14,3%, while the probability 

of him passing on his next turn is higher than 14,3%, either PP or TT are the most 

profitable strategies, depending on whether or not the lower probability of player 1 

reaching node 3 is offset by the higher probability of him subsequently reaching node 5.  
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The curve separating PP and TT (for        ) can be described by the following 

equation: 

 

   
   

                   
              (12) 

 

Figure 23. Player 1’s most profitable strategies as a function of probabilities x and y of 
player 2 passing the pot 

 

 

However, calculating whether or not a play is profitable in terms of expected payoffs is 

only part of the problem. In the first example, player 1 was faced with a choice between a 

certain payoff of 1,6€ and a lottery between 6,4€ with probability x and 0,8€ with 

probability (1-x). Depending on the player’s attitude toward risk, their certainty 

equivalent value – a payoff such that the player would be indifferent between it and the 

lottery – could be lower of higher than 1,6€. A more risk-averse individual will prefer a 

certain payoff of 1,6€ to a lottery between 6,4€ and 0,8€ with the expected value of 1,6€, 

therefore he will require a higher probability x of player 2 passing (higher that the 

calculation in (10) suggests) to forgo taking the pot immediately. Conversely, a risk-loving 
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individual will prefer the lottery to a certain payoff in the amount of the expected value of 

the lottery. For example, we could consider a risk-averse individual with a VNM utility 

function of; 

 

      √   (13) 

 

where   are the individual’s winnings in a game. 

 

Figure 24. Certainty equivalent of a risk-averse player 

 

 

 

When considering passing the pot, this individual might calculate the probability x of 

player 2 passing where he would be indifferent between a certain payoff of 1,6€ and a 

lottery between 6,4€ with probability x and 0,8€ with probability (1-x), such that:  

 

 √     √         √                     (14) 

 

In this individual’s case, the probability of player 2 passing the pot would have to be 

higher than 22,7% in order for them to consider the strategy of passing. Given this value 
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of x, the expected value of the lottery is 2,07€ and 1,6€ is the certainty equivalent of the 

lottery.  

Figure 25 shows the effect this calculation has on the distribution of chosen strategies by 

player 1. The area representing strategy PP shrinks, while the areas representing 

strategies TT and PT grow. This result shows that, on average, a risk averse player should 

be less likely to pass the pot to their opponent.   

 

Figure 25. Distribution of utility-maximizing strategies of a risk averse individual   

 

 

 

A risk-loving individual will prefer the lottery to a certain payoff in the amount of the 

expected value of the lottery, so a risk-loving player’s utility could be represented by a 

quadratic utility function: 

         (15) 
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Again, when considering passing the pot, this individual might calculate the probability x 

of player 2 passing where he would be indifferent between a certain payoff of 1,6€ and a 

lottery between 6,4€ with probability x and 0,8€ with probability (1x), such that:  

 

 

 
                                          (16) 

 

Figure 26. Certainty equivalent of a risk-loving player 

 

 

 

In this individual’s case, the probability of player 2 passing the pot would have to be 

higher than 4,76% in order for him to consider the strategy of passing. Given this value of 

x, the expected value of the lottery is 1,066€ and 1,6€ is the certainty equivalent of the 

lottery. Figure 26 shows the effect this calculation has on the distribution of chosen 

strategies by player 1. The area representing strategy PP increases, while the areas 

representing strategies TT and PT decrease. This result shows that, on average, a risk-

loving player should be more likely to pass the pot to their opponent.   
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Figure 27. Distribution of utility-maximizing strategies of a risk loving individual 

 

 

 

Player 2 has a similar decision on his first turn – what is the optimal strategy if he believes 

player 1 will pass the pot on his next turn a certain percentage (z) of the time? On player 

2's second turn, however, his strategic choice is clear – assuming he's trying to maximize 

his payoff, he'll simply take the pot and collect 3,2€.  

 

Figure 28. Structure of the game from player 2's perspective 
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A risk neutral player 2 can choose to pass in node 2 if the following equation holds: 

 

                                             (17) 

 

This is exactly the same probability as probability x of player 2 passing in node 4 at which 

a risk-neutral player 1 switches his optimal strategy in node 3 from taking to passing. And 

the same considerations regarding attitudes toward risk apply to player 2. A risk averse 

player with a utility function      √  will require higher probability z to pass on his 

first turn: 

 

 √          √      √                            (18) 

 

A risk-loving player 2 with a utility function         will require lower probability z to 

pass in node 2: 

 

                                                     (19) 

 

The only feasible strategies for a payoff-maximizing player 2 who believes that player 1 

will make a “mistake” (not selecting take in node 3) with a certain probability z are TT and 

PT. There is no z at which player 2, regardless of his attitude toward risk, should choose 

PP in order to maximize payoff. In fact, player 2 acts as if his first turn were effectively his 

last turn, giving him only one viable opportunity to pass the pot. Therefore, there should 

be a clear distinction between how many times per game player 1 and player 2, on 

average, pass the pot.  

 

5.4 Modeling risk aversion 
 

Given the analysis in [5.3] it might not be unreasonable to assume that (more) risk-averse 

individuals are, on average, less likely to pass the pot. However, testing this hypothesis is 

made less straightforward by the fact that directly quantifying a measure of an 

individual’s risk-aversion is difficult. Furthermore, if risk-aversion is a function of 

monetary amounts as discussed in [5.2], this non-linear relationship has to be taken into 

account.  

The data collected in our experiment shows that only 2 out of 38 subjects (5%) never 

accepted the lottery, 4 out of 38 subjects (10%) always accepted the lottery and the vast 
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majority of subjects sometimes accepted the lottery (85%). Considering the nature of the 

three standard categories of attitudes toward risk, we could conclude that at least 85% of 

the subjects in our experiment were risk-neutral, at most 5% were risk-averse and at 

most 10% were risk-loving. The reason these values cannot be established exactly is that a 

risk-neutral person could theoretically always accept the lottery or always reject it. But if 

85% of our subjects were truly risk-neutral and their accepting or rejecting the lottery 

were unaffected by payoff amounts, we would expect a fairly equal distribution of 

relative frequencies of accepting the lottery, which is not consistent with the data.   

Appendix C shows individual players’ payoffs, ordered from lowest to highest. Red 

columns denote instances in which the lottery was rejected by the subject and green 

columns show instances where the lottery was accepted. By examining individuals’ 

decisions we can approximately determine the payoff at which a subject changes from 

risk-seeking behavior to risk-averse behavior, point of indifference – if one exists at all. 

We can assume that the lower the value at which a subject is still indifferent between a 

fair gamble and a certain payoff of the expected value of that gamble, the more risk 

averse an individual is on average. Figure 29 shows an example of determining a player’s 

point of indifference as the arithmetic mean between the highest payoff wagered and the 

lowest payoff at which the lottery was rejected.  
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Figure 29. Point of indifference 

 

While it is not possible to derive a comprehensive measure of risk aversion in this way, it 

is still possible to establish a rough outline of players’ attitudes toward risk. The majority 

of subjects display quite a clear switch from risk-taking to risk-averse behavior even on 

such a narrow interval of relatively low payoffs. Table 20 shows the proposed indifference 

points for all 38 subjects. 

 

Table 20. Indifference points 

 

Subject POI Subject POI Subject POI Subject POI 

1 0,5 11 6,4 21 4,8 31 2,4 

2 0,15 12 0,2 22 0,6 32 0,6 

3 0,3 13 1,2 23 0,6 33 0,6 

4 0,5 14 1,2 24 0,6 34 4,8 

5 1,2 15 1,2 25 1,2 35 0,6 

6 0,6 16 0,4 26 1,2 36 0,6 

7 0,6 17 0,3 27 1,2 37 0,4 

8 1,6 18 0,25 28 0,6 38 1,2 

9 3,2 19 2,4 29 1,2 
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10 3,2 20 2,4 30 0,6 
  

 

To test the hypothesis that players who are more risk-averse are less likely, on average, to 

pass the pot, we estimate the following linear model: 

 

                          (20) 

 

where          is the mean of the number of times individual i passed the pot in a 

game,       are natural logarithms of subjects’ measures of risk attitudes represented by 

the indifference points proposed in Table 20,    is a dummy variable to control for the 

two different types of players (0 for player 1 and 1 for player 2). The results are shown in 

Table 21. 

 

 

 

 

 

Table 21. Linear model 

 
      Source |       SS       df       MS              Number of obs =      38 

-------------+------------------------------           F(  2,    35) =    4.71 

       Model |  1.14784533     2  .573922667           Prob > F      =  0.0154 

    Residual |  4.26139187    35  .121754053           R-squared     =  0.2122 

-------------+------------------------------           Adj R-squared =  0.1672 

       Total |   5.4092372    37    .1461956           Root MSE      =  .34893 

 

------------------------------------------------------------------------------ 

     avgpass |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        lnIP |   .1555688   .0647702     2.40   0.022     .0240783    .2870594 

       type2 |  -.2657926   .1150508    -2.31   0.027    -.4993582    -.032227 

       _cons |   1.269907   .0818797    15.51   0.000     1.103682    1.436132 

------------------------------------------------------------------------------ 

 

 

The mean value of the average number of times players 1 passed the pot per game was 

1,269907 and the mean value of the average number of times players 2 passed the pot 

per game was 1,004177.  The slope coefficient is different from zero (P=0,022), which 

implies that as the value at which a subject is indifferent between a fair gamble and a 

certain payoff of the expected value of that gamble increases by 100% (all other things 
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being held constant), the average number of times a player passes per game increases, on 

average, by 0,156*ln(2)= 0,1078.  

 

CONCLUSION 
 

Results of the experiments confirmed that standard game theory predictions are not 

adequate to explain players’ behavior, which is consistent with the results of similar 

experiments. There is also no evidence of convergence to equilibrium, neither by testing 

the statistical significance of the number of games having been played in the ordered logit 

model or by simulating further iterations of the game using empirically derived relative 

frequencies of strategic choices. Both the panel data models and the ordered logit model 

show a strong correlation between the perceived errors of players’ past plays, based on 

the difference between players’ expected payoffs consistent with their chosen strategies 

and the actual payoffs they received, and the players’ strategic choices in the subsequent 

game. On, average, players are less willing to pass the pot (or less willing to increase 

cooperation) as the magnitude of the errors increase. Even on a relatively narrow interval 

of low payoffs, ranging from 0,1€ to 6,4€, players, on average, exhibited a very clear 

exponential increase in conditional relative frequencies of accepted bets as money 

amounts declined. These results are consistent with similar experiments dealing with 

attitudes toward risk when stakes increase. Finally, the analysis in [5.4] suggests that 

more risk-averse players are, on average, less likely to pass the pot and that overall, 

player 2s are less likely to pass the pot than player 1s. This result is consistent with the 

calculations and conclusions derived in [5.3].  
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Appendix A: Instructions 

 

Thank you for your participation in this experiment. Before we get started, we're going to 

draw cards to determine the seating arrangement. The number on the card corresponds 

to the number of your computer. Your number will also determine whether it’s you or 

your opponent who gets to act first in the game – an odd number means you get to act 

first, an even number means your opponent acts first. 

[each player draws a card] 

Please take your seats and do not log on to the computer at this time. The game we are 

going to play is a variant of the centipede game. You will be playing for real money and 

will be paid in cash at the end of the session. Please do not communicate to each other 

during the experiment.  

The game begins with a pot of 50 cents divided unevenly among two players – you can 

see the payoffs on this diagram: 

 

Figure 1. Centipede game with geometrically increasing payoffs 

 

 

 

 [experimenter uses diagram on whiteboard to aid in explaining the game]. 

The player to act first is given a choice to either accept the larger share (40 cents) of the 

pot or to pass the pot to the other player. If he chooses to take the pot, he gets 40 cents, 

the second player gets 10 cents and the game ends. If he passes the pot to the second 

player, the pot doubles to 1€, but in this (second) round, the second player gets to choose 

to either take the larger share of the pot -  80 cents  (in which case the first player only 

gets 20 cents) or to pass the pot back to the first player. If he takes the 80 cents, the first 

player receives 20 cents and the game ends. If he passes, the pot gets doubled again to 2€ 

and the first player is offered 1,6€. The payoff for the second player in this round, if the 

first player accepts the offer, is 40 cents. If the first player decides to pass, the pot is 
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doubled again to 4€. The second player is offered 3,2€. If he takes the offer, he gets 3,2€, 

while the first player gets 80 cents and the game ends. If the second player decides to 

pass, the pot doubles one last time to 8€. However, the game now ends and the second 

player receives the smaller share of the pot, 1,6€, while the first player gets 6,4€. 

We’re going to repeat this game several times during this session. You will not play with 

the same opponent more than once. At the end of each game you’ll be given the option 

to gamble your winnings in that particular game on a flip of a coin. Call the right side of 

the coin, and your winnings (for the game) double, get it wrong, and you’re left with 

nothing. 

[experimenter takes questions] 

The game will be played on your computers, so please log on and open file []. Before we 

start the actual experiment, we’re going to do a practice run.  

[experimenter explains interface]  

There is one important point I have to make clear. Because we want to gather as much 

information as possible about your decision making process, the program is designed to 

let you keep playing even if your opponent has already taken the pot and effectively 

ended the game. For example, if the first player, in round 1, passed the pot to their 

opponent, who decided to take the pot thereby ending the game in round 2, the first 

player would still be made to decide on their action in round 3 as if their opponent had 

decided to pass. The first player’s decision in round 3 would have no bearing on the 

outcome of the game in this case.  So you won’t necessarily know the actual results of the 

game until we post them on the whiteboard at the end of each game.  

[experimenter takes questions] 

[practice run] 
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Appendix B: Code  

 

  1  #include <stdio.h> 

  2  #include <stdlib.h> 

  3  #include <math.h> 

  4  #include <time.h> 

  5   

  6  int takeat [14]; 

  7  double exppayoff [14]; 

  8  int gameend [14]; 

  9  double actualpayoff [14]; 

 10  double error [14]; 

 11  int pass [14]; 

 12   

 13  int pairs [7]= {8, 8, 8, 8, 8, 8, 8}; 

 14  int i,n,j; 

 15   

 16  int main() 

 17  { 

 18      srand(time(NULL)); 

 19   

 20      for(j=0; j<100; j++) 

 21      { 

 22   

 23          FILE *datoteka; 

 24          datoteka=fopen("magisterij.txt", "a+"); 

 25   

 26          takeat[0]=5; 

 27          takeat[1]=1; 

 28          takeat[2]=5; 

 29          takeat[3]=5; 

 30          takeat[4]=5; 

 31          takeat[5]=5; 

 32          takeat[6]=3; 

 33   

 34          takeat[7]=5; 

 35          takeat[8]=4; 

 36          takeat[9]=4; 

 37          takeat[10]=5; 

 38          takeat[11]=2; 

 39          takeat[12]=4; 

 40          takeat[13]=4; 

 41   

 42          for(i=0; i<7; i++) 

 43          { 

 44              if(takeat[i]==5) 

 45                  pass[i]=2; 

 46              if(takeat[i]==3) 

 47                  pass[i]=1; 

 48              if(takeat[i]==1) 

 49                  pass[i]=0; 

 50          } 

 51   

 52          for(i=7; i<14; i++) 

 53          { 

 54              if(takeat[i]==5) 

 55              { 

 56                  pass[i]=2; 

 57              } 

 58              if(takeat[i]==4) 

 59              { 

 60                  pass[i]=1; 

 61              } 

 62              if(takeat[i]==2) 

 63              { 

 64                  pass[i]=0; 

 65              } 

 66   

 67          } 

 68   

 69          for(n=0; n<100; n++) 

 70          { 
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 71              fprintf(datoteka,"%d\t", j+1); 

 72              fprintf(datoteka,"%d\t", n+1); 

 73              for(i=0; i<14; i++) 

 74              { 

 75                  fprintf(datoteka,"%d\t", pass[i]); 

 76              } 

 77              fprintf(datoteka,"\n"); 

 78   

 79   

 80              //calculate expected payoffs 

 81              for(i=0; i<7; i++) 

 82              { 

 83                  if(takeat[i]==5) 

 84                      exppayoff[i]=6.4; 

 85                  if(takeat[i]==3) 

 86                      exppayoff[i]=1.6; 

 87                  if(takeat[i]==1) 

 88                      exppayoff[i]=0.4; 

 89              } 

 90   

 91              for(i=7; i<14; i++) 

 92              { 

 93                  if(takeat[i]==5) 

 94                  { 

 95                      exppayoff[i]=1.6; 

 96                  } 

 97                  if(takeat[i]==4) 

 98                  { 

 99                      exppayoff[i]=3.2; 

100                  } 

101                  if(takeat[i]==2) 

102                  { 

103                      exppayoff[i]=0.8; 

104                  } 

105              } 

106   

107   

108  //pairing, int pair is a random order of player 1s to be paired with player 2s. 

109   

110              pairs[0]=rand()%7; 

111   

112              for(i=1; i<7; i++) 

113              { 

114                  do 

115                  { 

116                      pairs[i]=rand()%7; 

117                  } 

118                  while((pairs[i]==pairs[i-1]) 

119                          ||(pairs[i]==pairs[i-2]) 

120                          ||(pairs[i]==pairs[i-3]) 

121                          ||(pairs[i]==pairs[i-4]) 

122                          ||(pairs[i]==pairs[i-5]) 

123                          ||(pairs[i]==pairs[i-6]) 

124                       ); 

125              } 

126   

127   

128              for(i=0; i<7; i++) 

129              { 

130                  if(takeat[i+7]>=takeat[pairs[i]]) 

131                  { 

132                      gameend[i+7]=takeat[pairs[i]]; 

133                      gameend[pairs[i]]=takeat[pairs[i]]; 

134                  } 

135   

136                  if(takeat[i+7]<takeat[pairs[i]]) 

137                  { 

138                      gameend[i+7]=takeat[i+7]; 

139                      gameend[pairs[i]]=takeat[i+7]; 

140                  } 

141   

142              } 

143   

144   

145              //calculate actual payoffs 

146              for(i=0; i<7; i++) 
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147              { 

148                  if(gameend[i]==5) 

149                      actualpayoff[i]=6.4; 

150                  if(gameend[i]==4) 

151                      actualpayoff[i]=0.8; 

152                  if(gameend[i]==3) 

153                      actualpayoff[i]=1.6; 

154                  if(gameend[i]==2) 

155                      actualpayoff[i]=0.2; 

156                  if(gameend[i]==1) 

157                      actualpayoff[i]=0.4; 

158              } 

159   

160              for(i=7; i<14; i++) 

161              { 

162                  if(gameend[i]==5) 

163                  { 

164                      actualpayoff[i]=1.6; 

165                  } 

166                  if(gameend[i]==4) 

167                  { 

168                      actualpayoff[i]=3.2; 

169                  } 

170                  if(gameend[i]==3) 

171                  { 

172                      actualpayoff[i]=0.4; 

173                  } 

174                  if(gameend[i]==2) 

175                  { 

176                      actualpayoff[i]=0.8; 

177                  } 

178                  if(gameend[i]==1) 

179                  { 

180                      actualpayoff[i]=0.1; 

181                  } 

182              } 

183   

184              for(i=0; i<14; i++) 

185              { 

186                  error[i]=exppayoff[i]-actualpayoff[i]; 

187              } 

188   

189   

190              for(i=0; i<7; i++) 

191              { 

192                  if(takeat[i]==5) 

193                      pass[i]=2; 

194                  if(takeat[i]==3) 

195                      pass[i]=1; 

196                  if(takeat[i]==1) 

197                      pass[i]=0; 

198              } 

199   

200              for(i=7; i<14; i++) 

201              { 

202                  if(takeat[i]==5) 

203                  { 

204                      pass[i]=2; 

205                  } 

206                  if(takeat[i]==4) 

207                  { 

208                      pass[i]=1; 

209                  } 

210                  if(takeat[i]==2) 

211                  { 

212                      pass[i]=0; 

213                  } 

214   

215                  for(i=0; i<14; i++) 

216                  { 

217                      double roll=(double)rand()/RAND_MAX; 

218   

219                      if(error[i]==6.2) 

220                      { 

221                          if(roll<=0.22222) 

222                              pass[i]=0; 
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223                          if(roll>0.22222&&roll<=0.88888) 

224                          { 

225   

226                              if (pass[i]==0) 

227                              { 

228                                  pass[i]=0; 

229                              } 

230                              else 

231                              { 

232                                  pass[i]--; 

233                              } 

234                          } 

235                          if(roll>0.88888) 

236                              pass[i]=pass[i]; 

237                      } 

238   

239                      if(error[i]==5.6) 

240                      { 

241                          if(roll<=0.11111) 

242                              pass[i]=0; 

243                          if(roll>0.11111&&roll<=0.66666) 

244                          { 

245                              if (pass[i]==0) 

246                                  pass[i]=0; 

247                              else pass[i]--; 

248                          } 

249                          if(roll>0.66666) 

250                              pass[i]=pass[i]; 

251                      } 

252   

253                      if(error[i]==3.1) 

254                      { 

255                          if(roll<=0.57142) 

256                          { 

257                              if (pass[i]==0) 

258                                  pass[i]=0; 

259                              else pass[i]--; 

260                          } 

261                          if(roll>0.57142&&roll<=0.85714) 

262                              pass[i]=pass[i]; 

263                          if(roll>0.85714) 

264                          { 

265                              if (pass[i]==2) 

266                                  pass[i]=2; 

267                              else pass[i]++; 

268                          } 

269                      } 

270   

271                      if(error[i]==2.8) 

272                      { 

273                          if(roll<=0.33333) 

274                          { 

275                              if (pass[i]==0) 

276                                  pass[i]=0; 

277                              else pass[i]--; 

278                          } 

279                          if(roll>0.33333&&roll<=0.73333) 

280                              pass[i]=pass[i]; 

281                          if(roll>0.73333) 

282                          { 

283                              if (pass[i]==2) 

284                                  pass[i]=2; 

285                              else pass[i]++; 

286                          } 

287                      } 

288   

289                      if(error[i]==1.5) 

290                      { 

291                          if(roll<=0.8) 

292                          { 

293                              if (pass[i]==0) 

294                                  pass[i]=0; 

295                              else pass[i]--; 

296                          } 

297                          if(roll>0.8) 

298                              pass[i]=pass[i]; 



7 
 

299                      } 

300   

301                      if(error[i]==1.4) 

302                      { 

303                          if(roll<=0.33333) 

304                          { 

305                              if (pass[i]==0) 

306                                  pass[i]=0; 

307                              else pass[i]--; 

308                          } 

309                          if(roll>0.33333&&roll<=0.53333) 

310                              pass[i]=pass[i]; 

311                          if(roll>0.53333) 

312                          { 

313                              if (pass[i]==2) 

314                                  pass[i]=2; 

315                              else pass[i]++; 

316                          } 

317                      } 

318   

319                      if(error[i]==1.2) 

320                      { 

321                          if(roll<=0.375) 

322                              pass[i]=0; 

323                          if(roll>0.375&&roll<=0.625) 

324                          { 

325                              if (pass[i]==0) 

326                                  pass[i]=0; 

327                              else pass[i]--; 

328                          } 

329                          if(roll>0.625) 

330                              pass[i]=pass[i]; 

331                      } 

332   

333                      if(error[i]==0.7) 

334                      { 

335                          if (pass[i]==2) 

336                              pass[i]=2; 

337                          else pass[i]++; 

338                      } 

339   

340                      if(error[i]==0) 

341                      { 

342                          if(roll<=0.45652) 

343                          { 

344                              if (pass[i]==0) 

345                                  pass[i]=0; 

346                              else pass[i]--; 

347                          } 

348   

349                          if(roll>0.45652&&roll<=0.64347) 

350                              pass[i]=pass[i]; 

351   

352                          if(roll>0.64347&&roll<=0.93913) 

353                          { 

354                              if (pass[i]==2) 

355                                  pass[i]=2; 

356                              else pass[i]++; 

357                          } 

358                          if(roll>0.93913) 

359                              pass[i]=2; 

360                      } 

361                  } 

362   

363              } 

364   

365              for(i=0; i<7; i++) 

366              { 

367                  if(pass[i]==2) 

368                      takeat[i]=5; 

369                  if(pass[i]==1) 

370                      takeat[i]=3; 

371                  if(pass[i]==0) 

372                      takeat[i]=1; 

373              } 

374   



8 
 

375              for(i=7; i<14; i++) 

376              { 

377                  if(pass[i]==2) 

378                  { 

379                      takeat[i]=5; 

380                  } 

381                  if(pass[i]==1) 

382                  { 

383                      takeat[i]=4; 

384                  } 

385                  if(pass[i]==0) 

386                  { 

387                      takeat[i]=2; 

388                  } 

389   

390              } 

391   

392          } 

393   

394      } 

395   

396      return 0; 

397  } 
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Appendix C: Lotteries 

Figure 2 shows individual players’ payoffs ordered from lowest to highest, red columns 

denote instances in which the lottery was rejected by the subject and green columns 

show instances where the lottery was accepted. 

 

Figure 2. Individual players’ payoffs 
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Appendix D: Povzetek 

 

ODNOSI DO TVEGANJA IN UČENJE: EMPIRIČNA ANALIZA IGRE STONOGA 

(POVZETEK) 

 

UVOD  
 

V magistrskem delu povzemam rezultate vedenjskega eksperimenta, ki sem ga izvedel s 

pomočjo mentorja, dr. Aljoše Feldina. Pri analizi se upiram na različne modele učenja, ki 

vključujejo model fiktivne igre (angl. fictitious play (Camerer, 2003)) in model učenja z 

ojačitvijo (angl. reinforcement learning (Fudenberg & Lavine, 1998)), ter na ustaljene 

koncepte odnosov to tveganja. Namen magistrske naloge je pojasniti razlike med 

rešitvami, ki jih predlaga teorija iger, in empiričnimi rezultati, ki se praviloma z njimi ne 

ujemajo. V eksperimentu so študenti Ekonomske fakultete igrali igro Stonoga (angl. 

Centipede (Rosenthal, 1981)), ki je podrobneje opisana v prvem poglavju.  Poleg glavne 

ugotovitve podobnih študij, da se empirični rezultati razlikujejo od rezultatov, ki temeljijo 

na analizi teorije iger, v magistrski nalogi preverim naslednje domneve: 

 

1. Igralci se učijo iz napak v prejšnjih igrah, ki temeljijo na razliki med dobitki, ki jih igralci 

pričakujejo z igranjem izbrane strategije, in dejanskimi dobitki, ki jih prejmejo. Večja 

kot je razlika med pričakovanim in dejanskim dobitkom v prejšnji igri, manj verjetno 

je, v povprečju, da igralci zavrnejo ponujeno vsoto denarja v naslednji igri.  

 

2. Odnosi do tveganja niso konstantni, temveč odvisni od različnih denarnih vsot. 

Obstaja negativna korelacija med višino dobitka (višino stave) in verjetnostjo, da je 

igralec svoj dobitek pripravljen staviti na met kovanca.  

 

3. Igralci, ki so manj nagnjeni k tveganju, v povprečju tudi manjkrat zavrnejo ponujeno 

vsoto denarja v igri. 

 

V prvem poglavju predstavim igro, ki je uporabljena v eksperimentu, in podam osnove 

teorije iger, ki so potrebni za njeno razumevanje. Poglavje se zaključi s pregledom 

literature na temo sorodnih študij. V drugem poglavju sledi podroben opis zasnove in 

poteka eksperimenta, v tretjem poglavju pa so predstavljeni rezultati.  
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Četrto poglavje uvede različne modele učenja v teoriji iger. Za testiranje domneve, da se 

igralci učijo iz napak v prejšnjih igrah (ideja, ki je sorodna konceptom v modelu učenja z 

ojačanjem), uporabim več regresijskih modelov (model s konstantnimi efekti, model z  

mešanimi efekti in ordinalni logit model). Za boljšo predstavo rezultatov uporabim tudi 

simulacijo, s katerimi s pomočjo vhodnih podatkov (rezultati prve igre eksperimenta) 

modeliram učenje po principu modela fiktivne igre in rezultate simulacije primerjam z 

empiričnimi podatki. 

 

V petem poglavju podrobneje analizira koncepte povezane z odnosi do tveganja in kako 

vplivajo na odločitve posameznikov v igri. V sklepnem delu poglavja preverim domnevo, 

da obstaja korelacija med posameznikovim odnosom do tveganja in njihovo strategijo v 

igri, oziroma, da igralci, ki so manj nagnjeni k tveganju, v povprečju tudi manjkrat zavrnejo 

ponujeno vsoto denarja v igri. 

 

1 IGRA STONOGA 
 

Stonoga (angl. Centipede) je igra, v kateri se dva igralca izmenjujeta pri odločanju  o tem, 

ali bosta vzela večji delež kupa denarja, ki se v vsakem krogu igre poveča. Igro je kot 

primer prvi uporabil Robert W. Rosenthal (1981). Od prve uporabe je igra in njene mnoge 

različice postala priljubljen način razlage določenih konceptov teorije iger, uporabljena pa 

je bila tudi v številnih eksperimentalnih študijah. Za lastno delo sem izbral Stonogo s 

štirimi krogi in geometrijsko naraščajočimi vsotami denarja, igra je prikazana v  sliki 1.  

 

Slika 1. Stonoga s štirimi krogi in geometrijsko naraščajočim kupom denarja 

 

 

 

Na začetku igre se manjša vsota denarja (0,5€) neenakomerno razdeli med oba igralca,  

0,4€ prvemu igralcu in 0,1€ drugemu igralcu. V začetnem krogu odloča prvi igralec, če 

ponudbo sprejme, se igra konča, igralca pa dobita vsak svoj delež denarja, če ponudbo 
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zavrne, se igra nadaljuje. V drugem krogu se vsota v skupnem kupu denarja podvoji (1€), 

vendar sedaj drugi igralec odloča o tem, ali bo sprejel večji delež denarja (0,8€). Če 

ponudbo sprejme, vzame ponujeno vsoto denarja, prvi igralec prejme le 0,2€ in igra se 

konča. Če ponudbo zavrne, se igra nadaljuje v naslednji krog, vsota v skupnem kupu 

denarja se ponovno podvoji (2€), denar pa se razdeli med oba igralca (1,6€ prvemu in 0,4€ 

drugemu igralcu). V tretjem krogu o ponudi odloča prvi igralec. Če ponudbo sprejme, se 

igra konča, igralca pa prejmeta ponujeni vsoti denarja. Če ponudbo zavrne, se igra 

nadaljuje v naslednji krog, vsota v skupnem kupu denarja se ponovno podvoji (4€), denar 

pa se razdeli med oba igralca (0,8€ prvemu in 3,2€ drugemu igralcu). V četrtem krogu o 

ponudi odloča drugi igralec. Če ponudbo sprejme, se igra konča, igralca pa prejmeta 

ponujeni vsoti denarja. Če ponudbo zavrne, se skupni kup denarja še zadnjič podvoji (8€), 

prvi igralec prejme 6,4€, drugi igralec pa le 1,6€ in igra se konča. 

 

2 ZASNOVA EKSPERIMENTA 
  

Eksperiment je potekal v treh skupinah, v katerih je 38 študentov podiplomskega študija 

Ekonomske fakultete odigralo 123 iger. V tretji skupini so sodelovali le študenti MBA 

programa Ekonomske fakultete. Zaradi zasedenosti prostorov in manjkajočih udeležencev 

število igralcev v vseh treh skupinah ni bilo enako, v prvi je sodelovalo deset igralcev (pet 

parov), v drugi in tretji pa po štirinajst igralcev (sedem parov).  

Vse igre so bile igrane preko preprostega vmesnika na računalniku, ki je poleg gumbov za 

sprejem ali zavrnitev ponudbe vseboval tudi kratek opis trenutnega kroga s ponujenimi 

vsotami za oba igralca in grafično predstavitev poteka igre. Slika 2 predstavlja grafični 

vmesnik drugega igralca. 

 Pred začetkom igre so igralci izžrebali številko računalnika, na katerem so igrali. S tem je 

bila poleg sedežnega reda zagotovljena tudi naključna porazdelitev udeležencev na dva 

tipa igralcev, tiste, ki odločajo v prvem in tretjem krogu igre (prvi igralec) in tiste, ki 

odločajo v drugem in zadnjem krogu igre (drugi igralec). Na začetku vsake igre so bili 

naključno izbrani pari igralcev obeh tipov na tak način, da je vsak igralec prvega tipa igral 

točno eno igro z vsakim igralcem drugega tipa. Udeleženci so bili jasno seznanjeni s tem, 

da bodo vsako igro igrali z novim igralcem. Zaradi te omejitve je bilo v prvi skupini 

odigranih le 25 iger, v preostalih dveh pa 49 iger. Podrobni podatki o vsaki skupini so 

zbrani v tabeli 1. 

 

 



17 
 

Slika 2. Grafični vmesnik drugega igralca 

 

 

 

Tabela 1. Podatki o skupinah 

 

Skupina Število udeležencev Število iger na udeleženca Skupno število iger 

1 10 5 25 

2 14 7 49 

3 14 7 49 
 

 

Vsaki skupini so bila podrobno razložena pravila igre in podana navodila glede poteka 

eksperimenta. Komunikacija med udeleženci ni bila dovoljena, da bi se omejili kakršnikoli 

poskusi sodelovanja.   

Po koncu vsake igre je bila vsakemu udeležencu ponujena dodatna možnost, da svoj 

dobitek stavi na met kovanca. Če zmaga, se njegov dobitek podvoji, če izgubi, ostane brez 
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denarja, ki ga je dobil v igri. Namen ponujene stave ob koncu igre je vključitev analize 

odnosov do tveganja udeležencev.  

 

3 REZULTATI EKSPERIMENTA 
 

Tabela 2 prikazuje relativne frekvence doseženih končnih vozlišč v vseh 123 igrah.    je 

relativna frekvenca iger, ki so se končale v petem vozlišču (igre, v katerih nihče od igralcev 

ni sprejel ponujenih vsot denarja). 

 

Tabela 2. Relativne frekvence doseženih končnih vozlišč 

 

Skupina Udeleženci N                

1 Podiplomski študij 25 0,12 0,20 0,44 0,16 0,08 

2 Podiplomski študij 49 0,24 0,18 0,29 0,20 0,08 

3 MBA 49 0,02 0,27 0,45 0,16 0,10 

Skupaj 
 

123 0,13 0,22 0,38 0,18 0,09 

 

Ker je bilo odigrano število iger po posameznih skupinah različno, relativne frekvence v 

vrstici skupno predstavljajo uteženo povprečje relativnih frekvenc doseženih vozliščih. 

Kljub temu, da standardna rešitev v teoriji iger predvideva, da bo prvi igralec vedno takoj 

sprejel prvo ponudbo in se bodo zato vse igre končale v prvem vozlišču (  =1;       

       ), se je v eksperimentu le 13% iger končalo pri prvi ponudbi. Kar 9% iger se je 

končalo v petem vozlišču, kar pomeni, da prvi in drugi igralec nikoli nista sprejela 

ponujenih vsot. 38% iger se je končalo v tretjem vozlišču,     je tudi modus pri vseh treh 

skupinah. Slike 3-5 prikazujejo frekvenčno porazdelitev končnih vozlišč doseženih v igrah 

posameznih skupin.  
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Slika 3. Frekvenčno porazdelitev doseženih končnih vozlišč v 1. skupini 

 

 

 

Slika 4. Frekvenčno porazdelitev doseženih končnih vozlišč v 2. skupini 
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Slika 5. Frekvenčno porazdelitev doseženih končnih vozlišč v 3. skupini 

 

 
 

 

Tabela 3 prikazuje relativne frekvence strategij obeh tipov igralcev.    
  je relativna 

frekvenca strategije, pri kateri je prvi igralec vedno vzel ponujeno vsoto denarja (VV).     
  

je relativna frekvenca strategije, pri kateri je prvi igralec zavrnil (pustil) prvo ponudbo, a 

sprejel (vzel) drugo (PV).    
  je relativna frekvenca strategije, pri kateri je prvi igralec 

zavrnil obe ponudbi (PP).  

 

Tabela 3. Relativne frekvence strategij obeh tipov igralcev 

 

   
Igralec 1 Igralec 2 

Skupina Udeleženci N    
     

     
     

     
     

  

1 Podiplomski št.   25 0,12 0,52 0,36 0,20 0,44 0,36 

2 Podiplomski št.   49 0,24 0,39 0,37 0,20 0,57 0,22 

3 MBA   49 0,02 0,63 0,35 0,27 0,57 0,16 

Skupaj 
 

123 0,13 0,51 0,36 0,23 0,54 0,23 

 

 

Posebnost tega eksperimenta je zasnova igre in računalniškega vmesnika, ki je vsakemu 

igralcu omogočila, da svojo strategijo izpelje do konca, ne glede na igro nasprotnika. Če, 

na primer, prvi igralec že v prvem krogu igre sprejme ponudbo (in igro s tem dejansko 

konča), drugi igralec kljub temu lahko igra naprej, v skladu s svojo strategijo. Z rezultatom 

in odločitvami nasprotnika je seznanjen šele po koncu vsake igre, zato prilagojen 

postopek igre ne vpliva na odločitve igralcev v naslednjih igrah, rezultat tekoče igre pa je 
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določen s prvo sprejeto ponudbo (ali pa se konča v petem vozlišču, če igralca zavrneta vse 

ponudbe). Prilagojen postopek tako ne spremeni igre, kljub temu pa omogoči, da je 

zbranih več podatkov o odločitvah igralcev. Relativne frekvence v tabeli 3 tako 

predstavljajo prave frekvence strategij igralcev, ne le ocene na podlagi rezultatov igre, ki 

so običajno uporabljene v podobnih študijah. Ker strategija VV prvega igralca direktno 

določi rezultat igre (konec v prvem vozlišču), se relativne frekvence strategije VV prvega 

igralca v tabeli 3 popolnoma ujemajo z relativnimi frekvencami v stolpcu    (relativna 

frekvenca iger, ki se konča v prvem vozlišču) v tabeli 2.  

 

4 UČENJE V STONOGI 
 

V četrtem poglavju preizkušam domnevo, da se igralci učijo iz napak v prejšnjih igrah, ki 

temeljijo na razliki med dobitki, ki jih igralci pričakujejo z igranjem izbrane strategije, in 

dejanskimi dobitki, ki jih prejmejo. Večja kot je razlika med pričakovanim in dejanskim 

dobitkom v prejšnji igri, manj verjetno je, v povprečju, da igralci zavrnejo ponujeno vsoto 

denarja v naslednji igri. V ta namen je ocenjen regresijski model s konstantnimi efekti; 

 

                    ,

  

(1) 

   

kjer je    konstanta igralca i,    pa je skupni regresijski koeficient.        je napaka igralca 

i v prejšnji igri (razlika med dobitkom, ki ga igralec pričakuje na podlagi lastne strategije, in 

dejanskim dobitkom v igri).      je število zavrnjenih ponudb igralca i v trenutni igri in     

je napaka. Rezutat ocenjenega regresijskega modela v program Stata je prikazan v tabeli 

4.  
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  Tabela 4. Ocenjen model s konstantnimi učinki 

 
Fixed-effects (within) regression               Number of obs      =       208 

Group variable: subject                         Number of groups   =        38 

 

R-sq:  within  = 0.0408                         Obs per group: min =         4 

       between = 0.1503                                        avg =       5.5 

       overall = 0.0039                                        max =         6 

 

                                                F(1,169)           =      7.19 

corr(u_i, Xb)  = -0.2026                        Prob > F           =    0.0081 

 

------------------------------------------------------------------------------ 

        pass |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

  error_lag2 |  -.0623079   .0232399    -2.68   0.008    -.1081859     -.01643 

       _cons |   1.181543   .0544271    21.71   0.000     1.074098    1.288987 

-------------+---------------------------------------------------------------- 

     sigma_u |  .40952337 

     sigma_e |  .61704803 

         rho |  .30578365   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

F test that all u_i=0:     F(37, 169) =     2.31             Prob > F = 0.0002 

 

Na podlagi vzorčnih podatkov ocenjeni regresijski koeficient je enak -0,0623, kar pomeni, 

da se v povprečju število zavrnjenih ponudb v igri zmanjša za 0,0623, če se napaka v 

prejšnji igri poveča za 1€. Na podlagi vzorčnih podatkov zavrnemo ničelno domnevo, da je 

regresijski koeficient enak 0, pri stopnji značilnosti P=0,008. V povprečju so igralci zavrnili 

1,1815 ponudb na igro (prvi igralec v povprečju 1,3043 ponudbe na igro in drugi igralec v 

povprečju 1,0647 ponudbe na igro). Negativno korelacijo med napakami v prejšnjih igrah 

(ki temeljijo na razliki med dobitki, ki jih igralci pričakujejo z igranjem izbrane strategije, in 

dejanskimi dobitki, ki jih prejmejo) in številom zavrnjenih ponudb, sta potrdila tudi model 

z mešanimi učinki in ordinalni logistični model. 

 

5 ODNOSI DO TVEGANJA 
 

Tabela 5 prikazuje relativne frekvence sprejetja stave pri posameznih dobitkih. Takoj je 

razvidno, da relativna frekvenca monotono pada z naraščanjem dobitka, kar pomeni, da 

odnosi igralcev do tveganja niso konstantni.  
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Tabela 5.  Pogojna relativna frekvenca sprejetja stave 

 
Dobitek (stava) 6,40 € 3,20 € 1,60 € 0,80 € 0,40 € 0,20 € 0,10 € 

Število sprejetih stav 1 4 17 28 42 20 14 
Število doseženih dobitkov 11 22 58 49 63 27 16 

Relativna frekvenca 0,09091 0,18182 0,2931 0,57143 0,66667 0,74074 0,875 
 

 

Rezultati so skladni z ugotovitvami podobnih eksperimentov (Holt & Laury, 2002; 

Kachelmeier & Shehata, 1992; Binswanger, 1981). Slika 6 prikazuje razsevni grafikon in 

ocenjeno eksponentno regresijsko funkcijo. 

  

Slika 6. Delež sprejetih stav pri posameznih dobitkih 

 

 

          ̂
   ̂ ̂                               (2) 

 

Na podlagi vzorčnih podatkov lahko trdim, da se relativna frekvenca sprejetja stave v 

povprečju zmanjša za 30%, če se dobitek poveča za 1 €. 

 

 



24 
 

ZAKLJUČEK 
 

Rezultati eksperimenta so potrdili, da se vedenje igralcev v veliki meri razlikuje od 

rezultatov, ki temeljijo na analizi teorije iger. Poleg tega empirični rezultati ne kažejo na 

kakršnokoli težnjo k ravnovesju, ki bi lahko upravičila uporabnost teoretičnih napovedi.  

Ocenjeni modeli konstantnih  učinkov, mešanih učinkov in ordinalni logistični model 

potrjujejo močno pozitivno korelacijo med napakami igralcev v prejšnji igri (ki temeljijo na 

razliki med dobitki, ki jih igralci pričakujejo z igranjem izbrane strategije, in dejanskimi 

dobitki, ki jih prejmejo) in hitrejšim sprejemanjem ponudb v tekoči igri.  

 

Kljub relativno nizkim denarnim zneskom (in njihovemu ozkemu razponu), je iz podatkov 

jasno razvidno, da odnosi do tveganja posameznih igralcev niso konstantni, temveč med 

višino dobitka in relativno frekvenco sprejetja stave obstaja negative eksponentna 

odvisnost. Podati kažejo na to, da igralci, ki so bolj nagnjeni k tveganju, v povprečju tudi 

bolj pogosto zavrnejo ponujeno vsoto denarja. 


