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INTRODUCTION 

Volatility of asset returns plays a central role in financial markets. In one of the first attempts 

to define it more than a hundred years ago, Louis Bachelier (1900) called it the ‘coefficient 

of instability or nervousness’. Much research has since been devoted to understanding the 

characteristics of this quantity, which is closely related to the notions of risk and uncertainty. 

In fact, volatility research has been one of the most active, prominent, and successful areas 

of research in financial econometrics in the last couple of decades. 

The fluctuations in prices and returns are of great importance also for practitioners, since 

volatility is a key element of risk and portfolio management, option pricing and economic 

policy. Müller et al. (1995) argued that the state of the market is often best described by 

looking precisely at its variation. Therefore, having a good understanding of volatility 

behaviour is important for both researchers and practitioners. 

One of the first discoveries about volatility dates back to 1960’s, when Mandelbrot (1963) 

observed that large changes in the markets tend to be followed by large changes and vice 

versa. Later the term volatility clustering was coined to describe this phenomenon, which 

lies at the core of many models. Although the concept of volatility is rather intuitive, its 

statistical analysis is far from trivial due to its unobservable or latent nature. 

Recently, the availability of high-frequency data has created new opportunities for research. 

Nonparametric realized measures of volatility, such as realized variance, constructed from 

intraday returns have been proposed as a consistent measure of the true volatility, which is 

unobservable. One of the properties of realized variance is long memory, which is usually 

defined in terms of a slow, hyperbolically decaying autocorrelation function.  

The most commonly used models for long memory processes are fractionally integrated 

models. The field of long memory began with Hurst, it was further developed by Mandelbrot, 

but prospered only after Granger and Joyeux (1980) and Hosking (1981) introduced the 

ARFIMA model. This model is simply the extension of an ARIMA model, which is used for 

non-stationary or integrated series. While ARIMA allows only for integer values of the 

differencing parameter, which represents the order of integration, in an ARFIMA model the 

differencing parameter can take any fractional value.  

Another interesting feature, documented by Granger (1980), is that by accumulating simple 

processes this aggregated series may display long-range dependence. LeBaron (2001) shows 

that a combination of just three AR(1) processes can simulate long memory, which cannot 

be empirically distinguished from a true long memory process.  

These results have encouraged the development of models based on an additive process with 

heterogeneous components, for example the HAR model (Corsi, 2009). As an additive model 

it is able to replicate long memory behaviour, represented by the slow, hyperbolic decay of 

the autocorrelation function, although it is not formally a long memory model. Because its 

estimation is rather simple compared to the ARFIMA model, HAR is widely used in practice. 
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The essence of forecasting is quantification of the mapping from the past and present into 

the future. Better estimates of the present state thus translate into superior forecasts of the 

future. Realized volatility excels in this aspect: by exploiting valuable intraday information 

it provides a relatively precise and quickly-adapting estimate of current volatility (Andersen, 

Bollerslev, Diebold & Labys, 2003). 

The purpose of this master’s thesis is to evaluate, which of the two models produces more 

accurate forecasts of the realized variance. Based on the predictive accuracy and the ease of 

model estimation and forecasting process we hope to identify the model, which would be 

recommended for risk management and asset allocation.  

We aim to do so by first generating the realized variance from high-frequency prices. To 

estimate the HAR model a simple ordinary least squares method will be applied, whereas 

the ARFIMA models will be estimated by maximum likelihood estimation. After verifying 

that the estimated parameters are statistically significant, we shall proceed with forecasting. 

We will compare forecasting performance based on the forecasting horizon, different market 

conditions and different return sampling frequencies. A common measure of the model error 

will be calculated for each forecasting exercise. Finally, to confirm if one model significantly 

outperforms the other a statistical test will be used. 

Based on recent empirical literature on the topic, our hypotheses are that the HAR model is 

less sensitive to changes in market conditions and changes in forecasting horizon than the 

ARFIMA model. This means that HAR’s predictive accuracy will drop less for medium- 

and long-horizon forecasts and it will not vary a lot between different market regimes. 

Additionally, we hypothesise that the HAR model performs better at lower sampling 

frequencies, whereas ARFIMA outperforms HAR at the highest sampling frequencies. 

The thesis is structured in the following way. First, we provide a short review of literature 

on volatility modelling and forecasting, with particular emphasis on empirical research of 

realized variance. In the second chapter we present the theoretical framework, which is 

essential to understand the principles of the two models, which are presented in the third 

section. We then describe the data used in the empirical part of the research and the 

methodology for obtaining forecasts. In section five we present the results of our empirical 

work, while the sixth section includes some of the limitations of our study and 

recommendations for further research. Finally, the seventh section concludes this thesis. 

1 LITERATURE REVIEW 

The concept of realized variance (RV) is often traced back to Merton (1980), who was the 

first to note that variation over a period of time can be estimated fairly accurately by 

summing up the squares of intra-day returns if the returns are sampled at sufficiently high 

frequencies. The first detailed study on the properties of RV came twenty years later, when 

Andersen, Bollerslev, Diebold and Labys (2001) showed that returns standardised by a sum 

of squared intra-day returns (realized variance) and the logarithmic transformation of RV 
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(denoted 𝑙𝑛𝑅𝑉) are approximately Gaussian distributed, and that realized volatilities appear 

to be fractionally integrated.  

The same authors published a research paper, which set up the foundations for modelling 

and forecasting realized variance by providing a framework for the use of high-frequency 

data in measuring and modelling RV and its distribution. This is the first study, which uses 

fractionally integrated ARMA to model the realized variance. The authors further showed 

that under the assumption of no microstructure noise, realized variance is a consistent 

estimator of quadratic variance, which measures the realized sample-path variation of 

squared returns. It is generated solely by return innovations and represents a unique ex-post 

realized volatility measure. However, markets are not frictionless, and thus, quadratic 

variance cannot really be observed (Andersen et al., 2003). 

Because this true volatility is latent the choice of volatility measure used for modelling and 

forecasting is important. Hansen and Lunde (2006a) analysed stock returns and compared 

eight volatility models with different proxies for unobserved variance. Their results show 

that realized variance is the preferred measure for comparing various volatility models. 

Patton (2011) also compared various proxies for volatility and concluded that realized 

variance leads to the least distorted tests and rankings. 

The important issue with realized measures, which exploit high-frequency data is the 

presence of microstructure noise. Its effects on volatility estimation in high-frequency 

environments were addressed a couple of years earlier by Zhou (1996). He showed that there 

is strong negative autocorrelation in tick returns due to the microstructure noise and 

suggested appropriate adjustments should be made when estimating and forecasting realized 

variance.  

A formal analysis of how market microstructure noise obstructs the use of the limit theory 

(the convergence of realized variance to quadratic variance) was conducted by Barndorff-

Nielsen and Shephard (2002). They refuted the idea that integrated (true) variation can be 

consistently measured by realized variance and found that the measurement error can be 

quite large. 

Some solutions to construct a measure, which will be optimal in terms of the trade-off 

between information and noise, were proposed by Zhang, Mykland and Aït-Sahalia (2005) 

and Hansen and Lunde (2006b). A simple solution is to sample over a slightly longer interval 

and not use all the tick data (most studies use realized variance constructed from 5-minute 

returns). More sophisticated methods include subsampling, using kernel-based estimators or 

pre-filtering intraday returns  (McAleer & Medeiros, 2008). 

When analysing markets, which are not open 24 hours per day (most of them, except foreign 

exchange markets), there is another important issue to address – the overnight return1. The 

simplest approach one can take is to simply ignore the overnight return. Hansen and Lunde 

 
1 As a result of after-hours or pre-market trading.  
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(2006b) claim that by doing so we do not estimate the true volatility. However, most studies 

do exactly that. Still, some alternative approaches have been proposed, such as different 

weighting schemes for overnight and intraday returns. Ahoniemi and Lanne (2013) find that 

usually a combination of squared overnight return and squared intra-day returns is the most 

accurate measure of realized volatility, but that in some cases considering only intra-day 

information is more accurate.  

Financial asset prices and returns share some statistical properties, which persist over many 

markets and asset classes. They are often referred to as stylised facts. These include absence 

of autocorrelation in returns but dependence in absolute and squared returns, return 

distribution with heavy tails, leverage effect and gain-loss asymmetry, among others. 

Some of the most popular volatility models such as the generalised autoregressive 

conditional heteroskedasticity (GARCH) or stochastic volatility (SV) models cannot 

replicate all the stylised facts described above (Breidt, Crato & De Lima, 1998; Nelson, 

1990). Especially the ‘first generation’ of SV models like the Cox-Ingersoll-Ross (CIR) or 

Constant Elasticity of Variance (CEV) models were rejected in practice (Andersen & Lund, 

1997). 

But correctly identifying return dynamics is crucial for accurate forecasting, so researchers 

have turned to the analysis of high-frequency data and realized variance as a measure that 

can capture true volatility. Realized variance exhibits properties of a fractionally integrated 

process, and therefore much research has shifted towards long-memory models. 

Traditional long-memory models are fractionally integrated GARCH and autoregressive 

fractionally integrated moving average (ARFIMA), which was introduced by Granger and 

Joyeaux (1980) and Hosking (1981). Some of the more prominent studies advocating the use 

of long-memory models for realized variance are Areal and Taylor (2002), Andersen et al. 

(2003), Koopman, Jungbacker & Hol (2005) and Martens, van Dijk & de Pooter (2009). 

Of course, there are alternative ways to accommodate for the long-memory property. One of 

these is an additive cascade model by Corsi (2009) named heterogeneous autoregressive 

(HAR) model. It builds on ideas by Granger (1980) that a combination of short-memory 

processes can generate long-memory features, but it is remarkable that this can be achieved 

by summation of only three different AR(1) processes as shown by LeBaron (2001). The 

HAR model is able to reproduce the hyperbolic decay of autocorrelations, while remaining 

a simple model to estimate in contrast to fractionally integrated models.   

There have been numerous extensions of both ARFIMA and HAR models in the recent 

years. In a multivariate setting, Chiriac and Voev (2011) used VARFIMA model for RV, 

while Čech and Barunik (2017) introduced the GHAR (generalized HAR) model. Paye 

(2012) and Christiansen, Schmeling and Schrimpf (2012) extended the HAR model by 

including exogenous variables. Their results suggest that such variables have limited ability 

to improve forecasts. Especially macroeconomic variables have not been found to improve 
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results, while some financial indicator proxies for credit risks and illiquidity are slightly 

more informative about future volatility. 

Other models for realized measures that are worth mentioning are the Multiplicative Errors 

Model (MEM) by Engle and Gallo (2006), HEAVY model by Shephard and Sheppard 

(2010), Realized GARCH by Hansen, Huang and Shek (2012) and the MIDAS model by 

Bai, Ghysels and Wright (2013).  

Since so many models were developed, the researchers quickly started comparing their 

performance. Pong et al. (2004) were the first to compare GARCH forecasts on daily returns, 

ARMA and ARFIMA models for intraday returns and implied volatilities from option prices. 

Their results depend importantly on the length of the forecasting horizon. For daily and 

weekly forecasts, the ARFIMA and ARMA models are superior, whereas for longer horizons 

(monthly and quarterly) implied volatilities are the most accurate forecasts. 

According to Martens et al. (2004) ARFIMA models outperform models from the ARCH 

class, the Riskmetrics’ exponentially weighted moving average (EWMA) model and 

stochastic volatility (SV) models and can compete with implied volatility forecasts. 

Koopman et al. (2005) came to the same conclusion by comparing unobserved ARMA 

components, SV, GARCH and ARFIMA models. In their study, the ARFIMA-lnRV model 

generated the most accurate forecasts. 

When Corsi (2009) proposed the HAR model, he claimed that it outperforms the existing 

volatility models. He compared its performance to a specification of an ARFIMA model and 

concluded that HAR is more accurate based on some series and comparable with ARFIMA 

in other cases. 

Although a significant body of literature has found that the HAR and ARFIMA models 

outperform other volatility models like GARCH and SV, to our knowledge only two studies 

have explicitly compared the two long memory models. Degiannakis and Floros (2013) 

compared the performance of ARFIMA and HAR based on daily forecasts and found 

ARFIMA to be superior. On the other hand, Izzeldin, Hassan, Pappas & Tsionas (2019) 

argued that HAR forecasts are more stable across different horizons. Their results suggest 

that HAR is less sensitive to variations in market regimes, but ARFIMA is superior if returns 

are sampled at ultra-high frequencies. Their conclusion refutes the idea that one of the two 

models is generally superior. 

2 THEORETICAL FRAMEWORK 

To better understand the econometric models used in the empirical part we briefly present 

the underlying theory in this section. We start by describing some characteristics of financial 

data, we then define the variation processes and conclude with two particular topics, which 

play an important role in realized variance forecasting: market microstructure effects and the 

long memory property. 
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2.1 Stylised facts of financial data 

In financial markets we observe asset prices, but most of the empirical research is focused 

on returns. This allows for normalisation, that is, we can compare the values across assets 

regardless of the starting price level. Additionally, prices are usually non-stationary, while 

the returns are stationary (Jondeau, Poon & Rockinger, 2007). It is standard practice to work 

with continuously compounded or log returns 𝑟𝑡, which have the advantage that the n-period 

return is just the sum of the corresponding one-period returns: 

 𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1) = 𝑝𝑡 − 𝑝𝑡−1 (1) 

   

 𝑟𝑡,𝑛 = ∑ 𝑟𝑡−𝑘

𝑛−1

𝑘=0

= 𝑝𝑡 − 𝑝𝑡−𝑛 (2) 

 

Usually, simple (arithmetic) returns and prices are written in capital letters, while log prices 

and returns are denoted in small letters. We shall follow this convention throughout this 

thesis.  

The first important common property of financial data or stylised fact is high kurtosis in 

asset return distributions. The unconditional return distributions exhibit what are generally 

known as heavy tails. Even after correcting returns for volatility clustering, the conditional 

distribution still exhibits heavy tails although to a lesser extent than the unconditional one. 

However, by increasing the time horizon over which the returns are calculated, the 

distribution becomes more and more Gaussian (Cont, 2001).  

This non-Gaussian distribution of financial returns has been known for more than 50 years. 

Mandelbrot (1963) and Fama (1965) have already shown that the return distributions have a 

higher kurtosis than a normal distribution and are negatively skewed (more mass is in the 

left tail of the distribution than in the right one). These two properties have important 

implications for risk and portfolio management. The first one implies more extreme values 

or events than would be expected if returns were normally distributed, while the second 

property implies that there will be more extreme negative shocks than positive ones (Jondeau 

et al., 2007). 

Along with the distributional properties it is in our interest to look also at the dependence 

properties of returns. The first widely observed property is the absence of linear 

autocorrelation in liquid markets (Fama, 1970). This is due to the fact that if there was 

significant autocorrelation in the markets, it would be easy to implement a trading strategy 

with positive expected returns. Such strategies called statistical arbitrage reduce the 

autocorrelation (Cont, 2001). In high-frequency return series, however, negative 

autocorrelation is observed between transaction prices. This is due to the so-called bid-ask 

bounce, where the transactions are carried out close to the bid or ask price and tend to bounce 

between these two quotes (Campbel, Lo & MacKinlay, 1997). 
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Nevertheless, the independence of returns does not imply the independence of the 

increments. Even simple nonlinear functions of returns like absolute values or squares of 

returns exhibit noteworthy positive autocorrelation or persistence (Taylor, 1986; Ding, 

Granger & Engle, 1993). This phenomenon, known as volatility clustering, has been 

documented already in the middle of the last century: “large changes tend to be followed by 

large changes - of either sign - and small changes tend to be followed by small changes…” 

(Mandelbrot, 1963, 418). 

These observations of statistical properties lead to a decomposition of the return into a 

product of a white noise, uncorrelated in time, 𝜀𝑡, and a conditional volatility factor 𝜎𝑡,ℎ. 

 𝑟𝑡,ℎ = 𝜎𝑡,ℎ𝜀𝑡  (3) 

 

In this decomposition the volatility component is latent, which means it is not directly 

observable, whereas the returns are observable. Consequently, volatility depends on the 

model, while correlations of absolute returns can be computed from data (Cont, 2001). 

Finally, other stylised facts related to volatility are the correlation of trading volume and 

volatility and the asymmetry in volatility propagation. Volatility measured over longer time 

scales is better at predicting volatility measured at short time scales (Cont, 2001). This last 

property is an important motivation for the heterogeneous autoregressive model, which will 

be used as one of the forecasting models in this thesis. 

2.2 Definition of variation processes 

We must introduce and define some concepts of volatility, which will be useful for the 

discussion of the theory of realized measures. These concepts are quadratic, notional and 

integrated variance.  

To measure return volatility, we must be able to identify a component of the price increment, 

which does not describe an expected price movement, but rather its innovation. In a discrete-

time framework, this can be achieved through an asset pricing model. In a continuous-time 

setting, because of the no-arbitrage condition, the return innovation is one order of 

magnitude larger than the average return (Andersen et al., 2010). 

Let us first define a univariate log price process 𝑝(𝑡) defined on (Ω, ℱ, 𝑃), that evolves in 

continuous time over [0, 𝑇] as 

 𝑑𝑝(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡), 𝑡 ≥ 0  (5) 

 

where 𝑑𝑝(𝑡) is the change in the log price2, 𝜇(𝑡) is the drift term with continuous and locally 

bounded volatility, 𝜎(𝑡)is a strictly positive volatility process (instantaneous volatility) and 

𝑊(𝑡) is Brownian motion (Andersen et al., 2010). 

 
2 We use round brackets to define variables in continuous time and subscripts for variables in discrete time. 
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By recalling equation (2) the return over the [0, 𝑡] interval is then given by 

 𝑟(𝑡) ≡ 𝑟(𝑡, 𝑡) =  𝑝(𝑡) –  𝑝(0), 0 ≤ 𝑡 ≤ 𝑇  (6) 

 

The continuously compounded return over the interval [𝑡 − ℎ, 𝑡] of length ℎ is similarly 

 𝑟(𝑡, ℎ) = 𝑟(𝑡) − 𝑟(𝑡 − ℎ), 0 ≤ ℎ ≤ 𝑡 ≤ 𝑇  (7) 

   

We will keep the notation of the time interval [𝑡 − ℎ, 𝑡], for which 0 ≤ ℎ ≤ 𝑡 ≤ 𝑇 always 

holds. 

Some assumptions about the price and return processes in the frictionless framework imply 

that the log-price process is a special semimartingale (Andersen et al., 2010). A special 

semimartingale can be decomposed uniquely into a sum of a finite variation right-continuous 

process and a local martingale. A stochastic process is a martingale with respect to the 

filtration 𝔽 = (ℱ𝑡)0≤𝑡≤∞ if the expected value of the realisation at time 𝑡 + 1 is equal to the 

realisation at time 𝑡 and does not depend on any previous realisations (Protter, 2004).  

Therefore, by assuming that asset prices are strictly positive and finite, the price and return 

processes are square-integrable, we are operating in the arbitrage-free framework and 

expected returns are finite (Back, 1991) we can decompose the no-arbitrage log price process 

in the following way 

 𝑟(𝑡) ≡ 𝑝(𝑡) − 𝑝(0) = 𝜇(𝑡) + 𝑀(𝑡) (8) 

 

where 𝜇(𝑡) is a predictable, finite-variation process, and 𝑀(𝑡) is a local martingale, which 

can be further decomposed into a continuous sample path 𝑀𝐶(𝑡) and a jump 

martingale 𝑀𝐽(𝑡) (Andersen et al., 2010) 

 𝑀(𝑡) = 𝑀𝐶(𝑡) + 𝑀𝐽(𝑡) (9) 

 

The expected return process 𝜇(𝑡) may also be decomposed into a finite-variance continuous 

and predictable jump component. The continuous part, let us denote it 𝜇𝑐(𝑡), must be locally 

an order of magnitude smaller than the corresponding continuous part of the martingale 

innovation 𝑀𝐶(𝑡). To explain it simply, if this was not the case, a continued long position in 

a risky asset would be diversified due to the law of large numbers and would distort the risk-

return trade-off. The no-arbitrage condition holds only if the innovations are large or if there 

is a nontrivial jump martingale component (Andersen et al., 2010). 

We need continuous price data to observe the 𝑀(𝑡) process and analyse the innovation 

component. Due to the market microstructure effects, which will be explained in the section 

2.4, such data cannot be obtained. The result is that research is oriented towards measuring 

volatility over some time interval rather than the instantaneous volatility at a precise moment 

in time. 
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If we have a special semimartingale 𝑋(𝑡) then the quadratic variance associated with it is 

defined by 

 [𝑋, 𝑋]𝑡 ≡ 𝑋(𝑡)2 − 2 ∫ 𝑋(−𝑠)𝑑𝑋(𝑠)
𝑡

0

, 0 < 𝑡 ≤ 𝑇 (10) 

 

where the stochastic integral of a left-continuous process 𝑋(−𝑠) is well-defined. The 

quadratic variance is an increasing and adapted (non-anticipative) process (Protter, 2004). 

By dividing the time interval [0, 𝑇] into 𝑚 partitions (0 = 𝜏𝑚,1 ≤ 𝜏𝑚,2 … ≤ 𝜏𝑚,𝑚 = 𝑇) then 

for 𝑡 ∈ [0, 𝑇] and 𝑡 ∧ 𝜏 ≡ min (𝑡, 𝜏) 

 lim
𝑚→∞

(∑[𝑋(𝑡 ∧ 𝜏𝑚,𝑗) − 𝑋(𝑡 ∧ 𝜏𝑚,𝑗−1)

𝑗≥1

]2) → [𝑋, 𝑋]𝑡 (11) 

This is a crucial result, because it states that the quadratic variance of the process represents 

the cumulative realised sample-path of a semimartingale over a time interval (Andersen et 

al., 2010). 

If we take into account that the process 𝑋2 − [𝑋, 𝑋] is a local martingale if 𝑋 is a locally 

square integrable martingale, and we recall that the quadratic variation of finite variation 

processes (e.g. the continuous component of expected return) is zero then under the 

assumptions of no predictable jumps we obtain the definition of notional variance. 

Sometimes referred to as actual variance it is equal to the increment in quadratic variance 

 

𝜐2(𝑡, ℎ) ≡ [𝑟, 𝑟]𝑡 − [𝑟, 𝑟]𝑡−ℎ

= [𝑀𝑐 , 𝑀𝑐]𝑡 − [𝑀𝑐 , 𝑀𝑐]𝑡−ℎ + ∑ Δ𝑟2(𝑠)

𝑡−ℎ<𝑠≤𝑡

 (12) 

 

Equation (12) also implies that only the return innovations influence the quadratic variance 

regardless of the conditional mean of the process. Equations (11) and (12) therefore suggest 

that the quadratic variation can be approximated by a sum of the instantaneous squared 

returns without imposing a specific model on the price process (Andersen et al., 2010). 

2.3 Realized variance 

In a continuous framework the continuously compounded return is thus given by 

 𝑟(𝑡, ℎ) = 𝑝(𝑡) − 𝑝(𝑡 − ℎ) =  ∫ 𝜇(𝑠)𝑑𝑠

𝑡

𝑡−ℎ

+ ∫ 𝜎(𝑠)𝑑𝑊(𝑠)

𝑡

𝑡−ℎ

 (13) 

 

An equivalent representation is the stochastic differential equation for the log price process 

given already by equation (5). In this framework the quadratic variance (𝑄𝑉) is equal to the 

integrated variance (𝐼𝑉) 
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 𝑄𝑉𝑡 = [𝑀, 𝑀]𝑡 − [𝑀, 𝑀]𝑡−ℎ = ∫ 𝜎(𝑠)2𝑑𝑠

𝑡

𝑡−ℎ

= 𝐼𝑉𝑡 (14) 

 

It is important to note that in a more general framework, where a diffusion model includes 

jumps, the quadratic and integrated variance do not coincide (Andersen et al., 2010). 

The above results suggest that we can estimate the unobservable integrated variance 

relatively precisely over a period of time by accumulation of squared returns over 

infinitesimal periods of time. This estimator is the realized variance. 

To construct it, daily data is split into 𝑛 subintervals of equal length. The intra-day returns 

are then defined as 𝑟𝑡,𝑖 = 𝑝𝑡,𝑖− 𝑝𝑡,𝑖−1 for 𝑖 = 1, … 𝑛. These returns are first squared and then 

summed to obtain the realized variance 

 𝑅𝑉𝑡 = ∑ 𝑟𝑡,𝑖
2

𝑛

𝑖=1

 (15) 

Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003) demonstrated that the 

realized variance is a consistent estimator of the integrated variance in the absence of 

microstructure noise. They also derived the asymptotic distribution of RV 

 √𝑛(𝑅𝑉𝑡 − 𝐼𝑉𝑡)
𝑑
→ 𝑁(0, 2𝐼𝑄𝑡) (16) 

 

where 𝐼𝑄𝑡 is the integrated quarticity, defined as  

 𝐼𝑄𝑡 =  ∫ 𝜎4(𝑠)𝑑𝑠

𝑡

𝑡−ℎ

 (17) 

 

Figure 1 shows the convergence of realized variance to the integrated variance as 𝑛 → ∞. 

Squared daily returns (second panel, 𝑛 = 1) are a noisy measure of notional variance. It 

retains the general shape, but is far from being a precise measure of true volatility. However, 

by sampling at higher and higher frequencies, the realized variance is becoming more similar 

to the notional variance. In the last panel (𝑛 = 288, 5-minute returns in a 24-hour foreign 

exchange market) the realized variance is almost identical to the integrated variance in the 

first panel (Andersen et al., 2010). 
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Figure 1: Convergence of realized volatility to notional volatility 

 

Source: Andersen et al. (2010). 

The theory of realized variance allows us to directly look at the distribution of the true ex-

post variance. One of its advantages is that it holds across different asset classes (Andersen, 

Bollerslev, Diebold and Ebens,  2001; Andersen, Bollerslev, Diebold and Labys, 2001). 

The simple RV model can be extended to include the jump components. However, in the 

presence of jumps, 𝑅𝑉𝑡 converges in probability to a quantity that includes also a jump 

process and is thus not a consistent estimator of the integrated variance. Therefore, the 

realized variance provides an ex-post measure of the true volatility accounting also for the 

discontinuous jump part (Baillie, Calonacci, Cho & Rho, 2019). 

In the presence of jumps in the price process, the continuous-time jump diffusion becomes 

 𝑑𝑝(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) +  𝜅(𝑡)𝑑𝑞(𝑡) (18) 

 

where 𝑞(𝑡) is a counting process of number of jumps up until time t and 𝜅(𝑡) is the size of 

a jump at time t. As explained above, the realized variance then converges to the true 

variance including the jump part (Barndorff-Nielsen & Shephard, 2004) 

 

 𝑅𝑉𝑡 →  ∫ 𝜎2(𝑠)𝑑𝑠
𝑡

𝑡−1

+ ∑ 𝜅2(𝑠)

𝑡−1<𝑠≤𝑡

 (19) 

 

The two components can be separated by making specific parametric assumptions about the 

diffusion process or by using the realized bipower variation (𝐵𝑉). In presence of jumps, the 
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BV can be used to consistently estimate integrated variance (Barndorff-Nielsen & Shephard, 

2004). However, little predictability comes from jumps (Andersen et al., 2010). 

A serious impediment to the use of the limit theory by Andersen et al. (2003) and Barndorff-

Nielsen and Shephard (2002) is that it is based on the assumption of absence of 

microstructure noise. However, at ultra-high frequencies the true price (the signal) is 

contaminated by the market microstructure noise. 

2.4 Market microstructure noise 

Market microstructure effects can have a significant impact on statistical properties of asset 

prices, especially in the high-frequency framework. The assumption of continuous prices is 

invalid as the prices we observe in the markets are discrete, often quoted to two decimal 

places and analogously increments cannot be infinitesimally small (Harris, 1990, 1991). 

Besides, securities sometimes do not trade at evenly spaced intervals or do not trade at all 

for a period of time, a feature especially pronounced in more illiquid markets (Amihud & 

Mendelson, 1987; Lo & MacKinlay, 1990). Finally, the bid-ask bounce is responsible for 

negative serial correlation in returns (Amihud & Mendelson, 1986; Roll, 1984). 

The bid-ask bounce is presented in Figure 2, where we simulate a random walk as a 

fundamental price process and plot simulated observed prices, which randomly bounce 

between the bid and ask quotes. 

To eliminate the bid-ask bounce effect, Zhou (1996) used only bid prices to calculate tick-

by-tick returns yet he still found negative autocorrelation. To understand why the high 

frequency data is so contaminated by noise he spent several days on a trading floor. He found 

additional sources of noise such as fighting-screen effect, where traders constantly update 

their quotes to remain on the trading screen even if the fundamental price has not changed. 

Another very trivial sources of noise are typographical errors and delayed quotes.  

Figure 2: Simulated fundamental and observed prices 

 

Source: Own work. 
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Hansen and Lunde (2006b) found that the presence of microstructure noise significantly 

complicates volatility estimation and, as a result, estimators like realized variance become 

unreliable. Market microstructure puts under question the validity of theoretical results, 

which are based on the assumption of the absence of market microstructure. Below we 

demonstrate why microstructure noise poses an obstacle to infinitesimal sampling. 

By dividing the day 𝑡 into 𝑛 sub-intervals of length Δ =
1

𝑛
, we have on the 𝑖-th sub-interval 

 𝑝𝑡,𝑖(Δ) =  𝑝𝑡,𝑖
∗ (Δ) + 𝜀𝑡,𝑖(Δ) (20) 

where 𝑝𝑡,𝑖 is the observed price, 𝑝𝑡,𝑖
∗  is the fundamental (unobserved) price and  𝜀𝑡,𝑖 is the 

noise term with variance 𝜎𝜀
2. The intra-day return is then 

 𝑟𝑡,𝑖(Δ) =  𝑟𝑡,𝑖
∗ (Δ) + 𝜐𝑡,𝑖(Δ) (21) 

 

We assume that 𝜀𝑡,𝑖 is independent and identically distributed (i.i.d.) and the variance of 

𝜐𝑡,𝑖 is therefore 𝜎𝜐
2 = 2𝜎𝜀

2. 

The realized variance based on noisy returns is then 

 RVt(Δ) =  ∑ rt,i
2

n

i=1

= ∑(rt,i
∗ + υt,i )

2 = IVt + ut(Δ, συ
2)

n

i=1

 (22) 

 

where the error  𝑢𝑡 that is generated every time we observe realized variance is given by  

 ut(Δ, συ
2) =  ηt(Δ) + 2 ∑ σt,i,Δ

n

i=1

zt,iυt,i,Δ + ∑ υt,i
2 (Δ)

n

i=1

 (23) 

 

where 𝜂𝑡(Δ) is the discretisation error, which depends only on the sampling frequency Δ. In 

the limit this component will go to zero. For a given Δ > 0 we have 

 𝐸[𝑅𝑉𝑡(Δ)] = 𝐸[𝐼𝑉𝑡] + 𝐸[𝑢𝑡(Δ)] (24) 

 

with 𝐸[𝐼𝑉𝑡] = 𝜔 and 𝐸[𝑢𝑡(Δ, 𝜎𝜐
2)] =  

1

Δ
𝜎𝜐

2. If we sampled at infinitesimally small intervals 

(that is Δ → 0) we would get infinite amount of noise (Zhang et al., 2005) 

 lim
Δ→0

𝐸[𝑢𝑡(Δ, 𝜎𝜐
2)] = lim

Δ→0

1

Δ
𝜎𝜐

2 =  ∞ (25) 

 

At ultra-high frequencies, the discreteness of the price grid makes the continuous-time 

models inappropriate. When tick data (data of all the transactions carried out) is not available 

at evenly spaced intervals, some kind of interpolation can be used to calculate returns 

(Andersen & Bollerslev, 1997). However, as shown by Hansen & Lunde (2006b) if realized 

variance is computed based on this linear interpolation method, it converges to 0 as sampling 



14 

 

frequency increases. In other words, “the quadratic variation of a straight line is zero” 

(Hansen & Lunde, 2006b, 130). Even though this only holds in the limit, the previous tick 

method is preferred to linear interpolation when constructing returns. 

Intraday returns can therefore be computed by using different sampling schemes. Most often, 

calendar time sampling is used, where prices used for return construction are equidistant in 

calendar time (n-minute sampling). Returns can be computed between every nth transaction, 

which is referred to as tick time sampling. Lastly, we have business time sampling, where 

sampling times are unobservable because they are defined in relation to integrated variance 

(Hansen & Lunde, 2006b). 

Hansen and Lunde (2006b) claimed that the best way to limit the impact of market 

microstructure noise is to study and understand its properties. In their study they discovered 

some interconnected facts about microstructure noise, namely, that the noise is time-

dependent, correlated with the efficient price, and that its properties have changed 

considerably over time. 

All of the results above suggest that when we generate the realized variance we are met with 

a trade-off between sampling at the highest possible frequency following the theory of 

quadratic variation and sampling at a frequency low enough to get rid of strong market 

microstructure effects. Andersen, Bollerslev, Diebold and Ebens (2001) argued that the 

decision ultimately depends on the market liquidity. The more liquid the market, the smaller 

the sampling interval can be, so that the measurement is not too contaminated by the 

microstructure noise. The most frequent interval used in studies is sampling over 5 minutes, 

which ensures that RV is quite accurately measured (Andersen & Bollerslev, 1998) and not 

too affected by market microstructure.  

Zhang et al. (2005) proposed an alternative to consistently estimate integrated variance. By 

using all data through subsampling, averaging and then correcting for the bias, they 

introduced a consistent estimator, albeit it converged rather slowly. The authors found that 

there is little difference between estimators based on sparse sampling (e.g. 5-minute) and 

estimators based on subsampling and averaging. On the other hand, their two-scale 

estimator, which explicitly accounts for the microstructure bias, produced more accurate 

results. 

Contrarily, Hansen and Lunde (2006b) discovered that the bias due to the microstructure 

noise in realized variance is relatively small and without a dramatic impact. Therefore, since 

the bias is negligible, sampling at higher frequencies is preferred. They argued that the 

market microstructure effects are very complex and cannot be resolved altogether by a 

simple specification for noise. 

In a similar manner Liu, Patton and Sheppard (2015) compared many estimators of the 

integrated variance and concluded that by taking 5-minute RV as a benchmark none of the 

competing measures outperformed it significantly. When using the model confidence set by 
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Hansen et al. (2011) the 1-minute subsampled realized variance and some kernel-based 

methods were superior. Finally, 5- and 15-minute realized variances were found to be the 

most accurate when comparing forecasting performance. 

In this thesis we will follow the law of parsimony and work with 𝑛 −minute RV without 

subsampling, since the subsampling does not recognisably improve forecasts, we are not 

analysing tick-by-tick data and many studies suggest that simpler measures outweigh more 

complicated ones with specific noise specifications. 

2.5 Long memory 

Harold Edwin Hurst studied the hydrological properties of the irregular flows of the river 

Nile in the middle of the 20th Century. He observed long stretches of either high or low 

floods, even if there was no regularity in the occurrence of such episodes. His observations 

motivated many studies, which led to the development of the long memory concept. Hurst’s 

work inspired Mandelbrot (1963), which found that his observations can be described by 

self-similarity, a typical property of fractals. By using this concept, the foundations were laid 

for the development of the long-memory models (Graves, Gramacy, Watkins & Franzke, 

2017). 

Beran (1994) nicely described the qualitative characteristics of a typical long-memory 

process. Such a time series exhibits relatively long periods, where realizations tend to remain 

at low or high values. Furthermore, looking at short time periods, cycles or trends could be 

recognised, which disappear when looking at the series as a whole. Finally, the sample path 

seems stationary. 

There are also quantitative properties, which characterise such long-range persistent 

processes. Firstly, the variance of the sample mean decays to zero at an approximate rate 

of  𝑛−𝛼, where 𝛼 ∈ (0,1), which is a slower rate than 𝑛−1 , where 𝑛 is the sample size. 

Secondly, sample autocorrelations 𝜌ℎ̂ decay to zero at a rate, which is approximately 

proportional to ℎ−𝛼 for 𝛼 ∈ (0,1), where ℎ is the autocorrelation order. Lastly, near the 

origin, the plot of log periodogram 𝐼(𝜆) against the log frequency is scattered around a 

negatively sloped straight line (Beran, 1994). 

By assuming that the series is stationary these latter features can be reformulated. The 

variance of the sample mean is in the limit equal to a constant multiplied by 𝑛−𝛼 for  𝛼 ∈

(0,1). The autocorrelations 𝜌ℎ are asymptotically equal to a constant multiplied by ℎ−𝛼 

for 𝛼 ∈ (0,1). Finally, the spectral density 𝑓(𝜆) has a pole at zero, which equals a constant 

multiplied by 𝜆−𝛽 where 𝛽 ∈ (0,1). If these properties hold, the series is said to be a 

stationary process with slowly decaying correlations or long memory3 (Beran, 1994). 

We introduce the Hurst parameter as a measure of long memory. It is related to the property 

of the rate at which the autocorrelations decrease, and it is given by 𝐻 = 1 −
𝛼

2
. In terms of 

 
3 Other terms for long memory used in the literature are long-range or strong dependence or persistence. 



16 

 

the Hurst exponent, long memory property arises for 𝐻 ∈ (0.5,1). We will later use the 

fractional differencing parameter 𝑑, which is related to the Hurst parameter by the formula 

𝑑 = 𝐻 −
1

2
. By substitution −𝛼 = 2𝑑 − 1, so (Beran, 1994) 

 lim
ℎ→∞

𝜌ℎ = 𝑐(𝑑, 𝜑, 𝜓) ∙ |ℎ|2𝑑−1 (4) 

 

In Figure 3 we present the sample autocorrelation function (ACF) for the logarithm of 

realized variance. It is clear from the figure that autocorrelations decay at a hyperbolic rate, 

typical of a long memory process and do not follow an exponential decay, which is 

characteristic of a short memory process. 

Figure 3: Autocorrelation function for lnRV 

 

Source: Own work. 

3 MODELS 

Volatility of asset returns has often been modelled by GARCH or stochastic volatility 

models, where volatility is treated as a latent variable. The theory of realized variance, which 

is based on a different approach of modelling volatility by constructing a time series allows 

the researchers to treat volatility as an observed variable and thus, standard time-series 

models like ARFIMA can be used for RV modelling (Corsi et al., 2008). 

In this section we present the two models, which we use in the empirical part. The ARFIMA 

model has long been the most accurate model for realized variance but has seen its 

dominance fade with the development of the rather simple HAR model. We derive the 

models, describe the model selection and estimation procedure, and provide the framework 

for forecasting.  
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3.1 Autoregressive Fractionally Integrated Moving Average (ARFIMA) 

model 

By recalling Hurst’s observations about the behaviour of volatile river flows, Granger 

vaguely put forward the idea of ‘fractional’ differencing in one of his papers in 1980. He and 

Hosking, then independently of one another created the foundations for a new class of 

ARFIMA models, which are widely used for long memory processes in economics, finance, 

earth sciences and in other areas. We will use it to model realized variance, as has been done 

by Andersen et al. (2001), Martens et al. (2004), Koopman et al. (2005), Baillie et al. (2019) 

and many others. 

3.1.1 Derivation 

We start with a standard ARMA(𝑝, 𝑞) model, which is one of the most common models used 

in time series analysis 

 yt = φ1yt−1 + ⋯ + φpyt−p + εt + θ1εt−1 + ⋯ + θqεt−q (26) 

 

The value of the process at time t, depends on the past values of the process (up to a certain 

lag) and on the past values of the error terms (with the additional term, which represents the 

error at time t). By introducing lag polynomials we can rewrite the model as 

 Φ(L)(yt − μ) = θ(L)εt (27) 

where μ is the process mean, εt is a white noise process, Φ(L) is the autoregressive lag 

polynomial of the form 

 Φ(L) = 1 − φ1L − φ2L2−. . . −φpLp 
(28) 

and θ(L) is the moving average lag polynomial of the form 

 θ(L) = 1 + θ1L + θ2L2+. . . +θqLq (29) 

𝐿 is the lag operator, which transforms the series so that: 𝐿𝑦𝑡 = 𝑦𝑡−1. Lag operator can be 

applied multiple times to the series. In general, 𝐿𝑘𝑦𝑡 = 𝑦𝑡−𝑘 (Hamilton, 1994). 

ARMA models are used to model stationary series. For non-stationary data, where the series 

must be differenced 𝑑-times4 to obtain a stationary series, the ARIMA model was introduced 

by Box and Jenkins (1970), which is given by the following expression 

 Φ(L)(1 − L)d(yt − μ) = θ(L)εt (30) 

 
4 Here, 𝑑 is an integer. 
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where 𝑑 is an integer and usually equal to 1. The ARIMA can be seen as a generalisation of 

ARMA, since we obtain the latter by setting 𝑑 = 0, which corresponds to the fact that 

stationary series are said to be integrated of order 0 (an 𝐼(0) series). 

By the same logic, fractional ARIMA models are a generalisation of the classic ARIMA 

models by allowing the 𝑑 parameter to be fractional. The fractional difference operator 

(1 − 𝐿)𝑑 is defined by the following binomial expansion 

 (1 − L)d =  ∑ δkLk =  ∑ (
d

k
) (−L)k

∞

k=0

∞

k=0

 (31) 

 

The ARFIMA(𝑝, 𝑑, 𝑞) model for 𝑦𝑡 is then given as 

 Φ(L)(1 − L)d(yt − μ) = θ(L)εt (32) 

 

where 𝑑 takes on fractional values. 

Since the series we model is the realized variance, the ARFIMA-RV model is given by 

 Φ(L)(1 − L)d(𝑅𝑉t − μ) = θ(L)εt (33) 

   

The ARMA part of the model is assumed to be invertible (moving average polynomial 

parameters |𝜃| < 1) and stationary (autoregressive polynomial parameters |𝜑| <

1) (Hamilton, 1994). If the lag polynomials do not share common roots, then the demeaned 

process 𝑦𝑡 − 𝜇𝑡 is said to be integrated of order 𝑑, abbreviated as 𝐼(𝑑). The properties of this 

process depend importantly on the value of the fractional differencing parameter 𝑑 (Doornik 

& Ooms, 2004). 

If 𝑑 > 0 the process exhibits long memory and for 𝑑 < 1 the process is mean reverting. If 

𝑑 = 0 the process is a white noise, with zero correlations. For 𝑑 = 0.5 the process is 

stationary but not invertible. We are especially interested in the following two cases: when 

0 < 𝑑 < 0.5 the autocovariance function decays hyperbolically, whereas if −0.5 < 𝑑 < 0 

the process is over-differenced and the inverse autocorrelations decay hyperbolically. The 

latter is often referred to as intermediate memory or an anti-persistent process (Hosking, 

1981). Both cases where the fractional difference parameter is in absolute terms smaller than 

0.5 are covariance stationary (Doornik & Ooms, 2004).  

The process is covariance-stationary or weakly stationary if its mean and autocovariances 

do not depend on date 𝑡, that is  

 E[Yt] = μ , for all t (34) 

 E[(Yt − μ)(Yt−j − μ)] = γj, for all t and any j (35) 
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Equation (34) indicates that if a process is weakly stationary, the covariance between two 

observations depends only on the distance between them (𝑗) and not on their position in the 

series (𝑡) (Hamilton, 1994). 

3.1.2 Model selection and estimation  

There are two main approaches for estimating an ARFIMA(𝑝, 𝑑, 𝑞) model. The first one is 

by exact maximum likelihood estimation (MLE), as described by Sowell (1992). The 

disadvantage of this method is that the number of autoregressive and moving average 

parameters must be known beforehand. This creates the problem of how to select the 

appropriate number of parameters.  

The alternative is to use a semi-parametric approach. The most popular of these is the 

Geweke and Porter-Hudak (GPH) approach (Geweke & Porter-Hudak, 1983). While all the 

parameters can be estimated simultaneously by MLE, the semi-parametric approach consists 

of two steps: firstly, the fractional difference parameter 𝑑 is estimated and, secondly, all the 

other parameters are estimated later (Reisen, Abraham & Lopes, 2001). 

The GPH estimation of the fractional differencing parameter d is based on a log-periodogram 

regression. The second step of the estimation involves fitting an ARMA model to the data 

filtered according to the estimate of 𝑑 from the first step. However, this estimator has been 

shown to suffer from a considerable finite sample bias and inefficiency if 𝜀𝑡 is persistent 

(Agiakloglou et al., 1993). Nevertheless, the GPH approach is quite widely used in the 

literature. 

Another popular semi-parametric estimator is the Whittle estimator, which is also based on 

a periodogram analysis. Other estimators are the rescaled range estimator, which builds on 

the idea that a ratio of range rescaled by the standard deviation converges in probability to a 

certain constant. Lo (1991) proposed a modified rescaled range estimator, where the standard 

deviation is replaced by a heteroskedasticity and autocorrelation consistent estimator of 

volatility. 

To summarise, these estimation methods estimate the fractional differencing parameter 𝑑 in 

the first step. Then, an ARMA model is fitted to the filtered data. In this second step the 

Bayesian Information Criterion (BIC) is used for lag selection and maximum likelihood 

estimation is used to estimate all the parameters (Bhardwaj & Swanson, 2006). 

In the literature, each study analysing RV selects the number of lags in an ARFIMA model 

arbitrarily: Koopman et al. (2005) claim there is no significant difference between different 

specifications and thus estimate ARFIMA(1, 𝑑, 0), Degiannakis & Floros (2013) estimate 6 

different models with 𝑝 = {0, 1, 2} and 𝑞 = {0, 1}, Corsi, (2009) compares his HAR model 

to an ARFIMA(5, 𝑑, 0), while Izzeldin et al. (2019) set 𝑝 and 𝑞 parameters to 0, to estimate 

only the long-memory effect. 
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In this thesis we decide to follow the methodology of Baillie et al. (2019), which is to ex-

ante select the number of autoregressive (𝑝) and moving average (𝑞) parameters. Then, the 

fractional integration parameters 𝑑, 𝑝 and 𝑞 can be estimated following the maximum 

likelihood method in a more unbiased manner. 

We estimate 𝑝 ∙ 𝑞 models with 𝑝 = {1, … ,9} and 𝑞 = {1, … ,9} and 3 additional models with 

AR or MA, or both set to 0: ARFIMA(0, 𝑑, 0), ARFIMA(0, 𝑑, 1) and ARFIMA(1, 𝑑, 0). 

We therefore estimate 81 + 3 = 84 models. For each model the Bayesian information 

criterion, which is more appropriate for time series model selection, is calculated by the 

following formula 

 BIC =  k ∗ ln(n) − 2LL (36) 

 

where 𝐿𝐿, is the log-likelihood of the function, 𝑘 is the number of parameters estimated and 

𝑛 is the number of observations. The table with BIC values for all the estimated models can 

be found in Appendix 2. 

The model with the lowest BIC is chosen as the best one and used for forecasting. The 

selected model was ARFIMA(1, 𝑑, 1). It is extremely unlikely that the true model would 

have autoregressive and moving average parameters of an order higher than 9 (this can also 

be deducted from increasing BIC values as the number of parameters increases).  

In our case the ARFIMA(1, 𝑑, 1) is therefore 

 (1 − φL)(1 − L)d(lnRVt − μ) = (1 − θL)εt 
(37) 

 

 

As we have seen there are many estimation procedures discussed and compared in Bhardwaj 

and Swanson (2006), Doornik and Ooms (2004) and Reisen et al. (2001) among others. 

However, since we have decided to follow Baillie et al. (2019) by estimating a variety of 

possible ARFIMA specifications by using the maximum likelihood estimation and then 

select the best model using BIC, we will describe only the MLE method in more detail. 

3.1.3 Maximum likelihood estimation 

To generally define the maximum likelihood estimation, we start with random variables 

(𝑌1, 𝑌2, … 𝑌𝑛) with a density function 𝑓(∙ |𝜃), where 𝜃 is a vector of parameters. Let 𝑦𝑖 be the 

observed value of 𝑌𝑖. The likelihood function of 𝜃 given the vector of observed values is 

then 𝐿 =  ∏ 𝑓(𝑦𝑖|𝜃)𝑛
𝑖=1 . We often work with the log-likelihood function, which is simply 

the logarithm of 𝐿, because it is easier to work with sums than products. Finally, the value 

of 𝜃 that maximises the (log) likelihood function is the maximum likelihood estimator 

(Amemiya, 1994). 

To derive the maximum likelihood estimator for ARFIMA we start with an ARMA process. 

The autocovariances for an ARMA process are given as γ(i) = E[(yt − μ)(yt−i − μ)]. The 
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autocorrelations are then ρ(i) = γ(i)/γ(0), where γ(0) is simply the variance of the process. 

The covariance matrix V for the joint distribution of y = (y1, … yT)′ is given by (Doornik & 

Ooms, 2003) 

 

 

(38) 

 

The V matrix has a Toeplitz structure, where each descending left-to-right diagonal is 

constant. Many covariance-stationary processes involve the application of Toeplitz matrices 

(Gray, 2006).  

Under normality 𝑦~𝑁(𝜇, 𝑉). The log-likelihood for the ARFIMA(𝑝, 𝑑, 𝑞) model is then  

 

logL(d, φ, θ, β, σε
2)

= −
1

2
[T ∙ log(2π) + log (det(V)) + (y − Xβ)′V−1(y − Xβ)] 

(39) 

 

This log-likelihood function can be maximised with respect to parameters 

𝑑, 𝜑, 𝜃, 𝛽, and σε
2 by numerical optimization. The maximum likelihood estimates are those 

parameter values, which maximise the function. The key issue with function evaluation is 

the computation of the autocovariance matrix (Doornik & Ooms, 2003). 

Assuming that roots of the AR polynomial are distinct, the autocovariance function for an 

ARFIMA(𝑝, 𝑑, 𝑞) model is given by 

 γi = σ2 ∑ ∑ ψ(j)ξkC(d, p + j − i, ρk)

p

k=1

q

j=−q

 (40) 

where 

 ψ(j) =  ∑ θl

min(q,q+j)

l=max(0,j)

θl−j, (41) 

 ξk =  [ρk ∏(1 − ρiρk) ∏ ρk − ρm

m≠k

p

i=1

]

−1

 (42) 

and 

 C(d, i, ρ) =  
γi

∗

σ2
[ρ2pβ(i) + β(−i) − 1] (43) 

 

where β(i) = F(d + i, 1,1 − d + i, ρ) and F(a, b, c, x) is a Gaussian hypergeometric function  
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F(a, b, c, x) = ∑
(a)n(b)n

(c)n

∞
n=0

xn

n!
, where (z)n =

{
1

z(z + 1)(z + n − 1)
, n = 0
, n > 0

 
(44) 

 

(Palma, 2007), and γi
∗ is the autocovariance of an ARFIMA(0, d, 0) process given by  

 
γi

∗ = σ2
Γ(1 − 2d)

Γ(1 − d)Γ(d)

Γ(i + d)

Γ(1 + i − d)
 

 

(45) 

where Γ(·) is a gamma function, which is defined for all complex numbers, except negative 

integers, by Γ(x) =  lim
k→∞

k!kx−1

(x)k
, where  (x)k is a shifted factorial as defined in equation (44) 

(Andrews, Askey & Roy, 1999; Doornik & Ooms, 2003). 

To compute the determinant and the inverse of the covariance matrix the Durbin-Levinson 

algorithm is often used, although Cholesky decomposition can also be applied (Doornik & 

Ooms, 2003; Palma, 2007). 

3.2 Heterogeneous Autoregressive (HAR) model 

The heterogeneous autoregressive (HAR) model was developed as an alternative to 

fractionally integrated models for modelling realized variance. The advantage of the HAR 

model is that it can be estimated by a simple ordinary least squares method. Moreover, HAR 

is able to generate long memory behaviour displayed by realized measures using very few 

parameters (Christoffersen, 2012).  

3.2.1 Motivation 

The motivation behind the HAR model is the heterogeneous market hypothesis (HMH) by 

Müller et al., (1995), first presented already in 1993, which takes into account the 

heterogeneity across traders.  

The heterogeneous market hypothesis is based on fractal theory, so a time series is analysed 

on different scales and with different levels of resolution. It suggests that different agents in 

the market have different time horizons and dealing frequencies and therefore respond 

differently to past events and news arriving to the market. The HMH is validated by the 

success of trading strategies, which account for various market participants with different 

dealing frequencies and risk propensity. In contrast to standard time series analysis dealing 

with regularly spaced observations, in this context intrinsic time is used (Müller et al., 1995). 

Fractals display similar patterns at many different scales. This property is called self-

similarity and has been observed in many phenomena. The heterogeneous markets 

hypothesis suggests that the market itself is fractal, since observing prices over one day, one 

week or over one year shows a similar pattern (Figure 4). 
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Figure 4: Self-similarity of the price process 

 

Source: Own work. 

Another crucial empirical finding by Müller et al. (1995), which characterises the HMH is  

that precisely these heterogeneous market agents generate volatility. If the market was 

homogeneous, the speed of convergence of the price to its true value would be directly 

proportional to the number of agents in the market. Volatility and market presence would be 

negatively correlated. However, empirically the opposite thing is observed. The two 

measures are positively correlated, which suggests that the markets are indeed 

heterogeneous. Due to many different participants, each with its own target price and 

carrying out transactions in different market situations, the volatility is higher. 

Another theory based on the idea that the volatility process can be decomposed into multiple 

components has been developed by Andersen and Bollerslev (1997). The Mixture of 

Distribution Hypothesis focuses on the heterogeneous nature of information arrivals. 

Hence, the heterogeneity in the financial markets can arise from differences in agents’ 

income or risk profiles, institutional constraints, geographical locations or different time 

horizons. Corsi (2009) based the HAR model precisely on the heterogeneity of temporal 

horizons. 

There are many types of financial market participants with different aims in the market and 

therefore, with different trading frequencies and information processing. At one end of the 

spectrum we have the daily traders: market makers, dealers and active speculators. Their 

trading horizon is usually only a couple of minutes or at most some hours. On the opposite 

side we have institutional investors like funds or insurance companies, which rebalance their 

portfolios for possibly larger amounts but much less frequently as their trading horizon can 
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span one or even more months. These participants can be roughly divided into three groups: 

short-horizon (1 day), medium-horizon (1 week) and long-horizon (1 month) (Corsi, 2009). 

The motivation for the model is that these groups of market participants “perceive, react to, 

and cause different types of volatility components” (Corsi, 2009, p.178). This type of 

categorization has been quite neglected in econometric modelling although it has a 

compelling economic interpretation and can be deduced by simply observing the market. 

Another important foundation for the model is the asymmetric propagation of volatility. 

Some studies (Müller, 1997; Arneodo et al., 1998; Lynch & Zumbach, 2003, Gençay & 

Selçuk, 2004), have explored the interplay between these different volatility components and 

the researchers came to the conclusion that the influence of long-horizon volatility has a 

much stronger influence on short-horizon volatility than vice-versa. The economic 

interpretation of this volatility behaviour is that long-run volatility is important for daily 

traders as a guidance of the future trends and risks. Contrarily, daily volatility does not 

influence the long-term trading strategies of institutional investors to a large extent (Corsi, 

2009). 

3.2.2 Derivation and estimation 

Corsi (2009) proposed a simple model with three volatility components, which is based on 

the observation that heterogeneity in the market structure leads to a volatility cascade. The 

model tries to replicate the stylised characteristics of financial data. The last step in model 

derivation is the use of realized volatility measures, which make volatility observable. 

To develop the model, Corsi (2009) first defined latent partial volatilities �̃�𝑡
(𝑑), �̃�𝑡

(𝑤) and 

�̃�𝑡
(𝑚), which represent the volatility generated by daily, weekly and monthly traders 

respectively.  

The return process is determined by the daily volatility component, which is the highest-

frequency component in the model. By defining the daily integrated volatility 𝜎𝑡
(𝑑) = �̃�𝑡

(𝑑), 

the return process is 

 𝑟𝑡 = 𝜎𝑡
(𝑑)𝑧𝑡  (46) 

 

where 𝑧𝑡 is a white noise (Corsi, 2009). 

At each level of the cascade the latent partial volatility process is modelled as a function of 

the past realized volatility and the expectation of the longer horizon partial volatilities 

because of the asymmetric propagation. The model for daily partial volatility is therefore  

 �̃�𝑡+1𝑑
(𝑑) = 𝑐(𝑑) + 𝜑(𝑑)𝑅𝑉𝑡

(𝑑) + 𝛾(𝑑)𝐸𝑡[�̃�𝑡+1𝑤
(𝑤)] + �̃�𝑡+1𝑑

(𝑑)
 (47) 

 

where 𝑅𝑉𝑡
(𝑑)

 is the daily ex post realized volatility and �̃�𝑡+1𝑑
(𝑑)

 is the volatility innovation, 

which is serially and cross-sectionally independent with zero mean (Corsi, 2009).  
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Weekly partial volatility process has the following structure 

 �̃�𝑡+1𝑤
(𝑤) = 𝑐(𝑤) + 𝜑(𝑤)𝑅𝑉𝑡

(𝑤) + 𝛾(𝑤)𝐸𝑡[�̃�𝑡+1𝑚
(𝑚)] + �̃�𝑡+1𝑤

(𝑤)
 (48) 

 

Whilst for the longest monthly horizon only the ‘AR(1)’ structure remains 

 �̃�𝑡+1𝑚
(𝑚) = 𝑐(𝑚) + 𝜑(𝑚)𝑅𝑉𝑡

(𝑚) + �̃�𝑡+1𝑚
(𝑚)

 (49) 

 

Since the quantities on the right hand side of the equations are not the lags of latent partial 

volatilities, these model cannot be said to have a proper AR(1) structure. However, as the 

realized volatilities are close proxies for the corresponding partial latent volatilities, the 

structure is very similar to an AR(1) process (Corsi, 2009). 

Each volatility component therefore has a factor, which corresponds to the market’s 

expectation of realized volatility in the next period based on the current level of volatility 

and a second factor, which represents the expectation of the long-term volatility (Corsi, 

2009). We recall that due to the asymmetric propagation of volatility, long-term volatility 

affects the short-term volatility level. 

By substituting recursively the above formulae and using  𝜎𝑡
(𝑑) = �̃�𝑡

(𝑑) the model becomes 

a three-factor volatility model with past realized volatilities over different horizons as factors 

 

 𝜎𝑡+1𝑑
(𝑑) = 𝑐 + 𝛽(𝑑)𝑅𝑉𝑡

(𝑑) + 𝛽𝑤𝑅𝑉𝑡
(𝑤) +   𝛽(𝑚)𝑅𝑉𝑡

(𝑚) + �̃�𝑡+1𝑑
(𝑑)

 (50) 

 

By recalling that 

 𝜎𝑡+1𝑑
(𝑑) = 𝑅𝑉𝑡+1𝑑

(𝑑) + 𝑒𝑡+1𝑑
(𝑑) (51) 

 

and combining equtions (50) and (51) the HAR model is 

 𝑅𝑉𝑡+1𝑑
(𝑑) = 𝑐 + 𝛽(𝑑)𝑅𝑉𝑡

(𝑑) + 𝛽𝑤𝑅𝑉𝑡
(𝑤) +   𝛽(𝑚)𝑅𝑉𝑡

(𝑚) + 𝑒𝑡+1𝑑 (52) 

 

where (Corsi, 2009) 

 𝑒𝑡+1𝑑 = �̃�𝑡+1𝑑
(𝑑) − 𝑒𝑡+1𝑑

(𝑑) (53) 

 

To summarise, the HAR model is based on an additive cascade of partial volatilities from 

high frequencies to low frequencies where each level is similar to an AR(1) process. 

Corsi (2009) developed the model for the square-root of realized variance (realized 

volatility) but suggested that the model can be analogously written for the variance or 

logarithmic variance. Since the natural logarithm of realized variance has the distribution 

that is closely similar to the normal distribution (based on our data we calculate skewness 

equal to 0.7 and kurtosis equal to 3.9) we will forecast using the natural logarithm of realized 

variance (𝑙𝑛𝑅𝑉), which is used in many studies. 
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By replacing realized variance with the natural logarithm of realized variance (𝑙𝑛𝑅𝑉) we 

obtain the HAR-𝑙𝑛𝑅𝑉 model 

 
𝑙𝑛𝑅𝑉𝑡

(𝑑)
= 𝑐 +  𝛽(𝑑)𝑙𝑛𝑅𝑉𝑡−1

(𝑑)
+ 𝛽(𝑤)𝑙𝑛𝑅𝑉𝑡−1

(𝑤) + 𝛽(𝑚)𝑙𝑛𝑅𝑉𝑡−1
(𝑚)

+  𝜀𝑡 
(54) 

 

where weekly and monthly log realized variances are defined as 

 
𝑙𝑛𝑅𝑉𝑡−1

(𝑤)
=  

1

5
∑ 𝑙𝑛𝑅𝑉𝑡−i

(𝑑)
5

𝑖=1
 

 

(55) 

 𝑙𝑛𝑅𝑉𝑡−1
(𝑚) =  

1

22
∑ 𝑙𝑛𝑅𝑉𝑡−i

(𝑑)
22

𝑖=1
 (56) 

 

The HAR model uses realized variance aggregated over a week and a month. To allow for a 

direct comparison between these quantities, which are aggregated over differently long 

horizons, the multi-period variances must be normalised. Weekly RV is therefore just an 

arithmetic average of 5 daily realized variances, while monthly RV is the average of the last 

22 daily realized variances (Corsi, 2009). 

Based on the theory of realized variance, all the terms in equations (52) and (54) are 

considered observable, therefore we can easily estimate all the 𝛽 parameters by the ordinary 

least squares (OLS) method. To account for potential autocorrelation and heteroskedasticity 

in error terms, the Newey-West covariance correction can be applied (Corsi, 2009). 

Following the martingale theory, the optimal forecast for the 𝑡 + 1 period is the expected 

value of the notion at time 𝑡. The one-day ahead forecast is then simply 

 𝑙𝑛𝑅𝑉𝑡+1
(𝑑)̂

= 𝛽0̂ +  𝛽(𝑑)̂𝑙𝑛𝑅𝑉𝑡
(𝑑)

+ 𝛽(𝑤)̂𝑙𝑛𝑅𝑉𝑡
(𝑤) + 𝛽(𝑚)̂𝑙𝑛𝑅𝑉𝑡

(𝑚)
 (57) 

 

Many studies have extended the HAR model in several ways: by assuming various 

distribution for the innovations, by assuming GARCH effects in innovations, Corsi and Renò 

(2012) have added estimated price jumps by using (threshold) bipower variation (BV) and 

added leverage. The leverage effect is a phenomenon studied by Black (1976), Pagan and 

Schwert (1990) and Engle and Ng (1993) among others, who found a negative correlation 

between lagged excess returns and volatility. Excess returns are also defined as news, where 

bad news represent lower excess returns than expected and good news imply higher excess 

returns than expected. The leverage effect therefore implies that a large negative return will 

increase future volatility by more than a positive return of the same magnitude would 

(Martens et al., 2009). 

More recently, Audrino et al. (2018) proposed a flexible HAR with flexible lag structure and 

not the [1,5,22] lag selection, although Craioveanu and Hillebrand (2014) show through 
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heavy computational techniques that other flexible versions do not significantly outperform 

the HAR(1,5,22) model, which is therefore acceptable to use. 

4 DATA AND FORECASTING PROCEDURE 

4.1 Data 

When analysing financial markets, high-frequency (HF) data should be the primary source 

for research. The reason is that many agents in financial markets use high-frequency or even 

tick data when making decisions. Nonetheless, many studies in financial literature are still 

based on daily data. This is because low-frequency data is easier to analyse. The main 

downside when dealing with high-frequency observations is precisely the difficulty of 

gathering, storing and processing HF data (Gençay, Dacorogna, Müller, Pictet & Olsen, 

2001). Datasets with tick or high-frequency prices often include erroneously recorded 

observations, missing data and irregularly spaced data points (Zivot, 2005). 

Our empirical analysis was carried out using the NASDAQ Composite index high-frequency 

prices from January 3, 2006 to May 8, 2020. Data was acquired from FirstRateData. Days 

with late market opening or early market closure (mainly around the Fourth of July, 

Christmas and New Year) were removed following Oomen (2006) as is standard practice 

when cleaning high-frequency data (Zivot, 2005).  

There were altogether 49 days removed following this procedure, which represented less 

than 1.5 percent of the whole dataset. We were left with 3,562 days for further analysis. 

Intra-day price data was not recorded at tick level, but at 1-minute intervals, which 

guaranteed us 390 observations for each full trading day, starting at 9:30 and finishing at 

16:00. Our analysis was therefore based on 1,389,180 data points from 3,562 trading days. 

The most widely used stock index research data is the Standard and Poor’s 500 index (S&P 

500), which includes 500 leading corporations from all the 11 market sectors5. In this thesis 

NASDAQ Composite (COMP) index data is used. Together with the S&P 500 and the Dow 

Jones Industrial Average (DJIA), COMP is among the three most followed stock indices in 

the United States.  

The NASDAQ Composite is an index traded on the New York Stock Exchange (NYSE), 

which included 2718 securities as of June 30, 2020. Unlike the S&P 500, the COMP index 

is much more specialised in certain market sectors. Companies from the information 

technology sector account for almost 50% of the market capitalisation of the index 

(NASDAQ, 2020). COMP is generally more volatile than S&P 500 since it is not as 

diversified. It is also specialised in the technology sector, which is among the most volatile 

 
5 The Global Industry Classification Standard broad sectors are Consumer Discretionary, Consumer Staples, 

Energy, Financials, Health Care, Industrials, Information Technology, Materials, Real Estate, 

Telecommunication Services and Utilities. 
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sectors. To our knowledge no study comparing long-memory models has been based on data 

from this index.  

We constructed realized variance by first computing 1-minute log returns as a difference 

between log prices in time 𝑡 + 1 and 𝑡. The 1-minute log returns were then summed to obtain 

the 2-, 3-, 5- and 10-minute returns following the additive property defined in equation (2). 

To construct the daily n-minute RV we summed the squared n-minute log returns for each 

day. 

Figure 5: 5-min Realized variance

 

Source: Own work. 

A nice property of realized variance is that if we use it to standardise the returns, they will 

be approximately normally distributed. This is because returns standardised by integrated 

volatility are normally distributed and realized variance converges to integrated variance 

(Andersen et al., 2000) 

 
𝑟𝑡

√𝑅𝑉𝑡

~𝑁(0,1) (58) 

 

This can be observed in Figure 6, where the distribution of daily returns on the right is visibly 

leptokurtic (exhibits fat tails), while the standard normal density function fits the 

standardized returns on the left well. 

Figure 6: Distributions of standardized and non-standardized daily returns 

 

Source: Own work. 
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We decide to model and forecast the natural logarithm of RV following many other studies, 

first and foremost Andersen, Bollerslev, Diebold & Ebens (2001). These authors analysed 

the distribution of realized volatility for stock returns and suggested the use of 𝑙𝑛𝑅𝑉 instead 

of 𝑅𝑉 precisely because realized variance is log-normally distributed. 

Figure 7: 5-min lnRV 

 

Source: Own work. 

Based on our data, the distribution of 𝑙𝑛𝑅𝑉𝑡 has kurtosis equal to 3.87 and skewness equal 

to 0.71 (Table 1). The normal distribution has these parameters equal to 3 and 0, respectively. 

In this sense, the distribution of 𝑙𝑛𝑅𝑉 is much more similar to the normal distribution than 

that of 𝑅𝑉𝑡, which has a kurtosis of 187 and skewness over 10.  

Table 1: Summary statistics 

 1-min returns  daily returns 𝑟𝑡 5-min 𝑅𝑉𝑡 5-min 𝑙𝑛𝑅𝑉𝑡 

Mean 2.3385e-07 9.120e-05 9.494e-05 -9.9596 

Std. 

deviation 
4.4857e-04 0.0107 2.2716e-04 1.0299 

Skewness -1.6098 -0.5281 10.8575 0.7054 

Kurtosis 330.46 9.124 187.26 3.8684 

Min -0.060756 -0.0733 2.8757e-06 -12.7592 

Max 0.0344 0.0589 0.0059 -5.1256 

Observations 1,389,180 3,562 3,562 3,562 

Source: Own work. 

In Figure 8 we compare the distribution of demeaned 𝑙𝑛𝑅𝑉 to a standard normal distribution. 

We observe a relatively good fit, although leptokurtosis and positive skewness are visible. 

Indeed, the Jarque – Bera test for normality rejects the hypothesis that 𝑙𝑛𝑅𝑉𝑡 is normally 

distributed (𝐽𝐵 = 407.3; 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.001).  
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Figure 8: Distribution of demeaned lnRV

 

Source: Own work. 

To test the stationary of the series (the mean and the variance of the process are constant 

over time) the Augmented Dickey Fuller (ADF) test is used. The null hypothesis of the ADF 

test is that the series is non-stationary, i.e. there is a unit root. Therefore, by rejecting the null 

hypothesis we could conclude that the series is stationary. 

We cannot reject the null for the 𝑙𝑛𝑅𝑉 series, although the p-value is 0.07, which is close to 

the standard significance level of 0.05. However, Diebold and Rudebusch (1991) show that 

if the true data generating process is fractionally integrated, the tests proposed by Dickey 

and Fuller (1979, 1981) can often lead to the incorrect conclusion about the presence of a 

unit root.  

Similarly, Baillie (1996) argues that the ADF and Phillips-Perron unit root tests distinguish 

rather poorly between the null hypothesis of a unit root (𝐼(1), non-stationary series) and the 

alternative of a fractionally integrated 𝐼(𝑑) series.  

4.2 Forecasting procedure and forecast evaluation 

To evaluate the hypotheses about sensitivity of the two models to changes in forecasting 

horizon, market conditions and sampling frequencies, 10 forecasting exercises are performed 

for each of the models. We first generate daily, weekly, and monthly forecasts for the 5-

minute 𝑙𝑛𝑅𝑉 series, and then we split the series into three subsamples representing different 

market conditions. Finally, we compare daily forecasts based on 5-min 𝑙𝑛𝑅𝑉 to the forecasts 

based on 1-, 2-, 3- and 10-min 𝑙𝑛𝑅𝑉 series. 

We adopt the pseudo out-of-sample (OOS) forecasting method, which involves estimating a 

model on a subsample of data and then forecasting on a reserved sample. In contrast to in-

sample forecasting, the OOS method strictly separates the observations into two parts. A 

smaller portion is reserved for generating forecasts, while the majority of the sample is used 
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for model estimation. This method is called pseudo OOS because reserved observations are 

not genuinely out-of-sample (Stock & Watson, 2020). 

The sample can be split into the estimation and forecasting parts in a variety of proportions, 

although reserving 20 percent of data for forecast evaluation and estimating the model on 

the initial 80 percent of observations is the most common approach (Hyndman & 

Athanasopoulos, 2018).  

We adopt a rolling approach for forecasts, which keeps the estimation window fixed, in 

contrast to the recursive approach, which uses all available data up to time 𝑡 to make a 

forecast for the following period. We therefore use the first 80 percent of observations (𝑅 =

2850) from the full sample (𝑇 =  3562) to estimate model parameters in the first step and 

make a forecast for the 𝑅 + 1 period. By keeping the rolling window size 𝑅 fixed, we re-

estimate the parameters in the second step based on observations from 2 to 𝑅 + 1, while the 

forecast is generated for the 𝑅 + 2 period. This process is repeated 𝑘 -times (𝑘 = 712) so 

that 𝑅 + 𝑘 = 𝑇. 

We adopt a combination of iterated and direct methods for multi-period ahead forecasting, 

so that at every step the forecasts from previous steps are included and the model is re-

estimated. According to Sorjamaa & Lendasse (2006), who proposed this combined method, 

it outperforms iterated or direct approaches. 

Therefore, when forecasting one-week (5 days) or one-month (22 days) ahead the parameters 

were initially estimated using the first R observations and a forecast was generated for the 

𝑅 + 1 period. In the second step the one-period ahead forecast was treated as a data point, 

so the estimation window ranged from 2 to 𝑅 from the initial sample plus the forecast 

obtained in the first step. This is repeated five times for weekly forecast and 22 times for the 

monthly forecast. So, for each 𝑡 + 𝑛 forecast we used realised values only up to time 𝑡, while 

the other (𝑛 − 1) values needed for the forecast at time 𝑡 + 𝑛 were one-period ahead 

forecasts from each iteration. 

At every iteration the forecast 𝑙𝑛𝑅𝑉�̂� is compared to the actual realised value. To evaluate 

forecast precision, the root mean squared error (RMSE) measure was calculated 

 𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑙𝑛𝑅𝑉�̂� − 𝑙𝑛𝑅𝑉𝑡)2

𝑇

𝑡=1
 (59) 

 

RMSE is one of the most widely used error measures beside mean absolute error (MAE). 

The size of the metric depends on the order of magnitude of observations in the series. Since 

we are comparing two models based on the same series, we are only interested in 

determining, which model has a smaller RMSE value. 
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Willmott and Matsuura (2005) suggest that MAE is a more natural measure of the average 

error than RMSE. Since the latter is a measure based on sum of squares, it depends on the 

magnitude of errors, the distribution of squared errors and the sample size. As a result, RMSE 

may be a misleading measure of average error and therefore should not be used to assess 

average model performance according to the authors. 

On the other hand, Chai and Draxler (2014) claim that RMSE is more appropriate when 

errors are normally distributed. Since squared error measures are more dominated by 

outliers, RMSE may actually be preferred to MAE. In our case large deviations in forecast 

errors are particularly undesired. Volatility forecasting is especially important in risk 

management and asset valuation, therefore large deviations of forecasts from realized values 

can cause great distress. By underestimating volatility, the exposure to risk may be larger 

than thought. On the other hand, overestimating volatility may lead to incorrect or 

suboptimal allocation of resources.  

Chai and Draxler (2014) show that if sample size is larger than 100 the RMSE measure can 

very accurately reconstruct the error distribution. They also prove that Willmott and 

Matsuura (2005) wrongly claimed that the RMSE metric does not satisfy the triangle 

inequality, which is required for distance function metrics. Bucci (2017) also suggests that 

measures based on square errors like mean square error (MSE) and RMSE are both robust 

measures if the models are used on the same time series.  

RMSE is especially robust if the errors are normally distributed. If that is not the case, they 

need to be distributed similarly to obtain a credible comparison between different models. 

In Figure 9 we can observe the distribution of errors from all the twenty forecasting 

exercises. The 5- and 10-minute 𝑙𝑛𝑅𝑉 forecast errors are close to being normally distributed 

(the results of the Jarque – Bera tests for the normality of forecast errors are found in 

Appendix 3). 

Figure 9: Distribution of forecasting errors 

 

Source: Own work. 
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All other error distributions are quite leptokurtic (fat tails), while error distributions for long 

horizon forecasts display positive skewness. However, the distributions do not change 

significantly for each forecasting exercise; therefore, the RMSE measure will give us a 

relatively good indication of the superior model. 

We should be careful when comparing the RMSE values for forecasts in different market 

conditions. In that case the series was split into three parts, which are not of the same length. 

RMSE tends to be increasingly larger than the average error as sample size increases so 

RMSE can be compared only for the two models in a certain market condition and not across 

market conditions (for example, pre-crisis to crisis period). 

To assess whether the two models produce forecasts, which differ significantly, the Diebold 

– Mariano (DM) test was implemented. The test is widely used in the relevant literature. The 

DM test is very versatile as it allows for potentially non-Gaussian, nonzero mean, serial or 

cross-sectional correlated forecast errors (Diebold & Mariano, 1995). 

We denote forecast errors for each of our models the same as for the RMSE calculation 

 𝑒𝑡 =  (𝑙𝑛𝑅𝑉�̂� − 𝑙𝑛𝑅𝑉𝑡) (60) 

The null hypothesis of the Diebold-Mariano test states that there is no difference in accuracy 

of competing forecasts. By rejecting the null hypothesis, we can therefore assume that the 

predictive accuracy of the two models differs significantly. By denoting a loss function 𝑔(∙), 

the null hypothesis states 

 𝐻0: 𝐸(𝑔(𝑒𝑖𝑡)) = 𝐸 (𝑔(𝑒𝑗𝑡)) ⟺ 𝐸(𝑑𝑡) = 0,     ∀𝑡.  (61) 

where the loss differential 𝑑𝑡 is defined as 

 𝑑𝑡 ≡ 𝑔(𝑒𝑖𝑡) −  𝑔(𝑒𝑗𝑡)  (62) 

where 𝑖 and 𝑗 represent each of the two models (Diebold & Mariano, 1995).  

Under not very strict conditions the Diebold-Mariano test statistic is asymptotically normally 

distributed  

 𝐷𝑀 = √𝑇
�̅�

√𝜔
 ~ 𝑁(0, 1) (63) 

where the average error difference is calculated as 

 �̅� =  
1

𝑇
∑ 𝑒𝑖𝑡 − 𝑒𝑗𝑡

𝑇

𝑡=1
 (64) 

and 
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 𝜔 = lim
𝑡→∞

𝑣𝑎𝑟(√𝑇 �̅�) (65) 

is the asymptotic variance, which is usually approximated by the sample variance. Since we 

use the sample variance, the test statistic is not exactly standard normally distributed, but it 

is nonetheless standard practice to reject the null hypothesis if the test statistic falls outside 

the (−1.96, 1.96) interval. 

To summarise, for each of the ten forecasting exercises we compute RMSE value for both 

the HAR and ARFIMA model. We then use the Diebold-Mariano test. If we reject the null 

hypothesis, we assume that the models differ in accuracy and we accept the model with the 

lower RMSE value as superior. 

5 EMPIRICAL RESULTS 

In this section we present the estimation and forecast accuracy results. In the first subsection 

we compare the forecasting performance of the two models over daily, weekly, and monthly 

horizons. We then present the impact of different regimes or market conditions on predictive 

accuracy. Finally, we compare the forecasting accuracy based on different sampling schemes 

for realized variance.  

5.1 Long horizons 

We begin by estimating the HAR parameters for the full 5-min 𝑙𝑛𝑅𝑉 sample to check if the 

parameters are in line with expectations and most importantly if they are statistically 

significant. We estimate 4 parameters, the intercept and the three betas, which are related to 

the daily, weekly, and monthly realized variation.  

Using the non-logarithmic HAR-RV model Corsi (2009) obtains the following estimates for 

the S&P 500 index with observations from January 1990 to July 2007  

Table 2: HAR-RV estimates by Corsi (2009) 

 constant 𝛽(𝑑) 𝛽(𝑤) 𝛽(𝑚) 

estimate -0.781 0.372 0.343 0.224 

(t – statistic) (4.065) (9.858) (7.263) (6.467) 

Source: Corsi (2009). 

By assuming that the realized variance aggregated over daily, weekly and monthly horizon 

is a very good approximation of the true volatility generated by these distinct market 

components, we can obtain an estimate of how much each market component contributes to 

the market activity. For a series of stock index prices, Corsi (2009) suggests that the 

contribution of market components decreases for longer horizons. In other words, we expect 

the daily beta to have the highest and the monthly beta to have the lowest value of the three. 

Our estimation results are presented in Table 3. 
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Table 3: HAR-lnRV estimates 

coefficient estimate standard error t – statistic p –value 

constant -0.5916 0.1154 -5.127 3.101 ∙ 10-7 

𝛽(𝑑) 0.4751 0.0237 20.046 8.906 ∙ 10-85 

𝛽(𝑤) 0.3321 0.0332 10.003 2.991 ∙ 10-23 

𝛽(𝑚) 0.1333 0.0253 5.2688 1.455 ∙ 10-7 

Source: Own work. 

The difference between the daily and monthly beta for our sample is larger than the one by 

Corsi (2009), which is not that important since the sample was different. However, the 

pattern is similar, since the daily beta has the highest value, which decreases as time horizon 

lengthens. 

Standard errors are computed using the Newey-West estimator. From the t – statistic and the 

corresponding p – value it is evident that the beta coefficients are highly statistically 

significant. The model fits the data well since the F – statistic of the full model versus the 

model with just the intercept is equal to 3.06 ∙ 103 and the adjusted R-square is equal to 

0.721. 

We then estimate the ARFIMA parameters for the full 5-min 𝑙𝑛𝑅𝑉 sample in Stata with the 

following command: arfima lnrv, ar(1) ma(1). Based on BIC values for the 84 

models (combinations of AR and MA parameters ranging from 1 to 9 and three additional 

models with AR or MA, or both parameters set to 0), the ARFIMA(1, 𝑑, 1) was chosen as 

the best-fitting model (see Appendix 2). The maximum likelihood estimation results are 

presented in Table 4. 

Table 4: ARFIMA(1, 𝑑, 1) MLE results 

coefficient estimate standard error t – statistic p –value 

constant -9.909 1.263 -7.846 5.637 ∙ 10-15 

𝜑1 0.892 0.0454 19.664 8.365 ∙ 10-82 

𝜃1 -0.838 0.0663 -12.637 7.690 ∙ 10-36 

𝑑 0.462 0.0323 14.298 3.922 ∙ 10-45 

𝜎𝜀
2 0.294 0.007 42.199 7.24 ∙ 10-316 

Source: Own work. 

The F – statistic for the ARFIMA model is 3.75 ∙ 103, with p – value zero, so we conclude 

that also the ARFIMA(1, 𝑑, 1) model fits the data well. The log-likelihood value of the 

model, which was used for computing the information criterion, is -2877.605.  
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Once again, all the parameters are highly statistically significant, with p-values essentially 

equal to 0. We therefore generate forecasts using the ARFIMA(1, 𝑑, 1) model and assume 

that the series is fractionally integrated of order 0.462. This degree of fractional integration 

𝑑 is in line with estimates by Andersen et al. (2003). For three distinct realized volatility 

series they estimate the parameter to be equal to 0.39, 0.41 and 0.43. Most existing literature 

estimates the 𝑑 parameter to be between 0.3 and 0.48 (Andersen & Benzoni, 2009). 

After estimating the model parameters for the full sample and confirming that the models 

have a good fit, we implement one-day ahead rolling forecasting as described in subsection 

4.2. The command used for obtaining the vectors of parameters of the rolling estimation in 

Stata is: rolling _b, window(R): arfima lnrv, ar(1) ma(1).The code used to 

generate forecasts in MATLAB for both HAR and ARFIMA models is presented in 

Appendix 4. 

In the figure below we display a segment of realised observations and the corresponding 

daily forecasts generated by the two models. We can observe that the models seem to 

perform quite well and very similarly.  

Figure 10: Observed realizations of 𝑙𝑛𝑅𝑉 and daily forecasts 

 

Source: Own work. 

Finally, weekly and monthly forecasts are generated. In Table 5 we compare the forecasting 

performance of the HAR and ARFIMA models for the different forecasting horizons. For 

one-day ahead forecasts, the ARFIMA model outperforms the HAR model, as the RMSE 

values are 0.6315 and 0.6342 respectively. On the other hand, for weekly and monthly 

horizons the HAR model is more accurate. By applying the Diebold-Mariano test to see if 

the models differ significantly, we observe that HAR significantly outperforms ARFIMA 

only based on the monthly forecasts. 
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Table 5: RMSE values for different horizons and DM test results 

** 5% significance level 

Source: Own work. 

The performance of the two models worsens as the forecasting horizon is extended (Figure 

11). HAR proves to be less sensitive to longer forecasting horizons, as its accuracy drops by 

35.2% for weekly horizons and 77.4% for monthly horizons, while ARFIMA weekly and 

monthly accuracy decreases by 36.3% and 80.6% respectively. 

Figure 11: Relative RMSE loss at longer horizons 

 

Source: Own work. 

These results are in line with Izzeldin et al. (2019), who show that HAR forecasts are 

relatively less sensitive to the lengthening of the forecasting horizon, while the accuracy of 

ARFIMA forecasts worsens at long horizons. This is in contrast to Bhardwaj and Swanson 

(2006), who suggest that ARFIMA models are preferred at multi-step ahead forecasts. 

However, their pool of models does not include HAR and includes mainly various GARCH 

and SV model specifications. Our results for the daily horizon are in line with those by 

Degiannakis and Floros (2013). They find that ARFIMA provides more accurate forecasts 

of 𝑙𝑛𝑅𝑉. However, they do not test for significance although the loss function values are 

very close for both models and may imply insignificant superiority (ARFIMA = 0.2727, 

HAR = 0.2732). Similarly, Hansen et al. (2005) do not find significant evidence that 

ARFIMA would outperform simpler models. 

The existing literature is therefore quite divided on the question of predictive accuracy at 

different horizons. Our results suggest ARFIMA outperforms HAR at daily forecasts, but 

Horizon 
RMSE 

DM test statistic p-value Best performer 
HAR ARFIMA 

Daily (h=1) 0.6342 0.6315 -1.33 0.18 ARFIMA 

Weekly (h=5) 0.8575 0.8608 0.58 0.56 HAR 

Monthly (h=22) 1.1253 1.1402 2.15 0.032 HAR** 
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not significantly, whereas HAR is more accurate on a weekly basis and significantly more 

accurate on a monthly basis. 

The results confirm our hypothesis that the HAR model is less sensitive to the changes in 

forecasting horizon since the drop in predictive accuracy for weekly and monthly horizons 

compared to the daily one is smaller for HAR than ARFIMA. 

5.2 Market conditions 

The behaviour in the markets is cyclical with periods of growth and prosperity, when market 

volatility tends to be lower and periods of downturn, when prices move more frantically. By 

splitting our sample into periods, where market conditions were favourable or not, we can 

assess the performance of the two models in specific states of the market. 

The iterative cumulative sum of squares (ICSS) algorithm could be used to determine the 

data points where the regime changes. It was developed by Inclan and Tiao (1994) to detect 

changes in the variance of the series. However, it was designed for normal and independent 

processes. Since financial data usually displays heavy tails and, in some cases, serial 

dependence, this algorithm is too sensitive and finds more than 30 structural breaks in our 

series of daily returns. There are other alternatives such as the nonparametric change-point 

algorithm by Ross (2013), which is more robust and does not detect some of the spurious 

breaks that ICSS does. 

We decide to implement a MATLAB function ‘findchangepts’ to detect structural breaks in 

the variance of daily returns, which will represent a regime change. The function was set to 

find at most 3 change points in the standard deviation of the return series to obtain reasonably 

long periods for estimation and forecasting with the hope, that these periods would have an 

economic interpretation as well.  

A changepoint is a point in time, when a statistical property, in our case the variation of a 

signal, changes suddenly. The function ‘findchangepts’ first divides the signal into two 

segments and computes the estimate of variance for each part. Then it measures the deviation 

from the estimate for each point within the segment. Finally, it sums up all the deviations to 

find the total residual error. This process is repeated for all the possible locations of a division 

point between segments. The division point becomes a change point where the total residual 

error attains a minimum (MathWorks, 2020). 

We obtain three meaningful changepoints: September 2, 2008, May 27, 2009 and February 

25, 2020. Since the last structural break divides only about the last 50 observations from the 

full sample, we decide not to split the series at that observation and keep only the first two 

structural breaks. We can think of the two cut-off points as the start and end of the most 

volatile part of the 2008 financial crisis. Therefore, we divide our sample into three regimes: 

pre-crisis (January 3, 2006 – September 2, 2008), crisis (September 3, 2008 – May 27, 2009) 

and post-crisis (May 28, 2008 – May 8, 2020), see Figure 12. The last changepoint on 

February 25, 2020, which we discard due to the inadequate number of observations for 
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estimation and forecast evaluation, would represent the start of the new downturn due to the 

COVID-19 outbreak.  

Although, the change points were obtained with a MATLAB function somewhat arbitrarily 

by allowing for only three structural breaks, these changepoints separate periods with 

noticeably different volatility and have a compelling economic interpretation, so we continue 

with the estimation and forecasting for each of these subsamples. 

Figure 12: Pre-crisis, crisis and post-crisis periods 

 

Source: Own work. 

RMSE values in Table 6 suggest that HAR performed better in the pre-crisis and crisis 

period, while ARFIMA is superior in the post-crisis period. By looking at the average log 

realized variance for the three regimes we notice that, while 𝑙𝑛𝑅𝑉 is expectedly the highest 

during the crisis period ( 𝑙𝑛𝑅𝑉̅̅ ̅̅ ̅̅
�̅�𝑟𝑖𝑠𝑖𝑠 = −7.98), it is higher in the pre-crisis than post-crisis 

period ( 𝑙𝑛𝑅𝑉̅̅ ̅̅ ̅̅
�̅�𝑟𝑒−𝑐𝑟𝑖𝑠𝑖𝑠 = −9.75;  𝑙𝑛𝑅𝑉̅̅ ̅̅ ̅̅

�̅�𝑜𝑠𝑡−𝑐𝑟𝑖𝑠𝑖𝑠 = −10.14). We could therefore 

cautiously suggest that HAR performs better in periods of relatively higher volatility, 

although another more probable explanation, which has to do with sample size, will be 

presented later.  

Table 6: RMSE values for different regimes and DM test results 

Regime Weights 
RMSE DM test 

statistic 

p-

value 

Best 

performer HAR ARFIMA 

Pre-crisis 0.183 0.3458 0.3466 -0.506 0.61 HAR 

Crisis 0.051 0.2912 0.2981 1.7609 0.078 HAR* 

Post-

crisis 
0.766 0.6317 0.6290 -0.7974 0.43 ARFIMA 

Weighted - 0.5620 0.5605   ARFIMA 

* 10% significance level 

Source: Own work. 
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On the other hand, none of the Diebold – Mariano test statistics show significant difference 

between the models. The p – value for the crisis period is 0.078, which would suggest modest 

preference for the HAR model in periods of market turbulence. 

The RMSE is a function of average error magnitude, the distribution of errors and the sample 

size. Since our three regime periods differ substantially in length, we can only compare the 

performance of the two models in the specific regime, while prediction accuracy cannot be 

compared across regimes. 

Figure 10: RMSE values for different regimes 

 

Source: Own work. 

The post-crisis forecasting period ends on 8th May 2020 so it includes also the market 

downturn caused by the COVID-19 pandemic. Therefore, we repeat RMSE calculation for 

the subsample, where the last 52 forecasting errors corresponding to the period from 25th 

February 2020 onwards are discarded. The results do not change significantly. ARFIMA still 

produces a smaller RMSE measure than HAR (0.6135 and 0.6147 respectively), but after 

performing the Diebold-Mariano test (𝑝 = 0.65) we conclude that the models’ predictive 

accuracy is not significantly different.  

The most interesting result in this section is therefore the superior performance of the HAR 

model in the crisis period. A more probable explanation than HAR performing superiorly in 

high-volatility periods is the sensitivity of the ARFIMA model to small samples. A Monte 

Carlo simulation by Stadnytska and Werner (2006) indicates that at least 1000 observations 

are needed to estimate ARFIMA(1, 𝑑, 1) parameters accurately. If the sample size is smaller 

the estimation of the fractional differencing parameter 𝑑 becomes somewhat unreliable. The 

parameter estimation errors seem to contaminate the estimate of the long memory parameter 

and the forecasting accuracy drops significantly compared to longer estimation periods 

(Bhardwaj & Swanson, 2006). 

Our crisis subsample has only 180 observations. Furthermore, the pre-crisis subsample has 

653 observations, which is still below the desired 1000. The superiority of the HAR model 

in the pre-crisis and crisis regime is then most probably due to the fact that it can be estimated 
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more precisely with a relatively small number of observations. Contrarily, the ARFIMA 

model needs a much longer estimation period for accurate parameter estimation and 

consequently accurate forecasts. 

Izzeldin et al. (2019) found that both ARFIMA and HAR perform worse during the crisis 

based on MAE measures, but suggested that the HAR model is less sensitive to changes in 

market conditions, since ARFIMA had a bigger increase in error during the crisis. However, 

they were able to draw the comparison between different periods since their sample was split 

in half into a pre-crisis and crisis period with the same number of observations. 

We hypothesised that the HAR model is less sensitive to structural breaks than the ARFIMA 

model, but we cannot confirm this hypothesis since the models do not differ significantly in 

their performance. 

We may use the 10% significance level with the Diebold – Mariano test as has been done by 

Bhardwaj and Swanson (2006). In this case we could conclude that the HAR model appears 

to be more sensitive to changes in market conditions, since it outperforms the ARFIMA 

model during the crisis but is less accurate for the full sample. In any case, the second 

hypothesis does not hold. 

5.3 Sampling frequencies 

Realized variance theory tells us that forecasts should become more precise as the sampling 

frequency increases. However, this holds only up to moderately high frequencies, since the 

signal is contaminated by the market microstructure noise at ultra-high frequencies. 

Therefore, realized variance based on 5-minute returns is typically used in the literature. By 

comparing the forecasts based on 𝑙𝑛𝑅𝑉 sampled at higher (every 1, 2 and 3 minutes) and 

lower (every 10 minutes) frequencies we will determine, which sampling frequency 

produces the most accurate forecasts of 𝑙𝑛𝑅𝑉. 

When comparing daily forecasts of log realized variance computed from returns sampled at 

different frequencies, we find that both models produce the most accurate forecasts when 

𝑙𝑛𝑅𝑉 is based on returns sampled every minute. The RMSE value then increases for both 

models as the sampling interval becomes longer. 

These results are consistent with Patton and Sheppard (2009), who indicate that forecasts 

based on 1-minute realized variance are the most accurate, followed by 5-minute, 5-second 

and finally 1-second 𝑅𝑉. On the other hand, Izzeldin et al. (2019) find that the forecasting 

accuracy peaks at the highest frequency they considered, that is 5 seconds. The forecasts 

based on 15-second 𝑙𝑛𝑅𝑉 are also superior to the log realized variance sampled at 1-minute 

frequency. Unfortunately, our data consists of 1-minute returns so we cannot compare the 

performance at higher sampling frequencies. 
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Figure 11: RMSE values for different sampling intervals 

 

Source: Own work. 

The greater accuracy of the 1-min 𝑙𝑛𝑅𝑉 forecasts suggests minimal presence of the 

microstructure noise at this frequency. The NASDAQ Composite index is one of the most 

heavily traded indices and thus very liquid, which indicates a relatively low impact of the 

microstructure noise in the first place. Furthermore, Hansen and Lunde (2006b) discovered 

that the presence of  microstructure noise has decreased over time. Hence, we conclude that 

the bias in 1-minute returns is negligible and so the 1-min 𝑙𝑛𝑅𝑉 is preferred to the 5-min 

realized measures. 

Figure 12: Relative RMSE gain or loss for different sampling intervals 

 

Source: Own work. 

While there are quite significant differences between forecasts based on different sampling 

intervals (±10% with respect to the 5-min 𝑙𝑛𝑅𝑉), the two models perform rather similarly 

for the specific sampling interval. In four out of five cases ARFIMA is more accurate than 

HAR, which is superior only for 3-min 𝑙𝑛𝑅𝑉 forecasts. The only highly statistically 

significant difference is at the longest sampling interval, that is, when returns are sampled 
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every 10 minutes. In this case the ARFIMA model significantly outperforms the HAR model 

at the 5% significance level. 

Table 7: RMSE values for different sampling intervals and DM test results 

Sampling 

interval 

RMSE DM test 

statistic 
p-value Best performer 

HAR ARFIMA 

1 min 0.5691 0.5663 - 1.49 0.1348 ARFIMA 

2 min 0.5879 0.5847 -1.72 0.0862 ARFIMA* 

3 min 0.5997 0.6018 0.46 0.6439 HAR 

5 min 0.6342 0.6315 -1.33 0.1846 ARFIMA 

10 min 0.6951 0.6907 -2.06 0.0395 ARFIMA** 

average 0.6172 0.615 - - ARFIMA 

* 10% significance level, ** 5% significance level 

Source: Own work. 

Additionally, ARFIMA beats HAR based on 2-min 𝑙𝑛𝑅𝑉 forecasts, a result significant at the 

10% level. By taking the average RMSE for each model, ARFIMA is the better performing 

model. This is out of line with the results by Izzeldin et al. (2019), who find that HAR is 

superior, although the two studies differ in sampling frequencies taken in consideration. 

Our third hypothesis, that the ARFIMA model performs better at higher sampling 

frequencies, while the HAR model performs better at lower sampling frequencies, therefore 

holds only partially. ARFIMA is superior at higher frequencies (although only at 10% 

significance level), whereas HAR is certainly not superior at lower frequencies. 

6 LIMITATIONS AND FURTHER RESEARCH  

There are several ways in which this study could be extended or done differently. Sometimes 

unexpected obstacles appear during research, which would be addressed differently the 

second time around. On the other hand, some questions cannot be answered because data 

needed is not available. In this section we shortly present some of the shortcomings of this 

study. 

There are alternative realized measures which could be taken into account such as the square 

root of realized variance (realized volatility), which is also nearly Gaussian distributed. 

Furthermore, the study could be extended by using 𝑙𝑛𝑅𝑉 with the incorporated overnight 

return. Since many studies analyse currency volatility and the foreign exchange markets are 

open around-the-clock, the overnight return does not impact their results, while we cannot 

claim this for our study. Additionally, we could compare our forecasts with the ones based 

on 𝑙𝑛𝑅𝑉 constructed by subsampling or other techniques proposed by Zhang et al. (2005). 

Therefore, we could possibly further improve forecast accuracy by considering various 

realized measures. However, we managed to compare the performance of the HAR and 
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ARFIMA models by using the logarithm of realized variance, which was actually the 

purpose of this thesis. 

Forecasts based on even higher frequencies should be made for more robust results about 

the model accuracy. Especially, since the best results were obtained at the highest frequency 

we considered. Unfortunately, we did not have tick data at our disposal. 

The above considerations suggest how the study could be extended and made more robust. 

However, there is one significant limitation of our results, which prevented us from reaching 

an unambiguous conclusion. Namely, when analysing the performance of the models in 

different market conditions, the pre-crisis and crisis samples are too small. By forecasting in 

a high-volatility period with at least 1000 observations, we could conclude if the HAR model 

makes more accurate forecasts in such regimes or if the ARFIMA model is superior when it 

does not suffer from small sample bias.  

To carry out such an analysis a larger dataset should be used to find a longer period of higher 

volatility (e.g. 1997 – 2002). Alternatively, we could define the structural breaks differently, 

but then the crisis period would not necessarily have a higher volatility than the other periods. 

Finally, the study could be extended by constructing and evaluating density forecasts as 

opposed to point forecasts or by modelling and forecasting in a multivariate framework. 

CONCLUSION 

Volatility is an essential quantity in finance since it is related to the notions of risk and 

uncertainty. In the recent years, the wider availability of high-frequency data has motivated 

research and non-parametric realized measures of volatility have been proposed. They 

represent a consistent measure of the true volatility, which is unobservable. This allows for 

accurate forecasts, which are crucial in risk or portfolio management and option pricing. 

The realized variance is a simple measure constructed by summing up intraday logarithmic 

returns generated over short (e.g. 5-minute) intervals. Because RV is approximately 

lognormal distributed, we decided to compare the models based on forecasts of log realized 

variance (𝑙𝑛𝑅𝑉). In any case, these realized measures, may it be variance, volatility, or log 

variance, take advantage of intraday data and measure the return volatility more accurately 

than squared daily returns. And a better estimate of the target quantity translates into 

improved forecasting performance. 

Based on the theory of quadratic variation, realized variance constructed from returns 

sampled at infinitesimally small intervals would converge to the integrated variance, which 

is regarded as the ‘true’ volatility generated over some time interval. However, at very high 

frequencies market microstructure features, such as the discreteness of prices, the bid-ask 

bounce and infrequent trading, contaminate the signal. Therefore, the aim is to sample at the 

highest frequency at which the impact of market microstructure noise will be negligible.  
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The logarithm of realized variance displays long memory, which is characterised by a slowly 

decaying autocorrelation function. Such processes have usually been modelled with an 

autoregressive fractionally integrated moving average (ARFIMA) model. Recently, the 

heterogeneous autoregressive (HAR) model has been proposed as an alternative, which 

captures the long memory through a sum of simple autoregressive processes. 

In this thesis the predictive accuracy of these two autoregressive models, HAR and 

ARFIMA, is compared. Their performance is compared at various forecasting horizons, in 

different market conditions and based on realized variance computed from returns sampled 

at different frequencies. We use high frequency intraday data from January 2006 to May 

2020 to construct realized variance of the NASDAQ Composite index. 

Although the literature on realized volatility and autoregressive models is extensive, only 

two studies have used both HAR and ARFIMA models. Degiannakis and Floros (2013) 

compare only their ability to forecast one-day ahead, while Izzeldin et al. (2019) compare 

also the accuracy for weekly and monthly forecasting. The latter study compares the models 

in the pre-crisis and crisis period, but the sample is split very arbitrarily. To compare the 

forecasting accuracy in different market conditions we instead split the sample by applying 

an algorithm for detection of structural breaks in variance. 

Furthermore, in existing studies only simple ARFIMA models with up to two autoregressive 

and moving average lags are considered. We estimated more than eighty ARFIMA models 

to account for the possibility that a model with more lags may fit the data better. 

Based on the recent literature we hypothesise that the HAR model is less sensitive to changes 

in market conditions and changes in forecasting horizon than the ARFIMA model. HAR 

should perform better when forecasts are based on RV constructed from lower-frequency 

returns, while ARFIMA should be superior when RV is constructed from high-frequency 

returns. 

In line with our first hypothesis, we find that the HAR model is much less sensitive to weekly 

and monthly forecasting, since it significantly outperformed the ARFIMA model at the 

longest horizon considered. On a daily basis, however, the performance of the models was 

comparable. 

We reject the hypothesis that the HAR model is less sensitive to structural breaks since both 

models performed similarly in all market conditions. HAR was slightly superior during the 

crisis, but we were not able to distinguish if this is because of better accuracy during high-

volatility periods or more probably, HAR being less sensitive to sample size than ARFIMA. 

Contrary to expectations, both models performed similarly at the highest sampling 

frequency, while ARFIMA outperformed HAR at the lowest frequency. There was no 

significant difference between the accuracy of the models based on 5-min 𝑙𝑛𝑅𝑉, which had 

been used for long horizon and market condition forecasting. Since the most accurate 
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forecasts were achieved at the highest frequency, no model was clearly preferred based on 

this criterion. 

The main conclusion is that the forecast accuracy of the HAR and ARFIMA models is 

remarkably similar. HAR proved to be significantly superior in some important 

circumstances, such as long horizon forecasting and forecasting during the crisis period. On 

the other hand, ARFIMA significantly outperformed HAR only when realized variance was 

based on 10-minute returns.  

Since the performance of the two models is similar, the HAR model is less sensitive to 

sample size, much more trivial to estimate and the forecast procedure associated with it is 

much easier to implement, we recommend the HAR model for forecasting realized variance. 
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Appendix 1: Povzetek v slovenskem jeziku 

Volatilnost je bistvenega pomena v financah, saj je povezana s tveganjem in negotovostjo. 

V zadnjih letih je veliko raziskav izkoristilo večjo razpoložljivost visokofrekvenčnih 

podatkov in razvila se je teorija realiziranih mer volatilnosti, ki dosledno ocenjujejo pravo 

volatilnost, te pa ne moremo neposredno opazovati. Z realiziranimi neparametričnimi 

merami lahko tako izdelamo točne napovedi, ki so ključnega pomena pri upravljanju tveganj 

ali določanju vrednosti opcij. 

Realizirana varianca (RV) je preprosta mera, ki jo dobimo s seštevanjem kvadratnih 

logaritemskih donosov, ustvarjenih v zelo kratkih časovnih obdobjih v dnevu (na primer 

vsakih 5 minut). Ker je RV porazdeljena približno lognormalno, smo se odločili za 

primerjavo modelov, ki temeljijo na napovedih logaritma realizirane variance (lnRV). 

Realizirane mere, naj gre za varianco, volatilnost ali logaritem variance, izkoriščajo 

visokofrekvenčne podatke znotraj dneva in finančno volatilnost izmerijo natančneje kot 

kvadrat celodnevnega donosa. Ker bolje ocenijo ciljno količino, je tudi napovedovanje 

zaradi tega bolj učinkovito. 

Realizirana varianca konvergira k integrirani varianci, ki velja za 'pravo' volatilnost, 

generirano v določenem obdobju, če so donosi, na katerih temelji, izračunani za 

infinitezimalno kratka obdobja. Vendar to konvergiranje v praksi otežuje prisotnost 

mikrostrukturnih učinkov, kot so diskretnost cen, odboj med nakupno in prodajno kotacijo 

in časovno neenakomerno trgovanje. Cilj je donose izračunati v najmanjših možnih 

intervalih, pri katerih bo vpliv mikrostrukturnih učinkov zanemarljiv. 

Logaritem realizirane variance kaže dolgoročno odvisnost oziroma t.i. 'dolg spomin', za 

katerega je značilna počasi padajoča funkcija avtokorelacije. Za take procese se ponavadi 

uporabljajo avtoregresijski delno integrirani modeli drsečih sredin (ARFIMA). Kot 

alternativa je bil predlagan heterogeni avtoregresijski (HAR) model, ki uspe zajeti dolg 

spomin s seštevanjem komponent preprostih avtoregresijskih procesov. 

V magistrskem delu primerjamo natančnost napovedi dveh avtoregresijskih HAR in 

ARFIMA modelov. Njuno natančnost primerjamo glede na obdobje napovedi, različne tržne 

razmere in pri realizirani varianci, ki izhaja iz donosov, izračunanih v različnih intervalih. 

Pri generiranju realizirane variance indeksa NASDAQ Composite uporabljamo 

visokofrekvenčne podatke od januarja 2006 do maja 2020. 

Čeprav je literatura o realiziranih merah in avtoregresijskih modelih obsežna, sta le dve 

študiji uporabili oba modela, ki ju obravnavamo. Degiannakis in Floros (2013) primerjata 

samo točnost dnevnih napovedi, Izzeldin et al. (2019) pa tudi natančnost za tedenska in 

mesečna obdobja. Slednja študija tudi primerja modele v predkriznih in kriznih razmerah, 

vendar je prelom med obdobjema določen zelo arbitrarno. V tem magistrskem delu pa je pri 

analizi napovedi v različnih tržnih razmerah časovna serija razdeljena z uporabo algoritma 

za odkrivanje strukturnih prelomov. 
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Poleg tega so v obstoječih študijah upoštevani le preprosti ARFIMA modeli do največ 

drugega reda. V tem delu pa ocenimo več kot osemdeset ARFIMA modelov z namenom 

upoštevanja možnosti, da model z več odlogi bolje opisuje podatke. 

Na podlagi obstoječe literature postavimo hipoteze, da je HAR model manj občutljiv na 

spremembe tržnih razmer in spremembe napovedovalnega obdobja kot model ARFIMA. 

Poleg tega predvidevamo, da bo HAR natančnejši, če napovedi temeljijo na RV, temelječi 

na nižjefrekvenčnih donosih (5- ali 10-minutnih). ARFIMA pa bi morala biti boljša pri 

realizirani varianci, temelječi na visokofrekvenčnih donosih (1-minutnih). 

V skladu s predvidevanji ugotavljamo, da je HAR model veliko manj občutljiv pri 

dolgoročnem napovedovanju, saj je pri mesečnih napovedih statistično značilno natančnejši 

od modela ARFIMA. Pri dnevnih napovedih je točnost napovedi za oba modela primerljiva. 

Zavračamo hipotezo, da je model HAR manj občutljiv na strukturne prelome, saj v nobeni 

od tržnih razmer ni statistično značilne razlike med modeloma. HAR model je med krizo 

nekoliko natančnejši, vendar tega ne moremo pripisati boljši zmogljivosti v obdobjih z 

visoko volatilnostjo, ampak je bolj verjetno, da je HAR manj občutljiv na velikost vzorca. 

V nasprotju s pričakovanji sta oba modela primerljiva pri najvišji frekvenci vzorčenja 

donosov, medtem ko je ARFIMA uspešnejša od modela HAR, če realizirana varianca temelji 

na 10-minutnih donosih. Natančnost modelov je primerljiva tudi pri realizirani varianci, ki 

temelji na 5-minutnih donosih. To je pomembno, ker je bila 5-minutna realizirana varianca 

uporabljena za dolgoročno napovedovanje in napovedovanje v različnih tržnih razmerah. 

Najbolj natančne napovedi obeh modelov so dosežene pri najvišji frekvenci donosov. Ker 

pa sta tudi v tem primeru modela podobno natančna, ne identificiramo modela, ki bi imel 

prednost pred drugim na podlagi različnih frekvenc vzorčenja donosov. 

Glavni sklep je, da je natančnost napovedi HAR in ARFIMA modelov izredno podobna. 

HAR se je izkazal za značilno boljšega v nekaterih pomembnih okoliščinah, kot sta 

napovedovanje na dolgi rok in v kriznem obdobju. Po drugi strani pa je ARFIMA znatno 

boljša od modela HAR le, ko je realizirana varianca temeljila na 10-minutnih donosih. Na 

podlagi rezultatov sklepamo, da je model HAR najprimernejši za napovedovanje realizirane 

variance, saj je manj občutljiv na velikost vzorca in veliko enostavnejši pri ocenjevanju 

parametrov in napovedovanju.  
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Appendix 2: BIC values for ARFIMA(𝒑, 𝒅, 𝒒) models 

p q log-likelihood BIC 

0 0 -2888.3992 5801.33 

0 1 -2886.9446 5806.60 

1 0 -2886.8397 5806.39 

1 1 -2877.6046 5796.1†† 

1 2 -2877.2857 5803.64 

1 3 -2876.8504 5810.95 

1 4 -2876.8417 5819.11 

1 5 -2876.0073 5825.62 

1 6 -2874.8094 5831.40 

1 7 -2874.3552 5838.67 

1 8 -2874.2501 5846.64 

1 9 -2873.6879 5853.38 

2 1 -2877.2570 5803.58 

2 2 -2875.9677 5809.18 

2 3 -2876.8505 5819.13 

2 4 -2876.8312 5827.27 

2 5 -2874.5099 5830.80 

2 6 -2874.4418 5838.84 

2 7 -2874.3203 5846.78 

2 8 -2871.1082 5848.53 

2 9 -2871.0814 5856.66 

3 1 -2876.7665 5810.78 

3 2 -2875.6557 5816.74 

3 3 -2873.8038 5821.21 

3 4 -2873.9388 5829.66 

3 5 -2870.5693 5831.10 

3 6 -2871.9362 5842.01 

3 7 -2869.3353 5844.99 

3 8 -2871.0925 5856.68 

3 9 -2871.0252 5864.72 

4 1 -2876.6874 5818.80 

4 2 -2876.7639 5827.13 

4 3 -2873.6623 5829.11 

4 4 -2874.4065 5838.77 

 
††

 smallest BIC value 

p q log-likelihood BIC 

4 5 -2869.4603 5837.06 

4 6 -2868.0945 5842.50 

4 7 -2868.6364 5851.77 

4 8 -2866.3648 5855.40 

4 9 -2866.2963 5863.44 

5 1 -2875.2751 5824.15 

5 2 -2874.5112 5830.71 

5 3 -2873.4646 5836.89 

5 4 -2869.5541 5837.25 

5 5 -2866.7662 5839.85 

5 6 -2867.9849 5850.46 

5 7 -2866.1163 5854.90 

5 8 -2865.9483 5862.75 

5 9 -2867.2032 5873.43 

6 1 -2874.6793 5831.14 

6 2 -2874.6760 5839.31 

6 3 -2871.9970 5842.13 

6 4 -2867.8122 5841.94 

6 5 -2867.8330 5850.16 

6 6 -2865.0924 5852.86 

6 7 -2864.8355 5860.52 

6 8 -2866.4916 5872.01 

6 9 -2864.5181 5876.24 

7 1 -2874.6783 5839.32 

7 2 -2874.6837 5847.50 

7 3 -2868.8149 5843.95 

7 4 -2867.7852 5850.06 

7 5 -2866.3740 5855.42 

7 6 -2876.1908 5865.23 

7 7 -2864.7960 5868.62 

7 8 -2864.1661 5875.54 

7 9 -2864.1652 5883.71 

8 1 -2874.4458 5847.03 

8 2 -2871.9213 5850.16 
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p q log-likelihood BIC 

8 3 -2871.7404 5857.97 

8 4 -2865.9258 5854.52 

8 5 -2866.8311 5864.51 

8 6 -2866.5122 5872.05 

8 7 -2864.1664 5875.54 

8 8 -2862.4496 5880.28 

8 9 -2862.2972 5888.16 

9 1 -2873.6270 5853.57 

9 2 -2871.1110 5856.72 

9 3 -2870.9730 5864.62 

9 4 -2865.9255 5862.70 

9 5 -2866.7004 5872.43 

9 6 -2864.7057 5876.62 

9 7 -2864.1645 5883.71 

9 8 -2863.5750 5890.71 

9 9 - - 

Source: Own work. 
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Appendix 3: Jarque – Bera (𝑱𝑩) test results for forecast errors 

forecast 𝐽𝐵𝐴𝑅𝐹𝐼𝑀𝐴 𝐽𝐵𝐻𝐴𝑅 

daily 
42.8422 

(0.0001) 

44.5585 

(0.0001) 

weekly 
134.5842 

(0.0001) 

123.7272 

(0.0001) 

monthly 
279.6811 

(0.0001) 

279.4659 

(0.0001) 

pre-crisis 
9.2960 

(0.0185) 

9.1184 

(0.0192) 

crisis 
1.4616 

(0.3288) 

1.3891 

(0.3469) 

post-crisis 
18.6014 

(0.0016) 

20.5482 

(0.0012) 

1 minute 
60.3526 

(0.0001) 

61.3295 

(0.0001) 

2 minutes 
55.3181 

(0.0001) 

57.3209 

(0.0001) 

3 minutes 
71.5053 

(0.0001) 

67.6166 

(0.0001) 

10 minutes 
31.0989 

(0.0001) 

32.9348 

(0.0001) 

Note: The null hypothesis of the Jarque – Bera test is that data comes from a normal 

distribution with skewness equal to 0 and kurtosis equal to 3. The test was performed in 

MATLAB, which uses a modified algorithm to calculate critical values for small samples; p 

– values are in parentheses. 

Source: Own work. 
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Appendix 4: MATLAB Functions  

1. Generating RV series sampled at different frequencies 

function [lnRV, daily_r] = aggregate_frequencies(r, delta) 

 

% INPUTS:  

    %r: an array of 1-minute returns 

    %delta: level of aggregation (delta = 5 -> 5-min RV) 

     

% OUTPUTS: 

    %lnRV: an array of log aggregated RV series 

    %daily_r: an array of daily returns 

 

ndays = size(r,2); 

 

r_delta=reshape(r,delta,390/delta,ndays);  

r_delta=squeeze(sum(r_delta,1)); 

 

RV=sum(r_delta.^2)'; 

lnRV = log(RV); 

daily_r = sum(r_delta)'; 

end 

Source: Own work. 

 

2. Generating HAR regressors (daily, weekly, monthly RV) 

function [X_matrix] = X_mat(series) 

%creates a matrix with daily, weekly and monthly RV from a series of daily RV 

% weekly RV 

bw = (1/5)*ones(1,5); 

RV_w = filter(bw,1,series); 

 

for i=1:5-1 

    RV_w(i)=RV_w(i)*5/i; 

end 

 

% monthly RV 

bm = (1/22)*ones(1,22); 

RV_m = filter(bm,1,series); 

 

for i=1:22-1 

    RV_m(i)=RV_m(i)*22/i; 

end 

X_matrix = [series RV_w RV_m]; 

end 

Source: Own work. 
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3. HAR forecasting 

function [RMSE, error] = har_forecasting(Z, s, R); 

 

%INPUTS: 

    %Z: RV series 

    %s: forecast horizon 

    %R: rolling window length 

     

%OUTPUTS: 

    %RMSE: root mean square error 

    %errors: an array of forecast errors 

     

r = length(Z) - R; 

if s == 1 

    for i=1:r-1 

        series = Z(i:R+i-1); 

        matrix = X_mat(series); 

        X = [ones(length(matrix),1) matrix]; 

        Y = series(2:end); 

        beta_hat(1,1:4) = X(1:end-1,:)\ Y; 

        prediction (i,1) = X(end,:)*beta_hat(1,:)'; 

        observed(i,1) = Z(R+i); 

        error(i,1) = observed(i,1)-prediction(i,1); 

    end 

elseif s > 1 

      for i=1:r-s 

        series = Z(i:R+i-1); 

        matrix = X_mat(series); 

        X = [ones(length(matrix),1) matrix]; 

        Y = series(2:end); 

        beta_hat(1,1:4) = X(1:end-1,:)\ Y; 

        prediction (1,i) = X(end,:)*beta_hat(1,:)'; 

        observed(1,i) = Z(R+i); 

        err(1,i) = observed(1,i)-prediction(1,i); 

           for h = 1:s 

            series2 = [Z(h+i:R+i-1); prediction(1:h,i)]; 

            matrix2 = X_mat(series2); 

            X2 = [ones(length(matrix2),1) matrix2]; 

            Y2 = series2(2:end); 

            beta_hat(h+1,1:4) = X2(1:end-1,:)\ Y2; 

            prediction (h+1,i) = X2(end,:)*beta_hat(h+1,:)'; 

            observed(h+1,i) = Z(R+i+h); 

            err(h+1,i) = observed(h+1,i)-prediction(h+1,i); 

        end  

        error(i,1) = err(end-1, i); 

        yhat(i,1) = prediction(end-1,i); 

      end 

end 
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RMSE = sqrt(mean(error.^2)); 

end 

Source: Own work. 

 

4. ARFIMA forecasting 

function [RMSE, errors] = arfima_forecasting(Z, s, ar, ma, d, sigma, R) 

 

%INPUTS: 

    %Z: time series 

    %s: forecast horizon 

    %ar: an array of AR parameters 

    %ma: an array of MA parameters 

    %d: an array of d parameters 

    %sigma: an array of sigma parameters 

    %R: size of rolling window used in estimation 

 

%OUTPUTS: 

    % RMSE: root mean square error 

    %errors: an array of errors 

    %y: an array of observed values 

    %yhat: an array of predicted values 

     

r = length(Z) - R;     

if s == 1 

    for i=1:r 

        mu(i,1)= mean(Z(i:R+i-1)); 

    end 

    for i =1:r 

        series = Z(i:R-1+i); 

        gamma_s = arfima_covs(length(series)+1,[d(i) ar(i) ma(i) sigma(i)],[1 

1]);          

        [~,L] = durlevML(gamma_s);                                                   

        L = reshape(L,length(series)+1,length(series)+1)'; 

        yhat(i,1) = mu(i) - L(length(series)+1, 1: length(series))*(series - 

mu(i)); 

        obs(i,1) = Z(R+i); 

        errors(i,1) = obs(i,1)-yhat(i,1); 

    end 

elseif s > 1 

    for i=1:r+1-s 

        series = Z(i:R+i-1); 

        mu(1,i) = mean(series); 

        gamma_1 = arfima_covs(length(series)+1,[d(i) ar(i) ma(i) sigma(i)],[1 

1]); 

        [~,L] = durlevML(gamma_1);  

        L = reshape(L,length(series)+1,length(series)+1)'; 
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        y(1,i) = mu(1,i) - L(length(series)+1, 1: length(series))*(series - 

mu(1,i)); 

        for h = 1:s 

            Z2 = [Z((h+1):R+i-1); y(1:h,i)]; 

            mu(h+1,i)= mean(Z2); 

            gamma_2 = arfima_covs(length(Z2)+1,[d(i) ar(i) ma(i) sigma(i)],[1 

1]); 

            [~,L] = durlevML(gamma_2);  

            L = reshape(L,length(Z2)+1,length(Z2)+1)'; 

            y(h+1,i) = mu(h+1,i) - L(length(Z2)+1, 1: length(Z2))*(Z2 - 

mu(h+1,i)); 

        end 

        obs(i,1) = Z(R-1+i+s); 

        yhat(i,1) = y(end-1,i); 

        errors(i,1) = obs(i,1)-yhat(i,1); 

    end 

end 

RMSE = sqrt(mean(errors.^2)); 

end 

Source: Own work. 

 

5. Diebold-Mariano test 

function [DM,p] = dbmar(e_arf,e_har) 

 

%INPUTS: 

    %e_arf = an array of ARFIMA forecast errors 

    %e_har = an array of HAR forecast errors 

     

%OUTPUTS: 

    %DM = Diebold-Mariano test statistic 

    %p = p-value of Diebold-Mariano test statistic 

d = e_arf.^2 - e_har.^2; 

avg_d = mean(d); 

var_d = var(d); 

T = length(e_arf); 

DM = avg_d / sqrt((1/T)*var_d); 

[~,p] = ztest(DM, 0, 1); 

end 

Source: Own work. 

 

6. Computing ARMA covariance matrix (Inzelt, 2011) 

function [gamma_arma] = arma_covs(lag,params,arma_part) 

     % Ian McLeod's method for calculating the analytical ACF for linear 

stationary ARMA(p,q)processes.  
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     % Reference: McLeod, Ian: Derivation of the Theoretical 

Autocovariance Function of Autoregressive-Moving Average Time 

Series.Applied Statistics(1975) 24 No.2 p255-257  

     % (C) György Inzelt 2011 

     wn_var = params(length(params)); 

     if  arma_part(1) == 0 && arma_part(2) == 0, phi = 0   ; theta =0; 

       elseif arma_part(1) ==0 && arma_part(2) ~= 0 ,theta = 

params(1,1:1+arma_part(2)-1)   ; phi =0; 

       elseif arma_part(1) ~=0 && arma_part(2) ~=0, phi = 

params(1,1:1+arma_part(1)-1); 

              theta = params(1,1+arma_part(1):1+sum(arma_part)-1); 

       elseif arma_part(1) ~=0 && arma_part(2)==0, phi = 

params(1,1:1+arma_part(1)-1); theta = 0;       

     end      

    gamma_arma = zeros(lag,1);     

   %ARMA(0,q) case  

    if arma_part(1) == 0 && arma_part(2)~=0 

       for ii = 0:1:lag 

          if ii == 0 

             gamma_arma(ii+1) = (sum([1 theta].^2))*wn_var ; 

          elseif ii > 0 && ii < arma_part(2) 

             gamma_arma(ii+1) = (theta(ii) + sum( 

theta(ii+1:length(theta)).*theta(1:length(theta)-ii) ))*wn_var; 

          elseif ii == arma_part(2) 

             gamma_arma(ii+1) = theta(length(theta))*wn_var; 

          elseif ii > arma_part(2) 

             gamma_arma(ii+1) = 0;  

          end 

       end 

    %ARMA(0,0)-just for completeness    

    elseif arma_part(1)==0 && arma_part(2)==0   

     gamma_arma(1) = wn_var; 

     gamma_arma(2:lags) = 0; 

    %ARMA(p,0)    

    elseif arma_part(1) ~= 0 && arma_part(2)==0 

       if arma_part(1)==1 

          gamma_arma = (phi(1).^((0:1:lag)'))*(1/(1-phi(1)^2))*wn_var;%%  

       elseif arma_part(1) > 1     

          F = zeros(arma_part(1),arma_part(1)); 

          F(1,:) = phi; 

          F(2:length(F),1:length(F)-1 )=eye(length(F)-1)  ; 

          G = wn_var*inv(( eye((arma_part(1))^2) - kron(F,F)   )) ; 

          gamma_arma(1:arma_part(1)) = G(1:arma_part(1),1); 

          for jj = arma_part(1)+1:1:length(gamma_arma) 

              gamma_arma(jj) =  phi*gamma_arma(jj-1:-1:jj-arma_part(1)); 

          end  

       end  

    %ARMA(p,q)   

    elseif arma_part(2) ~=0 && arma_part(2) ~=0     

      %calculating the cross-covariances 
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     [gamma_pacf, rhs, lhs]= arma_crosscov(phi,theta,arma_part,wn_var); 

      gamma_arma(1:arma_part(1)+1,1)= lhs\rhs(1:arma_part(1)+1); 

        if arma_part(1) >= arma_part(2) 

          for jj = arma_part(1)+2:1:length(gamma_arma) 

                  gamma_arma(jj) =  phi*gamma_arma(jj-1:-1:jj-

arma_part(1)); 

          end  

        elseif arma_part(1) < arma_part(2)  

            for jj = arma_part(1)+2:1:length(gamma_arma) 

               if jj  <=length(rhs) 

                  gamma_arma(jj) =  phi*gamma_arma(jj-1:-1:jj-

arma_part(1)) + rhs(jj); 

               elseif jj  > length(rhs)    

                  gamma_arma(jj) =  phi*gamma_arma(jj-1:-1:jj-

arma_part(1)); 

               end 

            end 

        end 

    end   

end 

 

function[gamma_pacf, rhs, lhs]= arma_crosscov(phi,theta,arma_part,wn_var) 

     gamma_pacf = zeros(arma_part(2)+1,1); 

     rhs = zeros(max(arma_part(1)+1,arma_part(2)+1),1); 

     lhs = zeros(arma_part(1)+1,arma_part(1)+1); 

      

     gamma_pacf(1) = wn_var; 

     for kk = 2:1:arma_part(2)+1 

         for jj = 1:1:min(kk-1,arma_part(1)) 

         gamma_pacf(kk) = gamma_pacf(kk) + gamma_pacf(kk-jj)*phi(jj);     

         end     

         gamma_pacf(kk) = gamma_pacf(kk) +  theta(kk-1)*wn_var;     

     end      

     %rhs 

     for ll = 1:1:max(arma_part(1)+1,arma_part(2)+1) 

        if ll==1 

           rhs(ll) = gamma_pacf(1) + theta*gamma_pacf(2:arma_part(2) + 1)  

; 

        elseif ll > 1 && ll <= arma_part(2)+1  

           rhs(ll) = theta(ll-1:length(theta))*gamma_pacf(1:arma_part(2) + 

2-ll) ; 

        elseif ll > 1 && ll > arma_part(2)+1    

           rhs(ll) =0; 

        end     

     end  

     %lhs 

     lhs(1,:) =  [1 -phi]; 

     lhs(:,1) =  [1 -phi]'; 

     for ii = 2:1:arma_part(1)+1 

         for jj = 2:1:arma_part(1)+1 
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            if ii-jj==0 && ii+jj-2 <= arma_part(1) 

                phi_ij = 1; 

                phi_ij2 = -phi(ii + jj -2); 

            elseif ii-jj==0 && ii+jj-2 > arma_part(1)     

                phi_ij = 1; 

                phi_ij2 = 0; 

            elseif ii-jj < 0 && ii+jj-2 <=arma_part(1) 

                phi_ij = 0; 

                phi_ij2 = -phi(ii + jj -2); 

            elseif ii-jj < 0 && ii+jj-2 > arma_part(1)     

                phi_ij = 0; 

                phi_ij2 =0; 

            elseif ii-jj > 0 && ii+jj-2 <= arma_part(1)     

                phi_ij = -phi(ii-jj); 

                phi_ij2 = -phi(ii+jj-2); 

            elseif ii-jj > 0 && ii+jj-2 > arma_part(1)        

                phi_ij = -phi(ii-jj); 

                phi_ij2 = 0; 

            end     

                lhs(ii,jj) = phi_ij + phi_ij2 ;          

         end 

     end     

end 

Source: Inzelt (2011). 

 

7. Computing ARFIMA covariance matrix (Inzelt, 2011) 

function[gamma_s] = arfima_covs(uptolag,params1,arma_part) 

%approximated ACF for ARFIMA(p,d,q) processes 

% (c) György Inzelt 2011 

%extracting the parameters 

wn_var = params1(length(params1)); 

%muZ = params1(length(params1)-1); 

d = params1(1,1);      

     if  arma_part(1) == 0 && arma_part(2) == 0, phi = 

params1(1,2:2+arma_part(1)-1)    ; theta =0; 

       elseif arma_part(1) ==0 && arma_part(2) ~= 0 ,theta = 

params1(1,2:2+arma_part(2)-1)   ; phi =0; 

       elseif arma_part(1) ~=0 && arma_part(2) ~=0, phi = 

params1(1,2:2+arma_part(1)-1); 

              theta = params1(1,2+arma_part(1):2+sum(arma_part)-1); 

       elseif arma_part(1) ~=0 && arma_part(2)==0, phi = 

params1(1,2:2+arma_part(1)-1);theta =0;        

     end      

gamma_s = zeros(uptolag,1); 

switch(sum(arma_part)) 

    case(0) 

%ARFIMA(0,d,0) 
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        for h = 0:uptolag-1 

            if h < 100 

            gamma_s(h+1) =  wn_var*(gamma(1-2*d)*gamma(h+d)/(gamma(1-

d)*gamma(d)*gamma(1+h-d))); 

            elseif h>=100 

            gamma_s(h+1) = ((h+d)/(1+h-d))*gamma_s(h); 

            end 

        end 

    otherwise 

        if arma_part(1) ==0 && arma_part(2)~=0 

        %ARFIMA(0,d,q) 

        %the MA part 

            theta = [1 theta]; 

            psilag = zeros(2*length(theta)-1,1); 

            gamma_term = zeros(uptolag,2*length(theta)-1); 

        for ll = -length(theta):1:length(theta) 

            for ss = max([0 ll]):min([(length(theta)-1)  (length(theta)-1+ 

ll)]) 

                ss_minus_ll = ss - ll; 

                if ss_minus_ll < 0, ss_minus_ll = abs(ss_minus_ll) + 1; 

                    elseif ss_minus_ll >= 0, ss_minus_ll = ss_minus_ll +1;   

                end    

                psilag(ll + length(theta))  = psilag(ll + length(theta)) + 

theta( ss_minus_ll )*theta(ss+1);   

            end 

        end 

            theta = theta(2:length(theta)); 

    %the fractional part 

        for h = 0:uptolag-1 

            if h < 100 

                for ll = -length(theta):1:length(theta) 

                    gamma_term(h+1,ll + length(theta)+1) = (gamma(1-

2*d)*gamma(d+h-ll))/(gamma(d)*gamma(1-d)*gamma(1+h-d-ll))    ;  

                end 

                    gamma_s(h+1) = 

wn_var*sum(psilag'.*gamma_term(h+1,:),2) ; 

            elseif h>=100 

                for ll = -length(theta):1:length(theta)  

                    gamma_term(h+1,ll + length(theta)+1) = 

gamma_term(h,ll+length(theta)+1)*((d+h-ll)/(1+h-d-ll)); 

                end 

                    gamma_s(h+1) = 

wn_var*sum(psilag'.*gamma_term(h+1,:),2) ; 

            end 

        end    

   elseif arma_part(1)~=0  

        %ARFIMA(p,d,q) 

            gamma_s_temp = zeros(uptolag,1); 

        for h = 0:uptolag+201 

            if h < 100 
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            gamma_s_temp(h+1) =  wn_var*(gamma(1-2*d)*gamma(h+d)/(gamma(1-

d)*gamma(d)*gamma(1+h-d))); 

            elseif h>=100 

            gamma_s_temp(h+1) = ((h+d)/(1+h-d))*gamma_s_temp(h); 

            end 

        end 

        gamma_arma = 

arma_covs(201,params1(1,2:length(params1)),arma_part); 

        gamma_s_temp =   [gamma_s_temp(201:-1:2) ; 

gamma_s_temp(1:length(gamma_s_temp))]   ; 

             

        for k = 0:uptolag-1 

          %%approximate algorithm for calculating the ACF of ARFIMA(p,d,q) 

          gamma_s(k+1) = (1/wn_var)*sum( [gamma_s_temp(1+k:1+k+400 ) 

].*[gamma_arma(201:-1:2);gamma_arma(1:201)]); 

        end 

        end 

end 

end 

Source: Inzelt (2011). 

 

8. Durbin-Levinson algorithm (Inzelt, 2011) 

#include "matrix.h" 

#define square(p) ((p)*(p)) 

#define inv(q) (1/(q)) 

/* Durbin-Levinson algorithm for linear stationary AR(FI)MA(p,d,q) 

processes  

   Slightly altered for the maximum likelihood estimation   

   (C) György Inzelt 2011                                                    

*/ 

void levinson_recur1(double* v,double* L, int N, double* gammas,int step) 

{ 

 int i,k;    

  

 if(step==0) 

 { 

   *(v + step) = *(gammas + step); 

   *(L + step) = 1; 

   for(k = step+1;k < N;++k) 

   {   

     *(L + k) = 0; 

   } 

 } 

 else if(step > 0 && step < N) 

 { 

    //phi_tt  

    *(L + step*N ) =  (-1.00)* *(gammas + step); 
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    if(step > 1) 

    { 

        for(i = 1;i < step ;++i) 

        { 

          *(L + step*N) -=  *(L + (step-1)*N + (step -1)  - i ) * *(gammas 

+ step - i)   ; 

        } 

    } 

     *(L +step*N)  *= inv( *(v + step-1) ); 

    //v_t 

    *(v + step) = *(v + step-1)*(1- square( *(L + step*N) )); 

    //phi_tj 

    for(i =1; i < step; ++i) 

    { 

     *(L + step*N + step - i) =  *(L + (step-1)*N + (step -1) - i) + *(L  

+ step*N  ) * *(L + (step-1)*N + i -1 ) ; 

    } 

    //filling L with zeros and ones 

    *(L + step*N + step ) = 1;  

    if(step != N-1) 

    { 

        for(k = step*N +step+1 ;k < step*N + N ;++k) 

        {   

        *(L + k) =0; 

        }  

    } 

 } 

   if(step < N-1) 

     levinson_recur1(v,L,N,gammas,++step); 

} 

/* The gateway function */ 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray 

*prhs[])  

{ 

int step=0; 

int N; 

double *gammas,*v,*L; 

// getting the autocovariances  

gammas = mxGetPr(prhs[0]); 

N = mxGetM(prhs[0]); 

// v 

plhs[0] = mxCreateDoubleMatrix(0,0,mxREAL); 

mxSetM(plhs[0],N);  

mxSetN(plhs[0],1); 

mxSetData(plhs[0], mxMalloc(sizeof(double)*N*1)); 

// L 

plhs[1] = mxCreateDoubleMatrix(0,0,mxREAL); 

mxSetM(plhs[1],square(N));  

mxSetN(plhs[1],1); 

mxSetData(plhs[1], mxMalloc(sizeof(double)*square(N)*1)); 
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// 

v = mxGetPr(plhs[0]); 

L = mxGetPr(plhs[1]); 

// 

levinson_recur1(v, L, N,gammas,step); 

// 

return; 

} 

Source: Inzelt (2011). 
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