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INTRODUCTION 

One of the most prevalent financial observations is a positive association between expected 

return and risk. Investments would lose their attraction if the expected rate of return is 

insufficient to compensate the investor for bearing related risk. Aggregate market risk has 

been considered as the main risk that should be compensated. Treynor (1962), Sharpe 

(1964) and Lintner (1965) developed the capital asset pricing model (hereinafter: CAPM) 

to determine an appropriate level of return required for an asset. The model separates risk-

return relationship into a systematic and an idiosyncratic part, and it assumes that only the 

systematic part of an asset’s return should be priced. The idiosyncratic risk, on the other 

hand, should not be included in an asset’s price because it can be eliminated by 

diversification. One major pitfall of the CAPM model is that it results in that rational 

market participants will only hold the market portfolio and risk-free assets. Most investors, 

however, may hold under-diversified portfolio. Therefore, the assumption that all investors 

will optimize their portfolios is violated. 

Subsequent research has shown that CAPM fails to explain market anomalies such as the 

size and value effect, namely, market return cannot adequately account for the systematic 

risk of an asset.  Following the development of arbitrage pricing theory (Ross, 1976) 

(hereinafter: APT), researchers developed multiple-factor models to explain the pricing 

mechanism. One of the most well-known and accepted models is the Fama and French 

three-factor model (Fama & French, 1993). In addition to market risk, size and growth risk 

are also taken into account. Subsequently, their model was augmented by adding an 

additional momentum factor (Cahart, 1997). Nevertheless, these models still imply that 

only the systematic risk captured by common factors should be priced. Some researchers 

argue that these factor models could not accurately reflect the reality of the market. Most 

importantly, investors are unlikely to hold well-diversified portfolios for various reasons. 

Firstly, investors may not be able to purchase fully-diversified portfolios due to wealth 

limitation. Secondly, transaction costs may arise from frequent holdings and rebalancing 

stocks in portfolios. Thirdly, investors take large stakes in certain stocks in order to exploit 

arbitrage opportunities. Numerous empirical studies document anomalies that investors 

prefer a certain flavor of stocks. For example, a person is more prone to invest in familiar 

companies around her local geographical area instead of adapting portfolio theory’s 

suggestion to diversify (Huberman, 2001). Moreover, during the time of crisis, the 

diversification benefit can diminish away. Therefore, both systemic and idiosyncratic risk 

exist in most investors’ portfolios. Idiosyncratic volatility is used as a proxy for 

idiosyncratic risk. Consequently, the link between idiosyncratic volatility and the average 

rate of return concerns a substantial share of investors.  

Recently, an increasing body of research shed light on the importance of idiosyncratic risk. 

Campbell, Lettau, Malkiel and Xu (2001) documented an increasing trend in idiosyncratic 

volatility and proposed several likely causes, such as the alternation in company 

governance and the institutionalization of equity proprietorship. In addition, they also 
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showed that idiosyncratic volatility accounts for the largest piece of total volatility. Thus, 

idiosyncratic risk would be the greatest risk for investors who hold an under-diversified 

portfolio. On the contrary, Brandt, Brav, Graham and Kumar (2010) indicated a decreasing 

idiosyncratic volatility pattern from late 90’s and concluded that the earlier rise in 

idiosyncratic volatility between 1962 and 1997 is not a time trend, but induced by the 

speculative trading from retail investors. Subsequent literatures were dedicated to the study 

of the relationship between idiosyncratic risk and stock returns. 

In particular, Merton (1987) proposed an extension to the CAPM model where 

idiosyncratic risk is priced, and idiosyncratic risk should be positively correlated to the 

expected return. Merton’s hypothesis states that due to incomplete information on stock 

markets, investors tend to hold only those stocks which they are familiar with and demand 

compensation for bearing idiosyncratic risk. On the contrary, a recent research by Ang, 

Hodrick, Xing and Zhang (2006) showed that stocks, which are associated with high 

idiosyncratic risk, constantly generate lower returns. In particular, they found that the stock 

return spread between the highest idiosyncratic volatility quintile and the lowest 

idiosyncratic volatility quintile is approximately -1% per month. Furthermore, they proved 

that this anomaly cannot be explained by either size, book-to-market, leverage, liquidity, 

volume, turnover, bid-ask spreads, coskewness or dispersion in analysts’ forecasts. Besides, 

the phenomenon persists through several subsamples in different time periods. In their 

follow-up study, they explored this relationship between idiosyncratic risk and stock 

returns using a world-wide data set, and proved that this relation is not only limited to the 

US stock market (Ang, Hodrick, Xing, & Zhang, 2009). In other words, investors are not 

compensated by undertaking additional idiosyncratic risk. Their finding clearly contradicts 

the traditional financial theories such as stocks with higher idiosyncratic risk should yield 

higher expected return because investors are unable to diversify the individual specific risk 

(Merton, 1987) and thus, can be considered as an empirical puzzle.  

Subsequently, their finding faced extensive criticism. Fu (2009) challenged Ang, Hodrick, 

Xing and Zheng’s findings by arguing that idiosyncratic volatility is a time-varying process. 

He showed that the approach of estimating idiosyncratic volatility used by Ang et al. (2006) 

is not a valid proxy for the real expected value: Ang et al. (2006) estimated idiosyncratic 

volatility by calculating the standard deviation of daily residuals in each given month. Fu 

argued that idiosyncratic volatilities are time-varying and auto-correlated, monthly average 

volatility cannot capture this property sufficiently, thus is not a good proxy for the 

expected value. Therefore, in Fu’s argument, Ang, Hodrick, Xing and Zheng’s (2006) 

finding does not reveal the true relationship between idiosyncratic volatility and expected 

return. In contrast, Fu (2009) used EGARCH models in order to incorporate the auto-

correlation of idiosyncratic volatility. He found a positive correlation of high idiosyncratic 

risk and high expected returns instead, and confirmed his finding to be both statistically 

and economically significant and robust to different empirical specification. He ascribed 

the puzzling result from Ang et al. (2006) partly to their inclusion of a subset of firms with 

small capitalization and high idiosyncratic risks. These small stocks with high idiosyncratic 
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risk has been the main driver of the negative correlation of idiosyncratic volatility and 

subsequent monthly returns. This debate suggests that the estimation methodology of 

idiosyncratic risk, the treatment of outliers and the inclusion of illiquid stocks are critical 

for statistical inference. 

Several researchers criticized Ang et al. for reasons other than the estimation methodology. 

For example, Bali and Cakici (2008) confirmed that different estimation methods or 

frequencies can twist the manifestation of the return – idiosyncratic volatility relationship. 

Beyond that, they indicated that controlling for size, price, liquidity and sample selection 

have a crucial influence on the outcome. Consequently, they found that idiosyncratic 

volatility is not robustly correlated with expected returns. Cao and Xu (2010)  decomposed 

idiosyncratic volatility into long-run and short-run terms and found a negative correlation 

between idiosyncratic volatility and expected return in the short-run and positive 

correlation in the long-run. Both Malkiel, Xu (2004) and Nath (2012) suggested the 

relationship is non-linear, but parabolic and dynamic essentially. Despite of contradictory 

views, it is commonly agreed that, first, the idiosyncratic risk – expected return relation is 

sensitive to the choice of estimation method used, second, the idiosyncratic risk is not fully 

diversified and investors should be compensated for bearing it (investors should pay 

attention to the level of idiosyncratic risk in their portfolio and watch the possible change 

under different market turbulence).  

Despite numerous studies that focused on idiosyncratic volatility, there have been only a 

few published papers that investigate the dynamics of common components of firm-level 

idiosyncratic volatility. Duarte, Kamara, Siegel and Sun (2014) studied the common 

component of idiosyncratic volatility calculated from the Fama-French model and showed 

that the idiosyncratic volatility puzzle is due to unaccounted systemic risk. They used the 

method of asymptotic principal components method to decompose monthly idiosyncratic 

volatilities into a matrix of common components and another matrix of unexplained 

variation in volatilities. By applying a single common component of idiosyncratic volatility, 

it explains 32% of individual variation and five common components account for nearly 50% 

of variation. They formed Predicted Idiosyncratic Volatility (hereinafter: PIV) as a new 

risk factor from the common components that have the highest explanatory power of 

volatilities. Furthermore, they found that this risk factor is highly correlated with business 

cycle proxies and recommended an addition of a new risk factor into the Fama-French 

framework.  

The work from Herskovic, Kelly, Lustig and Nieuwerburgh (2014) found that idiosyncratic 

volatility is correlated with households’ labor income risk, and suggested common 

idiosyncratic volatility as a priced factor. Most importantly, they documented that there is a 

relatively small difference between stocks’ total volatility and idiosyncratic volatility. 

Moreover, there exists strong co-movement of individual return volatilities, aggregate 

stock volatilities of either different size groups or industry groups share a general pattern of 

movement. They derived the common factor of firm-level idiosyncratic volatilities by 
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estimating annual idiosyncratic volatility based on CAPM, Fama-French three-factor and 

five principal components model respectively, which is very similar to the method 

implemented by Duarte et al. (2014). The common component is acquired by using the 

equal-weighted averaging, which is, in essence, approximately equal to the first principal 

component from the principal component analysis. Interestingly, the conclusion of the 

analysis does not alter significantly by implementing different asset pricing models. This 

result coincides with the finding of Nath (2012), who shows that idiosyncratic volatility – 

return relationship is not sensitive to the choice of CAPM one-factor or Fama-French 

three-factor models, but instead is sensitive to the choice of estimation method of volatility 

and data frequency used.  

Despite the similarities in methodology used by Duarte et al. (2014) and Herskovic et al. 

(2014): they implemented identical asset pricing model and both used the first principal 

component as the proxy for the common factor. However, the same choice of common 

factors was subject to different interpretations. Duarte et al. (2014) only suggested a 

common component of idiosyncratic volatilities (PIV) as an omitted risk factor from the 

Fama-French model, whereas Herskovic et al. (2014) provided additional insight by 

validating that the common variation in idiosyncratic volatility cannot be explained by co-

movement among factor model residuals (omitted common factors). Nevertheless, 

Herskovic et al. (2014) still found the common idiosyncratic volatility as a valuable priced 

variable. Moreover, the expected return is found to be negatively correlated with its 

exposure to common idiosyncratic volatility. Finally, they proposed a theoretical model 

that predicts a negative relationship of CIV and risk sharing and a positive association of 

CIV and individual marginal utility. One potential pitfall of these two papers is that they 

didn’t take the autocorrelation property of volatilities into account, instead, used monthly 

or yearly standard deviations of model residuals as an idiosyncratic volatility measure. The 

consequence might be, as mentioned above: the choice of estimation method and 

frequency can lead to different risk – return relationship. 

Several studies focused also on the aggregate volatility. Namely, the definition of 

aggregate volatility is very similar to the common idiosyncratic volatility. Bekaert, 

Hodrick and Zhang (2012) conducted an international study of aggregate idiosyncratic 

volatility in stock markets. They first confirmed that idiosyncratic volatility is a stationary 

and mean-reverting process and there exists no apparent ascendant pattern in idiosyncratic 

volatilities worldwide. Moreover, they showed that three groups of variables determine 

aggregate idiosyncratic volatility: index composition variables; corporate characteristics, 

which affect cash flow variability; and business cycle indicators. Few cash flow variables 

such as average book-to-market value, and several macroeconomic indicators and market-

level volatilities are found to have the highest explanatory power. Moreover, higher 

aggregate idiosyncratic volatility is found in the times of financial crises and bear markets, 

which is consistent with the view that a common component of idiosyncratic volatility as a 

systematic risk factor. In another study, Chen and Petkova (2012) attempted to explain 

aggregate market volatility by average stock return variance and average stock return 
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correlation. Stocks with high idiosyncratic volatility are found to have higher loading on 

the innovation in average stock return variance. Accordingly, the average variance was 

ascribed as the missing factor to explain the idiosyncratic volatility puzzle.  

A related study investigated the relationship between idiosyncratic volatility and liquidity, 

and showed that low idiosyncratic volatility stocks intertwine with high liquidity (Spiegel 

& Wang, 2005). However, idiosyncratic volatility is found to have an important role in 

determining the expected return when controlling for other effects which were included in 

the model specification. Lee and Liu (2011) decomposed idiosyncratic volatility into one 

part caused by random noise and another part caused by firms’ fundamental health 

information. Schneider (2011) concluded that the increase in idiosyncratic volatility during 

the crisis cannot be fully explained by a chosen sample of firm fundamentals. Connor, 

Korajczyk and Linton (2006) modeled the total volatility with macroeconomics factor, 

common and idiosyncratic firm-specific variables. However, they did not investigate the 

implication on asset pricing. Dennis and Strickland (2004) indicated a positive relationship 

between idiosyncratic risk and innovations in institutional ownership.  

The idea of industry-specific common factor in idiosyncratic volatility is also interesting, 

although thus far no published paper studies this issue. Herskovic et al. (2014) showed that 

idiosyncratic volatilities have very close common trends among industry groups, they share 

a high level of correlation. Mazzucato & Tancioni (2008) studied the relationship between 

innovation and idiosyncratic risk, they found an inconclusive pattern by using industry-

level data. However, by using firm-specific data, firms with the highest R&D intensity is 

proven to be most volatile in their returns. Luis & Timmermann (2003) documented that 

common components from different industries affect returns from industries in a different 

manner, such as the oil shock and information technology bubble.  Therefore, an initiative 

idea could be investigation whether there is significant difference in idiosyncratic volatility 

by industrial specification. In another word, whether industrial diversification can help an 

investor to lower the aggregate volatility of her portfolio. If a high-level of correlation is 

found in cross-sectional industrial idiosyncratic volatilities, it would be worthless to 

diversify the portfolio by selecting different industrial components, thus it would be 

meaningless to study the industry-specific common factors. On the other hand, if the 

industry volatilities show a distinctive pattern, it suggests that idiosyncratic volatility may 

have different underlying common factors by industry.  

After reviewing several literatures, the following content of this introduction provides a 

brief theoretical motivation of this thesis:  

A rich body of literature has been dedicated to the investigation of idiosyncratic volatility. 

Heated debate has arisen over its impact on the expected stock return and the underlying 

determinants. As already mentioned above, several studies showed that high idiosyncratic 

volatility coincides with a low abnormal return, which is in stark contrast to conventional 

theory, which argues that investors should be rewarded for taking a higher idiosyncratic 

risk. Despite controversy, those studies still come up with a consensus that idiosyncratic 
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volatility is relevant for major market participants. Due to various constraints, idiosyncratic 

risk cannot be fully diversified for either individual or institutional investors.  

In this thesis I shall 1) investigate the level of common variation in firm-level idiosyncratic 

volatility, 2) explore the characteristics of common components in idiosyncratic volatility 

including its effect on the expected stock return, 3) determine the underlying driver for 

time-series dynamics of idiosyncratic volatility. Prior to the study of commonality in 

idiosyncratic volatilities, this thesis will firstly investigate the contemporaneous 

relationship between idiosyncratic volatility and expect return. This will help me in 

determining the specific pattern of idiosyncratic volatility in the sample used, and pave the 

way for further study of the effect of common idiosyncratic volatility on cross-sectional 

idiosyncratic volatility.  

The discovery of strong co-movement in firm-level idiosyncratic volatility by Herskovic et 

al. (2014) is highly noteworthy. Traditional asset pricing models rely on diversification of 

idiosyncratic risk. If certain components of individual idiosyncratic volatility cannot be 

diversified away, then they should be included in the pricing model. A replication of cross-

sectional investigation of idiosyncratic volatilities by Herskovic et al. (2014) will be firstly 

implemented in order to determine the level of co-movement in idiosyncratic volatility. In 

addition to cross-sectional comparisons in certain groups, the average level of correlation 

within individual idiosyncratic volatility will also be examined to provide further evidence. 

This section will be the pith of the thesis and a building block for further examinations.  

The second main focus is to investigate the time-series behavior of common idiosyncratic 

volatility. There has not been a huge debate on the choice of method for extracting the 

common factors. Duarte et al. (2014) used the asymptotic principal component analysis to 

decompose volatility, while the majority of researchers used equally-weighted averaging to 

compute aggregate idiosyncratic volatility. This is important not only for the purpose of 

exploring the pattern of overall idiosyncratic volatility, but also for determining the effect 

of common components on individual idiosyncratic volatility behavior. The 

contemporaneous relationship between expected return and common idiosyncratic 

volatility will be further studied. This will help to explain the impact of residual 

idiosyncratic volatility of stock returns and indicate whether the common idiosyncratic 

volatility should be treated as a priced factor.  

In addition, the determinant of common idiosyncratic volatility will be sought in order to 

assist in understanding the dynamics of idiosyncratic volatility. Several papers pointed out 

a strong correlation between business cycle and aggregate idiosyncratic volatility. This 

phenomenon has a valuable implication: If the common idiosyncratic volatility has a 

significant impact on the expected return and meanwhile it is highly correlated with 

macroeconomic state variables, then one can infer that the common idiosyncratic volatility 

represents systemic risk. Therefore, the relationship between common idiosyncratic risk 

and the impact of the business cycle will be verified by testing several macroeconomic 

indicators. 
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Finally, this thesis will be dedicated to the investigation of idiosyncratic risk of the U.S. 

stock market during the recent times. The sample used in thesis spans from June 1994 to 

June 2014. The use of data can provides a direct comparison with related researches. 

However, relatively short time span used in this thesis might alter the results comparably. 

Since most of studies chose a longer time horizon. Nevertheless, this thesis is expected to 

evaluate the impact of common idiosyncratic volatility on asset returns and provide insight 

into investigating the underlying factors driving its dynamics in this thesis.   

The rest of this thesis is organized as follows: 

Section 1 presents the theoretical background and econometric methodology used. Thesis 

is built on the foundation of arbitrage pricing theory and Fama-French three-factor model. 

In this section, the estimation method for computing idiosyncratic volatility and the test for 

choosing an appropriate estimation technique are presented. Moreover, a brief overview of 

Fama-Macbeth cross-sectional regression establishes the groundwork for assessing an 

augmented asset pricing test at the end of the thesis. 

Section 2 provides the empirical results based on the mentioned empirical methodologies. 

Summary statistics of the data and computed idiosyncratic volatility are presented. 

Specifically, section 2.4 investigates the impact of residual idiosyncratic volatilities on 

stock returns. Subsequently, section 2.5 is focused on the evaluation of commonality in 

cross-sectional idiosyncratic volatilities.  

Section 3 extracts the common factor of idiosyncratic volatility and investigates its 

ramifications. Firstly, the general characteristics of common idiosyncratic volatility are 

studied. Furthermore, the impact of common idiosyncratic volatility of stock returns is 

investigated. The robustness of the impact is also investigated by controlling for several 

external effects. Subsequently, several regressions are carried out in order to explore the 

underlying dynamics of common idiosyncratic volatility. At the end of this section, 

common idiosyncratic volatility is investigated as a pricing factor using Fama-Macbeth 

method.  

 

1 THEORETICAL BACKGROUND AND METHODOLOGY 

 

1.1 Arbitrage Pricing Theory and Fama and French Three-Factor 

Model 

The pith of modern asset pricing models is the quantification of the tradeoff between risk 

and return. The kernel of investment choices is essentially the balance of risk and return 

relationship. The Capital Asset Pricing Model introduced by Sharpe (1964) and Lintner  

(1965) is the first, and most widely used asset pricing model. CAPM argues that rational 

investors should always decide between a risk-free investment and the market portfolio. 
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The sensitivity to excess market return, which is calculated as beta, tells the amount of 

compensation required by investors to accept additional risk. However, despite simplicity 

and theoretical reasonableness, CAPM suffers from a number of criticisms. Notably, a set 

of considerably restrictive assumptions make CAPM not viable in reality.  

1.1.1  Arbitrage Pricing Theory 

The Arbitrage Pricing Theory was introduced by Ross (1976) as an alternative model to 

classical CAPM. APT can be used more generally than CAPM as it adopts a greater 

number of risk factors as well as more lenient enforcement of assumptions. Moreover, 

typically APT has a greater explanatory power than CAPM. Ross’s APT relies on three 

major assumptions (Ross, 1976): 

i) Security returns can be described by a factor model. 

ii) Idiosyncratic risk can be diversified away by a sufficient number of securities. 

iii) Efficient security markets do not allow for persisting arbitrage opportunities. 

The APT model may be viewed as an application of the law of one price, which states that 

two economically equivalent assets should have the same price in every market. 

Arbitrageurs will ensure every arising arbitrage opportunity to be transient. While an 

arbitrage opportunity occurs whenever a zero investment portfolio can earn risk-free profits 

(Bodie, 2009). A multifactor APT model for individual asset returns has the following 

general form (Munk, 2008):  

 

Ri=E[Ri]+ ∑ β
ik

xk

K

k=1

+εi;   E[xk]=0, E[εi]=0, Cov[εi,xk]=0 (1) 

where 𝑥𝑘  are factors, the β
ik

 are the factor loadings and the 𝜀𝑖  are residuals. E[Ri], also 

denoted as alpha in some literature, stands for the constant level of return for the asset i. 

Equation (1) states that deviation of actual return from the expected return for asset i can 

be split into systematic risk factors, ∑ β
ik

xk
K
k=1 , and idiosyncratic component εi. The pivotal 

notion of APT is that in a well-functioning security market, there should be enough 

securities to diversify away idiosyncratic risk completely. Therefore, investors will not be 

compensated for holding additional idiosyncratic risk.  

Ross (1976) sets up a portfolio with a weighting vector w=(w1,…,wI)
T
. Weights sum up to 

one. Subsequently, the portfolio return has the form (Munk, 2008):   
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R
w=wTR= ∑ wiE[Ri]

I

i=1

+ ∑ wiβi1
x1

I

i=1

+…+ ∑ wiβiK
xK

I

i=1

+ ∑ wiεi

I

i=1

 (2) 

If there exists a set of w so that the portfolio is a risk-free zero-investment portfolio. 

Thereby, one can expect that:  

 

R
w= ∑ wiE[Ri]

I

i=1

=0 (3) 

Since the portfolio has zero net value, it also holds that∑ wiβik
I
i=1 =0   for 𝑘 = 1, … , 𝐾. By 

imposing that ∑ wiεi
I
i=1 =0, a portfolio has no exposure to idiosyncratic risks. Equilibrium 

in (3) has to be true to satisfy arbitrage-free condition. If this were strictly true, 

subsequently there exists a constant α and factor risk premia 𝜂 such that:  

 

E[Ri]=α+ ∑ β
ikηk

K

k=1

 (4) 

Accordingly, the expected return on an individual asset is a linear combination of a 

constant and a set of pricing factors. Analogously it can be shown that all assets have an 

expected return described in a K-dimensional hyperplane with 𝛼 = 𝑅𝑓 and  𝜂𝑘 = �̅�𝑘 − 𝑅𝑓 

that (Elton & Gruber, 2014):  

 E[Ri]=Rf+β
i1

(R̅1-Rf)+…+β
iK

(R̅K-Rf) (5) 

where 𝑅𝑓  can be interpreted as risk-free rate and (�̅�𝑘 − 𝑅𝑓)  terms are risk premia 

demanded for each class of risk factors.  

However, APT does not provide any guidance regarding the choice of relevant pricing 

factors. Yet two principles assist in the selection of advisable factors (Bodie, 2009). First, 

the set of explanatory factors should be limited to a narrow range. Second, investors should 

demand sufficient risk premiums on chosen factors. In general, APT factors are classified 

into three categories. Namely, macroeconomic factors such as GNP growth and inflation; 

fundamental factors such as P/E, size proxy for factor loadings; and statistical factors 

estimated by statistical techniques. 
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One of the most often used estimation methods for APT is the two-stage Fama-Macbeth 

regression, where first stage involves estimation of a set of time-series regressions for 

individual assets, and in the second stage estimation of cross-sectional regression of the 

returns estimated in the first stage.  

The empirical tests examine whether APT explains the cross-sectional differences in asset 

returns. Accordingly equation (4) will be tested with corresponding null hypothesis (𝐻0) 

that all the 𝛽𝑖𝐾 equals zero, the alternative hypothesis (𝐻𝑎) would be that at least one of 

factor loadings is non-zero (Chen N. , 1983). Fama and MacBeth (1973) used t-test to 

identify the significance of the risk premium.  

1.1.2 Fama and French Three-Factor Model 

A great fraction of literature on factor models is built on empirical research. The chosen 

factors are variables, which tend to predict average returns fairly well based on historical 

evidence. The most well-known model is a three-factor model based on firm characteristics 

(Fama & French, 1993). Authors find that cross section of average returns has a negative 

relation with firm size (based on market capitalization) and positive relation with the value 

(book-to-market ratio). Yet it is tough to incorporate these variables into the model. 

Usually at least monthly observations are required for time-series estimation of a factor 

model, however, firm fundamentals such as book value of equity, are merely reported at 

most quarterly. Fama and French create factor mimicking portfolios that convert firm 

fundamentals into more frequent and flexible series. Subsequently the factor construction 

follows a two-step method (Elton & Gruber, 2014): 

Step 1: Two size groups are defined by separating all stocks listed on NYSE, AMEX and 

NASDAQ by their market capitalization. Big stocks are above the median size of a stock 

on the NYSE and small stocks are below. Moreover, firms are divided into three groups 

based on their book-to-market ratio. The breakpoints are set to 30% (growth), 50% (neutral) 

and 70% (value) quantiles. Consequently this two-way classification forms six portfolios 

being rebalanced annually.  

Step 2: The portfolios are broken into six groups in order to orthogonalize value and size 

effects. Subsequently the size variable reflects the excess return of small caps over big caps 

and capturing firm size is defined as Small Minus Big (SMB):  

 SMB=1/3(SmallValue+SmallNeutral+SmallGrowth) 

-1/3(BigValue+BigNeutral+BigGrowth) 

(6) 

where SmallValue denotes the average return of the portfolio contains small caps and 

growth firms for instance. Similarly, the value variable reflects the excess return of firms 
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with high book-to-market values over firms with low book-to-market values and is defined 

as High Minus Low (HML): 

 HML =1/2(SmallValue+BigValue)-1/2 (SmallGrowth+BigGrowth) (7) 

Lastly, the third variable is the value-weighted excess return on the market. Thus, the 

expected return on asset i is: 

 E(R
i
)-Rf= bi[E(Rm)-Rf]+siE(SMB)+hiE(HML) (8) 

Notably Fama and French build the model without support of financial theory: While SMB 

and HML are not themselves obvious candidate for relevant risk factors, the argument is 

that these variables may proxy for yet-unknown more fundamental variables (Bodie, 2009).  

However in the most recent work, Fama and French have released their new finding on the 

factor model (Fama & French, 2015). The new model sheds light on additional two factors, 

namely profitability factor (RMW) and investment factor (CMA). The rationale behind 

these two is that companies with higher future earnings or with conservative investment 

activities will yields higher returns. Surprisingly, by incorporating new factors, the value 

factor (HML) becomes completely redundant and can be replaced by the other four factors. 

1.2 Estimation Method 

In a general factor model, idiosyncratic volatility is the part of total volatility which cannot 

be observed directly.  The factor model has the following form:  

 

Rit=E[Ri]+ ∑ β
ik

xkt

K

k=1

+εit;    (9) 

where, by construction, 𝑥𝑘𝑡 and 𝜀𝑖𝑡 are orthogonal, Cov(𝑥𝑘𝑡, 𝜀𝑖𝑡) = 0. Equally, 𝑥𝑘𝑡 are set 

to be mutually independent. Accordingly, one can decompose the variance of individual 

return into two major components: 

 

Var(Rit)= ∑ β
ik

2
Var(x

kt
)

K

k=1

+Var(εit)  (10) 

By taking the square root of  𝑉𝑎𝑟(𝜀𝑖𝑡) is the idiosyncratic volatility of asset i.  



 

12 
 

Replicating (Ang, Hodrick, Xing, & Zhang, 2006) and (Duarte, Kamara, Siegel, & Sun, 

2014), a standard time-series regression can be implemented using daily excess returns on 

the Fama-French three factors: 

 Rit-Rf,t= αi+β
i

MKT
MKTt+β

i

SMB
SMBt+β

i

HML
HMLt+εit   (11) 

Where 𝑅𝑖𝑡 indicates return of stock i at time t, 𝑅𝑓,𝑡 indicates the corresponding risk-free 

rate. 𝑀𝐾𝑇𝑡, 𝑆𝑀𝐵𝑡 and 𝐻𝑀𝐿𝑡 are the Fama-French factors. Next the idiosyncratic volatility 

of stock i for month m is defined as average squared residual from (11) over the number of 

trading days within month m, 𝑇𝑖,𝑚: 

 

IVi,m= √
1

Ti,m

∑ εi,t
2

Ti,m

t=1

 (12) 

1.3 Detection of Fixed Effects and Fixed-Effects Model 

The pooled least squares regression yields a constant level over time, this is however a 

strong assumption. In contrast, factor loadings might vary with time. Monthly regression 

(Duarte, Kamara, Siegel, & Sun, 2014) or rolling regression is not adapted in this thesis in 

order to avoid the complication arising from recursive computing. As an alternative, by 

including binary time variables, one can capture the potential time-varying relationship 

between average excess returns and factors.   

Therefore, one feasible remedy is to extend (11) to include indicator variables for different 

time periods and estimate the model using the least squares dummy variable (LSDV) 

method. Accordingly, the augmented model with time effects is (Greene, 2003):  

 Rit-Rf,t= αi+β
i

MKT
MKTt+β

i

SMB
SMBt+β

i

HML
HMLt+γ

k
+εit   (13) 

Where 𝛾𝑘  measures the fixed effect of time k. The model also imposes a restriction: 

∑ 𝛾𝑘𝑘 = 0. k is a number of a specific year month; the LSDV model requires inclusion of 

additional K-1 binary indicator variables for 𝛾𝑘. Finally, the LSDV model can be estimated 

using the ordinary least squares method.  

To investigate whether fixed effects are present in Fama-French three-factor model 

(hereinafter: FF-3 model), one can use F test to examine the significance of time and group 

effects (Greene, 2003) : 
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F(n-1,nT-n-K)=

(RLSDV
2 -RPooled

2 )/(n-1)

(1-RLSDV
2 )/(nT-n-K)

 (14) 

Where 𝑅𝐿𝑆𝐷𝑉
2  is R-squared of LSDV model and 𝑅𝐿𝑆𝐷𝑉

2  is the corresponding term of 

restricted model without binary variables. Large value of F-test rejects the null hypothesis 

that all the fixed effects coefficients equal zero.  

1.4 Fama-Macbeth Two-Step Procedure 

There have been several statistical methods to evaluate an asset-pricing model, Fama-

Macbeth two-step procedure is one prevailing technique to measure the risk-factor 

premium for pricing models. In the first step, a time-series regression is performed to 

obtain assets’ loadings on each factor. In the next step, a cross-sectional regression of all 

asset returns is implemented against all the estimated loadings in order to compute the risk 

premium (Fama & MacBeth, 1973). Cochrane shows that this technique is essentially 

equal to a pooled time-series and cross-sectional ordinary least square estimation. 

Specifically, individual betas are estimated in the time-series regression firstly. Afterward, 

cross-sectional regressions are implemented at each time period (Cochrane, 2005).  

 Rit
e =β

i

'
λt+αit,  i=1,2,…N for each t  

where λt  is the vector of a set of risk factors at time t, and β
i

is the corresponding 

coefficient vector. In this thesis, as a replication of Ang et al. (2006), two-sort portfolios 

according to stock’s size and value is firstly used to examine the asset pricing implication. 

Further, one-sort portfolios based on industry segmentation is further used to verify the 

result. Consequently, the average values of the cross-sectional estimates are taken as risk 

premiums for risk factors.  

 

λ̂=
1

T
∑ λ̂t

T

t=1

; α̂i=
1

T
∑ α̂it

T

t=1

   

In essence, the intuition of implementing Fama-Macbeth procedure is to evaluate the 

explanatory power of several factors behind stock returns. Each portfolio’s exposure to the 

factors are firstly estimated. Further portfolio’s return is regressed on the factor exposure 

and the average coefficients determine the priced premium for every increasing unit in the 

factor exposure. (Fama & MacBeth, 1973) 
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2 EMPIRICAL FRAMEWORK 

 

2.1 Data Description 

US stock market data are obtained from Bloomberg database from June 1994 to June 2014. 

The basic data acquired from Bloomberg are daily stock returns with dividends adjusted 

for common equities listed on all the sections of New York Stock Exchange (NYSE) and 

National Association of Securities Dealers Automated Quotations (NASDAQ) Stock 

Market. Both daily and monthly returns can be calculated from daily data. Independent 

variables of FF-3 model are obtained directly from Kenneth French’s data library. They are 

formed using all NYSE, AMEX, and NASDAQ stocks, American Stock Exchange 

(AMEX) data was acquired by NYSE in 2008 with a new name NYSE MKT. Thus there is 

a consistency between the data from Bloomberg database and French’s data library. 

Moreover, 1 month US Treasury Bill rate is used as a proxy for the risk-free rate of return. 

In addition to stock and factor data, this study also employs ten industry classifications, 

market capitalization, market capitalization to book value and historical volume of each 

stock, which were acquired from Bloomberg database.  

Following AHXZ (2006), in order to weaken the impact of infrequent trading on volatility 

estimation, it is required that stocks included in the sample have at least 15 trading days for 

each monthly idiosyncratic volatility estimated. Besides, extreme values which are above 

the 99.9% quantile of stock returns and below 0.1% quantile are removed. 

Table 1 presents the summary statistics of the final sample through the sample period. The 

number of stocks nearly tripled during 20 years. Meantime, the average size increased 

fourfold. Table 2 contains the summary statistics for key variables concerned with FF-3 

model. 

2.2 Estimation of Idiosyncratic Volatility 

Given the firm-by-firm regression of FF-3 model in (11) or augmented regression with 

additional time variable in (13), one can calculate the individual monthly idiosyncratic 

return volatility 𝐼𝑉𝑖,𝑚 as the square root of the average squared daily disturbance from (12). 

Table 3 reports a direct comparison between the FF-3 time series estimation and the 

augmented estimation which includes binary time variables. The average loadings on FF-3 

factors, average intercept value and average R-squared are included in the table.  

Correspondingly, one finds that the inclusion of time effects has no major influence on FF-

3 factor loadings or the goodness of fit. The average loadings on FF-3 factors are nearly 

identical on two estimations. The improvement in goodness of fit is bared improved with 

the inclusion of time effects. 
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Table 1: Summary Statistics for US stocks in NYSE, AMEX and 

NASDAQ from 1994 to 2014 

Year 

Number of 

Stocks 

Return 

(in %) Size MV/BV 

1994 1165 0.036 2076 2.738 

1995 1261 0.141 2405 2.640 

1996 1360 0.095 2888 14.159 

1997 1461 0.124 3807 3.895 

1998 1538 0.005 4780 1.935 

1999 1636 0.048 5798 -1.276 

2000 1714 -0.025 6663 5.455 

2001 1758 0.055 5699 3.093 

2002 1798 -0.038 4879 -0.057 

2003 1835 0.199 4809 4.025 

2004 1899 0.090 5623 2.495 

2005 2000 0.046 5941 2.598 

2006 2075 0.085 6332 3.967 

2007 2189 0.021 6908 21.787 

2008 2232 -0.152 5894 0.524 

2009 2262 0.127 4536 3.938 

2010 2347 0.116 5430 -2.042 

2011 2419 -0.009 5940 2.249 

2012 2513 0.073 6168 1.254 

2013 2648 0.151 7165 0.469 

2014 2708 0.010 7887 4.033 

Note: This table reports the number of stocks, average daily return (in percentage), 

average size and average market capitalization to book value ratio over the sample 

period. 

Source: Bloomberg (2014) 

 

Table 2: Summary Statistics of Key Variables 

Variables Mean Std.Dev Max Min Skewness Kurtosis 

Return 0.058 3.116 39.130 -38.000 0.374 11.478 

MktRF 0.030 1.192 11.350 -8.950 -0.211 8.942 

SMB 0.009 0.574 4.300 -4.620 -0.189 6.336 

HML 0.013 0.594 3.950 -4.910 0.121 8.754 

Size 5580.058 21890.550 753331.000 0.000 9.980 142.581 

MV/BV 3.555 659.721 389911.500 -80800.600 421.791 211115.100 

N 455946      

Note: This table reports equally-weighted average, standard deviation and other descriptive statistics for 

key variables of interest. MktRF is the excess return on the market portfolio, SMB is the excess return for 

small vs. large caps size factor and HML is the excess return for the value factor. The values for Return, 

MktRF, SMB and HML are reported in percentages 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Furthermore, the average value of intercept from augmented regression is even higher than 

the one from original regression. By using the F-test on the pooled panel data regression, 

the hypothesis of fixed time effects equaling zero cannot be rejected. Therefore, the 

original time-series regression without time effects is used for estimation. Consequently, 

individual monthly idiosyncratic volatility will be estimated by adopting equation (11) and 

(12) for the following analyses. 

Table 3: Regression of FF-3 Model 

 I II 

 Return-Rf Return-Rf 

MktRF 0.939 0.939 

SMB 0.610 0.609 

HML 0.298 0.297 

Constant 0.034 0.123 

Time Effects No Yes 

adj. R
2
 0.222 0.227 

Note: This table reports the average value of main factor loadings by using firm level regressions and 

augmented regressions with binary time variables. Time effects are omitted in Column I, whereas included in 

Column II. The average value of adjusted R-squared is documented in the last row. Estimated coefficients 

regards time effects are omitted in the table.  

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

 

2.3 Descriptive Statistics of Idiosyncratic Volatility 

Figure 1: Distribution of Historical Idiosyncratic Volatility 

 

Note: This figure plots the histogram of empirical individual monthly idiosyncratic volatility from FF-3 

model. The complete sample period from Jun. 2004 to Jun. 2014 is used 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Figure 1 plots the distribution of firm-specific idiosyncratic volatility. Interestingly the 

shape of this histogram resembles a log-normal distribution. Therefore, one can calculate 

the logarithm of idiosyncratic volatility to verify this intuition. Correspondingly, Table 4 

presents summary statistics of idiosyncratic volatility and its logarithm transformation. The 

logarithm of idiosyncratic volatility has the skewness of -0.259 and the kurtosis of 4.404, 

which are still in difference with the values of a normal distribution. 

Furthermore, to provide a visualization of the distribution, Figure 2 depicts the distribution 

of the logarithm of idiosyncratic volatility (hereinafter LogIV) overlaid with a normal 

density approximation. Aforementioned results reveal that a lognormal density 

approximates the distribution of historical monthly idiosyncratic volatility quite well. 

Idiosyncratic volatility is distributed with right skewness and excess-kurtosis whereas its 

logarithm is slightly left-skewed and a leptokurtic distribution. Even though it is an 

attractive property to describe a distribution with only two parameters, however, by 

implementing Shapiro-Wilk normality test, the hypothesis of a normal distribution of 

LogIV is rejected. Additionally, low-kurtosis of the distribution suggests the absence of 

extreme movements in LogIV. 

Figure 2: Distribution of Logarithm of Idiosyncratic Volatility 

 

Note: This figure plots the histogram of empirical individual monthly idiosyncratic volatility from FF-3 

model. Overlaid on the histogram is the normal density with identical mean and variance to the empirical 

distribution. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Table 4: Summary Statistics of Idiosyncratic Volatility and Logarithm of Idiosyncratic 

Volatility 

Variables Mean Sd Skewness Kurtosis Max Min 

IV 2.528 1.819 1.935 8.074 18.717 0.013 

LogIV 0.707 0.674 -0.259 4.404 2.929 -4.323 

N 455946      

Note: This table reports equally-weighted average, standard deviation are other descriptive statistics. IV 

represents firm-level idiosyncratic volatility and LogIV is the logarithm transformation of IV. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

 

2.4 Patterns in Average Returns for Idiosyncratic Volatility 

Panel A in Table 5 illustrates stock characteristics of volatility quintile portfolios sorted by 

total volatilities. Portfolios are sorted in an increasing order, thus the fifth portfolio has the 

highest level of volatility. It shows a clear monotonically increasing pattern of average 

daily return moving from the lowest total volatility quintile towards the highest quintle. 

Moreover, the average return in the fifth quintile is more than a double of one in the first 

quintile. FF-3 alpha is calculated as the constant term from (11) within each quintile. 

CAPM alpha is also provided according to by only controlling the market excess return. 

Alpha also tends to increase with the total volatility, this provides a robust evidence by 

controlling market return, size and value effects. Moreover, the size and market to book 

ratio of the quintile portfolios also exhibit discernible patterns. The Size column of Panel A 

shows a negative correlation between total volatility and firm market capitalization, 

whereas the MV/BV column shows a positive correlation with value factor.  

Considerably similar pattern is revealed in Panel B, where the quintile portfolios are sorted 

by the level of idiosyncratic volatilities instead. The differences of daily return between the 

portfolio five and one are 0.16% and 0.11% based on equally-weighted averaged return 

and value-weighted averaged return, respectively. This result diverges from AHXZ (2006) 

but is consistent with Fu (2009). Subsequently, an economic interpretation would be that 

investor demands a premium for additional idiosyncratic volatility. Moreover, the 

similarity between Panel A and B points out strong linkage between total and idiosyncratic 

volatility. These results pave the way for further analysis and will provide a valuable 

comparison. Finally, significant FF-3 alpha of “5-1” portfolio suggests possible additional 

pricing factor caused by idiosyncratic volatility to FF-3 model. 
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Table 5: Portfolios Sorted by Volatility 
 

Rank 

Mean 

(in %) Std.Dev. Size MV/BV 

CAPM 

Alpha 

FF-3 Alpha 

 

Panel A: Portfolios Sorted by Total Volatility 

 Equally-weighted 

1 0.038 0.612 10879 0.738 0.012** 0.007* 

2 0.051 0.979 7659 2.619 0.015** 0.008* 

3 0.064 1.212 4678 2.136 0.023** 0.014*** 

4 0.073 1.489 2408 3.585 0.024** 0.016*** 

5 0.199 1.885 927 10.025 0.144*** 0.136*** 

5-1 0.162    0.132*** 0.129*** 

 Value-weighted 

1 0.052 0.801 10879 0.738 0.022*** 0.019*** 

2 0.075 1.206 7659 2.619 0.034*** 0.030*** 

3 0.088 1.565 4678 2.136 0.036*** 0.034*** 

4 0.093 2.087 2408 3.585 0.029* 0.029** 

5 0.163 2.963 927 10.025 0.084*** 0.085*** 

5-1 0.111    0.062* 0.066*  

 

Panel B: Portfolios Sorted by Idiosyncratic Volatility 

 Equally-weighted 

1 0.039 0.880 12560 1.082 0.007 0.000 

2 0.054 1.110 7453 2.559 0.016* 0.007 

3 0.063 1.250 3910 2.197 0.020** 0.011** 

4 0.073 1.420 1959 3.704 0.026** 0.019*** 

5 0.195 1.530 727 9.579 0.149*** 0.144*** 

5-1 0.156    0.143*** 0.144*** 

 Value-weighted 

1 0.058 1.047 12560 1.082 0.021*** 0.020*** 

2 0.075 1.255 7453 2.559 0.031*** 0.029*** 

3 0.087 1.535 3910 2.197 0.037*** 0.035*** 

4 0.090 1.952 1959 3.704 0.032* 0.034** 

5 0.163 2.696 727 9.579 0.095*** 0.097*** 

5-1 0.104    0.074** 0.077**  

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports descriptive statistics by total volatility portfolios and idiosyncratic volatility 

portfolios. Portfolios are formed monthly by sorting stocks based on total volatility and idiosyncratic 

volatility. Portfolio 1 has the lowest level of volatilities. Mean and Std.Dev. are equally-weighted or value-

weighted monthly average and standard deviation of firm-level daily returns. Size reports average monthly 

market capitalization and MV/BV reports average monthly market capitalization to book value ratio. The last 

column refers to the constant term with respect to FF-3 model. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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2.5 Common Pattern in Idiosyncratic Volatility 

 

2.5.1 Cross-Sectional Comparison of Idiosyncratic Volatility 

To examine the cross-sectional relationship of idiosyncratic volatility between different 

characteristic groups, analysis by size, value quintiles and industry classification is 

provided. This is a methodological replication suggested by Herskovic et al. (2014). 

Accordingly, stocks have been sorted into five size, value and ten industry portfolios, 

respectively. Start with the size portfolios, they are determined by the yearly average of 

firm-level market capitalization. At the June of each year, portfolios are rebalanced. Within 

each value portfolio k, value weighting the monthly idiosyncratic variance from (11) 

produces the portfolio-level aggregate idiosyncratic variance. Take the square root, that is, 

 

σk,m= √∑ wi,y ∑ wi,yεi,m,t

2

Ti,m

t=1i∈k

 (15) 

where m denotes month and k denotes an index for specific portfolio. The weight  𝑤𝑖,𝑦 is 

computed using firm i’s market capitalization share in period y, and k is an index of a 

specific portfolio. Likewise, analogous aggregation technique is applied to value and 

industry portfolios.  

Figure 3 depicts the value-weighted aggregate idiosyncratic volatility over size quintiles. 

The trajectories reveal highly correlated movement, consequently the average pairwise 

correlation between these five series duly reaches high value of 0.884. Moreover, stocks 

with a higher level of idiosyncratic volatility also appear to be associated with smaller 

capitalization.  

Similarly, Figure 4 and Figure 5 plot aggregate idiosyncratic volatility respectively for five 

value portfolios and ten industry portfolios. Value portfolios are rebalanced yearly by 

market capitalization to book value ratio and industry portfolios are classified by using 

separation criteria from Bloomberg database. Analogous to size portfolios, commonalities 

also exists in value and industry classifications. The analyses report average correlation of 

0.905 and 0.791 respectively. Table 6 reports the correlations in more detail. Moreover, 

there are obvious spikes in trajectories in all three figures around the time of 1997 Asian 

financial crisis and 2009 global financial crisis. 
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Figure 3: Aggregate Idiosyncratic Volatility by Size Quintile 

 

Note: This figure plots monthly aggregate idiosyncratic volatility within five size groups. Size groups are 

sorted by yearly average market capitalization. The first portfolio has lowest value of market 

capitalization. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Figure 4: Aggregate Idiosyncratic Volatility by Value Quintile 

 

Note: This figure plots monthly aggregate idiosyncratic volatility within five value groups. Value groups 

are sorted on yearly average market capitalization to book value ratio. The first portfolio has lowest ratio. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Figure 5: Aggregate Idiosyncratic Volatility by Industry 

 

Note: This figure plots monthly aggregate idiosyncratic volatility within ten industry groups using the 

selection criteria on Bloomberg database. The industries are Basic Material, Consumer Goods, Consumer 

Services, Financials, Health Care, Industrials, Oil & Gas, Technology, Telecommunications and Utilities 

specifically. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Arbitrage pricing theory predicts that idiosyncratic risk is purely caused by individual 

characteristics and can be diversified away. However, these observed commonalities in the 

cross-sectional aggregate idiosyncratic volatilities suggest otherwise. If idiosyncratic risk 

shares a potential common trend, then it possibly implies an implicit underlying common 

factor driving the pattern of idiosyncratic volatility. In addition to the FF-3 factor structure 

to stock returns, model residual volatilities should inherit supplementary factor model, 

although commonality in idiosyncratic variance does not directly imply deficiency in FF-3 

model. Herskovic et al. (2014) document that common variation of idiosyncratic volatility 

cannot be explained by potential commonalities within factor model residuals, for example, 

due to omitted systemic factors. In contrary, Duarte et al. (2014) propose contrasting 

arguments. Further analysis is needed in order to delve into the cause of commonality in 

idiosyncratic volatility. 
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Table 6: Correlation Table of Cross-sectional Aggregate Idiosyncratic Volatility 

 

 Panel A: Correlation Matrix by Size Quintile 

 Agg_IV_S1 Agg_IV_S2 Agg_IV_S3 Agg_IV_S4 Agg_IV_S5 

Agg_IV_S1 1     

Agg_IV_S2 0.944 1    

Agg_IV_S3 0.934 0.945 1   

Agg_IV_S4 0.850 0.877 0.953 1  

Agg_IV_S5 0.761 0.780 0.875 0.919 1 

 

 Panel B: Correlation Matrix by Value Quintile 

 Agg_IV_V1 Agg_IV_V2 Agg_IV_V3 Agg_IV_V4 Agg_IV_V5 

Agg_IV_V1 1     

Agg_IV_V2 0.939 1.00    

Agg_IV_V3 0.834 0.93 1   

Agg_IV_V4 0.823 0.92 0.9752 1  

Agg_IV_V5 0.804 0.89 0.9571 0.978 1.000 
 

 

 Panel C: Correlation Matrix by Industry 

 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

I1 1.000          

I2 0.775 1.000         

I3 0.688 0.922 1.000        

I4 0.886 0.827 0.762 1.000       

I5 0.682 0.906 0.891 0.741 1.000      

I6 0.803 0.927 0.909 0.855 0.891 1.000     

I7 0.864 0.840 0.776 0.810 0.750 0.840 1.000    

I8 0.497 0.820 0.857 0.581 0.866 0.823 0.639 1.000   

I9 0.586 0.854 0.868 0.652 0.835 0.838 0.678 0.826 1.000  

I10 0.710 0.832 0.796 0.752 0.793 0.856 0.746 0.742 0.816 1.000 

Note: This table reports correlation matrix of cross-sectional aggregate idiosyncratic volatility. Panel A 

shows correlations within size portfolios, Panel B and Panel C reports the same within value and industry 

portfolios. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

 

2.5.2 Total Return and Model Residual Comparison 

To examine the cause of commonality in cross-sectional idiosyncratic volatility, firstly one 

needs to know the level of correlation among FF-3 factor model residuals. Analogous to 

Herskovic et al. (2014), annual average pairwise correlations of stock returns and FF-3 

residuals are calculated. Correspondingly average pairwise correlation is defined as the 

weighted average of the lower triangular elements from a full correlation matrix. Construct 

𝜌𝑖,𝑗 as the correlation between stock i and j,  𝑤𝑖  as the weight of stock i. As a result, 

average pairwise correlation is (Tierens & Anadu, 2004): 
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ρ

av
=

2 ∑ ∑ wiwjρi,j
N
j>i

N
i=1

1- ∑ wi
2N

i=1

 (16) 

In order to provide a direct comparison, average pairwise correlation of firm-specific 

idiosyncratic volatilities is also computed in addition to total returns and FF-3 residuals 

(Herskovic, Kelly, Lustig, & Nieuwerburgh, 2014). For simplified calculation, only equal 

weights are used.  

Figure 6: Average Pairwise Correlation 

 

Note: This figure plots the annual average pairwise correlation for total returns, idiosyncratic residuals and 

idiosyncratic volatilities. Idiosyncratic volatility is the standard deviation of FF-3 model residuals. The 

mean level of average pairwise correlation are 18.15%, 12.24% and 0.60% for total return, idiosyncratic 

volatilities and idiosyncratic returns respectively over the 1994-2014 sample. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Figure 6 depicts the trajectories of average pairwise correlation for total returns, 

idiosyncratic residuals from FF-3 estimation and idiosyncratic volatilities which are 

calculated as the monthly standard deviation of FF-3 idiosyncratic residuals. Accordingly, 

total returns share substantially higher correlation. Especially at crisis time, it reaches 

maximum of nearly 50%. On the other hand, average idiosyncratic residual correlations 

remains at a steady low level around 0.6%. This result resembles one concluded from 

Herskovic et al. (2014). Moreover, the average correlation for idiosyncratic volatilities 

remains at a relatively high level, however this pattern is not consistent with time, during 

the time around 1995, 2005 and after 2012, the average correlations remains at a low level. 

Interestingly, it has a trajectory revealing a unique pattern differs from the other two. 
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Therefore, the evidence of co-movement in idiosyncratic volatilities is not as strong as 

previously suggested by cross-sectional comparison. 

As a result, Figure 6 derives two implications. First, FF-3 model appears to absorb the 

majority of systemic determinant of stock price, in other words, most of the commonalities 

in stock returns are absorbed by proposed factors. Secondly, neither stock return 

correlation nor idiosyncratic residual correlation reveals the cause of idiosyncratic 

volatility co-movement. As an implication, a factor structure for stock returns does not 

capture the factor structure of idiosyncratic volatility.  

2.5.3 Total Volatility and Idiosyncratic Volatility Comparison 

Notwithstanding FF-3 factors absorb majority of stock return correlations, the factor model 

fails to explain total return volatility. Figure 7 provides a straightforward comparison 

between average total return volatility and average idiosyncratic volatility. Apparently two 

trajectories share nearly identical variation. Pairwise correlation between the two is 

reported as 0.966. 

Figure 7: Average Volatility 

 

Note: This figure depicts cross-sectional average monthly individual volatility for total and idiosyncratic 

returns. Average_IV denotes monthly average of idiosyncratic volatility, Average_TV denotes the one of 

total volatility. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Once again, it is evident that market portfolio factor, size factor and value factor can barely 

capture the dynamics of return volatilities. It is still up to question that whether the 

commonality in idiosyncratic volatility can serve as a missing pricing factor. However, one 
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can find a noticeable difference between the commonality in returns and the commonality 

in volatilities. This suggests there might be a divergent factor pattern inherited in firm-level 

volatilities.   

 

3 COMMON COMPONENT OF IDIOSYNCRATIC VOLATILITY 
 

3.1 Extracting Common Component from Individual Idiosyncratic 

Volatility 

 

3.1.1 Asymptotic Principal Component Analysis 

Principal Component Analysis (hereinafter: PCA) is a statistical procedure decompose the 

variance structure of a vector time series into a set of orthogonal variables. The 

methodology is designed so that the first component will explain the largest portion of the 

variance, and each successive component has the greatest subsequent variance under the 

restriction that retrieved principal components are uncorrelated. Given an T × I 

dimensional matrix 𝑰𝑽 = (𝐼𝑉1, … , 𝐼𝑉𝐼)′from (12) with covariance matrix ∑𝐼𝑉 for I stocks, 

where 𝐼𝑉𝑖 denotes the time-series vector of stock i. Then a PCA is intended to use few 

variables to replicate the dynamics of ∑𝐼𝑉 (Tsay, 2010). Yet a major limitation with PCA 

that it assumes the number of variables is smaller than the number of observations. To cope 

with the situation encountered in this thesis, where the number of stocks greater than the 

number of monthly observations, as suggested by Duarte et al. (2014), one can use the 

asymptotic principal component analysis (hereinafter: APCA) method introduced by 

Connor and Korajczyk (1988).  

APCA resembles traditional PCA besides that it relies on asymptotic result as the number 

of cross-section N (stocks) grows large. According the eigenvector analysis of a T × T 

matrix Ω
̂

𝑇
 forms the basis of APCA (Tsay, 2010): 

 
Ω̂T=

1

I
(IV-1TIV̅̅ ̅')(IV-1TIV̅̅ ̅')

'

 (17) 

Where 𝑰𝑽̅̅ ̅′ = (𝐼𝑉̅̅
�̅�, … , 𝐼𝑉̅̅

�̅�)′ with 𝐼𝑉̅̅
�̅� = (𝟏𝑻

′
𝑰𝑽𝑖) /𝑇 as the sample mean of ith stock, and 

𝟏𝑇 is a T-dimensional vector of ones. Principal components attained as eigenvectors from 

�̂�𝑇. Assume first k eigenvectors of �̂�𝑇 consists a k × T matrix �̂�𝑇. Further, the tth column 

of �̂�𝑡  denotes as �̂�𝑡 , consequently refined estimation 𝒇𝑡  identify k principal components. 

Connor and Korajczyk describe the procedure of estimation as follows (Tsay, 2010): 
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a. Calculate initial estimate of 𝑓𝑡 using sample covariance matrix �̂�𝑇 for 𝑡 = 1, … , 𝑇. 

b. Use ordinary least squares estimation on (18), retrieve 𝜷𝑖 = (𝛽𝑖1, … , 𝛽𝑖𝑘) and residual 

variance �̂�𝑖
2 

 IVit=αi+βi
f̂
t
+ϵit, t=1,…, T (18) 

c. Build diagonal matrix �̂� = 𝑑𝑖𝑎𝑔{�̂�1
2, … , �̂�𝐼

2}  and rescale idiosyncratic volatilities as 

𝑰𝑽∗ = 𝑰𝑽�̂�−
1

2. 

d. Calculate the adjusted T × T covariance matrix using 𝑰𝑽∗ as 

 
Ω̂*=

1

I
(IV*-1TIV̅̅ ̅

*

'
)(IV*-1TIV̅̅ ̅

*

'
)
'

 (19) 

In the end, refined estimate of 𝒇𝑡 can be obtained with eigenvector analysis of �̂�∗.   

3.1.2 Idiosyncratic Volatility Decomposition 

In this section, three approaches are used to extract common pattern within firm-level 

idiosyncratic volatilities. Duarte et al. (2014) use APCA method to obtain five volatilities 

factors whereas Herskovic et al. (2014)  use equally-weighted average of cross-sectional 

volatilities. Table 7 reports factor model estimations for monthly firm-level idiosyncratic 

volatilities in order to determine the amount of total, cross-sectional and time-series 

variation in individual idiosyncratic volatility that is explained by the common 

idiosyncratic volatility factors. The second column uses equally-weighted average of 

individual idiosyncratic volatilities as a proxy for common component in idiosyncratic 

volatility. While the third and fourth column reports the results based on value-weighted 

factor and APCA factors.  

The equally-weighted average returns adjusted R-squared
 
of 0.137, which is the highest 

among three estimation methods. Estimation with equally-weighted average also reports 

the only insignificant t-statistics of the constant term. Surprisingly, by including more 

factors, APCA method doesn’t improve goodness of fit. One can surmise it is due to the 

methodology constraint of APCA method. Though APCA manages to solve low 

observation limitation incurred by PCA method, APCA is still limited to another constraint, 

which enforce matrix IV to have full observation. 
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Table 7: Common Factor Estimation 

 (Equally-weighted) (Value-

weighted ) 

(APCA) 

 IV IV IV 

CIV 1.000
***

 1.159
***

  

 (268.67) (255.85)  

    

APCA1   10.01*** 

   (262.92) 

    

APCA2   -0.408*** 

   (-10.41) 

    

APCA3   -0.889*** 

   (-20.12) 

    

APCA4   -0.568*** 

   (-13.70) 

    

APCA5   -0.526*** 

   (-14.19)    

    

Constant 2.31e-09 0.766
***

 2.580*** 

 (0.00) (104.52) (1004.23) 

N 455946 455946 455946 

adj. R
2
 0.137 0.126 0.135 

t statistics in parentheses 

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports monthly volatility regression using equally-weighted 

CIV, value-weighted CIV and APCA 5 factors respectively. Equally-weighted 

CIV is defined as equally-weighted cross-sectional average of firm-level 

idiosyncratic volatilities within each month, Value-weighted CIV is the 

corresponding term weighted using market capitalization instead. APCA 

produces five common components of idiosyncratic volatility. The regressions 

has a general form of  𝐼𝑉𝑖,𝑚 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + ∑ 𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑘𝑓𝑎𝑐𝑡𝑜𝑟𝑘,𝑚
𝐾
𝑘=1 + 𝜀𝑖,𝑚 . 

Adjusted R-squared, factor loadings and corresponding t-statistics are reported. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

In order to cope with this limitation, one needs to remove columns contains any empty 

value in a matrix. However by doing so one can lose valuable data of the market. As a 

result, only 1074 out of 2719 stocks can be used for APCA computation. In contrast, 

APCA reports adjusted R-squared of 0.184 from the regression on 1074 stocks. Figure 8 

plots the time series of equally-weighted common idiosyncratic volatility (hereinafter CIV), 

value-weighted CIV and the first common component of idiosyncratic return volatility 

from APCA. Despite the visual misconception, the first common component from APCA 

still shares a correlation of 98.54% with equally-weighted CIV.  
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Figure 8: Time Series of Common Component 

 

Note: This figure plots the time series of equally-weighted CIV, value-weighted CIV and the first 

component of idiosyncratic volatility from APCA for the whole sample from June 1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Lastly, equally-weighted CIV is chosen as a proxy for commonality in monthly firm-level 

idiosyncratic volatilities, for two reasons. Firstly, estimation on equally-weighted CIV 

results in the highest level of fit. Furthermore, value weighting scheme can conceal the 

effect on idiosyncratic volatility from small firms (Plyakha, Uppal, & Vilkov, 2014).  

3.2 Characteristics of the CIV 

 

3.2.1 CIV Removal 

In order to investigate whether CIV effectively captures the commonalities in monthly 

individual idiosyncratic volatilities, the behavior of residuals, from regressing individual 

idiosyncratic volatilities on CIV is examined in detail. By implementing the regression 

𝐼𝑉𝑖,𝑚 = αi + 𝑏𝑖𝐶𝐼𝑉𝑚 + 𝑒𝑖,𝑚 , one can study the idiosyncratic behavior of stock return 

volatilities after removing the systematic factor. If CIV can explain the systemic variation 

of firm-level idiosyncratic volatilities, thereafter the disturbance 𝑒𝑖,𝑚  should not reveal 

high degree of commonality. Figure 9 depicts the cross-sectional aggregate of individual 

disturbance 𝑒𝑖,𝑚  by size quintiles. Comparing to Figure 3 from the previous section, 

trajectories in Figure 9 shows slightly less clustered pattern. The series by size quintiles 

have the average correlation of 0.776. 
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Figure 9: CIV Residuals by Size Quintile  

 

Note: This figure plots residuals from regressing individual volatilities on CIV averaged within five size 

portfolios. The regression has the form of 𝐼𝑉𝑖,𝑚 = αi + 𝑏𝑖𝐶𝐼𝑉𝑚 + 𝑒𝑖,𝑚. Size portfolios are sorted on yearly 

average market capitalization. The first portfolio has lowest value of market capitalization. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Figure 10: CIV Residuals by Value Quintile   

 

Note: This figure plots residuals from regressing individual volatilities on CIV averaged within five value 

portfolios. Value portfolios are sorted on yearly average market capitalization to book value ratio. The first 

portfolio has lowest ratio. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Figure 11: CIV Residuals by Industry  

 

Note: This figure plots residuals from regressing individual volatilities on CIV averaged within ten 

industry portfolios using the selection criteria on Bloomberg database. The industries are Basic Material, 

Consumer Goods, Consumer Services, Financials, Health Care, Industrials, Oil&Gas, Technology, 

Telecommunications and Utilities specifically. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Figure 12: Average Pairwise Correlation  

 

Note: This figure plots the annual average pairwise correlation for idiosyncratic volatilities and residuals 

from regression of monthly firm-level idiosyncratic volatility on CIV. The mean level of average pairwise 

correlation are 12.23% and 0.57% respectively. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Figure 10 and Figure 11 show analogous analysis regarding value quintiles and industry 

classifications. The average correlations are respectively 0.655 and 0.414. The trajectories 

show more disordered pattern than the original figures. Cross-sectional comparisons does 

not provide convincing evidence that CIV eliminates all the commonalities in firm-level 

idiosyncratic volatilities. 

On the other hand, Figure 12 provides a more direct comparison. The residual term lies 

well below the trajectory of idiosyncratic volatility average pairwise correlations. 

Apparently CIV captures nearly all of the common variation of monthly idiosyncratic 

volatilities. Therefore, CIV validates as a proxy capturing commonality of monthly 

idiosyncratic volatility. 

3.2.2 CIV and Market Variance 

Figure 13 and Figure 14 replicate the finding regarding CIV and market variance by 

Herskovic, Kelly, Lustig and  Nieuwerburgh (2014). The sum of MrkRF and RF from 

Kenneth French’s data library is used to stand for value-weighted market return.  

Figure 13: Time Series of Volatility Levels 

 

Note: This figure plots the monthly equally-weighted average firm-level idiosyncratic volatility (CIV) and 

monthly value-weighted average volatility of market return (MV). 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 
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Figure 14: Time Series of Volatility Changes 

 

Notes: This figure plots the changes in monthly equally-weighted average firm-level idiosyncratic 

volatility (dCIV) and residuals from regression of dCIV on changes in monthly value-weighted average 

market volatility. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Figure 13 plots time series of CIV and volatility of the market return. Naturally the plot 

shows substantial similarity between two series. Correlation between the two is 0.722. 

Analogously, changes in CIV has a correlation of 0.711 with changes in market volatility. 

More intriguingly, after removing market volatility from CIV, the residual still have a high 

level of correlation with CIV. Figure 14 depicts CIV innovation (proxied by ∆CIV), as well 

as the residuals from regressing ∆CIV on market volatility innovation (proxied by ∆MV). 

Surprisingly, these two series shares correlation of 0.704. The corresponding correlation 

between CIV and its residual orthogonal to market volatility is 0.692. This implies CIV 

and market variance are, although comparable, however still in a large difference from 

each other. 

3.2.3 Unit Root Test 

Many financial time series are known for being persistent over time. In other words, many 

time series exhibit non-stationarity or trending pattern. Therefore, an essential econometric 

task is to explore the trend and take transformation to de-trend if necessary. In order to 

discover the autocorrelation structure of these volatility series, one needs to perform unit 

root test to help determine an appropriate method for trend removal. Several tests have 

been developed to investigate the stationarity of a time series. One of the most 

representative tests is Augmented Dickey-Fuller test.  
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Starting with Dickey-Fuller (hereinafter DF) test, first consider a first-order autoregressive 

process: (Greene, 2003) 

 y
t
=μ+ρy

t-1
+εt;  εt~N(0,σε

2)  (20) 

Subsequently, DF tests the null hypothesis 𝐻0: 𝜌 = 1, against the alternative hypothesis 

𝐻𝑎: 𝜌 < 1. After subtracting both sides from (20) yields 

 ∆y
t
=μ+(ρ-1)y

t-1
+εt= μ+θy

t-1
+εt  (21) 

Therefore, the null hypothesis now turns into 𝐻0: 𝜃 = 0, against alternative 𝐻𝑎: 𝜃 < 0. 

Alternative hypothesis indicates the absence of unit root in tested series. Dickey and Fuller 

gives a set of asymptotic critical values for the related t-test or F-test (Wang, 2008). 

However DF test relies on assumption that the error term is independent and identically 

distributed (hereinafter i.i.d), in case disturbance is not a white noise process, augmented 

Dickey-Fuller (ADF) test can be applied to accommodates  serial correlation in residuals. 

Extending the model from (20), one has  

 y
t
=μ+ρy

t-1
+ρ

1
y

t-2
+…+ρ

p
y

t-p
+εt; εt~N(0,σε

2)  (22) 

Analogous to before, subtracting both sides from (22) gives 

 

∆y
t
= μ+ρ*y

t-1
+ ∑ ϕ

j
∆y

t-j

p

j=1

+εt (23) 

Where 𝜙𝑗 = −(𝜌𝑗+1 + ⋯ + 𝜌𝑝) and 𝜌∗ = (𝜌1 + ⋯ + 𝜌𝑝) − 1. The estimators are obtained 

by performing OLS estimation on (23). Hence ADF tests 𝐻0:  𝜌∗ = 0 against 𝐻𝑎:  𝜌∗ < 0 

using t-statistics of the coefficient 𝜌∗ from OLS (Lütkepohl & Krätzig, 2004).  

Additionally, the lag length p needs to be determined in order to use ADF test. On one 

hand, too few lags can leave the remaining error autocorrelation bias the test. On the other 

hand, too many lags can weaken the power of the test. Therefore, to determine the optimal 

number of p, one can conduct a recursive test starting from some higher-order (Lütkepohl 

& Krätzig, 2004). Alternatively, one can implement Akaike or Schwarz information 

criteria to determine the number of lags (Greene, 2003).  
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Accordingly, by implementing ADF test for CIV with monthly frequency, the null 

hypothesis of a unit root of is rejected. Thus, monthly CIV is a stationary process and 

shows mean-reverting property.  

3.3 Patterns in Average Returns for CIV 

To investigate the asset pricing implication of CIV, one can analyze whether stocks with 

different sensitivities to CIV lead to different levels of average returns. Since CIV is 

estimated at monthly frequency, thus monthly return is used for the asset pricing analysis. 

In order to estimate the sensitivity of stock return to CIV, individual excess returns are 

regressed on market excess returns and CIVs. The estimation follows the empirical 

regression  

 Rit-Rf
t
= αi+β

i

MKT
MKTt+β

i

CIV
CIVt+εit (24) 

Minimal factors in the model are used in order to reduce the noise incurred by controlling 

other effects, such as size or value effect. However, these two FF-3 factors and other 

potential effects will be examined to test the robustness of the return CIV relationship. To 

begin with, only constant loadings are measured by using ordinary least square regression 

on (24), thereafter a set of quintile portfolios is constructed by sorting loadings on CIV 

increasingly. In order to have sufficient observation for individual regression, only stocks 

with at least one full yearly observations is included.  

Table 8 reports several descriptive statistics for quintile portfolios sorted by CIV loadings. 

Portfolios in Panel A are constructed with equal weights, while being constructed by using 

market capitalization as value weights in Panel B. The first two columns document mean 

and standard deviation of the monthly firm-level return. Following two columns report 

average market capitalization and average market value to book value ratio. The average 

level of loadings on CIV increase monotonically from -2.489 to 3.870 for portfolio one to 

five. Although the firm-level loading estimations are constant over time, portfolios are still 

updated monthly to cope with increasing number of firms which are included through time. 

Last but not least, the last two columns report the constant term of the regression formed 

on single-factor CAPM and FF-3 model respectively.  

Accordingly, both equally-weighted and value-weighted average returns increase with CIV 

loadings. Although equally-weighted returns demonstrate monotonically stronger pattern, 

whereas in Panel B, average returns first decrease as moving from portfolio 1 to 3. This 

implies that investors require that stocks with higher sensitivity to common idiosyncratic 

volatility be compensated with a higher premium. Similarly, by eliminating market return, 

size and value effects, as shown in the columns of CAPM alpha and FF3 alpha, average 

returns still hold similar pattern by CIV loading portfolios. In particular, the rows of 5-1 
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illustrate trading strategy of combining longing portfolio 5 and shorting portfolio 1 as a 

zero-investment portfolio.  

Table 8: Portfolios Sorted by CIV Loadings 

Portfolio Mean Std.dev. Size MV/BV 

CIV 

Loading CAPM Alpha 

FF3 

Alpha 

         Panel A: Equally-weighted 

1 1.174 5.531 1310 -0.711 -2.849 0.327 0.117 

2 1.330 4.256 7174 7.512 -0.438 0.583*** 0.369*** 

3 1.419 4.417 7254 2.611 0.260 0.628*** 0.430*** 

4 1.536 5.233 6735 2.415 1.079 0.628*** 0.463*** 

5 2.146 8.312 3990 5.388 3.870 0.896**  0.932*** 

5-1 0.972 

    

0.569 0.814** 

         Panel B: Value-weighted 

1 1.367 5.057 1310 -0.711 -2.849 0.571** 0.366* 

2 1.212 3.746 7174 7.512 -0.438 0.566*** 0.476*** 

3 1.256 4.341 7254 2.611 0.260 0.448*** 0.402*** 

4 1.352 4.781 6735 2.415 1.079 0.482*** 0.493*** 

5 1.848 7.692 3990 5.388 3.870 0.639**  0.797*** 

5-1 0.481 

    

0.068 0.431 

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports descriptive statistics of quintile portfolios formed by sorting loadings on equally-

weighted common idiosyncratic volatility. CIV loadings are estimated by regressing excess monthly firm-level 

returns on CIV, controlling for the market excess return factor as in (24). Portfolios are sorted on 𝛽𝑖
𝐶𝐼𝑉 from the 

lowest (portfolio 1) to the highest (portfolio 5). The columns Mean and Std.Dev. report average and standard 

deviation of monthly return within each quintile. In Panel A, equally-weighted scheme is used, whereas in 

Panel B, value weights are implemented. Size reports average market capitalization, MV/BV reports average 

market capitalization to book value ratio. The row “5-1” relates to the spread between portfolio 5 and 1. The 

CIV Loadings column reports the average 𝛽𝑖
𝐶𝐼𝑉 within each quintile. The Alpha columns refer to the constant 

term with respect to the CAPM one-factor and Fama-French three-factor model. The asterisks denote the 

significance level. The sample spans time period from June 1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Correspondingly the 5-1 spread in average return between the highest CIV loading and the 

lowest CIV loading are 0.972 and 0.481 for equally-weighted and value-weighted return. 

Likewise, CAPM and FF-3 alphas are also documented to be positive. However, only the 

alpha from FF3 model using value-weighted scheme reports positive spread significant at 1% 

level. The standard deviation, first decreases from moving quintile 1 to 2 and then 

increases. Moreover, the average market capitalization first rises then drops whereas the 

average market to book value ratio does not reveal discernible pattern. 
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3.3.1 Robustness to Estimation Frequency 

In this subsection, the robustness of previous results to estimation method is investigated. 

In the previous subsection, only constant loadings are estimated through time. However, 

coefficients may potentially vary over time. In order to take time-varying coefficients into 

account as well to ensure sufficient observations for each regression, a five-year estimation 

window is implemented. Thereafter factor loadings will be estimated conditional to 

specific estimation window. Accordingly the sample period is separated into four 

subsamples with equal length.  

Table 9: Portfolios Sorted by CIV Loadings using Time-Varying Coefficients 

Portfolio Mean Std.dev. Size MV/BV 

CIV 

Loading 

CAPM 

Alpha FF3 Alpha 

         Panel A: Equally-weighted 

1 1.330 6.087 2213 4.842 -6.447 0.446 0.255 

2 1.402 4.428 5793 2.642 -1.793 0.634*** 0.442*** 

3 1.395 4.290 7829 3.368 -0.144 0.625*** 0.438*** 

4 1.510 4.982 7103 2.339 1.530 0.647*** 0.473*** 

5 1.967 8.678 3619 4.226 6.466 0.710*  0.702**  

5-1 0.637         0.264 0.447 

         Panel B: Value-weighted 

1 1.314 5.801 2213 4.842 -6.447 0.413 0.326 

2 1.257 4.089 5793 2.642 -1.793 0.555*** 0.455*** 

3 1.315 4.193 7829 3.368 -0.144 0.545*** 0.507*** 

4 1.365 4.644 7103 2.339 1.530 0.523*** 0.493*** 

5 1.688 8.151 3619 4.226 6.466 0.455 0.474 

5-1 0.374         0.041 0.147 

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table documents analogous report to Table 8. The analysis only differs by implementing time-

dependent regression. The sample is split into four subsamples with equal length. Each subsample spans five 

years. Within each subsample, CIV loadings are estimated by regressing excess monthly firm-level returns on 

CIV, controlling for the market excess return factor as in (24). In Panel A, equally-weighted scheme is used, 

whereas in Panel B, value weights are implemented. Portfolios are sorted on 𝛽𝑖
𝐶𝐼𝑉 from the lowest (portfolio 1) to 

the highest (portfolio 5) each month. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014)
 

Loadings on CIV are estimated by using (24) within each subsample. Finally, stocks are 

sorted into quintile portfolios by CIV loadings each month. Table 9 reports the results by 

implementing time-varying estimation method. Similar to Table 8, Panel A uses equally-

weighted average returns and Panel B uses value-weighted average returns. The pattern of 

average returns in Table 8 remains, however the difference between portfolio 5 and 1 
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decreases in magnitude to 0.637 in Panel A and 0.374 in Panel B. The spread of CAPM 

and FF-3 alphas also decreased for portfolio 5 and 1. Moreover, standard deviation shows 

the same pattern as the average return. Thus, by using a more frequent estimation of factor 

loadings, the effect of sensitivity of CIV to stock returns weakens.  

While the pattern of 5-1 spread sorted on CIV betas is very consistent, one cannot claim 

the difference is due to systemic risk. Therefore, the pattern of CIV loadings and average 

returns will be investigated controlling for other potential pricing effects.  

3.3.2 Robustness to Size and Value Effects 

Commonly speaking, small company stocks tend to vary differently than the big ones. A 

usual perception argues that the small companies bear relatively higher risk and the risk 

should come at a price. Therefore, stocks with lower capitalization is associated with 

higher average level of return. Analogously, value stocks accompanied with low price-to-

book ratio tend to have higher future growth potential. Empirically, small and value stocks 

outperform big and growth stocks. These anomalies are the foundation of FF-3 factor 

model (Fama & French, 1993). Is it possible that the effect of CIV exposure to average 

returns is partially caused by size and value effects? 

Table 10: Portfolio sorted by CIV loadings and Size Quintiles 

 Size Quintiles   

 
1 2 3 4 5 5-1 t(5-1) 

1 0.763 1.482 1.574 1.372 1.392 0.629 1.247 

2 1.235 1.468 1.294 1.484 1.293 0.058 0.140 

3 1.204 1.668 1.493 1.442 1.320 0.116 0.252 

4 1.317 1.562 1.783 1.561 1.386 0.070 0.130 

5 1.334 2.248 2.500 2.422 2.098 0.764 1.014 

5-1 0.570 0.766 0.926 1.049 0.706 

  t(5-1) 0.910 1.113 1.325 1.558 1.077 

  
Note: This table reports equally-weighted average returns sorted on CIV loadings and size quintiles. The 

columns correspond to the CIV loadings dimension. CIV loadings are estimated as constants throughout 

whole sample period. Market capitalization is used as proxy for size characteristics. CIV portfolios are 

rebalanced monthly whereas size portfolios are rebalanced annually. 5-1 reports the spread between portfolio 

5 and 1, t(5-1) reports corresponding t-statistics. The sample spans time period from June 1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Table 10 reports equally-weighted average returns of CIV portfolios controlling for size 

effects. CIV portfolios are formed as mentioned previously, first CIV loadings are 

estimated by implementing regression on (24), then stocks are sorted into 5 quintile 

portfolios by their loadings. Portfolios are rebalanced at the end of each month. Size 

portfolios are sorted by the yearly average of firm-level market capitalization from the 

lowest (portfolio 1) to the highest (portfolio 5). Accordingly, stocks with high exposure to 

CIV continues to yield higher returns. The differences of the average return between the 
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fifth CIV portfolio and the first CIV portfolio range from 0.57 to 1.04 controlling for size 

effects. However, the spreads are not all significant for all the size quintiles. Reversely, 

controlling for CIV effects, there is no evidence that small firms outperform large firms. 

Yet this is consistent with diminishing size effect since 90’s as documented in recent 

literatures.  

Likewise, Table 11 controls for the value effects. Value portfolios are sorted by the yearly 

average of firm-level market capitalization to book value ratio. By controlling value effects, 

the differences of CIV portfolios 5 to 1 remain positive, however, weaken in magnitude. 

The CIV loadings spreads range from 0.27 to 1.11. Interestingly, this is consistent with 

documented evidence that value stocks outperformed growth stocks from the 90’s.  

 

Table 11: Portfolio sorted by CIV loadings and Value Quintiles 

 Value Quintiles   

 
1 2 3 4 5 5-1 t(5-1) 

1 0.451 0.845 1.406 1.515 2.172 1.720 2.795 

2 0.852 1.147 1.406 1.549 1.883 1.032 2.263 

3 0.663 1.169 1.487 1.716 2.239 1.577 3.239 

4 1.011 1.156 1.394 1.646 2.391 1.381 2.430 

5 0.993 1.339 1.678 2.317 3.286 2.293 2.779 

5-1 0.541 0.494 0.272 0.802 1.114 

  t(5-1) 0.808 0.787 0.436 1.189 1.425 

  
Note: This table reports equally-weighted average returns sorted on CIV loadings and value quintiles. The 

columns correspond to the CIV loadings dimension. CIV loadings are estimated as constants throughout 

whole sample period. Market capitalization to book value ratio is used as proxy for size characteristics. CIV 

portfolios are rebalanced monthly whereas value portfolios are rebalanced annually. 5-1 reports the spread 

between portfolio 5 and 1, t(5-1) reports corresponding t-statistics. The sample spans time period from June 

1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Furthermore, CIV loadings are estimated by also controlling size and value effect based on 

(24).  

 Rit-Rf
t
= αi+β

i

MKT
MKTt+β

i

SMB
SMBt+β

i

HML
HMLt+β

i

CIV
CIVt+εit (25) 

Table 12 reports the results by implementing (25), the result is comparable with only 

controlling for market excess return. The spread of mean return decreases from 0.93 to 

0.85 from Table 8, whereas the spread of FF-3 alpha decreases from 0.75 to 0.63. 

Therefore, the association of high CIV loading and high return is not mainly driven by size 

or value effects.  



 

40 
 

Table 12: Portfolios Sorted by CIV Loadings Controlling for Size and Value Effect 

Portfolio Mean Std.Dev. CIV Loading CAPM Alpha FF3 Alpha 

      1 1.203 5.698 -2.435 0.341 0.170 

2 1.378 4.438 -0.255 0.591*** 0.409*** 

3 1.448 4.442 0.393 0.655*** 0.468*** 

4 1.566 5.074 1.105 0.677*** 0.506*** 

5 2.056 7.833 3.035 0.842*** 0.806*** 

5-1 0.854     0.502 0.636* 

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports descriptive statistics of quintile portfolios formed by sorting loadings on equally-

weighted common idiosyncratic volatility. CIV loadings are estimated by regressing excess monthly firm-

level returns on CIV, controlling for the market excess return factor as in (24). Portfolios are sorted on 𝛽𝑖
𝐶𝐼𝑉 

from the lowest (portfolio 1) to the highest (portfolio 5). The columns Mean and Std.Dev. report equally-

weighted average and standard deviation of monthly return within each quintile. The row “5-1” relates to the 

spread between portfolio 5 and 1. The CIV Loadings column reports the average 𝛽𝑖
𝐶𝐼𝑉 within each quintile. 

The Alpha columns refer to the constant term with respect to the CAPM one-factor and Fama-French three-

factor model. The asterisks denote the significance level. The sample spans time period from June 1994 to 

June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014)
 

3.3.3 Robustness to Residual Idiosyncratic Volatility 

A possible explanation that higher return being associated with stocks with high CIV 

loadings is that stocks with large exposure to CIV are also stocks with high idiosyncratic 

volatilities. In section 3, stocks within higher idiosyncratic quintile are documented with 

higher average level of return. On the other hand, CIV only accounts for less than 16% of 

firm-level idiosyncratic volatility.  

Table 13 reports portfolios sorted on CIV loadings controlling for firm-level idiosyncratic 

volatility. The average returns are not strictly increasing within each idiosyncratic volatility 

quintile. The 5-1 CIV loading return spread increase monotonically from 0.32 to 1.40 

along with residual idiosyncratic volatility quintiles. Thus, the CIV effect is more 

pronounced among stocks with higher idiosyncratic risk. On the other hand, by controlling 

exposure to CIV, stock returns still reveal strong pattern by idiosyncratic volatilities. The t-

statistics of 5-1 idiosyncratic volatility quintiles spread are all above 3. This result validates 

strong correlation between high idiosyncratic volatility and high return. Nonetheless, CIV 

only explains a small portion of firm-level idiosyncratic volatility dynamics. In simple 

words, stocks with high exposure to CIV does not necessarily has high idiosyncratic 

volatility. One assumption can be that the common movement of idiosyncratic volatilities 

is driven by business cycles whereas firm-level idiosyncratic volatility are still mainly 

driven by corporate characteristics.  
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Table 13: Portfolio sorted by CIV loadings and Residual Idiosyncratic Volatility 

 Residual Idiosyncratic Volatility Quintiles   

 
1 2 3 4 5 5-1 t(5-1) 

1 0.493 0.658 0.547 0.373 2.479 1.986 3.451 

2 0.916 1.012 1.193 1.382 3.045 2.129 3.653 

3 0.781 1.232 1.543 1.700 3.182 2.400 3.728 

4 0.782 1.125 1.388 1.554 3.508 2.726 3.923 

5 0.809 1.268 1.459 1.623 3.882 3.074 3.544 

5-1 0.316 0.610 0.912 1.251 1.404 

  t(5-1) 0.963 1.449 1.773 1.863 1.421 

  
Note: This table reports equally-weighted average returns sorted on CIV loadings and residual idiosyncratic 

volatility quintiles. The columns correspond to the CIV loadings dimension. CIV loadings are estimated as 

constants throughout whole sample period. Idiosyncratic volatility is defined as monthly standard deviation 

of FF-3 model residuals. Both portfolios are rebalanced monthly. 5-1 reports the spread between portfolio 5 

and 1, t(5-1) reports corresponding t-statistics. The sample spans time period from June 1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

3.3.4 Robustness to Market Volatility 

 

Table 14: Portfolio sorted by CIV loadings and Market Volatility Loadings 

 Market Volatility Beta Quintiles   

 
1 2 3 4 5 5-1 t(5-1) 

1 1.191 1.379 1.277 0.116 -1.868 -3.059 -2.445 

2 1.494 1.409 1.239 1.260 0.170 -1.325 -1.376 

3 1.778 1.599 1.416 1.287 1.552 -0.225 -0.342 

4 1.561 1.806 1.750 1.478 1.270 -0.291 -0.424 

5 2.002 2.223 2.077 2.032 2.135 0.133 0.137 

5-1 0.811 0.844 0.800 1.917 4.003 

  t(5-1) 0.923 1.095 1.173 2.094 3.037 

  
Note: This table reports equally-weighted average returns sorted on CIV loadings and residual idiosyncratic 

volatility quintiles. The columns correspond to the CIV loadings dimension. CIV loadings are estimated as 

constants throughout whole sample period. Market volatility is estimated as monthly standard deviation of 

market returns. Market volatility loadings are estimated from implementing regression  𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 +

𝛽𝑖
𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖

𝑀𝑉𝑀𝑉𝑡 + 𝜀𝑖𝑡 . Both portfolios are rebalanced monthly. 5-1 reports the spread between 

portfolio 5 and 1, t(5-1) reports corresponding t-statistics. The sample spans time period from June 1994 to 

June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Previously CIV is proven to differ from market volatility. This viewpoint is further 

validated by sorting stocks on CIV loadings and market volatility loadings. Market 

volatility is defined as the monthly standard deviation of market returns. Analogous to the 

estimation of CIV loading previously, market volatility loadings are attained from 

regressing monthly individual excess returns on excess market returns and market 
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volatilities. Thereafter stocks are sorted into five market volatility quintile portfolios. 

Within each market volatility portfolios, stocks are sorted again by exposure to CIV.  

Table 14 reports the equally-weighted average returns by two-way sorting on market 

volatility betas and CIV betas. Consistent with previous investigations, stocks with high 

exposure to CIV continues to yield higher returns. Except for the first market volatility 

beta portfolios, there appears to be monotonically increasing pattern of average returns by 

CIV betas. The 5-1 spreads on CIV portfolios are mostly significantly positive. 

Contrariwise, by controlling the exposure to CIV, stocks doesn’t reveal an apparent pattern 

sorted on market volatilities. The 5-1 spreads on market volatilities quintiles are, however, 

mostly negative. Therefore, CIV effect on average returns is not entirely driven by market 

volatility dynamics either. 

3.3.5 Robustness to Liquidity Effects 

Several papers document relationship between stock returns and liquidity risk. Pastor and 

Stambaugh (2003) reveal a positive correlation between sensitivity to aggregate liquidity 

and expected stock returns. Spiegel and Wang (2005) find close intertwinement of stock 

liquidity and idiosyncratic volatility risk. Highly liquid stocks tend to associate with low 

level of idiosyncratic volatility. Moreover, they document that idiosyncratic volatility 

drives out liquidity effects when both factors are used to explain expected return. In this 

sub-section, Pastor-Stambaugh liquidity series is used as a proxy for market liquidity. 

Accordingly their liquidity measure is based on individual stocks’ daily volume and market 

liquidity is computed as equally-weighted average individual volume for every month. The 

Pastor-Stambaugh non-traded liquidity factor is defined as the innovations in aggregate 

liquidity (Pastor & Stambaugh, 2003).  

Subsequently, the stock sensitivity to Pastor-Stambaugh non-traded liquidity factor is 

attained from time-series regression controlled for market excess return. Stocks are firstly 

sorted into five monthly quintile portfolios based on their historical liquidity betas, 

afterward, stocks are sorted into by CIV betas within each liquidity portfolio.   

Table 15 reports the result by controlling Pastor-Stambaugh Liquidity exposure. Average 

stock return still show increasing pattern along with CIV beta, however not monotonically. 

The 5-1 CIV loadings spreads still observed to remain positive, ranging from 0.71 per 

month to 1.30 per month. On the other hand, by controlling CIV exposure, the 5-1 spreads 

sorted of liquidity betas are mostly negligible. Therefore, liquidity effects cannot account 

for the spread in average stocks returns from CIV effect. However, by using CIV and 

liquidity factor simultaneously, CIV drives out the liquidity effect on stock returns. This 

result coincides with the argument proposed by Spiegel and Wang (2005).  
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Table 15: Portfolio sorted by CIV loadings and Liquidity Quintiles 

 Liquidity Quintiles   

 
1 2 3 4 5 5-1 t(5-1) 

1 1.025 1.149 0.989 1.254 0.907 -0.118 -0.191 

2 1.142 1.348 1.214 1.231 1.376 0.234 0.418 

3 1.610 1.317 1.182 1.371 1.548 -0.063 -0.113 

4 1.548 1.616 1.356 1.530 1.411 -0.137 -0.224 

5 2.331 1.896 2.151 1.965 2.175 -0.156 -0.171 

5-1 1.306 0.748 1.162 0.712 1.268 

  t(5-1) 1.667 1.170 1.717 1.082 1.638 

  
Note: This table reports equally-weighted average returns sorted on CIV loadings and liquidity quintiles. The 

columns correspond to the CIV loadings dimension. CIV loadings are estimated as constants throughout 

whole sample period. Pastor-Stambaugh liquidity series is used as proxy for market liquidity whereas   

Pastor-Stambaugh non-traded liquidity factor is defined as the innovations in aggregate liquidity. Liquidity 

betas are estimated from implementing regression  𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 + 𝛽𝑖
𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖

𝐿𝐼𝑄𝐿𝐼𝑄𝑡 + 𝜀𝑖𝑡 . Both 

portfolios are rebalanced monthly. 5-1 reports the spread between portfolio 5 and 1, t(5-1) reports 

corresponding t-statistics. The sample spans time period from June 1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

 

3.3.6 Robustness to Momentum Effects 

Momentum effect on average stock returns has been widely discussed in the recent 

literatures. Correspondingly momentum anomaly is defined as the tendency that stocks 

with high historical return continue to over-perform, and low past return stocks keep 

falling. Jegadeesh and Titman (1993) document significant positive return by 

implementing a strategy that long stocks performed well in the past and short opposite 

category of stocks over three to twelve months holding period.  

In order to control momentum effect, stocks are firstly grouped into quintile portfolios by 

sorting on past 6-month aggregate returns. The holding period is one month. Then within 

each momentum quintile, stocks are sorted by CIV exposures. Lastly, equally-weighted 

average returns are calculated for each of the 5×5 portfolios. 

Table 16 reports different average returns by CIV betas controlling for momentum. Stocks 

with the highest exposure to CIV still yield relatively highest level of return on each 

momentum portfolios. However, the pattern in other CIV portfolios is rather obscure. The 

lowest average returns appear within the range of first and second CIV portfolios though. 

Moreover, the 5-1 CIV loadings spreads consistently remain positive. The levels of t-

statistics do not differ notably from previous robustness investigations. On the contrary, by 

controlling CIV exposure, stocks with high past 6-month aggregate returns do not appear 

to over-perform peer stocks from June 1994 to June 2014.  
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Table 16: Portfolio sorted by CIV loadings and Momentum Quintiles 

 Momentum Quintiles   

 

1 2 3 4 5 5-1 t(5-1) 

1 0.903 1.114 1.147 1.289 1.494 0.591 0.933 

2 1.490 1.441 1.271 1.127 1.486 -0.004 -0.007 

3 2.056 1.444 1.342 1.307 1.451 -0.605 -0.986 

4 1.811 1.621 1.396 1.373 1.739 -0.072 -0.106 

5 2.144 1.604 1.770 1.726 2.505 0.361 0.400 

5-1 1.242 0.490 0.623 0.437 1.011 

  t(5-1) 1.436 0.771 1.135 0.775 1.481 

  
Note: This table reports equally-weighted average returns sorted on CIV loadings controlling for past 6-

month aggregate return. The holding period for momentum portfolios is one month. The columns correspond 

to the CIV loadings dimension. CIV loadings are estimated as constants throughout whole sample period. 

Both portfolios are rebalanced monthly. 5-1 reports the spread between portfolio 5 and 1, t(5-1) reports 

corresponding t-statistics. The sample spans time period from June 1994 to June 2014. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

To sum up for above subsections of robustness check, neither size, value, residual 

idiosyncratic volatility, market volatility, liquidity nor momentum effects drives away the 

spread between portfolio with the highest CIV exposure and one with the lowest CIV 

exposure.  

3.4 Determinants of Common Idiosyncratic Volatility Dynamics 

In the previous section, stocks with higher exposure to CIV is found to yield higher 

average returns. However, the source of CIV dynamic remains uncertain. Duarte et al. 

(2014) argue that the common component of idiosyncratic volatility can be partially 

explained by business cycle indicators. Bekaert, Hodrick and Zhang (2012) attempt to use 

index behavioral variables, corporate variable and business cycle variables to explain the 

dynamics of aggregate idiosyncratic volatility. Several corporate and business cycle 

variables found significant at explain aggregate idiosyncratic volatility. Herskovic et al. 

(2014) argue that common idiosyncratic volatility related to household consumption 

growth. Earlier figures in this thesis have shown spikes in idiosyncratic volatility 

trajectories around financial crises, therefore this sub-section investigate the connection of 

several macroeconomic variables and common idiosyncratic volatility.  

Table 17 provides a brief description of all the independent variables being attempted. All 

the variables are in monthly frequency from June 1994 to June 2014. 
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Table 17: List of Independent Variables 

Variables Description 

UMCSENT University of Michigan consumer sentiment index 

UNRATE Civilian unemployment rate. 

CPI Consumer price index for all urban consumers. 

USRED NBER based recession indicators for the United States 

TERM Term spread as yield spread between 10-year and 1-year U.S. 

government bonds. 

DEF Default spread as yield spread between BAA and AAA rated U.S. 

corporate bonds. 

SP500 Standard & Poor's 500 stock market index. 

SP500_DIV Dividend yield on S&P 500 index. 

CORR Average stock return correlation. 

SKEW CBOE SKEW index. 

MV Market return volatility. 

VIX CBOE market volatility index. 

Note: This table lists a description and notation of attempted independent variables. All the 

variables are in monthly frequency. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

The list comprises 11 market and macroeconomic variables, they are used to investigate 

the contemporaneous relationship with CIV. Specifically, those variables are grouped into 

three main categories: general economic cycle indexes, financial cycle indicators and 

market-wide variances. Explicitly, the first variable is the consumer sentiment index, 

which is an indicator intended to gauge consumer confidence. Unemployment rate is 

closely related to business cycles, during cycle contractions the rate rises whereas during 

expansions the rate descends. Consumer price index is used a proxy for inflation, and it is 

expected to fall during economic contractions. Further, NBER recession indicator is a time 

series comprises binary variables which indicate business cycle expansion and contractions 

provided by U.S. National Bureau of Economic Research. A value of 1 is a recession 

period and a value of 0 is an expansion period.  

Term spread has been used as a helpful indicator to predict economic activity, especially in 

forecasting recessions (Wheelock & Wohar, 2009). Accordingly term spread is defined as 

the spread between long-term and short-term interest rate. Long-term interest rate can be 

treated as the future expectation of short-term interest rate whereas the short-term interest 

rate reveals the current state of economy. Short rates improve while economy improves, if 

the term spread is largely positive, it indicates future economy is likely to change. 

Similarly, default spread is also proven to provide useful information regarding economic 

prospect. Default spread is defined as the difference in rate of return between firms of 

different credit quality. While term spread reflects anticipation of future prospect of 

economy, the default spread can be treated more as a proxy for the current state of 

economy. Investors would demand higher yields for lower-grade bonds during the time of 

recession especially (Frenkel, Hommel, Dufey, & Rudolf, 2005). 
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Table 18: Time-series Regression on Common Idiosyncratic Volatility 

 I II III IV V 

UMCSENT -0.012*   0.007* 0.009*** 

 (-2.56)   (2.06) (3.51) 

UNRATE -0.231***   0.075*** 0.070*** 

 (-5.66)   (3.44) (3.74) 

CPI -0.159***   -0.006  

 (-3.86)   (-0.28)  

USRED  0.580***  0.259*** 0.256*** 

  (5.06)  (3.74) (3.8) 

TERM  -0.136***  -0.055* -0.044*   

  (-4.39)  (-2.53) (-2.17)    

DEF  -0.900***  -0.198** -0.180**  

  (-8.79)  (-3.03) (-3.25)    

CORR  -0.298  -3.985*** -3.942*** 

  (-0.78)  (-13.84) (-15.50)    

SP500  -0.001
***

  -2E-05  

  (-6.11)  (-0.31)  

SP500_DIV  -0.783***  -0.091  

  (-8.65)  (-1.44)  

SKEW  -0.006  -0.0002  

  (-0.84)  (-0.04)  

MV   0.519*** 1.043*** 1.064*** 

   (5.58) (16.87) (27.46) 

VIX   0.021** 0.001  

   (2.93) (0.27)  

Constant 5.395*** 4.995*** 1.586*** 1.175 0.779**  

 (8.04) (6.98) (18.01) (1.8) (2.61) 

      

adj. R
2
 0.138 0.527 0.534 0.881 0.882 

t statistics in parentheses 

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports results from OLS regression of CIV on several market and macroeconomic 

variables over June 1994 to June 2014. First three columns show regressions on general economic cycle 

indexes, financial cycle indicators and market-wide variances respectively. The column IV show 

regression on all the variables. The last column reports variables at least significant at 5% level. 

Corresponding t-statistics are shown in brackets. Adjusted R-squared for each regression is reported in 

last row. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

Standard & Poor's 500 index is often considered as one of the best proxies of U.S. stock 

market cycles, also the dividend yield on S&P 500 index is also included in the analysis. 

Duarte et al. (2014) document average stock correlation as a significant factor in 

explaining common idiosyncratic volatility. Moreover, even though CIV is proven differ 

from the market return volatility, they still share a substantial amount of correlation.  

VIX represents an implied market volatility indicator of market’s expectation on the stock 

market volatility over 30 days’ horizon in the future. VIX differs from historical volatility 

because VIX is priced on traded options and forward-looking. Lastly, CBOE skew index is 

used as a proxy to track the tail risk of S&P 500 index, increasing in skew corresponds to 

the steepening in VIX curve.   



 

47 
 

Table 19: Time-series Regression on First Difference of Common Idiosyncratic 

Volatility 

 I II III IV V 

dUNRATE -0.066   0.142   

 (-0.54)   (1.610)  

dUMCSENT -0.019***   -0.005  

 (-3.82)   (-1.59)  

dCPI -0.020   0.021  

 (-0.43)   (0.670)  

USRED  -0.031  0.014  

  (-0.49)  (0.290)  

dTERM  0.043  -0.089  

  (0.430)  (-1.32)  

dDEF  -0.527**  -0.285* -0.326**  

  (-3.28)  (-2.55) (-3.06)    

dCORR  1.228***  -2.035*** -1.938*** 

  (4.510)  (-7.74) (-7.45)    

dSP500  0.001  0.001* 0.001* 

  (0.860)  (2.230) (2.48) 

dSP500_DIV  0.579  0.415  

  (1.460)  (1.520)  

dSKEW  0.01*  0.003  

  (2.200)  (1.070)  

dMV   -0.520*** -0.754*** -0.746*** 

   (-14) (-15.95) (-17.16) 

dVIX   -0.005 -0.002  

   (-1.39) (-0.39)  

Constant -0.004 -0.003 -0.003 -0.010 -0.006 

 (-0.20) (-0.13) (-0.23) (-0.69) (-0.47)    

      

adj. R
2
 0.047 0.165 0.505 0.633 0.623 

t statistics in parentheses 

*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports results from OLS regression of first-difference of CIV on first-differences of 

several market and macroeconomic variables over June 1994 to June 2014. NBER recession indicator is 

untransformed. First three columns show regressions on general economic cycle indexes, financial cycle 

indicators and market-wide variances respectively. The column IV show regression on all the variables. 

The last column reports variables at least significant at 5% level. Corresponding t-statistics are shown in 

brackets. Adjusted R-squared for each regression is reported in last row. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014)
 

Several time-series regressions of CIV is implemented on above mentioned variables in 

order to determine which variables capture the dynamics of CIV. Table 18 reports the 

regression output. In the first column, general macroeconomic indicators explain 12.6% of 

a total variation in CIV. In comparison, financial business cycles indicators and market-

wide volatility series explain 52.7% and 53.4% of a total variation respectively. 

Furthermore, in column IV, a regression using all the independent variables is 

implemented. However this regression is accompanied with highly multicollinearity, 

therefore many insignificant variables are observed. Subsequently in the last column, only 

significant variables from the previous regression are retained in the model. The significant 
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variables comprise consumer confidence index, unemployment rate, NBER recession 

index, term spread, default spread, average stock correlation and market return volatility. 

The resulting adjusted-R-squared is 88.2%. Unsurprisingly market volatility and average 

return correlation appear to be the main driving force of CIV dynamics. In addition, other 

business cycle indicators play a vital role in explaining CIV variations. For example, CIV 

is positively correlated with NBER recession indicator, this suggests that market 

uncertainty tends to rise at recession time, and increasing market uncertainty drives up the 

level of CIV. Furthermore, default spread is negatively correlated with CIV, this is 

particularly surprising result because it infer lower CIV at bad economic times. The 

average stock correlation is also negatively correlated with CIV, which suggests lower 

average idiosyncratic volatility level when stocks contain a larger portion of co-movement. 

Nevertheless, the regression provides robust evidence that firm-level idiosyncratic 

volatilities comprise a common component affected by economic condition.  

Furthermore, Table 19 studies the underlying dynamics of the change in CIV. Analogous 

regression is implemented on the first difference of underlying factors. The NBER 

recession indicator remains untransformed as it is a binary variable indicator. On the 

contrary to the impressive result from regressions on the levels of CIV, the regression on 

the first-changes of CIV exhibits much poorer goodness of fit. Only the difference in 

default spread, difference in average return correlation and difference in market volatility 

remain significant at 5% level. The difference in S&P 500 index adds as a new significant 

explanatory variable, however the coefficient is negligible. Noticeably, financial cycle 

indicators have a low-level of explaining power in column II. 

To briefly sum up, the level of common idiosyncratic volatility is found to be significantly 

correlated with the macro business cycle proxies. However, the changes in CIV is less 

correlated with the selected factors.   

3.5 The Price of Common Idiosyncratic Volatility 

Previous sections revealed that firstly stocks with high CIV exposure yield higher average 

return from June 1994 to June 2014, as well as CIV, can be partially represented by 

business cycle indicators. In the last section, the effectiveness of CIV as a systemic pricing 

factor is investigated. If CIV is a missing systemic variable, then it should be able to help 

explaining cross-sectional stock returns. Fama-French 25 size-B/M portfolios and Fama-

French 30 industry portfolios are used to investigate the asset pricing implication of CIV in 

cross-sectional returns. Subsequently, Fama-Macbeth two-step procedure is adapted to 

measure the risk premium on CIV. In the first step, a time-series regression is performed to 

obtain portfolios’ loadings on each factor. In the next step, a cross-sectional regression of 

all portfolios returns is implemented against all the estimated loadings in order to compute 

the risk premium (Cochrane, 2005). The initial model is an augmentation of FF-3 factor 

model: 
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 rit= c+β
i

MKT
λMKT+β

i

SMB
λSMB+β

i

HML
λHML+β

i

CIV
λCIV+εit (26) 

 

Table 20 reports the estimates by using 25 size-B/M portfolios. This is a replication of the 

asset pricing test used by (Ang, Hodrick, Xing, & Zhang, 2006). They formed this 

estimation based on size-B/M portfolios to evaluate the explanatory power of the volatility 

index. The CIV coefficient yields in this table significantly positive results. 

 

Table 20: Estimation of CIV premium using 25 size-B/M portfolios 

 I II III IV 

MKTRF 1.004*** 1.009*** 1.018*** 0.993*** 

 (69.130) (71.280) (74.690) (83.780) 

SMB 0.506*** 0.506*** 0.514*** 0.509*** 

 (5.200) (5.200) (5.530) (5.220) 

HML 0.355*** 0.359*** 0.337*** 0.350*** 

 (4.230) (4.260) (4.560) (4.140) 

CIV  0.169*** 0.152*** 0.198*** 

  (4.390) (4.210) (3.760) 

RMW   0.031  

   (0.630)  

CMA   0.032  

   (1.150)  

MOM    -0.0296**  

    (-3.42)    

LIQ    1.386**  

    (3.490) 

Constant 0.011 -0.428*** -0.409*** -0.453**  

 (0.290) (-4.56) (-4.42) (-3.60)    

     

R
2
 0.752 0.752 0.753 0.752 

t statistics in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports factor premiums on 25 size-B/M portfolios by implementing Fama-Macbeth 

two-step procedure. MktRF is the excessive return on the market portfolio, SMB and HML are the 

Fama-French size and value factors. RMW and CMA are the Fama-French profitability and investment 

factors. MOM is the momentum factor and LIQ is Pastor & Stambaugh aggregate liquidity measure. 

Corresponding t-statistics are shown in brackets. Average R-squared for each regression is reported in 

last row. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014)
 

However, (Duarte, Kamara, Siegel, & Sun, 2014) challenged the use of size-B/M 

portfolios in estimation by arguing that the strong factor structure of such portfolios can 

introduce the risk of spurious result. Therefore, as a replication, Table 21 provides an 

output from analogous procedure by using 30 industry portfolios. The factor premium on 

CIV remains positive, however the significance drops. By including additional factors, 

coefficient on CIV turns insignificant. The size factor also yields insignificant loading. To 

summarize, CIV adds some explanatory power to stock returns. However, the 
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improvement of the augmented pricing model is still trivial. Thus, the robustness of CIV in 

pricing stock return cannot be affirmed.  

Table 21: Estimation of CIV premium using 30 industry portfolios 

 I II III IV 

MKTRF 1.011*** 1.016*** 1.062*** 0.984*** 

 (19.54) (19.24) (23.23) (20.08) 

SMB 0.0697 0.0698 0.140** 0.0804 

 (1.53) (1.54) (2.93) (1.71) 

HML 0.351*** 0.354*** 0.265** 0.338*** 

 (4.85) (4.88) (3.56) (4.7) 

CIV  0.140* 0.0733 0.0782 

  (2.31) (1.01) (1.09) 

RMW   0.224**  

   (3.39)  

CMA   0.0736  

   (1.22)  

MOM    -0.0590*   

    (-2.08)    

LIQ    1.807 

    (1.54) 

Constant 0.0134 -0.361* -0.312 -0.14 

 (0.2) (-2.04) (-1.63) (-0.74)    

     

R
2
 0.467 0.467 0.471 0.469 

t statistics in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

Note: This table reports factor premiums on 30 industry portfolios by implementing Fama-

Macbeth two-step procedure. Corresponding t-statistics are shown in brackets. Average R-

squared for each regression is reported in last row. 

Source: Bloomberg (2014) & Kenneth R. French Data Library (2014) 

 

CONCLUSION 

This thesis aimed to study the behavior of idiosyncratic return volatilities in NYSE, AMEX 

and NASDAQ from 1994 to 2014. The firm-specific idiosyncratic residual is estimated 

from Fama-French 3-factor model, and the monthly idiosyncratic volatility is computed as 

the average squared idiosyncratic residual. Firstly, stocks with high idiosyncratic volatility 

are found to yield a higher return than stocks with low idiosyncratic volatility.  

The main results of this thesis are as follows.  

First, by using a cross-sectional comparison, a significant common pattern is found in size, 

value and industry portfolios. This phenomenon is further validated by calculating the 

average pairwise correlation between total returns, FF3 residuals and idiosyncratic 

volatilities respectively. Fama-French three factors appears to absorb the systematic 

variation in stock returns. However, it has little effect on absorbing volatility commonality. 
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This differs volatility variation from return variation. Moreover, instead of being 

consistently high over time, commonality in idiosyncratic volatilities appears to be volatile. 

A figure suggests that the commonality in idiosyncratic volatilities might be higher at the 

time of market turmoil. However, the co-movement remains at a low level in several years.  

Second, firm-level idiosyncratic volatility accounts for the greatest share of firm-level total 

return volatility. Common idiosyncratic volatility is calculated as the equally-weighted 

average of firm-specific monthly idiosyncratic volatilities. This common component 

explains 14% of idiosyncratic volatility variations, by removing the common component, 

firm-level idiosyncratic volatilities are observed to exhibit a lower level of co-movement. 

Moreover, despite their similarity, common idiosyncratic volatility is still different from 

market volatility.  

Third, stocks with the highest sensitivity to common idiosyncratic volatility always yield 

higher returns than the stocks with the lowest sensitivity to CIV. This pattern is found to be 

robust and consistent, however, not significant in some case.  

Fourth, the level of common idiosyncratic volatility is observed to be correlated with 

several macroeconomic proxies, in particular to the default spread, average stock return 

correlation and market return volatility. On the other hand, this pattern seems to be less 

significant with the changes in idiosyncratic volatility. Therefore, the correlations partially 

support the observation that commonality in idiosyncratic volatility is higher in financial 

distress.  

Finally, the asset pricing implication of CIV is examined using Fama-Macbeth estimation 

method. However, no significant improvement is documented by augmenting Fama-French 

3 factor model with CIV. 
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Povzetek 

Vloga idiosinkratične volatilnosti pri vplivu na delniška vračila je v zadnjem času dobila 

veliko pozornosti. Kljub temu pa je le nekaj objavljenih člankov raziskalo dinamiko 

skupnega gibanja idiosinkratične volatilnosti na nivoju podjetja. To diplomsko delo je 

posvečeno temu, da razišče sistematične lastnosti znotraj podjetno specifične 

idiosinkratične volatilnosti z uporabo podatkov iz NYSE, AMEX in NASDAQ od leta 

1994 do 2014. Najprej se je z analizo preostankov modela »Fama-French three factor« 

izkazalo, da je model nezmožen absorbirati afinitete v delniški volatilnosti kljub njegovi 

zmožnosti, da absorbira variacije v delniških vračilih. Za presečne idiosinkratične 

volatilnosti se je izkazalo, da sledijo skupnemu vzorcu. Kakor koli, nivo afinitete sčasoma 

ni več konsistenten, temveč precej fluktuira s stanjem gospodarstva. Nadalje, z odpravo 

skupne idiosinkratične volatilnosti  (»common idiosyncratic volatility – CIV«), so 

idiosinkratične volatilnosti na nivoju podjetja znatno znižale povprečno parno korelacijo. 

Poleg tega so delnice z najvišjo dovzetnostjo na skupno idiosinkratično volatilnost prinesle 

višje vračilo kot delnice z nižjo dovzetnostjo na skupno idiosinkratično volatilnost. 

Vendarle pa ni bilo dovolj dokazov najdenih v podporo skupne idiosinkratične volatilnosti 

kot cenitvenega faktorja. Končno, ugotovljeno je bilo, da ima skupna idiosinkratična 

volatilnost vzorec, ki je v povezavi z več zastopniki finančnega cikla. 

 

Summary in English 

The role of idiosyncratic volatility in affecting stock returns have obtained a great amount 

of attention lately. However, only a few published papers investigated the dynamics of co-

movement of firm-level idiosyncratic volatility. This thesis is committed to exploring the 

systematic property within firm-specific idiosyncratic volatilities by using the data in 

NYSE, AMEX and NASDAQ from 1994 to 2014. Firstly, by analyzing the residuals from 

the Fama-French 3-factor model, the model is found to be unable to absorb the 

commonality in stock volatilities, despite its ability to absorb the systematic variation in 

stock returns. Cross-sectional idiosyncratic volatilities are found to follow a common 

pattern.  However, the level of commonality is not consistent over time, but rather 

fluctuates with the state of economy. Further, by removing common idiosyncratic volatility 

(CIV), firm-level idiosyncratic volatilities are observed to have significantly lower average 

pairwise correlation. Moreover, stocks with highest sensitivity to CIV are observed to yield 

higher returns than the stocks with lower sensitivity to CIV. However, not enough 

evidence is found to support CIV as a pricing factor. Finally, CIV is found to have a 

pattern being correlated with several financial cycle proxies.   

 


