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INTRODUCTION 

Traditionally, electricity prices were relatively stable with only limited if any volatility in 

the determination of their prices. Regulated by national governments, electricity prices 

were largely determined by their cost of production. However, since the 1990s many 

countries have started to liberalise their energy sectors in order to be more dynamic, 

where by restructuring and deregulation governments allowed electricity prices to be 

determined by market forces of supply and demand. With the introduction of wholesale 

electricity markets, electricity delivery contracts, as well as electricity forwards and other 

derivatives, are now traded on electricity exchanges or bilaterally over the counter to 

various market participants as an actively traded commodity. The oldest electricity 

exchange Noordpool in Scandinavia was established in 1993 and since then many 

countries have followed with deregulation and reformed their electricity sectors.  

According to Deng & Oren (2006, p. 3), the new policy is supported with the argument 

that a competitive electricity sector can restructure long-term investments in generating 

capacity more efficiently than under state ownership, where utility companies were 

allowed to earn a regulated rate of return above their cost of capital. When authorities 

confirmed the construction of power plants, the costs were passed to consumers for the 

duration of the investment through regulated electricity prices, independent of the 

fluctuations in market value of investment over time due to the changes in energy prices, 

improving technology, and evolving conditions of supply and demand. This meant that 

the heavy burden of investment risk in generating capacity was allocated to consumers 

rather than producers. Plants generating electricity had few incentives to optimize 

excessive costs and were more concerned with improving and maintaining their services, 

rather than with adjusting to market demands and with adopting and developing to new 

advancements in generating electricity. Liberalisation of the electricity industry thus 

transferred most of the investment risk from consumers to producers. This led to 

increased trading and consequent uncertainty and high volatility in price determination 

for both the producers and distributers of electricity that trade on electricity exchanges. 

For such companies that need to be more prudent in the way how they manage their risks 

toward large movements in electricity prices, new methods for valuation of electricity 

prices had to be developed.  

Demand for such valuations and optionalities arises naturally from the unpredictability of 

power consumption and from the optionalities inherent in power plants (Burger, Klar, 

Müller & Schindlmayr, 2004, p. 109). Before deregulation, there rarely was a necessity to 

precisely forecast and evaluate electricity prices and electricity derivatives because 

electricity was not a commodity that could easily be traded and because its supply was 

provided by regulated utility companies. Market participants did not use the flexibility of 

delivery contracts in a market-oriented way. With liberalisation and the establishment of 

electricity exchanges, this changed and online trading platforms for electricity contracts 

have been founded. Market counterparts can now take advantage of the optionality in 
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their contracts by optimizing against market prices and looking for arbitrage opportunities. 

Therefore, it has become a significant task for participants to develop new pricing models 

for the contracts they buy and sell and to quantify and manage involved risks (Burger et 

al., 2004, p. 109). 

Along with fixed contracts (forwards, futures) and other derivatives from financial 

markets that protect market participants against high and low prices, price forecasting 

became an extremely valuable tool for producers of electricity and companies that trade 

in energy markets. The pricing of electricity is complicated due to its unique 

characteristics, as compared to other financial assets. One of the main differences is that 

the electricity has to be produced in the same quantity as it is consumed in real time. The 

non-storability of electricity and its unique physical attributes of production and 

distribution thus make electricity a highly unusual commodity. In other words, the 

demand for electricity at different times can occasionally cause very large fluctuations in 

the spot price or distinctive price spikes reflected in the fat tails of the distribution related 

to instantaneous supply and demand. Given these features, electricity markets are difficult 

to predict mainly due to their high volatility, significantly affected by supply and demand 

on the market as well as other external factors, such as weather, seasonality over days, 

weeks or months, transportation constraints, prices of fossil fuels, etc. In this regard, 

accurate price forecasts are necessary in order to develop effective bidding strategies to 

maximize profits. 

The purpose of this thesis is to present the dynamics of modern electricity markets. To 

give a detailed theoretical explanation of the models used for time series modelling in 

finance, and to empirically examine whether the proposed models can sufficiently explain 

the conditional variance and future prices of electricity. We propose and examine 

econometric models based on the autoregressive moving average process (hereafter: 

ARMA) and stochastic volatility processes (based on general autoregressive conditional 

heteroscedasticity models, hereafter GARCH) to simulate estimations of future electricity 

prices and their variances and to further check the goodness-of-fit of forecasts in 

comparison to their original de-seasonalised prices. The fundamental hypothesis is to 

verify whether the forecasted ARMA-GARCH models can sufficiently explain price 

fluctuations in electricity price time series. 

The thesis will be made of two parts, theoretical and empirical. For the purpose of the 

theoretical part, different econometric models from the field of financial time series 

modelling are presented. This part is mainly descriptive with specifications of the models 

used in the second part of the thesis. In the second part, the data of electricity price time 

series from BSP South Pool, a Slovenian electricity exchange platform are collected, 

while in the following steps the model is identified with the help of econometric software 

(Eviews, Matlab); In other words, to determine the order of the model required to capture 

the dynamics of the data, specifically the lags of ARMA model using autocorrelation and 

partial autocorrelation functions, along with different information criteria functions. The 
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following steps involve the estimation of parameters and model validation or diagnostic 

checking whether the specified model is adequate (statistical significance and hypotheses 

tests on the estimated parameters and residuals). If these are not validated, we return to a 

different model identified in the identification step and estimate and check new model 

parameters again. When the statistical significance and hypotheses tests on the estimated 

parameters are validated, forecasting prices can begin. In the final step of forecasting, 

whether the forecasts are accurate or not is determined using different statistics to 

measure forecasting errors.  

1 ELECTRICITY MARKETS 

1.1 General features of electricity markets 

There are distinctive differences between electricity and financial markets due to the 

nature of electricity as a commodity. Financial models for forecasting and pricing 

derivatives were primarily designed for stocks and bonds and, as such, do not capture the 

unique physical properties of electricity. Mainly, these are the non-storability (except, to a 

certain extent, for hydroelectricity and limited storage in generators), the seasonality and 

price spikes, the difficulties of transportation as well as the necessity for the European 

Community to define clear rules for cross-border electricity transmission (Geman, 2002 

pp. 3-4). Due to these constraints, electricity is treated as a flow commodity, for which 

absence of arbitrage remains the fundamental principle on which the pricing of electricity 

and its financial products are based (Kluge, 2006. p. 3). If the relation across time and 

space provided by arbitrage broke down, spot prices would be expected to be highly 

dependent on temporal and local supply and demand conditions, as well as affecting the 

relationship between electricity spot and derivative prices (Naeem, 2010, p. 3). 

According to Karaktsani & Bunn (2004, p. 2), induced by physical constraints and 

perhaps also by generator’s strategic behaviour, irregular volatility occurs frequently 

during short periods and not only over periods of higher frequency. This can be seen 

empirically in different markets, where volatility presents significant problems for pricing, 

but may also suggest profitable strategies to those who understand and are able to 

efficiently anticipate its complexity. Due to such features and constraints of electricity 

markets, conventional financial models cannot be applied directly to electricity markets, 

but adaptations and modifications have to be made (Kluge, 2006, p. 3). Nevertheless, 

stochastic volatility models are fundamental for trading, production scheduling, 

derivatives pricing, capacity investment and generation asset valuation (Karaktsani & 

Bunn, 2004, p. 2). 

Kluge (2006, pp. 3-4) describes the main differences and similarities between electricity 

as a commodity and conventional share markets as: 

- Underlying unit: In conventional financial markets, the underlying unit (a stock or a 

bond) is a share of a certain company, whereas in electricity markets it is a specific unit of 

energy specified in MWh. Theoretically speaking, if we could omit the storability 
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constraint and electricity could be stored in reservoirs or storages, the units of electricity 

would be bought like any other commodity and would only involve an electronic 

financial transaction and an assignment of the purchased energy units into the buyer’s 

portfolio without actual physical delivery (Kluge, 2006, p.3). 

- Production and consumption: In share markets, the number of shares remains constant 

over time (unless the company issues new shares) and gives the owner codetermination 

rights. However, electricity is produced and consumed in real time, which (even with a 

hypothetical ability to store) has a profound effect on the price per unit. Based on 

microeconomic considerations, we can expect the long-term price to revert to the 

production cost, which is one reason mean reverting models are mostly used in 

commodity markets (Kluge, 2006, p. 3).  

- Inability to store: To understand the behaviour of electricity prices, it must be noted that 

electricity is practically very difficult to store with current technology. It is virtually 

impossible to store the amount of electricity a large factory consumes on a single day, let 

alone the energy of an entire country (Kluge, 2006, p. 4). In most countries, there are only 

a few reservoir power plants. The non-storability of electricity can thus hardly be ignored. 

One of the consequences is that the relation between spot prices and futures prices cannot 

be described by the cost of carry. Eydeland & Geman (1999, p.8) suggest that the non-

storability of electricity indicates a breakdown of deriving the basic properties of spot 

prices from the analysis of forward curves. The most evident consequence of this is 

enormous price fluctuations and price spikes, which have far-reaching consequences; 

specifically, electricity, as a pure flow commodity, requires time to transfer a certain 

amount of energy due to constraints in the transmission grids that can cause congestion.  

Therefore, contracts always specify a delivery period. Simultaneously, production and 

consumption have to constantly be in balance. A small imbalance can be absorbed in 

voltage changes and, for supply excess, dissipation in the grid and generating plants. 

Supply dropping below the demand could result in a black out. This real time balance of 

supply and demand introduces seasonality, related to cyclical fluctuations of demand by 

the hour in the day, week or month. Additionally, the inelasticity of supply and demand 

(end users, households and firms receive electricity at a fixed price and do not restrict 

their needs if electricity prices increase on the exchange) makes electricity highly 

vulnerable to extreme events such as power outages. In such cases, the maximum supply 

could drop to levels near the current demand, causing the price to rise considerably. This 

can be resolved quickly, when the outage is resolved or when spare power station is 

activated, thus normalizing the situation and bringing the price down to previous levels. 

Such extreme price occurrences are called spikes. Another aspect of balancing the 

production and consumption in electricity is that spot prices in wholesale markets can 

theoretically take any value (even any negative value); according to Branger, Reichmann 

& Wobben (2010, p.  54), negative electricity prices make technical and economic sense, 

and can include important incentive signals for load shifting. They allow power plants to 
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pay to consumers when electricity demand is very low, while production is relatively high 

at the same point in time. Consequently, paying consumers to consume electricity is 

cheaper than temporarily shutting down production. 

1.1.1 Characteristics of electricity markets 

Along with abovementioned unique features of electricity, the most important properties 

of electricity markets observed in all electricity markets are: 

- Mean reversion: Toward an equilibrium level in the long run. According to Burger et al. 

(2004, p. 3), the time for electricity price to revert to its mean level has a magnitude of 

days or at most weeks and can be explained with the recoveries from power station 

outages and changes in weather conditions. Electricity prices, like other commodity 

prices, have a strong tendency to revert quickly to a mean level. Geman (2002, p. 4), 

reports that Pindyck (1999) analysed a 127-year time series for crude oil and bituminous 

coal and a 75-year time series for natural gas, and concludes that both indicate mean 

reversion towards a stochastically fluctuating trend line. The same pattern can be 

observed in electricity prices for which Eydeland & Geman (1999) analysed several 

regions of the US. The same is observed also for the Slovenian time series of electricity 

prices, as can be seen in Figure 3. 

- Price spikes: As mentioned earlier, one important aspect of electricity prices is the 

presence of spikes, specifically of sudden upward jumps followed by a quick reversion to 

normal levels. This happens as the imbalance of supply and demand is impossible to 

correct in a very short time span. As such, spikes present difficulties for modelling any 

underlying unit as they are not consistent with the usual modelling based on normal 

distribution. However, according to Eydeland and Wolyniec (2003, p. 5), spikes can be 

useful in two other ways. On the demand side, they can help signal shortages and 

encourage customers to reduce their usage in times of stress, while on the supply side, 

they can signal shortages and help bring in more supply. 

- Seasonality: Seasonal patterns and periodicities in electricity series are present in every 

electricity market and can be easily observed in autocorrelation functions of electricity 

price data.
1
 Such patterns occur daily, weekly or monthly and are mostly the consequence 

of daily business activities, as well as weather conditions. For the purpose of this research, 

we have taken into account the 24-hour daily and 168-hour weekly periodic seasonality 

because we are the modelling the hourly data. 

- High volatility: Another specific feature of electricity prices is very high volatility 

uncommon in other financial assets and commodities. It is not uncommon that a standard 

deviation can be six sigma or higher in a relatively small sample of a few thousand 

observations. The high volatility is another consequence of non-storability and the limited 

                                                      
1
 Figures 6 and 7 on page 34 show the daily seasonal patterns in autocorrelation and partial 

autocorrelation functions in the Slovenian hourly electricity time series for the period of the first quarter 
of 2014. 
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potential to store electric power efficiently, while setting the equilibrium prices in real 

time is one of the requirements of the market. 

- Regionality or locality of electricity prices: Electricity markets are geographically 

distinct, with regions through which transmission of electricity is physically impossible or 

economically inefficient (Geman, 2002, p. 3). There are also significant price differences 

across different regions, which is another aspect of electricity prices that differs from 

financial assets. These differences are the result of different generating capacities and 

differences in transmission grids within regions in a country or internationally as some 

regions or countries produce surpluses and others shortages of electricity.  

- Non-stationarity: Electricity price data exhibits strong non-stationarity, a consequence 

of seasonal patterns that distort the time series. Burger et al. (2004, p. 4) suggests that, for 

this reason, conventional stochastic volatility models might be inappropriate and suggest 

modelling with non-stationary models. 

1.2 Spot markets 

In this thesis, we focus on day-ahead bidding prices or short-term deliveries of electricity; 

an overview of spot markets, and their price determination follow. Electricity spot prices 

are essentially the prices of electricity for short-term physical delivery within wholesale 

markets, most commonly associated with the day-ahead bidding of market participants. 

Electricity prices in such markets are determined by the balance of supply and demand 

and therefore signal when there are problems in the grid if the price increases. This aids in 

detecting where production is inadequate as consumption exceeds production. As already 

stated, such factors as weather or generators not producing to their full capacity can also 

impact how much electricity can be transported through the grid and consequently affect 

the price. This is known as ‘transmission capacity’ or, in other words, the volume of 

electricity that can be transported through the grid. According to Branger et al. (2010, p. 

53), the supply and demand curve in these markets is given by the merit order model, in 

which all available producers offer electricity in an increasing series of their variable 

costs, so that the market-clearing price corresponds to the variable costs of the marginal 

power plant in the merit order to satisfy the demand.  

In deregulated power markets, electricity exchanges such as Nordpool, EEX, EPEX, BSP 

Southpool, etc., provide market participants a place for power plants, TSOs (transmission 

system operating companies), traders, suppliers or retailers of electricity, energy 

companies and other financial institutions to buy or sell physical electricity. Electricity 

needs to be transferred to its destination through transmission grids, which are operated in 

each market by TSOs.
2
 According to Kluge (2006, p. 5), this part of the market is 

monopolistic and tariffs are set by regulators; prices should reflect the maintenance cost 

and the energy loss, as it is the TSO’s liability to buy the electricity lost through the 

transmission from the spot market. This guarantees that each market participant submits 

                                                      
2
 ELES in Slovenia. 
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or receives the exact amount of electricity as specified in the spot market contract. 

Therefore, the total contract cost is composed of the spot price, trading fees and 

transmission charges.  

Spot market contracts are usually specified as day-ahead auctioned hourly bids for the 

physical delivery of a specified amount of units that each market participant buys or sells. 

1.2.1 BSP Southpool spot price determination 

Trading on the BSP Southpool electricity exchange can be done for day-ahead auction 

trading, or continuously during each day (intra-day bidding in real time) by companies 

that meet the requirements set by BSP Southpool and with access to the transmission 

grids.  

For the day-ahead bidding, market participants can submit anonymous standardized 

hourly products on the EuroMarket trading platform (electricity prices per MWh are 

determined using the bidding system), where contracts are made between sellers and 

buyers for the physical delivery of the electricity the following day after the price is set 

(BSP website). The day-ahead market is driven by market participant’s forecasts, 

planning and expectations, meaning that buyers have to estimate how much electricity 

they require to meet the demands on the following day as well as how much they are 

willing to pay for it for each hour. The sellers have to estimate how much and at what 

price will they deliver electricity for each hour of the following day.  

According to BSP Southpool, auction trading is divided into the following phases: 

- The call phase: call phase runs each day until 9:40 a.m., when BSP Southpool closes the 

bidding for electricity that will be delivered the next day.  

- The freeze phase: runs from 9:40 a.m. to 9:50 a.m., during which the market supervisor 

can examine the orders and react in case of any irregularities. 

- Price determination phase: runs from 9:50 a.m. to 10.30. a.m., when the marginal spot 

price is calculated for each individual hour by the intersection of the aggregate supply and 

demand curve (also known as an equilibrium point). 

After 9:40 a.m., when the call phase for market participants ends, all bids and offers are 

aggregated into two curves for each delivery hour, forming an aggregate supply and 

demand curve. The price for each hour is determined by the intersection of those curves, 

which represent all bids and offers in the market. Once the marginal market prices are 

calculated, trades are settled and physically delivered from 00:00 a.m. onward to buyers 

for each hour of the following day. Based on this price, shown on Figure 1, it is clear how 

many units all members buy or sell. The average daily price is further calculated as the 

base load price, which is split into the peak price (denoting the hours of the day with the 

highest consumption, 08:00–20:00) and the off-peak price (for the remaining hours). 
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Another type of bidding on the BSP Southpool can be done continuously in real time (one 

day before the delivery day and up to 60 minutes prior to product expiration on delivery 

day), where members can adjust to a change of supply and demand during the day. Here, 

prices are determined on the basis of the price/time priority criterion. Although the 

majority of trades are made for the day-ahead bids, intra-day bidding is offered to help 

secure and adjust to a necessary balance between supply and demand on the market (BSP 

website). 

Figure 1. Supply and demand curves for electricity on March 24
th

 from 11 a.m. to 12 a.m. 

on BSP Southpool day-ahead market. 

 

 

Source: Day ahead trading results, 2014. 

 

2 UNIVARIATE TIME SERIES MODELLING 

In this and the next chapter, we present characteristics of various linear and stochastic 

processes used empirically in Chapter 4, beginning with models for univariate time series 

modelling and forecasting and continuing with conditional volatility models in Chapter 3. 

A time series is a collection of sequential data points, measured at successive points in 

time, spaced at uniform time intervals. Brooks (2008, p. 206) defined it as ‘univariate 

time series models are a class of specifications where one attempts to model and to 

predict financial variables using only information contained in their own past values and 

possibly current and past values of other (explanatory) variables.’ Macroeconomic 

models from the 1960s were often composed of simultaneous equations that frequently 

had poorer forecasting performance than fairly simple univariate models based on only a 

few parameters and using only past data. Therefore, time series models are used when a 

more complex structural model is inappropriate. This led George Box and Gwilym 



9 

  

Jenkins to propose autoregressive integrated moving average (ARIMA) models in the 

1970s (Greene, 2003, p. 608). These are mathematical models of time series that aim to 

find the best fit of a forecast to the given past values of a time series. Currently, time 

series analysis is used in different fields as diverse as economics, statistics, finance, 

weather forecasting, seismology, pattern recognition, astronomy etc. In the following 

sections, we specify the notations and present important concepts for modelling ARMA 

models. 

 

2.1 Important concepts and notations in time series 

Time series data, as the name suggests, are data collected over a period of time on one or 

more variables, where the data are associated with a particular frequency of observation 

(hourly, daily, weekly, monthly, etc.). In the following sections, we denote ty  as an 

observation of an asset at time t , in our case the price of electricity at time t . The 

preceding observation is written as 1ty   and succeeding as 1ty  .  

The following paragraphs are dedicated to several important concepts in time series 

modelling. The first of these is the notion of whether the series is stationary or not. This is 

essential to time series analysis, as the stationarity of a series strongly characterizes its 

behaviour and properties.  

2.1.1 White noise process 

A white noise process represents a stationary time series or a stationary random process 

with zero autocorrelation. In an autoregressive model, white noise is the disturbance term 

or the source of randomness, denoted as t . A process is white noise if it satisfies the 

following conditions: 

                                                        ( ) 0tE                                                                (1) 

                                                       
2 2( )tE                                                              (2) 

                                              ( , ) 0t sCov     for all s t .                                           (3) 

Therefore, a white noise process has a constant mean and variance and zero covariance, 

except at lag zero.  

2.1.2 Stationarity 

A stationary process is a stochastic process whose joint probability distribution does not 

change when shifted in time. Therefore, the process has a constant mean, variance and 

autocorrelation over time for each given lag and does not follow any trends. According to 

Brooks (2008, pp. 318-320), the stationarity of a series is essential for the following 

reasons:  
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- The stationarity of a series can strongly influence its behaviour and properties. For 

example a ‘shock’ is often used to denote a change in a variable, while for a stationary 

series, the shocks gradually die away (a shock during time t  will have a smaller effect in

1t  , a still smaller effect in 2t  , and so on). In contrast, for a non-stationary series, the 

persistence of a shock will always be infinite (the effect of a shock during time t  will not 

have a smaller effect in time 1t  , in time 2t  , etc.). 

- The use of non-stationarity data can lead to spurious regressions. If two stationary 

variables are generated as independent random series, when one of those variables is 

regressed on the other, the t-ratio on the slope coefficient would not be expected to be 

significantly different from zero, and the value of 2R
3
 would be expected to be very low. 

This seems obvious for the variables that are not related to one another. However, if two 

variables are trending over time, a regression of one on the other could have a high 2R

even if the two are totally unrelated.  Therefore, if standard regression techniques are 

applied to non-stationary data, the end result could be a regression that ‘looks’ good 

under standard measures (significant coefficient estimates and a high 2R ), but which is 

actually valueless. 

- If the variables employed in the regression model are not stationary, then it can be 

proved that the standard assumptions for asymptotic analysis will not be valid. In other 

words, the usual ‘t-ratios’ will not follow a t-distribution, and the F-statistic will not 

follow an F-distribution, and so on. 

There are two forms of stationarity: strict stationarity and its weaker form, both presented 

below. However, for the purpose of our empirical analysis, we refer to weakly stationarity 

or second order stationarity. 

2.1.2.1 Strictly stationary process 

According to Brooks (2008, p. 207), a strictly stationary process is one where, for any

1 2, ,..., Tt t t Z , any k Z and 1,2,...T   (T is an arbitrary positive integer and 1 2, ,..., Tt t t

is a collection of T positive integers) states that, 

                       
1 2 1 21 1, ,..., ( ,..., ) , ,..., ( ,..., )

T k k T kt t t T t t t TFy y y y y Fy y y y y
  

 .                            (4) 

Where F denotes the joint distribution function of the set of random variables. Thus, a 

time series is strictly stationary if the joint distribution of (
1 2
, ,...,

Tt t ty y y ) is identical to 

that of (
1 2

, ,...,
k k T kt t ty y y

  
) for all t . We can say that the probability of ty is the same as 

that for t ky  , for all values of k . In other words, a series is strictly stationary if the 

distribution of its values remains the same as the time progresses, implying that the 

probability that y falls within a particular interval is the same now as at any time in the 

                                                      
3
 

2R is the coefficient of determination. It indicates how well the data fit the proposed statistical model. 
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past or future (Brooks, 2008, p. 208). This is, however, a very strong condition, and a 

weaker version of stationarity is often assumed. 

2.1.2.2 A weak stationary process 

The weak stationarity implies that the time plot of data would show that the T  values 

fluctuate with constant variation around a constant level (Tsay, 2008, p. 23). A time series 

is said to be weakly stationary if for all 1,2,...,t   , it satisfies the following conditions: 

- the series has a constant mean ( ( )tE y  ),  

- constant variance (
2( )( )t tE y y      )  

- and constant autocovariance structure (
1 2 2 1 1 2( )( ) ,t t t tE y y t t       )  

where E  is the expectation operator. Autocovariance determines how y is linked to its 

previous values, where for a stationary series they depend only on the difference between 

1t  and 2t , so that the covariance between ty  and 1ty   is the same as between 1ty   and 2ty  , 

2ty   and 3ty   , and so on. If the first condition ( ( )tE y  ) is satisfied then the 

autocovariance is given by  

                     ( ( ))( ( )), 0,1,2,...s t t t s t sE y E y y E y s                                            (5) 

2.1.3 Autocorrelation and partial autocorrelation 

In identifying the stochastic process, we are interested in the connection between two 

random variables of a process at different points in time. One way to measure the linear 

dynamic of a series and determine the order of p and q is with the use of autocorrelation 

(acf) and partial autocorrelation function (pacf), as described below. To identify the most 

appropriate model, we used sample acf and sample pacf to check whether they are similar 

to theoretical properties of a stationary series. The second approach uses different 

information criteria and is explained in detail under the identification of ARMA models. 

2.1.3.1 Autocorrelation 

When normalising autocovariance by diving it by variance 2 , and assuming the above 

conditions, we obtain a correlation coefficient between times t and s , commonly denoted 

as s which can be expressed as 

                  
2 2

( ( ))( ( )) ( , )

( )( ) ( )

t t t s t s t t s s
s

t ot t s

E y E y y E y Cov y y

Var yE y E y




 

  



 
  

 
                             (6) 

Dividing autocovariance with variance puts the range of autocorrelation within the range 

of  1. By the definition, the autocorrelation at lag 0 is always 0 0  . If s  is plotted 

against 0,1,2,...s  a graph known as autocorrelation function (acf) is obtained (used to 

capture the linear dynamics of the data). Autocorrelation function is essentially a set of 

correlation coefficients between the series and lags of itself over time. In the above 
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equation (6), if s decreases to zero quickly the series is said to be stationary. If the series 

has a trend, s will decline toward zero slowly. If the series has a seasonal pattern, like in 

the hourly electricity data, s will be significantly different from zero at lag 24 (daily 

seasonal pattern), lag 168 (weekly seasonal pattern), etc. In the case of daily seasonality 

for electricity prices, this can be observed in Figure 6. 

 

2.1.3.2 Partial autocorelation 

The partial autocorrelation function (pacf) is the partial correlation of coefficients 

between different series and lags of itself over time. In other words, pacf measures the 

correlation between an observation k periods ago and the current observation, after 

controlling for observations at intermediate lags (all lags < k ), i.e. the correlation between

ty and t ky  , after removing the effects of 1 2 1, ,...,t k t k ty y y     . For example, the pacf for lag 

3 would measure the correlation between ty  and 3ty  , after controlling for the effects of 

1ty   and 2ty  (Brooks, 2008, p. 222). The coefficients of acf and pacf at lag 1 are always 

equal as there is no intermediate lag effect to eliminate; pacf is denoted as ss . For 

example, the pacf at lag 2 can be expressed as: 

                                                         
2

2 1
22 2

11

 








 

where 1 is the autocorrelation at lag 1 and 2 is the autocorrelation at lag 2. A more 

general form of pacf can be written as: 

                                                  
2

1

2

11

s s
ss

s

 











                                                           (7) 

2.2 Autoregressive model 

A model that depends on only previous values of itself is called an autoregressive model. 

In the time series literature, an autoregressive model of order 1 denoted as AR(1) is a 

model in which the dependent variable 𝑦𝑡 (in our case the price of electricity) depends 

only upon its previous value 𝑦𝑡−1 (explanatory variables) and an error term. The term 

‘autoregressive’ comes from the fact that 𝑦𝑡 is regressed on its lagged values. The basic 

first order autoregressive model, denoted as AR(1) can be written as: 

                                               1t t ty y                                                                (8) 

The variable 𝑦𝑡  is said to be autoregressive (or self regressive) because under certain 

assumptions it holds that:  

 1 1| .t t tE y y y     
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If  𝑦𝑡 has a statistically significant lag 1 autocorrelation coefficient, it indicates that the 

lagged observation 1ty   might be useful in forecasting 𝑦𝑡 . A more general pth-order 

autoregression or autoregressive AR(p) process can be expressed as: 

                               1 1 2 2 ...t t t p t p ty y y y                                                      (9) 

Where y is the series and p is the order of the process, representing the number of 

parameters that need to be estimated.   is a constant, while 1... p  are the parameters of 

the model that describe the effects of a unit change between consecutive observations 

( 1ty   on ty , 2ty  on 1ty   and so on). t  is a white noise disturbance term, assumed to be 

normally and identically distributed with no significant autocorrelation, a zero mean and a 

variance constant over time 
2( (0, ))t N  . For the purposes of this thesis, the above 

model (6) can be written more compactly using sigma notation as 

                                                    1

1

p

t i t t

i

y y  



   .                                                  (10) 

2.3 Moving average model 

Another class of time series models used in finance for predicting future values is known 

as the moving-average process. Similarly to the AR model, the effect is to represent ty  as 

a function of its own past values. Like in the AR model, let t  be a white noise process 

with 
2( (0, ))t N  . The series, denoted as MA(q), can be expressed as 

                                 1 1 2 2 ...t t t t q t qy                                                      (11) 

Where   is a constant, ...t t q    are white noise disturbance terms sometimes also labelled 

as innovations in the model. q  represents the order of the moving-average mode, while 

1... q  are moving-average parameters that need to be estimated in order to describe the 

effects of past errors. Using sigma notation, it can be expressed as  

                                                    
1

q

t t i t i

i

y     



   .                                                 (12) 

Put simply, MA is a linear combination of white noise processes, where ty  depends on 

the current and previous values of a white noise disturbance terms or, in other words, that 

ty  is a weighted average of the current and past shocks ...t t i   . 

2.4 Transforming non-stationary data 

As stationarity is a desired property of an estimated AR and MA models, the time series 

often requires us to transform a non-stationary series into a stationary one. This can be 

achieved using a logarithmic transformation, square root transformation or by de-trending 
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by differencing a series into a stationary one. Time series with seasonal components like 

the electricity price data can also be de-seasonalised using additive decomposition to 

remove the seasonal components and thus to smooth a series into a stationary one. With 

regards to the electricity time series, ty  is a sum of three independent components, 

namely: the seasonal tS , the trend tT , and the stochastic irregular tI , where each of three 

components have the same units as the original series: 

                                t t t ty S T I   .                                                           (13) 

A seasonally adjusted series can be obtained by estimating and removing the seasonal 

effect from the original time series. By denoting the estimated seasonal component as ˆ
tS , 

the seasonally adjusted series can then be expressed as: 

                                              ˆ
t t t t tSA y S T I    .                                                      (14) 

The difference between the original and the deseasonalised series can be observed by 

comparing Figures 6 (original series) and 9 (daily and weekly deseasonalised series). 

2.5 Testing the stationarity of a series 

Because of the reasons for stationarity mentioned earlier, we have to perform a series of 

statistical tests to examine whether a unit root
4
 is present in the autoregressive model. The 

pioneering work on testing for stationarity was developed by David Dickey and Wayne 

Fuller in 1979. Their test checks the null hypothesis that 1  (the process contains a unit 

root) against the one-sided alternative that <1  (the process is stationary) in the (AR) 

model such as: 

                                                      1t t ty y   .                                                          (15) 

Therefore the test hypotheses are: 

0H : series contains a unit root 

1H : series is stationary. 

According to Brooks (2008, p. 327), for the ease of computation and interpretation, the 

following regression is often employed instead of (15): 

                                                       1   t t ty y    .                                                     (16) 

So that a test of 1  is equivalent to a test of 0  (since 1   ). The test statistic 

for the original DF test is then defined as: 

                                                      
4
 A process has a unit root if 1 is a root of the process's characteristic equation.  
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^

^ ^

( )

DF

SE





                                                           (17) 

Where 
^

SE denotes the estimate of the standard error. The Dickey-Fuller test statistic does 

not follow the usual t -distribution under the null hypotheses but rather follows a non-

normal distribution, where critical values were derived from simulations in various 

experiments. When the test statistic is more negative than the critical value, the null 

hypotheses is rejected in favour of the alternative hypotheses that the series is stationary. 

The test is however valid only if t  is white noise. According to Brooks (2008, p. 328), 

‘ t is assumed not to be autocorrelated, but would be so if there was autocorrelation in the 

dependent variable of the regression ty which has not been modelled. If this is the case, 

the test would be “oversized”, meaning that the true size of the test would be higher than 

the nominal size used. The solution is to “augment” the test using p lags of the dependent 

variable.’ The augmented Dickey-Fuller (ADF) test can now be expressed as: 

                                             1

1

  
p

t t i t i t

i

y y y   



                                               (18) 

ADF is still conducted on  , and relies on the same critical values from the DF tables. 

Another type of unit root test was developed by Peter Phillips and Pierre Perron, known 

as the Phillips-Perron test. Like the ADF test, it incorporates an automatic correction to 

the DF test to allow for autocorrelated residuals. Both the ADF test and PP test, however, 

suffer for the same limitation, i.e. their power is low if the process is stationary, but with a 

root close to non-stationarity boundary. In other words, the process is rejected as non-

stationary when the coefficient under hypotheses   is close to 1, especially when the 

sample size is small. To overcome this problem of ADF and PP tests for which the data 

appear as stationary by default if there is little information in the sample, there is another 

unit root test developed by Kwiatkowski et al., known as the KPSS test. This test is not 

discussed here, as our sample size is big enough; however, we employ it in the empirical 

part to compare its results with the ADF and PP procedures, to see if the same 

conclusions on stationarity is obtained. The test statistics employ an opposite null 

hypotheses to the above tests, with the null hypotheses as the stationary process. 

Specifically: 

0H : series is stationary 

1H : series contains a unit root. 

2.6 Autoregressive moving average model 

The application of above AR(p) and MA(q) models can sometimes become quite 

complicated because a high order model with many parameters may be needed to 
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adequately describe the dynamic structure of the data. To alleviate this difficulty, George 

E.P. Box and Gwilyn Jenkins suggested combining the AR(p) and MA(q) models in order 

to construct an autoregressive moving-average (ARMA(p,q)) model. Such modifications 

with a relatively low values of p and q have proven quite successful in forecasting models 

(Greene, 2003, p. 610). According to Tsay (2002, p. 48), an ARMA model combines the 

concepts of AR and MA models into a compact form, so that the number of parameters 

used is kept small. The joint model can be written as 

             1 1 2 2 1 1 2 2... ...t t t p t p t t q t q ty y y y                         ,                (19) 

or more compactly as 

                                       
1 1

p q

t i t i i t i t

i i

y y     

 

     .                                          (20) 

According to Greene (2003, p. 619), ‘there is no underlying economic theory that sates 

why a compact ARMA(p,q) representation should adequately describe the movement of a 

given economic time series. Nonetheless, as a methodology for building forecasting 

models, this set of tools and its empirical counterpart have proved as good as and even 

superior to much more elaborate specifications.’ The first to approach to estimate and 

forecast such ARMA models in a systematic manner were Box and Jenkins (1976). Their 

approach to modelling a stochastic process is considered to be practical and pragmatic, 

and consists of the following steps: 

1. Identification 

2. Estimation 

3. Model Checking 

4. Forecasting 

Figure 2 shows the flowchart of how we obtain our ARMA model. In the first step, we 

identify a subset of models based on the observed data. In the second step, after the model 

is identified, we estimate its parameters, and in the third step validate the model using 

various diagnostic checks by applying statistical hypothesis testing. If the chosen model is 

validated, we continue with forecasting; otherwise, we return to Step 1 and refine or 

identify a new model. 

2.6.1 Identification of an ARMA model 

The first step involves determining the order of the ARMA(p,q) model to acquire the 

dynamic features of the series. In application, the order of p  and q of an ARMA model is 

unknown and must be specified empirically. This is referred to as ‘the order 

determination of ARMA models’. Two general methods exist for determining the orders 

of p  and q . The first method uses graph plots of acf and pacf, while the second approach 

uses different information criteria functions. 
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Figure 2. Flowchart of the ARMA methodology 

 

Source: R. C. Garcia, J. Contreras, M. Akeren & J. B. C. Garcia, A GARCH Forecasting model to Predict 

Day-Ahead Electricity Prices, 2005, Figure 1. 

 

2.6.1.1 Using acf and pacf to identify an ARMA model 

By plotting the sample acf and pacf, we use the graphical representations to determine the 

most appropriate specification. However, to identify the appropriate model, the data first 

have to be stationary. Therefore, we have to first transform the data to obtain stationarity 

by taking logs, first differences or both, as well as identify the trend and seasonality and 

deseasonalise the entire series accordingly. Once the stationarity, trend and seasonality 

have been addressed, we need to identify the order of ARMA lags by using plots of acf 

and pacf and comparing them to their theoretical characteristics of a stationary series. In 

the table below, we list the defining characteristics of AR, MA and ARMA process: 

Table 1. Defining characteristics of AR, MA and ARMA process 

Model ACF PACF 

AR(p) geometrically decaying acf 
number of non-zero points 

of pacf = AR order (p) 

MA(q) 
Number of non-zero points 

of acf = MA order (q) 
geometrically decaying pacf 

ARMA(p,q) geometrically decaying acf geometrically decaying pacf 

Source: C. Brooks, Introductory econometrics for finance, 2008, p.225. 
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2.6.1.2 Information criteria for ARMA model identification 

Modelling time series with real data often delivers ‘messy’ acf and pacf plots, and thus 

consequently complicates its identification. One way to overcome this subjectivity in the 

interpretation of acf and pacf is to use information criteria functions. According to Brooks 

(2008, p. 232), information criteria embody two factors: residual sum of squares (RSS
 
)
5
, 

and some penalty for the loss of degrees of freedom from adding extra parameters. 

Therefore, adding a new variable or an additional lag to a model will have two competing 

effects on the information criteria: the RSS will fall but value of the penalty term will 

increase. The object is to choose the number of parameters that minimises the value of the 

information criteria. Thus, adding an extra lag will reduce the value of the criteria only if 

the fall in RSS is sufficient to more than outweigh the increased value of the penalty term 

(Brooks, 2008, p. 232). Many different information criteria are used to determine the 

order of the model required, which vary according to how strict the penalty term is. For 

the purpose of this thesis, we employ Akaike’s information criterion (AIC) and Schwarz’s 

Bayesian information criterion. According to Brooks (2008, p. 233), these are defined 

algebraically as: 

                                                 2 2
ln( )

k
AIC

T
                                                     (21) 

                                             2ln( ) ln
k

SBIC T
T

                                                (22) 

Where 2  is the residual variance (equivalent to RSS divided by the number of 

observationsT ), 1k p q    is the total number of parameters estimated and T  is the 

sample size. When using the criteria based on the estimated parameters, the criterion with 

the lowest parameters should be used. In this thesis, we compute the AIC and SBIC using 

Eviews software, which derives the test statistic from the log-likelihood function based on 

maximum likelihood estimation.
6
 The corresponding Eviews formulae are: 
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T


 


    

It is difficult to determine which of the above statistics delivers better results, as SBIC is 

strongly consistent but inefficient as it embodies a much stricter penalty term than AIC, 

                                                      
5
 RSS is the measure of discrepancy between the data and the estimated model. 

6
 see estimation of GARCH models 
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while AIC is not consistent, but is generally more efficient. In other words, SBIC 

asymptotically delivers the correct model order, while AIC generally delivers too large 

models. To correctly determine the correct models, we further check the acf and pacf of 

the selected models by ‘trial and error’ of different models identified by AIC and SBIC, 

using the Ljung Box statistics described in the next section. 

2.6.2 Estimation and diagnostic checking of ARMA models 

The second step in building an ARMA model involves the estimation of parameters of the 

chosen model, generally by non-linear least squares or by maximum likelihood. In the 

third step, whether the model specified and estimated is adequate is determined. 

Specifically, the fitted model must be examined by applying various diagnostics checks to 

determine whether or not the model applicably represents the data. If the model is 

adequate, residuals should behave as white noise; if non-stationarity or any other 

inadequacies are found, the whole process of identification, estimation and diagnostic 

checking must be repeated with a different model. To test the residual diagnostics, a 

Ljung Box test with a joint hypothesis that all m  lags of autocorrelations s are all 

simultaneously equal to zero is employed. In other words, that the data are white noise 

and thus independently distributed is verified. The Ljung Box test statistic is defined as: 

                                                   
1

( 2)
m

s
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s

Q T T
T s






 


                                                  

(25) 

Where T is the sample size, s


is the sample autocorrelation at lag s, and m  is the 

number of lags being tested. The test follows a 
2 distribution with m  degrees of 

freedom, most commonly at a 5% or 1% significance level. Therefore, the test statistic 

that joint autocorrelations are zero is rejected at the significance value   if the 

calculated test statistic LBQ  exceeds its critical value
2

1 ,m  . 

2.6.3 Forecasting with ARMA models 

Forecasts for an ARMA model are generated by calculating the conditional expectations 

for separate AR(p) and MA(q) processes and then combining those results into a general 

ARMA(p,q) forecast. The general formula for an ARMA(p,q) forecast at time t  for s  

steps ahead, denoted as ,t sf  is defined as 

                                           , , 1

1 1

p q

t s i t s j t s j

i j

f f    

 

                                               (26) 

Where , , 0t s t sf y s  for AR(p) process and , , 0t s t sf s   for MA(q) process, while 

0t s    when 0s  . The forecast produced by an ARMA(p,q) process depends on past 

and current values of the response as well as the past and current values of the residuals. 
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In the next section, we briefly discuss the model representations for an AR(p) and MA(q) 

processes. 

2.6.3.1 Forecasting representation of the autoregressive process 

To present an AR forecast, suppose that we estimate the following AR(2) model: 

                                           1 1 2 2t t t ty y y                                                           (27) 

According to Brooks (2008, pp. 249-251), parameter constancy over time is assumed. If 

this relationship holds for the series y at time t , it is also assumed to hold for y at time 

1t  , 2t  ,…, so that 1 can be added to each of the time subscripts in (27) for one period 

ahead, 2 for two periods ahead and so on, to arrive at the following: 

                                            1 1 2 1 1t t t ty y y                                                          (28) 

                                          2 1 1 2 2t t t ty y y                                                         (29) 

Assuming all the information up to and including that at time t  is known, we can produce 

forecasts for y  at time 1t  , 2t  ,…, t s . As past observations up to time t  are known, 

we can produce a forecast by applying the conditional expectations operator to equation 

(28). We also set the expected residual term to zero ( 1( ) 0tE    ), as it is unknown at 

time t . In the case of the one-step-ahead forecast, this can be expressed as: 

                           ,1 1| 1 2 1 1( ) ( | )t t t t t t tf E y E y y                                            (30) 

Where 1|( )t tE y  is a short-hand notation for 1|( | )t t tE y   . Deriving further, we obtain the 

one-step-ahead forecast as expressed in (32): 

                             ,1 1| 1 2 1( ) ( | ) ( | )t t t t tf E y E y t E y t                                           (31)                                              

,1 1| 1 2 1( )t t t t tf E y y y                                                              (32) 

Applying the same process by using conditional expectations for (29) and using the 

expected forecast for 1ty   we can produce a two-step-ahead forecast: 

                                ,2 2| 1 1 2 2( ) ( | )t t t t t t tf E y E y y                                           (33) 

                           ,2 2| 1 1 2( ) ( | ) ( | )t t t t tf E y E y t E y t                                           (34) 

                                ,2 2| 1 ,1 2( )t t t t tf E y f y                                                                              

(35) Continuing with the same procedure, we can generate forecasts for 3, 4,…, s-steps 

ahead: 

                               ,3 3| 1 2 2 1 3( ) ( | )t t t t t t tf E y E y y                                          (36) 

                              ,3 3| 1 2 2 1( ) ( | ) ( | )t t t t tf E y E y t E y t                                          (37) 
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                    ,3 3| 1 ,2 2 ,1( )t t t t tf E y f f                                                            (38) 

The general formula for an AR(2) process forecast with s -steps ahead can thus be 

expressed as: 

                                           , 1 , 1 2 , 2t s t s t sf f f                                                                           

(40) 

2.6.3.2 Forecasting representation of the moving average process 

Unlike an autoregressive process, a moving average has a memory only of length q , and 

this limits its forecast horizon (Brooks, 2008, p. 249). To illustrate this, suppose that an 

MA(2) model has been estimated: 

                                          1 1 2 2t t t ty                                                               (41) 

Again, assuming constancy over time, equation (41) will hold for times 1t  , 2t  , and 

so on.  

                                         1 1 2 1 1t t t ty                                                               (42) 

                                          2 1 1 2 2t t t ty                                                              (43) 

Using conditional expectations for equation (42) and setting 1( ) 0tE    , we can generate 

the forecast for one step ahead: 

                                ,1 1| 1 2 1 1( ) ( | )t t t t t t tf E y E                                             (44) 

                               ,1 1| 1 2 1( )t t t t tf E y                                                               (45) 

Similarly, applying the same rules we can produce the forecast for two steps ahead: 

                              ,2 2| 1 1 2 2( ) ( | )t t t t t t tf E y E                                            (46) 

                                  ,2 2| 2( )t t t tf E y                                                                                        

(47) 

Like 1t  , 2t   is also unknown at time t , thus like for 1t  , the conditional expectation 

for 2t  is also set to zero ( 2( ) 0tE    ). Similarly, for 3, 4,…, s-steps ahead, the forecasts 

are given by: 

                              ,3 3| 1 2 2 1 3( ) ( | )t t t t t t tf E y E                                           (48) 

                                ,3 3|( )t t tf E y                                                                             (49) 

                       ,t sf   3s                                                                                 (50)  

As the MA(2) model has a memory of only two periods, all forecasts three or more steps 

ahead collapse to the intercept. ARMA(p,q) forecasts can now easily be obtained in the 
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same way by applying the rules for AR(p) and MA(q) parts, and using the general 

formula (26). 

2.6.3.3 Checking whether the forecast is accurate 

Determining the accuracy of a forecast is important because it clarifies the difference 

between the actual future value and its forecast. In practice, forecasts are mostly 

generated for the entire forecasted period; therefore, these values are compared to their 

actual values, while the difference between them is aggregated. To test the adequacy of 

forecasts, we use different statistical tests, which measure the forecast error, i.e. a 

difference between the actual value and the predicted forecast value. Brooks (2008, p. 251) 

argues that the forecast error defined in this way will be positive if the forecast was too 

low and vice versa. Therefore, we cannot simply sum the forecast errors, because the 

positive and negative errors will cancel each one out. For this, we square them or take 

their absolute values. For the purpose of the thesis, we use the following measures of the 

forecast error, mean square error (MSE), defined as: 

                                 
1
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,

1

1
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( 1)

T

t s t s

t T

MSE y f
T T




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                                         (51) 

Where 1T  represents the first forecasted observation and all other variables are defined as 

before. MSE provides a quadratic loss function making it more useful when large forecast 

errors are disproportionately more serious than smaller forecast errors (Brooks, 2008, p. 

252). The next statistic, the mean absolute error (MAE) measures the mean absolute 

forecast error. 

                                
1
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The mean absolute percentage error (MAPE) corrects for the problem of asymmetry 

between the actual and forecast values as well as interpreting the forecast error in 

percentages, which bounds it from below with 0. 
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3 CONDITIONALLY HETEROSCEDASTIC MODELS 

3.1 Characteristics of volatility  

Thus far, all the models discussed have been linear in their parameters. Linear models 

such as ARMA(p,q) have many qualities, namely that their properties are very well 

understood, that models that appear non-linear, can be transformed linearly, etc. However, 

according to Brooks (2008, p. 380), it is unlikely that many relationships in finance are 

intrinsically non-linear. Brooks (2008, p. 380) lists the limitations of the linear time series 
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models such as ARMA(p,q), which are unable to explain the following significant 

characteristics common to economic and financial data, including: 

- Leptokurtosis – predisposition for financial data to exhibit distributions with fat tails and 

high peaks at the mean. 

- Volatility clustering – volatility may be high for certain periods and low for other 

periods, meaning volatility appears in bursts, so that large returns are expected to follow 

large returns, and small returns are expected to follow small returns. A likely 

interpretation for this phenomenon is that the arrival of information regarding price 

changes appears in bunches rather than being uniformly allocated over time. 

- Leverage affects – the tendency for volatility to rise more following a large price fall 

than following a price rise of the same magnitude. 

Numerous kinds of non-linear models exist, though only a few are applicable for 

modelling financial data. For the purpose of our analysis, we model processes based on 

the ARCH model and its modifications, such as GARCH, GJR-GARCH and EGARCH, 

which suggest a form of heteroscedasticity in which the variance of the disturbance 

depends on the size of the preceding disturbance as well as allow the behaviour of a series 

to follow different processes at different points in time.  

3.2 ARCH model 

The first model that offers a systematic context for modelling volatility is the ARCH 

model proposed by Engle in 1982. ARCH stands for autoregressive conditional 

heteroscedasticity. Linear ARMA models, as expressed in (20), rely on the basic 

assumption that the errors are homoscedastic, namely that the errors are normally 

distributed with zero mean and constant variance. However, this assumption does not 

hold for many of the financial time series data, where the variance of the errors is 

heteroscedastic, i.e. the errors are not constant. This is reflected in the flaws of the 

standard error estimates, when data is modelled as homoscedastic, but the errors are 

heteroscedastic. To overcome this, it is reasonable to propose a process that does not 

assume a constant variance and describes how the variance of the errors evolves. To 

understand how the ARCH model works, we have to first define the conditional variance 

of the error term. The conditional variance of t , denoted as 2  is expressed as: 

              2 2

1 2 1 2var( | , ,...) ( ( )) | , ,...t t t t t t t tE E          
                            (54) 

Where it is assumed that ( ) 0tE   , so that 

     2 2

1 2 1 2var( | , ,...) | , ,...t t t t t t tE         
                                   (55) 

The above equation states that the conditional variance of a zero mean normally 

distributed variable t  is equal to the conditional expected value of the square of t . 
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Under the ARCH model, the autocorrelation in volatility is processed by allowing the 

conditional variance of the error term
2

t , to be time dependent on the previous value of 

the squared error (Brooks, 2008, pp. 387-388). The ARCH(q) model thus takes the 

following form: 

                                             
2 2
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t i t i

i

    



                                                         (56) 

where 0 is the long-term average value and i  the parameter that measures the 

information about volatility during the previous periods and needs to be estimated using 

the maximum likelihood method. For the purpose of our analysis, we model the 

conditionally heteroscedastic models under the conditional mean equation in the form of 

an ARMA(p,q) model. Therefore, by jointly taking the conditional mean model of an 

ARMA(p,q) process to estimate the conditional mean and ARCH(q) equation to estimate 

the conditional variance, we model the conditional heteroscedasticity by augmenting a 

dynamic equation to a time series model to govern the time evolution of the conditional 

variance of the shock (Tsay, 2003, p. 81). An example of such mixed general 

ARMA(p,q)-ARCH(q) can be expressed as: 

                  
1 1

p q

t i t i i t i t
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y y     

 

                
2(0, )t tN                            (57) 
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

                                                        (58) 

3.3 GARCH model 

ARCH models have seldom been used in practice, due to their limitations. Various 

difficulties include ambiguity in deciding the value of q , the number of lags of squared 

residuals in the processes, as well as the fact that it often requires a large value of q , 

resulting in a large model that is not parsimonious. Another problem is that non-

negativity constraints might be violated, meaning that by expanding the model to include 

more parameters, the more likely it will be that some of them will have negative 

estimated values. To overcome these problems, Bollerslev (1986) proposed an extended 

ARCH(q) model, known as GARCH or the generalized ARCH model, which enables the 

conditional variance to be dependent on its own previous lags. The GARCH (1,1) is 

written as: 

                                        
2 2 2

0 1 1 1t t t                                                        (59) 

where 
2

t  is the conditional variance, as it is a one-period-ahead estimate for the variance 

obtained on any of the relevant past information, meaning that the current fitted variance 

is a weighted function of long-term average (dependent on 0 ), information about 
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volatility during the previous period (
2

1 1t   ) and the fitted variance from the model 

during the previous period (
2

1t  ). The conditional variance in (55) is changing, although 

the unconditional variance of t  is constant and given by: 

                                          0

1

var( )
1 ( )

t




 


 
                                                  (60)                                                                                                

To obtain a stationary model, the condition 1 1    must hold. If 1 1   , it would 

mean that the unconditional variance of t is not defined, and would be known as non-

stationary in variance, with some highly undesirable features, especially in forecasting 

variance with such a model. An extended and more general form of GARCH(p,q), in 

which the current conditional variance depends on q lags of the squared error and p lags 

of the conditional variance is given by: 

                              
2 2 2
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     

 

                                                (61) 

However, in most cases a GARCH(1,1) model is sufficient to capture the volatility 

clustering in the data. According to Brooks (2008, p. 394), rarely is any higher order 

GARCH model estimated or even entertained in the academic finance literature. Thus, for 

modelling electricity spot prices, we process a mixed ARMA(p,q)-GARCH(1,1) model.  

3.4 GJR-GARCH model 

The GJR-GARCH model is an extension to the GARCH model proposed by Glosten et al. 

(1993) that allows for corrections in the symmetric response of volatility to positive and 

negative shocks in a GARCH model. This occurs as the conditional variance in (61) is a 

function of the magnitude of the lagged residuals and not their signs, a consequence of 

squaring the lagged residual in (61). According to Brooks (2008, p. 404), it has been 

argued that a negative shock to a financial time series is likely to cause volatility to rise 

by more than a positive shock of the same magnitude; this is known as the leverage effect. 

Conditional variance in a GJR model is given by: 

                                              
2 2 2 2

0 1 1 1 1 1t t t t tL                                                            

(62) 

 Where 1 1tL    if 1 0t   , 

              1 0tL    otherwise.          

Everything else equal to the GARCH model, the additional term 
2

1 1t tL    measures 

asymmetric responses, where for a leverage effect we would see 0  . 
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3.5 EGARCH model 

Similar to the GJR-GARCH model, the exponential GARCH (EGARCH) model 

proposed by Nelson (1991) also allows for possible asymmetric effects between price 

increases and falls.  According to Brooks (2008, p. 406), there are different way to 

express the conditional variance of the EGARCH equation. One of possible specification 

of EGARCH(1,1) is given by: 

              12 2 1
1

2 2

1 1

2
ln ln( )

tt
t t

t t
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 
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  

                             (63) 

The model is similar to the GARCH model, although it is distinct from it in several ways. 

First, it uses logged conditional variance, which relaxes the positiveness constraint of the 

model coefficients, hence there is no need to artificially impose non negativity constraints 

on the model coefficients. Second, the   coefficient enables to measure for asymmetric 

responses, where if the relationship between the volatility and movements is negative,   

will also be negative. 

3.6 Estimation of conditional heteroscedastic models 

Unlike in the conditional mean models, GARCH models are not in linear form, thus the 

common OLS estimation cannot be applied for the estimation of GARCH parameters. 

The main reason for this is that OLS minimises the residual sum of squares, which 

depend only on the parameters in the conditional mean equation, and not the conditional 

variance; therefore, RSS is no longer appropriate (Brooks, 2008, p. 395). The most widely 

used method for GARCH models is the maximum likelihood approach. In general, when 

we estimate the parameters using maximum likelihood, we form a likelihood function that 

is essentially a joint probability density function for a given time series; however, instead 

of thinking of it as a function of the data given the set of parameters, 1 2( , ,... | )nf y y y  , 

we think of the likelihood function as a function of the parameters given the data, 

1 2( | , ,... )nLF y y y (Reider, 2009, p. 7). The method works by finding the values of the 

parameters by maximizing the probability of obtaining the observed data from the actual 

data or, in other words, by finding the most likely values of the parameters given the 

actual data. The purpose is to form a log likelihood function and to estimate the 

parameters by first differentiating the LLF with respect to the parameters and further 

equating the partial derivatives to zero. An example of LLF for the basic ARMA(1,1)-

GARCH(1,1) is given as: 

                         1 1 1 1t t t ty y         ,     
2(0, )t tN                                  (64)                                   

2 2 2

0 1 1 1t t t                                                                        (65) 
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(66) 

In the above model, we can derive the maximum likelihood estimators, by first 

differentiating the LLF with respect to the following parameters  , 1 , 1  and the initial 

volatility 
2

t . After the first derivatives are obtained, we can further derive the 

maximum likelihood estimators, generally denoted by placing hats above the parameters 

(


). 

3.7 Volatility forecasting with conditional heteroscedastic models 

GARCH type models are basically models for forecasting volatility where the variance 

rate follows a mean reverting process and the variance rate estimated at the end of the 

observation 1t  is processed for the succeeding observation t . In order to estimate the 

forecasts of electricity spot prices, we consider a hybrid model composed of an ARMA 

and GARCH equations to account for a number of different characteristics of the 

electricity time series at the same time. According to Brooks (2008, p. 411), a GARCH 

model is essentially used to describe movements in the conditional variance of the error 

term t  that may not seem very useful; however, it is possible to show that 

                                       1 2 1 2var( | , ,...) var( | , ,...)t t t t t ty y y                                                 

(67)          

meaning that the conditional variance of ty , given its previous values, is the same as the 

conditional variance of t , given its previous values. Thus modelling
2

t , gives forecasts 

for the variance of ty  as well. Forecasts of a GARCH model can be obtained using 

methods similar to those of an ARMA model. Consider the following example by Brooks 

(2008, pp. 412-414) for an ARMA(1,1)-GARCH(1,1) model:           

                                                     1 1 1 1t t t ty y                                                                  

(68) 

                                                     
2 2 2

0 1 1 1t t t                                                                     

(69) 

A forecast can be produced by generating forecasts of 
2

1 |T T   , 
2

2 |T T   ,…, 
2 |T s T   , 

where T denotes all information available up to and including that of observation T , 

for which the conditional variance is given in equation (69). Adding one, two and three to 

each of the time subscripts of the original equation, we can write the one-, two- and three-

steps ahead equations as: 
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2 2 2

1 0 1T T T                                                                      

(70) 

                                                     
2 2 2

2 0 1 1 1T T T                                                                

(71) 

                                                     
2 2 2

3 0 1 2 2T T T                                                               

(72) 

Note that 
2

1T  , 
2

2T  , 
2

3T  are not the one-, two-, three-step ahead-forecasts, as these 

values are not known. To produce forecasts, we have to take their conditional 

expectations. In the case of the one step-ahead forecast, we take the conditional 

expectation of (70) and denote the forecast as 
2

1,

f

T . The one-step-ahead forecast 
2

1,

f

T is 

made at time T , where all the values on the right-hand side of (70) are known.  

                                                        
2 2 2

1, 0 1

f

T T T                                                                    

(73) 

The two-steps-ahead forecast is different, as we do not know the actual observation of 

1T  ; however, we can model it by using the one-step forecast to construct it. This can be 

done by first rewriting (71) as 

                                               
2 2 2

2, 0 1 1 1( | )f

T T T TE                                                          

(74) 

Where 
2

1( | )T TE    is the expectation of 
2

1T  , made at time T . We can find it by using 

the expression for the variance of the residual t . The model assumes that the series t  

has a zero mean, so that the variance can be written as: 

                                              2 2var( ) ( ( )) ( )t t tE E E        .                                               

(75) 

Thus, the conditional variance of t  is 
2

t , so that 

                                                          
2 2| ( )t T tE                                                                          

(76) 

Turning equation (75) around and sending it one period forward to apply it to the problem, 

we obtain: 

                                                          
2 2

1 1( | )T T TE                                                                    

(77) 
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However, 
2

1T   is not known at time T , so that it is replaced by the forecast (
2

1,

f

T ) for it, 

so that (74) becomes: 

                                                       
2 2

2, 0 1 1,( )f f

T T                                                                   

(78) 

Similarly, we can produce the three-steps-ahead forecast: 

                                             
2 2 2

3, 0 1 2 2( )f

T T T TE                                                     

(79) 

                                             
2 2

3, 0 1 2,( )f f

T T                                                               (80) 

                                             
2 2

3, 0 1 0 1 1,( ) ( )f f

T T            
 

                                   

(81) 

                                  
2 22

3, 0 0 1 1 1,( ) ( )f f

T T                                              (82) 

Further any s-step-ahead forecast would be produced using the following equation 

                                
2 2

1
1 1

, 0 1 1 1,

1

( ) ( )
s

f i s f

s T T

i

      


 



                                        (83) 

For any value of 2s  . When the s-step-ahead forecast 
2

,

f

s T  goes towards the 

unconditional variance as s  goes to infinity, we can see that the variance forecast 

approaches the unconditional variance of t . From the s-step-ahead forecast, we see that 

in the second term of the equation (83), 1( )  determines how quickly the forecast 

converges to the unconditional variance. In other words, when 1 1   , the final term 

in (83) becomes progressively smaller as s  increases. In the GARCH model, the variance 

rate exhibits mean reversion with a reversion level of the unconditional variance of t and 

a reversion rate of 11 ( )   . Therefore, the forecast of the future variance rate 

converges towards the unconditional variance of t as we look further ahead. In the 

opposite case, when 1 1   , the weight given to the long-term average variance is 

negative and the process would be termed ‘mean fleeing’ instead of ‘mean reverting’ 

(Hull, 2012, pp. 509-510).  

4 MODELLING 

In this chapter, we apply the proposed models to the Slovenian BSP Southpool hourly 

spot prices using different models, including a pure ARMA(p,q) model, ARMA(p,q)-

GARCH(p,q), ARMA-EGARCH(p,q) and ARMA(p,q)-GJR(p,q). 
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4.1 Descriptive statistics and description of data 

The dataset used to analyse the hypotheses consists of 2160 hourly observations from 

January 1
st
 to March 31

st
 2014, collected from the BSP Southpool exchange. The 

electricity spot price hourly time series for the first quarter of 2014 can be seen in Figure 

3.  

 

 

 

 

 

 

 

 

 

 

Figure 3. 2014 Q1 BSP Southpool hourly dataset 
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From the above plot, it is clearly evident that the series exhibits a strong presence of daily 

and weekly seasonality. Volatility clustering is also present, though it appears at first 

sight that the volatility occurring in bursts is also correlated with seasonality. We further 

check the descriptive statistics of the series presented in Table 2. 

 

Table 2. Descriptive statistics of 2014 Q1 BSP Southpool hourly dataset 

 

Statistic Value 

Observations 2160 

Mean 37.30 

Median 35.69 

Maximum 98.85 

Minimum 0.50 

Standard Deviation 15.81 

Skewness 0.2555 

Kurtosis 2.7424 

 

The above table shows high volatility in the series with a mean price 35.695 and a 

maximum and minimum of 98.5 and 0.5 respectively. Expecting that the data is not 

normally distributed, we nevertheless have to verify how far the distribution of the dataset 

from the normal distribution and stationarity is. Therefore, we plot the normalized 

histogram of the dataset in Figure 4. 

 

Figure 4. Normalized histogram of 2014 Q1 BSP Southpool hourly dataset 
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From the normalized histogram, it seems that the distribution of the dataset is close to 

normal, with some spikes above the normal distribution for prices just below the median 

price and an outlier at the right tail of the distribution. Almost normal distribution of the 

dataset is confirmed by the two parameters for comparison of a certain probability 

distribution with the normal distribution, i.e. skewness and kurtosis. Skewness measures 

the asymmetry of the distribution of a certain variable around its mean, while kurtosis 

measures its peakness. In order for the probability distribution to be normally distributed, 

the values of skewness and kurtosis should be 0 and 3, respectively. Table 2 shows that 

skewness and kurtosis of our dataset are 0.255 and 2.7424, which is very close to their 

theoretical values. Following the normalized histogram, we also plot the QQ-plot
7
 in 

Figure 5. 

Figure 5. QQ-plot of 2014 Q1 BSP Southpool hourly dataset 

 

                                                      
7
 The QQ plot is a plot of quantiles of two distributions, in our case of the dataset and the normal 

distribution, where the pattern of points compare the distributions; the distributions are similar when its 
points lie approximately on the line y x  of the dataset against the normal distribution. 
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The QQ-plot of the dataset also confirms that the data is close to normal distribution, with 

some diverging points from normality at the tails. 

4.2. Stationarity and unit root tests of the dataset 

Following the reasons for the stationarity of a series and problems when using non-

stationary data as explained in the previous chapter, we have to test the series for 

stationarity. We test the data with an ADF test, PP test and KPSS test. Recall that the 

hypotheses for the ADF test and PP test are: 

0H : series contains a unit root 

1H : series is stationary. 

While KPSS test employs an opposite null hypotheses; 

0H : series is stationary 

1H : series contains a unit root. 

The results of the test with test statistics are given in Table 3. Note that the critical value 

at 1% significance is -3.43 for ADF test and PP test, and 0.739 for KPSS test. Moreover, 

in the case of the ADF test and PP test, the test is performed with up to 14 lags of the 

dependent variable in the regression equation with a constant but no trend in the test 

equation. 
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Table 3. Unit root tests for 2014 Q1 BSP Southpool hourly dataset 

 

Data ADF t-statistic PP t-statistic KPSS t-statistic 

2014 Q1 

Hourly 

dataset 

Reject (at 

1%) 

-10.84874 Reject (at 

1%) 

-9.345637 Not reject 

(at 1%) 

1.461686 

 

The ADF test and PP test reject the hypothesis that the series contains a unit root, while 

the KPSS test does not reject its null hypotheses that the series is stationary. Therefore, all 

the tests confirm that the series is not non-stationary. 

4.3 Identification and seasonal adjustment of the data 

Apart from observing the time plot of the series, seasonal patterns and the time-varying 

nature of volatility can also be spotted with the plots of the acf and pacf. Using graphical 

representations of the acf and pacf, we analyse the most appropriate specification and 

deseasonalise the series according to the seasonal patterns in the data. In the first step, we 

plot the original price series over time,and plot the acf and pacf in Figures 6 and 7. 

From the plots, it is evident that both series are not dying away quickly, which is a clear 

sign of non-stationarity in the series. Also highly significant are the correlations after 

every 24
th

 lag, a consequence of the daily cyclical effect. Therefore, to smooth the series 

in order to obtain a stationary series, we further deseasonalise the series for the 24- and 

168-hour periodic seasonal effects; 168-hour correlations can be seen in Figure 3, where 

we observe a cyclical pattern after every 7
th

 day or every 168
th

 observation. By applying a 

stable seasonal filter, we now deseasonalise for the 24-hour daily and 168-hour weekly 

periodicity using additive decomposition. A deseasonalised series for the first quarter of 

2014 is plotted in Figure 8, while the acf and pacf of the deseasonalised series are shown 

in Figure 9 and Figure 10. 
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Figure 6. ACF of the original 2014 Q1 BSP Southpool hourly dataset 

 

 

 

Figure 7. PACF of the original 2014 Q1 BSP Southpool hourly dataset 
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Figure 8. 2014 Q1 Deseasonalised BSP Southpool hourly dataset 

 

Observing the deseasonalised plot, we can observe that a significant portion of intraday 

volatility has been removed, though the cyclical daily and weekly pattern remain clearly 

visible.  

 

Figure 9. ACF of hourly 2014 Q1 series after seasonal adjustment for daily and weekly 

periodicity. 
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Figure 10. pacf of hourly 2014 Q1 series after seasonal adjustment for daily and weekly 

periodicity. 

 

 

 

Comparing the original and the deseasonalised acf, we can see that the latter becomes 

much smoother after accounting for the seasonal components, and we can now describe 

the series as weakly or shortly stationary. Since short stationarity has been obtained, we 

can proceed further with the next stage and identify the order of the ARMA process. 

4.4 ARMA MODEL 

4.4.1 IDENTIFICATION OF THE ORDER OF ARMA MODEL 

The patterns exhibited in the graphical plots of the deseasonalised series are difficult to 

interpret in terms of the identification of the order of the model. To overcome this, we use 

AIC and SBIC information criteria to decide which of the models is most appropriate. 

Tables 4 and 5 show all values of the AIC and SBIC information criteria, calculated for 

lags until p=10 and q=10. 
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Table 4. AIC values for 2014 Q1 deseasonalised series 

 

 

 

Table 5. SBIC values for 2014 Q1 deseasonalised series 

 

 

 

The lowest value for both information criteria is present in the form of the ARMA(9,10) 

model; however, the model contains a number of estimated parameters that are not 

significant, specifically in their t-statistics and p-values. Following this, we estimate 10 

models with the lowest value of AIC and SBIC information criteria and test the 

significance of their parameters as well as perform the Ljung Box test for autocorrelation 

in the residuals in order to see which of them fits best. Table 6 lists 11 ARMA models 

chosen by AIC and SBIC method. 

 

 

 

 

 

p/q 0 1 2 3 4 5 6 7 8 9 10

0 7.745746 6.787062 6.348398 6.121744 5.974413 5.865674 5.830440 5.777634 5.738522 5.728824 5.705874

1 5.675287 5.674213 5.672703 5.668230 5.667633 5.667264 5.668122 5.665164 5.666023 5.663960 5.664776

2 5.674343 5.670569 5.671087 5.665971 5.666892 5.667597 5.668486 5.666180 5.659706 5.665530 5.638587

3 5.673482 5.671305 5.672201 5.667299 5.668023 5.648197 5.647695 5.618199 5.648582 5.653909 5.660582

4 5.668611 5.667125 5.667975 5.594047 5.665013 5.647099 5.656629 5.656653 5.648728 5.645299 5.628273

5 5.668172 5.668331 5.669075 5.572252 5.623629 5.623674 5.552644 5.553544 5.522620 5.656302 5.656751

6 5.668712 5.668361 5.647405 5.644519 5.623516 5.541378 5.525299 5.632296 5.632171 5.641282 5.546572

7 5.669777 5.669239 5.674032 5.645229 5.649163 5.557373 5.518977 5.519412 5.604326 5.548807 5.636628

8 5.666200 5.666873 5.618987 5.619753 5.611901 5.608168 5.588489 5.589645 5.572991 5.529207 5.563538

9 5.665957 5.648479 5.620183 5.610490 5.609266 5.610177 5.589177 5.589339 5.487263 5.579350 5.472083

10 5.663260 5.647888 5.642490 5.562756 5.561541 5.521632 5.508551 5.502867 5.579352 5.528957 5.522209

p/q 0 1 2 3 4 5 6 7 8 9 10

0 7.748375 6.792319 6.356284 6.132258 5.987556 5.881446 5.848841 5.798663 5.762180 5.755111 5.734789

1 5.680547 5.682102 5.683222 5.681378 5.683411 5.685671 5.689159 5.688830 5.692319 5.692886 5.696331

2 5.682235 5.681091 5.684240 5.681755 5.685306 5.688642 5.692162 5.692486 5.688643 5.697098 5.672785

3 5.684009 5.684463 5.687991 5.685720 5.689076 5.671882 5.674011 5.647147 5.680162 5.688121 5.697425

4 5.681775 5.682921 5.686403 5.615108 5.688707 5.673426 5.685588 5.688244 5.682952 5.682156 5.667763

5 5.683974 5.686767 5.690144 5.595955 5.649966 5.652645 5.584248 5.587782 5.559492 5.695807 5.698890

6 5.687155 5.689439 5.671117 5.670866 5.652497 5.572994 5.559550 5.669181 5.671691 5.683437 5.591362

7 5.690862 5.692961 5.657317 5.674222 5.680791 5.591637 5.555876 5.558947 5.646497 5.593613 5.684070

8 5.689931 5.693240 5.647991 5.651393 5.646178 5.645082 5.628040 5.631832 5.617815 5.576667 5.613635

9 5.692334 5.677494 5.651835 5.644780 5.646194 5.649742 5.631380 5.634180 5.534742 5.629467 5.524837

10 5.692285 5.679552 5.676793 5.599698 5.601122 5.563851 5.553409 5.550364 5.629487 5.581731 5.577621
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Table 6. ARMA models with the lowest values of AIC and SBIC information criteria. 

 

(p,q) AIC (p,q) SBIC 

(9,10) 5.472083 (9,10) 5.524837 

(9,8) 5.487263 (9,8) 5.534742 

(10,7) 5.502867 (10,7) 5.550364 

(10,6) 5.508551 (10,6) 5.553409 

(7,6) 5.518977 (7,6) 5.555876 

(7,7) 5.519412 (7,7) 5.558947 

(10,5) 5.521632 (5,8) 5.559492 

(10,10) 5.522209 (6,6) 5.559550 

(5,8) 5.522620 (10,5) 5.563851 

(6,6) 5.525299 (6,5) 5.572994 

                                             

We can see that the AIC and SBIC choose similar models, with only one different model 

among the 10 models with the lowest information criteria value. We further applied 

diagnostic checks and significance tests to the estimated parameters of all of the above 

models, and determined that the models that fits best is ARMA(10,7), which we now 

examine in more detail. 

4.4.2 Estimation of parameters, diagnostic checking and interpretation for ARMA 

model 

Table 7 shows the values of estimated coefficients for the ARMA(10,7) process. We can 

see that all coefficients for both AR and MA processes are statistically significant, except 

for 10 , whose t-Statistic is lower than 2. 

Table 7. Estimated parameters for ARMA(10,7) process 

Parameter Estimated value Standard error t-Statistic p-values 

     37.78478 1.866763 20.24081 0.0000 

1  1.327056 0.098965 13.40938 0.0000 

2  0.213967 0.073947 2.893510 0.0038 

3  0.195112 0.063667 3.064549 0.0022 

4  -0.936265 0.080320 -11.65669 0.0000 

5  -0.301336 0.048197 -6.252170 0.0000 

6  -0.221218 0.066335 -3.334884 0.0009 
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                                                                                                                           (table continues) 

 

Figure 11 shows the graphical representation of residuals in ARMA(10,7) process, which 

seem to be stationary and volatility clustering. 

 

Figure 11. Residuals of ARMA(10,7) process 

 

 

(continues)     

7  1.322129 0.081605 16.20149 0.0000 

8  -0.702259 0.079892 -8.790122 0.0000 

9  0.092411 0.040207 2.298375 0.0216 

10  0.002755 0.030568 0.090116 0.9282 

1  -0.419419 0.096667 -4.338808 0.0000 

2  -0.679852 0.032005 -21.24218 0.0000 

3  -0.717403 0.044178 -16.23881 0.0000 

4  0.325928 0.102121 3.191593 0.0014 

5  0.648687 0.043518 14.90620 0.0000 

6  0.710277 0.034432 20.62855 0.0000 

7  -0.693227 0.091602 -7.567841 0.0000 
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We also plot the acf and pacf of ARMA(10,7) process in Figures 12 and 13. 

Figure 12. acf of residuals for ARMA(10,7) process 

 

 

 

Figure 13. pacf of residuals for ARMA(10,7) process 
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In both acf and pacf, we can observe a significant correlation at every 24
th

 lag, confirming 

that the model still exhibits daily seasonality and some intra-day correlation in the 

residuals. This suggests that variance is close to non-stationary and indicates that a further 

GARCH process may fit better. To verify for the autocorrelations in the residuals of the 

ARMA(10,7) process, we perform a Ljung Box test for residuals in a given series, testing 

the acf at 5% significance. Tables 8 and 9 show the values of the Ljung Box test for 

residuals and squared residuals of ARMA(10,7) and the relevant critical values from a 
2  

distribution for different degrees of freedom (lags of acf) at the 5% level. 

 

Table 8. Ljung Box test for residuals of ARMA(10,7) model 

 

 

 

 

 

 

 

Table 9. Ljung Box test for squared residuals of ARMA(10,7) model 

 

Lag AC coefficient Q-statistics Critical value (at 5%) 

1 0.261 147.12 3.841 

5 0.032 214.63              11.070 

 

As can be observed from Figure 12, the Ljung Box test confirms that the series is not 

autocorrelated till the 16
th

 lag. After the 17
th

 lag, the Ljung Box test statistic exceeds its 

critical value. We can also construct a 95% confidence interval for the acf to verify this 

by:  

1
1.96 0.04217

T
    

where T =2160 in our case. In the acf and pacf plots, confidence intervals are represented 

by the grey lines. In Figure 12, the autocorrelation coefficient at the 17
th

 lag clearly 

exceeds this line as do many subsequent lags; therefore, we can conclude that the series is 

not autocorrelated until the 16
th

 lag. The squared residuals, however, do not exhibit this, 

as the Ljung Box test for squared residuals indicates that its test statistic exceeds the 

Lag AC coefficient 

coefficoefficient 
Q-statistics Critical value (at 5%) 

5 0.007     0.3964 11.070 

10 -0.015     7.2906 18.307 

15 0.021 21.497 24.996 

16 

 
0.029 23.336 26.296 

17 -0.089 40.403 27.587 
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critical value for the autocorrelation of residuals at the very first lag, suggesting that 

modelling variance with a GARCH model might yield better results. In the final step of 

examining ARMA(10,7) we plot the QQ-plot for residuals to check whether they follow 

normal distribution. 

 

Figure 14. QQ-plot for residuals of ARMA(10,7) 

 

 

From Figure 14, we can observe that the residuals of ARMA(10,7) are a bit far from 

being normally distributed at the tails of the distribution. Therefore, we can conclude that 

univariate time series model of ARMA(10,7) is shortly stationary in its levels and non-

stationary in variance, while the distribution of its residuals is not normally distributed, 

with the tails of its distribution diverging from normality. To correct for this, we now 

propose different mixed models, composed of the conditional mean equation based on 

ARMA specifications and conditional variance equation based on GARCH(p,q) models 

and its extensions (EGARCH, GJR-GARCH) to account for volatility.  

4.5 Mixed ARMA-GARCH model 

Using ARMA(10,7) for the conditional mean equation, we propose a dynamic ARMA-

GARCH model with one lag for the squared residual and one lag of the conditional 

variance in the conditional variance equation. Therefore, by modelling a mixed 
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ARMA(10,7)-GARCH(1,1) process, we estimate the following parameters, as presented 

in Table 10. 

 

 

Table 10. Estimated parameters for ARMA(10,7)-GARCH(1,1) process 

 

Parameter Estimated value Standard 

error 

t-Statistic p-values 

  40.59962 1.499416 27.07696 0.0000 

1      1.096624 0.021539 50.91433 0.0000 

2      0.625435 0.033521 18.65789 0.0000 

3     -0.448887 0.012505       -35.8975 0.0000 

4      0.003725 0.027525  0.135339 0.8923 

5     -0.886535 0.001898       -466.999 0.0000 

6      0.358661 0.026963  13.30184 0.0000 

7      0.326159 0.020724  15.73789 0.0000 

8     -0.105484 0.025954       -4.06431 0.0000 

9     -0.069618 0.018058       -3.85527 0.0001 

10      0.084468 0.014688  5.750996 0.0000 

1     -0.111232 0.014123       -7.87606 0.0000 

2  -0.91004 0.009399       -96.8207 0.0000 

3    -0.274217 0.011847       -23.1466 0.0000 

4    -0.215398 0.002377       -90.6257 0.0000 

5  0.68586 0.000448        1530.617 0.0000 

6    0.333586 0.007515        44.39117 0.0000 

7   -0.130202 0.001048       -124.263 0.0000 

0  2.154021 0.15540 13.86117 0.0000 

1  

 

0.311638 0.021765 14.31841 0.0000 

  
0.582584 0.01558 37.39314 0.0000 

 

 

Table 10 indicates that ARMA lags are statistically significant with an even higher 

significance than in the pure ARMA(10,7) process, except at lag 4. The coefficients of the 

variance equation are also highly statistically significant, while the unconditional variance 

is constant as the sum of the two lagged coefficients in GARCH is smaller than one. 

Recall that if this sum would be larger than one, it would mean that the model is non-

stationary in variance, and there would be no theoretical motivation for its existence. The 

following figures plot the residuals of ARMA(10,7)-GARCH(1,1) and its sample acf and 

pacf. 
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Figure 15. Residuals of ARMA(10,7)-GARCH(1,1) process 

 

 

Figure 16. ACF for residuals of ARMA(10,7)-GARCH(1,1) process with confidence 

intervals 
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Figure 17. PACF for residuals of ARMA(10,7)-GARCH(1,1) process with confidence 

intervals 

 

 

 

Figure 18. acf for squared residuals of ARMA(10,7)-GARCH(1,1) process with 

confidence intervals 
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From the above plots of autocorrelations, we can observe that most of the values for 

residuals are within the 95% confidence interval, specifically at the early lags of 

correlations. However, the 24-hour periodicity is still significantly present in the series. 

We further formally check the presence of autocorrealtions in the model with a Ljung 

Box test for residuals and squared residuals. 

 

Table 11. Ljung Box test for residuals of ARMA(10,7)-GARCH(1,1) model 

 

 

 

 

 

 

 

Table 12. Ljung Box test for squared residuals of ARMA(10,7)-GARCH(1,1) model 

 

Lag AC coefficient Q-statistics Critical value (at 

5%) 
5 -0.036 7.1097 11.070 
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Lag AC coefficient Q-statistics Critical value (at 

5%) 5 -0.035 4.8590 11.070 

10 -0.001 7.2649 18.307 

15 0.022 9.5067 24.996 

20 

 

-0.018 12.314 

 

31.410 

 23 0.021 34.431 35.172 

24 0.422 422.62 36.415 
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10 0.006 11.351 18.307 

12 0.049 21.720 21.026 

 

The Ljung Box test confirms that the series is not autocorrelated till lag 23 for residuals 

and lag 11 for squared residuals, indicating that the mixed ARMA-GARCH model deals 

much better with heteroscedasticity than the pure ARMA model does.  

Before we begin forecasting with the ARMA(10,7)-GARCH(1,1) model, we examine the 

ARMA(10,7)-GJR(1,1) and ARMA(10,7)-EGARCH(1,1) models. 

4.6 Mixed ARMA-GJR-GARCH model 

Using the extension to account for non-negativity constraints that may be violated by the 

basic GARCH model, we now propose a mixed GJR-GARCH model with an additional 

term in the variance equation to account for possible asymmetries. Estimated coefficients 

of the mixed ARMA(10,7)-GJR-GARCH(1,1) process are presented in Table 13. 

Estimated values of the ARMA(10,7)-GJR-GARCH(1,1) process indicate that all 

coefficients except 9  are highly significant in the mean equation, while in the conditional 

variance equation, both GARCH terms and constant 0 are statistically significant, but 

this does not hold for the additional asymmetry term  . Consequently, we cannot make 

safe conclusions about the leverage effect from ARMA(10,7)-GJR-GARCH(1,1) and 

hopefully the ARMA(10,7)-EGARCH(1,1) specification will give better results regarding 

the movements after negative and positive shocks within the model. Nevertheless, we 

check the plot of residuals in the model, the structure of autocorrelations and perform 

Ljung Box test for stationarity, as the next chapter compares forecasts obtained from the 

ARMA-GJR-GARCH model to forecasts of the ARMA-GARCH and ARMA-EGARCH 

models. 

 

Table 13. Estimated parameters for ARMA(10,7)-GJR-GARCH(1,1) process 

 

Parameter Estimated value Standard error t-Statistic p-values 

        40.14858 1.757081 22.84959 0.0000 

1  0.930169 0.003615 257.3283 0.0000 

2  0.825624 0.008014 103.0251 0.0000 

3  -0.334890 0.003233 -103.5850 0.0000 

4  0.100585 0.019253 5.224275 0.0000 

5  -1.329264 0.021089 -63.03203 0.0000 

6  0.317025 0.002998 105.7294 0.0000 
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7  0.719204 0.010402 69.13857 0.0000 

8  -0.310001 0.007799 -39.75125 0.0000 

9  0.028900 0.022082 1.308742 0.1906 

10  0.035794 0.014683 2.437785 0.0148 

1  0.054053 0.001098 49.22262 0.0000 

2  -0.930841 0.001302 -714.9833 0.0000 

3  -0.464889 0.001155 -402.4625 0.0000 

4  -0.458388 0.001363 -336.2986 0.0000 

5  0.929887 0.000890 1045.393 0.0000 

6  0.608079 0.000536 1134.744 0.0000 

7  -0.334809 0.000173 -1931.167 0.0000 

0  1.810502 0.133997 13.51152 0.0000 

1  

 

0.266554 0.023139 11.51961 0.0000 

  -0.03196 0.033791 -0.945662 0.0000 

  0.639017 0.014916 42.84055 0.3443 

 

 

Figure 19. Residuals of ARMA(10,7)-GJR-GARCH(1,1) process 
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Figure 20. acf for residuals of ARMA(10,7)-GJR-GARCH(1,1) process with confidence 

intervals 

 

 

Figure 21. pacf for residuals of ARMA(10,7)-GJR-GARCH(1,1) process with confidence 

intervals 
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Figure 22. acf for squared residuals of ARMA(10,7)-GJR-GARCH(1,1) process with 

confidence intervals 

 

 

Similarly to the ARMA-GARCH specification, the 24-hour seasonal effect is still 

strongly present in the series, while the autocorrelations at the early lags of correlations 

are mostly within bounds. We test this with the Ljung Box test for residuals and squared 

residuals.  

 

Table 14. Ljung Box test for residuals of ARMA(10,7)-GJR-GARCH(1,1) model 

 

 

 

 

 

 

 

Table 15. Ljung Box test for squared residuals of ARMA(10,7)-GJR-GARCH(1,1) model 
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Lag AC coefficient Q-statistics Critical value (at 5%) 

5 -0.016  3.6622 11.070 

10 -0.013 9.8303 18.307 

15  0.030       19.087 24.996 

21 

 

0.002       29.905 

 

32.671 

 22 -0.076 

 

      42.377 

 

 

 

36.781 
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Lag AC coefficient Q-statistics Critical value (at 5%) 

5 -0.034     7.3574 11.070 

12 0.040 19.519 21.026 

13 0.072 30.589 22.362 

 

The Ljung Box test shows that the series is not autocorrelated until lag 21 for residuals 

and lag 12 for squared residuals, indicating that the mixed ARMA-GJR-GARCH process 

behaves very similarly to the ARMA-GARCH model. This suggests that the models will 

give similar forecasts and that different extensions to the GARCH model, apart from the 

‘corrections’ for the restrictions and limitations in the basic GARCH model, do not fit the 

data much better than the original GARCH specification. 

4.7 ARMA-EGARCH model 

We now estimate another extension of GARCH that also accounts for asymmetric 

responses, i.e. the exponential GARCH model. Estimated coefficients of the mixed 

ARMA(10,7)-EGARCH(1,1) process are presented in Table 16. 

The results of the ARMA(10,7)-EGARCH(1,1) process show that all of the coefficients in 

both equations are highly statistically significant. Furthermore, the positive estimate of 

the asymmetry term   in the conditional variance equation suggests that a positive shock 

implies a lower next-period conditional variance than negative shocks: in other words, 

that an increasing electricity price leads to a lower next-period volatility than when the 

electricity price decreases by the same amount. The following figures plot the residuals of 

ARMA(10,7)-EGARCH(1,1) and its sample acf and pacf. 

 

Table 16. Estimated parameters for ARMA(10,7)-GJR-GARCH(1,1) process 

 

Parameter Estimated value Standard error t-Statistic p-values 

    39.32399 2.143386 18.34667 0.0000 

1  0.620480 0.018406 33.71069 0.0000 

2  -0.362532 0.020585 -17.61185 0.0000 

3  0.408554 0.015724 25.98318 0.0000 

4  0.876752 0.015160 57.83302 0.0000 

5  -0.470137 0.019688 -23.87914 0.0000 

6  0.617195 0.022704 27.18394 0.0000 

7  -0.558247 0.016729 -33.37071 0.0000 

8        -0.307416 0.016327 -18.82826 0.0000 

9  0.046578 0.014812 3.144661 0.0017 
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10  0.107896 0.015628 6.904030 0.0000 

1  0.508747 0.001244 408.8592 0.0000 

2  0.828208 0.002088 396.5658 0.0000 

3  0.444119 0.000678 654.5801 0.0000 

4  -0.561020 0.003247 -172.7951 0.0000 

5  -0.246137 0.001696 -145.1643 0.0000 

6  -0.893253 0.002109 -423.5668 0.0000 

7  -0.433196 0.001648 -262.8495 0.0000 

  0.600119 

 
0.070767 8.480177 0.0000 

  

 

0.574302 

 
0.028872 19.89165 0.0000 

  0.131857 

 
0.025791 5.112610 0.0000 

  0.659645 

 
0.039072 16.88299 0.0000 

 

 

 

 

 

 

Figure 23. Residuals of ARMA(10,7)-EGARCH(1,1) process 
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Figure 24. acf for residuals of ARMA(10,7)-EGARCH(1,1) process with confidence 

intervals 

 

 

Figure 25. pacf for residuals of ARMA(10,7)-EGARCH(1,1) process with confidence 

intervals 
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Figure 26. acf for squared residuals of ARMA(10,7)-EGARCH(1,1) process with 

confidence intervals 

 

 

Unlike in the ARMA-GARCH and ARMA-GJR-GARCH models, the sample acf and 

pacf for residuals in the ARMA-EGARCH model show that the residuals at their early 
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lags are not within the 95% confidence interval, indicating that the series is autocorrelated 

in its levels. However, the autocorrelations of the squared residuals seem not to be 

autocorrelated until the 11
th

 lag. We further formally check the presence of 

autocorrelations of the model with a Ljung Box test for residuals and squared residuals. 

 

Table 17. Ljung Box test for residuals of ARMA(10,7)-EGARCH(1,1) model 

 

 

 

 

 

Table 18. Ljung Box test for squared residuals of ARMA(10,7)-EGARCH(1,1) model 

 

Lag AC coeffcient Q-statistics Critical value (at 5%) 

5 0.017     1.9487 11.070 

11 0.037 15.134 19.675 

12 0.064 23.991 21.026 

 

The Ljung Box test confirms observations from the plots that the residuals of the series 

are autocorrelated in its levels, and that variances are not autocorrelated within 11 lags. 

In the next section, we forecast the proposed ARMA-GARCH, ARMA-GJR-GARCH and 

ARMA-EGARCH models and compare their results. 

4.8 Forecasting 

In our empirical analysis, we forecast the proposed ARMA-GARCH model and its two 

extensions for electricity prices using two different methods, i.e. the dynamic forecast and 

static forecast. The dynamic forecast uses rolling step-ahead forecasts for the lagged 

dependent variables, whereas the static forecast uses the actual values for the lagged 

dependent variables. With the dynamic forecast, we produce a series of rolling step-ahead 

forecasts to predict day-ahead electricity prices for the interval period of the 24-hour 

observations for three weekdays of 17
th

, 21
st
 and 25

th
 March 2014. With the static forecast, 

we produce a sequence of one-step-ahead forecasts, which roll the sample forward one 

observation after each forecast and use the actual rather than forecasted values for lagged 

dependent variables. Using this method, we can produce a longer out-of-sample forecast 

as the dynamic forecast quickly converges upon the long-term unconditional mean value. 

Thus, using the static method, we forecast the interval period of 408 hourly observations 

Lag AC coefficient Q-statistics Critical value (at 5%) 

1 -0.024     1.2389 3.841 

2 -0.069 11.455 5.991 
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from March 15
th

 to March 31
st
. These forecasts are generated using the sample of 1752 

estimated observations from January 1
st
 to March 14

th
 in order to produce the forecasts 

from the estimated parameters for the remaining 408 sample observations. Following this, 

we evaluate the accuracy of the generated out of sample forecasts by comparing their 

values with the actual values in the series. 

The following figures are graphical representation of performance for the dynamic 

forecasts of the deseasonalised electricity prices produced by ARMA(10-7)-GARCH(1,1), 

ARMA(10-7)-GJR-GARCH(1,1) and ARMA(10-7)-EGARCH(1,1) models for March 

17
th

, 21
st
 and 25

th. 

 

Figure 27. Forecast of ARMA(10,7)-GARCH(1,1) vs. the deseasonalised series for 

March 17th 2014 

 

 

 

 

 

 

 

Figure 28. Forecast of ARMA(10,7)-GJR-GARCH(1,1) vs. the deseasonalised series for 

March 17th 2014 
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Figure 29. Forecast of ARMA(10,7)-EGARCH(1,1) vs. the deseasonalised series for 

March 17th 2014 

 

 

Figure 30. Forecast of ARMA(10,7)-GARCH(1,1) vs. the deseasonalised series for 

March 21st 2014 
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Figure 31. Forecast of ARMA(10,7)-GJR-GARCH(1,1) vs. the deseasonalised series for 

March 21st 2014 

 

 

Figure 32. Forecast of ARMA(10,7)-EGARCH(1,1) vs. the deseasonalised series for 

March 21st 2014 
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Figure 33. Forecast of ARMA(10,7)-GARCH(1,1) vs. the deseasonalised series for 

March 25th 2014 

 

 

Figure 34. Forecast of ARMA(10,7)-GJR-GARCH(1,1) vs. the deseasonalised series for 

March 25th 2014 
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Figure 35. Forecast of ARMA(10,7)-EGARCH(1,1) vs. the deseasonalised series for 

March 25th 2014 

 

 

 

Examining the above forecasts for three different days, we can see that the dynamic 

forecasts of all three models closely follow the deseasonalised prices; however, the 

forecasts cannot explain all of the price jumps, particularly at the final parts of the 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ri

ce
 (
€

/M
W

h
) 

Hour 

Deseasonalised Price Forecast of ARMA(10,7)-GJR-GARCH(1,1)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ri

ce
 (
€

/M
W

h
) 

Hour 

Deseasonalised Price Forecast of ARMA(10,7)-EGARCH(1,1)



62 

  

forecasted horizon, perhaps indicating that the forecasts are more accurate for shorter 

forecasting periods. In the following tables, we compare the average forecasted errors of 

the proposed models. 

 

Table 19. Errors of the forecasted models for March 17
th

, 21
st
 and 25

th 

 

Date ARMA(10,7)-

GARCH(1,1) 

ARMA(10,7)-GJR-

GARCH(1,1) 

ARMA(10,7)-

EGARCH(1,1) 

March 17
th
              15.98% 15.49% 14.38% 

March 21
st
 9.78% 9.43%   7.63% 

March 25
th
  7.17% 7.27%   6.62% 

 

 

The above table indicates that the ARMA(10,7)-EGARCH(1,1) process outperforms both 

ARMA(10,7)-GARCH(1,1) and ARMA(10,7)-GJR-GARCH(1,1) models. It also shows 

that all models perform better when there is less volatility in the series. Tables 20, 21 and 

22 show the estimated forecasts and their errors for each of the forecasted observations 

during March 17
th

, 21
st
 and 25

th
. 

 

Table 20. Forecasted values and errors of the forecasted models for March 17
th

. 

 

Hour 
Deseasonalised 

price 

ARMA(10-7)-

GARCH(1,1) 

ARMA(10-7)-GJR-

GARCH(1,1) 

ARMA(10-7)-

EGARCH(1,1) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) 

00–01 41.59 39.77 4.37 39.48 5.07 37.85 8.99 

01–02 40.76 40.50 0.62 39.89 2.12 37.47 8.06 

02–03 40.64 41.03 0.95 40.76 0.29 37.64 7.38 

03–04 40.72 40.21 1.24 39.55 2.87 36.81 9.60 

04–05 41.64 39.23 5.78 38.67 7.13 36.43 12.50 

05–06 41.50 38.84 6.42 38.51 7.21 37.75 9.05 

06–07 40.13 37.98 5.37 37.98 5.36 38.32 4.52 

07–08 36.02 37.07 2.91 36.46 1.20 37.20 3.26 

08–09 39.26 36.60 6.77 36.33 7.45 36.99 5.77 

09–10 39.48 36.31 8.02 36.35 7.94 38.05 3.61 

(table continues) 

(continue) 

10–11 39.61 35.80 9.62 35.54 10.29 38.26 3.42 
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11–12 37.35 35.69 4.45 35.11 5.98 37.92 1.53 

12–13 37.91 35.94 5.20 36.05 4.91 38.12 0.56 

13–14 37.60 36.23 3.66 36.13 3.93 37.96 0.95 

14–15 37.57 36.58 2.63 36.01 4.15 37.68 0.29 

15–16 37.60 37.35 0.65 37.05 1.45 38.53 2.47 

16–17 35.94 38.15 6.16 38.28 6.53 39.04 8.64 

17–18 32.35 38.90 20.25 38.30 18.39 37.91 17.18 

18–19 33.34 39.72 19.15 39.12 17.35 37.48 12.44 

19–20 49.19 40.63 17.41 40.55 17.57 38.73 21.28 

20–21 41.40 41.28 0.31 40.98 1.03 39.10 5.56 

21–22 38.83 41.81 7.68 40.89 5.30 38.19 1.65 

22–23 35.48 42.23 19.05 41.93 18.20 38.09 7.36 

23–24 37.48 42.47 13.32 42.31 12.89 38.53 2.80 

 

Table 21. Forecasted values and errors of the forecasted models for March 21
st
. 

 

Hour 
Deseasonalised 

price 

ARMA(10-7)-

GARCH(1,1) 

ARMA(10-7)-GJR-

GARCH(1,1) 

ARMA(10-7)-

EGARCH(1,1) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) 

00–01 20.16 22.67 12.43 22.09 9.56 21.03 4.32 

01–02 21.25 24.26 14.13 23.65 11.28 21.84 2.78 

02–03 20.84 25.28 21.32 24.90 19.47 22.65 8.69 

03–04 23.47 25.18 7.29 24.58 4.73 23.09 1.61 

04–05 22.19 24.80 11.75 24.19 9.01 23.53 6.01 

05–06 26.61 25.38 4.61 25.09 5.71 25.76 3.20 

06–07 30.42 24.81 18.41 24.66 18.93 26.37 13.29 

07–08 29.34 24.50 16.48 23.97 18.29 26.00 11.38 

08–09 27.90 24.52 12.13 24.21 13.25 26.56 4.82 

09–10 26.45 24.74 6.46 24.86 6.01 28.33 7.11 

10–11 26.10 24.35 6.70 23.99 8.06 28.36 8.65 

11–12 25.71 24.71 3.90 24.34 5.33 28.47 10.71 

12–13 26.04 25.17 3.36 25.34 2.70 29.03 11.46 

13–14 28.87 25.71 10.93 25.77 10.73 29.44 1.98 

14–15 29.53 26.13 11.53 25.65 13.15 29.25 0.95 

(table continues) 

(continue) 

15–16 33.55 27.27 18.73 27.34 18.50 30.46 9.23 
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16–17 29.64 28.12 5.14 28.40 4.19 30.79 3.86 

17–18 28.42 29.13 2.50 28.82 1.38 30.07 5.79 

18–19 29.40 30.09 2.34 29.79 1.30 30.05 2.21 

19–20 39.20 31.38 19.94 31.76 18.99 31.69 19.16 

20–21 34.55 32.16 6.92 32.04 7.27 31.63 8.45 

21–22 36.21 33.11 8.55 32.59 9.99 30.97 14.48 

22–23 35.37 33.81 4.41 33.87 4.23 31.24 11.67 

23–24 36.24 34.51 4.75 34.71 4.21 32.10 11.42 

 

Table 22. Forecasted values and errors of the forecasted models for March 25
th

. 

 

Hour 
Deseasonalised 

price 

ARMA(10-7)-

GARCH(1,1) 

ARMA(10-7)-GJR-

GARCH(1,1) 

ARMA(10-7)-

EGARCH(1,1) 

Forecast 
Error 

(%) 
Forecast 

Error 

(%) 
Forecast Error (%) 

00–01 41.59 39.77 4.37 39.48 5.07 37.85 8.99 

01–02 40.76 40.50 0.62 39.89 2.12 37.47 8.06 

02–03 40.64 41.03 0.95 40.76 0.29 37.64 7.38 

03–04 40.72 40.21 1.24 39.55 2.87 36.81 9.60 

04–05 41.64 39.23 5.78 38.67 7.13 36.43 12.50 

05–06 41.50 38.84 6.42 38.51 7.21 37.75 9.05 

06–07 40.13 37.98 5.37 37.98 5.36 38.32 4.52 

07–08 36.02 37.07 2.91 36.46 1.20 37.20 3.26 

08–09 39.26 36.60 6.77 36.33 7.45 36.99 5.77 

09–10 39.48 36.31 8.02 36.35 7.94 38.05 3.61 

10–11 39.61 35.80 9.62 35.54 10.29 38.26 3.42 

11–12 37.35 35.69 4.45 35.11 5.98 37.92 1.53 

12–13 37.91 35.94 5.20 36.05 4.91 38.12 0.56 

13–14 37.60 36.23 3.66 36.13 3.93 37.96 0.95 

14–15 37.57 36.58 2.63 36.01 4.15 37.68 0.29 

15–16 37.60 37.35 0.65 37.05 1.45 38.53 2.47 

16–17 35.94 38.15 6.16 38.28 6.53 39.04 8.64 

17–18 32.35 38.90 20.25 38.30 18.39 37.91 17.18 

18–19 33.34 39.72 19.15 39.12 17.35 37.48 12.44 

19–20 49.19 40.63 17.41 40.55 17.57 38.73 21.28 

(table continues) 

(continue) 

20–21 41.40 41.28 0.31 40.98 1.03 39.10 5.56 
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21–22 38.83 41.81 7.68 40.89 5.30 38.19 1.65 

22–23 35.48 42.23 19.05 41.93 18.20 38.09 7.36 

23–24 37.48 42.47 13.32 42.31 12.89 38.53 2.80 

 

We now model the static forecasts for all of the proposed models for the period of March 

15
th

 to March 31
st
. The following plots show the dynamics of the static forecasts. 

 

Figure 36. Forecast of ARMA(10-7)-GARCH(1,1) process vs. the deseasonalised price 

series for the period of March 15–31. 

 

 

 

 

 

 

 

 

Figure 37. Forecast of ARMA(10-7)-GJR-GARCH(1,1) process vs. the deseasonalised 

price series for the period of March 15–31. 
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Figure 38. Forecast of ARMA(10-7)-EGARCH(1,1) process vs. the deseasonalised price 

series for the period of March 15–31. 

 

 

Observing the above figures, the plots of forecasts indicate that the generated forecasts 

are quite close to the actual deseasonalised values. Since these are a series of multiple 

rolling step-ahead forecasts for the conditional variance, they show much more volatility 
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than for the dynamic procedure. The forecasts lag a little behind their actual values; 

however, all the models seem to accurately follow volatility peaks. In Table 19, we 

compare the forecasted errors of the three models for the whole forecasted period. 

 

Table 23. Errors of the forecasted models for the period of March 15–31. 

 

 
ARMA(10-7)-

GARCH(1,1) 

ARMA(10-7)-GJR-

GARCH(1,1) 

ARMA(10-7)-

EGARCH(1,1) 

MSE 4.886387 4.807610 5.005760 

MAE 3.070867 3.089950 3.100570 

MAPE 10.67626 10.81107 10.40616 

 

Table 23 indicates a reasonably good performance of all models with a mean average 

percentage error of around 10% for all forecasts. In the following section, we examine the 

errors during the shorter 24-hour static forecast periods and compare forecasted prices to 

the actual deseasonalised prices hour-by-hour during a period of lower prices and 

volatility (March 19
th

) and a period of higher volatility (March 24
th

). Tables 24 and 25 

show the errors during these two periods. 

 

Table 24. Errors of the forecasted models during the period of lower volatility on March 

19 

 

Hour 
Deseasonalised 

price 

ARMA(10-7)-

GARCH(1,1) 

ARMA(10-7)-GJR-

GARCH(1,1) 

ARMA(10-7)-

EGARCH(1,1) 

Forecast 
Error 

(%) 
Forecast 

Error 

(%) 
Forecast Error (%) 

00–01 23.19 29.44 26.98 28.86 24.46 28.24 21.80 

01–02 22.93 24.46 6.70 24.61 7.32 23.06 0.59 

02–03 22.00 25.17 14.44 25.15 14.32 23.16 5.27 

03–04 22.94 22.31 2.72 22.08 3.75 21.83 4.84 

04–05 23.68 23.86 0.77 23.80 0.50 23.86 0.74 

05–06 26.49 24.26 8.44 24.38 8.00 25.81 2.58 

06–07 28.24 26.24 7.09 26.18 7.31 27.14 3.91 

07–08 24.04 27.02 12.42 26.81 11.56 28.20 17.33 

(table continues) 

(continue) 

08–09 24.14 23.51 2.63 23.98 0.69 24.50 1.49 
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09–10 26.79 24.42 8.85 24.50 8.54 25.69 4.09 

10–11 25.76 25.89 0.51 25.70 0.21 26.73 3.80 

11–12 26.44 25.52 3.49 25.63 3.06 26.11 1.25 

12–13 28.51 26.58 6.76 26.98 5.36 27.29 4.26 

13–14 26.80 28.54 6.49 28.26 5.44 29.25 9.16 

14–15 26.00 26.44 1.69 26.32 1.23 26.80 3.07 

15–16 26.82 27.11 1.08 27.68 3.18 27.13 1.15 

16–17 26.38 27.86 5.61 27.74 5.18 26.97 2.24 

17–18 21.46 27.46 27.93 27.04 25.99 25.90 20.67 

18–19 21.61 22.78 5.44 22.95 6.22 21.45 0.75 

19–20 29.62 24.47 17.38 24.76 16.42 23.29 21.38 

20–21 27.04 31.04 14.79 30.48 12.70 30.55 12.98 

21–22 24.82 27.65 11.40 27.60 11.22 26.88 8.30 

22–23 25.25 26.75 5.93 26.87 6.41 25.52 1.09 

23–24 23.78 26.69 12.26 26.71 12.34 25.95 9.14 

 

Analysing the forecasts for the two 24-hour periods of March 19
th

 and March 24
th

 reveals 

that the proposed models using the static forecasting method perform better during the 

hours of higher volatility (March 24
th

) with an average error value of 6.04%, 5.95% and 

5.32% for ARMA(10-7)-GARCH(1,1), ARMA(10-7)-GJR-GARCH(1,1) and ARMA(10-

7)-EGARCH(1,1), respectively, while the average error values for the March 19
th 

 

forecasts are a bit higher at 8.82%. 8.39% and 6.75% for ARMA(10-7)-GARCH(1,1), 

ARMA(10-7)-GJR-GARCH(1,1) and ARMA(10-7)-EGARCH(1,1). Therefore, we can 

conclude that the ARMA-EGARCH model, like in the case of the dynamic forecasts, 

again outperforms basic ARMA-GARCH and ARMA-GJR-GARCH models by a small 

margin, during both estimated periods of low and high volatility, as well as during the 

entire out-of-sample forecasted period.  

 

 

 

 

 

 

Table 25. Errors of the forecasted models during the period of higher volatility on March 

24 
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Hour 
Deseasonalised 

price 

ARMA(10-7)-

GARCH(1,1) 

ARMA(10-7)-GJR-

GARCH(1,1) 

ARMA(10-7)-

EGARCH(1,1) 

Forecast Error (%) Forecast Error (%) Forecast Error (%) 

00–01 35.16 32.31 8.10 31.77 9.65 32.63 7.20 

01–02 35.82 35.46 1.03 35.73 0.26 36.13 0.84 

02–03 37.14 35.27 5.03 35.66 3.98 36.31 2.23 

03–04 39.78 36.86 7.35 36.36 8.60 36.47 8.33 

04–05 39.77 38.46 3.30 38.46 3.28 39.68 0.24 

05–06 37.83 38.85 2.69 39.53 4.50 40.84 7.97 

06–07 37.24 36.91 0.90 36.77 1.25 37.55 0.82 

07–08 34.60 36.56 5.66 36.06 4.22 35.31 2.04 

08–09 36.55 33.86 7.36 34.45 5.73 33.88 7.30 

09–10 37.32 36.66 1.79 36.94 1.03 37.57 0.66 

10–11 39.89 36.58 8.29 36.04 9.65 37.28 6.55 

11–12 41.98 39.63 5.59 39.46 6.00 39.75 5.31 

12–13 41.60 41.05 1.32 41.92 0.76 42.38 1.86 

13–14 41.18 41.39 0.52 41.02 0.38 41.19 0.03 

14–15 41.03 40.99 0.09 40.60 1.04 40.57 1.11 

15–16 42.25 41.43 1.95 41.90 0.83 41.25 2.36 

16–17 41.14 42.88 4.23 43.18 4.97 42.44 3.17 

17–18 37.78 41.74 10.48 40.90 8.25 39.38 4.23 

18–19 45.54 38.88 14.63 38.91 14.57 36.91 18.97 

19–20 56.25 46.85 16.71 47.27 15.96 47.28 15.93 

20–21 50.06 55.69 11.25 55.52 10.90 57.74 15.35 

21–22 44.91 48.95 8.99 48.25 7.43 48.34 7.65 

22–23 41.15 45.63 10.88 46.12 12.08 43.43 5.55 

23–24 38.82 41.50 6.91 41.73 7.49 39.57 1.92 

 

CONCLUSION 

Since the mid-1990s, electricity markets have been deregulated in order to reduce 

electricity prices and improve efficiency by determining prices based on the behaviour of 

supply and demand forces on the markets. Electricity is uniquely characterized by its non-

storability, particularly reflected in its high volatility, which makes it significantly 

different from other commodities traded on financial exchanges. Other factors that 

strongly influence electricity prices are the fact that transmission system networks 

frequently exhibit irregularities, which are reflected in geographical price variations 

across different areas due to different maintenance and transmission costs. Consequently, 

the relationship between consumption in the market and electricity prices is extremely 

difficult to predict. Consumption, though less volatile in comparison to electricity spot 
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prices, presents the same seasonal treatment, indicating that demand elasticity is low. 

Nonetheless, prices are significantly affected by the degree of consumption, which is seen 

in the critical cause of spikes in electricity price time series. Increases or sudden jumps in 

demand levels at certain moments force the producers and distributers of electricity to 

provide electricity from more expensive energy resources in the production of electricity. 

In other words, increases in electricity consumption are directly linked to the levels of 

electricity production, whose marginal costs rise depending on the use of energy inputs. 

Furthermore, deregulated electricity markets indicate various series of seasonality, due to 

external factors such as seasonal weather conditions, weekly seasonality due to 

differences in consumption during weekdays and weekends, as well as intra-daily 

periodic components due to the peak and off-peak phases of the day. Altogether, 

deregulation along with the abovementioned characteristics of electricity markets lead to 

a considerable growth of electricity price volatility, incomparable to any other financial 

assets or commodities, with an average intra-day volatility as high as 50% in our analysed 

time series of the Slovenian electricity prices for the first quarter of 2014. 

Various studies have been developed to analyse and forecast electricity prices, reliant on 

the intended temporal horizons. For the purpose of this thesis, we focused on the 

determination of trends and forecasts of Slovenian electricity spot prices in the short run. 

As electricity spot prices showcase different forms of nonlinear dynamics, most notably 

the robust dependence of the variance of the series on its own previous values, we 

proposed three different stochastic volatility forecasting methods for the Slovenian hourly 

electricity prices traded on the BSP Southpool electricity exchange, based on the family 

of autoregressive conditional heteroscedastic models. To analyse the volatility in a price 

heteroscedasticity framework, we modelled short-term forecasts with a GARCH model, 

along with its two extensions that measure asymmetric effects: the EGARCH and GJR-

GARCH models.  Each of these models was processed simultaneously with an ARMA 

model specified for the conditional mean equation. Modelling and forecasting a pure 

ARMA model could represent a risk of higher forecasting errors as the volatility in our 

time series is not independent, though our estimated ARMA model can successfully 

decompose AR and MA processes, as well as obtain shortly stationary residuals. 

Therefore, in order to overcome this, we proposed mixed ARMA-GARCH, ARMA-GJR-

GARCH and ARMA-EGARCH models that can address volatility clustering, and hence 

outperform a pure ARMA model in forecasting. Before identifying the most suitable 

ARMA orders, we first deseasonalised the series for its daily and weekly periodic 

seasonal components. Once the series had been deseasonalised, we choose an optimal 

order for an ARMA model with different information criteria functions. Following with 

the estimation for parameters of both conditional mean and conditional variance 

equations, we validated the robustness of parameters using various statistical significance 

and hypotheses tests, such as the Ljung Box test, to test the stationarity of residuals. Once 

the models were validated, we began forecasting the proposed models for day-ahead 

electricity prices with dynamic forecasting for March 17
th

, 21
st
 and 25

th
 as well as with 
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the static forecasting for a time span of 17 days between March 15
th

 and March 31
st
. In 

both cases, the ARMA-EGARCH model slightly outperformed both ARMA-GARCH and 

ARMA-GJR-GARCH. The output of the parameters of the ARMA-EGARCH model also 

reveals that a positive shock to the series implies a lower next-period conditional variance 

than negative shocks, or in other words, that increasing electricity prices lead to a lower 

next-period volatility than when electricity prices decrease by the same amount.  
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