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INTRODUCTION

Inflation expectations play an important role in the effective implementation and
transmission of monetary policy. They provide valuable evidence about the credibility of a
central bank and its capability to achieve its inflationary target and deliver on its price
stability mandate. Besides the headline inflation over the medium-term central banks use
measures of inflation expectations as one of the indicators to monitor the effect of their
monetary policy decisions and as a cross-check on the macroeconomic projections of the
inflation outlook.

The key interest of policy makers is well-anchored expected inflation in the medium- to
long-term period, which is the precondition for effective monetary policy actions. Inflation
expectations are said to be anchored when the mean forecasts of inflation are stable and
close to the inflation target set by the central bank. The view on the future inflation should
be, on average, close to the inflation target set by the central bank. Definition of the euro
area price stability, a year-on-year harmonized index of consumer prices (HICP hereinafter)
inflation rate of below, but close to 2 % over the medium-term, reflects the focus for inflation
expectations and provides a guide for markets.

Expected inflation can be measured by using first, model-free or survey-based measures, or
second, model-based measures. Survey based measures use either household or firms views
about the future level of inflation or professional forecasters opinion. The inflation
expectations of the former tend to differ from those of either professional forecasters or the
market. The expected inflation of household or firms tend to be also more dispersed and
misaligned with either current inflation dynamics or the central bank target (Coibion,
Gorodnichenko, Kumar & Pedemonte, 2020). Using the model-based approach inflation
expectations can be derived from the prices of instruments that are linked to the future
inflation outcomes and are traded in financial markets, for example Inflation-Linked Swap
(ILS hereinafter) rates and Break-Even Inflation rates (BEIR). Central banks use both of the
approaches when measuring the inflation expectations, however, survey-based measures act
more as an additional indicator than the primary source of information on the future
inflation (Camba-Mendez & Werner, 2017; Grothe & Meyler, 2018; Ang, Bekaert & Wei,
2007; Trehan, 2015).

An important input in policy-making are inflation forecasts, usually measured by the HICP.
For the short-term inflation forecasting various tools and models have been developed.
However, on the medium- to long-term, inflation forecasting is not trivial, nevertheless
important as of its relevance for implementation of monetary policy and for the assessment
of long run inflation objectives.

Ang, Bekaert and Wei (2007) compared the Out-Of-Sample (OOS hereinafter) inflation
forecasts using four different alternatives, among them survey-based measures which use
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information about the future inflation from agents (consumers or professionals),
model-based measures using term structure models, using time series ARIMA models and
running forecasting regressions with real activity measures motivated from the Phillips
curve. Comparing the alternatives their finding was that the forecasts using the
survey-based inflation expectations measures outperformed the other measures. Stock and
Watson (1999) studied the inflation forecasts based on the real economic activity (the
Phillips curve) and used estimated common factors as proxies for the unobserved state of
the economy. Their findings were that in comparison with other asset prices and macro
series their OOS forecasts of U.S. inflation turned out to be the most accurate, however
performance of the forecasts based on the Phillips curve strongly depends on the sample
period. Forecasting power is additionally affected by the instable output gap coefficients of
the Phillips curve (Fisher, Liu, & Zhou, 2002; Atkeson & Ohanian, 2001; Clark &
McCracken, 2006).

Inflation forecasting can also be performed by combining different alternative models,
which usually outperform inflation predictions using autoregressive model as a benchmark.
Combination of forecasts can be based on Bayesian Model Averaging (BMA hereinafter),
simple equal weighted averaging, or linear combinations of forecasts using weights based
on prior information and past performance, among others (Ang, Bekaert, & Wei, 2007;
Stock & Watson, 1999; Brave & Fisher, 2004; Wright, 2009).

Some authors use the indirect approach to forecast inflation, modelling the HICP
components separately instead of modelling overall HICP (direct approach), however in this
way the model for inflation forecasting lacks some of the vital properties (Benalal, Dial del
Hoyo, Landau, Roma, & Skudelny, 2004). The literature offers methods to model structural
changes, such as change in persistence of inflation or a sudden shift in expected inflation
due to a supply shock. In order to account for a regime-switching behavior in inflation a
Markov switching model can be used (Evans & Lewis, 1995; Evans & Wachtel, 1993).
Giannone, Lenza, Momferatou and Onorante (2014) proposed Bayesian Vector
Autoregressive (BVAR) framework, which can be used to construct conditional and
un-conditional forecasts of inflation in the short run. The model can capture the dynamic
relationships between determinants of inflation and its main components, and can be also
used for the scenario analysis, where alternative paths for inflation determinants and
components can be used to construct conditional forecasts of inflation.

The key idea of my thesis is to evaluate whether by using dynamic factor model (DFM),
which uses targeted predictors extracted from inflation expectations as underlying factors,
good predictions for the euro area inflation can be obtained. I focus on medium- to long-
term euro area inflation forecasting using a set of different model specifications. Inflation
is reported to be a challenging series to forecast due to its volatile features which can be
hardly captured. Forecasts of inflation on the medium- to long-term are subject to more
pronounced forecasting errors than the ones on the short-term. However, inflation forecasts
on the medium- to long-term horizons are of vital policy relevance.
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The purpose of the thesis is to propose an alternative modelling strategy, where the
constructed model incorporates relevant factors behind the inflation expectations. The
constructed dynamic multi-factor model considers the maximum amount of information
available at any given point in time. This can include, inter alia, information about recent
and expected developments in the main drivers of inflation expectations. The purpose of the
thesis is also the assessment of the forecasting power of the constructed model for different
forecast horizons.

The main contributions of my thesis to the existing literature are the following. First, the
construction of dynamic multi-factor model for inflation forecasting for the euro area,
driven by inflation expectations and second, the comparison of the inflation
expectations-based inflation forecasts and forecasts of inflation using the target variable
itself. In the master’s thesis I investigate and provide an answer to the following key
empirical questions:

• Do inflation expectations embed information that has a predictive power for the realized
inflation?

• Is the forecasting performance of the inflation expectations driven factor forecasting model
better than the one using the autoregressive model for inflation forecasting?

• Does the forecasting accuracy of inflation improve when using the inflation forecasts
through inflation expectations compared to the forecasting model driven by the variable
of interest itself?

In addition, one of the important sub-questions is the identification of possible different
groups of macroeconomic variables that are the most informative about the expected inflation
and macroeconomic segments that could be most informative about the future HICP inflation.

In this thesis I model the euro area market-based inflation expectations extracted from the
zero-coupon ILS curve and study whether this information can be used in euro area
inflation forecasting in particular on the medium- to long-term. The fixed swap rate over the
relevant horizon is indirectly disclosed in the quoted ILS rate, indicating the expected
inflation on the market. Nevertheless, the ILS rate is composed of two main components.
First, inflation expectations, and second, the inflation risk premium. The latter represents
the compensation for risk related to inflation uncertainty and makes the extraction of
long-term inflation expectations from financial instruments further complicated as it is
unobservable, however it can be estimated using the affine term structure model.

To decompose the forward ILS-implied inflation rate into inflation expectations and
inflation risk premium I estimate the Gaussian Affine Term Structure (GATS hereinafter)
model. Affine Term Structure (ATS hereinafter) models are broadly used in the literature, as
the expectations about the future events in the market are embedded in the term structure.
ATS models are, for instance, used to investigate what is the effect of monetary policy on
the term structure of interest rates (Ang & Piazzesi, 2003; Bauer, 2011; Beechey & Wright,
2009), to infer inflation expectations of the market using break-even inflation rates
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(Christensen, Lopez, & Rudebusch, 2010) and for the assessment of the non-conventional
central bank interference effects during the financial crisis (Christensen, Lopez, &
Rudebusch, 2014).

However, in the estimation of the ATS model parameters numerical challenges might occur
(Ang & Piazzesi, 2003; Kim, 2008; Christensen, Diebold, & Rudebusch, 2011). To
overcome these issues, different methods were constructed (Hamilton & Wu, 2012; Joslin,
Singleton, & Zhu, 2011). In this thesis I adopt the Joslin, Singleton and Zhu (2011)
canonical representation of the GATS model and I use their algorithm for maximum
likelihood estimation, which allows for a computationally efficient estimation of the model.
In their model observable pricing factors in the form of the collection of yields can be used
instead of latent factors, which are, on a standalone basis or in a combination with the
observable factors, used in the standard formulations of the ATS models (Diebold,
Rudebusch, & Aruoba, 2006; Duffee, 2011b; Kim & Wright, 2005).

Using Joslin, Singleton and Zhu (2011) approach I decompose the ILS yield curve to the
expected inflation under probability measure P and to the inflation risk premium component.
The decomposition is performed at 1-, 2- and 3-year horizons for the period from July 2004
to December 2019. I assume that the pricing factors are the first three principle components
of the euro area zero-coupon ILS curve and that underlying factors included in the model are
governed by unrestricted VAR(1) dynamics. After GATS model estimation I use the obtained
maximum likelihood parameters to calculate first, the expected value of future inflation under
Q, which is represented as model-implied forward rate, and second, inflation expectations
under P, which are calculated using dynamic forecasting of the corresponding factors h-
periods ahead, with h being the expected future inflation horizon of interest. Inflation risk
premium for a particular horizon is then calculated as the spread between the two.

In the next step of my research I identify the underlying factors that drive inflation
expectations at different expectation horizons and investigate whether this information can
be useful in inflation forecasting using the dynamic factor model. From a large dataset of
possible predictor variables that cover the most important macroeconomic segments, I
extract the most relevant factors using the Three-Pass Regression Filter (3PRF hereinafter)
procedure developed by Kelly and Pruitt (2015), which is an extension of partial least
squares. Using the 3PRF procedure, I estimate the relevant factors that drive the movement
in the expected inflation obtained from the decomposition of the ILS curve and I use them
in inflation forecasting. The number of factors selected in the forecasting regression is
based on the relative mean-square-forecasting-error comparing the forecasting accuracy of
the model using the estimated factors only versus the benchmark autoregressive model.
Using the underlying factors that drive the variable of interest instead of predictor variables
themselves reduces the so-called ‘curse of dymensionality’ that occurs when using the large
dataset approach in time series forecasting. Many methods were developed to address and
reduce these difficulties (Kelly & Pruitt, 2015; Bulligan, Marcellino, & Venditti, 2015; Zou
& Hastie, 2005; Tibshirani, 1996; Bai & Ng, 2008).
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In my initial model specification, the inflation forecasts are obtained using the 3PRF factors
estimated using expected inflation as a proxy variable. For each of the horizons considered,
three different models are estimated. One with an autoregressive term only (the benchmark
model), one with an autoregressive term and factors, and the last model with factors only. I
compare the resulting pseudo-real-time forecasts from different model specifications to the
euro area HICP inflation. In the forecasting evaluation section, I report the outcomes of the
OOS forecasting evaluation of competing models. The OOS forecast performance of various
models are compared based on the root-mean-square-error value, which is the widely used
measure for the model forecasts comparison in the literature (Stock & Watson, 1999; Duffee,
2011a; Ciccarelli & Osbat, 2017).

My findings are that comparing forecast accuracy using different model specifications, ILS
rates without inflation risk premium obtained from the ILS curve decomposition dominate
for all of the horizons considered. Inflation expectations themselves exhibit the best
forecasting performance, as they provide the lowest OOS prediction
root-mean-square-forecasting-error (RMSFE hereinafter). It turns out, that expected
inflation is the best predictor of inflation on the medium-term.

In addition, from my initial analysis I conclude that using the factors constructed from the
relevant predictors of the expected inflation only improves inflation forecasts relative to the
AR(1) benchmark model. Even though the forecasts obtained using this model specification
offer no improvement over ILS rates, the results suggest there is a predictive content for
the inflation in the factors obtained from the 3PRF estimation using inflation expectations
as a proxy variable. Therefore, I extend the analysis and investigate the role of inflation
expectations for the purpose of forecasting inflation further.

The key idea is to evaluate the performance in forecasting inflation indirectly through
inflation expectations. I construct and estimate two additional models which are the
modifications of the initial model that I use. In the first model modification I produce
inflation expectations forecasts using the same proxies from the 3PRF procedure as in the
initial approach. The difference from the primary approach is in the dependent variable,
which is no longer realized yearly inflation, but expected inflation for different horizons. In
the second model modification I construct the inflation forecasts based on the factors
estimated with the 3PRF procedure as well, however as a proxy I use the HICP inflation
instead of inflation expectations as in the initial modelling approach and in the first model
modification.

The key at this point is to infer which of the modified models results in a better medium-
term pseudo-real-time OOS forecasts of the realized yearly euro area seasonally-adjusted
HICP inflation. I compare the accuracy of inflation forecasts calculated through inflation
expectations forecasts and inflation forecasts themselves using the RMSFE as a metric of
comparison. In addition, I investigate what is the macroeconomic information embedded in
expected inflation. I identify the macroeconomic segments that carry most of the medium- to
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long-term information about inflation expectations and compare them to the segments most
informative above the HICP inflation.

My findings are that pseudo-real-time OOS forecasts of inflation through forecasting
expectations are more stable than inflation forecasts using the factors obtained from the
target variable itself, resulting in a better forecasting precision for all of the horizons
considered. I support my findings with different starting points to initiate OOS forecasts. I
argue that forecasts of inflation through inflation expectations obtained from the standard
Kelly and Pruitt (2015) regression could be used as an important additional information for
policy makers, for the policy implications estimation and as a robustness check to central
bank’s own inflation projections.

To summarize, the main result and the contribution of my thesis is that on the medium- to
long-term inflation forecasts through forecasting expectations are on average more accurate
and reliable compared to the inflation forecasts using the estimated 3PRF factors from the
inflation itself. According to my knowledge these results are new and have not been
discussed in the literature before.

The thesis is structured as follows. First section describes inflation expectations, inflation
risk premium and presents the procedures that can be used to measure the expected
inflation. Section 2 provides theoretical overview of ATS models and extends this
framework to the case of inflation-linked swap curve. In this section the GATS model is
implemented and inflation expectations are derived from the ILS curve. Section 3 gives an
overview of time series forecasting using many predictor variables and in detail describes
the 3PRF estimation procedure. Section 4 describes the inflation forecasting framework,
followed by data description and identification of the relevant factors that drive the inflation
expectations. Additionally, this section consists of the following. First, the resulting
inflation forecasts based on inflation expectations factors. Second, the intermediate results
of inflation expectations forecasting using expected inflation as a proxy variable when
estimating the factors using the 3PRF procedure. Next, the inflation forecasts constructed
applying the factors estimated with the 3PRF procedure using inflation itself as a proxy
variable. Finally, a comparison of pseudo-real-time OOS forecasts of inflation through
forecasting expectations and OOS forecasts obtained from the variable of interest itself.
The results of the comparison are supported with the robustness check in this section as
well. Summary of the most important results and concluding remarks are provided in the
conclusion.

1 INFLATION EXPECTATIONS AND INFLATION RISK PREMIUM

Inflation expectations play an important part of modern central banking practice. Their role
in the effective implementation and transmission of monetary policy is critical, as they
indicate the confidence of the public in the central bank’s capability to deliver on its price
stability mandate. Central banks use measures of inflation expectations as one of the key
indicators (besides headline inflation over a medium-term) to monitor the effectiveness of
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their policy changes in achieving inflationary target. There exists a close link between
monetary policy effectiveness and inflation expectations, therefore, the latter provide
valuable evidence about the credibility of a central bank in terms of how well it is meeting
its inflation objective. In addition, inflation expectations enter the New Keynesian Philips
curve, which represents one of the key relations in the modern monetary policy toolkit.
Most importantly, inflation expectations can be used as a cross-check on central bank’s own
macroeconomic projections of the inflation outlook, which influences its monetary policy
decisions.

An important question related to formation of inflation expectations is that of expectations
anchoring. There is no widely agreed-upon definition regarding the concept of anchored
inflation expectations. Expected inflation is said to be anchored, if the mean forecasts of
inflation across agents remain stable and close to the central bank’s inflation target,
especially in the long run. The literature suggests that inflation expectations should be
centered around the target over a sufficiently long horizon and therefore should not react to
transitory fluctuations in short-term inflation expectations or in actual inflation. When
expectations are poorly anchored, particularly shocks in economic activity, monetary policy
and food price inflation move the expectations, with more sharp response on the short-term
than on the long-term (Clark & Davig, 2008).

On the other hand, when expectations are strongly anchored, inflation returns quickly to its
pre-shock level. Thus, well-anchored inflation expectations in the medium- to long-term
perspective are the key interest of policymakers as this is the precondition for effective
monetary policy actions. To ensure well anchored expected inflation price stability needs to
be delivered by implementing systemic and consistent policy action. Better anchoring of
long-term inflation expectations is associated with the rise in central bank transparency and
the presence of an inflation targeting regime (ECB, 2018, pp. 73-86; ECB, 2011, pp. 73-86;
Bems, Caselli, Grigoli, Gruss, & Lian, 2018, pp. 5-12).

Inflation dynamics is affected by inflation persistence, the slope of the Phillips curve and its
responsiveness to other shocks. Inflation persistence is defined by the length of the effects
of a shock to the inflation, whether the effects of the shock persists, or if reversion back
to inflation trend level is quick (Mishkin, 2007). Inflation should exhibit low persistence
and inflationary shocks should have only temporary effects. Temporary shocks to volatile
components of inflation tend to affect the expected inflation particularly on the short period.
Expectations need to be monitored, as temporary shocks boost the inflation, which might
lead to the longer-lasting effects on inflation through their impact on domestic price and
wage setting. With respect to that, the medium- to long-term inflation expectations present
a more relevant measure for the purpose of monetary policy, as they have turned out to be
broadly insensitive to the temporary shocks.

The longer the horizon of the expectations, the more they reflect the level of credibility,
accorded to monetary policy by economic agents, regarding central bank’s commitment to
achieving price stability. Benati’s (2008) research results on a sample of advanced economies
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suggested the existence of the relation between monetary regime and inflation persistence.
If inflation expectations are well anchored, the view on the future inflation should be, on
average, close to the inflation target pursued by the monetary authority. Price stability of the
euro area is defined as a year-on-year HICP inflation rate of below, but close to 2 % over the
medium-term, which sets the goal of European Central Bank (ECB hereinafter) to maintain
the euro area inflation rates on this level. This definition presents a prime focus for inflation
expectations in the euro area and provides a guide for markets (ECB, 2018; García & Werner,
2018).

In the period after the global financial crisis of 2008-09, inflation has remained persistently
low such that the question of de-anchoring of inflation expectations has attracted attention
among policymakers and academics in evaluation of the effectiveness of unconventional
monetary policy measures (Ciccarelli & Osbat, 2017; Coibion & Gorodnichenko, 2015;
García & Werner, 2018; Kose, Matsuoka, Panizza, & Vorisek, 2019). In their survey,
Ciccarelli and Osbat (2017) provide evidence of weak anchoring of inflation expectations in
the euro area in the period after 2014 and report that the euro area has experienced the most
pronounced de-anchoring of inflation expectations from the central bank target. This
de-anchoring followed a protracted slowdown of economic activity after the onset of the
global financial crisis of 2008 and stabilized only after the implementation of the ECB
large-scale Asset Purchasing Programme (APP) in 2015. Despite significant monetary
expansion, however, inflation expectations had not anchored to the ECB target of inflation
below but close to 2 %, and had remained persistently below that level.

García and Werner (2018) report that inflation expectations anchoring has weakened due to
the persisting period of low and below-target inflation in the euro area since 2013. Their
results show, that there is a significant impact of inflation news on inflation expectations. As
reported in Kose, Matsuoka, Panizza and Vorisek (2019) there exists a positive relationship
between anchoring and fiscal sustainability proxies and institutions that strengthen
sustainability.

1.1 Inflation risk premium
One way of measuring the inflation expectations is the model based approach, in more
detail explained in next section, where the expected inflation is derived from prices of
instruments that are traded in financial markets. However, the measures derived from
financial instruments based on the market trades are affected by two important unobserved
components, namely expected inflation and the time-varying Inflation Risk Premium (IRP
hereinafter). All market-based indicators of inflation expectations incorporate an IRP
component in order to compensate investors for the risks surrounding inflation expectations
over the forecast horizon. It can be interpreted as a correction that reveals central
expectations and, additionally, informs about which inflation outcomes investors care about
most.

Investors bear the risks surrounding their internal estimates of inflation over the forecast
horizon and IRP compensates them for those risks that surround their baseline inflation
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expectations. If investors believe that the future inflation will be stable, inflation
expectations remail well anchored and consequently a lower IRP is requested (ECB, 2011;
Camba-Mendez & Werner, 2017; ECB, 2018). Due to the IRP component, the signals about
expected inflation might be misinterpreted. From this perspective, survey-based measures
of inflation expectations explained below might be more backward-looking and not
necessarily linked to actual economic behavior.

A substantial research literature covers the analysis of IRP using the arbitrage-free affine term
structure (ATS hereinafter) models. Among others, Chernov and Mueller (2008) estimated a
model using survey-based inflation forecasts, Chen, Liu and Cheng (2005) used a two-factor
model to represent real and nominal yields and Ang, Bekaert and Wei (2008) estimated
the inflation data using a regime-switching arbitrage-free ATS model. In addition, Joyce,
Lildholdt, and Sorensen (2010) used the ATS model to decompose nominal forward rates into
inflation expectations and IRP, and Camba-Mendez and Werner (2017) constructed model-
free and model-based indicators for IRP in the euro area and in the US.

1.2 Inflation expectations measures
There is no uniform approach to measuring inflation expectations. Measures of inflation
expectations can be classified into two groups. First, survey-based measures and second,
model-based measures. Central banks use both, model-based, as well as survey-based
measures of expected inflation, where the latter act more as a complementary source of
information on the future inflation.

1.2.1 Survey-based measures of inflation expectations
In the first group of measures survey-based evidence is used, whereby either households or
firms report their (subjective) views about the level of inflation in some future period, or
surveys of professional forecasters who report their internal projections of inflation.
Survey-based forecasts of expected inflation cover both the short- and medium- to
long-term period and incorporate predictions of future inflation as seen by consumers or
professionals (academia or financial institutions), reported in surveys such as ECB Survey
of Professional Forecasters or Consensus Economics.

The advantage of survey-based measures is the capability to capture opinion of different
types of agents, as participating agents in the survey are financial and non-financial
institutions. However, with inflation movement and absolute value of the change in inflation
there tends to be a considerable disagreement about the future outlook between them
(Mankiw, Reis, & Wolfers, 2003). Additionally, the inconvenience of survey-based
measures is that the frequency of surveys is fairly low, at quarterly or at best, monthly
frequency, which makes them of limited use for policymakers. Nevertheless, survey-based
measures of inflation expectations help with identification of expected inflation and are
usually used in modelling in addition to the second group of inflation expectations measures
as a robustness check.
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As shown in Camba-Mendez and Werner (2017), using the model-free (survey-based)
approach, IRP can be calculated as:

IRP = π
ILS−E(π), (1)

where π ILS denotes the ILS rate as quoted in the market and E(π) inflation forecasts as
reported in the surveys. The IRP can be computed as the spread between the two.

1.2.2 Model-based measures of inflation expectations
The second group of measures consists of inflation expectations extracted from financial
markets using the model-based approach, covering the short- and medium- to long-term
horizons. Inflation expectations are embodied in financial asset prices and can be obtained
from the prices of instruments that are traded in financial markets and linked to future
inflation outcomes such as ILS rates, break-even inflation rates, inflation-linked bonds and
inflation options. All of the mentioned instruments are inflation-linked and can thus help
monitor developments in short-term inflation expectations as well as provide meaningful
information on longer-term inflation expectations (ECB, 2018, pp. 73-86). Model based
measures are available at higher frequency and for a more extensive range of horizons than
survey-based measures. As the trades happen continuously, market or model based
measures provide a quicker indication of the potential shift in the inflation outlook
compared to the survey-based measures (Kose, Matsuoka, Panizza, & Vorisek, 2019;
Grothe & Meyler, 2018).

In this thesis I use the model-based approach to obtain the inflation expectations, derived
from the ILS rates. Zero-coupon ILS rates are the most commonly traded inflation derivatives
in the euro area. They incorporate information about private sector inflation expectations.
The swap agreement is such that one of the counterparties pays a fixed rate (the ILS rate)
π ILS, which is agreed in advance, and the other pays a floating rate, the realisation of π ,
which is linked to the inflation index over the period of the swap. At the maturity of the
swap contract only the net cash flows are exchanged, which are calculated as the difference
between the fixed-leg rate and the realized inflation rate applied on the notional value of the
contract (Grothe & Meyler, 2018; Camba-Mendez & Werner, 2017).

The construction of the contract is such that over the relevant horizon the fixed swap rate is
indirectly disclosed, indicating inflation expectations on the market. ILS rate for maturity n,
denoted as π ILS

t (n), includes the compensation for the expected changes in the price level.
Following derivation and notation of Camba-Mendez and Werner (2017) the ILS rate is set
to equalise the cash flows of the inflation beneficiary and inflation payer:

(1+π
ILS
t (n))n−1 = EQ

t

[
Pt+n

Pt
−1
]
, (2)

with π ILS
t (n) being the market-quoted discretely compounded inflation swap rate and

EQ
t

[
Pt+n
Pt
−1
]

expected changes in the price level. Under the assumption of continuously
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compounded inflation πt = ln( Pt
Pt−1

) and ILS rate yπ
t,n = ln(1 + π ILS

t (n)), equation from
above can be re-arranged to:

yπ
t,n =

1
n

log

(
EQ

t

[
exp

(
n

∑
j=1

πt+ j

)])
. (3)

The ILS rates for maturity n embed the future inflation expectations over the period t to t+n.
However, ILS rates are not a perfect measure of inflation expectations as they embody first,
the expected inflation, and second, the inflation risk premium related to inflation uncertainty
as a compensation for risk.

In the model-based approach, the IRP can be calculated as the difference between the future
inflation expectations under Q-probability measure and future inflation expectations under
P-probability measure. The price of future payoffs of the ILS contract under the risk-neutral
measure should be the same, hence:

EQ
(

π ILS

1+ r

)
= EQ

(
π

1+ r

)
, (4)

with the realized inflation π , the ILS rate π ILS and risk-free rate r. From the fact that first,
ILS rate is set in advance and stays the same after the realisation of π (implying EQ(π ILS) =

π ILS), and second, because risk-free rate is deterministic, it follows that π ILS = EQ(π).

Inflation expectations embodied in ILS under Q and under P can be extracted using the affine
term structure model. With the assumption of no arbitrage opportunities remaining in trading
ILS rates at different maturities, the IRP using the ATS model approach can be calculated as
the difference between the inflation expectation under both of the probability measures:

IRP≡ EQ(π)−EP(π). (5)

Grothe and Meyler (2018) showed that survey-based and market-based inflation
expectations are informative sources for forecasting future inflation developments in the
short run, having significant predictive power compared to statistical benchmark models.
Ang, Bekaert and Wei (2007) also reported that survey-based measures of inflation
expectations produce non-negligibly accurate inflation forecasts, however Trehan (2015)
documents that the forecasting performance using professional inflation survey has
deteriorated.

2 AFFINE TERM STRUCTURE MODELS OF THE YIELD CURVE

In this thesis the model based approach of measuring inflation expectations is adopted,
using the Gaussian Affine Term Structure model (GATS hereinafter). One of the founding
papers covering ATS models are papers from Vasicek (1977) and Cox, Ingersoll and Ross
(1985). Among other they proposed the tractable pricing formulas of instantaneous short
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rate rt = ρ0 + ρ ′1,X Xt as an affine function of unobserved N-dimensional state vector
Xt = X(t) = (X1(t),X2(t), ...,XN(t)). ATS models still remain one of the most popular
specifications in the literature. They have been used to address a broad range of questions,
as the term structure embodies the expectations about the future events in the market. This
information can be extracted and used to predict the effects on the yield curve caused by the
changes in the underlying variables, however, usually only a few factors drive the term
structure in affine models (Duffee, 2011b).

In ATS models estimation is usually performed using the maximum likelihood estimator
(MLE hereinafter). MLE is asymptotically efficient. However, the disadvantage of this
method is the numerical challenge in the estimation of the parameters of the model that can
occur, especially when the number of parameters to be estimated is large and if the
relationship between yields and parameters is non-linear. Due to their latent nature, the
underlying factors might rotate during the estimation of a canonical model. This results in a
potentially badly behaved likelihood surface with multiple likelihood maxima. Despite
being obtained from the same data, model and estimation method, the results from the
modelling can turn out to have identical fit to the data with different yields decompositions
and consequently different implications for economic behavior. Therefore, affine models
estimation can be problematic from the convergence point of view (Ang & Piazzesi, 2003;
Kim, 2008; Christensen, Diebold, & Rudebusch, 2011).

Various methods were constructed in order to overcome these issues. Hamilton and Wu
(2012) proposed the minimum-chi-square estimation method, Christensen, Diebold and
Rudebusch (2011) introduced the model which offered better predictive performance than
previous specifications with convenient representation of level, slope and curvature factors,
i.e. Nelson-Siegel interest rates model, which is an arbitrage-free ATS model. Furthermore,
better behaviour of likelihood functions and hence improvement in maximum likelihood
estimation was also achieved by Joslin, Singleton and Zhu (2011), who used the canonical
representation of the ATS models, which is a method maximally flexible subject only to
constraints necessary for econometric identification. In addition, Joslin, Singleton and Zhu
(2011) method and the one from Hamilton and Wu (2012) can be applied to GATS models
only.

GATS models are a special type of ATS models, where yields are presented as affine
functions of common factors with Gaussian dynamics. The underlying common factors
should, however, embody all joint variation in yields. In discrete time framework the joint
distribution of factors and yields in GATS models is assumed to be multivariate normal with
constant conditional variances. These models represent the fundamental tools for empirical
research in macroeconomics and finance (Hamilton & Wu, 2012).

GATS models are of large use when analyzing the relations between yields on assets of
different maturities for the purposes of using a no-arbitrage framework (Christensen,
Diebold, & Rudebusch, 2011; Ang & Piazzesi, 2003). Nevertheless, in canonical Gaussian
dynamic term structure models the conditional forecasts of the pricing factors are invariant
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to the imposition of no-arbitrage restrictions (Duffee, 2011a). The efficiency of the model
estimation does not increase and forecast accuracy of the model is not affected, as the
dynamics of the yield curve factors under physical (empirical) probability measure P is not
affected by the constraints imposed under the so-called risk-neutral probability measure
(also called an equivalent martingale measure or equillibrium measure) Q. The concept of
the two is in more detail described in the section that follows.

2.1 Probability measures Q and P
The risk-neutral measure is a fundamental concept of modern financial mathematics. The
Q-distribution is essentially a skewed P-distribution, with more probability mass allocated
to the negative outcomes, as risk averse agents pay more attention to the undesirable states
of the world. On the other hand, the price of the underlying asset itself evolves under the
physical probability measure. If at a given point in time the financial market participants
are more risk averse, then more weight will be given to unfavorable states of the world.
There is no exact answer on whether the mean of the Q-distribution is higher or lower than
P-distribution and which situation is more unpleasant for the risk averse financial market
participants.

The risk-neutral probability measure proved to be necessary and sufficient for the concept
of absence of arbitrage in the theory of market models with finite number of assets. The
assumption of the no-arbitrage assures the existence of the equivalent martingale measure Q
(Harrison & Kreps, 1979; Nyholm, 2019; Rásonyi, 2004). Joslin, Singleton and Zhu (2011)
model is used in this thesis due to the possibility to decompose the yield curve under Q and
under P. The implementation and details of the model are discussed below.

2.2 JSZ decomposition of GATS models
In this thesis the Joslin, Singleton and Zhu (2011) approach is used, which enables the
decomposition of the underlying yield curve to time series under the risk-neutral probability
measure and physical probability measure. Their algorithm for maximum likelihood
estimation follows the step-wise estimation approach and converges to the global optimum
almost instantaneously, allowing for a computationally efficient estimation of GATS
models.

Standard formulations of the affine term structure models use unobservable risk factors or
combination of latent and observable ones (Diebold, Rudebusch, & Aruoba, 2006; Duffee,
2011b; Kim & Wright, 2005). However, in the canonical form model representation by
Joslin, Singleton and Zhu (2011, pp. 926-939) observable factors can be used. Invariant
transformations are applied to the pricing factors, which allows for the replacement of latent
factors by the observable pricing factors in the form of the collection of yields. Observable
portfolios of yields can be formed with different sets of pricing factors, with each spanning
different spaces, as all can be rotated into a proposed canonical form GATS model.
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Linear combination of yields can be formed by applying a weighting matrix W to the yield
curve data. Yield curve factors under Q-measure can be thus represented as:

X =Wy, (6)

with observable portfolios of yields X and yield curve data y. The underlying assumption is
that N linear combinations of observed yields are priced exactly, with N being the number
of unobserved pricing factors. As long as the pricing factors matrix X is measured without
error, unconstrained Ordinary Least Squares (OLS hereinafter) within canonical GATS
model gives the maximum likelihood estimates of conditional P expectations of the pricing
factors X .

The assumed factor dynamics under Q and P is the following. The vector of the modelled
yield curve factors at time t is denoted as Xt . However, following Joslin, Singleton and
Zhu (2011), the Vector Autoregressive (VAR hereinafter) models are specified in difference
form. Under both, the empirical measure P and the pricing measure Q, the dynamics of Xt is
governed by VAR processes of order one:

∆Xt = µ
Q
0,X +KQ

1,X Xt−1 +ΣX eQt , eQt ∼ N(0,1N), (7)

∆Xt = µ
P
0,X +KP

1,X Xt−1 +ΣX ePt , ePt ∼ N(0,1N). (8)

Excluding the idiosyncratic components, the relation between the risk-free short rate rt and
the state vector Xt can be written as:

rt = ρ0,X +ρ
′
1,X Xt . (9)

Given N yield factors, the construction of the entire time-t yield curve can be constructed by
setting three parameters only. First, the long run mean of the short rate under the Q-measure
(rQ∞ ), second, λQ, which denotes the mean reversion speed of the yield factors under Q
(eigenvalues of KQ

1,X ), and third, the conditional covariance matrix of yield factors from the
VAR model ΣX . The underlying assumption here is that ΣX is the same under both of the
probability measures, Q and P. Parameters µ

Q
0,X , KQ

1,X , ρ0,X and ρ1,X are explicit functions
of (λQ, rQ∞ , ΣX). Under the assumption of stationarity of the VAR model, eigenvalues of
KQ

1,X specify how fast is the convergence to a steady-state, hence expressing the degree of
persistence of the process.

The continuously-compounded yields on a m-maturity zero-coupon bond, denoted by yo
t,m

can be represented as a linear function of the underlying factors in a form of an affine function
of the state Xt :

yo
t,m = Am(Θ

Q
X )+Bm(Θ

Q
X )Xt +ηm,t , ηm,t ∼ N(0,σ2

η). (10)
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The model-implied component of yields yt,m can be thus represented as:

yt,m = Am(Θ
Q
X )+Bm(Θ

Q
X )Xt , (11)

with coefficients (Am,Bm) that satisfy standard Ricatti equations.

Using this approach, the likelihood function can be partitioned in a convenient way. Since X
are observed factors, the parameters of the P-conditional likelihood function of the observed
yields can be separated to the ones that govern the conditional distribution of observed yields
(Q-measure parameters) and the ones that influence the conditional P density of the pricing
factors Xt (P-measure parameters):

f (yo
t |yo

t−1;Θ) = f (yo
t |Xt ;λ

Q,rQ∞ ,X
θm,ΣX ,)︸ ︷︷ ︸

Conversion of factors into yields

× f (Xt |Xt−1; µ
P
0,X ,K

P
1,X ,ΣX)︸ ︷︷ ︸

Time−series evolution of the factors

, (12)

with observed yields yo
t , observed factors Xt = Xo

t ∈ RN , and Xθm being the conditional
distribution of measurement errors yo

t − yt , for some θm ∈ Θm. In such parametrization, the
covariance of innovations is the only link between the two parts of the conditional density
(Joslin, Singleton, & Zhu, 2011). The implementation of the GATS model on ILS curve is
discussed below.

2.3 Affine term structure of ILS rates
Inflation expectations in the euro area can be, as already mentioned, derived using the survey-
based measures or can be extracted from financial markets information using the model-
based approach. In this thesis the market-based inflation expectations are obtained from
the market prices of euro area zero-coupon ILS rates. To model the ILS curve, I use the
arbitrage-free GATS model. Using this model, I decompose ILS rates to obtain the inflation
expectations under P and compare them to the model implied ILS forward rate curve under
probability measure Q, as well as to gauge the size of the inflation risk premium.

For the decomposition of the ILS yield curve to inflation expectations and inflation risk
premium I adopt the Joslin, Singleton and Zhu (2011) approach. This approach is appropriate
as affine models in general only characterize the Q-dynamics, but for the term premium
decomposition the market prices of risk are needed (P-dynamics). Instead of using the latent
factors, the model is rotated to obtain the model that depends on principal components Xt ∈
RN of the ILS rates as underlying factors.

As in Camba-Mendez and Werner (2017) I assume that the pricing factors Xt are the first
three principle components of the euro area zero-coupon inflation swap curve. The
underlying factors included in the model are governed by unrestricted VAR(1) dynamics, as
in (7) and (8), and represent linear combinations of the collection of yields yt . Hence, for
any full-rank matrix W ∈ RN×J , with N being the number of principle components and J
number of maturities of ILS rates that constitute the ILS curve, Xt = Wyt denotes
N-dimensional set of portfolios of observed yields, where W contains the weights obtained
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from the Principal Components Analysis (PCA hereinafter) of the observed ILS rates. The
model-implied yields on a zero-coupon ILS rate yπ

t,m of maturity m and inflation πt are
assumed to be linear functions of the pricing factors Xt :

πt = ρ0,X +ρ
′
1,X Xt , (13)

yπ
t,m = Am(Θ

Q
X )+Bm(Θ

Q
X )Xt . (14)

After the estimation of the GATS model, the obtained maximum likelihood parameters allow
for the calculation of expected value of future inflation under Q and under P. In order to use
the Joslin, Singleton and Zhu (2011) approach, the underlying assumptions are that pricing
errors are normally distributed and that pricing factors are observed without measurement
errors, which allows to estimate the model without using the Kalman filter, which is efficient,
but can be computationally very demanding.

Inflation expectations under Q can be represented as model-implied forward rates,
calculated using the estimated parameters from the GATS model. On the other hand,
inflation expectations under the physical measure can be obtained by dynamic forecasting
of the corresponding factors (following a VAR(1) process) h-periods ahead, where h
denotes the expected future inflation horizon of interest. Inflation risk premium at a given
horizon can be then constructed as the spread between the expected value of the future
inflation under the risk-neutral measure (fitted forward rate) and expected value of future
inflation under the physical measure (expected inflation).

2.4 JSZ model implementation
I perform the decomposition of euro area zero-coupon ILS curve to inflation expectations
under P and IRP for the period from July 2004 to December 2019 for three different
horizons: one, two and three years, h ∈ {1,2,3}. The estimation of the model is based on a
set of ILS rates obtained from Bloomberg on the intra-day frequency over the period
considered, for different maturities m ∈ {1,2,3,4,5,6,7,8,9,10,12,15,20,25}.
Pre-decomposition I aggregate daily time series of ILS rates to a monthly level, which
results in the sample covering data from 2014:M7 to 2019:M12. Additionally, as affine
models do not capture the seasonal patterns embedded in ILS rates quoted in the market, I
adjust the ILS rates prior to modelling to replicate the ILS curve construction approach
following Camba-Mendez and Werner (2017).

I perform the PCA on the euro area zero-coupon ILS curve and store the first three principle
components of the curve and their corresponding weights W and use them in the further
processing. On the calculated principle components I use the unrestricted VAR(1) to obtain
the eigenvalues. By sorting the latter in descending order I obtain the λQ parameter, which
enters the numerical optimization constructed as in Wu and Xia (2016). With grid search
I calculate the optimal KQ

1,X . By running the Joslin, Singleton and Zhu (2011) procedure
with the required inputs I compute the Q-likelihood and P-likelihood and estimate all the
corresponding Q- and P-parameters of the GATS model.
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In Figure 1 the yields for a selected subset ms ∈{1,2,3,5,7,10,12,15} of all of the maturities
m from the lowest to the highest line (with some exceptions of cross-overs when the yield
curves are inverted) are plotted. As observed the dynamics of ILS rates for various maturities
is similar to the realized seasonally-adjusted HICP inflation, however their level is different.
HICP inflation in the euro area was quite volatile throughout the period under consideration.
Two declines particularly stand out, the steaper one from the middle of 2008 until the middle
of 2009, where the inflation rate decreased from levels nearly 4 % to around -0.62 %, and
the other from approximately 2.9 % in the beginning of 2012 to -0.4 % in the first quarter of
2015. In 2016:Q2 inflation rates were strongly increasing, growing from levels around -0.17
% to 1.95 % in just two quarters. The last prominent peak occurred in the last quarter of
2018, reaching roughly 1.9 %. Since then the inflation rate series trend movement is mostly
downward, not fulfilling the ECB target of being close to, but below the price stability target
of 2 %.

Figure 1: Time series of swap yields
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Source: Own work.

In Figures 2-4, the decomposition of one-year forward ILS rate for horizons between one
and three years (denoted 1y1y, 1y2y and 1y3y, respectively) is presented. For a more clear
comparison the derived inflation expectations for all of the considered horizons are presented
in Figure 5 together with the realized seasonally-adjusted HICP inflation. The graphs display
some of the key features of inflation expectations and the related inflation risk premium in the
euro area. The euro area 1y1y ILS rate reached a trough in the first quarter of 2015 (at around
0.63 %), and both, 1y2y and 1y3y ILS rate, reached the bottom in the third quarter of 2016
(approximately 0.82 % and 1.03 %, respectively). Since then, the ILS rates had an increasing
trend until the third quarter of 2018, when they started to decline again, approaching their
deepest levels in the last period of the considered sample.
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In the time period considered, the expected inflation had been consistently below the ECB
target. At a longer expectation horizon of three years, the expected inflation declined
significantly less, but also remained persistently below 2% and stabilized at below 1.5%
after 2012. Since mid-2016, the measures of inflation expectations for all of the horizons
considered experienced a recovery and had an upward trend up until the second half of
2018, which could have been driven by the global economic cycle. Since then, inflation
expectations were declining again. Nevertheless, in the last quarter of 2019 a slight increase
in inflation expectations can be observed again. The overall movement of inflation
expectations over all of the horizons considered is similar in its direction, but different in its
volatility. The shorter the horizon, the higher the volatility of inflation expectations.

The surface between model-fitted ILS rates and inflation expectations shows the inflation
risk premium which represents the inflation protection. Inflation risk exposure increases with
maturity, which implies an increasing IRP over the increasing forecast horizon. On average,
1y1y IRP has been around 0.07 %, 1y2y IRP about 0.23 % and 1y3y IRP approximately 0.44
%.

Figure 2: Expected inflation and the inflation risk premium at 1-year horizon
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Figure 3: Expected inflation and the inflation risk premium at 2-year horizon
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Figure 4: Expected inflation and the inflation risk premium at 3-year horizon
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Figure 5: Euro area expected inflation at 1- to 3-year horizon
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Note: 1y1y−1y3y denote expectations of yearly inflation 1- to 3-years ahead, respectively.

IRP component of the ILS curve is far more volatile than inflation expectations, accounting
for a significant portion of the volatility in inflation-linked swap rates. It can be observed
that the ILS rates are prone to move with IRP, as inflation expectations do not fluctuate as
much. From the resulting decomposition to inflation expectations and IRP it is evident that
most of the fall in ILS rates happened due to the latter component. Similarly, in the last
period of decreasing ILS rates, most of the decline occurred because of the IRP component.
In addition, as can be observed, the volatility of inflation compensation at longer horizon is
almost fully driven by the IRP.

The IRP can be positive or negative depending on economic circumstances. If the inflation
is positively skewed, this implies that the risk of high inflation is perceived to be higher than
that of lower inflation. These asymmetries in inflations risks contain important information
for premia developments interpretation (Garciá & Werner, 2010).

Results for all of the horizons considered suggest that one-year ahead and two-year ahead
IRP turned negative around the last quarter of 2014 and have been persisting in negative
numbers thereafter. Similar movement can be observed in three-year ahead decomposition
of ILS rates, except for the short period from the beginning of 2017 until the last quarter of
2018 when IRP turned out to be positive again. However, for all of the horizons considered
IRP remains in negative numbers at the end of the observation period, implying a downside
skewness of inflation risk as observed by market participants.

Negative risk premium from the mentioned period forward also supports recent findings in
the literature, which emphasize the possibility that the sign of IRP has changed. The cause of
a decline in IRP to lower levels or even negative ones could reflect growing fears of the global
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economy slowdown, weakly perceived inflation risks. inflation uncertainty, or an expectation
of a deflationary recession among investors. Following Camba-Mendez and Werner (2017),
negative IRP can be the result of deflation fears, which impact the inflation expectations
specifically in the short run.

3 TIME SERIES FORECASTING USING MANY PREDICTOR
VARIABLES

Expected development of the state of the economy and its real-time assessment is of
substantial value for economic agents and policy-makers, which even emphasized in the
recent crisis. Many methods were developed to reduce the difficulties which come forth
when dealing with large panels. Even though a large dataset of predictors offers a much
richer base from where information can be extracted, several predictor variables imply
many parameters to estimate. Having many possible regressors in a dataset, when N is
large, asymptotic difficulties of OLS emerge. Structure of the model should be such, that
estimation error is asymptotically negligible but still allowing for extraction of as much
relevant information as possible, as the information from a large number of predictors
should be embedded into the forecast. In this section different methods to tackle the
problems that come with the large panel approach are discussed.

In general, possible solutions to reduce the problem of dimensionality are first, using the
models with no more than a few variables, and second, estimation of the underlying factors
that drive the variable of interest. For the purpose of the former a lot of econometric work
was done on shrinking. These methods have the shrinkage representation, such as BMA,
empirical Bayes methods (EBM) and bagging. In shrinking methods the weights attached to
the possible predictor variables from a large dataset are calculated as a product between the
OLS estimator and the value of shrinkage factor (Bulligan, Marcellino, & Venditti, 2015).

Some of the most popular regularization techniques used when fitting a linear regression
model to a high-dimensional data, or if variables from the data sample tend to be correlated
are elastic net regularization, the Least Absolute Shrinkage and Selection Operator
(LASSO) method and the ridge regression, which use penalized regression to drop the
uninformative variables (Zou & Hastie, 2005; Tibshirani, 1996). Bai and Ng (2008) label
these methods as soft thresholding rules for variable selection in the forecasting context.
Possible predictors are ordered considering some soft-thresholding rule, elements
corresponding to weak predictors are set to zero and only predictors on top of the rank are
kept. This feature is important especially when dealing with the set of possible predictors
which includes correlated variables, as information in other predictors needs to be taken
into account as well. Additional to methods with soft thresholding rules there exist methods
with hard thresholding rules. Both can be used to identify the variables from which the
factors should be extracted.
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3.1 Dynamic factor models
Second solution to reduce the dimensionality of the problem is extraction of the underlying
factors from the initial dataset to forecast the variable of interest using the dynamic factor
model. This kind of approach is called the factor-based forecasting, which has been in the
foreground of developments in the macroeconomic forecasting literature in the recent past.
The underlying assumption in the dynamic factor models is that the comovements among a
large number of variables are coming from a handful of unobserved factors. The underlying
factors embed the covariation amid possible predictor time series and can be used to
forecast individual target variable (Giannone, Reichlin, & Small, 2008; Bernanke & Boivin,
2003). The underlying factors in large dimensional panels can be obtained using different
methods, where the additional structure on the possible predictors coefficients is imposed
and exploited. Using only the most informative factors was found to bring improvements at
all forecast horizons (Stock & Watson, 2012a; Bai & Ng, 2008).

When the forecasting problem contains of many predictors, the literature mainly relies on
Principal Component Regression (PCR hereinafter). PCR focuses on the cross section
according to the covariance within the predictors, meaning that identification of factors
driving the panel of predictors in PCR is such, that some of the factors might not be relevant
for the target variable dynamics. In order to achieve consistency in PCR method, all
common factors should be estimated, including relevant as well as irrelevant ones. When
the number of predictive factors is equal to the number of factors driving the target, the
PCR forecast is asymptotically efficient. However, if factors are weak and sparsely
contribute to the total variability in the predictors the identification of the factors behind the
objective can turn out to be a difficult task. Even further, it is not necessary true that using
the principal components, predictive factors relevant to the target variable are extracted first
(Forni & Reichlin, 1998; Bai & Ng, 2006; Bai & Ng, 2008; Stock & Watson, 2012b).

The link between factors and predictors can be non-linear as well, using the quadratic
principal components method, where the matrix of predictors is expanded by including
non-linear functions of the observed variables. Bai and Ng (2008) show that allowing for
non-linearity can lead to additional gains in forecasts. Another possible method is the
diffusion index forecasting method, where common factors are first estimated from a large
dataset using the principal components, which are then augmented to a linear forecasting
equation that consists of lags of the target variable and other predictors (Stock & Watson,
1999; Stock & Watson, 2002; Stock & Watson, 2012b; Boivin & Ng, 2005). Also, Stock
and Watson (1998) constructed an approximate dynamic factor model for balanced and
unbalanced panels using weighted averages as predictors.

Forecasting using the dynamic factor model can be performed in two steps. First, using the
selected method factors should be estimated from the matrix of predictors X ∈ RT×N , and
second, linear regression should be used to regress the variable of interest on estimated
factors together with (or without) lags of the variable of interest. Matrix of candidate

22



predictors can be represented as:

Xt = Λ(L)Ft + et , (15)

with Ft ∈ RN×1 denoting useful factors for target variable forecasting, Λ(L) indicating lag
polynomial allowing lags of the factors to enter the equations (15) and (16), and et ∈ RN×1

vector of idiosyncratic disturbances. Following the notation from McCracken and Ng (2016,
pp. 577-583), the dynamic factor model can be in general presented as

yh
t+h = αh +βh(L)F̂t + γh(L)yt + ε

h
t+h, (16)

where yt represents the selected lag of the target variable and yh
t+h the time series variable

forecast of interest for the horizon h. F̂t denotes the estimated common latent factors useful
for target variable forecasting from step one of the two-step forecasting process, βh(L) and
γh(L) are lag polynomials with finite order and εh

t+h stands for the forecasting error. The
forecast can be then constructed as

ŷh
t+h = β̂h(L)F̂t + γ̂h(L)yt , (17)

with estimated coefficients β̂h(L) and γ̂h(L).

3.2 Time series forecasting using targeted predictors
The key part of the thesis is the identification of the underlying factors that drive inflation
expectations at different expectation horizons. For the empirical estimation I use the 3PRF
estimation procedure developed by Kelly and Pruitt (2015). The 3PRF procedure is reviewed
in this section, closely following the notation of the authors.

3.2.1 The Three-Pass Regression Filter (3PRF)
Let Y be the T × 1 target variable vector and X the T ×N matrix of predictors, with xt

being a large set of N variables, driven by both, relevant and irrelevant factors. Predictors
(x′1,x2′, . . . ,xT ′)′ = (x1,x2, . . . ,xN) from the matrix of predictors X need to be standardized
in order to have unit time series variance. The target variable Y can be presented as a linear
function of a subset of the latent factors and some unforecastable noise. The systematic
variations of both, the forecast target Y and matrix of predictors X is driven by the latent
factors, which are, however, unobservable, causing the infeasibility of the best forecast, as
the optimal forecast would come from a regression on the true underlying relevant factors.
To forecast Y the factors which are significant drivers of variation in X can be extracted and
used. Generally holds that the factor extraction can consist of relevant as well as irrelevant
information for the forecast target (Kelly and Pruitt, 2015, pp. 4-10).

The advantage of the 3PRF procedure is that it allows selective identification of the subset
of relevant factors only. Hence, the factors that influence the target variable Y are selected
and factors which are irrelevant for the target itself are discarded. The subset of factors
is denoted by Ft , which is constructed as Ft = ( ft ′,gt ′)′, where ft represents the subset of
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relevant factors and gt the subset of irrelevant factors. Irrelevant factors are those, which
might drive the cross section of predictive information of xt , but do not influence the forecast
target. The model can be presented in the following way:

Y = β0 +Fβ +η , (18)

Z = λ
′
0 +FΛ

′+ ω, (19)

X = φ
′
0 +FΦ

′+ ε, (20)

or in a cross section at time-t as:

yt+1 = β0 +β
′Ft +ηt+1, (21)

zt = λ0 +ΛFt +ωt , (22)

xt = φ0 +ΦFt + εt , (23)

where Z denotes the T ×L matrix of proxies driven by factors and proxy noise ω , with L
being significantly smaller than the number of predictors N and the amount of the available
time series observations T . Matrix Z = (z1′,z2′, . . . ,zT ′)′ contains of period-by-period proxy
data. The dimension of vectors ft and gt is K f > 0 and Kg > 0, respectively, where K = K f +

Kg. For dimension of a proxy zt holds that 0 < L� min(N,T ). Φ =
(
Φ f ,Φg

)
represents

the factor loadings of the model and Λ =
(
Λ f ,Λg

)
the proxy factor loadings.

As mentioned, Z includes a small set of L proxies, that are driven by the same underlying
factors as the target variable, such that Λ = (Λ f ,0) with nonsingular Λ f . This implies three
properties. First, loadings of proxies on irrelevant factors are equal to zero, second, proxies’
loadings on the required factors are linearly independent and third, the number of proxies is
equal to the number of relevant factors. The factor loadings of the target are β =

(
β f ′,0′

)′,
with

∣∣β f
∣∣ > 0, allowing the target to depend only on a strict subset of the factors that drive

the predictors.

In finite samples, or if the irrelevant factors gt are strong while the required factors ft are
weak, it is convenient to estimate and use only the target-relevant factors ft in (18) or (21).
The target-relevant factors are characterized by the so-called proxy variables, which are used
for the target variable forecasting. Proxy variables can be created from the target variable and
predictor variables themselves. Using the 3PRF procedure, the relevant factors behind the
variable of interest can be obtained in an intuitive and simple manner and the computation is
almost instantaneous, as it is expressed in closed form.

This problem was also tackled by Boivin and Ng (2006), who performed variable
pre-selection before the factor extraction. In addition, the target variable Y can be in
principle driven by less factors than the matrix of predictors X , however the estimated
loadings of additional factors to those strictly needed in (18) or (21) will converge to zero.
The best time-t forecast given by β0 +β f ′ ft as ηt+1 is a martingale sequence with respect to
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all information known at time t. Nevertheless, as the relevant factors ft are unobserved, the
forecast is infeasible.

3.2.2 Properties of 3PRF
The 3PRF is an extension of Partial Least Squares (PLS) and it is constructed as the
sequence of OLS regressions. Compared to the linear principal components framework, the
3PRF procedure allows for a more flexible factors structure. It first concentrates the cross
section corresponding to the covariance with the forecast target and, second, uses only
predictors informative for the objective in estimation of the factors (target-relevant factors).
The latter property of the 3PRF is of particular importance especially when the number of
relevant factors is strictly less than the number of total factors in the matrix of predictor
variables and when other components from the data matrix dominate the target-relevant
principal components.

In order to achieve identification, two assumptions must hold. First, factors should be
orthogonal to one another and second, the covariance of predictor loadings should be the
identity matrix when N and T diverge. In other words, in order to be cross-sectionally
regular, factors and loadings are required to have behaved covariance matrices for large T
and N. Together with the additional assumption of nonsingular matrix Λ f this means that
none of the proxy variation is due to the factors that are irrelevant. Therefore, the common
component of proxies spans the relevant factors space. Furthermore, some cross section
correlation among εit is allowed, as well as serial dependence among εit and proxy noise
dependence with factors and idiosyncratic shocks.

Kelly and Pruitt (2015) proposed a general and simple solution to estimate only ft in the
model (21)-(22). Their procedure can be represented with the three main steps:

• First, predictors from matrix X are regressed on the proxies. In the first step N time series
regressions of xi on Z are ran, one for each variable of X :

xi,t = φ0,i + zt ′φi + ei,t , (24)

for i = 1, . . . ,N, with φ̂i being the first pass time series OLS regression coefficient
estimates. The estimated coefficients inform about the sensitivity of a particular predictor
to factors represented by the proxies.

• Second, coefficients estimated in the first pass are used in T separate cross section
regressions. Similarly as in the first step of the procedure, predictors act as a dependent
variable, however are regressed on the first pass coefficients φ̂i. Second pass cross section
factor estimates F̂t are acquired running the cross section regression of xt on φ̂i:

xi,t = φ0,t + φ̂
′
i Ft + εi,t , (25)

for t = 1, . . . , T .
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• Third pass consists of time series regression of the target variable yt+1 on the second pass
estimated predictive factors F̂t :

yt+1 = β0 +β
′F̂t +ηt+1. (26)

From the OLS regression estimates β̂0 and β̂ ′ are retained used with the second pass
estimated predictive factors F̂t to construct the forecast ŷt+1 = β̂0 + β̂ ′F̂t .

3PRF factor estimator is consistent if both, first and second pass regressions are consistent,
which implies that there is no omitted variable bias in regressions. In the simultaneous
limit as cross section size N and time series dimension T increase to infinity, the difference
between the feasible forecast and the infeasible best forecast decays, implying that the 3PRF
based forecast ŷt+1 = β̂0 + β̂ ′F̂t converges to the unfeasible best forecast β0 +β ′Ft :

ŷt+1→ β0 +β
′Ft . (27)

The 3PRF forecast is asymptotically normal. Consistency remains even in the case when
target-irrelevant factors dominate the variation in predictors.

3.2.3 Automatic proxy selection approach
Kelly and Pruitt (2015, pp. 15-18) proposed the automatic proxy selection algorithm, which
comes handy particularly in the panels with many predictor variables, unbalanced panels,
and panels with missing data. The presented selection of the proxies is the following. In the
case of only one relevant factor ft (K f = 1), the target variable itself can be directly used as a
sole proxy Z for one factor. When the number of relevant factors is more than one (K f > 1)
not enough factors are extracted by the target-proxy 3PRF to asymptotically achieve the
infeasible best forecast. The proposed approach is to either use the theory suggested proxies
or use the automatic proxy selection algorithm, which can be implemented in the following
way.

Let rk indicate the kth automatic proxy, with the initial automatic proxy being the target-
proxy 3PRF, r1 = y. As the second proxy residuals from the initial proxy can be used. These
are linearly independent of the first proxy and have non-zero loading on relevant factors
and zero-loading on irrelevant factors. As a third proxy the residuals from the two-proxy
3PRF are used, up until the L-automatic-proxy 3PRF. When L = K f the L-automatic-proxy
3PRF forecast of target variable y satisfies the required assumptions automatically, implying
the consistency and asymptotic normal properties of the L-automatic-proxy. Following the
notation used in Hepenstrick and Marcellino (2016, pp. 4-7), the iterative procedure of proxy
construction to construct L predictive factors can be presented as follows.

• Step 1: initial proxy should be set to r1 = y, followed by the calculation of the 3PRF
forecast ŷt,1 and the residuals et,1 = yt− ŷt,1.

For j = 2, . . . ,L:
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• Step j: set r j = e j−1 and compute the 3PRF forecast ŷt, j using r1, . . . ,r j as proxies.
Similarly as in Step 1 the corresponding residuals can be obtained as et, j = yt− ŷt, j.

According to Kelly and Pruitt (2015, pp. 21-30) the 3PRF exhibits a strong forecasting
performance across a variety of simulation specifications and it produces good nowcasts and
short-term forecasts for a variety of financial and macroeconomic variables. Compared to
more complex alternatives it performs well in finite samples. However, the disadvantage of
the procedure is that difficulties may occur in small samples, as only target-relevant factors
need to be estimated, whereas in large samples this does not cause any troubles. Hepenstrick
and Marcellino (2016) even extended the 3PRF procedure into the mixed-frequency 3PRF
to make the 3PRF applicable in a forecasting context also in large mixed-frequency datasets
with possible ragged edges.

4 INFLATION FORECASTING FRAMEWORK

Inflation forecasts represent an important input in monetary and fiscal policy-making and
are of crucial importance in decision making. Central banks aim to conduct forecast-based
monetary policy, therefore, forecasts should be as accurate and reliable as possible. In
addition, inflation forecasts bear important information also for investment decisions and
settlement of prices for firms and for investors hedging the nominal assets’ risk.

Academic literature covers different methods for inflation forecasting, among which four
of them are the main methods. First, forecasts from surveys, second, forecasts from the
yield curve, third, time series forecasting and forth, forecasts based on the Phillips curve.
Model appropriate and flexible enough for inflation forecasting should have the following
two properties at minimum. First, it should enable the timely use of the maximum amount
of available information about the main variables that drive inflation, and secondly, it should
explain the short run inflation dynamics. The model should capture interactions between the
variables that drive the inflation, as well as interactions among those determinants to take
into account the potential spill-over between the drivers of the inflation.

Forecasts h-period ahead can be performed using the iterative or direct forecast method.
The former uses one-period ahead model which is iterated forward for the selected number
of periods and, if properly specified, produces more efficient parameter estimates than the
latter. In the direct forecast method, the h-period ahead value of the target variable acts as
the dependent variable in the horizon-specific estimate model. Compared to the iterative
forecasting method, the direct method of forecasting resulted to be more robust to model
misspecification, hence less prone to bias. However, comparing the forecast performance,
the iterated forecasts accuracy tends to dominate and even improve with the forecast horizons
(Marcellino, Stock, & Watson, 2006, pp. 502-515).

The aim of the thesis is forecasting euro area inflation using large number of predictors,
from which common factors that are most strongly correlated with inflation expectations are
extracted. Let yh

t+h denote the seasonally-adjusted HICP for euro area which is the variable
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of interest in a h-period ahead forecast. The idea is to compress information embedded
in the large dataset of variables into a handful of factors from the initial dataset and then
use factor estimates as predictors. The 3PRF regression filter is applied to obtain the factor
estimates using inflation expectations derived in Section 2.3 as a proxy. The 3PRF procedure
is selected mainly due to the fact that first, only target-relevant factors can be extracted from
a matrix of possible predictor variables and second, factors obtained are linked to a group of
variables, which is from the policy implication point of view more robust than using specific
variables.

4.1 Data description
In the analysis I use 47 variables for the euro area that cover the most important
macroeconomic segments from real economic activity and prices, to labour market
variables, monetary aggregates, stock market indices, exchange rates and confidence survey
indicators. I exclude the yield curve rates and market interest rates because such variables
embed inflation expectations and could thus lead to spurious correlation. Analysis is
conducted on a quarterly time series available from 2004:Q4 to 2019:Q4 for a total of 61
time series observations. The dataset of possible predictor variables is constructed using the
data from different sources, including the FRED Database, Eurostat Database, ECB
Warehouse and Yahoo Finance.

Because many of those time series are non-stationary, the data is beforehand appropriately
transformed to achieve stationarity. Table 1 lists the (short) name of each series included in
the matrix of possible predictors, to which macroeconomic group of variables it belongs and
the transformation applied to each specific series. Where transformation is not needed, the
variables enter into the model in levels. For other possible drivers of inflation expectations
the transformations applied are the first difference of the series (∆), the first difference of
the logarithm of the series (∆ln), or the second difference of the logarithm of the series
(∆2ln). The Augmented Dickey-Fuller (ADF) test is used to infer whether time series are
stationary or not. The null hypothesis when using this test is that a unit root exists in the
time series versus the alternative hypothesis that the data is stationary. The only time series
which remains non-stationary after the transformation is the variable which denotes the Total
Employment. With additional differencing of the mentioned time series stationarity could be
achieved. Nevertheless, I leave the transformation of the Total Employment as is in order to
have consistent transformations across the variables.

4.2 Identification of relevant factors of inflation expectations
To take into account various groups of macroeconomic variables I use the quarterly data, as
on a monthly frequency less variables are available. Therefore, I aggregate monthly expected
inflation obtained using the Joslin, Singleton and Zhu (2011) decomposition in Section 2.3
on a quarterly level as well. Hence, I estimate the underlying relevant factors on a quarterly
level and use them for forecasting euro area HICP on a quarterly basis, presented in Sections
4.3.1, 4.3.2 and 4.3.3.
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Table 1: Data description and transformations

Short description Group Transformation

DE DAX Stock market ∆ln
VIX volatility index Stock Market ∆ln
USD/EUR Exchange rates ∆ln
CHF/EUR Exchange rates ∆ln
GBP/EUR Exchange rates ∆ln
Real Effective Exchange Rate, CPI deflated Exchange rates ∆ln
M1, in million EUR, WDA and SA Money aggregates ∆2ln
M2, in million EUR, WDA and SA Money aggregates ∆2ln
M3, in million EUR, WDA and SA Money aggregates ∆2ln
HICP: Overall Index, WDA and SA Prices ∆2ln
HICP: Unprocessed Food,WDA and SA Prices ∆2ln
HICP: Industrial Goods Excluding Energy, WDA and SA Prices ∆2ln
HICP: Services, WDA and SA Prices ∆2ln
HICP: Processed Food including Alcohol and Tobacco, WDA
and SA Prices ∆2ln

Producer Price Index: Total Consumer Goods Prices ∆2ln
Producer Price Index: Energy Prices ∆2ln
Producer Price Index: Industry Prices ∆2ln
Residential Property Price Index Prices ∆2ln
Commercial Property Price Index Prices ∆2ln
Deposits from Corporations, in million EUR Deposits ∆ln
Deposits from Households, in million EUR Deposits ∆ln
Unemployment Rate, % of labour force, SA Labour market level
Employment: Total, in thousands of persons, WDA and SA Labour market ∆ln
Unit Labour Costs: Total, WDA and SA Labour market ∆ln
Labour Productivity: Total, per hours worked, WDA and SA Labour market ∆ln
Economic Sentiment Indicator, SA Survey data ∆

Industrial Confidence Indicator, SA Survey data ∆

Consumer Confidence Indicator, SA Survey data ∆

Euro area Current account, as % of GDP Output data ∆

GDP: Total, WDA and SA Output data ∆ln
GDP: Gross Fixed Capital Formation, WDA and SA Output data ∆ln
GDP: Exports of Goods, WDA and SA Output data ∆ln
GDP: Exports of Services, WDA and SA Output data ∆ln
GDP: Imports of Goods, WDA and SA Output data ∆ln
GDP: Imports of Services, WDA and SA Output data ∆ln
GDP: Final Consumption Expenditure, WDA and SA Output data ∆ln
GDP: Final Consumption Expenditure of General Government,
WDA and SA Output data ∆ln

Industrial Production Index: Total Industry, Excluding
Construction, WDA and SA Output data ∆2ln

Industrial Production Index: Consumer Goods, WDA and SA Output data ∆2ln
Industrial Production Index: Energy, WDA and SA Output data ∆2ln
Industrial Production Index: Manufacturing, WDA and SA Output data ∆2ln
Final Consumption Expenditure: Households, WDA and SA Output data ∆ln
Final Consumption Expenditure: General Government, WDA
and SA Output data ∆ln

Government Total Revenue, as % of GDP Output data ∆

Change in Government Debt, as % of GDP Output data ∆

Exports of Goods and Services, in million EUR, WDA and SA Output data ∆ln
Imports of Goods and Services, in million EUR, WDA and SA Output data ∆ln

Source: ECB Datawarehouse, (n.d.); Yahoo Finance, (n.d.); Eurostat Database, (n.d.);
FRED Database, (n.d.)
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The empirical procedure to extract the relevant factors that drive the dynamics of inflation
expectations is the following. Before forecasting the target, the data is transformed as
presented in Table 1 and standardized, to have sample mean zero and sample variance equal
to one. To construct a time t + h out-of-sample forecast, the data at time t,
Ψt ≡ {yt ,xt ,yt−1,xt−1, . . .}, must be known. Then, the 3PRF’s three steps are calculated in
order to decompose xt .

From the first pass regressions, which are separately run for each i = 1, . . . ,N, I obtain slope
coefficient estimators φ̂i. Also, the second pass regressions are run separately for each τ =

1, . . . ,T , yielding F̂t . The final step differs between the modelling approaches presented in
the following sections. I regress the variable of interest yt on the constant and estimated
factors F̂t−h to obtain β̂0 and β̂ , which are used to construct the OOS forecast as β̂0+ F̂t−hβ̂ ,
not necessarily explicitly following the Kelly and Pruitt (2015) notation from the final pass
of the 3PRF procedure, described in Section 3.2.2.

4.2.1 Measuring forecast accuracy and number of factors selection
I assess the forecast accuracy of each model with the Root-Mean-Square-Error (hereinafter
RMSE) of the forecasts, which measures the average magnitude of the forecasting error
and is one of the most used measures for the comparison of the accuracy of the forecasts
obtained from various models (Stock & Watson, 1999; Duffee, 2011a; Ciccarelli & Osbat,
2017). Giannone, Lenza, Momferatou and Onorante (2014) used similar metric to measure
the forecast performance, the Mean-Square-Forecasting-Error (MSFE), which can be split to
two components, the bias and variance of the forecast errors.

I use the RMSFE which is computed for the forecast horizon h-quarters ahead as:

RMSFE =

√
1
T

T

∑
t=1

(πh
t+h− π̂h

t+h)
2, (28)

where πh
t+h− π̂h

t+h denotes the difference between the realized inflation and the predicted
inflation over the period under consideration. Parameter T indicates the number of forecasts
made over the period for which the forecasts are constructed.

The number of factors in the multifactor model can be assumed and set by expert judgement
or determined by data. However, the number of factors determination is a complex issue.
Only k informative factors that best capture the variation in the dataset of the predictors X
should be chosen. When N and T are large, various selection procedures can be used to set
the number of factors used in the model. In order to select the number of factors, different
criteria are available. It is not, however, as important which assumptions are imposed on the
factor model, as it is that the same criteria is used for all of the models considered.

Various selection procedures can be adopted. For instance, Bai and Ng (2002) proposed the
panel criteria to consistently estimate the number of factors from observed data, while also
information criteria such as Bayes Information Criterion (BIC) and Akaike Information
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Criterion (AIC) could be used to select the appropriate number of factors (Brezigar Masten,
Glažar, Kušar & Masten, 2008; McCracken & Ng, 2016). For the determination of the
suitable number of factors selection in the forecasting regression I use the following
approach.

For k ∈ {1, . . . ,10}, I extract k factors from the dataset of possible predictor variables and
use them in two forecasting model specifications. First, the model that depends on
estimated factors only and second, the benchmark AR(1) model, which contains the
autoregressive term only. The number of factors selection depends on the relative
Mean-Square-Forecasting-Error (rMSFE hereinafter) comparing the forecasting accuracy of
the two based on the squared ratio of the RMSFE values. rMSFE ratio is calculated as:

rMSFEFk =

(
RMSFEFk

RMSFEAR(1)

)2

, (29)

where AR(1) denotes the benchmark forecast and Fk stands for the candidate model forecast
with k estimated 3PRF factors. The final number of factors is set as the k that minimizes the
rMSFE:

k ≡ argmin
k
{rMSFEFk}. (30)

4.3 Forecasting models and methodology
The main goal of the thesis is to forecast inflation on the medium-term. Initially, I obtain the
inflation forecasts applying the factors estimated using inflation expectations as a proxy. I
compare the resulting forecasts to the inflation realization using different competing models
− one with an autoregressive term only (denoted as AR), one with autoregressive term and
factors (denoted as FAR), and the last model with estimated factors only (denoted as F).
Forecasts vary for different underlying inflation expectations horizons. The goal of using
this approach is to evaluate the usefulness of the factors extracted from expected inflation
and to see if the factors have more predictive content compared to the simple autoregressive
model, which is used as a baseline model.

The resulting output of OOS forecasting exercises are forecasts of the annual inflation. In all
of the model specifications considered and in more detail described below, model forecasts
are compared to the yearly seasonally-adjusted euro area HICP inflation rate:

πt = ln
(

Pt

Pt−4

)
, (31)

where πt denotes the inflation rate for the period from t−4 to t with inflation index level Pt

at the end of quarter t.

OOS forecasts are computed using the direct forecasting method where the variable of
interest is forecast multiperiod ahead (Marcellino, Stock, & Watson, 2006). Additionally,
OOS forecasts are recursive, as all available data at time t is used to forecast annual future
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inflation from t to t + h. Therefore, the window length used for the estimation increases
through time. In each step h-quarter ahead forecasts are computed, then the sample is
augmented by 1 quarter, followed by the corresponding computation of h-step ahead
forecast. In this way OOS forecasting procedure produces the inflation forecasts as would
have been constructed if the models would be historically used to generate them. The
models result in quarterly forecast of the target variable considered and are calculated at
different horizons. In Section 4.4 the forecast evaluation sample is extended, allowing for
computation of forecasts for different initial dates and displayed as a robustness check.

In the initial modelling approach, realized inflation is compared to inflation forecasts
obtained using the factors estimated with the 3PRF procedure where inflation expectations
Et(πt+h) for different horizons are used as a proxy. My findings are that on the
medium-term inflation expectations Et(πt+h) are the finest predictor for inflation dynamics
for all of the horizons under consideration, as their forecasting accuracy turns out to be best.
In other words, forecasts using the primary modelling approach turn out to be weaker than
directly using the expected inflation derived from the ATS model. The stated holds for all of
the considered competing models.

That said, I try to forecast inflation through inflation expectations Et(πt+h) forecasts. In
order to do that, I estimate two additional models, denoted as model modifications of the
initial model. First model modification (hereinafter Case 1) produces expected inflation
forecasts using the same proxies from the 3PRF procedure as in the first approach. Second
model modification, indicated as Case 2, constructs inflation forecasts based on the factors
estimated with the 3PRF procedure as well, however as a proxy HICP inflation is used instead
of inflation expectations as in the previous two modelling approaches.

The competing models used for forecasting in each of the three approaches (namely, initial,
Case 1 and Case 2) have the following specification:

AR : yh
t+h = αh + γhyt + ε

h
t+h, (32)

FAR : yh
t+h = αh +βh f̂t + γhyt + ε

h
t+h, (33)

F : yh
t+h = αh +βh f̂t + ε

h
t+h, (34)

with coefficients βh and γh, while definitions for dependent variable yh
t+h and independent

variable yt , as well as factors ft differ in the modelling approaches considered.

• In the initial modelling approach, dependent variable is yearly seasonally-adjusted euro

area inflation, defined as yh
t+h = ln

(
Pt+h

Pt+h−4

)
. Inflation observed in time t is denoted

as yt := πt . Factors ft are estimated using appropriately transformed expected inflation
∆Et(πt+h) as a proxy observed in time t for different horizons h ∈ {8,12,16}.

• In the first modification of the modelling approach, dependent variable is defined as
expected inflation yh

t+h = Et(πt+h), and yt stands for the lag of inflation expectations in

32



time t. Factors ft are estimated using the differenced expected inflation as a proxy for all
of the horizons covered, which is the same as in the initial modelling approach. Forecasts
of expected inflation for all of the horizons considered (1y1y, 1y2y and 1y3y) are
performed from t to t +h with h = 1, implying the 1-quarter ahead forecasts.

• In the second model modification the dependent variable yh
t+h and lag of the dependent

variable yt are the same as in the initial modelling approach. The difference between the
latter and the second model modification is in the proxy variable used in the 3PRF
estimation of factors. Factor estimation is performed with the 3PRF procedure using the
transformed HICP inflation as a proxy. All of the three competing models construct
h-quarters ahead inflation forecasts for h ∈ {9,13,17}. Step h is set in such a way that the
allignment with the inflation expectations forecasts produced from the first model
modification is achieved.

4.3.1 Inflation forecasts based on inflation expectations
In this section I construct the inflation forecasts adopting the factors obtained in the 3PRF
procedure using inflation expectations as a proxy. For each of the horizons considered, I
estimate three competing models as referred above. When using 1y1y expected inflation as
a proxy I set parameter h to 8 and for 1y2y and 1y3y inflation expectations h is set to 12 and
16, respectively.

For all of the horizons considered the performance of the model with factors only compared
to the benchmark turns out to be best when the selected number of factors is one. Therefore,
only the first factor is used in all of the competing models − AR, FAR and F. In Figures 6-8
pseudo-real-time OOS forecasts for the yearly euro area seasonally-adjusted HICP inflation
are presented. Additional to model forecasts also inflation expectations for the appropriate
horizon are presented. From the presented results it is evident, that the best forecast
performance is achieved using the inflation expectations derived from the ATS model
decomposition. This result is the consequence of the volatile features of the HICP inflation,
which can be hardly captured at the particularly long forecasting horizons considered
(h ∈ {8,12,16}). On the other hand, inflation expectations series are a lot more stable
through time. They do not capture the peaks and troughs of the underlying realized
inflation, but overall their forecasting performance turns out to be best, supported with
forecast accuracy calculations in Table 2.
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Figure 6: OOS forecasts of inflation: 1y1y inflation expectations factors
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Source: Own work.
Note: 1y1y denote the expectation of yearly inflation at 1-year horizon.

Figure 7: OOS forecasts of inflation: 1y2y inflation expectations factors
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Source: Own work.
Note: 1y2y denote the expectation of yearly inflation at 2-year horizon.
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Figure 8: OOS forecasts of inflation: 1y3y inflation expectations factors

2007 2009 2011 2013 2015 2017 2019

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4 AR model forecast
FAR model forecast
F model forecast
1y3y inflation expectations
EA HICP inflation, SA

Source: Own work.
Note: 1y3y denote the expectation of yearly inflation at 3-year horizon.

The RMSFE results are summarized in Table 2, which reports eight-, twelve-, and
sixteen-quarter ahead pseudo-real-time OOS RMSFEs calculated relative to the euro area
inflation realization for the period considered. Additionally to models AR, FAR and F, I
also include the expected inflation Et(πt+h) obtained using the Joslin, Singleton and Zhu
model for different horizons (denoted as E) in the analysis. It is straightforward that the
estimation of the factors affects the RMSFE. Across various factor estimation methods and
formations of the forecasts there are differences particularly when having a higher T (lower
h). RMSFEs for 1y2y and 1y3y inflation expectations all lie in the range from 0.316 to
0.555, while this range is broader for the shortest horizon considered, namely h = 8, with
RMSFE ranging from 0.540 to 1.271. Comparing only inflation expectations performance
(E) for different horizons implies the worst performance for the shortest horizon h = 8 and
the best for the 12-quarters ahead horizon.

First finding is, that ILS rates without inflation risk premium for all of the horizons
considered dominate as they have the lowest RMSFE. The second finding is, that model F
outperforms the benchmark autoregressive model AR when using 1y1y and 1y3y inflation
expectations as proxy variables. It should be noted that when using 1y2y inflation
expectation the forecast performance of model F is worse, yet similar compared to the AR
forecast accuracy. To summarize the results, for all h-steps ahead forecasts ILS rates
without the IRP exhibit the best forecasting performance, as they provide the lowest OOS
prediction RMSFE.
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Table 2: RMSFE: inflation expectations factors

Model
Horizon

1y1y*, h = 8 1y2y*, h = 12 1y3y*, h = 16

AR 1.271 0.351 0.540
FAR 1.269 0.407 0.555

F 0.960 0.375 0.380
E 0.540 0.316 0.357

Note: *1y1y−1y3y denote expectations of yearly inflation 1- to 3-years ahead, respectively.

Source: Own work.

I compare the forecast performance of the candidate models using the rMSFE ratio. For all
of the horizons considered, forecast accuracy of the model consisting of factors only (F) is
compared to the model having an autoregressive term only, which is a standard approach
in the literature. Due to the forecast performance of the models presented in the Table 2, I
additionally compare the RMSFE of the inflation expectations (E) to the RMSFE of models
AR, FAR, and F. The rMSFE ratio is calculated as the ratio between the RMSFE of model i
versus the one of model j:

rMSFEi/ j =

(
RMSFEi

RMSFE j

)2

, (35)

where i, j ∈ {AR,FAR,F,E}. Model i’s forecasting performance is superior to the one using
the model j if the resulting rMSFE ratio indicates less than 1, and vice versa. The gain or
loss in forecasting precision of model specification (FPG hereinafter) i relative to j is then
calculated as:

FPGi/ j = (1− rMSFEi, j)∗100. (36)

The results of the analysis are presented in Table 3. The results show that the model using
the factors obtained from the 3PRF using inflation expectations as a proxy (F) outperforms
the autoregressive model (AR) in 8-steps ahead forecast and 16-steps ahead forecast. The
average gain in the former is around 43.0 % and in the latter 50.6 %. On the other hand,
in 3-years ahead forecast, the autoregressive model outperforms the one using the factors
only, as the forecasting loss using the AR model is approximately 14.0 %. The results imply,
that there are generally efficiency gains in inflation forecasts using the estimated factors
compared to the benchmark autoregressive model.
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Table 3: Relative MSFE

Relative MSFE FPG

1y1y*, h = 8
F - AR 0.570 43.0 %
E - AR 0.181 81.9 %
E - FAR 0.181 81.9 %
E - F 0.317 68.3 %

1y2y*, h = 12
F - AR 1.140 -14.0 %
E - AR 0.810 19.0 %
E - FAR 0.603 39.7 %
E - F 0.711 29.0 %

1y3y*, h = 16
F - AR 0.494 50.6 %
E - AR 0.438 56.2 %
E - FAR 0.415 58.5 %
E - F 0.887 11.3 %

Note: *1y1y−1y3y denote expectations of yearly inflation 1- to 3-years ahead, respectively.

Source: Own work.

For all of the forecast horizons considered the pseudo-real-time OOS results using inflation
expectations obtained with the Joslin, Singleton and Zhu (2011) decomposition result in
substantially better performance at all horizons, relative to all of the other model
specifications considered. None of the models generally improve upon the inflation
expectations forecasts. For 8-quarters ahead forecasts, the model specification using the
inflation expectations provides the highest model forecasting improvements over the models
AR, FAR and F. Forecasting precision gain of model E versus the model AR and model
FAR is almost 82 %, while compared to the model forecast performance with estimated
factors only (model F), gain in forecasting precision is around 68.3 %. For longer horizons
considered, the forecasting gain of using expected inflation for inflation forecasting reduces,
however still dominates forecasts produced using all the other model specifications. For
instance, gain in forecasting performance using 1y3y inflation expectations compared to the
benchmark AR and model FAR is around 56.2 % and 58.5 %, respectively. It is interesting,
that the forecasting gain is the lowest for the h = 12 quarters horizon. Looking at this
horizon only, the forecasting gain of 1y2y inflation expectations is the highest when
compared to the model including the estimated factors and AR(1) term (model FAR), being
approximately 39.7 %.

The presented analysis suggests that using the factors constructed from the relevant
predictors of the target variables only, improves inflation forecasts relative to the AR(1)
benchmark model, however, offers no improvement over ILS rates without inflation risk
premium. Nevertheless, there is a predictive content in the factors obtained from the 3PRF
estimation using inflation expectations as a proxy variable. From this investigation follows,
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that for the purpose of forecasting inflation the role of inflation expectations should be
studied further. Therefore, I extend the analysis in the next subsections.

4.3.2 Inflation expectations forecasting
In the previous section we saw that expected inflation Et(πt+h) turns out to be the best
predictor of inflation in the medium-term. For this reason I investigate in this section the
performance in forecasting inflation indirectly through inflation expectations. I construct
additional two models, presented in this and the following subsection 4.3.3. First model
modification, denoted as Case 1 and presented in this section, is constructed as follows. I
estimate the factors with the 3PRF procedure using inflation expectations for different
horizons as a proxy variable. This part is the same as in the starting model specification.
The difference is in the dependent variable, which is no longer realized yearly inflation, but
expected inflation for different horizons.

For all, 1y1y, 1y2y and 1y3y inflation expectations I calculate 1-quarter ahead forecasts,
using the direct forecasting method. Such horizon is set in order to be in line with pseudo-
real-time OOS inflation forecasts from the subsection 4.3.3 that follows. I construct the
1-quarter ahead pseudo-real-time OOS expected inflation forecast and obtain the inflation
forecast for h+1 steps ahead. For h ∈ {8,12,16} this implies the 9-quarter, 12-quarter, and
17-quarter ahead pseudo-real-time OOS forecasts of inflation.

Specification of each pass in the first model modification is such, that the 3PRF procedure
from Kelly and Pruitt (2015) is replicated. Hence, I construct time t forecasts of the
realization in time t + 1. For all of the inflation expectations horizons considered the
selected number of factors using the approach from Section 4.2.1 is eight. Therefore, in all
of the three model specifications I use the first eight factors. I present the in-sample fit
curves to the expected inflation (for the aligned horizon), using the models AR, FAR and F
in Figures 9−11.

In Figures 12−14 I present the pseudo-real-time OOS forecasts using the factors estimated
with the 3PRF procedure for the expected yearly inflation at 1-, 2-, and 3-year horizon. It
is evident, that the performance of the model with factors only is not the best. However, the
purpose of model modification is not assessing the forecasting precision of expected inflation
forecast compared to the inflation expectations as obtained from the Joslin, Singleton and
Zhu (2011) model, but comparison of inflation forecasts through inflation expectations and
inflation forecasts as obtained in subsection 4.3.3.
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Figure 9: Model specification in-sample fit: 1y1y inflation expectations
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Source: Own work.
Note: 1y1y denote the expectation of yearly inflation at 1-year horizon.

Figure 10: Model specification in-sample fit: 1y2y inflation expectations
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Source: Own work.
Note: 1y2y denote the expectation of yearly inflation at 2-year horizon.

Figure 11: Model specification in-sample fit: 1y3y inflation expectations
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Source: Own work.
Note: 1y3y denote the expectation of yearly inflation at 3-year horizon.
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Figure 12: OOS forecasts of 1y1y inflation expectations
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Note: 1y1y denote the expectation of yearly inflation at 1-year horizon.

Figure 13: OOS forecasts of 1y2y inflation expectations
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Note: 1y2y denote the expectation of yearly inflation at 2-year horizon.
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Figure 14: OOS forecasts of 1y3y inflation expectations
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Note: 1y3y denote the expectation of yearly inflation at 3-year horizon.

4.3.3 Inflation forecasting through forecasting expectations
In this subsection I present the results from the second modification of the initial model. The
crucial difference between the initial model and second model modification, denoted as Case
2, is in the proxy variable in the 3PRF estimation of the factors. Instead of using transformed
expected inflation as in Case 1, as a proxy variable transformed HICP inflation is used. In
contrast to Case 1, the dependent variable remains the same as in the initial model, being the
realized yearly euro area seasonally-adjusted HICP inflation.

I estimate the same specifications of the models (AR, FAR and F) and construct the forecasts
for h ∈ {9,13,17} quarters ahead. Such horizons are chosen in order to achieve allignment
with the h= 1 quarter ahead forecasts of 1y1y, 1y2y and 1y3y inflation expectations obtained
in the previous subsection. For h = 9 quarter horizon the optimal number of factor results to
be three. For the other two horizons considered, namely h = 13 and h = 17, the model with
the first factor only turns out to be best when compared to the benchmark model.

I present in-sample fit curves of the competing models to the euro area seasonally-adjusted
HICP inflation in Figures 15−17. As evident from Figure 15, the best in-sample fit is
achieved when I use the estimated factors in the modelling, as in-sample fit using the
benchmark AR(1) model is poor. In-sample fit of the baseline model is meagre also for the
other two horizons considered, h = 13 and h = 17. Figures 16 and 17 suggest that in-sample
fit is best when using the model specification that includes AR(1) term as well as estimated
factors using the 3PRF procedure.
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Figure 15: Model specification in-sample fit: inflation (h = 9)
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(b) Model FAR
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(c) Model F
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Source: Own work.

Figure 16: Model specification in-sample fit: inflation (h = 13)
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(b) Model FAR
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(c) Model F
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Source: Own work.

Figure 17: Model specification in-sample fit: inflation (h = 17)
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(b) Model FAR
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(c) Model F
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Source: Own work.

In Figures 18−20 I present the pseudo-real-time OOS forecasts exploiting the factors
estimated with the 3PRF procedure using the inflation time series as a proxy variable.
Again, more important than comparison of the model specification for inflation forecasting
among each other is the comparison of RMSFEs of inflation forecasts using each of the
competing models to the RMSFEs of expected inflation forecasts resulting from the
subsection 4.3.2. The comparative analysis is presented further below.
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Figure 18: OOS forecasts of inflation: inflation factors (h = 9)
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Source: Own work.

Figure 19: OOS forecasts of inflation: inflation factors (h = 13)
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Source: Own work.
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Figure 20: OOS forecasts of inflation: inflation factors (h = 17)
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The goal is to infer which of the two approaches presented above results in a better
medium-term pseudo-real-time OOS forecast of the realized yearly euro area
seasonally-adjusted HICP inflation. As a metric of comparison I use the RMSFEs of each
of the model specifications comparing the forecasting performance from Case 1 and Case 2.
The better of the approaches is the one with the lower inflation forecasting error. The
resulting RMSFEs for each model specification, estimated by rolling forecasts h-quarters
ahead, are presented in Table 4. As already mentioned, inflation expectations OOS forecasts
for all of the horizons considered were estimated by rolling forecasts h = 1 quarter ahead,
while inflation OOS forecasts were estimated for h ∈ {9,13,17} quarters ahead, to achieve
alignment of the forecasts.

Table 4: RMSFE comparison

Model specification

AR FAR F
1y1y*, h = 1 0.615 0.589 0.596
1y2y*, h = 1 0.346 0.330 0.326
1y3y*, h = 1 0.401 0.403 0.389

HICP**, h = 9 1.069 1.060 0.644
HICP**, h = 13 0.311 0.415 0.406
HICP**, h = 17 0.549 0.720 0.791

Notes: *1y1y−1y3y denote expectations of yearly inflation 1- to 3-years ahead, respectively. **HICP denotes
euro area seasonally-adjusted yearly inflation.

Source: Own work.
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The results of the comparison analysis of the inflation forecasts through inflation
expectations and the inflation forecasts using inflation as a proxy in the 3PRF estimation of
the factors are the following. Comparing the results obtained from Case 1 for 1y1y
expected inflation forecasts and inflation forecasts 9-quarters ahead from Case 2, I can
conclude that for all of the model specifications and horizons considered, forecasts of
inflation through inflation expectations forecasts result to achieve better forecast accuracy.

The model that provided the most precise forecasts is the model using estimated factors from
the 3PRF with inflation expectations as a proxy and lagged values of expected inflation as
well. For the second horizon considered, namely forecast of 1y2y expected inflation and
inflation forecasts h = 13 quarters ahead, RMSFEs of each of the model specifications result
to be more similar than in the previous example. If I use the FAR or F model specification for
the forecasts of the expected inflation on the medium-term, I obtain more accurate inflation
forecasts. The only exception is the AR(1) model, where the forecast accuracy is better in
Case 2 (inflation forecast directly) for h = 13 quarters ahead horizon.

Finally, comparing the resulting forecast precision using 1y3y inflation expectations
forecast 1-quarter ahead and inflation forecast 17-quarters ahead, model performance of the
former is, for all of the model specifications, better than the latter. The best forecasting
accuracy is achived using inflation expectations forecasts with the model containing only
factors estimated from the 3PRF procedure. To summarise, comparing the inflation
forecasts through inflation expectations it turns out that for 1y2y and 1y3y inflation
expectations the model consisting of estimated 3PRF factors only results to have the highest
forecast accuracy. For 1y1y inflation expectations FAR model is the one which performs the
best.

I present pseudo-real-time OOS forecasts from the two considered model modifications in
Figures 21−23. As the main question is whether the factors obtained from the inflation
expectations improve the forecasting precision of inflation forecasts in comparison to using
the ones obtained from the variable of interest itself, I compare the forecasts obtained with
model specification of 3PRF estimated factors only (model F). The RMSFEs of inflation
forecasts h = 9 quarters ahead using just the estimated factors is around 0.644 and the one
using inflation expectations forecasts amounts to 0.596, implying the RMSFE of the former
is around 1.1-times larger than the latter. From Figure 21 can be observed that OOS forecast
of inflation through inflation expectations is far more stable than the inflation OOS forecast,
resulting in a better forecasting precision.

In Figure 22 can be observed, that inflation forecast h = 13 quarters ahead in the last part
of the forecast tightly approaches the realized inflation. Nevertheless, overall RMSFE of
the inflation forecast covering this period results to be 0.406 compared to RMSFE of 0.326
using the 1y2y inflation expectations forecasts. The highest forecasting gain of inflation
expectations forecasts results to be when comparing 1y3y expected inflation forecasts and
h = 17 quarters ahead inflation forecasts. RMSFE of the latter is about 0.791 and of the
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former 0.389, resulting in approximately half smaller RMSFE if expected inflation forecasts
using the factors estimated from the inflation expectations are used for inflation forecasting.

Figure 21: OOS forecasts comparison (h = 9)
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Source: Own work.

Figure 22: OOS forecasts comparison (h = 13)
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Figure 23: OOS forecasts comparison (h = 17)
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To summarize, for all of the horizons considered euro area yearly inflation forecasts result
to be less accurate than inflation forecasts through 1y1y, 1y2y, and 1y3y inflation
expectations forecasts. Inflation expectations forecasts obtained from the standard Kelly
and Pruitt (2015) regression can be, therefore, used as an additional information for the
policy makers at minimum. On the medium- to long-term inflation expectations forecasts of
inflation produce results that are more accurate than inflation forecasts using the factors
obtained from the target variable itself.

4.3.4 Macroeconomic indicators of inflation expectations
Factors obtained from the 3PRF procedure embed the relevant information about the
variable of interest. In this section I identify groups of macroeconomic variables that carry
medium- to long-term information about inflation expectations and inflation. In other
words, I identify macroeconomic segments that are most correlated with 3PRF estimated
factors using inflation expectations or inflation as a proxy.

I assess the importance of each particular group of variables in the following way. For each
estimated factor, variables from the dataset of possible predictor variables act as dependent
variables and are separately regressed on the current factor in the regression. For each I
report the R2 statistics. Next, I obtain the macroeconomic segment R2

group as the mean of R2

statistics of the respective variables.

Table 5 shows the mean proportion of the variance explained for each group of
macroeconomic variables by each of the estimated factors from the 3PRF. The resulting
R2

group statistics are presented using expected yearly inflation 1-year ahead as a proxy only,
as the resulting most informative groups of variables are similar also when using expected
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yearly inflation 2-years and 3-years ahead as a proxy. I present the results of the latter two
in Appendix 2.

As presented in Table 5, the first factor explains approximately 11.4 % of the variation in
the group of prices. Variation of exchange rates, survey data and deposits groups explained
by the first factor is around 4.0 %, 3.8 %, and 3.5 %, respectively. Output data and money
aggregates groups variation explained is even less, while variation explained in the labour
market and stock market group is negligible. All of the factors from the second to the last,
eight factor, explain the highest amount of the variation in the stock market group, ranging
from about 6.5 % to 9.2 %. Among the deposits, prices and output data groups the variation
explained by those factors is similar, while the variation explained for all of the other groups
of variables is immaterial.

Table 5: R2 values: 1y1y inflation expectations

Group f1 f2 f3 f4 f5 f6 f7 f8

Stock market 0.005 0.077 0.075 0.065 0.080 0.084 0.092 0.092
Exchange rates 0.040 0.001 0.005 0.006 0.007 0.004 0.009 0.007
Money aggregates 0.023 0.005 0.015 0.012 0.011 0.013 0.013 0.013
Deposits 0.035 0.042 0.056 0.044 0.047 0.046 0.052 0.051
Prices 0.114 0.041 0.036 0.036 0.039 0.039 0.039 0.044
Output data 0.028 0.037 0.036 0.041 0.037 0.038 0.035 0.040
Labour market 0.004 0.007 0.001 0.003 0.001 0.002 0.002 0002
Survey data 0.038 0.059 0.041 0.030 0.034 0.036 0.035 0.036

Source: Own work.

I repeat the similar analysis using the HICP inflation as a proxy and present the results in
Tables 6 and 7. Table 6 contains the information about the variation explained by the three
factors, as this is the optimal number of factors that enter the model. Table 7, however,
contains of the R2 values when regressing the variables on the first factor only, as just this
one enters into the model after performing the factor selection procedure.

The results presented in Table 6 suggest, that the first factor explains a similar amount of
variation for survey data group of variables, labour marker, exchange rate groups and money
aggregates. The variation explained is around 16 % in the survey data group, 15.3 % and
15.0 % in the labour market and exchange rates group, and 14.9 % when looking at money
aggregates group. Non-negligible amount of variation explained is also in the stock market
and output data segments, while variation explained in the remaining groups of prices and
deposits results to be much less. The second factor explains most of the variation in money
aggregates and exchange rates groups, while the proportion of the variation explained in the
other macroeconomic groups of variables is minor. Similarly to the second factor, the third
factor explains most of the variation in money aggregates and exchange rates groups.

R2 statistics from Table 7 imply, that the first factor from the 3PRF procedure with
transformed HICP inflation as a proxy variable explains around 55.8 % of variation in the

48



labour market group, 40.7 % in the survey data and 35.5 % of variation in the output data
group. Additionally, proportion of variation explained in the stock market group of
variables is roughly 18.5 % and 10.9 % in the money aggregates group. Results for horizon
h = 17 are essentially the same as for the horizon h = 13 and are, therefore, presented in
Appendix 2.

Table 6: R2 values: inflation (h = 9)

Group f1 f2 f3

Stock market 0.110 0.033 0.124
Exchange rates 0.150 0.197 0.189
Money aggregates 0.149 0.251 0.289
Deposits 0.034 0.003 0.028
Prices 0.052 0.026 0.078
Output data 0.105 0.032 0.040
Labour market 0.153 0.010 0.011
Survey data 0.160 0.019 0.034

Source: Own work.

Table 7: R2 values: inflation (h = 13)

Group f1

Stock market 0.185
Exchange rates 0.063
Money aggregates 0.109
Deposits 0.067
Prices 0.060
Output data 0.355
Labour market 0.558
Survey data 0.407

Source: Own work.

The findings of this section are the following. The macroeconomic segment that carries the
most medium- to long-term information about expected inflation is the group of prices,
followed by the stock markets. However, except from 11.4 % of variation explained in the
prices group by the first factor, the overall percentage of variation explained in each of the
groups in Case 1 is quite low, especially compared to the proportion of the variation
explained by the factors estimated from 3PRF procedure using inflation as the proxy
variable in Case 2. For the h = 9 quarter horizon, most informative groups of variables
about inflation are survey data, labour market and exchange rates variables. Finally, for the
longer horizons of h = 13 and h = 17, labour market, survey data and output data groups of
variables undoubtedly dominate in terms of the correlation with the inflation used as a
target-proxy.
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4.4 Robustness check
In this subsection I consider various initial estimation sample lengths for calculation of the
pseudo-real-time OOS forecasts in order to ensure the robustness of the results presented
above. The forecasts presented in the previous subsection are constructed using the
parameters estimated on the sample covering the period from 2006 to 2014. I sequentially
extend the OOS period, re-estimate the models and compute the forecasts using the model
with estimated factors only (model F). However, due to the short sample size I present only
the pseudo-real-time OOS forecasts which could be constructed.

I present the resulting RMSFEs for each of the model specifications in Tables 8−10. For all
of the tested initial estimation samples the OOS forecasting performance of inflation
forecasts through inflation expectations forecasts dominates the forecasts obtained with
estimated factors from the 3PRF procedure using inflation as a proxy. Hence, confirming
the results presented above.

I perform the first robustness check using the initial estimation sample covering the period
from 2006 to 2013 for the parameter estimation. The results are presented in Table 8.
RMSFE of inflation forecast h = 9 quarters ahead compared to 1y1y inflation expectations
forecast results to be nearby 2.2-times higher, RMSFE of inflation forecast h = 13 quarters
ahead compared to 1y2y inflation expectations forecast about 1.4-times higher and RMSFE
of inflation forecast h = 17 quarters ahead compared to 1y3y inflation expectations forecast
almost 2.6-times higher. I present the resulting comparisons in Appendix 3 in Figures
24−26.

Table 8: Initial estimation sample: 2006−2013

Model specification

Expected inflation AR FAR F
1y1y 0.755 0.693 0.697
1y2y 0.619 0.591 0.584
1y3y 0.323 0.329 0.327

Realized inflation AR FAR F
HICP**, h = 9 1.294 1.704 1.503
HICP**, h = 13 0.713 0.972 0.828
HICP**, h = 17 0.544 0.808 0.843

Source: Own work.

Next, I shorten the initial estimation sample for one year, implying the sample from 2006
to 2012. Table 9 shows that RMSFE of inflation forecast h = 9 quarters ahead compared
to 1y1y inflation expectations forecast results to be approximately 2.2-times higher (1.780
compared to 0.806) and RMSFE of inflation forecast h= 13 quarters ahead compared to 1y2y
inflation expectations forecast around 1.3-times higher (RMFSE of 0.988 versus 0.758). The
comparison of the OOS forecasts constructed using the parameters estimated in this period
can be seen in Appendix 3 in Figures 27 and 28.
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Table 9: Initial estimation sample: 2006−2012

Model specification

Expected inflation AR FAR F
1y1y 0.875 0.799 0.806
1y2y 0.796 0.758 0.758

Realized inflation AR FAR F
HICP, h = 9 1.374 2.287 1.780

HICP, h = 13 0.942 1.24 0.988

Source: Own work.

Finally, I set the initial estimation sample to cover the period from 2006 to 2011. Table 10
shows that RMSFE of inflation forecast h = 9 quarters ahead compared to 1y1y inflation
expectations forecast results to be around 2.4-times higher (1.876 compared to 0.778) for the
initial estimation sample considered. This is evident from Figure 29 presented in Appendix 3
as well. Inflation forecast performance is much worse due to the realized peaks and troughs
in the initial estimation sample period which has a high impact on the produced forecasts.
Forecasts for inflation expectations, on the other hand, remain quite stable throughout the
forecasting period resulting in a lower RMSFE.

Table 10: Initial estimation sample: 2006−2011

Model specification

Expected inflation AR FAR F
1y1y 0.850 0.768 0.778

Realized inflation AR FAR F
HICP, h = 9 1.308 2.449 1.876

Source: Own work.
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CONCLUSION

In this master’s thesis I present a new approach to inflation forecasting on the medium- to
long-term. I propose the alternative modelling strategy and construct the model which
produces the forecasts of inflation through market-based inflation expectations using the
factors estimated with the 3PRF procedure. I assess the accuracy of inflation forecasts
based on inflation expectations and study whether the information embedded in the inflation
expectations can be used in inflation forecasting.

I analyse the formation of expected inflation in the euro area, focusing on the market-based
measure of expectations extracted from the yield curve of inflation-linked swap contracts
using the affine term structure model. I model the expected inflation using the Gaussian
affine term structure model to obtain the parameters needed to decompose forward inflation
quotes into the expected inflation and inflation risk premium.

The results obtained from the decomposition suggest that the expected inflation had been
consistently below the ECB target. This needs to be contrasted, however, with the fact that
the average level of expected inflation is well below the ECB inflation target, which is
ultimately an indication of de-anchoring. Over all of the horizons considered, the
movement of expected inflation is similar in its direction, but different in its volatility. The
shorter the horizon, the higher the volatility of inflation expectations. Nevertheless, inflation
expectations do not fluctuate as much as does the inflation risk premium component of the
ILS curve, implying that ILS rates are prone to move with inflation risk premium.

After decomposition of ILS curve to the inflation expectations and inflation risk premium,
I use the three-pass regression filter of Kelly and Pruitt (2015) to extract the most relevant
factors driving first, the inflation expectations, and then additionally also the factors driving
the inflation itself. Using the estimated factors three model specifications are evaluated,
namely the AR(1) model, the model with estimated factors only and the model that includes
both, the estimated factors and the autoregressive term.

Initially I construct the inflation forecasts using the common factors obtained with the 3PRF
procedure using inflation expectations as factor proxy. In this way I assess whether inflation
expectations disclose any additional information about the inflation. My findings are that
adding the relevant factors that drive inflation expectations into a forecasting equation for
inflation improves the forecast accuracy in the case of using 1y1y and 1y3y inflation
expectations compared to the forecast accuracy when using the baseline AR(1) model.
Therefore, using the dynamic factor model with targeted predictors extracted from inflation
expectations as underlying factors provide better predictions for the euro area HICP
inflation than the benchmark. The stated indicates, that inflation expectations embed some
useful information and have some predictive power for realized inflation forecasting.
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However, expected inflation obtained from the GATS model decomposition turns out to be
the best predictor of inflation at all horizons considered. Comparing the forecast accuracy of
the factor model to the expected inflation from the ILS curve decomposition I discover that
for all dynamic h-steps ahead forecasts ILS rates without the IRP have systematic predictive
power for inflation. The latter exhibit the best forecasting performance, as they provide the
lowest pseudo-real-time OOS prediction RMSFE.

Nevertheless, the factors obtained from the 3PRF estimation using market-based inflation
expectations as a proxy variable contain some useful information about the inflation.
Compared to the benchmark model I report the forecasts accuracy gains using the 3PRF
estimated factors when forecasting inflation. Hence, I extend my analysis and study the
usefulness of inflation expectations for inflation forecasting on the medium- to long-term
further.

I construct two additional models. The idea is to compare the forecasting performance of
inflation forecasts calculated through inflation expectations and inflation forecasts obtained
using the 3PRF estimated factors using inflation as factor proxy. Forecasting inflation
indirectly using the measure of inflation expectations is the novel approach in the literature.
I assess which of the two modified models results to be more accurate in terms of OOS
forecasts of the realized euro area seasonally-adjusted HICP inflation. I modify the initial
model and estimate two model modifications.

First, I estimate the model based on the factors estimated with the 3PRF procedure using
inflation expectations for different horizons as a proxy variable to forecast the expected
inflation. The difference from the starting model in my analysis is in the dependent
variable, which is expected inflation for different horizons and no longer realized yearly
inflation. Second, I construct and estimate the forecasting model for inflation based on the
3PRF estimated factors using the target variable − inflation itself as a proxy. For both of the
model modifications rolling forecasts h-steps ahead are constructed in such a way that the
allignment of the forecast periods is achieved.

I assess whether inflation expectations disclose any additional information about the inflation
and my findings can be summarized as follows. In-sample fit and out-of-sample forecasting
exercises suggest that market-based inflation expectations contain useful information about
inflation. Inflation expectations have systematic predictive power for inflation at all horizons
considered. Pseudo-real-time OOS forecasts of inflation through inflation expectations result
in a better forecasting precision and are more stable than the inflation OOS forecasts using
the factors estimated with the 3PRF procedure using the target variable itself. This claim is
supported by robustness checks with various starting points as well.

Additionally, I find that the macroeconomic segment that is most important in explaining the
inflation expectations in the medium- to long-term is the group of prices, which consists of
various HICP and PPI indices, as well as RPPI and CPPI. On the other hand, when analyzing
the HICP inflation, most informative macroeconomic segments for the longer horizons are
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labour market, survey data and output data segments, while on the shortest period considered
survey data and labour market as before, as well as exchange rate group of macroeconomic
variables.

On the medium- to long-term horizons forecasting inflation is not trivial due to the
underlying features of the HICP inflation dynamics. Inflation expectations bear the
informational value for the realized inflation and contain a predictive power for the
forecasts of the latter. The results produced using the modelling strategy for inflation
forecasting that I propose suggest that inflation expectations-based inflation forecasts are
more accurate than inflation forecasts using the factors obtained from the target variable
directly. The constructed inflation forecasts are more robust which implies that policy
makers could improve their efficiency when forecasting inflation. Forecasting inflation
indirectly using the measure of inflation expectations as approached in this master’s thesis
is, according to my knowledge, a novel approach in the literature and could be of great
interest in policy implications. Inflation expectations forecasts obtained from the standard
Kelly and Pruitt (2015) regression can be used to monitor the effect of the monetary policy
decisions, to assess the effectiveness in achieving the inflationary target on the medium- to
long-term and to check the robustness of central bank’s own inflation outlook.

The thesis could be improved and extended even further by additionally evaluating the
forecast accuracy for some sub-aggregates of the overall HICP inflation. For instance,
inflation based on overall HICP index excluding energy and unprocessed food prices could
be used, which excludes the components of consumer prices which are the most volatile, as
volatility component, particularly when pronounced, makes it harder to forecast the
inflation on the medium- to long-term. Moreover, different approaches could be employed
to obtain the underlying factors or individual variables that drive the dynamics of inflation
expectations. Finally, the model specification and its estimation could be further extended
using, for instance, the Factor-Augmented Vector Autoregressive (FAVAR) models.
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APPENDICES





Appendix 1: Povzetek v slovenskem jeziku
NAPOVEDOVANJE INFLACIJE NA OSNOVI INFLACIJSKIH PRIČAKOVANJ:
DINAMIČNI VEČFAKTORSKI MODEL

Ključni ideji moje magistrske naloge sta napovedovanje inflacije evrskega območja z
dinamičnim faktorskim modelom s faktorji, ki ženejo inflacijska pričakovanja in ocena
natančnosti teh napovedi za različne horizonte. Gre za alternativno strategijo
napovedovanja inflacije, kjer faktorje ocenim s tro-stopenjskim regresijskim filtrom (angl.
Three-Pass Regression Filter, v nadaljevanju: 3PRF metoda). Ta omogoča ekstrakcijo
faktorjev, ki so najbolj relevantni za napovedno spremenljivko.

Glavna prispevka moje magistrske naloge k že obstoječi literaturi sta uporaba dinamičnega
večfaktorskega modela za napovedovanje inflacije evrskega območja s faktorji, ki ženejo
inflacijska pričakovanja in primerjava posrednih napovedi inflacije preko inflacijskih
pričakovanj in neposrednih napovedi inflacije z uporabo faktorjev, ki ženejo inflacijo samo.
Primarna raziskovalna vprašanja magistrskega dela so:

• Ali ima informacija, ki jo vsebujejo inflacijska pričakovanja, napovedno moč za
napovedovanje inflacije?

• Ali je napovedna moč modela s faktorji, ki ženejo inflacijska pričakovanja, boljša od
napovedne moči običajnega avtoregresijskega modela za napovedovanje inflacije?

• Ali se natančnost napovedovanja inflacije izboljša ob uporabi modela s faktorji, ki ženejo
inflacijska pričakovanja, v primerjavi z napovedno močjo modela s faktorji, ki ženejo
ciljno spremenljivko − inflacijo samo?

Poleg tega v magistrskem delu identificiram in analiziram razlike v skupinah
makroekonomskih spremenljivk, ki so najbolj informativne za inflacijska pričakovanja in
tistih makroekonomskih segmentov, ki so najbolj informativni za inflacijo.

Za napovedovanje inflacije najprej uporabim dinamični večfaktorski model s faktorji, ki
ženejo inflacijska pričakovanja. Ta imajo pomembno vlogo pri učinkovitem izvajanju
denarne politike, saj predstavljajo enega izmed osrednjih pokazateljev verodostojnosti
centralne banke. Inflacijska pričakovanja odražajo zmožnosti centralne banke pri doseganju
inflacijskih ciljev in zagotavljanju stabilnosti cen. Centralne banke poleg osnovne mere
inflacije na srednji rok uporabljajo inflacijska pričakovanja kot enega od kazalnikov za
spremljanje učinka sprememb in odločitev, ki se vežejo na izvajanje denarne politike ter za
navzkrižno preverjanje makroekonomskih projekcij glede obetov inflacije.

Predpogoji za učinkovitost ukrepov denarne politike so dobro zasidrana inflacijska
pričakovanja na srednji do dolgi rok, zato vprašanje zasidranosti inflacijskih pričakovanj
predstavlja enega izmed ključnih interesov oblikovalcev politike. Inflacijska pričakovanja
so zasidrana, ko so povprečne napovedi inflacije stabilne in blizu inflacijskega cilja,
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določenega s strani centralne banke. Stabilnost cen evrskega območja je definirana kot
medletna stopnja inflacije, ki je nižja od 2 %, vendar blizu tej ravni na srednji rok, kar
predstavlja vodilo za trge in fokus za inflacijska pričakovanja.

Inflacijska pričakovanja se lahko meri na podlagi anket, lahko pa se jih oceni na podlagi
modela. Anketna inflacijska pričakovanja zajemajo (subjektivni) pogled gospodinjstev,
podjetij ali profesionalnih napovedovalcev o prihodnji stopnji inflacije. Slabost pričakovane
inflacije, merjene na podlagi anket, je v frekvenci merjenja le-teh. Izvajanje anket poteka na
četrtletni ravni (oziroma v najboljšem primeru na mesečni ravni) kar omejuje njihovo
uporabnost za oblikovalce politike. Iz tega razloga pričakovano inflacijo običajno
modeliramo, se pa kljub temu inflacijska pričakovanja na osnovi anket uporabljajo za
preverjanje robustnosti inflacijskih pričakovanj pridobljenih iz modela.

V magistrski nalogi ocenim inflacijska pričakovanja z modelom z afino časovno strukturo
(angl. Affine Term Structure model, v nadaljevanju: ATS model), ki omogoča
dekompozicijo krivulje brezkuponskih inflacijskih zamenjav (angl. zero-coupon
Inflation-Linked Swap rates, v nadaljevanju: ILS) na pričakovano inflacijo in premijo za
inflacijsko tveganje. Ta komponenta krivulje predstavlja nadomestilo investitorjem za
tveganje, povezano z negotovostjo inflacije v prihodnosti. Uporabila sem pristop avtorjev
Joslina, Singletona in Zhu-ja (2011), ki uporabijo Gaussov ATS model (angl. Gaussian
Affine Term Structure model, v nadaljevanju: GATS model). Ti modeli predstavljajo eno
izmed temeljnih orodij za empirične raziskave na področju makroekonomije in financ. V
GATS modelih so donosi predstavljeni kot afine funkcije faktorjev z Gaussovo dinamiko.
Poleg tega je v diskretnem času skupna porazdelitev faktorjev in donosov multivariatna
normalna s konstantnimi pogojnimi variancami. Prednost metode Joslina, Singletona in
Zhu-ja (2011) je v tem, da omogoča dekompozicijo krivulje donosnosti na dva dela in sicer
na časovno vrsto v do tveganja nevtralnem verjetnostnem prostoru Q in časovno vrsto v
empiričnem verjetnostnem prostoru P. Metoda omenjenih avtorjev omogoča konvergenco h
globalnemu optimumu praktično v trenutku, kar omogoča računsko učinkovito ocenjevanje
GATS modela.

Dekompozicijo krivulje ILS naredim za različne dospelosti in sicer za 1-, 2- in 3-letni
horizont za obdobje od julija 2004 do decembra 2019. S krivulje brezkuponskih inflacijskih
zamenjav ocenim glavne komponente in uporabim prve tri kot faktorje, na katerih se tekom
ocenjevanja izvedejo invariantne transformacije. Uporaba metode Joslina, Singletona in
Zhu-ja (2011) omogoča izračun parametrov, ki so ocenjeni ločeno − izračun Q in P
parametrov.

Po oceni GATS modela uporabim ocenjene parametre največjega verjetja za izračun
pričakovane prihodnje inflacije pod verjetnostno mero Q in P. Inflacijska pričakovanja v
prostoru Q izračunam kot terminske stopnje po načinu, kot izhajajo iz modela (angl.
model-implied forward rates), inflacijska pričakovanja v verjetnostnem prostoru P pa z
uporabo dinamičnega napovedovanja za h-prihodnjih obdobij (VAR(1) model), pri čemer h
sovpada z dospelostjo inflacijskih pričakovanj. Premijo za inflacijsko tveganje izračunam
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kot razliko med pričakovano inflacijo v verjetnostnem prostoru Q in pričakovano inflacijo
pod verjetnostno mero P.

Za inflacijska pričakovanja vseh dospelosti − letna inflacijska pričakovanja čez eno leto,
čez dve leti in čez tri leta ugotovim, da je njihova dinamika podobna v smeri, a različna v
volatilnosti. Za krajše horizonte so inflacijska pričakovanja bolj volatilna. Druga
komponenta ILS krivulje je bolj volatilna kot inflacijska pričakovanja, tj. premija za
inflacijsko tveganje. Dinamika ILS krivulje je precej podobna inflacijski premiji. Nihanje
inflacijskih pričakovanj je precej manj izrazito. Iz tega sledi, da na gibanje in volatilnost
ILS krivulje bolj vpliva inflacijska premija, kar je najbolj razvidno na daljših horizontih.

Za nadaljnjo analizo iz velikega nabora makroekonomskih spremenljivk izračunam faktorje,
ki so za pričakovano inflacijo, za vsako obravnavano dospelost posebej, najbolj relevantni.
Problem velikega števila možnih napovednih spremeljivk je namreč v tem, da je v praksi
tako veliko količino informacij težko uporabiti (angl. curse of dimensionality). V splošnem
se ta problem rešuje z uporabo nekaj spremenljivk, ki so najbolj pomembne za napovedno
spremenljivko, ali pa z uporabo ocenjenih faktorjev.

Uporabljeno podatkovno bazo sestavlja 47 četrtletnih serij evrskega območja, ki pokrivajo
obdobje od zadnjega kvartala leta 2004 do konca leta 2019. Makroekonomske skupine,
zajete z uporabljenimi spremenljivkami, so kapitalski trgi (delniški indeksi), cenovni
indeksi, monetarni agregati, menjalni tečaji, trg dela, narodno-gospodarski podatki ter
anketni kazalniki sentimenta in zaupanja. Iz analize izločim kratkoročne in dolgoročne
obrestne mere, saj že vsebujejo inflacijska pričakovanja, kar bi lahko vodilo do napačne
korelacije (angl. spurious correlation). Za dosego stacionarnosti časovnih vrst sem podatke
predhodno ustrezno transformirala.

Faktorje, ki ženejo inflacijska pričakovanja izračunam s pomočjo 3PRF metode avtorjev
Kelly-ja in Pruitta (2015). V literaturi je sicer najbolj uporabljena PCA metoda. 3PRF, ki
predstavlja zaporedje treh regresij po metodi najmanjših kvadratov (angl. Ordinary Least
Squares, v nadaljevanju: OLS), pa je njena alternativa. V 3PRF metodi so faktorji,
pomembni za napovedovanje ciljne spremenljivke, selektivno izbrani.

V prvem koraku 3PRF metode se izvede toliko regresij časovnih serij (angl. time series
regressions), kolikor je različnih možnih prediktorjev v podatkovni bazi. Prediktorji
vstopajo v enačbo kot odvisna spremenljivka, kot regresorji pa proxy spremenljivke. Kot
proxy v prvi iteraciji uporabim inflacijska pričakovanja, v naslednjih iteracijah pa napake
(angl. residuals) iz prejšnjega proxy-ja kot nov proxy, kar avtorja Kelly in Pruitt (2015)
imenujeta avtomatična izbira proxy-jev (angl. Automatic Proxy Selection). V tem koraku z
OLS metodo ocenim koeficiente φi za vsak i = 1, . . . ,N iz enačbe (24) iz poglavja 3.2, kjer
N predstavlja število različnih makroekonomskih spremenljivk, ki v regresijo vstopajo kot
prediktorji. V drugem koraku 3PRF postopka ponovno uporabim prediktorje v vlogi
odvisne spremenljivke, kot regresorje pa ocenjene koeficiente φ̂i iz prvega koraka. V tem
koraku s t cross section regresijami ocenim koeficient Ft za vsak t = 1, . . . ,T iz enačbe (25).
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V napovedni regresiji časovne serije inflacije v nadaljevanju uporabim ocenjene koeficiente
F̂t iz prejšnjega koraka, kar predstavlja tretji in zadnji korak 3PRF metode.

Z uporabo 3PRF postopka za napovedovanje inflacije uporabim zgolj faktorje relevantne za
inflacijska pričakovanja, ki sem jih pridobila iz dekompozicije ILS krivulje z GATS
modelom. Končno število faktorjev uporabljenih v dinamičnem faktorskem modelu
določim glede na relativno povprečno kvadratno napako napovedi (angl. relative
Mean-Square-Forecasting-Error) v primerjavi natančnosti napovedi iz modela, ki vsebuje
zgolj faktorje, in avtoregresijskega modela AR(1), ki igra vlogo primerjalnega modela
(angl. benchmark model).

Za napovedovanje izven vzorca (angl. Out-Of-Sample forecasting, v nadaljevanju: OOS)
uporabim dinamični faktorski model s faktorji, ki ženejo inflacijska pričakovanja in
raziščem, ali so informacije vsebovane v inflacijskih pričakovanjih koristne za
napovedovanje inflacije. V analizi ocenim napovedno moč več različnih specifikacij
modela. Ocenim osnovni AR(1) model, model s faktorji in avtoregresijskim členom
inflacije, ter model, v katerega vstopajo zgolj faktorji. OOS napovedi, ki izhajajo iz
različnih specifikacij modela primerjam z realizirano časovno serijo HICP inflacije evro
območja. Napovedno moč različnih modelskih specifikacij primerjam na podlagi vrednosti
korena povprečne kvadratne napake napovedi (angl. Root-Mean-Square-Forecasting-Error,
v nadaljevanju: RMSFE).

Rezultati so, izhajajoč iz mojih ugotovitev analize primerjave napovedne natančnosti
različnih specifikacij modela sledeči. Inflacijska pričakovanja neposredno pridobljena iz
GATS modela so najbolj indikativna za realizirano inflacijo za vse obravnavane dospelosti.
Primerjalno z drugimi modelskimi specifikacijami je njihova RMSFE vrednost OOS
napovedi najnižja. Izkaže pa se, da je napovedna natančnost modela zgolj s faktorji, ki
ženejo inflacijska pričakovanja, vseeno boljša od natančnosti primerjalnega AR(1) modela.
To nam pove, da pričakovana inflacija vsebuje informacijo, ki je koristna za napovedovanje
inflacije.

Zaradi omenjene ugotovitve sem prvotno analizo razširila z dvema dodatnima modeloma,
ocenjenima za vse tri različne modelske specifikacije. Prva modifikacija modela se s
prvotno ocenjenim modelom razlikuje v tem, da v model kot napovedna spremenljivka
namesto inflacije vstopa pričakovana inflacija dobljena iz GATS modela. Kot faktorji v
dinamični faktorski model pa še vedno vstopajo tisti faktorji, ki ženejo inflacijska
pričakovanja pridobljeni s 3PRF metodo. V drugi modifikaciji modela je napovedna
spremenljivka, tako kot v prvotno ocenjenem modelu, inflacija. Relevantni faktorji,
ocenjeni s 3PRF metodo, ki vstopajo v dinamični faktorski model, pa so, namesto iz
inflacijskih pričakovanj, izločeni iz inflacije same.

Moj cilj na tej točki je ugotoviti, kateri od dveh novih pristopov ima pri napovedovanju
inflacije evrskega območja izven vzorca večjo napovedno moč. V primerjalni analizi so
tako napovedi inflacijskih pričakovanj kot inflacije izračunane za soležne horizonte. OOS

4



napovedi obeh dodatnih modelov za vsako od treh specifikacij ponovno primerjam z
RMSFE. Ugotovim, da so napovedi inflacije, pridobljene z napovedmi inflacijskih
pričakovanj, za vse obravnavane dospelosti bolj natančne, kot napovedi dobljene z inflacijo
samo. Ugotovitve podprem tudi s testi robustnosti, kjer za začetno ocenjevanje parametrov
uporabim različne dolžine vzorca. V vseh obravnavanih primerih je napovedna moč
inflacijskih pričakovanj pri napovedovanju inflacije boljša kot tista z uporabo napovedi
inflacije.

Na srednji do dolgi rok je inflacijo zaradi njene volatilnosti težko natančno napovedovati, so
pa napovedi inflacije na teh horizontih ključnega pomena pri izvajanju monetarne politike,
katere glavni cilj je zagotavljanje stabilnosti cen. Prav zaradi njihovega pomena morajo biti
napovedi inflacije čim bolj natančne in zanesljive. Rezultati kažejo, da so srednje- do
dolgoročne napovedi inflacije za obravnavane dospelosti z alternativno metodo,
predstavljeno v tej magistrski nalogi, bolj natančne kot neposredne napovedi inflacije same.
To pomeni, da bi bilo napovedovanje inflacije lahko bolj učinkovito. V literaturi
napovedovanje inflacije posredno prek inflacijskih pričakovanj po mojem vedenju še ni bilo
uporabljeno, zato je predstavljen pristop v magistrski nalogi na tem področju nov. Napovedi
inflacije preko inflacijskih pričakovanj bi se lahko uporabile za spremljanje učinka
odločitev o spremembah denarne politike centralne banke, za ocenjevanje učinkovitosti
srednje- do dolgoročnega doseganja inflacijskega cilja in za preverjanje robustnosti
inflacijskih napovedi.

5



Appendix 2: Macroeconomic indicators of inflation expectations

Table 11: R2 values: 1y2y inflation expectations

Group f1 f2 f3 f4 f5 f6 f7 f8

Stock market 0.006 0.075 0.073 0.063 0.077 0.082 0.089 0.089
Exchange rates 0.038 0.013 0.004 0.006 0.007 0.004 0.009 0.007
Money aggregates 0.022 0.005 0.014 0.011 0.011 0.012 0.013 0.012
Deposits 0.036 0.044 0.057 0.044 0.047 0.046 0.052 0.052
Prices 0.114 0.043 0.039 0.038 0.042 0.041 0.042 0.046
Output data 0.029 0.038 0.037 0.042 0.038 0.039 0.037 0.041
Labour market 0.004 0.007 0.001 0.004 0.001 0.003 0.002 0.002
Survey data 0.037 0.055 0.038 0.029 0.032 0.034 0.033 0.034

Source: Own work.

Table 12: R2 values: 1y3y inflation expectations

Group f1 f2 f3 f4 f5 f6 f7 f8

Stock market 0.006 0.073 0.071 0.061 0.075 0.080 0.086 0.086
Exchange rates 0.038 0.013 0.004 0.005 0.007 0.004 0.008 0.007
Money aggregates 0.023 0.005 0.014 0.011 0.010 0.012 0.012 0.012
Deposits 0.036 0.044 0.057 0.045 0.047 0.046 0.052 0.051
Prices 0.114 0.045 0.040 0.039 0.043 0.043 0.043 0.048
Output data 0.030 0.040 0.038 0.042 0.040 0.040 0.038 0.042
Labour market 0.004 0.007 0.001 0.004 0.001 0.003 0.002 0.002
Survey data 0.037 0.052 0.036 0.027 0.030 0.032 0.031 0.032

Source: Own work.

Table 13: R2 values: inflation (h = 17)

Group f1

Stock market 0.185
Exchange rates 0.063
Money aggregates 0.109
Deposits 0.067
Prices 0.060
Output data 0.355
Labour market 0.558
Survey data 0.407

Source: Own work.
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Appendix 3: Robustness check

Figure 24: Initial estimation sample: 2006−2013 (h = 9)
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Source: Own work.

Figure 25: Initial estimation sample: 2006−2013 (h = 13)
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Source: Own work.
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Figure 26: Initial estimation sample: 2006−2013 (h = 17)

2011 2013 2015 2017 2019
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
Inflation forecast (model F)
Expected inflation forecast (model F)
EA HICP inflation, SA
1y3y inflation expectations

Source: Own work.

Figure 27: Initial estimation sample: 2006−2012 (h = 9)
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Source: Own work.
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Figure 28: Initial estimation sample: 2006−2012 (h = 13)
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Source: Own work.

Figure 29: Initial estimation sample: 2006−2011 (h = 9)
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