
 

 

UNIVERSITY OF LJUBLJANA 

 SCHOOL OF ECONOMICS AND BUSINESS 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

MASTER’S THESIS 

 

 

 JAKOB PIRŠ



 

 

  



 

 

UNIVERSITY OF LJUBLJANA 

 SCHOOL OF ECONOMICS AND BUSINESS 

MASTER’S THESIS 

PORTFOLIO OPTIMIZATION WITH GRAPH THEORY BASED 

ALGORITHMS 

Ljubljana, July 2023 JAKOB PIRŠ



 

 

AUTHORSHIP STATEMENT 

The undersigned Jakob Pirš, a student at the University of Ljubljana, School of Economics and Business, 

(hereafter: SEB LU), author of this written final work of studies with the title Portfolio optimization with 

graph theory based algorithms, prepared under supervision of prof. dr. Igor Lončarski PhD. 

D E C L A R E  

1. this written final work of studies to be based on the results of my own research ; 

2. the printed form of this written final work of studies to be identical to its electronic form; 

3. the text of this written final work of studies to be language-edited and technically in adherence with the 

SEB LU’s Technical Guidelines for Written Works, which means that I cited and / or quoted works and 

opinions of other authors in this written final work of studies in accordance with the SEB LU’s Technical 

Guidelines for Written Works; 

4. to be aware of the fact that plagiarism (in written or graphical form) is a criminal offence and can be 

prosecuted in accordance with the Criminal Code of the Republic of Slovenia;  

5. to be aware of the consequences a proven plagiarism charge based on the this written final work could 

have for my status at the SEB LU in accordance with the relevant SEB LU Rules; 

6. to have obtained all the necessary permits to use the data and works of other authors which are (in written 

or graphical form) referred to in this written final work of studies and to have clearly marked them;  

7. to have acted in accordance with ethical principles during the preparation of this written final work of 

studies and to have, where necessary, obtained permission of the Ethics Committee;  

8. my consent to use the electronic form of this written final work of studies for th e detection of content 

similarity with other written works, using similarity detection software that is connected with the SEB LU 

Study Information System; 

9. to transfer to the University of Ljubljana free of charge, non-exclusively, geographically and time-wise 

unlimited the right of saving this written final work of studies in the electronic form, the right of its 

reproduction, as well as the right of making this written final work of studies available to the public on the 

World Wide Web via the Repository of the University of Ljubljana; 

10. my consent to publication of my personal data that are included in this written final work of studies and in 

this declaration, when this written final work of studies is published. 

11. that I have verified the authenticity of the information derived from the records using artificial intelligence 

tools. 

Ljubljana, July 11th, 2023 Author’s signature: ___________________ 

 





i 

 

 

TABLE OF CONTENTS 

INTRODUCTION ............................................................................................................... 1 

1 PORTFOLIO OPTIMIZATION ....................................................................... 2 

1.1 Markowitz optimization ..................................................................................... 3 

1.1.1 Constraints........................................................................................................ 8 

1.1.2 Limitations ....................................................................................................... 9 

1.1.3 Subsequent developments .............................................................................. 10 

1.2 Bridging the gap between graph theory and MPT ........................................ 11 

1.2.1 Degree Centrality ........................................................................................... 12 

1.2.2 Closeness Centrality ....................................................................................... 14 

1.2.3 Betweenness Centrality .................................................................................. 15 

1.2.4 Eigenvector Centrality ................................................................................... 16 

1.2.5 Using centrality measures in the optimization problem ................................. 18 

2 GRAPH THEORY ALGORITHMS ............................................................... 19 

2.1 Degeneracy Index .............................................................................................. 20 

2.2 Clique index ....................................................................................................... 23 

2.2.1 Cross-Maximal Clique Centrality .................................................................. 25 

2.2.2 Bron-Kerbosch algorithm............................................................................... 25 

2.3 P, NP, NP-Hard, NP-complete ......................................................................... 27 

3 DATA ................................................................................................................. 29 

3.1 Data and benchmark selection........................................................................ 29 

3.2 Data preparation and cleaning ........................................................................ 30 

3.3 Environment ................................................................................................... 30 

4 PRACTICAL SIMULATION.......................................................................... 31 

4.1 Performance metrics ......................................................................................... 31 

4.1.1 Average Annual Rate of Returns (AARR)..................................................... 31 

4.1.2 Annual Volatility ............................................................................................ 31 

4.1.3 Maximum Drawdown (MDD) ....................................................................... 31 

4.1.4 Sharpe Ratio ................................................................................................... 33 

4.1.5 Returns Over Maximum Drawdown (RoMaD) ............................................. 33 

4.2 Graph creation .................................................................................................. 33 



ii 

 

 

4.3 Constructing Degeneracy Index ...................................................................... 34 

4.4 Constructing the Clique Index......................................................................... 36 

4.5 Systemic Risk Analysis ..................................................................................... 38 

4.6 MPT Indexes ..................................................................................................... 39 

4.6.1 Variance Index ............................................................................................... 39 

4.6.2 Sharpe Index .................................................................................................. 40 

4.7 In-sample results ............................................................................................... 41 

4.8 Out-of-sample results ....................................................................................... 44 

CONCLUSION .................................................................................................................. 48 

REFERENCES .................................................................................................................. 50 

APPENDICES ................................................................................................................... 59 

LIST OF FIGURES 

Figure 1: Efficient Frontier for Alternative Portfolios .......................................................... 7 

Figure 2: Simulated portfolio allocations (Euro Stoxx 50) ................................................... 8 

Figure 3: Small financial network of 4 stocks ..................................................................... 12 

Figure 4: The Petersen graph............................................................................................... 13 

Figure 5: A weighted graph representing the relationship between several stocks............. 14 

Figure 6: Illustration of a stock with highest BC in a financial network ............................ 15 

Figure 7:: Illustration of a stock with highest EC in a financial network............................ 17 

Figure 8: Example of what is considered an independent set ............................................. 20 

Figure 9: Successive cores of a particular graph 𝐺 ............................................................. 22 

Figure 10: 𝐺1 with removal ................................................................................................ 24 

Figure 11: 𝐺1 with removal ................................................................................................ 24 

Figure 12: BK Algorithm with pivoting .............................................................................. 26 

Figure 13: BK Algorithm with pivoting .............................................................................. 27 

Figure 14: Easy-to-Hard scale ............................................................................................. 28 

Figure 15: Drawdown over time – EW index ..................................................................... 32 

Figure 16: Optimal empirical correlation ............................................................................ 34 

Figure 17: Independent vertex set ....................................................................................... 35 

Figure 18: Clique centrality distribution (CCD) ................................................................. 36 

Figure 19: Highly concentrated asset combination ............................................................. 37 

Figure 20: Clique Index....................................................................................................... 37 

Figure 21: Systemic Risks of Assets ................................................................................... 39 

Figure 22: In-sample normalized comparison ..................................................................... 42 

Figure 23: In-sample mean variance comparison................................................................ 42 

Figure 24: Distribution of returns (in-sample) .................................................................... 44 



iii 

 

 

Figure 25: Out-of-sample normalized comparison.............................................................. 45 

Figure 26: Out-of-sample mean variance comparison ........................................................ 46 

Figure 27: Cumulative returns over time – Degeneracy index ............................................ 47 

Figure 28: Cumulative returns over time – Sharpe index.................................................... 48 

LIST OF TABLES 

Table 1: In-sample performance metrics (annualized) ........................................................ 43 

Table 2: Out-of-sample performance metrics (annualized) ................................................. 47 

LIST OF APPENDICES 

Appendix 1: Povzetek (Summary in Slovene language) ....................................................... 1 

Appendix 2: Pseudocode for BK algorithm .......................................................................... 2 

Appendix 3: Pseudocode for k-core algorithm ...................................................................... 4 

Appendix 4: Components ...................................................................................................... 5 

LIST OF ABBREVIATIONS 

CAPM  Capital Asset Pricing Model 

CMC   Cross Maximal Clique Centrality 

EMH   Efficient Market Hypothesis 

EW   Equal Weight 

MPT   Modern Portfolio Theory 

MV   Mean-Variance 

n. d.   No Date 

NP   Non-deterministic Polynomial 

P   Polynomial 

PO   Portfolio Optimization 

DC   Degree Centrality 

CC   Closeness Centrality 

BC   Betweenness Centrality 

EC   Eigenvector Centrality 

  



iv 

 

 

 

  



 

1 

INTRODUCTION 

Robert Arnott pointed out that in the realm of investing, what is comfortable is rarely 

profitable. This perspective highlights the importance of ongoing innovation and persistent 

exploration of more efficient strategies in finance. One of the pioneering models in this field 

is Markowitz's mean-variance optimization model. Proposed in 1952, this model sets the 

cornerstone of modern portfolio theory, suggesting that asset allocation within a portfolio 

should be influenced by the individual risk and return profiles of each asset, as well as their 

intercorrelations (Markowitz, 1952). The objective is to strike a balance between risk and 

return, aiming to maximize expected returns while minimizing risk, especially correlation 

risk (Buraschi, Porchia & Trojani, 2010). 

The poor performance of Markowitz's rule stems from the large estimation errors on the 

vector of expected returns (Merton, 1980) and the covariance matrices (Jobson & Korkie, 

1980) leading to the well-documented error-maximizing property discussed by Michaud and 

Michaud (2007). The magnitude of this problem is clear when we acknowledge the modest 

improvements achieved by those models specifically designed to tackle the estimation risk 

(DeMiguel, Garlappi & Uppal, 2009). Moreover, the evidence indicates that the simple yet 

effective equally-weighted portfolio rule has not been consistently outperformed by more 

sophisticated alternatives (Bloomfield, Leftwich, & Long, 1977; DeMiguel, Garlappi & 

Uppal, 2009). But since the end of the 20th century, numerous papers from various fields 

have characterized financial markets as networks, in which securities correspond to nodes 

and the links relate to the correlation of returns (Mantegna, 1999; Peralta & Zareei, 2016). 

In particular, the minimum spanning tree has been used by Onnela, Chakraborti, Kaski, 

Kertész and Kanto (2003). The authors Pozzi, Di Matteo and Aste (2013) use Planar 

Maximally Filtered Graphs, while in Zhan, Rea & Rea (2015) hierarchical clustering trees 

and neighbour-nets have been applied to reduce the complexity of the network, 

characterizing the heterogeneous spreading of risk across a financial market.  

The work of Peralta and Zareei (2016) establishes a bridge between Markowitz’s framework 

and the network theory, showing a negative relationship between optimal portfolio weights 

and the centrality of assets in the financial market network. As a result, the centrality 

measures of constructed networks can be used to facilitate the portfolio selection. In most of 

these papers only betweenness and eigenvector centralities are used (Výrost, Lyócsab & 

Baumöhl, 2019). Moreover, the algorithms incorporated are mostly variations of minimum 

spanning trees (Onnela, Chakraborti, Kaski, Kertész & Kanto, 2003), network clusters 

(Boginski, Butenko, Shirokikh, Trukhanov & Lafuente, 2013) and its subsequent variations 

(Clemente, Grassi & Hitaj 2022).  

This thesis contributes by incorporating two additional centrality measures, namely 

closeness and degree centrality. Furthermore, it uses two less commonly used algorithms, 
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namely a variation of the k-core smallest vertex with degeneracy ordering and the BK 

algorithm for determining the optimal cross maximal clique centrality. Both being used to 

create portfolios, the first one to maximize diversification, whilst the other to maximize 

return. The goals are to investigate the use of graph theory algorithms for finding the optimal 

weights for diversification. To critically assess and compare the performance of portfolios 

constructed using graph theory algorithms against an equally weighted index and mean-

variance portfolios and consider the possibility of a combined approach using four different 

centrality measures. To the potential challenges and limitations of employing graph theory 

in portfolio optimization, as well as identifying its unique contributions to portfolio 

management. To provide a clear direction for this thesis, the following research questions 

have been formulated: 

• RQ1: How does the performance of portfolios constructed using graph theory algorithms 

compare to those derived from a traditional MPT (Modern Portfolio Theory) approach, 

specifically during bull and bear markets? 

• RQ2: Can graph-theory algorithms be seamlessly integrated into the traditional 

Markowitz framework to enhance portfolio optimization? Alternatively, could these 

algorithms replace conventional methods entirely, offering a wholly independent and 

superior strategy for portfolio construction? 

• RQ3: In the application of graph theory in portfolio optimization, which centrality 

measure results in the highest Sharpe ratio of the strategy? 

To answer these questions, the thesis is organized into two main parts. The first part focuses 

on building a solid theoretical foundation, combining the principles of the Markowitz model 

with graph theory centrality measures, and later detailing the application of the k-core and 

BK algorithms. In this context, using the k-core algorithm to shape a portfolio with an 

emphasis on minimizing risk, while the BK algorithm is used to form a portfolio to maximize 

returns. The second part adopts an empirical approach and is divided into three sections. It 

begins by explaining the data and methodology used in the study, then outlines the 

performance metrics and discusses the construction of a network of stocks based on optimal 

correlation thresholds. Finally, the performance of various portfolio strategies during the in-

sample (2017-2019) and out-of-sample (2020-2022) periods are compared.  

1 PORTFOLIO OPTIMIZATION 

Portfolio optimization, the core of modern finance, seeks to curate a mix of financial assets 

that maximize returns while mitigating risk. This critical endeavour has long been a focus in 

financial research, to pinpoint the ideal distribution of assets within a portfolio to achieve 

targeted outcomes, such as balancing risk and returns (Qu, Zhou, Xiao, Liang & Suganthan, 

2017). It is one of the problems most frequently encountered by financial practitioners and 

appears in various forms in the context of trading, risk management, and capital allocation 

(De Prado, 2013). A typical optimization model focuses on allocating limited resources 
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among various alternatives to maximize an objective function, such as total profit. Three 

crucial components in any optimization problem are decision variables, the objective 

function, and constraints. Optimization problems without constraints are known as 

unconstrained optimization problems, while those with constraints are referred to as 

constrained optimization problems (Beasley, 2013). Problems that lack an objective function 

are called feasibility problems. In some cases, problems may have multiple objective 

functions, which can be tackled by transforming them into a single-objective optimization 

problem or a series of such problems (Cornuéjols, Peña & Tütüncü, 2018). 

Portfolio optimization originated from Harry Markowitz's influential 1952 paper, "Portfolio 

Selection," where he proposed the mean-variance optimization model, a foundation of 

modern portfolio theory. The goal of MPT is to maximize expected returns while minimizing 

portfolio variance, guiding asset allocation based on each asset's unique risk-return profiles 

and their intercorrelations. Correlation risk, the chance that assets might move in a 

synchronized manner, potentially leading to larger than expected losses, can be mitigated 

through diversification into low-correlation assets, as described by Buraschi, Porchia & 

Trojani (2010). 

1.1 Markowitz optimization 

In the early 1960s, the concept of risk was widely discussed within the investment 

community, but no specific metric existed for quantifying it. To construct a portfolio model, 

investors needed a way to quantify this risk variable. Harry Markowitz (1952) pioneered the 

basic portfolio model by deriving the expected rate of return for a portfolio of assets and an 

associated risk measure. He demonstrated that, under a reasonable set  of assumptions, the 

variance of the rate of return served as a meaningful measure of portfolio risk. Importantly, 

he established the formula for calculating a portfolio's variance. This formula not only 

highlighted the importance of investment diversification to reduce overall portfolio risk but 

also provided guidance on effective diversification strategies. 

The Markowitz model is based on several assumptions about investor behavior:  

• Investors perceive each investment option as characterized by a probabili ty distribution 

of expected returns spanning a specific holding period. 

• Investors aim to maximize one-period expected utility, and their utility functions display 

diminishing marginal utility of wealth. 

• Investors assess portfolio risk based on the variability of expected returns. 

• Investors make decisions only based on expected return and risk, so, their utility 

functions depend on expected return and the expected variance of returns. 

• Given a specific risk level, investors favour higher returns over lower ones. Similarly, 

for a particular level of expected return, investors opt for lower risk rather than higher 

risk. 
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• Under these assumptions, an asset or a portfolio of assets is deemed efficient if no other 

asset or portfolio of assets provides a higher expected return with equal or lower risk, or 

a lower risk with equal or higher expected return. 

To understand the fundamental Markowitz mean-variance portfolio optimization model, 

let’s first define some notation. Let  

− N represent the number of available assets (e.g., stocks or vertices),  

− 𝜇𝑖 denote the expected return (average or mean return per time period) of asset i,  

− 𝜌𝑖𝑗  symbolize the correlation between returns for assets i and j (-1 ≤ 𝜌𝑖𝑗  ≤ +1),  

− 𝜎𝑖 stand for the standard deviation in return for asset i, and  

− R signify the desired expected return from the chosen portfolio.  

The expected return E[x] can be expressed as the sum of the product of the proportions and 

expected returns of the individual assets (Cornuéjols, Peña & Tütüncü, 2018): 

E[𝑥] = 𝑥1𝜇1 + 𝑥2𝜇2 + ⋯ + 𝑥𝑛𝜇𝑛 = ∑ 𝑥𝑖

𝑛

𝑖=1

𝜇𝑖 = 𝜇𝑇𝑥 (1) 

Var[x], can be calculated as the sum of the product of correlation coefficients, standard 

deviations, and proportions for each pair of assets i and j (Cornuéjols, Peña & Tütüncü, 

2018): 

Var[𝑥] = ∑ ∑ 𝜌𝑖𝑗

𝑛

𝑖=1

𝜎𝑖 𝜎𝑗

𝑛

𝑖=1

𝑥𝑖 𝑥𝑗 = 𝑥𝑇𝛴 𝑥 (2) 

As variance 𝜎𝑝
2 is always nonnegative, it follows that: 

𝑥𝑇𝛴 𝑥 ≥  0 ∀ 𝑥 (3) 

implying that Σ is positive semidefinite.1 

Employing the standard Markowitz mean-variance approach, we can formulate the portfolio 

optimization problem as follows: 

minimize ∑ ∑ 𝜌𝑖𝑗

𝑁

𝑗=1

𝜎𝑖 𝜎𝑗

𝑁

𝑖=1

𝑥𝑖 𝑥𝑗 (4) 

 
1A positive definite matrix essentially implies that there are no redundant assets in the portfolio. Redundant 
assets would mean that there is a perfect linear relationship between some of the assets, which would result in 

a determinant of zero for the covariance matrix, making it not positive definite. Hence, if the covariance matrix 
is positive definite, it implies that no asset is a perfect linear combination of other assets (Cornuejols & Tütüncü, 
2006). 
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subject to∑  𝑥𝑖 𝜇𝑖 = 𝑅

𝑁

𝑖=1

 (5) 

∑  𝑥𝑖 = 1

𝑁

𝑖=1

 (6) 

0 ≤ 𝑥𝑖 ≤ 1, i = 1,..,N  

In Equation (4), our goal is to minimize the total variance associated with the portfolio. 

Within the Markowitz framework, risk is represented by the variance in portfolio return. 

Equation (5) ensures that the portfolio achieves an expected return of R. Equation (6) 

guarantees that the proportions of the portfolio allocations sum up to one, indicating that all 

available funds must be invested in assets without any remaining uninvested money. This 

formulation represents a straightforward nonlinear programming problem (Beasley, 2013). 

Frequently, instead of employing standard deviations and correlations, we express the 

objective in terms of covariance. Let 𝜎𝑖𝑗  denote the covariance between the returns for assets 

i and j; then (given that 𝜎𝑖𝑗= 𝜌𝑖𝑗 𝜎𝑖𝜎𝑗), we can rewrite the objective (Equation (4)) as: 

minimize ∑ ∑  𝑥𝑖 𝑥𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 (7) 

The decision variables are represented by 𝑥𝑖, which indicate the proportion of the total 

investment associated with (invested in) asset i (0 ≤ 𝑥𝑖 ≤ 1). These proportion variables 𝑥𝑖 

are referred to as weights. In this case, we impose non-negativity (𝑥𝑖 ≥ 0). Allowing negative 

weights (𝑥𝑖 can be positive or negative) would permit shorting (Beasley, 2013). But, given 

that portfolio problems often involve holding the decided portfolio for an extended period, 

making shorting impractical, we exclude shorting here. The cvxopt.solvers.qp function is  

used to solve the quadratic programming problem using the interior point method (Andersen 

& Vandenberghe, 2023). 

minimize 𝜆𝑥𝑇 ∑ 𝑥 (8) 

s. t. x ≥ 0            no shorting 

 𝐼𝑇𝑥= 1          budget constraint 

 

Where: x is a column vector of dimension n×1, n is the number of assets and it represents 

the portfolio weights, 𝜇 is a column vector of dimension n×1, representing the expected 

returns of the assets, 𝜆 denotes the risk aversion parameter (for simplicity it is set equal to 

1), Σ is a symmetric matrix of dimension n×n, representing the covariance matrix of asset 

returns and finally 𝐼 denotes the unit vector. Alternatively we could maximize the Sharpe 

ratio, which involves formulating a convex quadratic programming problem equivalent to 
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the original problem. For this, we need to make two assumptions: Firstly, the sum of all 

portfolio weights, 𝑥𝑖, equals 1 for any feasible portfolio x. This is a logical assumption as 

the x's represent the proportion of the portfolio invested in different asset classes. Secondly, 

we assume that there exists a feasible portfolio, denoted as x, such that the expected return 

of this portfolio, 𝑥𝑇𝜇, is greater than the risk-free rate. This assumption is necessary because 

if all feasible portfolios have expected returns that are at most equal to the risk-free rate, then 

there is no benefit in optimizing - the risk-free investment would dominate all other 

portfolios (Cornuéjols, Peña & Tütüncü, 2018). 

maximize 
𝑥𝑇𝜇 − 𝑟𝑓

(𝑥𝑇𝛴 𝑥)1/2
 (9) 

s. t. x ≥ 0            no shorting 

 𝐼𝑇𝑥= 1          budget constraint 

 

In this context, the quadratic objective and the positive semidefinite characteristic of 𝜎𝑖𝑗  play 

important roles in enabling us to derive the optimal solution for any specific dataset in 

practice (Beasley, 2013). This optimization problem's outcome leads us to an important 

concept in portfolio theory, known as the efficient frontier. The efficient frontier embodies 

an array of optimal portfolios that yield the highest expected return for a given level of risk 

or the least risk for a specified expected return. It can be visualized as a curved line on a 

graph, where the x-axis stands for risk (typically represented as the standard deviation of the 

portfolio's returns), and the y-axis denotes the expected return.  

This graphical representation elegantly encapsulates the trade-off between risk and return, 

forming the cornerstone of MPT. To construct an efficient frontier, we initially select a group 

of securities for our portfolio. For every possible mix of these securities, we estimate the 

portfolio's expected return (Equation 1) and risk (Equations 2-7). When these portfolios are 

charted on a graph, they create a cloud of points, with each point symbolizing a distinct 

portfolio. The efficient frontier represents the upper boundary of this cloud, illustrating the 

portfolios that yield the most return for their respective risk level. The portfolios under this 

curve are suboptimal since for the same risk level, there exist alternative portfolios on the 

frontier that provide higher returns. 

Figure 1 provides a visual representation of the efficient frontier. Portfolios located on the 

efficient frontier offer either higher returns for the same level of risk or lower risk for the 

same level of returns compared to portfolios below the frontier. For example, in Figure 1, 

portfolio A dominates portfolio C since it provides the same return rate but incurs 

significantly less risk. Similarly, portfolio B dominates portfolio C as it offers the same level 

of risk but anticipates a higher return rate. Diversification among assets with imperfect 

correlations allows us to achieve these advantages, and thus, the efficient front ier typically 

consists of combinations of investments rather than individual securities. 
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Figure 1: Efficient Frontier for Alternative Portfolios 

 

Source: Elton, Gruber, Brown & Goetzmann (2014). 

Figure 2 depicts a visual representation of simulated portfolio allocations using the Euro 

Stoxx 50 dataset in the empirical analysis. Each point or dot on the graph represents an 

individual portfolio resulting from various combinations of asset allocations within the Euro 

Stoxx 50 constituents. The color of the dots indicates the corresponding portfolios' Sharpe 

ratios.  

The Sharpe ratio is a measure of risk-adjusted returns, providing insights into the potential 

return of a portfolio relative to its assumed risk. Portfolios with higher Sharpe ratios are 

represented by warmer shades, while those with lower Sharpe ratios are depicted with cooler 

tones. By drawing a boundary line through the portfolios with the highest Sharpe ratios on 

the outskirts of the scatter plot, we can effectively outline the efficient frontier.  

The portfolio with the highest Sharpe ratio is denoted by a red dot on the graph. This 

particular allocation represents the desired outcome when aiming to maximize returns while 

considering the level of risk. On the other hand, the blue dot represents the portfolio with the 

lowest volatility, signifying a more risk-averse allocation. In other words, it represents the 

allocation that prioritizes minimizing risk over maximizing returns. 



 

8 

Figure 2: Simulated portfolio allocations (Euro Stoxx 50) 

 

Source: own work. 

1.1.1 Constraints 

The complexity of the portfolio optimization problem largely depends on the constraints 

involved (Maringer, 2008). Real-world financial constraints significantly increase the level 

of complexity. For example, the cardinality constraint, which requires a limited number of 

assets to be included in the portfolio, turns the problem into a non-convex one (Jin, Qu & 

Atkin, 2016). As a result, it is not always suitable to use exact methods to find optimal 

solutions. So, most of the current literature focuses on heuristic approaches for solving the 

constrained PO problem.  

For the MV (Mean-Variance) model, specialized methods like the simplex method (Wolfe, 

1959) and branch and bound methods can be used to find solutions efficiently. These 

techniques can also adjust arbitrary linear constraints, such as quantity constraints (Borchers 

& Mitchell, 1997). However, as the number of assets grows and additional constraints are 

introduced, the problem becomes increasingly more complex. For example, when the 

cardinality constraint is added, the problem transforms into a mixed-integer nonlinear 

programming problem, which is NP-hard. Bienstock (1996) introduced a branch and cut 

algorithm for the cardinality-constrained portfolio optimization problem, involving up to 

3,897 assets with varying cardinality values. At the time of publication, it was suggested that 

solving larger problems to proven optimality within a reasonable timeframe might be 
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infeasible. Some studies necessitate the inclusion of exactly 𝐾 assets in a portfolio such as 

Chang, Meade, Beasley and Sharaiha (2000), Xu, Zhang, Liu and Huang (2010) and Jin, Qu 

and Atkin (2014), while others use a more relaxed version (Schaerf, 2002; Ruiz-Torrubiano 

& Suarez, 2010). Behr, Guettler and Miebs (2011) showed that the constrained minimum-

variance portfolio with lower and upper portfolio weight constraints achieves substantial 

out-of-sample variance reductions in comparison to various minimum-variance portfolios. 

Other common constraints used (Gilli, Maringer & Schumann, 2019): 

• leverage ‖𝑤‖1 ≤ γ,  

• turnover ‖𝑤 − 𝑤0‖1 ≤ τ,  

• max position ‖𝑤‖∞ ≤ u,  

• sparsity ‖𝑤‖1 ≤ K 

Where: 

− γ ≥ 1 controls the amount of shorting and leveraging 

− τ > 0 controls the turnover (to control the transaction costs in the rebalancing) 

− u limits the position in each stock 

− K controls the cardinality of the portfolio (to select a small set of stocks from the 

universe). 

1.1.2 Limitations 

Even though Markowitz's mean-variance optimization model is very popular, it does have 

its flaws. It works on the assumption that the returns you get from assets will follow a certain 

pattern, it heavily relies on past data to predict risk and returns, and it can be quite sensitive 

to changes in input data (Elton, Gruber, Brown & Goetzmann, 2014). 

a) Return Distributions 

The assumption about how asset returns are distributed is particularly important. If returns 

deviate from the pattern we expect, using variance (the measure of how spread out numbers 

are) as a measure of risk can skew our results (Boasson, Boasson & Zhou, 2017). In real -

world scenarios, investment returns usually don't follow the normal distribution but are often 

skewed, following something closer to a lognormal distribution (Wang, 2023). This 

departure from symmetry means that variance isn't a very effective measure of risk because 

it doesn't differentiate between gains and losses (Boasson, Boasson & Zhou, 2017). So, 

investors who only rely on variance or standard deviation (how spread out numbers are) may 

not make the best investment decisions. Moreover, the skewness and peakedness in the 

distribution of returns can lead us to underestimate risk (Wang, 2023). 
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b) Risk Aversion and Investor Utility 

The model also overlooks how risk-averse different investors can be. Basically, using 

variance as a measure of risk gives us a general idea of how returns can vary but doesn't 

consider individual investors' preferences towards risk (Boasson, Boasson & Zhou, 2017). 

Additionally, relying only on the mean and variance of returns might not give us a complete 

picture of what an investor wants. This point of view has been discussed both in academia 

and in by industry practitioners, highlighting the limitations of mean-variance efficiency in 

accurately representing what an investor wants (Michaud & Ma, 2001). 

c) The Impact of Estimation Error and Unpredictability 

One key downside of the Markowitz model is how sensitive it is to mistakes in estimations. 

Often, when creating portfolios, we treat input estimates as precise, unchanging values. But 

in reality, these estimates can often be wrong (Wang, 2023). This can lead to errors in the 

optimization process, resulting in portfolios that don't perform as expected when tested in 

real-world scenarios (Michaud & Ma, 2001). This sensitivity, often known as "instability" 

or "ambiguity," shows the model's heavy reliance on input parameters, meaning that even 

small changes can result in significant shifts in portfolio allocations. 

d) Limited Relevance for Long-term Investment 

The framework is focused on a single period, making it less suitable for investors with long-

term investment goals like pension plans and endowment funds. It's another shortcoming of 

the mean-variance approach, as it doesn't effectively address long-term investment 

objectives (Michaud & Ma, 2001). The model can often underperform when tested on future 

data, sometimes even falling behind the simple 1/N naive portfolio strategy (De Prado, 

2016). Considering these limitations, it's clear that more advanced developments, like 

machine learning or in this case graph theory algorithms, might offer better strategies for 

portfolio optimization. Graph theory, with its ability to manage complex networks and 

relationships, could be an interesting solution to the issues with the Markowitz model. 

1.1.3 Subsequent developments 

These limitations have opened the door for new and improved portfolio optimization 

methods. These include models like the Black-Litterman and Konno-Yamazaki (Cornuéjols, 

Peña & Tütüncü, 2018) as well as methods using machine learning algorithms (Kalayci, 

Ertenlice & Akbay, 2019), genetic algorithms (Chen, Peng & Zhang, 2016), and models 

based on network theory (Gilli, Maringer & Schumann, 2019). Techniques like robust 

optimization, fuzzy logic, and prediction have been adopted to reduce the risk of estimation 

errors, with significant implications for both theory and practice. At the same time, the 

Black-Litterman and Konno-Yamazaki models, machine learning, and genetic algorithms 
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have emerged to counter the limitations of the mean-variance model (Cornuéjols, Peña & 

Tütüncü, 2018; Kalayci, Ertenlice & Akbay, 2019; Chen, Peng, Zhang & Rosyida, 2016). 

1.2 Bridging the gap between graph theory and MPT 

In contrast to the limitations of MPT, graph theory offers a different perspective on portfolio 

optimization. It considers assets as nodes in a network, with links between nodes 

representing correlations between assets (Rankin & Robinson, 2013). This approach allows 

for a more in-depth understanding of the complex interconnections among various 

investment choices. It helps identify clusters of similar assets and exposes the structure of 

the overall network. How we treat correlations is a big difference between MPT and graph 

theory. MPT uses a correlation matrix, whereas graph theory provides an intuitive visual 

representation that simplifies the relationships between assets (Boginski, Butenko & 

Pardalos, 2005). For example, a concept borrowed from graph theory and applied to financial 

models, Minimum Spanning Trees, uses correlations to uncover the hierarchical structure in 

financial markets (Mantegna, 1999). Recent studies by Haluszczynski, Lau and Modest 

(2017) have employed centrality measures in their networks to provide insights into the 

behavior of assets. Tse, Liu, & Lau (2010) have successfully utilized graph theory to 

visualize a network of US stock prices, illustrating the complex interdependence between 

them. 

When it comes to application, there hasn't been much written about the use of graph theory 

in the portfolio selection process (Peralta & Zareei, 2016). However, the existing literature 

suggests that networK-based asset allocation strategies can enhance risk-return profiles 

(Výrost, Lyócsa & Baumöhl, 2019). This research promotes combination portfolios, which 

evenly distribute investments between a benchmark portfolio and a set of networK-based 

portfolios. Another important area where graph theory has been applied is the study of 

interconnectedness risk (Billio, Getmansky, Lo & Pelizzon, 2012). By identifying highly 

interconnected assets, it can assist in portfolio diversification (Baitinger & Papenbrock, 

2017). Additionally, graph theory can provide measurements and visualizations of systemic 

risk and can be combined with machine learning to address inequality-constrained portfolio 

optimization problems (López de Prado, 2016; Kaya, 2015). 

The use of graph and network theory in finance has seen significant attention and 

development in the past decade. For example, Mantegna (1999) proposed constructing a 

network where edge weights are inversely proportional to correlation, reducing network 

complexity. Building on this, Peralta & Zareei (2016) established a connection between 

Markowitz's framework and network theory, showing a negative relationship between 

optimal portfolio weights and asset centrality. Similarly, this thesis also adopts a graph 

theory-based approach to optimal asset allocation as an alternative to MPT. However, the 

findings suggest that asset allocation strategies based on centrality measures did not improve 

risk-return profiles compared to the benchmark portfolio, which differs from the research by 
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Výrost, Lyócsa & Baumöhl (2019). It's important to consider transaction costs and other 

constraints as well. Out of the four centrality measures used in the optimization problem, 

only one of them (eigenvector centrality) showed relatively stable performance, performing 

well during the in-sample period but remaining flat during the out-of-sample period. This 

indicates that centrality measures need to be carefully incorporated into the portfolio 

selection problem to yield meaningful results. In this thesis, the approach is kept simple by 

directly incorporating the vector of centrality measures into the objective function. Although 

the results may not have been outstanding, the centrality measures provide insights into the 

importance, influence, and "centrality" of nodes within a network. These metrics are crucial 

in understanding social networks, traffic systems, the internet, and more recently, financial 

markets. In the next section, I describe the most common centrality measures and explain 

how they are applied in the optimization problem. 

1.2.1 Degree Centrality 

Among the centrality measures used, degree centrality stands out due to its simplicity and 

intuitive understanding (Coppola & Elgazzar, 2020). In a financial network, a stock with 

high degree centrality represents an asset that has a large number of correlations with other 

assets. This could be a well-established company like Microsoft or Apple, whose stock price 

movements are closely monitored and can have a significant impact on a wide range of other 

assets. The high degree centrality of these assets reflects their importance and influence 

within the network. 

Figure 3: Small financial network of 4 stocks 

 

Source: own work. 

In figure 3, the stock with the highest degree is stock A. It is connected to 3 other stocks, 

thereby having a degree of 3. The degree of a vertex x represents the number of its 

neighbours, expressed as 𝑑(𝑥) = |𝑁(𝑥)|. A graph G is called regular if all vertices have the 
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same degree. The Petersen graph is regular with degree 3.2 We the notation is used 𝑁[𝑥] =

𝑁(𝑥) ∪ 𝑥 to include both the neighborhood of 𝑥 and the vertex 𝑥 itself. 

Figure 4: The Petersen graph 

 

Source: own work. 

The concept of centrality is useful for identifying important points in a graph, which can 

prove crucial when the objective is to trace the origins of a virus infection or to analyze a 

social network (Metcalf & Casey, 2016). In the domain of financial markets, if a graph is 

developed to represent the connections between different asset prices, a centrality measure 

can be applied to highlight a central asset. This central asset could potentially be a pivotal 

player that drives market trends, an asset that aids others, or an asset that triggers substantial 

changes in the market. Reader should note, that centrality doesn't have a universal measure, 

it primarily involves comparing different points. Also, the choice of a centrality measure is 

contingent based on the graph's configuration. For example, a measure that focuses on 

cliques won't be effective in a graph deprived of cliques. However, for this discussion, only 

connected graphs are considered. Determining the significance of a point becomes 

challenging if it doesn't connect to some other points. 

The degree centrality measure, derived from Freeman's general formula, underlines the 

significance of a point by considering its degree. It embodies the concept of "He with the 

most toys, wins," signifying that the number of neighbors a point has is significant. If the 

network is expansive, it should exhibit low centralization. If the centralization is high, then 

points with larger degrees should be seen easily in the graph (Metcalf & Casey, 2016). For 

the calculation of degree centralization, the point with the highest degree is first identified 

and referred to as v*. Subsequently, H is defined as (| 𝑉 | −  1)(| 𝑉 | −  2). Degree centrality 

is then calculated using the provided equation (equation 10), where the top part of the sum 

takes into account the degree variations between the point with the highest degree and the 

given point. The bottom part of the sum is selected to normalize the results. If the degree of 

a point is identical to the highest degree, the sum remains unchanged. The closer the degree 

is to the highest degree, the less it contributes to the total sum. 

 
2 Julius Petersen. There is a graph encountered by Petersen during his research that has become famous and is 
named for him. The Petersen graph is a 3-regular graph of order 10 (Benjamin, Chartrand & Zhang, 2017). 
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𝐶𝐷(𝐺) = ∑
[𝑑𝑒𝑔(𝑣 ∗) − 𝑑𝑒𝑔(𝑣)]

|𝐻|
𝑣∈𝐺

 (10) 

By incorporating degree centrality into the portfolio optimization problem, the objective is 

to identify the optimal portfolio that not only yields the highest  average return but also 

includes assets with a high degree of connectivity within the financial network. This 

approach should improve risk management as a stock with numerous connections may 

display behavior that is more predictable based on market trends. Here we should note that 

a high degree centrality could mean that a stock is influenced by many other factors and 

stocks, which could also make it riskier. So, we need to find a balance, and whether 

maximizing degree centrality is beneficial or not depends on what the financial network and 

model look like.  

1.2.2 Closeness Centrality 

Closeness centrality is a measure that indicates the nearness of a node to all other nodes in 

the graph (Coppola & Elgazzar, 2020). For example, a participant that has a high closeness 

centrality score can swiftly interact with others. The areas of interaction may span from 

information exchange, transaction speed, to proximity to centralized trading hubs where 

stocks are traded. Faster access to price information is a significant advantage, offered to 

those closer to the trading center, potentially giving them an edge in their trading activities. 

Assets marked by high closeness centrality might act as indicators of broader market trends 

and could be seen as indicators for the overall health of the market. Attaching assets with 

high closeness centrality into a portfolio can help ensure that the portfolio mirrors the 

performance of the market at large. For instance, in Figure 5, assets like BRK.B and MMM 

would have the highest closeness centrality as they are the closest to all other nodes in the 

graph. This indicates their robust interconnectedness and potential influence within the 

financial network. 

Figure 5: A weighted graph representing the relationship between several stocks 

 

Source: own work. 
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In the same graph, the weight of each edge, denoted by the number alongside it, symbolizes 

the correlation between two stocks. As an example, the edge linking stocks MMM and AMD 

carries a weight of 0.6, signifying a relatively strong correlation. In contrast, the edge joining 

stocks BRK.B and DIS has a lower weight of 0.1, suggesting a weaker correlation. This 

provides an initial understanding of how the Clique and Degeneracy indexes are built in the 

practical simulation part of this thesis. 

Closeness centrality and farness centrality are closely related. The closeness is defined so 

that if a vertex is close to every other vertex, then the value is larger than if the vertex is not 

close to everything else. The closeness of a vertex is defined as: 

𝐶(𝑣) = ∑
1

𝑑(𝑣, 𝑤)
𝑤∈𝐺

 (11) 

The equation implies that if the sum of the distances is large, the closeness is small, and vice 

versa. A stock with high closeness centrality indicates that it has close relationships with 

many stocks. Farness centrality is the inverse of closeness centrality, so if the closeness is 

small, the farness is large, and vice versa. In other words, it is the sum of all distances from 

the vertex v to every other vertex in the graph. If it is substantial, the vertex does not have 

close relationships with many vertices. That vertex is connected to the graph but is distant 

from most other vertices in the graph. 

1.2.3 Betweenness Centrality 

An asset with high betweenness centrality often serves as a kind of “bridge” within the 

financial market. This could be a commodity like oil, which has a direct effect on the energy 

sector and indirectly on other sectors such as manufacturing and transport. Assets with high 

betweenness centrality could be valuable for spreading out investment risks because their 

performance is tied to many different parts of the market. 

Figure 6: Illustration of a stock with highest BC in a financial network 

 

Source: own work. 
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In Figure 6, stock A has a higher betweenness centrality (BC) than stock B. This is because 

a change in the price of stock A will influence more stocks along a shorter path compared to 

stock B. Let's say the left and right sides of the stock network are not related at all. If so, 

picking stock A as an investment would be a good choice if we wanted to spread out our 

investments as much as possible. Metcalf and Casey (2016) provided an intuitive analogy to 

explain the concept of betweenness. They used the saying "All roads lead to Rome" to 

illustrate that if we consider Rome as a central point, any two cities would have to pass 

through Rome to connect with each other. In the context of a graph, we aim to find the 

equivalent of Rome, so a point that lies between all other points when considering the 

shortest paths between them. If there is no exact equivalent, we seek the closest 

approximation. This concept forms the basis of the definition of betweenness. 

Let 𝜎(𝑢,𝑣) be the number of shortest paths between points u and v. Then let 𝜎(𝑢,𝑣)(𝑤) stand 

for the number of shortest paths between u and v that go through the point 𝑤. The 

betweenness of a point can be found using equation 12: 

𝑔(𝑤) = ∑
𝜎(𝑢,𝑣)(𝑤) 

𝜎(𝑢,𝑣) 
𝑢,𝑣∈𝐺

 (12) 

So, betweenness is the sum of the ratio of the number of paths that pass-through a given 

point divided by the total number of paths that exist. If the ratio is 1, then all the shortest 

paths between u and v go through w. If it is 0, then none of them go through w. If the sum of 

all the fractions is | 𝑉 | −  1 where | 𝑉 | is the number of points, then every shortest path 

between two points has to pass through w. In other words, we have found our 'Rome'. 

1.2.4 Eigenvector Centrality 

Different from degree centrality, which counts the number of connections a vertex has, 

eigenvector centrality considers both the number and quality of connections. This implies 

that an asset with high eigenvector centrality may not necessarily be linked to many other 

assets, but the ones it is linked to are important within the market. For instance, influential 

companies in the market are often leaders in areas such as AI or other technology solutions. 

An important feature of a network or graph is its adjacency matrix, represented as A, which 

is an n×n symmetric matrix in the simplest form, with n denoting the number of vertices in 

the network. 

𝐴𝑖𝑗 = {
1, if there is an edge between vertices 𝑖 and 𝑗,
0, otherwise.

 (13) 

If there is an edge between vertices i and j, 𝐴𝑖𝑗 equals 1, and 0 otherwise.3 The adjacency 

matrix captures the connections between different nodes or vertices, and can accommodate 

 
3 The matrix is symmetric since if there is an edge between i and j then clearly there is also an edge 
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networks with weighted edges, directed networks, self-edges, and hyperedges (Newman, 

2010). For centrality measures, the eigenvector centrality of a vertex, denoted by 𝑥𝑖, is 

proportional to the average of the centralities of the vertex's network neighbors. It can be 

mathematically represented as: 

𝑥𝑖 =
1

𝜆
∑ 𝐴𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 (14) 

Where, λ is a constant, and the centrality vector x = (𝑥1, 𝑥2,... 𝑥𝑖). Rewriting this equation in 

matrix form gives: 

𝜆𝑥 =  𝐴𝑥 (15) 

This implies that x is an eigenvector of the adjacency matrix with eigenvalue λ. To ensure 

that the centralities are non-negative, λ must be the largest eigenvalue of the adjacency 

matrix and x must be the corresponding eigenvector, as stated by the Perron–Frobenius 

theorem (Knill, 2011). This form of eigenvector centrality gives each vertex a centrality 

based on the number and quality of its connections. A vertex with a larger number of high-

quality contacts may have higher centrality than one with a greater number of lower-quality 

contacts. A well-known application of eigenvector centrality is Google's PageRank 

algorithm for web page ranking (Bryan & Leise, 2006). 

Figure 7:: Illustration of a stock with highest EC in a financial network 

 

 

Source: own work. 

In Figure 7, it can be seen that two stocks with the same degree centrality can have different 

eigenvector centralities. Although both stocks A and B are linked with two other stocks, the 

importance of the stocks they are connected to differs. Stock A is linked with stocks that 

have greater influence in the market, as shown by their size and the number of other 

connections they have. In the context of portfolio optimization, eigenvector centrality can 

be used to identify important assets in the market network, considering not just the number 

 

between j and i. So  𝐴𝑖𝑗 = 𝐴𝑖𝑗. 
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but also the quality of connections. This measure provides insights into how closely an asset 

is connected to influential or well-connected assets, and can aid in constructing a well-

diversified portfolio that accounts for both the asset's performance and its interconnectedness 

within the broader market. 

1.2.5 Using centrality measures in the optimization problem 

The use of centrality measures in portfolio optimization allows investors to align their 

investment strategy with their market outlook and risk tolerance. The choice of the centrality 

measure can affect the portfolio's performance based on the specific characteristics of each 

centrality measure. Investors who anticipate that well-connected, influential companies are 

key drivers of market trends might prioritize degree centrality and eigenvector centrality 

(Kaya, 2015). These measures could potentially maximize returns during periods of market 

growth, given that they focus on nodes with many connections, such as degree centrality or 

nodes connected to other well-connected nodes in the case of eigenvector centrality. But, 

their performance might be worse during periods of market instability or downturns because 

these influential assets are also likely to be at the epicenter of market corrections.  On the 

other hand, investors seeking diversification or aiming to mirror the overall market trend 

might focus on closeness centrality and betweenness centrality (Peralta & Zareei, 2016). 

Closeness centrality emphasizes assets that are close to all other asset s, providing a 

diversified exposure to the market. Betweenness centrality focuses on assets that usually act 

as bridges between other assets, potentially making them less correlated with specific market 

segments and providing diversification benefits. But still, these measures might not provide 

the highest returns in strong bull markets, where a concentrated portfolio in influential 

companies might outperform (i.e., Clique or even Eigenvector Index) 

Incorporating these centrality measures can be done in various ways (Peralta & Zareei, 

2016), and one straightforward method is to include them directly into the objective function 

of the portfolio optimization problem. By extending the traditional approach of minimizing 

portfolio variance to also controlling for the centrality measures, investors can potentially 

balance their portfolio's risk and return while factoring in their view on market structure and 

connectivity. This can be written as: 

minimize  
1

2
𝑥𝑇 ∑ 𝑥 −  𝑐 𝑇𝑥  (16) 

s. t. x ≥ 0            no shorting 

 𝐼𝑇𝑥= 1         budget constraint 

 

Where c is a column vector of dimension n×1, representing the combined return (realized 

return and centrality measure). The term − 𝑐 𝑇𝑥 means we are subtracting the combined 

return, so in essence, we are aiming to minimize the negative of the combined return, which 

equates to maximizing the combined return. By solving this optimization problem, we're 
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looking for the portfolio with the best trade-off between risk and return, adjusted for 

centrality.  

Among the challenges of applying centrality measures to portfolio optimization is the need 

for significant computational power. This need arises because complex optimization 

problems might not be solvable in linear or polynomial time (Skiena, 2012). However, using 

approaches such as the maximum clique problem, which seeks the largest complete subgraph 

in a graph, can help identify highly interconnected asset clusters (Conte, 2021). To solve 

this, algorithms like the Bron-Kerbosch algorithm have been developed. They are described 

in the next chapter, specifically the k-core with degeneracy ordering and the BK algorithm 

(Matula & Beck, 1983; Chin, Chen, Wu, Ho, Ko & Lin, 2014). These algorithms help 

identify an optimal independent vertex set and a highly concentrated group of assets, 

respectively. For the in-sample (2017-2019) and out-of-sample (2020-2022) performance, it 

can be expected that different centrality measures will achieve returns based on the market 

sentiment and volatility. For example, in stable or growing market conditions, degree 

centrality and eigenvector centrality might provide higher returns due to their focus on well -

connected, influential assets. Conversely, in volatile or declining markets, closeness 

centrality and betweenness centrality might offer better portfolio performance due to their 

diversification benefits. The results are shown in the Practical simulation part of the thesis. 

2 GRAPH THEORY ALGORITHMS  

In this part, the two graph theory algorithms used for constructing the indexes are described. 

There are many choices available, and even more variations. The ones selected are the k-

core algorithm using degeneracy ordering and the BK algorithm, based on the study and 

research of GitHub user Je-Suis-Tm (2023). Both algorithms are part of graph theory and 

utilize similar concepts but leverage them to obtain completely different results. The main 

purpose of the k-core algorithm is to locate the vertices that are the least connected to all 

other nodes in the graph.  

In portfolio optimization, this helps us achieve a well-diversified portfolio based on how we 

define the correlations between assets. For instance, suppose we prefer stocks in our portfolio 

that share at least a 40% correlation with others. The algorithm would then eliminate all 

stocks that do not meet this 40% correlation requirement. As a result, all stocks in the 

finalized portfolio will not exceed a 40% correlation with one another. On the other hand, 

the BK algorithm uses correlations to determine the most correlated stocks in the network. 

This strategy is better suited for investors with a higher risk tolerance who prefer a highly 

concentrated asset combination. Again, this is achieved by defining a set threshold. 
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2.1 Degeneracy Index 

An independent set is the opposite of a clique in a graph. It is a collection of vertices where 

no vertex is adjacent to any other vertex. In the context of a social network, an independent 

set represents a group of people who are all strangers to one another. Researchers in graph 

theory are often interested in finding the largest clique and the largest independent set in a 

graph, which can be challenging tasks in large graphs (Rankin & Robinson, 2013).  

In a graph 𝐺, a subset 𝑋 of 𝑉(𝐺) is considered independent if the subgraph of 𝐺 induced by 

𝑋 is null.4 The size of the largest independent subset of 𝑉(𝐺) is denoted by 𝛼(𝐺). A graph 

𝐻 is considered a subgraph of another graph 𝐺 if the vertices of 𝐻 form a subset of the 

vertices of 𝐺, and the edges of 𝐻 constitute a subset of the edges of 𝐺. 

 

Figure 8: Example of what is considered an independent set 

 

Source: own work. 

Figure 8 illustrates the idea of an independent set. Readers can notice that in graph a), the 

blue dots are not connected, thereby forming an independent set. The same cannot be said 

about example b) as the blue dots are connected, so b) is not an independent set. To be 

considered an independent set, the middle blue dot would have to be removed. Example c) 

is an independent set, however, it’s not a maximal independent set. A maximal independent 

set is shown in example a) as there are no more available dots that could be added that are 

independent of one another. How to achieve the maximal independent set in linear time is 

shown in this section with the use of the k-core algorithm. 

2.1.1 k-core 

In simple terms, a k-degenerate graph is a type of undirected graph where every subgraph 

has at least one vertex connected to 𝑘 or fewer edges in that subgraph (Bader & Hogue, 

 
4 A subgraph is said to be induced by a set of vertices if it includes all the vertices in the set and includes an 
edge between any two vertices if the edge is present in the original graph  (Kloks & Xiao, 2022). 
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2003). The degeneracy of a graph refers to the smallest value of 𝑘 that makes it a k-

degenerate graph.  

Degeneracy has been given various names, such as k-core number (Bader & Hogue, 2003), 

width (Freuder, 1982), and linkage (Kirousis & Thilikos, 1996). It is also closely related to 

the coloring number and the Szekeres-Wilf number (Szekeres & Wilf, 1968). 𝑘 −degenerate 

graphs have sometimes been called 𝑘 −inductive graphs as well (Irani, 1994). Lick and 

White introduced the term 𝑘 −degenerate in 1970. The concept has been presented under 

different names before and since then. Notably, '𝑘 −dense tree' has been used for 

'𝑘 −degenerate graph', and '𝑘 −arch graph' has been used for 'maximal 𝑘 −degenerate 

graph'. 

The idea of a k-core was initially introduced to investigate the clustering structure of social 

networks (Seidman, 1983) and to describe the evolution of random graphs (Bollobás, 1984). 

A comprehensive overview of the subject, including key concepts,5 essential algorithmic 

methods, and some application areas, can be found in Malliaros, Giatsidis, Papadopoulos & 

Vazirgiannis (2019). The fundamental properties of maximal k-degenerate graphs were 

initially established by Lick and White (1970) and Mitchem (1977). An early overview of 

the findings can be found in Pereira’s work titled: “A survey of K-degenerate graphs” (1976).  

Figure 9 illustrates the iterative process of determining the k-core of graph 𝐺.6 The 3-core of 

graph 𝐺 is 2𝐾4 (represented by two 𝐾4 subgraphs). Note, that the final step is not depicted 

since the 4 −core requires each vertex to have a degree of at least 4. In our case, all vertices 

have a degree less than four, leading to their removal. Consequently, the 4-core of graph G 

either corresponds to the null graph, containing no vertices or edges, or it simply does not 

exist.  

This process illustrates how the degeneracy index is constructed later on. For example, the 

first step is determining the highest k-core number. In this example, that is 4. The next step 

is to apply degeneracy ordering in linear time, so the nodes are sorted in ascending order 

from the smallest degree to the largest. The algorithm then picks the lowest degree stock and 

appends it to the independent set. It then checks whether the next stock is correlated to any 

other stock already in the independent set. If it’s not, then it’s added and repeated until no 

stocks are left.7 In Figure 9 (step 5), this would mean that for a 4-core ordering, we would 

have picked 1 stock from each subset.  

 
5 Graph coloring is very similar for identifying k-cores in a graph. This is because a graph can be k-colored if 
and only if all its vertices have degree less than 𝑘. The k-core of a graph is the largest subgraph where every 

vertex has a degree of at least 𝑘. Therefore, a k-core cannot be k-colored, because all of its vertices have 
degree 𝑘 or more. By removing vertices from a graph one by one in order of their colors, the remaining graph 

after removing the first 𝑖 colors will be a subgraph where every vertex has degree at least 𝑖. Therefore, the k-

core is the remaining graph after removing the first (k-1) colors (Saoub, 2021). 
6 Repeated execution of a block of code as long as a certain condition is met. This is usually achieved 
through structures like for-loops and while-loops. Each execution of the loop is called an iteration. 
7 Some definitions of k-core require the k-core to be connected. If that is the case, k-cores lose their 
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Figure 9: Successive cores of a particular graph 𝐺 

Step 1: Determining the 0 − core. 

The 0 − core of a graph is the maximal 

subgraph where every vertex in the 

subgraph has a degree of at least zero. Since 

every vertex in every graph has a degree of 

at least zero, the 0 − core of a graph is the 

entire graph itself.  

Step 2: Determining the 1 –  core 

The 1 − core of a graph is the maximal 

subgraph where every vertex has a degree 

of at least one. Therefore, we only need to 

remove the isolated vertices (vertices with 

degree zero) to get the 1 − core of the 

graph. 
 

Step 3: Determining the 2 –  core 

The 2 − core of a graph requires every 

vertex to have a degree of at least two. 

Therefore, vertices that couldn't be in the 

1 − core cannot be in the 2 − core either. 

We systematically delete vertices that have 

a degree less than two until no more such 

vertices are left. 

 

 

Step 4: Determining the 3 –  core 

Similar to the 2 − core, the 3 − core 

requires every vertex to have a degree of at 

least three. We systematically delete 

vertices that have a degree less than three 

until no more such vertices are left. 

Therefore the 3 − core of G is 2𝐾4. 

 

 
uniqueness, and every individual connected subgraph would be a k-core. 
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Adapted from Wrath of Math (2019). 

 

The Smallest-Last Vertex Ordering algorithm, developed by David W. Matula and Leland 

L. Beck in 1983, introduced a linear-time approach to determining the degeneracy ordering 

of a graph. Though innovative and efficient, we have decided against utilizing this algorithm 

in our present work given that it is not accessible in the Python package we are using. Instead, 

we will be using a potentially more effective version developed by Vladimir Batagelj and 

Matjaž Zaveršnik from the University of Ljubljana. Their algorithm significantly improves 

the process of network core decomposition. The main premise is that if all vertices with a 

degree less than k are recursively removed from a given graph, the remaining graph will be 

the k-core. The algorithm's execution time is directly proportional to the number of edges, 

denoted by 'm', making it an O(m) algorithm. In the experimental section of this study, each 

stock within the index is treated as a vertex in a graph, with their correlations represented as 

edges. Degeneracy ordering is used to systematically isolate the least correlated stocks. 

Conceptualize this as a continuous procedure where we persistently identify and remove the 

stock with the smallest degree, essentially the one with the least correlation with others in 

the portfolio. The degeneracy of the graph, and consequently our portfolio, is then 

established by the stock that had the highest degree or most correlations at the time it was 

removed. 

The procedure to identify the optimal set of least correlated stocks, represented as the 

maximal independent vertex set in our graph, is as follows: 

1. Obtain the degeneracy ordering in linear time (Matula & Beck, 1983). 

2. Select the vertex with the lowest order.8 

3. If the selected vertex is not connected to any other vertices currently in the output set, it 

is added to our output set. 

4. Steps 2 and 3 are repeated until all vertices have been considered, ensuring that every 

stock in the portfolio has been evaluated. 

The end goal is to systemically select the least correlated set of stocks within the portfolio. 

2.2 Clique index 

Kloks & Xiao (2022) define a clique as a subgraph that is a complete graph, meaning every 

vertex in the subgraph is adjacent to every other vertex in the subgraph. The clique-size of a 

graph, 𝜔(𝐺), is the largest integer n such that 𝐾𝑛  is a subgraph of 𝐺 but 𝐾𝑛+1 is not (Saoub, 

2021). We can think of cliques in the context of a financial network, where vertices represent 

 
8 Stock with the least correlations. 
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stocks and edges are their correlations. In this case, a clique would be a selection of stocks 

which are all correlated.  

In a graph 𝐺, a clique is a nonempty set 𝐶 ⊆  𝑉 such that any two vertices of 𝐶 are adjacent. 

A clique in 𝐺 is an independent set in the complement graph 𝐺̅, and vice versa. The maximal 

cardinality of a clique in 𝐺 is denoted by 𝜔(𝐺), then  

𝜔(𝐺) = 𝛼(𝐺̅) 

A clique with three vertices is called a triangle. Bipartite9 graphs have no triangles, as they 

are odd cycles.10 Consequently, 𝜔(𝐺) ≤ 2 when 𝐺 is bipartite. A graph is called a clique if 

every pair of its vertices are adjacent. In this case  

𝜔(𝐺) = |𝑉(𝐺)| = 𝜒(𝐺)   𝑎𝑛𝑑   𝛼(𝐺) = 1 . 

On the other hand, a graph is an independent set if it has no edges, resulting in 

𝜔(𝐺) = 𝜒(𝐺) = 1    𝑎𝑛𝑑   𝛼(𝐺) = |𝑉(𝐺)| . 

Figure 10: 𝐺1 with removal 

 

Source: own work. 

Figure 11: 𝐺1 with removal 

 

Source: own work. 

In graph 𝐺1, vertices t,v,w, and x are all connected, as illustrated. However, it's impossible 

to find a set of 5 vertices that are all interconnected, due to insufficient vertices with a degree 

of at least 4. Therefore 𝜔(G1) = 4. This serves as the basis for constructing the clique index, 

which will be a portfolio of maximally connected stocks. But determining a clique of that 

size is a computationally difficult task, so an optimal algorithm has to be used, in this case, 

the BK algorithm. 

 
9 Bipartite graphs are a type of graph where the vertices can be divided into two distinct sets, and every edge 
connects a vertex in one set to a vertex in the other set. There are no edges within a set  (Benjamin, Chartrand 
& Zhang, 2017). 
10 A cycle is a non-empty path in which the first node is also the last one, meaning, it forms a loop. Each edge 
and vertex is distinct in a cycle, except for the first and last vertex, which are the same. A triangle, which has 
three vertices, is the simplest example of an odd cycle (Kloks & Xiao, 2022). 
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2.2.1 Cross-Maximal Clique Centrality 

Cross-maximal clique centrality (CMCC) is a unique centrality measure used for 

understanding the connectivity of a node to different cliques within a network. This is the 

only centrality measure that is not directly used in portfolio optimization but is used to form 

the Clique index (Kloks & Xiao, 2022). Given the complexity and computational 

inefficiency associated with calculating CMCC due to the NP-hard nature of the problem, 

incorporating it directly into the portfolio optimization framework would not be feasible.  

This measure was initially proposed by Borgatti, Jones and Everett (1998) as clique-overlap 

centrality and was later used by Faghani and Nguyen (2013). It is important in identifying 

key stocks in our index. A high degree of centrality, or in the specific case of CMCC, a high 

degree of connectivity to multiple cliques, signifies the asset's importance in the market 

network. Unlike degree centrality, which focuses on the number of connections a node has, 

CMCC underscores the number of strongly connected groups, meaning cliques that include 

that node.  

It is interesting and important to mention that an asset may have a high degree centrality but 

lower CMCC if it isn't a part of many maximal cliques. Conversely, an asset with fewer 

connections might have a higher CMCC if it's part of many maximal cliques (Coppola & 

Elgazzar, 2020). The Bron-Kerbosch algorithm, which works via recursive backtracking, is 

the most commonly used method to locate the maximal cliques in a graph. But since this 

algorithm is computationally expensive, it limits its practical application in portfolio 

optimization, especially when the number of securities in the portfolio is large. 

2.2.2 Bron-Kerbosch algorithm 

The Bron-Kerbosch enumeration algorithm is the most efficient method for finding maximal 

cliques in an undirected graph. It lists all subsets of vertices that have the properties of being 

completely connected, and no listed subset can have any additional vertices added to it while 

preserving its complete connectivity.  

The algorithm was designed by Dutch scientists Coenraad Bron and Joep Kerbosch, who 

published its description in 1973 (Akkoyunlu, 1973). There are essentially three variations 

of the algorithm: the original without pivoting, a version with pivoting introduced by Tomita, 

Tanaka, & Takahashi (2006), and a version with vertex ordering proposed by Eppstein, 

Löffler and Strash (2010). For the construction of the Degeneracy index, the variation with 

pivoting is used. 
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Figure 12: BK Algorithm with pivoting 

 

Source: own work. 

Figure 12 depicts two maximal cliques: {3,2,1} and {6,4,5}. Once the first clique is 

identified, the algorithm proceeds to assess neighboring vertices that have not yet been 

evaluated. In this case, these are vertices 2 and 4. As vertex 2 has already been considered, 

it gets moved to set X. Similarly, vertex 4 follows the same procedure. The crucial part is the 

selection of the pivot once all neighboring vertices are evaluated. The chosen pivot is the 

one with the maximum intersection with set P, effectively minimizing the search area as 

vertex 3's neighbors have already been processed.  

As a result, vertex 6 is chosen as the new pivot. The BK algorithm repeats this procedure, 

eventually finding the second maximal clique. Figure 13 illustrates this process using a 

different search forest, where the black vertices indicate those already processed or those not 

considered potential candidates for forming larger cliques. 
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Figure 13: BK Algorithm with pivoting 

 

Source: own work. 

2.3 P, NP, NP-Hard, NP-complete 

In computer science, problems are classified based on their relative computational 

complexity into several categories: P, NP, NP-Complete, and NP-Hard. These classes 

provide valuable insight into the computational resources needed to solve a problem and 

significantly influence algorithm selection and design (Pokharel, 2020). Understanding these 

categories is particularly pertinent in the context of portfolio optimization, where both the 

volume and complexity of the data involved can be considerable. 

• 𝑂(1) – constant-time   

• 𝑂(𝑙𝑜𝑔2(𝑛)) – logarithmic-time   

• 𝑂(𝑛) – linear-time   

• 𝑂(𝑛2 ) – quadratic-time   

• 𝑂(𝑛𝑘 ) – polynomial-time   

• 𝑂(𝑛𝑛 ) – exponential-time   

• 𝑂(𝑛!) – factorial-time   

Where 𝑘 is a constant and 𝑛 is the size of the input (Pokharel, 2020). To classify a problem 

into any one of these classes, it must be computable, meaning there must exist some 

algorithm that can solve the problem. Problems that can be computed are often referred to 

as "solvable", "decidable", or "recursive" problems (Sharma, 2020). On the other hand, non-
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computable problems are those for which no algorithm exists to solve them. In general, we 

categorize problems into four distinct classes:  

1. Class P: Class P includes problems that can be solved by deterministic algorithms within 

polynomial time, denoted as O(p(n)) where p(n) is a polynomial function of n. This class is 

of particular importance for portfolio optimization problems. Convex optimization 

problems, including quadratic optimization, which is a key component of Markowitz 

optimization, generally fall within this class as there exist polynomial-time algorithms that 

efficiently solve them (Erciyes, 2021). 

 

2. Class NP: The class NP contains decision problems that can be verified in polynomial 

time, even if finding the solution might not be as efficient (Erciyes, 2021). 

 

3. Class NP-Complete: An important subset of NP, NP-Complete problems are as hard as 

the hardest problems in NP (Erciyes, 2021). 

 

4. Class NP-Hard: The NP-Hard class includes problems that are at least as hard as the 

hardest problems in NP. The task of identifying a clique with the highest group betweenness 

centrality value in a graph, for example, is a problem of this class and is often solved using 

the Bron-Kerbosch algorithm in our context (Rysz, Mahdavi, & Pasiliao, 2018).11 

 

Figure 14: Easy-to-Hard scale 

 

 

Source: Pokharel (2020). 

The distinction between these complexity classes and understanding where a problem lies is 

vital to comprehend the computational effort required and the trade-off between the 

precision of the solution and the computational resources. This is particularly important in 

 
11 The Clay Mathematics Institute emphasises the importance of this problem by offering a million-dollar 
reward for anyone who can definitively prove or disprove that P = NP (Dickson, 2020).  
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portfolio optimization where trade-offs between risk and return are fundamental. The Bron-

Kerbosch algorithm is known to be NP-Hard and it is used in the calculation of the Clique 

index. Its worst-case running time of O(3
𝑛

3) aligns perfectly with the upper limit of maximal 

cliques as established by Moon and Moser (1965), thus making it an optimal algorithm for 

the task despite its high complexity class (Segundo, Artieda & Strash, 2018). On the other 

hand, the problem of detecting the maximum independent set via degeneracy ordering, 

which we tackle using the Smallest-Last Vertex Ordering algorithm or its variant developed 

by Vladimir Batagelj and Matjaž Zaveršnik, falls within the P category, specifically when 

implemented on certain types of graphs, such as trees (Heinold, 2019). This makes the 

Degeneracy index computationally more tractable, even for large portfolios. 

3 DATA 

3.1 Data and benchmark selection 

To conduct the empirical portion of the thesis, an index with a moderate number of 

components was required. Consequently, the Euro Stoxx 50 index was chosen. The Euro 

Stoxx 50 is a stock index of Eurozone stocks, designed by STOXX, an index provider owned 

by Deutsche Börse Group. This index comprises 50 stocks from 11 Eurozone countries 

(Barone & Barone, 2022). The index is calculated using the Laspeyres formula, which 

measures price changes against a fixed base quantity weight (STOXX, 2023).  

Given the long-term superior performance of equal-weighted indices compared to market 

capitalization-weighted indices, we have decided to include the former as an additional 

benchmark. The choice of an equal weight index is backed by a body of research that 

showcases its advantages in certain market conditions. One of the appealing characteristics 

of equal-weighted portfolios is their inherent mean-reversion tendencies (Maillard, Roncalli, 

& Teïletche, 2010). Since De Bondt and Thaler (1985), numerous authors have argued that 

mean-reversion occurs in stock markets, implying that buying past underperformers and 

selling past outperformers could lead to higher returns. This strategy could be incorporated 

into the selection criterion, constructing a portfolio that is maximally oversold, subject to 

constraints. However, persistence in the optimization criterion is not necessarily desirable, 

implying the objective function might contradict what we intend. Despite these complexities, 

it is worth noting that mean-reversion often occurs and could be a profitable investment 

strategy under the right conditions. Ernst, Thompson, and Miao (2017) empirically 

demonstrated the superiority of an equally weighted S&P 500 portfolio over Sharpe's market 

capitalization weighted S&P 500 portfolio from 1958 to 2016. Interestingly, there have been 

periods where the equal-weighted portfolios underperformed the market capitalization-

weighted portfolios, as shown by Taljaard and Maré (2021). The underperformance in these 

instances was attributed to increased concentration in the market capitalization-weighted 

portfolio and a significantly lower level of diversification benefits.  
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Despite these short-term periods of underperformance, the evidence leans towards equal-

weighted portfolios tending to outperform their market capitalization-weighted counterparts 

in the long term. Taljaard and Maré (2021) also suggested an approach to improve portfolio 

performance by dynamically selecting a market cap or an equal weighting using a basic 

linear regression model. This provides investors with a strategy to potentially enhance their 

returns depending on market conditions. Moreover, Plyakha, Uppal and Vilkov (2012) 

further proved the superior performance of equal-weighted portfolios over value- and price-

weighted portfolios over the last four decades. They discovered that, despite the higher 

portfolio risk, the equal-weighted portfolio outperforms in terms of total mean return, four-

factor alpha, Sharpe ratio, and certainty-equivalent return. This outperformance is attributed 

to the higher return for bearing systematic risk and a higher alpha measured using the four-

factor model of the equal-weighted portfolio. Intriguingly, the higher alpha of the equal-

weighted portfolio is due to the monthly rebalancing needed to maintain equal weights. This 

mechanism effectively acts as a contrarian strategy that exploits the reversal and 

idiosyncratic volatility of stock returns. 

3.2 Data preparation and cleaning 

Necessary libraries such as Pandas and "yfinance" were imported for data manipulation and 

retrieval. The Euro Stoxx 50 index components were defined in a list, and the data-fetching 

date range was set from January 1, 2017, to May 1, 2023. A loop iterated through each ticker, 

downloading historical stock data via the Yahoo Finance API. Missing values were replaced 

with the average of the previous three values. 

3.3 Environment 

The practical simulation was executed using various open-source Python packages. The 

following packages were utilized for specific purposes: 

• Os: This package was used for changing the working directory to the appropriate folder 

containing the data and other relevant files. 

• Pandas: Used for data manipulation, handling, and processing tasks. 

• Networkx: For creating, analyzing, and visualizing complex networks and graph 

structures. 

• Matplotlib.pyplot: This library was employed for generating visualizations and plotting 

graphs to better understand the data. 

• Matplotlib.lines: Customized line appearances in visualizations for clarity. 

• Numpy: Used for numerical operations and linear algebra calculations. 

• Seaborn: For creating more advanced and aesthetic visualizations, such as heatmaps. 

• Cvxopt: Employed for solving convex optimization problems, such as the optimization 

of the portfolio in the simulation. 
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4 PRACTICAL SIMULATION 

4.1 Performance metrics 

To evaluate the performance of the constructed portfolios, several widely accepted metrics 

were used. 

4.1.1 Average Annual Rate of Returns (AARR) 

This measure provides an insight into the annualized profitability of the index. It is calculated 

by first converting the daily returns (r) into daily growth rates (1+r), and then taking the 

product of these growth rates over the given period. The cumulative product is then raised 

to the power of the ratio of the number of trading days in a year (n) to the total number of 

trading days (N), before subtracting 1 to convert back to a return and multiplying by 100 to 

convert to a percentage. This approach effectively calculates the geometric mean return, 

which is then annualized (Reilly & Brown, 2012). 

𝐴𝐴𝑅𝑅 = ((∏(1 + 𝑟𝑖)

𝑁

𝑖=1

)

𝑛
𝑁

− 1) × 100 (17) 

While the metric provides a good sense of the portfolio's profitability, it does not account 

for the risk associated with the portfolio. 

4.1.2 Annual Volatility 

Volatility is in this case interpreted as a measure of risk, providing a view of the portfolio's 

inconsistency or the standard deviation of its returns. It is calculated by multiplying the 

standard deviation of daily returns 𝜎𝑟 by the square root of the number of trading days in a 

year (√𝑁) (Reilly & Brown, 2012). 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 = 𝜎𝑟  ∗  √𝑁 (18) 

Despite its widespread usage, the reader should note that annual volatility is a simplistic 

measure of risk. It assumes that returns are normally distributed and do not capture severe 

losses, often associated with tail risks.  

4.1.3 Maximum Drawdown (MDD) 

MDD is a purely empirical and backwards-looking measure of risk, not associated with any 

probabilistic distribution. Originating from the work of Zhou and Grossmann (1993), this 
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measure is widely used by institutional investors. Drawdown refers to a drop in the 

portfolio's value compared to its previous peak, whereas Maximum Drawdown specifically 

identifies the most significant drop, expressed as a percentage. This is a critical distinction 

from metrics like VaR and Expected Shortfall, where they estimate potential future adverse 

scenarios, whereas MDD measures the worst loss that has already occurred in the past 

(Basile & Ferrari, 2016). An illustration of the Maximum Drawdown can be seen in Figure 

15, where the drawdown over the in-sample period is plotted for the EW index. In this 

example, a maximum drawdown of approximately -15.5% means that at its lowest point 

during the in-sample period, the index experienced a decline of 15.5% from its previous 

peak. 

Figure 15: Drawdown over time – EW index 

 

Source: own work. 

The maximum drawdown can be calculated as: 

𝑀𝐷𝐷 =  𝑚𝑖𝑛(𝐷𝐷𝑡) (19) 

 

𝐷𝐷𝑡  =  𝑚𝑖𝑛(
𝑉𝑀𝑃,𝑡

𝑚𝑎𝑥(𝑉𝑀𝑃,0…𝑡)
 −  1;  0) (20) 

Where t represents a given point in time, ranging from 0 to T. 𝐷𝐷𝑡 is the drawdown at time 

t. 𝑉𝑀𝑃,𝑡 is the portfolio value at time t and 𝑚𝑎𝑥(𝑉𝑀𝑃,0…𝑡) is the maximum portfolio value 

between time 0 and time t. In essence, MDD captures the largest peak-to-trough decline 

during a specific period, representing the portfolio's worst historical loss. 
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4.1.4 Sharpe Ratio 

The Sharpe ratio is a widely used metric for evaluating risk-adjusted returns. It is defined as 

the difference between the portfolio’s return (𝑅𝑝) and the risk-free rate (R𝑓), divided by the 

portfolio's standard deviation of returns (𝜎𝑝) (Reilly & Brown, 2012).12 

(𝑅𝑝  − 𝑅𝑓)

 𝜎𝑝
  (21) 

Sharpe ratio is dimensionless, and thus it does not have units of measurement. Its 

interpretation is straightforward: a higher Sharpe ratio indicates a higher excess return for 

the amount of risk taken. The limitation of it is that it assumes returns are normally 

distributed and the ratio does not handle well the situations with large deviations (Reilly & 

Brown, 2012). 

4.1.5 Returns Over Maximum Drawdown (RoMaD) 

RoMaD is a performance metric that compares the return of an investment relative to its 

worst-case scenario loss (maximum drawdown). It's calculated by taking the annual return 

of a portfolio and dividing it by the absolute value of its maximum drawdown (Pfaff, 2016). 

𝑅𝑜𝑀𝑎𝐷 =  
𝐴𝐴𝑅𝑅 

|𝑀𝐷𝐷|
  (22) 

For example, if a portfolio has an AARR of 10% and an MDD of -20%, the RoMaD would 

be 0.5. This means that for every 1% of maximum drawdown risk, the portfolio has 

historically earned 0.5% annual return. A higher RoMaD indicates better risk-adjusted 

performance because it signifies more return per unit of drawdown risk. Where it becomes 

useful is when comparing two portfolios with many different values. So if another portfolio 

has an AARR of 15% but an MDD of -30%, its RoMaD would also be 0.5. Even though the 

second portfolio has a higher return, it also has a larger maximum drawdown, leading to the 

same RoMaD. This is useful when comparing an index that relies on a riskier strategy than 

the other, for instance, the Clique Index and the Variance Index. So it accounts for both the 

upside potential and downside risk of a portfolio. The limitation of this measure is that it 

does not account for the frequency or duration of drawdowns, only the magnitude. 

4.2 Graph creation 

The dataset was split 50/50, with optimal correlation and centrality thresholds determined 

using the in-sample data [2017-2019] and tested on the out-of-sample data [2020-2022]. To 

determine the optimal correlation threshold between the stocks, an iteration was done over 

 
12 Assuming a 3.5 % risk free rate. 
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different values and compared their Sharpe ratios. Note that this was done for the in-sample 

period, where the market was in an uptrend. Since the out-of-sample period is far more 

volatile, this could greatly affect the performance. Figure 16 shows that the highest Sharpe 

ratio based on the in-sample period is achieved when the correlation threshold between all 

stocks in our graph is set at no less than 29%. So any two stocks whose mean return is 

correlated by at least 29% will have to be added to the graph. 

Figure 16: Optimal empirical correlation 

 

Source: own work. 

4.3 Constructing Degeneracy Index 

After constructing the graph, the next step is to create the Degeneracy Index. This index is a 

blend of the Independent Set and the Outliers. The main objective behind constructing this 

index is to maximize diversification, which means we are aiming to include the least 

correlated stocks within the graph while also integrating the most influential stocks.  

As described in Chapter 2.1, we begin this process by identifying the largest k-core within 

our network, which will provide us with the most interconnected assets. We then proceed to 

apply Degeneracy Ordering to these assets. This involves arranging the chosen stocks in 

ascending order of their degree, allowing us to select the least correlated stocks from our 

densely interconnected subset. Consequently, we generate the Independent Set. Figure 17 

visually represents the stocks that form the foundation of the Independent Set. You'll notice 

they all sit on the periphery of the graph, indicating their lower level of connectivity to other 

stocks. 
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Figure 17: Independent vertex set 

 

Source: own work. 

The other part is to determine the outliers, i.e. stocks which were by default less or even 

negatively correlated with all other assets in our graph and thus not added to the graph. This 

is beneficial since our objective is to minimize risk and maximize diversification. Outliers 

with zero correlation to other strongly connected components represent independent stocks 

that are not subject to the spillover effect.13 If the outliers have a negative correlation with 

other strongly connected components, it is even more advantageous, as we will have 

negatively correlated assets to hedge against market turmoil. Our graph contains three such 

outliers: 

• AD.AS - Ahold Delhaize (Retail industry) 

• CRH.L - CRH plc (Building Materials industry) 

• NOKIA.HE - Nokia Corporation (Telecommunications Equipment industry) 

• UNA.AS - Unilever NV (Consumer Goods industry) 

 
13 The spillover effect refers to the impact that apparently unrelated events in one context can have on 
outcomes in another context. For example, a recession in a large economy like the United States can have a 
spillover effect on global economic conditions (Satchell, 2016). 
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4.4 Constructing the Clique Index 

Our second portfolio, referred to as the Clique Index, adopts an approach contrasting that of 

the Degeneracy Ordering. Instead of aiming for assets with minimal correlation to maximize 

diversification, the Clique Index focuses on identifying a tightly combined group of assets 

that share strong connections.  

The logic behind this strategy is to focus on a specific set of stocks that have the potential to 

enhance overall returns by eliminating non-performing or redundant assets. The objective 

here is to discover stocks with cross-maximal Clique Centrality exceeding a predefined 

threshold. Simply put, these stocks hold significant influence. 

Figure 18: Clique centrality distribution (CCD) 

 

Source: own work. 

As illustrated in Figure 18, a cross-maximal clique centrality of 5 means that a stock is part 

of 5 different maximal cliques. This suggests that the stock has a significant influence on the 

network, as it is strongly interconnected with several different groups of stocks. These stocks 

might be considered key components of the portfolio, as their performance could potentially 

affect the performance of several different groups of stocks. On the other hand, they might 

also carry more risk, as negative performance can also spread through their multiple 

connections. 
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Figure 19: Highly concentrated asset combination 

 

Source: own work. 

In contrast to the Independent Set, Figure 19 depicts how the Clique Index is situated at the 

heart of the graph, indicating that these stocks share more connections than those on the 

periphery. 

Figure 20: Clique Index 

 

Source: own work. 
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Figure 20 displays all the stocks included in the Clique Index. Here, one can see these stocks 

are tightly linked. It's hard to find a stock that doesn't have many connections to other assets 

in the index. This shows how closely the market moves together. In the face of a black swan 

event, it's normal to see the whole market go down. Stocks that don't fall much when the 

market is going down are not common. These special stocks can be seen in the Degeneracy 

Index, shown in Figure 17. The Degeneracy Index has fewer assets than the Clique Index. 

This is because there aren't many stocks that don't move together with the other stocks in the 

portfolio. 

4.5 Systemic Risk Analysis 

After creating two graph theory portfolios, a key question is: how can we measure the risk 

of the individual stocks in these portfolios? In theory, stocks in the Degeneracy Index should 

be less risky, and those in the Clique Index should be riskier. To check this, we can use an 

idea from Network Theory called "Network Robustness".  

Network Robustness looks at how removing a stock, or "node", from a portfolio affects the 

whole network. A stock with high systemic risk has a bigger effect on the portfolio when 

removed than a stock with lower systemic risk. In essence, this tests how vulnerable a 

network is to the removal of nodes. The problem is in identifying and eliminating crucial 

nodes from these networks, a struggle encountered in many real-world applications. 

This idea is important in many real-world situations. For instance, law enforcement often 

tries to break down criminal networks into smaller parts, or to increase the distance between 

nodes. After the events of September 11, 2001, there was a lot more research into the effects 

of removing nodes from complex networks (Krebs, 2001). In this study, the main focus when 

creating the index is on how much the stocks are correlated. Jahanpour and Chen (2013) 

found that using degree and betweenness centralities to decide which nodes to remove works 

better than other methods. Because of this, the study uses degree centrality for node removal.  

Figure 21 shows stocks from least to most risky or connected. For example, removing 

ALV.DE, would affect 14 other stocks in the portfolio. But removing AD.AS, the portfolio 

would not be affected. This suggests that the least risky or connected stocks are probably in 

the Degeneracy Index, and the riskiest or connected stocks are likely in the Clique Index. 

Looking at the stocks in the Degeneracy Index: ['NOKIA.HE', 'TTE', 'DB1.DE', 'OR.PA', 

'IBE.MC', 'EL.PA', 'ASML.AS', 'AD.AS', 'CRH.L', 'UNA.AS'], all but ASML.AS are on the 

left side of the chart, which means they are less risky. The first eight stocks listed from left 

to right in the Clique Index’s components are not included, showing that the portfolios have 

been created correctly. 
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Figure 21: Systemic Risks of Assets 

 

Source: own work. 

4.6 MPT Indexes 

4.6.1 Variance Index 

Following the creation of the Degeneracy Index and Clique Index, we move forward with 

the Variance Index. The objective is to achieve optimal diversification where the overall 

variance of the portfolio is minimized, thereby minimizing risk. In practical terms, the 

process of forming the Variance Index begins with computing the covariance matrix for the 

selected assets. This matrix reflects the behavior and relationships between the assets. A high 

covariance value between two assets indicates that they generally move in sync, either rising 

or falling together. On the other hand, a low or negative covariance suggests that the assets 

do not closely follow each other and may even move in opposite directions.  

The next step is to determine the optimal weight for each asset in the portfolio using 

quadratic programming. The constraints ensure that all weights are non-negative and sum 

up to one, allowing us to utilize our entire investment without shorting any stocks. It's 

important to note that this process focuses solely on minimizing risk and does not consider 

the expected returns of the stocks. 
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In a bull market, the performance of the Variance Index might not be as spectacular as that 

of an index focusing on returns, given its emphasis on risk reduction. A strong market rally 

might leave it trailing as it would not necessarily be heavily invested in the best-performing 

stocks. It is essentially designed to safeguard against downturns rather than to capitalize on 

upturns. Contrarily, in bear markets, the index could show its true value. As it is configured 

to minimize risk, it is better equipped to endure market downturns. The weights assigned by 

the Variance optimization process tend to favour fewer volatile stocks, which often 

demonstrate resilience in down markets. 

One interesting characteristic of the Variance Index is its potential "dislike" for high 

volatility. High volatility implies greater uncertainty and increased risk, which the Variance 

Index strives to steer clear of. By design, it would assign lower weights to such volatile 

assets, muting their impact on the overall portfolio. The Variance Index's greatest weakness 

might be its disregard for returns. It exclusively focuses on minimizing risk, potentially 

leading to a sub-optimal return profile in a bullish market. When compared to graph theory 

portfolios, the Variance Index takes a more traditional finance approach. While the 

Degeneracy and Clique Indexes consider asset correlations from a network perspective, the 

Variance Index considers them from a covariance matrix. Its advantage lies in its simplicity 

and robustness, but it may lack the sophisticated insight offered by the graphical approach. 

4.6.2 Sharpe Index 

The Sharpe Index operates on the premise of obtaining the best return per unit of risk, based 

on the Sharpe ratio. It seeks to identify the portfolio that offers the most favorable return 

relative to the level of risk undertaken. The process of forming the Sharpe Index commences 

similarly to the Variance Index, starting with the computation of the covariance matrix. 

Then, as before, we solve an optimization problem. But this time, instead of just minimizing 

risk, the goal is to maximize the Sharpe ratio.  

The quadratic programming gives a set of weights that yield the highest ratio of expected 

return to portfolio risk. Readers should note that the Sharpe Index might take on more risk 

than the Variance Index, as it factors in returns along with risk. Each is based on a different 

goal, i.e., the Variance Index might appeal to the more risk-averse investor, while the Sharpe 

Index could be a better option for those willing to accept a higher level of risk for potentially 

higher returns. 

In a bull market, the Sharpe Index would more than likely perform better. It doesn't just 

consider risk, but returns as well. If a high-performing stock carries with it a level of risk the 

index finds acceptable, it won't hesitate to assign significant weight to it. This could make 

the Sharpe Index a better choice in a market rally, specifically in the in-sample period. In 

contrast, in a bear market, the Sharpe Index might perform suboptimally. Despite its risk-

considerate nature, it could experience more significant drops compared to a purely risk-

minimizing portfolio. Its dual consideration of risk and return could expose it to downturns 
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when the market breaks. Unlike the Variance Index, it doesn't  "dislike" high volatility. It 

takes into account whether the potential rewards are worth the risk. The Sharpe Index's major 

drawback could be its reliance on expected returns. These expectations might not always 

materialize, leading to sub-optimal portfolio performance. 

When comparing both the Variance and Sharpe Indexes to an equally weighted portfolio, 

the latter often tends to outperform in the long run. This is attributed to the periodic 

rebalancing that accompanies equal-weight strategies, effectively capturing a 'rebalancing 

bonus'. The rebalancing allows buying low and selling high, capitalizing on the mean-

reverting nature of stock returns (Dubikovsky & Susinno, 2015). 

4.7 In-sample results 

After establishing the optimal asset allocations for our portfolio collection, we took a closer 

look at their performance during the in-sample period. Predictably, the Sharpe Index topped 

the charts, as it's designed to chase the highest risk-adjusted returns. However, the 

performance of the various portfolios wasn't uniform. A good number of indexes showed 

strong performance, which isn't surprising given the strong upward trend in the market 

during this period. This was the perfect environment for market growth with low-interest 

rates, minimal political risks, and a thriving economy.  

The purely graph-theory-based portfolios, namely the Degeneracy Index and the Clique 

Index, showed only average performance. Even more surprising, the Closeness Index and 

the Betweenness Index, which merge graph theory's centrality measure into the portfolio 

problem, performed rather poorly. This was unexpected as these models typically provide 

diversification benefits, which should help them perform at least on par with the market 

average. 

Interestingly, the Clique Index and the Equally Weighted Index showed similar performance 

as depicted in Figure 22. This suggests that even though some models might be more 

complex to calculate, they don't necessarily yield better results. In terms of computational 

complexity, the EW Index is the simplest as it assigns an equal share of the total investment 

to each asset. Other models are more complex because they involve more advanced 

mathematical problems.  

However, the k-core algorithm, which is used for the Degeneracy Index, is quite efficient as 

its complexity grows linearly with the number of edges and vertices in the graph. Despite 

the high complexity involved in the calculation of the Clique Index, it outperformed most 

hybrid models, reinforcing the idea that complexity does not always equate to better 

performance. 
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Figure 22: In-sample normalized comparison 

 

Source: own work. 

As shown in Figure 23, from a risk diversification standpoint, the Variance Index and 

Degeneracy Index provided the best allocations, though not necessarily in terms of returns. 

In terms of performance metrics, the Sharpe Index and Degeneracy Index outperformed the 

rest. 

Figure 23: In-sample mean variance comparison 

 

Source: own work. 

The annualized Sharpe ratio was high for the Sharpe Index, as expected, because this ratio 

measures performance after adjusting for risk. Interestingly, this doesn't mean that the 
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Sharpe Index had the highest Sharpe ratio. The highest scoring index among this 

performance metric was the Degeneracy Index, as it had an Annualized Sharpe ratio of 1.72, 

beating the Sharpe Index by just over 0.02 points.  

Both the Variance Index and the EW Index also had respectable Sharpe ratios, indicating 

that they offered good returns per unit of risk. RoMaD, which measures an investment's 

return relative to its worst-case loss, was notably high for the Degeneracy Index. Even 

though it didn't provide the highest returns, it managed downside risk effectively.  

As mentioned in the metric description, even though the Sharpe Index had multiple short but 

frequent drawdowns, it still achieved a high RoMaD, despite the volatility. This is because 

the metric doesn't take into account the frequency or duration of drawdowns, only the 

magnitude. This is why the Variance Index scored the highest. Its combination of low 

volatility and average returns allowed for optimal performance. 

Table 1: In-sample performance metrics (annualized) 

 Avg Annual 

RoR 

Annual 

Volatility 

Maximum 

Drawdown 

Annualized 

Sharpe 

Ratio 

Returns 

Over Max 

Drawdown 

Eigenvector Index 11% 20% -16% 0.55 70% 

Betweenness Index -8% 23% -45% -0.34 18% 

Closeness Index 1% 23% -44% 0.05 3% 

Degree Index 17% 18% -20% 0.96 85% 

EW Index 15% 11% -15% 1.39 101% 

Degeneracy Index 18% 10% -14% 1.72 132% 

Clique Index 16% 12% -17% 1.32 94% 

Sharpe Index 47% 27% -31% 1.70 149% 

Variance Index 12% 8% -7% 1.45 180% 

Source: own work. 

Examining the distribution statistics in Figure 24 gives us some interesting insights. A tighter 

distribution for the Variance Index suggests lower risk and more consistent performance, 

similar to the Degeneracy Index. Conversely, the broader and right-leaning distribution of 

the Sharpe Index indicates a higher likelihood of larger gains, although with higher volatility 

and risk. This is consistent with the results obtained from Table 1. 
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Figure 24: Distribution of returns (in-sample) 

 

Source: own work. 

The fact that the Sharpe Index, despite recording the highest average return, also displayed 

the highest volatility and maximum drawdown, underscores the principle that higher returns 

often involve higher risks. 

4.8 Out-of-sample results 

In a change from the in-sample results, the Sharpe Index didn't perform quite as well during 

the out-of-sample period. This particular index tends to excel when the market is doing well, 

but when the market is volatile, the performance tends to drop substantially. The market 

turbulence following the COVID-19 pandemic in 2020 is a clear example of this. Both 

portfolios initially fell but then quickly recovered to all-time highs. However, as the market 

took a turn for the worse, the portfolios followed suit.  

An interesting point to note is the resilience of the Variance Index. This index consistently 

performed well across different market conditions, especially during challenging times 

marked by high volatility or economic downturns. By focusing on minimizing risk through 

diversification, it was able to weather the storm more effectively. 
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Figure 25: Out-of-sample normalized comparison 

 

Source: own work. 

Another portfolio that showed consistent performance was the EW Index. This is an index 

where equal weights are assigned to all constituent assets, providing a balanced exposure to 

the market. The EW Index's performance underlines the benefits of this balanced approach, 

as it helps mitigate the impact of individual stock fluctuations and offers more stability 

during uncertain market conditions.  

The Degeneracy Index also stood out with its impressive performance during the market 

downturn following the COVID-19 pandemic. It rose to almost 1.8 times its initial value at 

its peak, reinforcing the benefits of diversification and optimal asset allocation.  

This demonstrates that indexes focusing on risk minimization and diversification can 

perform well over the long term, given a mix of bearish and bullish phases. On the other 

hand, the Betweenness Index didn't perform well.  

Looking at the results, we could assume that it's designed to minimize returns, given its 

subpar performance. The Degree and Closeness Indexes also ranked lower due to their 

higher risk profiles. 

 

 

 

 



 

46 

 

Figure 26: Out-of-sample mean variance comparison 

 

 

Source: own work. 

A surprising finding was the weak performance of the Clique Index during the bear market. 

This index's approach of concentrating on correlated assets left it vulnerable to market 

downturns. Furthermore, the complex calculations required to determine optimal weights 

can become challenging when dealing with a larger set of assets. This suggests that indexes 

that maintain a more balanced and diversified asset allocation, such as the Degeneracy Index, 

Variance Index, and EW Index, may be better equipped to handle volatile market 

environments. On the other hand, portfolios that lean towards correlated assets, like the 

Clique Index, could face more difficulties during market turbulence.  

When we look at performance measures, we see that a diversified index is crucial for 

successful management. While the Sharpe Index initially looked promising in a stable 

market, it did not perform well under more unpredictable market conditions. Not only that, 

looking at the results from Table 2, it can be seen that the Sharpe Index had a RoMaD of 

10%, which would be much worse if we were to account for the frequency of those 

drawdowns, which is also important to consider. The indexes based on graph theory 
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algorithms had different outcomes, reflecting their contrasting goals of diversification versus 

concentration. It is interesting that despite the Degeneracy Index’s goal to minimize risk, it 

had almost the same annual volatility as the Clique Index, which was not designed to account 

for volatility. 

Table 2: Out-of-sample performance metrics (annualized) 

 
Avg 

Annual 

RoR 

Annual 

Volatility 

Maximum 

Drawdown 

Annualized 

Sharpe 

Ratio 

Returns 

Over Max 

Drawdown 

Eigenvector Index -2% 27% -32% -0.07 6% 

Betweenness Index -7% 43% -61% -0.15 11% 

Closeness Index 3% 41% -54% 0.08 6% 

Degree Index -1% 37% -47% -0.04 3% 

EW Index 3% 25% -38% 0.11 7% 

Degeneracy Index 14% 25% -31% 0.58 47% 

Clique Index 2% 27% -40% 0.07 4% 

Sharpe Index -4% 35% -44% -0.13 10% 

Variance Index 4% 20% -32% 0.22 13% 

Source: own work. 

Comparing the Sharpe and Degeneracy indexes side by side in Figures 27 and 28 also paints 

a clear picture. The Degeneracy Index has a smooth, almost linear 60-day moving average, 

while the Sharpe Index's moving average shows much more fluctuation. This suggests that 

the Degeneracy Index provides more stable returns over time, while the Sharpe Index has 

more dramatic ups and downs. 

Figure 27: Cumulative returns over time – Degeneracy index 

 

Source: own work. 
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Figure 28: Cumulative returns over time – Sharpe index 

 

Source: own work. 

This result underscores the challenges associated with having a highly concentrated index of 

correlated assets, especially during periods of market turbulence. The so-called Hybrid 

Models did not perform well in either period, providing little value in terms of diversification 

or return. This leads us to conclude that the graph theory algorithms cannot act as 

complements to the traditional Modern Portfolio Theory approach, at least not when it comes 

to centrality measures. However, they could potentially be more effectively used as 

standalone tools or as substitutes for the Markowitz portfolio optimization approach. 

CONCLUSION 

This research aimed to investigate the application of graph theory-based algorithms for 

portfolio optimization and contrast their performance with the traditional Modern Portfolio 

Theory (MPT). Additionally, it aimed to evaluate the feasibility of integrating graph theory 

centrality measures with MPT to potentially enhance portfolio performance. 

The results of the study indicate that portfolio diversification using graph theory concepts, 

specifically through the Degeneracy Index, can potentially enhance performance, 

particularly during market turbulence. This index effectively navigated the market volatility 

during the COVID-19 pandemic and subsequent inflationary pressures, emphasizing the 

importance of minimized correlations and diversified portfolio construction. This 

observation highlights the criticisms of MPT that its reliance on past performance does not 

necessarily predict optimal or even satisfactory future performance. Consequently, these 

methods usually fall short during unprecedented historical events such as black swan or tail 

events. Hence, our research provides a favorable response to our first research question 

(RQ1) by showcasing the superior diversification benefits of graph theory portfolios over a 

traditional MPT approach during both bullish and bearish markets. 
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To address the second research question (RQ2), we incorporated four commonly used 

centrality measures into the optimization problem, anticipating that at least one of them 

would outperform the benchmark. However, the combined approach of graph theory and 

Markowitz optimization delivered underwhelming results. The poor performance of the 

hybrid models like the Closeness Index and Betweenness Index was unexpected as they were 

expected to perform well due to the benefits of diversification. Also, the out-of-sample 

results demonstrated that the hybrid models didn't perform well in either period, providing 

little value in terms of diversification or return. This could be due to the improper 

formulation of the problem or an inherent incompatibility between the two concepts. This 

outcome suggests that graph theory, specifically centrality measures, might better serve as 

an alternative to MPT rather than a complement to it. 

Our third research question (RQ3) examined which centrality measure resulted in the highest 

Sharpe ratio of the strategy. For the in-sample data, the highest Sharpe ratio was achieved 

by the Degree Index, which also performed well in the out-of-sample period when 

considering only centrality measure-based portfolios. For the out-of-sample period, the 

index with the highest Sharpe ratio was the Closeness Index. However, this index had a 

negative Sharpe ratio in the in-sample period, rendering any definitive conclusions 

unreliable. The practical simulations also showcased some key observations regarding the 

Variance Index, EW Index, and the Clique Index. The Variance Index's robust performance 

across different market conditions highlighted its resilience, owing to its focus on 

minimizing risk through diversification. The EW Index maintained stability during uncertain 

market conditions thanks to the benefits of a balanced market exposure. The Clique Index, 

despite its complex calculation methods and concentration on correlated assets, showed 

weak performance during the bear market, suggesting the advantages of maintaining a 

balanced and diversified asset allocation. 

Despite the promising findings, this research has certain limitations. It heavily relies on 

historical data, which may not always be a reliable predictor of future market behavior. The 

research does not account for potential transaction costs or taxes that could significantly 

impact portfolio performance. The limited number of assets examined facilitated the 

construction of graph theory portfolios, despite the NP-completeness. However, if more 

assets were involved, the performance could potentially be less promising. Future research 

could explore the integration of other asset classes such as bonds, commodities, or 

cryptocurrencies with graph theory for more diverse results. The impact of different 

rebalancing strategies on portfolio performance is another interesting area to explore, as the 

timing and frequency of portfolio rebalancing can significantly influence performance. In 

conclusion, this thesis showcases that graph theory can offer unique ways to rethink portfolio 

construction. While the traditional MPT approach remains a significant pillar of portfolio 

optimization, these alternative models can provide valuable alternative strategies, 

particularly when there is market turbulence or in the case of unpredictable future events. 
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Appendix 1: Povzetek (Summary in Slovene language) 

Robert Arnott je nekoč poudaril, da je v svetu investiranja tisto, kar je udobno, redko 

dobičkonosno. Ta misel poudarja pomen konstantne inovacije in nenehnega raziskovanja 

učinkovitejših strategij na področju upravljanja premoženja. Zavedanje, da tradicionalne 

metode morda ne prinašajo optimalnih rezultatov, vodi do neprestanega napredka in iskanja 

novih, obetavnih metod. Klasičnemu modelu optimizacije portelfja tj. Markowitz 

predlagamo alternativni pristop z uporabo algoritmov teorije grafov ki ciljajo na 

maksimiranje diverzifikacije in donosa. Dodatno definiramo tudi takoimenovane hibridne 

modele, ki so kombinacija obeh pristopov. Ideja teh modelov je optimizacija na podlagi 

klasičnega MPT pristopa, vendar z vpeljavo štirih različnih mer središčnosti oziroma 

centralnosti. 

V tej nalogi torej raziščemo, kako se uporaba teorije grafov lahko uporabi za izboljšanje 

strategij optimizacije portfelja. Nadalje raziščemo tudi ali se lahko uporabi kot samostojna 

strategija. Naloga je strukturirana v dva glavna dela. Prvi del se osredotoča na izgradnjo 

teoretičnih temeljev, drugi del pa predstavlja empirično študijo, ki vključuje razlago 

uporabljenih podatkov in metodologije ter izvedbo in primerjavo uspešnosti različnih 

strategij portfelja. Simulacija se izvede v obdobju vzorca (2017-2019) in izven vzorca (2020-

2022). Ugotovitve kažejo, da hibridni modeli, ki združujejo Markowitzovo teorijo portfelja 

in mere centralnosti, niso dosegli pričakovanih rezultatov. V obeh preučevanih časovnih 

obdobjih so se ti modeli izkazali za manj uspešne v primerjavi z ostalimi strategijami. 

Nasprotno pa je indeks degeneracije, ki temelji na teoriji grafov, v obeh obdobjih presegel 

vse ostale. To je mogoče pripisati prednostim diverzifikacije na katerih temelji ta strategija. 

Dosegla je nadpovprečne rezultate v smislu donosnosti in tveganja v obeh obdobjih.  
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Appendix 2: Pseudocode for BK algorithm 

Algorithm 1  

1: function BronKerbosch(𝑃, 𝑅, 𝑋) 

 ➢ 𝑅 : a clique 

 ➢ 𝑃 ∪  𝑋 : set of all vertices v such that 𝑅 ∪  {𝑣} is a clique and where 

 • vertices in 𝑃 have not yet been considered as additions to 𝑅 and 

 • vertices in 𝑋 already have been considered in earlier steps 

2: if 𝑃 ∪  𝑋 =  ∅ then 

3: add 𝑅 to the solution 

4: end if 

 choose pivot vertex 𝑢 ∈  𝑃 ∪  𝑋 with |𝑃 ∩  𝑁(𝑢)|  = max
𝑣∈𝑃 ∪𝑋

|𝑃 ∩  𝑁(𝑣)|   

5: for 𝑣 ∈  𝑃  do 

6: BronKerbosch(𝑃 ∩  𝑁(𝑣), 𝑅 ∪  {𝑣}, 𝑋 ∩  𝑁(𝑣))) 

7. 𝑃 ←  𝑃 \ {𝑣}  

8. 𝑋 ←  𝑋 ∪  {𝑣}  

9. end for 

10: end function 

Adapted from Tomita, Tanaka, & Takahashi (2006).  

The parameters (𝑃, 𝑅, 𝑋) are defined as follows: 

• 𝑅 is either an empty set (𝑅 =  ∅) or a clique in 𝐺. 

• 𝑃 is a priority queue containing vertices that are candidates for being added to the clique. 

They are vertices that are connected with all vertices in 𝑅. Initially, this can be set as all 

vertices in the graph.  

• 𝑋 contains vertices that have already been processed and should not be included in the 

clique. 

• 𝑃 and 𝑋 are disjoint sets14, and 𝑃 ∪  𝑋 = {𝑦 | 𝑅 ⊆  𝑁(𝑦)}. This means that the set 𝑃 ∪

 𝑋 contains those vertices 𝑦 in 𝑉\𝑅 such that {𝑦}  ∪  𝑅 is a clique. Due to the invariant, 

the set 𝑅 is a maximal clique exactly when 𝑃 ∪  𝑋 =  ∅ (Cazals & Karande, 2008). 

The algorithm starts by checking if both P and X are empty. If they are, it means that the 

algorithm has found a maximal clique, which is yielded as a result. Next, the algorithm 

chooses a pivot vertex 𝑢 from the union of 𝑃 and 𝑋. This pivot vertex is chosen as it has the 

maximum intersection with P.15 This strategy is used to delay the addition of the neighbours 

of the pivot vertex to the clique, which reduces the number of recursive calls (Cazals & 

Karande, 2008).16 If there's an error in choosing the pivot (which happens if P and X are both 

empty), the algorithm defaults to consider all vertices in P as the neighbors of the pivot. The 

 
14 Two sets are disjoint if they have no elements in common, in the context of the BK algorithm, the sets P 
and X are disjoint, meaning no vertex belongs to both P and X. 
15 Referring to the largest overlap between two sets, specificaly choosing the vertex which has the largest 
number of shared neighbours with the current set of candidates (P) in the graph. 
16 A process where a function calls itself, consequently allowing it to be repeated several times. 
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algorithm then iterates over each vertex 𝑣 in the set 𝑁 (which is either the difference of 𝑃 

and the neighbors of 𝑢, or just 𝑃 if an error occurred). For each vertex 𝑣, the function 

recursively calls itself with updated arguments: 𝑅 ∪  {𝑣} as the new 𝑅, and the intersections 

of the old 𝑃 and 𝑋 with the neighbors of 𝑣 as the new 𝑃 and 𝑋 (Himmel, Molter, Niedermeier 

& Sorge, 2017). After the recursive call, 𝑣 is removed from 𝑃 and added to 𝑋, indicating 

that it has been processed and should not be included in the clique. This process continues 

until all vertices have been processed and all maximal cliques have been found. The use of 

a pivot and the careful management of the sets 𝑃 and 𝑋 helps to reduce the search space and 

improve the efficiency of the algorithm. Finally, the remaining set of maximal cliques, which 

are those that do not contain 𝑥, are listed via the B & K call. 
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Appendix 3: Pseudocode for k-core algorithm 

Algorithm 2  

 INPUT: Graph 𝐺 =  (𝑉, 𝐿) [Represented by lists of neighbors] 

 OUTPUT: Table core [Contains the core number for each vertex] 

  

1.1 Compute the degrees of all vertices 

1.2 Arrange the vertices (𝑉) in increasing order based on their degrees 

2 for each 𝑣 ∈  𝑉 in the order do begin 

2.1 core[𝑣] ∶= degree[𝑣]; 
2.2 for each 𝑢 ∈ Neighbors(𝑣) do 

2.2.1 if degree[𝑢]  > degree[𝑣] then begin 

2.2.1.1 degree[𝑢] ∶= degree[𝑢]  −  1; 

2.2.1.2 reorder 𝑉 accordingly 

 end 

 end; 

Adapted from Batagelj & Zaveršnik (2003). 

The algorithm begins by computing the degree of all vertices and sorting the vertices based 

on their degrees in ascending order. Next, the algorithm iterates over each vertex '𝑣' in the 

ordered list. It assigns to 'core[𝑣]' the degree of vertex '𝑣', which essentially signifies the 

current 'core number' of the vertex. The algorithm then examines each neighboring vertex 

'𝑢' of the current vertex '𝑣'. If the degree of '𝑢' is greater than the degree of '𝑣', it decreases 

the degree of '𝑢' by 1. This is based on the idea that if '𝑣' is part of a 𝑘-core, then its neighbors 

should connect to at least '𝑘' vertices in the same 𝑘-core. If a neighbor '𝑢' has a higher degree, 

it means '𝑢' has connections outside of the current k-core and reducing its degree would not 

affect the current k-core status of '𝑣'. After adjusting the degree of '𝑢', the algorithm reorders 

the vertices in ascending order based on their new degrees. This step ensures that the vertices 

are processed in the correct order. 
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Appendix 4: Components 

Ticker Name 

OR.PA L'Oreal SA 

DG.PA Vinci SA 

BBVA.MC Banco Bilbao Vizcaya Argentaria SA 

SAN.MC Banco Santander SA 

ASML.AS ASML Holding NV 

PHIA.AS Koninklijke Philips NV 

TEF.MC Telefonica SA 

FP.PA TOTAL SE 

AI.PA Air Liquide SA 

CS.PA AXA SA 

BNP.PA BNP Paribas SA 

BN.PA Danone SA 

VIV.PA Vivendi SA 

EL.PA EssilorLuxottica SA 

MC.PA LVMH Moet Hennessy Louis Vuitton SE 

KER.PA Kering SA 

AMS.MC Amadeus IT Group SA 

SAF.PA Safran SA 

AD.AS Koninklijke Ahold Delhaize NV 

UNA.AS Unilever NV 

IBE.MC Iberdrola SA 
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INGA.AS ING Groep NV 

LIN Linde PLC 

ITX.MC Industria de Diseno Textil SA 

ISP.MI Intesa Sanpaolo SpA 

ENI.MI Eni SpA 

ENGI.PA Engie SA 

ORA.PA Orange SA 

ABI.BR Anheuser-Busch InBev SA/NV 

SAN.PA Sanofi 

GLE.PA Societe Generale SA 

ENEL.MI Enel SpA 

NOKIA.HE Nokia Oyj 

SU.PA Schneider Electric SE 

ALV.DE Allianz SE 

AIR.PA Airbus SE 

BAYN.DE Bayer AG 

BMW.DE Bayerische Motoren Werke AG 

CRH.L CRH PLC 

BAS.DE BASF SE 

SIE.DE Siemens AG 

VOW3.DE Volkswagen AG 

MUV2.DE Munich Re 

FRE.DE Fresenius SE & Co KGaA 
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SAP.DE SAP SE 

ADS.DE Adidas AG 

DTE.DE Deutsche Telekom AG 

DPW.DE Deutsche Post AG 

DAI.DE Daimler AG 

DB1.DE Deutsche Boerse AG 

Source: own work. 


