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INTRODUCTION 

In the recent two decades when index investing became very popular, academic 

researchers and investment professionals started questioning the efficiency of the market-

cap weighted indexes. As a result, a number of different weighting approaches have been 

proposed which vary by their ultimate goal. Some approaches aim to maximize return, 

some focus on minimizing variance or extreme risk, while other try to maximize risk-

adjusted return. 

In 2017, assets under management in passive funds represented around 20% of all 

investments, whereas decade ago passive funds represented only 8% (Sushko & Turner, 

2018, p. 114). Although the passive investing is still much smaller than active investing, in 

the last 10 years the cumulative fund flows to the former were around 3 trillion USD while 

the latter experienced roughly the same outflows (Sushko & Turner, 2018, p. 114-115). 

While people started investing heavily into index funds, majority of investments went to 

market-cap weighted indexes such as the S&P 500 (US stock market index), FTSE 100 

(UK stock market index), DAX (German stock market index) etc. But researchers such as 

Haugen and Baker (1991), Grinold (1992) showed long-ago that cap-weighted stock 

indexes are suboptimal investments, as it is possible to construct portfolios with the same 

or even higher expected return and lower variance. The market-cap weighted portfolios are 

efficient only under the very limiting theoretical assumptions, which are: all investors have 

the same expectations about risk and expected return for all securities, short selling is 

available to all investors, the absence of all taxes and limitation of investment opportunity 

set to only securities in the market-cap weighted index. 

As a consequence of the inefficiency of the market-cap weighted indexes and the increased 

investor’s preference for passive investing, researchers started proposing different 

approaches to efficiently diversify portfolios. Arnott, Hsu and Moore (2005) proposed to 

weight stocks by their fundamentals such as book value, cash-flow, revenues, sales, 

dividends and total employment. DeMiguel, Garlappi and Uppal (2009) showed that 

equally weighted portfolio strategy can offer favourable results. Clarke, De Silva and 

Thorley (2006) found that minimum variance portfolios have higher annualized means and 

lower standard deviations resulting in much higher Sharpe ratios compared to a market-cap 

weighted portfolio. Another method for portfolio construction is maximum diversification, 

which was proposed by Choueifaty and Coignard (2008). Maillard, Roncalli and Teiletche 

(2010) proposed equally-weighted risk contributions portfolios, where the risk contribution 

from each portfolio component is made equal. Martellini (2008), Amenc, Goltz, Martellini 

and Retkowsky (2010) proposed a novel approach for constructing an efficient index 

which aims at maximizing the Sharpe ratio. 

The purpose is to investigate different approaches to portfolio diversification, i.e. the 

market-cap weighting, the fundamentals weighting, the equal weighting, the minimum 

variance portfolio, the maximum diversification portfolio, the equal risk contribution 
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portfolio and the maximum Sharpe ratio portfolio. I want to highlight the advantages and 

disadvantages of different approaches, show their similarities and differences and 

contribute to their better understanding. I will analyse how different approaches would 

have performed in the past using the European large-cap stocks and small-cap stocks data. 

To my knowledge the analysis on the samples of small and large-cap stocks is new and has 

not been previously researched. Additionally, I will construct the optimized portfolios with 

differently estimated stock return moments to see if advanced statistical and econometric 

methods can help enhance the out of sample portfolio performance. Therefore, the thesis 

will provide new insight on how different portfolio weighting approaches behave on small 

and large-cap stock portfolios. 

The objective is to review the financial theory and study the approaches to portfolio 

diversification based on the relevant scientific literature. Furthermore, I will use statistical 

and quantitative research methods to construct portfolios with different weights and test 

which approach to portfolio diversification has the highest out-of-sample Sharpe ratio. 

Because portfolio managers have different objectives and constraints, I will also look at the 

more specific portfolio evaluation statistics such as the tracking error versus the cap-

weighted benchmark, information ratio and different measures of extreme risk and 

concentration. The research will be performed on the European stock market. 

The research hypotheses, that were set based on the reviewed literature, are: 

1. The market-cap weighted portfolio is inefficient as one can construct portfolio with 

higher out-of-sample Sharpe ratio. 

2. The equally-weighted portfolio has a higher return and a higher Sharpe ratio but also a 

higher risk than the market-cap weighted portfolio. 

3. The fundamentally-weighted portfolio has a higher Sharpe ratio than the market-cap 

weighted portfolio. 

4. The minimum variance portfolios with improved estimates of covariance matrix have 

the lowest standard deviations. 

5. The maximum Sharpe ratio portfolios with improved estimates of the stock return 

moments have the highest Sharpe ratios. 

6. There are no differences if the approaches are applied to the large or small-cap stocks. 

The structure of the master’s thesis is as follows. The first part of the thesis discusses the 

portfolio theory, i.e. the portfolio risk and return, modern portfolio theory and capital asset 

pricing model (hereinafter: CAPM). In the second part, I describe different approaches to 

portfolio diversification and review previous findings. I include the market-cap weighting, 

the fundamentals weighting, the equal weighting, the minimum variance portfolio, the 

equally weighted risk contributions portfolio, the most diversified portfolio and the 

maximum Sharpe ratio portfolio. In the third part of the thesis, I take a brief look at the 

estimation of portfolio moments, namely, the estimation of expected returns, covariance 

matrix, coskewness matrix and cokurtosis matrix. In the last part, I combine the knowledge 
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from the first three parts to create simple and optimized portfolios according to different 

approaches. The final part concludes on the research findings of the master’s thesis. 

1 PORTFOLIO THEORY 

In the first part of the thesis, I cover financial theory that lays the foundations for the future 

research. First, I go through the basic concepts of a portfolio risk and return, explain a 

covariance between stocks and discuss basic logic for portfolio diversification. Then I 

present Markowitz’s modern portfolio theory, which is followed by the CAPM. I explain 

why the CAPM was widely criticised and present the factor models that were developed as 

a consequence. 

1.1 Portfolio risk and return 

In this part, I show how to analyse portfolio of two risky assets as this can be then easily 

extended to portfolio of many assets. Simple measures are portfolio expected return, 

variance or standard deviation and covariance. Additionally, I show the benefits of simple 

diversification and how many securities are sufficient to a diversify portfolio. 

1.1.1 Portfolio expected return 

Portfolio expected return is calculated as the weighted average of stocks expected returns 

and their respective weights in a portfolio. This can be written as: 

 𝐸(𝑟𝑝) = 𝑤1 ∗  𝐸(𝑟1) +  𝑤2 ∗  𝐸(𝑟2) (1) 

Where w1 and w2 are security weights and E(r1) and E(r2) are expected returns. 

In the matrix notation for the case of many securities the portfolio expected return can be 

written as: 

 𝑤𝑇 ∗  𝜇 (2) 

Where w
T
 is a transposed vector of weights and µ is a vector of stocks expected returns. 

1.1.2 Portfolio variance and covariance 

Variance of an individual stock is a measure of risk and it measures how dispersed are data 

points around their mean value (Investopedia, n.d.). In contrast to the portfolio expected 

return, portfolio variance is not a weighted average of individual variances but it depends 

on the variance of component securities and also the covariance between them. Covariance 



 

4 

is simply a measure of how returns of securities move together (Bodie, Kane & Marcus, 

2011, p. 199). Thus, one can write the variance of a two-stock portfolio as follows: 

 𝜎𝑝
2 = 𝑤1

2 ∗  𝜎1
2 + 𝑤2

2 ∗  𝜎2
2 + 2 ∗ 𝑤1 ∗  𝑤2 ∗  𝐶𝑜𝑣(𝑟1, 𝑟2) (3) 

Where w1 and w2 represent security weights, σ1
2
 and σ2

2
 are security variances and 

Cov(r1, r2) is covariance between security returns. 

Standard deviation is also a measure of the dispersion of a data and is calculated as the 

square root of variance. Because the variance is squared and standard deviation is not, one 

use the latter to describe annual volatility of stocks. Standard deviation is expressed in 

percentages, the same as the expected return, whereas variance does not have any units. 

Other important concepts for portfolio diversification are covariance and correlation. As 

already mentioned, covariance measures the degree to which two securities move together. 

It can take value from -∞ to +∞ and it can be computed from a correlation coefficient. To 

get the sense how much two stocks are correlated, it is better to look at the correlation 

coefficient as it can range from -1 to +1, where -1 means that two stocks are perfectly 

negatively correlated, +1 represents perfect positive correlation and 0 means that two 

stocks are not correlated at all (Bodie, Kane & Marcus, 2011, p. 201). One can calculate 

the covariance from the correlation coefficient as: 

 𝐶𝑜𝑣(𝑟1, 𝑟2) =  𝜌1,2 ∗  𝜎1 ∗  𝜎2 (4) 

Where ρ1,2 is correlation coefficient between two stocks and σ is standard deviation of each 

stock. 

The equation (4) can then be inserted into equation (3) and the result is: 

 𝜎𝑝
2 = 𝑤1

2 ∗  𝜎1
2 +  𝑤2

2 ∗  𝜎2
2 + 2 ∗  𝑤1 ∗  𝑤2 ∗  𝜎1 ∗  𝜎2 ∗  𝜌1,2 (5) 

This means that portfolio variance does not depend only on the individual variances of 

stocks but also on the correlation between stock returns. In the extreme case when stocks 

are perfectly positively correlated, the portfolio standard deviation will be the weighted 

average of the individual standard deviations. Thus, in order to diversify a portfolio and 

reduce the overall risk, investors are motivated to add stocks that have low or even 

negative correlation. The second extreme case would be perfect negative correlation. This 

would mean that investors can choose the portfolio weights that would result in a portfolio 

with standard deviation equal to zero (Bodie, Kane & Marcus, 2011, p. 201). 

In a generalized form for many securities, I calculate variance-covariance matrix, which 

has the n*n dimensions. The diagonal elements in the matrix are stock variances and 

elements below and above the diagonal are stock covariances, where the covariance in the 

i-th row and the j-th column is the same as the one in the j-th row and the i-th column. This 



 

5 

makes covariance matrix symmetric. In the matrix notation, portfolio variance is calculated 

as: 

 𝑤𝑇 ∗  ∑  ∗  𝑤 (6) 

Where w is a vector of weights, w
T
 is a transposed vector of weights and ∑ is the 

covariance matrix. 

1.1.3 Risk and portfolio diversification 

As demonstrated, investors are motivated to add stocks with low correlation in returns to 

their portfolio to reduce risk. Reduction in portfolio risk is possible because there are two 

different sources of uncertainty. The first one is macroeconomic risk, which includes 

changes in interest rates, inflation, exchange rates and business cycle. This is the risk that 

affects all companies in the economy. The second source of risk is firm-specific risk and it 

includes factors that affect a particular company such as personnel changes, efficiency of 

research and development, raw materials costs etc. These factors affect the particular 

company but do not have much effect on other companies in the economy. The risk that 

cannot be diversified away is called the market risk, or non-diversifiable risk, or systematic 

risk. The risk that can be diversified is called the firm-specific risk, or unique risk, or 

diversifiable risk or non-systematic risk (Bodie, Kane & Marcus, 2011, p.201). 

The benefits of diversification are bigger if one includes stocks with low correlation in 

returns. This means that portfolio risk is reduced more if one adds stocks from unrelated 

industries, e.g. if I hold stock of one oil company and then diversify portfolio with another 

oil company, the effect of diversification will be small because they are both massively 

exposed to oil prices. Hence, a better choice would be to add stock from health care 

industry, utilities, technology or any other unrelated industry. Another possibility to 

diversify portfolio is an inclusion of international company stocks because they are not 

exposed to the same market risk. In the past, the benefit of diversifying portfolio to 

international stocks was huge but with globalization and increase in the world trade firms 

became exposed to more common risk factors. 

However, the benefits of diversification can be reaped quickly as firm-specific risk 

declines very fast at the beginning. This can be seen in Figure 1 which shows how risk, 

measured as the expected annual standard deviation of portfolio returns, declines with the 

inclusion of more stocks into portfolio. Researchers are not in agreement about how many 

stocks should be included in an equally diversified portfolio as some suggest that 10-15 

stocks are sufficient to get rid of the firm-specific risk (Evans & Archer, 1968), while 

others recommend holding between 30-40 stocks (Statman, 1987). Tang (2004) came to 

the conclusion that a portfolio of 20 stocks is sufficient to eliminate 95% of the firm-

specific risk. 
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Figure 1: Portfolio diversification and firm-specific risk 

 

Source: Statman (1987, p. 355). 

1.2 Modern portfolio theory 

Modern portfolio theory is presented next and it shows how correlation between stocks can 

be exploited to create portfolios that have minimized variance at each level of target return. 

Firstly, I take a look at the example of two risky securities and then present the 

Markowitz’s modern portfolio theory on the case of many risky securities.  

1.2.1 The case of two risky securities 

When initially looking at the example of two risky securities, one can see why correlation 

between stocks really matters. An example, I invest into two stocks: one technology stock 

with high expected return and high standard deviation and one consumer staples stock with 

low expected return and low standard deviation. Expected return and standard deviation for 

two stocks are presented in Table 1. 

Table 1: Two stock portfolio 

 
Expected return Standard deviation 

Stock 1 – Technology stock 16% 35% 

Stock 2 – Consumer staples stock 7% 20% 

Source: Own work. 

If I invest into these two stocks, portfolio expected return will vary from 16% (100% 

invested into stock 1) to 7% (100% invested into stock 2). As already known, portfolio 

standard deviation will change differently and it will depend on a correlation between 
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stocks. In the Figure 2, one can see how diversification effect is bigger if correlation is 

lower. As the correlation between stocks gets lower, the portfolio’s standard deviation can 

be reduced more. In the first extreme case when correlation is equal to 1, there will be no 

benefits to diversification and in the second extreme case when the correlation is equal to -

1, I would be able to perfectly hedge a portfolio of two stocks. Real world correlations 

between stocks will usually be higher than 0.5 and negative correlations are very difficult 

to find. 

Figure 2: Correlation between two stocks and portfolio standard deviation 

 

Source: Own work. 

Additionally, one can see in Figure 2 how investor who prefers low risk investments and is 

100% invested in Stock 2 can increase his expected return and reduce standard deviation. 

When correlation between investments is 0.4, he can sell 20% of investment in stock 2 and 

buy 20% of Stock 1. This will increase his expected return to 8.8% and slightly decrease 

standard deviation to 19.9%. But this process of increasing expected portfolio return and 

decreasing risk cannot go indefinitely. The question is which portfolio weights maximize 

investors risk adjusted return? I answer that question next. 

1.2.2 The case of many risky securities 

Now, that I know how diversification works, I can extend the portfolio construction 

problem to the case of many risky securities. Markowitz (1952) was the first who showed 

how portfolio selection can be done in practice. He showed how investors behave and gave 

guidance for portfolio construction. The expected return-variance framework that he 

presented is used to identify the mean-variance efficient combinations. 
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Markowitz’s mean-variance analysis simply means that based on the stock input data for 

expected returns, variances and covariances, one can calculate portfolios with minimum-

variance for each targeted expected return. The result is minimum-variance frontier as 

shown in the Figure 3. All the individual assets (stocks) lie on the right side of the 

minimum-variance frontier, which means that diversified portfolios are better than 

individual stocks. But this is true only if short sales are allowed, otherwise it is possible 

that some stocks will lie on the frontier, e.g. the stock with the highest expected return will 

be on the frontier because this is the only way to achieve that high return and, thus, it is 

also the one with the minimum-variance. However, diversification of portfolios leads to 

higher expected returns and/or lower standard deviations (Bodie, Kane & Marcus, 2011, p. 

211; Cuthbertson & Nitzsche, 2004, p.124–126). 

In the Figure 3, one can see that portfolio with the lowest standard deviation is called the 

global minimum-variance portfolio. The portfolios that lie on the minimum-variance 

frontier below the global minimum-variance portfolio are inefficient because there are 

always portfolios with the same variance but higher expected return that lie directly above 

them. Hence, the portfolios that lie above the global minimum-variance portfolio are called 

efficient frontier of risky assets (Bodie, Kane & Marcus, 2011, p. 211; Cuthbertson & 

Nitzsche, 2004, p.124–126). 

Figure 3: The minimum-variance frontier of risky assets 

 

Source: Bodie, Kane & Marcus (2011, p. 211). 

The estimation of an efficient frontier is done in six steps (Cuthbertson & Nitzsche, 2004, 

p.125–126):  

1. Investor chooses an arbitrary target return on the portfolio (e.g. 10%). 
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2. He arbitrarily chooses the proportions (weights) to invest in each stock such that target 

portfolio return is achieved. Portfolio weights must sum to 1. 

3. He calculates variance (standard deviation). 

4. He repeats the process under steps (2) and (3) until he gets the weights that minimize 

portfolio variance (standard deviation). 

5. When he gets the portfolio weights that satisfy target return criterion and have minimum 

standard deviation, he has the weights that present the first point of the efficient frontier. 

6. Lastly, he chooses another arbitrary target return on the portfolio (e.g. 9%) and repeats 

the process above. He does this until he gets the portfolio weights that minimize 

standard deviation. Then he repeats the process until the points connect into efficient 

frontier. 

After having calculated efficient frontier, one must figure out which of these portfolios are 

the best choice for our investor. To do this, I introduce a risk-free asset into our analysis. 

When introducing the risk-free rate into the analysis, it allows one to search for the steepest 

capital allocation line (hereinafter: CAL). This is the one that is tangent to the efficient 

frontier and it has the highest reward-to-volatility (Sharpe) ratio. The optimal risky 

portfolio is in point P, where CAL(P) is tangent to the efficient frontier (Bodie, Kane & 

Marcus, 2011, p. 211). The second step of the mean-variance analysis is shown in the 

Figure 4. 

Figure 4: Efficient frontier and capital allocation lines  

 

 Source: Bodie, Kane & Marcus (2011, p. 215). 

The Sharpe ratio which measures the reward-to-volatility or risk adjusted return is 

calculated as the excess return of a portfolio over a risk-free rate divided with the portfolio 

standard deviation. This can be written as follows: 
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𝑆ℎ𝑎𝑟𝑝𝑒 𝑟𝑎𝑡𝑖𝑜𝑃 =  

𝐸(𝑟𝑃) − 𝑟𝑓

𝜎𝑃
 (7) 

Therefore, the highest Sharpe ratio will be when CAL is the steepest. In that point, a 

reward to volatility is the highest. The implication is that none of the investors will be 

interested in holding a portfolio in point A, B or G. The portfolio P which has the highest 

Sharpe ratio will thus be held by every investor and is called the optimal risky portfolio. 

This is where the work of a portfolio manager ends as he will offer the same optimal risky 

portfolio to every client if there are no additional portfolio constraints required by the 

client (Bodie, Kane & Marcus, 2011, p. 214–215). 

The last question is how much will client invest in a risky portfolio and how much in risk-

less securities. This is called a separation principle and it was first described by Tobin 

(1958). This decision is independent of the portfolio manager’s work and is based solely 

on the investor’s risk preference. When looking at the Figure 4, investor who is reasonably 

risk averse will hold a combination of optimal risky portfolio and risk-free asset on the 

CAL(P) left of the point P. Depending on his risk aversion, he may choose to invest 40% 

into riskless securities (T-Bills in the US or German bonds in the Europe) and 60% into 

optimal risky portfolio. All the investors who are risk averse will hold a combination of 

riskless asset and risky portfolio on the CAL(P) left of the point P. In point P, investor will 

hold 100% of his savings in the optimal risky portfolio while right of the point P on 

CAL(P) investor will hold levered portfolio as he will borrow money to increase his 

position in the optimal risky portfolio (Cuthbertson & Nitzsche, 2004, p.126–132). 

The mean-variance portfolio optimization process done by portfolio manager can be 

summed up into 2 main steps (Bodie, Kane & Marcus, 2011, p. 212–214): 

1. In the first step, portfolio manager needs the input list which includes estimates of 

expected returns of each security and estimate of covariance matrix. This is the most 

difficult task in a portfolio optimization as bad estimates lead to poor optimization and 

poor performance of the portfolio. The portfolio manager needs n estimates of expected 

returns and n(n – 1)/2 estimates of the covariance matrix to perform portfolio 

optimization. If the portfolio includes 50 securities, the input list will consist of 50 

estimates of expected returns and 1,225 estimates of covariances. This is a very 

challenging task and I will review the whole process in detail in the third part of the 

thesis. 

2. After I have estimated the input list, I can calculate the efficient frontier and the optimal 

risky portfolio with the highest Sharpe ratio. In practice this is done by feeding the input 

list into the optimization program. However, the optimal risky portfolio can differ for 

different clients because of additional constraints they require. Some institutional 

investors are prohibited from taking short positions, some require minimal expected 

dividend yield while others want to invest only in socially responsible companies. 
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Portfolio managers can tailor the portfolio to everyone’s needs but this comes at the cost 

of lower reward-to-volatility ratio. 

1.3 Capital asset pricing model 

Markowitz portfolio theory showed how investors will optimize their portfolios while the 

capital asset pricing model presents how economic equilibrium in capital markets is 

formed. These two works present part one and part two of a microeconomics of capital 

markets (Markowitz, 1991, p. 469). Below, I present how equilibrium in capital markets is 

achieved under the CAPM assumptions and what are its implications. 

1.3.1 CAPM and capital markets equilibrium 

The capital asset pricing model was developed independently by Sharpe (1963; 1964), 

Lintner (1965) and Mossin (1966). The three authors started from Markowitz mean-

variance analysis that describes investor behaviour and attempted to construct a model that 

would describe the capital market equilibrium of risky assets. 

In order to be able to derive the CAPM the list of simplifying assumptions is needed 

(Bodie, Kane & Marcus, 2011, p. 281; Cuthbertson & Nitzsche, 2004, p.132–134): 

1. Investors are price-takers. Their wealth is small in comparison with all the money in the 

market and they cannot influence the prices. 

2. All investors aim to hold their portfolio for identical period and ignore what can happen 

afterwards. 

3. Their investments are limited to the publicly traded financial assets (bonds, stocks and 

risk-free assets). They can lend and borrow money at the same risk-free rate and without 

limit. 

4. There are no transaction costs (commissions and fees) and investors do not have to pay 

any taxes. 

5. All investors behave according to the Markowitz mean-variance optimization model. 

6. All investors behave in the same way, i.e. they have the same economic view of the 

world and analyse securities in the same way. This results in the same input list 

(expected returns and covariance matrix) used to calculate efficient frontier and optimal 

risky portfolio. This assumption is referred to as homogeneous expectations. 

The implication of investors sharing the same beliefs and the absence of any market 

frictions is that they will behave in the same way. The mean-variance optimization will 

thus produce the optimal weights that are the same for all investors. This means the 

tangency portfolio on the steepest CAL is the same for every investor. Consequently, 

tangency portfolio (portfolio with the highest Sharpe ratio) will also be the market 

portfolio and CAL is now called the capital market line (hereinafter: CML). The capital 
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market line goes from risk-free asset through market portfolio M. The weight of each stock 

in the market portfolio equals the market capitalization of that stock (stock price multiplied 

by number of shares outstanding) divided by the market capitalization of all stocks. The 

only difference among investors is their risk aversion that determines the amount of money 

invested in a market portfolio and a risk-free asset (Bodie, Kane & Marcus, 2011, p. 281–

282; Cuthbertson & Nitzsche, 2004, p.132–134). The CML and the market portfolio are 

shown in Figure 5. 

Figure 5: Capital market line and market portfolio 

 

Source: Bodie, Kane & Marcus (2011, p. 283) & Sharpe (1964, p. 432). 

One can see that each investor will hold market portfolio. Investors that are more risk 

averse will be on the left side of point M on the CML and will invest their money in 

market portfolio and lend the remainder at the risk-free rate. While the ones that are willing 

to take more risk, will borrow money at the risk-free rate and will invest in the market 

portfolio more than their initial wealth. They will position on the CML right of the point M 

(Sharpe, 1964, p. 432–433). When aggregating portfolios of all investors, lending and 

borrowing cancel out and value of all risky portfolios will equal the entire wealth of 

economy (Bodie, Kane & Marcus, 2011, p. 282). 

If all that described above is true, then investors will not be motivated to do security 

analysis but will simply hold market portfolio. Thus, market index portfolio will be 

efficient and the investment process can then be broken down into two parts, creation of 

mutual funds by investment professional and individual decision of allocation to risky 

market portfolio and a risk-free asset (Bodie, Kane & Marcus, 2011, p. 283). 

The above description can help us understand why passive investment strategies and 

market cap-weighted indexes became very popular in the recent decades. Even if the 

assumptions of the CAPM do not hold, the market cap-weighted indexes present a good 
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starting point for portfolio diversification. Knowing that security analysis is difficult and 

costly, holding the market cap-weighted portfolio can actually prove to be an efficient 

strategy. I will discuss the implications of the CAPM for investment industry in the second 

chapter where I will also look at the different weighting schemes.  

1.3.2 CAPM and the security market line 

The CAPM does not only describe the equilibrium in capital markets but it also gives 

prediction about expected return of the asset based on its risk. The model uses insight that 

appropriate risk premium on an asset is determined by its contribution to the portfolio risk. 

That means investors are not concerned about stock’s variance but its covariance with the 

market portfolio. It is the covariance with the market that contributes to the market 

portfolio risk (Bodie, Kane & Marcus, 2011, p. 285–287). This can be expressed this in 

equation (8) which represents expected return-beta relationship: 

 𝐸(𝑟𝑖) =  𝑟𝑓 +  𝛽𝑖 ∗ [𝐸(𝑟𝑀) −  𝑟𝑓] (8) 

Where E(ri) is expected return of security i, rf denotes return on a risk-free asset, E(rm) is 

expected return of the market and βi (beta) measures the contribution of stock i to the 

variance of the market portfolio as a fraction of the total variance of the market portfolio 

(Bodie, Kane & Marcus, 2011, p. 287). β can be expressed as: 

 
𝛽𝑖 =

𝐶𝑜𝑣(𝑟𝑖, 𝑟𝑀)

𝜎𝑀
2  (9) 

Where Cov(ri, rm) is covariance of the i-th security with the market and σm
2
 is variance of 

the market. 

The expected return-beta relationship is in fact a reward-risk equation. Beta measures 

contribution of a stock to the variance of the market portfolio. Hence, the security’s risk 

premium, as it can be seen in equation (8), is proportional to the beta and the market risk 

premium, i.e. βi * [E(rm) – rf]. This relationship can be presented graphically as the security 

market line (hereinafter: SML). The relationship can be seen in Figure 6, where the slope 

of the SML is equal to the market risk premium. One can also see that market’s beta equals 

1, which can also be confirmed with equation (9) because covariance of the market with 

itself equals its variance. This implies that securities with beta lower than 1 will be less 

volatile than the market and will have lower expected return and vice versa (Bodie, Kane 

& Marcus, 2011, p. 289; Cuthbertson & Nitzsche, 2004, p.134). 

When drawing the comparison of the CML and the SML, one can see that CML shows the 

risk premiums of efficient portfolios as a function of portfolio standard deviation. On the 

other hand, the SML shows risk premiums of individual asset as a function of asset risk (β) 

(Bodie, Kane & Marcus, 2011, p. 289). If the CAPM holds, then all securities should lie on 
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the SML. When the securities lie on the SML, their expected returns compensate their risk. 

However, some securities can lie below the SML which means they have negative alpha 

and their return does not compensate for their risk. Those securities will be sold by 

investors so that their price would fall and expected return would rise to the point they 

would again be on the SML. The opposite is true for securities that lie above the SML, 

those securities have positive alpha and will be bought by investors until their price would 

rise and their expected return would fall to the point where they will again lie on the SML 

(Cuthbertson & Nitzsche, 2004, p.134–135). 

Figure 6: The security market line 

 

Source: Bodie, Kane & Marcus (2011, p. 289). 

Thus, the value of the CAPM is not only to arrive to the equilibrium market portfolio but it 

can also be used to determine the fair expected return on the risky asset, or it can be used 

for capital budgeting decisions. It is useful because it provides the required rate of return 

on an investment, or a project while assuming that investors hold diversified portfolios and 

care only about systematic, or market risk (Bodie, Kane & Marcus, 2011, p. 290–292). 

1.3.3 Criticism of the CAPM 

In this subchapter, I want to briefly present the limitations of the CAPM as it was widely 

criticised because of its assumptions and simplicity. I do not aim to present all the 

problems and empirical research on the validity of the CAPM as there are too many and 

this is not the goal of this master’s thesis. 

First, I should mention the assumptions of the CAPM, some of them are unrealistic but 

they are necessary for the model to work as it is the case with the majority of models in 

economics and finance. One of the most famous critics is Roll’s (1977) where he stated 

that fully diversified market portfolio is unobservable as it would have to include all types 

of assets including commodities, real estate, human capital etc. According to his critique, it 
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is impossible to empirically test the CAPM. Therefore, to be able to test the model the 

equity indexes such as the S&P 500 are used as the proxies for market portfolio and the 

empirical tests are centred around the expected return-beta relationship (Bodie, Kane & 

Marcus, 2011, p. 298). 

The CAPM fails these tests as a number of authors found that alpha values are not always 

zero. Black, Jensen and Scholes (1972) found that in the US market from 1931 through 

1965 low beta stocks had positive alphas and high beta stocks had negative alphas. These 

findings were later confirmed by more authors what lead to the extensions of the CAPM. 

Some of the extensions are Intertemporal CAPM developed by Merton (1973) who 

extended analysis to multiple periods; Breeden (1979) proposed consumption CAPM 

where investors balance their current consumption and investments; Heaton and Lucas 

(2000) expanded the CAPM with labour income and entrepreneurial income. The attempts 

to extend the CAPM improved its predictive accuracy to some extent but none of the 

models solved all of the problems. 

On the other hand, some authors showed that expected return-beta relationship still holds. 

Mayers (1973) presented single-period CAPM that included also non-marketable assets 

and showed that linear relationship between risk and expected return still holds. The 

difference that appears is that investors will hold different risk portfolios because of the 

inclusion of non-marketable assets such as human capital. Brennan (1970) came to the 

similar conclusion when he researched what happened when investors are in different tax 

brackets. He also found that risk-expected return relationship holds to some extent but 

investors will hold different optimal portfolios. 

It is also not the case that all investors have the same information and homogenous 

expectations. In reality, portfolio managers can have different information and world views 

and will derive different optimal portfolios for their clients. Shefrin and Statman (2000) 

worked on behavioural portfolio theory which contradicts the idea of the CAPM and mean-

variance optimization as they say that investors have more than one portfolio each aimed at 

certain goal – they are at the same time risk averse and risk seeking (they are buying both 

bonds and lottery tickets). 

When it comes to the asset pricing, Fama and French (1993) added two additional factors 

to the CAPM that help predict average returns of stocks. The 3-factor model included 

market factor, small minus big (hereinafter: SMB) factor and high minus low (hereinafter: 

HML) factor. The SMB factor measures excess return of small cap stocks over big cap 

stocks and the HML factor measures higher returns of stocks with high book to market 

ratio. The model was later extended to four factors by Carhart (1997) with an inclusion of a 

momentum factor that describes the tendency of rising stocks to keep going up and 

declining stocks to keep going down. Fama and French (2015) later expanded their model 

to five factors as it has better explanatory power of stocks returns. Added factors are robust 

minus weak (RMW) and conservative minus aggressive (CMA), which measure the 
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difference between returns on stocks with robust and weak profitability and the difference 

between returns on stocks with conservative and aggressive investment, respectively. 

However, even these factor models are not universal as Griffin (2002) found that country-

specific factors better explain stock returns and have lower pricing errors than the world 

factor models. Foye, Mramor and Pahor (2013) showed that the 3-factor model derived by 

Fama and French (1993) performs poorly for the Eastern European countries and that its 

predictive accuracy is improved if the SMB factor is substituted with a term which proxies 

for accounting manipulation. 

Despite the fact that CAPM is not perfect, it is still widely used in practice. The two main 

reasons for that are: its simplicity in decomposition of risk to systematic and firm-specific 

portion; and the fact that market portfolio may be itself efficient as many investment 

companies employ the best portfolio managers and professional analysts but there are very 

few that consistently beat the passive market index (Bodie, Kane & Marcus, 2011, p. 299). 

2 APPROACHES TO PORTFOLIO DIVERSIFICATION 

In this chapter, I will present different weighting approaches for portfolio diversification. 

The previous chapter showed that financial theory favours market capitalization weighting 

as every investor should hold the market portfolio which has the highest reward to risk 

ratio. But several authors found that capitalization weighted portfolios may be inefficient. 

Haugen and Baker (1991) showed that if certain assumptions are violated, i.e. if investors 

disagree about expected return and risk, if their investment returns are taxed, if short-

selling is restricted, if investment in human capital is possible and if foreign investors are 

present, the market capitalization weighted portfolios will be suboptimal investments. They 

showed empirically for the US market between 1972 and 1989 that it was possible to 

construct portfolios with the same or higher expected return and considerably lower 

volatility. Grinold (1992) tested market cap-weighted benchmarks for 5 stock markets: The 

United States, Australia, the United Kingdom, Japan and Germany. He found that in the 

period between January 1973 and April 1991 all benchmarks except DAX for Germany 

were not efficient. 

The academic literature today is clear that if even one of the CAPM assumptions does not 

hold, the market portfolio will be inefficient. Numerous researchers have demonstrated that 

market capitalization weighted indices are bad proxies of the market portfolio (Goltz & Le 

Sourd, 2011) and evidence on the inefficiency of the market-cap weighted portfolios lead 

researchers and industry professionals to propose alternative weighting approaches. The 

alternative approaches presented are equal weighting, fundamentals weighting, minimum 

variance portfolio, equally weighted risk contributions portfolio, the most diversified 

portfolio and maximum Sharpe ratio portfolio. 
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2.1 Market-cap weighted portfolio 

The theoretical basis for market capitalization weighted portfolio (hereinafter: MCW 

portfolio) is the CAPM. Even though it was shown that capitalization weighted portfolios 

are inefficient, the majority of equity indices are market-cap weighted, such as the S&P 

500, Russell 1000, FTSE 100, DAX and many others. A lot of individual and institutional 

investors like the idea that it is best to hold a proxy index for a market portfolio which 

resulted in an ever-growing investment in stock market indexes. However, this should not 

be a surprise because several authors such as Malkiel (1995) found that active investment 

management does not add value on average. In his study of the performance of mutual 

funds between 1971 and 1991, he found that the mean α was slightly negative but 

indistinguishable from zero which implicates that on average professional investment 

managers were unable to beat the passive strategy of investing in the market-cap weighted 

S&P 500 index. That result was also subject to survivorship bias because he took into 

account only mutual funds that survived through that period. The obtained results were 

also before fees which meant that after deducting management fees the average mutual 

fund underperformed the benchmark cap-weighted index. 

Even today, portfolio managers who are employed in mutual funds are usually measured 

against some cap-weighted benchmark. These benchmarks are usually indexes that cover 

the majority of a market capitalization in that country or continent. In the United States, 

portfolio managers performances can be measured against S&P 500 index while in Europe 

portfolio managers can be measured against index such as the STOXX Europe 600. 

Based on that, it is clear that cap-weighted index presents a good starting point for 

comparison of different weighting approaches. Researchers who proposed new weighting 

schemes all compared the performance against cap-weighted index. This is the right thing 

from theoretical standpoint and it is something that is also done by mutual funds. Thus, I 

will calculate the weight of an individual stock in the cap-weighted portfolio with the 

following formula: 

 
𝑤𝑖 =  

𝑀𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑠𝑡𝑜𝑐𝑘𝑠
 (10) 

If the CAPM does not hold and it is possible to find overpriced or underpriced stocks, then 

the market-cap weighting will be an inefficient strategy and investors will construct 

portfolios that overweight the overpriced stocks and underweight the underpriced stocks 

(Arnott, Kalesnik, Moghtader & Scholl, 2010). That was identified as a main drawback of 

the market-cap weighted indexes by many portfolio managers because a portfolio can 

exhibit huge gains in the bull markets when market excesses build up, and subsequently be 

followed by huge losses when stock prices revert to their fair values. The fact that cap-

weighted indexes perform the best in strong bull markets can also be recognized as a 

growth bias (Arnott, Hsu & Moore, 2005). 
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2.2 Equally weighted portfolio 

The first alternative to the market-cap weighted portfolio is equally weighted portfolio 

(hereinafter: EW portfolio), where I assign equal weight to each company in a portfolio, 

regardless of a size of a company. This approach does not require any estimates of 

expected returns, variances or covariance matrix nor does it give any information value to 

all private or public information about a company. This approach basically says that 

investors have zero ability to forecast anything. The equally weighted stock market indexes 

are composed of the same companies as the cap-weighted indexes except that I assign the 

same weight to each company, e.g. S&P 500 Equal Weight Index (Arnott, Kalesnik, 

Moghtader & Scholl, 2010). The formula for equal weighting can be expressed as follows: 

 
𝑤𝑖 =  

1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘𝑠 𝑖𝑛 𝑎 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 (𝑁)
 (11) 

Contrary to the market-cap weighting where one can overweight overvalued and 

underweight undervalued stocks, the equal weighting approach holds small and large 

companies in the same proportions. This strategy can result in higher transaction costs and 

lower capacity for investment in such indexes which can be problematic for large 

institutional investors who manage huge sums of money (Arnott, Kalesnik, Moghtader & 

Scholl, 2010). 

But there is also strong empirical evidence that equally weighted portfolios outperform 

cap-weighted ones. Choueifaty and Coignard (2008), Clarke, De Silva and Thorley (2013) 

confirmed that when they tested multiple weighting strategies while Plyakha, Uppal and 

Vilkov (2012; 2014; 2015), Malladi and Fabozzi (2017) found that in a direct comparison 

of both approaches. Similarly, DeMiguel, Garlappi and Uppal (2009) compared equally 

weighted portfolio strategy with the mean-variance model and its 14 extensions and came 

to the conclusion that none of the models is consistently better than naive diversification 

(equal weighting) in terms of Sharpe ratio, turnover or certainty-equivalent return but the 

research was based on the sector and country portfolios. 

Plyakha, Uppal and Vilkov (2012) compared performance of the equal-weighted portfolio 

with cap-weighted and price-weighted portfolio (a price-weighted portfolio is weighted by 

price per share, example of such index is Dow Jones Industrial Average). They found that 

equal-weighted portfolio outperforms both approaches in terms of average return, Sharpe 

ratio, four-factor alpha and certainty-equivalent return. On the other hand, equally 

weighted portfolio had higher volatility and turnover but even after taking the transaction 

costs into account, it outperformed the other two approaches. Plyakha, Uppal and Vilkov 

(2015) found that difference in total mean returns accounted to 2.71% points per year for 

equal weighted portfolio when compared with cap-weighted. With the four factor model, 

they decomposed total return in systematic component and alpha. They found that 

systematic return of equal weighted portfolio is higher because of higher exposure to 
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market, size and value factors – these are factors that have been identified as sources of 

higher returns by Fama and French (1993) but it had negative exposure to momentum 

factor – factor identified by Carhart (1997). With regard to higher alpha, they found that it 

arises from the monthly rebalancing which is needed to maintain equal weights. When they 

reduced rebalancing to six and twelve months, alpha was statistically indistinguishable 

from that of the cap-weighted portfolio. The findings of Plyakha, Uppal and Vilkov (2012; 

2014; 2015) were confirmed by Malladi and Fabozzi (2017) based on the real world data 

and simulations. They concluded that equal weighting makes economic sense even after 

they accounted for higher portfolio turnover costs. 

2.3 Fundamentally weighted portfolio 

Arnott, Hsu and Moore (2005) proposed to weight stocks by their fundamentals, such as 

book values, cash flows, revenues, sales, dividends and total employment. They argue that 

cap-weighted indexes are sub-optimal when there is price inefficiency in the market and 

this should be corrected by weighting portfolio stocks by their fundamentals (Hsu, 2006; 

Treynor, 2005). They say that fundamentally weighted portfolio (hereinafter: FW 

portfolio) should preserve the benefits of cap weighting, i.e. they should be mostly 

concentrated in large-cap stocks thus preserving investment capacity and liquidity and 

should have low transaction costs. 

The measures used for construction of fundamental indexes by Arnott, Hsu and Moore 

(2005) were the following: 

1. Book value, 

2. Trailing five-year average revenue, 

3. Trailing five-year average gross sales, 

4. Trailing five-year average cash flow, 

5. Trailing five-year average gross dividends, and 

6. Total employment. 

The companies were first ranked by each metric and then the 1,000 largest were included 

in the index at its relative metric weight. Additionally, they constructed composite index 

where they excluded total employment because the numbers are not always available, and 

revenues, which are highly correlated with sales. Composite index weights were 

determined by equally combining weights that each company would have in four 

fundamental indexes. Then they selected the 1,000 largest companies and weighted them 

by composite weight. All portfolios were rebalanced annually after the last trading day of 

each year based on the most recent financial data. When they tried to rebalance index more 

frequently, there were no benefits in terms of higher returns but just higher index turnover 

(Arnott, Hsu & Moore, 2005). 
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The results obtained for the fundamental portfolios in the US stock market from 1962 

through 2004 were compared with a cap-weighted portfolio composed of 1,000 stocks. On 

average, fundamental indexes had 1.97% points higher return than the S&P 500 portfolio, 

2.15% points higher return than the cap-weighted benchmark and they also outperformed 

equal weighted S&P 500 with lower risk. The Sharpe ratio was also higher for fundamental 

indexes. After they accounted for transaction costs, excess return of fundamental indexes 

fell to 2.01% points. Out of all the fundamental indexes, the sales index performed the best 

as it realized excess return of 2.42% points after transaction costs. The period when 

fundamental indexes performed worse than the cap-weighted index was only during strong 

bull markets, especially in years 1998-1999, when large-cap companies experienced huge 

growth. But fundamental indexes more than compensated for lagged performance in the 

years that followed as their outperformance was especially strong in bear markets while in 

average bull market fundamental indexes kept pace with cap-weighted ones. When it 

comes to sector weightings, the fundamental indexes change composition more slowly as 

the economy evolves, while cap-weighting can quickly increase exposure to sectors 

favoured by investors (Arnott, Hsu & Moore, 2005). 

Hsu and Campollo (2006) compared performance of fundamental indexes and MSCI cap-

weighted indexes for 23 countries from 1984 to 2004 and found average outperformance of 

fundamental indexes by 2.8% points. The outperformance was robust over different market 

conditions and also held for small and medium sized companies. These indexes also had 

slightly lower standard deviation and average beta lower than one. Again, fundamental 

indexes underperformed only at the height of the dot-com bubble. Hemminki and Puttonen 

(2008) tested fundamentally weighted portfolio using European data between 1996 and 

2006. They constructed fundamentally weighted portfolios from 50 large-cap European 

stocks. The fundamental portfolios average excess return was 1.76% points per year with 

all portfolios producing higher returns and higher Sharpe ratios. However, results were 

statistically significant only for dividend portfolio, book value portfolio and composite 

portfolio which can be explained by relatively short observation period. 

Why fundamentally weighted portfolios outperform cap-weighted ones has led to a debate 

between researchers. Hsu and Campollo (2006), Arnott, Hsu and Moore (2005) say that 

fundamental weighting portfolio performs better because it increases weight of the 

company only when it grows book value, cash flows, sales and dividends faster than the 

rest of the economy. Thus, it underweights growth companies that are not increasing their 

fundamentals. They also disagree that fundamental weighting is actually value strategy and 

argue that fundamentals strategy outperforms value strategy in all market conditions while 

it preserves investment capacity and diversification. Fundamental weighting also retains 

some exposure to growth companies that are increasing their fundamentals in contrast to 

equal weighting which discards them. 

On the other hand, Perold (2007) and Kaplan (2008) disagree with the proponents of 

fundamental weighting and say that stock market prices fluctuate around their fair values, 
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and call their line of reasoning the “noisy market hypothesis”. Perold (2007) showed that 

the pricing error is uncorrelated with the stock’s fair value and is also uncorrelated with the 

stock’s market value. This shows that cap-weighting does not necessarily underweight 

undervalued stocks and overweight overvalued stocks. 

Thereby, the superior performance of fundamental weighting is a result of active portfolio 

management and investment in value stocks. Value-biased portfolios have historically 

outperformed unbiased portfolios and it should not be a surprise that fundamentally 

weighted portfolios also outperform cap-weighted ones. That is the same reason as why 

equally weighted portfolios do better than cap-weighted ones. And despite their elegance, 

fundamental indexes may not be the most efficient way to capture value premium as there 

are possibly more advanced multi-factor strategies that will exploit other anomalies 

(Perold, 2007; Kaplan, 2008; Blitz & Swinkels, 2008). 

2.4 Minimum variance portfolio 

The approaches that I described so far are simple to implement and do not require any 

estimates of expected returns, variances and covariance matrix. The market-cap weighting 

comes from financial theory, while equal weighting and fundamentals weighting are 

considered heuristic approaches. With minimum variance portfolio (hereinafter: MV 

portfolio), I return back to the theoretical grounds of the modern portfolio theory. 

Minimum variance or global minimum variance portfolio is the most left point on the 

efficient frontier as it was shown in Figure 3. To construct minimum variance portfolio, 

one has to optimize portfolio weights using only a variance-covariance matrix. Minimum 

variance portfolios are found by equalizing the marginal risk contributions of each stock to 

portfolio risk (Clarke, De Silva & Thorley, 2013). This is different than finding a portfolio 

with the highest risk-reward ratio (the maximum Sharpe ratio portfolio) where one must 

optimize portfolio using variance-covariance matrix and expected returns. 

The minimum variance portfolio is thus considered risk-based approach as it optimizes 

portfolio only with respect to risk measure. Risk-based approaches became popular 

because it is easier to estimate variances and covariance matrix than expected returns. If 

expected returns are estimated with high imprecision, this can result in very poor portfolio 

optimization (the problems of estimation of portfolio moments are covered in detail in the 

third chapter). As a consequence, researchers studied risk-based approaches extensively 

and proposed other approaches to portfolio optimization such as an equally-weighted risk 

contributions portfolio and most-diversified portfolio which I will present after the 

minimum variance portfolio. 

The global minimum variance portfolio and different methods for forecasting covariance 

matrix were studied extensively by Chan, Karceski and Lakonishok (1999). In their study 

for the US equity market between 1973 and 1997, the minimum variance portfolio 



 

22 

annualized standard deviation was 12.94% compared to 16.62% for the equally weighted 

portfolio and 15.54% for the cap-weighted portfolio. Sharpe ratios were 0.64, 0.60 and 

0.45, respectively, and the average betas of different optimized minimum variance 

portfolios were between 0.5 and 0.7 compared to 1.07 for the equally weighted portfolio. 

The minimum variance portfolio invested more than 40% to utility sector while the cap-

weighted portfolio invested 8.66% and the equally-weighted portfolio invested 15.31% on 

average. The minimum variance portfolios were also slightly tilted towards the larger 

stocks and value stocks. They concluded that minimum variance portfolio helps reduce 

risk, even though the correlation between covariance forecasts and realized covariances 

was only 0.20. 

Clarke, De Silva and Thorley (2006) examined minimum variance portfolio performance 

in the US from 1968 till 2005. They took constraints that most portfolio managers face into 

account and did not allow short sales and limited maximum weight for individual stock. 

They found similar pattern as Chan, Karceski and Lakonishok (1999) as cap-weighted 

benchmark had annualized return of 11.5%, standard deviation of 15.4% and Sharpe ratio 

of 0.36, compared to the minimum variance portfolio which had 12.4%, 11.7% and 0.55, 

respectively. In both studies, portfolio variance was reduced between 20% and 25%, but 

what is more interesting is that minimum variance portfolios still realized higher returns 

which resulted in much higher Sharpe ratios. Clarke, De Silva and Thorley (2006) explain 

the higher return of minimum variance portfolios with higher exposure to low-cap and 

value stocks. 

The logic of minimum variance portfolios outperforming cap-weighted portfolios is not 

consistent with the CAPM and the established financial theory. How can minimum 

variance portfolios offer lower volatility but at the same time exhibit returns that match or 

exceed the market? This anomaly of high risk stocks not necessarily offering higher returns 

has been recorded by Fama and French (1992), Ang, Hodrick, Xing and Zhang (2006) 

further described this anomaly of low risk stocks having high returns and Clarke, De Silva 

and Thorley (2011) showed how minimum-variance portfolios exploit this long-standing 

critique of the CAPM and load portfolios with low beta stocks which lower portfolio risk 

but maintain a decent return. 

The research from Chow, Hsu, Kuo and Li (2014) tested minimum variance portfolios in 

the global and emerging markets. The minimum variance portfolios in the global and 

emerging markets had 30% and 50% lower volatility than the cap-weighted portfolios. 

This is not surprising as correlations in the US market are higher and potential benefits of 

minimum variance portfolios are higher for the global and emerging markets. Improvement 

in Sharpe ratio was also statistically significant. Therefore, the anomaly is consistent across 

countries and time. Additionally, they compared optimized minimum variance portfolios 

with simple heuristic approaches such as weighing portfolio by inverse of beta and inverse 

of volatility. They found optimized portfolios to have lower volatility but also lower long-

term returns which resulted in similar Sharpe ratios for all strategies. 
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Minimum variance portfolios should thus be considered by investors as possible 

alternatives that can yield decent return at low risk. However, as Chow, Hsu, Kuo and Li 

(2014), Clarke, De Silva and Thorley (2006) noted there are some drawbacks such as high 

tracking errors relative to the cap-weighted portfolios which can be problematic for 

portfolio managers who are evaluated against cap-weighted benchmarks. The cap-weighed 

portfolio can strongly outperform minimum variance portfolio in bull markets. 

Additionally, minimum variance portfolios also have slightly lower investment capacity, 

lower liquidity and higher turnover but this should not discourage portfolio managers to 

consider investing in minimum variance portfolios. 

2.5 Equally weighted risk contributions portfolio 

Related approach to minimum variance portfolio is risk parity or equal risk contribution 

portfolio (hereinafter: ERC). The equally weighted risk contributions portfolio was first 

mentioned by Qian (2005), who proposed to allocate risk equally across asset classes, 

which is very different than balanced allocation of capital. He described this approach as 

risk parity and showed on historical data how in a 60/40 portfolio split between stocks and 

bonds, stocks contributed 93% of risk and bonds contributed 7%. This clearly shows that 

capital allocation is not equal to risk allocation. 

Maillard, Roncalli and Teiletche (2010) researched equally weighted risk contributions 

approach applied to sectors portfolio. They describe the ERC approach as the middle 

ground between equally weighted and minimum variance portfolio. On one hand minimum 

variance portfolio can suffer from high concentration (I described that in the previous 

chapter where I mentioned huge concentration in low volatility sectors such as utilities) 

and on the other hand equally weighted portfolio can have poor risk diversification if there 

are significant differences in individual risks. Equally weighted risk contributions portfolio 

should solve these problems as it equalizes risk contributions from different portfolio 

components, which maximises diversification of risk. This means each asset or stock 

contributes the same amount towards the total portfolio risk. Qian (2006) showed that risk 

contributions can be good predictors of large losses. That is why the ERC strategy can 

prevent enormous losses in a 2007/2008 market environment. 

In the ERC portfolio, each stock’s total risk contribution is equalized compared to the 

minimum variance portfolio which equalizes risk contribution on the marginal basis. Thus, 

the ERC portfolios will lie within efficient frontier (Clarke, De Silva & Thorley, 2013) and 

stocks with higher volatility will have lower weights and vice versa. The ERC portfolio 

can also be constructed using different risk measures such as value-at-risk or expected 

shortfall (Stefanovits, 2010). 

Maillard, Roncalli and Teiletche (2010) showed theoretically and empirically that ERC 

portfolios have volatility between the minimum variance and the equally weighted 

portfolios. Theoretical exercise clearly showed how the ERC portfolio weights are ranked 
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in the same order as in the minimum variance portfolio but they are more balanced. The 

ERC portfolio thus represents a variance minimizing portfolio with a constraint of 

sufficient diversification. Additionally, when they compared the ERC portfolio with the 

minimum variance portfolio and the equally weighted portfolio, they found that ERC 

portfolio performed the best in terms of Sharpe ratio when there was huge heterogeneity in 

correlation coefficients and individual volatilities, which was the case for the global 

diversified portfolio. On the other hand, Sharpe ratio was in line with equally weighted 

strategy for the US sectors portfolio as there was similarity in correlation coefficients and 

volatilities, the minimum variance strategy had the highest Sharpe ratio in that sample. All 

in all, the ERC portfolio can be considered as an alternative portfolio construction method 

as it has smaller drawdowns, is less concentrated and has lower turnover than compared 

strategies. 

Others, who tested the efficiency of the ERC portfolio, have mostly confirmed the 

findings. Stefanovits (2010) reported that portfolio constructed from 500 stocks where risk 

was similarly distributed did not outperform 1/N strategy. Cagna and Casuccio (2014) 

reported favourable results when using expected shortfall as risk measure and its benefits 

for protection against large losses. The ERC approach can yield the best results when it is 

applied to sector portfolios that are already diversified by market-cap, equal weighting or 

some other approach - the fields were the approach was also researched the most - as an 

asset class allocation strategy. 

2.6 Most diversified portfolio 

The last of the risk based approaches presented is the most diversified portfolio 

(hereinafter: MD portfolio), which was first introduced by Choueifaty and Coignard 

(2008). They defined the most diversified portfolio as a portfolio that maximizes the 

diversification ratio. This is the ratio of the weighted average of volatilities divided by the 

portfolio volatility, which can be written as: 

 
𝐷𝑃 =

𝑤𝑇 ∗  𝜎

√𝑤𝑇 ∗  ∑  ∗ 𝑤
 (12) 

Where σ is N*1 vector of volatilities, ∑ is a covariance matrix and DP is the diversification 

ratio which will be strictly higher than 1 for long-only portfolio, except when portfolio 

consist of only one asset in which case the diversification ratio will be equal to 1. 

The diversification ratio of the most diversified portfolio will increase when the 

correlations decrease. In the extreme case when all securities are perfectly correlated, the 

diversification ratio will be equal to 1. In the most diversified portfolio, all stocks included 

in the portfolio have the same correlation to the portfolio, while any other stock not 

included in the most diversified portfolio has higher correlation (Choueifaty, Froidure & 

Reynier, 2013). 
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Choueifaty, Froidure and Reynier (2013) favour the most diversified portfolio over the 

other risk-based approaches because the minimum variance portfolio invests only in asset 

with low volatility which makes the ERC portfolio and the most diversified portfolio the 

only portfolios that are balanced on the risk contribution basis. But the ERC portfolio 

invests in all stocks which is not always the best thing. To test the approach, Choueifaty 

and Coignard (2008) compared the most diversified portfolio with a market-cap weighted 

portfolio, equally weighted portfolio and minimum variance portfolio. They analysed 

performance in the US and the Eurozone equity markets from 1992 to 2008 and found 

superior risk adjusted returns for the most diversified portfolio in both regions. The most 

diversified portfolio had the highest return of all portfolios and variance that was smaller 

only for the minimum variance portfolio. The cap-weighted benchmark performed the 

worst in terms of Sharpe ratio and showed very poor performance in that period. 

Choueifaty, Froidure and Reynier (2013) added the ERC portfolio to comparison. They 

found all portfolios to outperform cap-weighted portfolio with minimum variance 

portfolio, ERC portfolio and most diversified portfolio having higher returns and lower 

volatility than cap-weighted benchmark. Equally weighted portfolio had higher returns 

than cap-weighted portfolio but similar volatility. Methods that used asset covariance 

matrix resulted in better diversification and lower volatility. The comparison of risk based 

approaches showed minimum variance and most diversified portfolio to be the best 

candidates for optimal portfolio as they successfully minimized volatility and had high 

Sharpe ratio. 

Testing the exposure to Fama and French factors Choueifaty, Froidure and Reynier (2013) 

found all approaches to have positive exposure to the SMB factor, which was the highest 

for equally weighted portfolio. Risk based approaches had the lowest exposure to market 

factor and all approaches were also exposed to the HML factor which measures bias 

towards value stocks. Finally, alpha was the highest for the most diversified portfolio 

which is consistent with the goal of maximum diversification having balanced exposure to 

risk factors. 

In contrast, the study from Clarke, De Silva and Thorley (2013) tested the same approaches 

- market-cap weighting, equal weighting, minimum variance, equal risk contributions and 

maximum diversification. The research was done for the largest 1,000 US stocks from 

1968 to 2012. Their results were very different than those of Choueifaty and Coignard 

(2008), Choueifaty, Froidure and Reynier (2013) as they reported the highest Sharpe ratio 

for minimum variance and equal risk contributions portfolio. High Sharpe ratio was also 

reported for equal weighting while maximum diversification had Sharpe ratio lower than 

market-cap weighted portfolio. Excess annual return was the highest for equally weighted 

and risk parity portfolio and volatility was the lowest for the minimum variance portfolio. 

Surprisingly, the most diversified portfolio had the highest volatility. 
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Another important thing is the average number of positions. Both maximum diversification 

portfolio and minimum variance portfolio included on average less than 100 securities. 

This implies that by selecting fewer less correlated and less risky securities it is possible to 

achieve better risk reduction (Clarke, De Silva & Thorley, 2013). Additionally, if anomaly 

of low risk and high return documented by Ang, Hodrick, Xing and Zhang (2006) will 

persist in the future then low volatility construction methods such as the minimum variance 

could also offer higher returns. 

To conclude, risk based approaches offer great opportunities for reducing portfolio risk, 

but approaches such as equal risk contributions and maximum diversification are relatively 

new and are not well documented. Many researchers point out that results for different 

weighting schemes may be subject to data mining and are difficult to replicate. This can 

also be the case for the most diversified portfolio which performed very differently in the 

studies of Choueifaty and Coignard (2008), Choueifaty, Froidure and Reynier (2013) and 

Clarke, De Silva and Thorley (2013). The equal risk contributions portfolio or risk parity is 

also relatively new approach first introduced in the 1990s as an asset allocation strategy 

and was applied to stock portfolios only recently. Therefore, results from minimum 

variance portfolio may be more robust as it was already detailed in the modern portfolio 

theory in the 1960s (Clarke, De Silva & Thorley, 2013). 

2.7 Maximum Sharpe ratio portfolio 

Maximum Sharpe ratio portfolio (hereinafter: MSR portfolio) is the tangency portfolio 

from the modern portfolio theory as it was defined by Markowitz (1952). It is the portfolio 

with the highest return per unit of risk, at least on an ex ante basis. In theory, the 

construction of optimal risky portfolio should be a goal of every portfolio manager. 

Investor’s risk aversion should come into play only in the second step when funds are split 

between risky portfolio and risk-free asset – the process described by Tobin (1958). 

Markowitz (1956) derived the mean-variance model and showed exactly how investors 

should maximize expected return for every level of risk. But the process of finding optimal 

risky portfolio includes estimation of stock expected returns and variance-covariance 

matrix. I already mentioned difficulties in estimating covariance matrix, which is the only 

input for risk based portfolio construction methods, but expected returns are even more 

difficult to estimate. Merton (1980) showed how small changes in expected returns can 

lead to very different portfolio weights. This was later observed also by other researchers 

and in the absence of good input estimates Michaud (1989) described the process as error 

maximization. 

DeMiguel, Garlappi and Uppal (2009) tested 14 models for mean-variance optimization 

and concluded that none of them beats naïve equally weighted strategy on a consistent 

basis due to the errors in estimating portfolio parameters. This lead Martellini (2008) to 

design optimal risky portfolios based on the improved estimators of expected returns and 
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variance-covariance matrix. The research was extended two years later by Amenc, Goltz, 

Martellini and Retkowsky (2010). To construct the MSR portfolio they used the stock’s 

total downside risk as a proxy for the expected excess return and principal component 

analysis to estimate the covariance matrix (I describe the methods in detail in the next 

chapter). 

The results obtained by Martellini (2008), when using improved estimators for expected 

returns and variance-covariance matrix, showed it is possible to achieve superior risk-

adjusted returns with the MSR portfolio. He found that market-cap weighted portfolios had 

the lowest Sharpe ratios and were also outperformed by equally weighted counterparts and 

the MV portfolios. The comparison of equally weighted and minimum variance portfolios 

suggested that focusing only on volatility results in lower risk but severely affects 

performance of the MV portfolios. Turning to the MSR portfolios, he found they 

outperformed all other portfolios when he used total volatility as a measure of expected 

returns in combination with factor based estimator of the correlation structure of stock 

returns. When he used other correlation estimators or different models for estimating 

expected returns, such as the Fama-French model, he found that the MSR portfolios deliver 

similar Sharpe ratios as equally weighted counterparts. Thus, it is possible to construct 

better equity benchmarks with maximum Sharpe ratio portfolios, but their efficiency 

depends heavily on the estimators used for the expected returns and correlation structure. 

Amenc, Goltz, Martellini and Retkowsky (2010) extended the preliminary research done 

by Martellini (2008). They adjusted the method of estimating expected returns to control 

higher order portfolio moments and used stock’s semi-deviation instead of total volatility. 

The covariance matrix estimation process was also adapted by using the principal 

component analysis instead of forcing predetermined factor structure. The efficient MSR 

portfolio was compared with the market-cap weighted S&P 500 index from 1959 to 2008. 

The MSR portfolio was constructed to have the same constituents as the benchmark index 

by imposing minimum and maximum weight constraints. Short sales were prohibited and 

weights had to sum to one. They also implemented approach to control for portfolio 

turnover and did not necessarily rebalance the portfolio every quarter unless there was 

significant deviation from optimal weights. These constraints resulted in a more balanced 

portfolio and lower transaction costs which would need to be as high as 13% to offset the 

benefits of efficient diversification. 

The obtained results showed efficient weighting to have lower volatility, higher average 

return and higher Sharpe ratio. The Sharpe ratio was roughly 70% higher and the 

difference was statistically significant at 0.1% level. The difference in annualised return 

was also confirmed by the CAPM analysis which showed higher alpha for efficient 

diversification and confirmed that the MSR portfolio did not have greater exposure to 

market risk. The higher Sharpe ratio also did not result in higher value-at-risk or downside 

risk. The comparison with equally weighted portfolio again showed superiority of the MSR 

portfolio although less pronounced than with respect to the cap-weighted portfolio. The 
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Sharpe ratios were 0.41 for the MSR portfolio, 0.35 for the EW portfolio and 0.24 for the 

cap-weighted portfolio (Amenc, Goltz, Martellini & Retkowsky, 2010). 

An overview of efficient indexation in different economic conditions, time periods and 

market conditions showed greater stability of returns than the cap-weighted portfolio and 

much higher ending value of one dollar invested over the 49 years period. The only period 

when the cap-weighted portfolio delivered superior returns was the strong bull markets of 

the late 1990s when it was difficult to outperform the trend following strategy. Otherwise, 

the MSR portfolio was more efficient as Sharpe ratios were consistently higher than those 

of the cap-weighted portfolio in recessions, expansions and in the periods of low and also 

increased market volatility. International evidence for other regions (United Kingdom, 

Eurobloc, Japan and Asia-Pacific ex Japan) in the approximately seven years period 

between 2002 and 2009 showed improved Sharpe ratios for all countries/regions. This 

suggests that using efficient diversification should also yield similar results in other stock 

markets (Amenc, Goltz, Martellini & Retkowsky, 2010). 

3 ESTIMATION OF PORTFOLIO MOMENTS 

In this chapter, the focus is on portfolio moments and review of different methods for their 

estimation. Expected returns and variance-covariance matrix present first and second 

portfolio moment, respectively. Higher order moments include coskewness and cokurtosis 

matrix which present third and fourth portfolio moment, respectively. 

In the context of the modern portfolio theory, I am looking for a mean-variance optimal 

portfolio and assume normal distribution of stock returns. Thus, the portfolio is optimized 

only with respect to the first and second portfolio moment. However, when stock returns 

deviate hugely from the normal distribution the optimization techniques that optimize 

portfolio with respect to the third and fourth portfolio moment can improve portfolio risk 

adjusted return. 

3.1 Expected returns 

In literature, it is well documented that sample based means are bad proxies for stock’s 

future expected returns as they result in poor portfolio optimization. This has been shown 

by Merton (1980), Chopra and Ziemba (1993), Britten-Jones (1999) and many others, who 

showed that small differences in expected returns will affect optimizers to allocate the 

largest weights to stocks with the most extreme estimates of expected returns – large long 

positions in stocks with high expected returns and large short positions in stocks with 

negative expected returns. In the absence of an efficient estimation of expected returns, 

heuristic and risk based approaches were developed which do not rely on expected return 

estimates. 
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But to construct the tangency portfolio as defined in the modern portfolio, theory efficient 

proxies for expected returns are needed. There are several methods that can be used to 

estimate expected returns and improve the out-of-sample performance of the MSR 

portfolio. I will briefly present the next approaches: 

1. Factor models, 

2. Shrinkage estimators, 

3. Black-Litterman model, 

4. Resampling, 

5. Implied cost of capital, and 

6. Volatility measures. 

The first group of methods for estimating expected returns include factor models, i.e. the 

CAPM, Fama and French 3-factor model, its extension with momentum factor and Fama 

and French 5-factor model. I described these models in the first chapter of the thesis where 

I said models with more factors have the potential to yield better results than the CAPM. 

However, empirical evidence of portfolio diversification showed that factor models may 

not be the best for optimizing portfolios. The study from Bartholdy and Peare (2005) 

compared the CAPM and Fama and French 3-factor model for estimating expected returns 

and concluded that 3-factor model is marginally better but it can still explain only 5% of 

differences in returns. Martellini (2008) reported lower Sharpe ratios for optimal portfolios 

when using 3-factor model instead of the total volatility measure. Additionally, Fama and 

French (1997) themselves showed that large standard errors are typical for the CAPM and 

for the 3-factor model due to the uncertainty about true factor risk premiums. 

Shrinkage concept was first introduced by Stein (1955), who demonstrated the benefit of 

shrinking sample estimates toward some constant. Today, one of the most popular 

shrinkage estimators for expected returns is the Bayes-Stein estimator. The idea is that 

each asset’s expected return should be shrunk toward a common value or some global 

mean. This common value can be set to equal the expected return of minimum variance 

portfolio (Jorion, 1986). As it has been showed by Jorion (1985; 1986), this reduces 

estimation risk and improves portfolio performance. The improvement in performance is 

achieved by reducing extreme expected return estimates and thus big portfolio weights, 

which suggests that most of the diversification benefits come from risk reduction. 

The Black-Litterman model was developed by Goldman Sachs employees (Black & 

Litterman, 1992), who derived a model that starts with the equilibrium return of stocks 

defined by the global CAPM. The weights implied by equilibrium returns can then be tiled 

according to investor’s beliefs about stocks relative or absolute performance. Additionally, 

investor can specify how strong are his views about stock performances and thus the 

influence on portfolio weights. This approach starts with balanced (market-cap) weights 

and then increases weights of those stocks favoured by portfolio manager. 
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Another way to improve portfolio optimization was proposed by Michaud and Michaud 

(1998) called resampling and is based on Monte Carlo methods. The resampling approach 

first resamples the data and let investors create hundreds of alternative efficient frontiers, 

which are then averaged to arrive at a resampled efficient frontier with average weights 

(Michaud & Michaud, 2008). The approach received mixed support as Markowitz and 

Usmen (2003) found that on average Michaud resampled frontier achieves higher utility 

than Bayesian approach while Harvey, Liechty and Liechty (2008) reported the contrary 

and rejected the findings of Markowitz and Usmen (2003). 

Additional approach which can be used to improve upon expected return estimates is the 

use of implied cost of capital. The adequacy of this approach was tested by Pastor, Sinha 

and Swaminathan (2008), who confirmed implied cost of capital as a useful tool for 

capturing time-varying expected returns and its positive correlation with risk. Bielstein and 

Hanauer (2018) used implied cost of capital based on analyst’s earnings forecasts as a 

proxy for expected returns in portfolio construction. Implied cost of capital equates 

forecasted cash flows to equity with the current stock price. Additionally, they corrected 

predictable errors in analysts forecast and used adapted expected return estimates in mean-

variance optimization framework. They reported favourable results using these estimates 

as their MSR portfolio outperformed cap-weighted, equally weighted and minimum 

variance portfolio. The drawback of this approach is the need for sufficient analyst’s 

coverage of stocks, which can limit the usefulness of the approach to large cap stocks and 

developed markets. 

The last approach includes use of volatility measures as a proxy for excess expected 

returns. Total volatility as a proxy for excess expected returns and input to portfolio 

optimization was first used by Martellini (2008), who followed the evidence that 

idiosyncratic volatility has explanatory power for the cross section of expected returns. 

This was shown by Malkiel and Xu (2006), who demonstrated that if investors are unable 

to hold market portfolio for whatever the reason, then they will also care for idiosyncratic 

risk (risk of particular asset). This is contrary to the popular belief and traditional models 

such as the CAPM which says that only market risk should be priced. This means stocks 

with higher firm-specific risk should earn higher returns, something that was also 

confirmed by Malkiel and Xu (1997). 

The estimate of total volatility, which is the sum of market and firm-specific risk, resulted 

in superior performance of the MSR portfolio in a study by Martellini (2008). He also 

showed that explanatory power of total volatility for predicting excess expected returns is 

not driven by systematic volatility. The total volatility estimate was slightly modified in the 

later research by Amenc, Goltz, Martellini and Retkowsky (2010) to take into account also 

higher order moments. They used stock’s semi-deviation which considers only deviations 

below the mean. The performance of the MSR portfolio using semi-deviation as a measure 

of excess expected returns resulted in much better performance than a cap-weighted 

portfolio. 
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3.2 Variance-covariance matrix 

Despite the consensus among researchers that errors in expected returns have bigger 

impact for portfolio optimization than errors in return variances and covariances, the later 

are also important and have to be estimated precisely (Merton, 1980; Chopra and Ziemba, 

1993; Chan, Karceski & Lakonishok, 1999). 

When estimating vector of returns, the number of estimates needed is the same as the 

number of stocks in a portfolio. The same number of estimates is needed for return 

variances, while number of return covariances is much higher. The covariance matrix (or 

correlation matrix) for a portfolio consisting of 50 stocks will need 1,225 correlation 

estimates (=50 x 49/2). The example of the correlation matrix for portfolio of 4 stocks is 

presented below: 

 

[

1 − − −
0.2 1 − −
0.7 0.9 1 −
0.5 −0.1 0.8 1

] (13) 

As one can see in the above correlation matrix some correlations are very low (even 

negative) and this can pose a problem for portfolio optimization. Maybe the correlations 

between stocks are in reality that low and one would be able to construct portfolio with 

very low volatility but usually this is not the case as too low correlations are mostly the 

result of an estimation error. Chan, Karceski and Lakonishok (1999) attributed poor 

performance of sample covariance matrix to a possibility of firm-specific events that 

affected several stocks, but these events are not expected to continue in the future. That is 

why sample correlation matrix should not be used in portfolio optimization as one can get 

very extreme weights. 

The correlation matrix estimation process can be improved with several methods. I will 

present the following methods which are most widely documented and tested: 

1. Portfolio constraints, 

2. Factor models, 

3. Principal component analysis, 

4. Shrinkage estimators, and 

5. Use of high frequency (daily) data. 

One simple way of reducing estimation error in covariance matrix is imposing no-short-

sale constraints. This was found by Jagannathan and Ma (2003) who showed that when one 

do not allow negative weights, sample covariance matrix performs in line with a 

covariance matrix estimated based on shrinkage estimators, factor models and daily data. 

The reason why non negativity constraint helps is the fact that stocks which have high 

correlation with others will usually receive negative weights (short positions). But high 

correlation can be subject to upward biased estimation error which is reduced by forcing 
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non negativity constraint. The similar logic applies to using upper bound constraints. 

Stocks which have low correlation will in normal circumstances receive huge weights as 

they reduce portfolio risk, but this can be result of downward biased estimation error. 

However, when non-negativity constraints are already in place additional restrictions such 

as upper bound weight limits do not offer additional significant improvement. On the other 

hand, constraining portfolio weights does not affect errors in expected returns. 

The second group are factor models which were also widely used in the research papers. 

Chan, Karceski and Lakonishok (1999) found some underlying structure in return 

covariances and showed that factor models better capture this structure. They tested the 

standard CAPM model, the 3-factor Fama and French model, its extension with 

momentum factor and also an eight-factor model and a ten-factor model. They found factor 

models to be successful in levelling out the covariances, which resulted in less extreme 

forecasts. However, a few factors such as market, size and book-to-market value factors 

are enough to help capture a covariance structure, and adding more factors do not 

necessarily reduce a forecast error as these models tend to overfit the data. Favourable out 

of sample result using factor-based correlation matrix with Fama and French 3-factor 

model was obtained by Martellini (2008) and Chow, Hsu, Kuo and Li (2014). 

A large number of researchers also use principal component analysis (hereinafter: PCA) 

which extracts common factors that are driving the co-movement of stock returns. The 

principal component analysis is in fact a factor model, but with a difference that it 

determines the underlying risk factors from the data. This is different than the classical 

factor models where one have to choose the model with the right number of factors. The 

main benefit of PCA is thus to extract the factors which explain most of the variability of 

stock returns without relying on the particular factor model to be a true pricing model 

(Amenc, Goltz, Martellini & Retkowsky, 2010). Success of the PCA was reported in 

studies from Fujiwara, Souma, Murasato and Yoon (2006), Clarke, De Silva and Thorley 

(2006), Amenc, Goltz, Martellini and Retkowsky (2010) and Chow, Hsu, Kuo and Li 

(2014) to name a few. 

The next method is shrinkage of the sample covariance matrix. I will describe the approach 

derived by Ledoit and Wolf (2003; 2004) which is similar to the Bayes-Stein shrinkage 

estimator used for estimating expected returns. The shrinkage estimator for covariance 

matrix uses sample covariance matrix and pulls the extremely high coefficients downwards 

to compensate for the likely positive estimation error, and vice versa. It pulls extremely 

low estimated coefficients upwards to compensate for negative estimation error. The 

shrinkage target towards which sample covariance matrix is shrunk is a single factor model 

(the CAPM) in Ledoit and Wolf (2003) and constant correlation model in Ledoit and Wolf 

(2004). The two shrinkage targets have comparable performance but the latter is easier to 

implement. In the tests performed by Ledoit and Wolf (2004), sample covariance matrix 

performed the worst while principal components matrix produced similarly good results as 

shrinkage estimators. 
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Using daily returns to estimate covariance matrix instead of weekly or monthly is also a 

widely used approach by practitioners and academics. Daily data can be used to estimate 

daily sample covariance matrix or daily covariance matrix based on factor models, such as 

one-factor model and three-factor model (Jagannathan and Ma, 2003). When using daily 

data, one increases the number of observations which has a potential to improve the 

prediction of covariances (Gosier, Madhavan, Serbin & Yang, 2005). 

When it comes to forecasting variances Chan, Karceski and Lakonishok (1999) found that 

variances are more stable and thus easier to predict. One can, therefore, use sample 

estimates of past variances as they give relatively good prediction of future variances. One 

way to improve variance prediction is factor models, but again models with more factors 

do not necessarily raise forecasting power (Chan, Karceski & Lakonishok, 1999). Sample 

estimates were used in a study by Martellini (2008) and performed quite well. 

Additionally, Maretllini (2008) proposed to use a simple GARCH (1, 1) model to account 

for the presence of volatility risk as there is extensive empirical evidence that stock market 

volatility changes randomly over time. The result was somewhat improved performance of 

the tangency portfolio but the difference was not huge. 

3.3 Coskewness and cokurtosis matrix 

Markowitz mean-variance framework requires only expected returns and variance-

covariance matrix as the inputs to portfolio optimization. But stock returns are not always 

normally distributed, which is the assumption of the modern portfolio theory. 

Optimizations are usually done without controlling for skewness and kurtosis but 

introduction of the estimators which control also for the skewness and kurtosis can 

improve the out of sample performance of optimized portfolios. The Figure 7 shows how 

skewness and kurtosis affect the normal distribution. 

Figure 7: Skewness and kurtosis 

 

Source: Own work. 

In the above figure, one can see standard normal distribution, negatively and positively 

skewed distribution, leptokurtic distribution (positive kurtosis) and platykurtic distribution 
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(negative kurtosis). Skewness is a measure of asymmetry of the distribution with the value 

of zero for normal distribution. If skewness coefficient is lower than zero, then there is 

negatively skewed distribution, and vice versa. Negative skewness is undesirable for 

investors as it has longer and fatter tail on the left side, which means higher probability for 

larger losses. On the other hand, kurtosis is a measure of tailedness of the distribution, 

where the value of the kurtosis coefficient for normal distribution equals 3. For platykurtic 

distribution (positive kurtosis) value of kurtosis coefficient is less than 3, and higher than 3 

for leptokurtic distribution (negative kurtosis). Investors will prefer positive kurtosis 

because of shorter tails which indicate fewer extreme outcomes are possible. This has 

positive benefits for portfolio construction as it makes final outcome more predictable. 

One of the first empirical evidences on the investor’s preference for positive skewness was 

presented by Kraus and Litzenberger (1976), who showed that in the case of higher 

skewness investors will accept lower expected returns. Mitton and Vorkink (2007) 

described the trade-off between diversification and skewness. They said that diversification 

limits the upside potential, which motivates investors to hold imperfectly diversified 

portfolios that have much higher positive skewness in order to increase their probability for 

higher payoffs. On the other hand, aversion to kurtosis (higher probability in the tails of the 

distribution) has been confirmed in a study by Dittmar (2002). 

Following the evidence that investors are prepared to accept lower return and higher 

volatility in exchange for positive skewness and lower kurtosis (Boyer, Mitton & Vorkink, 

2010) and the insight from Chen, Chen and Chen (2009) about the relationship between 

expected returns and downside risk, Amenc, Goltz, Martellini and Retkowsky (2010) 

proposed to use an alternative measure for expected returns that captured also higher order 

moments of returns. They used stock’s semi-deviation as a proxy for expected return as it 

should also indirectly control for skewness and kurtosis. This is an example of indirect 

consideration of higher order moments. 

On the other hand, introduction of estimators for higher order moments and comoments 

increase the dimensionality problem. But as Martellini and Ziemann (2010) demonstrated, 

it is possible to extend different statistical techniques from variance-covariance matrix 

estimation to higher order moments. They tested factor-based estimators, shrinkage 

estimators and constant correlation estimators and reported improved out of sample 

expected utility when using shrinkage or structured estimators instead of the sample 

estimators for coskewness and cokurtosis matrix. However, when it is still unclear which 

inputs for the mean-variance optimization are the best for the construction of efficient 

portfolios, additional research has to be done to improve higher order moments and 

comoments estimates before they can be widely used in portfolio optimizations. 
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4 EMPIRICAL ANALYSIS: EFFICIENT PORTFOLIO 

DIVERSIFICATION OF THE EUROPEAN LARGE AND 

SMALL-CAP STOCKS 

In the last part of the thesis, I construct and test 9 different portfolios. First, research 

methodology will be described – selected portfolios, presentation of data, the construction 

of different portfolios and portfolio performance metrics. After that, the results of different 

portfolios on the sample of large and small-cap European stocks will be presented. 

Portfolios are evaluated based on the different performance metrics, such as risk and 

return, Sharpe ratio, tracking error, turnover, concentration and extreme risk. Additionally, 

I introduce brief sub-period analysis. Finally, the results of portfolio diversification of 

small and large-cap stocks will be compared to find their similarities and differences. 

4.1 Research methodology 

This section describes selected portfolios and reasons for their selection, stock returns that 

are used in the analysis, construction of different portfolios together with the estimates that 

were used and portfolio performance metrics. 

4.1.1 Selected portfolios 

Based on the reviewed literature, I decided to test the following approaches to portfolio 

diversification: 

1. Market-cap weighted portfolio,  

2. Equally weighted portfolio, 

3. Fundamentally weighted portfolio with book value as a weight metric,   

4. Minimum variance portfolio, and 

5. Maximum Sharpe ratio portfolio. 

I decided to exclude equally weighted risk contributions portfolio and the most diversified 

portfolio from the analysis because of the lack of the theoretical and empirical support as 

the appropriate stock portfolio weighting approaches. The ERC portfolio or risk parity was 

originally developed as an asset class weighting approach not stock portfolio weighting 

approach, and it has real usefulness in that field. Particularly, it helps managers in financial 

institutions to equally allocate risk among asset classes, in contrast to equally allocating 

capital. On the other hand, the MD portfolio’s performance is questionable as it 

outperformed all other approaches in the study by Choueifaty, Froidure and Reynier (2013) 

for the US stock market in the period from 1992 to 2008. But when it was tested by Clarke, 

De Silva and Thorley (2013) for the US stock market from 1968 to 2012, its performance 

was the worst of all approaches, even worse than the market-cap portfolio. Hence, I will 

stick with only one risk-based approach - the minimum variance portfolio, which has 
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strong theoretical basis, was widely examined and offered very good out-of-sample 

performance in all of the reviewed studies. 

Other approaches do not need special explanation, other than fundamentally weighted 

portfolio where I chose to use only one fundamental metric, book value of equity. The 

book value of equity performed well in the study from Arnott, Hsu and Moore (2005), who 

proposed fundamental weighting. Therefore, I consider it the representative weighting 

metric for this approach. The rest of the approaches are market-cap weighted portfolio 

which will serve as a benchmark for all other approaches, equally weighted portfolio which 

has been documented as a simple way of improving market-cap weighted portfolio 

performance and maximum Sharpe ratio portfolio as a truly optimal portfolio. 

Additionally, minimum variance portfolio and maximum Sharpe ratio portfolio will be 

estimated three times, each time with differently estimated portfolio moments which serve 

as the inputs to portfolio optimization. These portfolios are: 

1. Minimum variance portfolio based on the sample var-cov matrix, 

2. Minimum variance portfolio with the PCA used as an estimator of var-cov matrix,  

3. Minimum variance portfolio with the shrinkage estimator for var-cov matrix, 

4. Maximum Sharpe ratio portfolio based on the sample mean and sample var-cov matrix, 

5. Maximum Sharpe ratio portfolio with the semi-deviation used as an estimator for stock 

expected returns and the PCA as an estimator of var-cov matrix, 

6. Maximum Sharpe ratio portfolio with the semi-deviation used as an estimator for stock 

expected returns and the shrinkage estimator for var-cov matrix. 

First, the MV portfolio and the MSR portfolio will be estimated with sample covariance 

matrix, and sample mean and sample covariance matrix, respectively. This is the simple 

Markowitz approach, but as I discussed in the third part of the thesis, sample estimates 

were shown to be bad estimates for numerous reasons. That is why I decided also to test 

the MV portfolio with the PCA and the shrinkage estimators, which were proven as a more 

reliable in estimating covariance matrix. When using principal component analysis, I 

decided to use 3 factors to explain the co-movement in stock returns as this was sufficient 

to capture the co-movement in returns. On the other hand, the shrinkage estimators are 

based on the paper of Ledoit and Wolf (2004) where covariance matrix is shrunk towards 

the constant correlation model. 

The MSR portfolio with improved estimators for stock expected returns and covariance 

matrix uses the same PCA method and shrinkage estimators for estimating covariance 

matrix as the MV portfolios. The stock expected returns are estimated based on the stock’s 

semi-deviation. This is the approach used in the paper from Amenc, Goltz, Lodh and 

Martellini (2010), where they achieved superior performance of the MSR portfolio when 

using semi-deviation as the proxy for the stock expected returns and the PCA analysis for 

estimating covariance matrix. 
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Semi-deviation is a robust measure of expected returns as it is consistent with the finance 

literature that higher risk should reflect in higher returns. Semi-deviation as a measure 

which takes into account only deviations below mean is thus more appropriate than a 

simple standard deviation which describes volatility above and below mean stock return. 

To be consistent with the approach in Amenc, Goltz, Lodh and Martellini (2010), I sorted 

stocks into their deciles based on their semi-deviation and then assign median value of 

each decile to all stocks in that decile. The last MSR portfolio is a combination of semi-

deviation used for an expected return estimates and shrinkage estimators from the paper of 

Ledoit and Wolf (2004) for covariance matrix. 

In total, the empirical analysis is performed on the 9 portfolios, i.e. the market-cap 

weighted portfolio, equally weighted portfolio, fundamentally weighted portfolio and 3 

minimum variance and 3 maximum Sharpe ratio portfolios. 

4.1.2 Data 

The subject of the analysis are the European stocks with large and small market 

capitalization between January 1, 2002 and December 31, 2018 – that is a 17-year period. I 

wanted to compare how different portfolios that were described above performed on the 

sample of large and small-cap European stocks. Therefore, I chose STOXX Europe 600 

index as a starting point for the analysis as it represents small, mid and large market 

capitalization companies from 17 European countries: Austria, Belgium, Denmark, 

Finland, France, Germany, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, 

Portugal, Spain, Sweden, Switzerland and the United Kingdom (Stoxx, n.d.). 

When I decided on the index from which to draw the sample, I downloaded constituent list 

from Bloomberg (2019) as of December 31, 2001 (the first available date for constituents 

was December 24, 2001). Then I ranked the stocks by their market capitalization and 

selected 50 stocks with the largest market capitalization and 50 stocks with the lowest 

market capitalization in the index. The requirement for stock selection was that data for 

their market capitalization and monthly return data were available throughout the whole 

period of the analysis. Selected stocks with their Bloomberg ticker and respective market 

capitalizations as of December 31, 2001 are presented in Appendix 2 for the large-cap 

stocks and Appendix 3 for the small-cap stocks. The small-cap stocks mostly satisfy the 

usual definition of small-cap stock, which is market capitalization between $300 million 

and $2 billion. Namely, the biggest stock in the small-cap sample had market capitalization 

of €1,93 billion and the smallest stock in the small-cap sample had the market-cap of €727 

million. 

In order to calculate different portfolios, I have downloaded market capitalization at the 

end of each year, as the portfolios were rebalanced yearly. At the same time, I have 

acquired book value of equity of all stocks on December 31 of each year, which I needed 

for the construction of fundamentally weighted portfolio (weighted by book value of 
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equity). Next, the returns were downloaded on the monthly basis from January 1, 1997 till 

December 31, 2018. Additional 60 months (5 years) of returns is needed for optimized 

portfolios. Downloaded returns are gross returns with reinvestment of dividends. This is 

important as some companies pay dividends while others do not as they directly reinvest 

their profits to achieve higher growth in the future. The last component is a risk-free rate 

which is required for calculating Sharpe ratio. Appropriate risk-free rate for the European 

stocks is the return on the German government bond as it has the highest credit rating. 

Thus, I downloaded returns of a 1-year German government bond as it had the shortest 

maturity. Yearly returns were than recalculated on the monthly basis for each month. All of 

the data, from constituent list to market-cap, book value of equity, stock returns and risk-

free returns were downloaded from Bloomberg (2019). 

4.1.3 Stock portfolios construction 

In order to construct and analyse different portfolios, I used RStudio (2016) together with 

the relevant R packages.
1
 In the next two subchapters I present how simple portfolios 

(market-cap weighted portfolio, equally weighted portfolio and fundamentally weighted 

portfolio) and optimized portfolios (minimum variance portfolios and maximum Sharpe 

ratio portfolios) were constructed. 

4.1.3.1 Simple portfolios 

As already mentioned, simple portfolios include market-cap weighted portfolio (MCW 

portfolio), equally weighted portfolio (EW portfolio) and fundamentally weighted portfolio 

(FW portfolio). 

In order to calculate simple portfolios, I first have to calculate portfolio weights. Market-

cap weighted portfolio weights are calculated as it was shown in Equation (10). I divide 

market capitalization of each stock with the total market capitalization of all stocks in the 

portfolio. Consequently, weights have to sum to one. The analysis starts in 2002, so my 

first vector of weights is calculated based on the stock’s market-cap on the December 31, 

2001. The portfolios are rebalanced each year, so the new vector of weights is calculated 

each year at the end of the year. In total, there are 17 weights vectors. After I determined 

the weights, they are used in the combination with monthly returns and calculate portfolio 

return and other performance and risk measures. 
                                                           
1
 To manipulate time series data, I used the “zoo” package (Zeileis & Grothendieck, 2005) and “xts” package 

(Ryan & Ulrich, 2018), the “PerformanceAnalytics” package (Peterson & Carl, 2018a) was used for 

performance and risk analysis, the “PortfolioAnalytics” package (Peterson & Carl, 2018b) was utilized for 

optimizing portfolios together with the solver packages “ROI” (Hornik, Meyer, Schwendinger & Theussl, 

2019) and “DEoptim” (Ardia, Mullen, Peterson & Ulrich, 2016), and the “PeerPerformance” package (Ardia 

& Boudt, 2018) was used for Sharp ratio statistical tests. Finally, the “xlsx” package (Dragulescu & Arendt, 

2018) was applied to export results to Excel. 
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Calculation of equally weighted portfolio proceeds in the same manner. Weights are 

determined with Equation (11). In this case each stock will have 2% weight in the 

portfolio. Again, I follow the same rebalancing procedure as for the market-cap weighted 

portfolio and rebalance weights back to 2% at the end of each year. Fundamentally 

weighted portfolio on the other hand is similar to market-cap weighted portfolio, with 

respect that weights are not market value of equity but book value of equity. Hence, the 

equation for calculating book value weights is the same as Equation (10), only the book 

value of equity is used instead of market capitalization. 

4.1.3.2 Optimized portfolios 

Calculation of optimized portfolios (minimum variance portfolios and maximum Sharpe 

ratio portfolios) is more complex than the construction of simple portfolios. When 

calculating simple portfolios, weights are already determined by market capitalization, 

book value of equity or they are set to be equal. In contrast, optimized portfolio weights are 

determined by optimization program which requires to specify portfolio assets, determine 

portfolio constraints and objectives, and estimate stock return moments. These inputs are 

then fed into optimization program which calculates optimal weights and produces the 

optimal portfolio as an output. Portfolio optimization workflow is presented in Figure 8. 

Figure 8: Portfolio optimization workflow 

 

Source: Bennett (2015). 

The first input is stocks – in this case samples of large and small-cap stocks. Next, 

portfolio constraints have to be defined. In all optimized portfolio that I have calculated, 

constraints are the same: full investment and no short sales with maximum position limit of 

20%. Full investment means weights have to sum to 1. Short sales are not allowed because 

most of portfolio managers and funds are long only and this also ensures better comparison 

with simple portfolios. Maximum position limit is useful because optimizers tend to 

concentrate portfolios in only few assets, and in order to prevent that I used 20% position 

limit to prevent too huge exposure to one stock. Minimum weight constraints were not 
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imposed. The types of constraints which I decided to apply were also widely used in the 

empirical studies which I have reviewed in the second chapter of the thesis. 

The third input into portfolio optimization is portfolio objective which is different for the 

MV portfolios and the MSR portfolios. In the “PortfolioAnalytics” package in RStudio, I 

simply set the objective function in the optimizer to find weights which minimize portfolio 

variance for the MV portfolio. In matrix notation, this can be written as (Clarke, De Silva 

& Thorley, 2013): 

 𝑤𝑀𝑉 = arg min
𝑤

 𝑤𝑇 ∗  ∑ ∗ 𝑤 (14) 

Where ∑ is the covariance matrix and w
MV

 is the vector of optimal weights that minimize 

portfolio variance. 

On the other hand, the objective function for the MSR portfolio in the “PortfolioAnalytics” 

package is set to maximize Sharpe ratio, which is defined as excess expected return over 

risk-free rate divided with standard deviation. In matrix notation, this can be expressed as 

(Amenc, Goltz, Martellini & Retkowsky, 2010): 

 
𝑤𝑀𝑆𝑅 = arg max

𝑤
 

𝑤𝑇 ∗  𝜇

√𝑤𝑇 ∗  ∑  ∗ 𝑤
 (15) 

Where ∑ is the covariance matrix, µ is the vector of excess expected returns over risk-free 

rate and w
MSR

 is the vector of optimal weights that maximize expected returns per unit of 

risk. 

The last input into portfolio optimization is stock return moments. Again, these differ 

among the MV portfolios and the MSR portfolios. The MV portfolios require only estimate 

of variance-covariance matrix which can be estimated with numerous methods. As I 

already explained in chapter 4.1.1, minimum variance portfolios that I have tested are 

based on the sample variance-covariance matrix, variance-covariance matrix that is 

estimated with the PCA with 3 factors, which imposes more structure, and shrinkage 

estimators, which shrink sample covariance matrix towards the constant correlation model. 

At the same time the MSR portfolios also require expected return estimates besides 

estimates for covariance matrix. The estimates used, are sample mean and sample 

variance-covariance matrix, and semi-deviation used as an estimator for stock expected 

returns in combination with the PCA and shrinkage estimators for variance-covariance 

matrix. Explanation of selected methods together with more detailed description on how 

semi-deviation is used as stock expected returns is given in chapter 4.1.1. 

Additional thing that has to be specified before the run of the optimization program is the 

length of estimation period. In this case, I use monthly stock returns from January 1, 1997 

till December 31, 2018. More data on stock returns is required for optimized portfolios 
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because of the training period. That is the period in which expected returns and covariance 

matrix are estimated and then used for calculation of optimized weights. In this case, I 

have used 60 months (5 years) of stock returns as a training period. Portfolios were 

rebalanced yearly, so I have applied the same rolling window of 60 months also for the 

subsequent years. The practice of using 5 years of data as the estimation period is quite 

common in the reviewed papers and also in other financial calculations as there is 

sufficient history but still allow for newer observations to influence the estimates.  

After specifying everything from portfolio of stocks, constraints, objectives, estimates of 

stock return moments, rebalancing dates, training period and rolling window for 

estimation, the optimization program is run which uses specific solvers to search for 

optimal weights which give us the optimal portfolio. Because the results are out-of-sample, 

it is not necessarily that the MV portfolios will in fact achieve the lowest possible variance 

and the MSR portfolios to have the highest Sharpe ratio. That is why, I constructed 

portfolios with improved moment estimates as they should return better out-of-sample 

results. 

4.1.4 Portfolio performance metrics 

After the creation of all the portfolios, it is important to analyse them from different 

perspectives. Portfolio performance cannot be captured in only one number, so I calculated 

different performance metrics from simple annualized returns and Sharpe ratios to extreme 

risk measures. I will present all relevant metrics in this subchapter before I turn to the 

actual results. 

First, I calculated cumulative returns which measure total portfolio gains in the analysed 

period from 2002 to 2018. Next, I report annualized average return calculated as geometric 

mean, which is more common in finance than arithmetic mean, because the returns are 

compounded. Annualized standard deviation is another basic metric that describes 

portfolio volatility below and above mean and is considered the most basic risk measure. 

Furthermore, excess portfolio return above the benchmark portfolio can be calculated, 

which is usually market-cap weighted portfolio or equally weighted portfolio. 

Sharpe ratio is the most important ratio as it measures the risk adjusted return. Its 

calculation was presented in Equation (7). Another similar ratio is Sortino ratio which is 

calculated as the average excess return above minimum acceptable return (in my case I 

took risk-free rate) divided with downside deviation. Thus, Sortino ratio substitutes 

standard deviation with downside deviation which measures only deviations of negative 

portfolio returns (Kenton, 2019a). The third similar metric is Treynor ratio which is 

computed as the excess portfolio return above risk-free rate divided with portfolio’s beta. 

Again, the difference is only in the measurement of risk, which is now represented with 

beta as a measure for systematic risk (Kenton, 2019b). 
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Important metric for portfolio managers is tracking error which measures the dispersion of 

returns between a manager’s portfolio and benchmark portfolio (Kassam, Gupta, Jain, 

Kouzmenko & Briand, 2013). This is important as portfolio managers are usually 

measured against a market-cap weighted benchmark and their portfolio may beat the cap-

weighted portfolio on the long run but underperform in the short-run. Hence, they are 

concerned with tracking error of their portfolio relative to the benchmark because 

underperformance can result in the termination of their contract. This problem was 

researched by Amenc, Goltz, Lodh and Martellini (2012) who proposed that managers 

reduce the tracking error and limit the risk of underperformance by combining the MV 

portfolio and the MSR portfolio which have different performance characteristics. 

Alternatively, they can implement relative risk control for separate optimized portfolio (or 

their combination) what is even better in reducing extreme tracking error. Thus, it is 

important for portfolio managers to look at the tracking error of different portfolio 

strategies. 

Information ratio is calculated as an active return divided with tracking error, where the 

active return is the difference between portfolio return and benchmark return (Kassam, 

Gupta, Jain, Kouzmenko & Briand, 2013). Portfolio managers who achieve higher 

information ratio are thus capable of generating higher returns while limiting the tracking 

error to benchmark portfolio. 

Another important metric is portfolio turnover, which measures the change in the 

composition of a portfolio at each rebalancing date. Two-way turnover aggregates both, 

weight increases and weight decreases. One-way turnover is thus simply the half of two-

way turnover (Kassam, Gupta, Jain, Kouzmenko & Briand, 2013). One-way turnover is 

important because transaction costs were not included into the analysis which is common 

practice as transaction costs are different for large and small-cap stocks. Optimized 

portfolios normally have much higher turnovers than simple portfolios, thus, it is important 

to look at them. Based on the annual turnover I calculated indifference transaction costs 

which measure, when the transaction costs would offset the excess return of a portfolio 

over the benchmark. 

Measurement of portfolio concentration is also important. I already explained that 

optimized portfolios tend to allocate large weights to a few stocks, which makes them 

relatively imbalanced. The measure for portfolio concentration is effective number of 

stocks, which ranges from 1 (everything is invested in one stock) to the number of stocks 

in a portfolio (for an equally weighted portfolio) (Kassam, Gupta, Jain, Kouzmenko & 

Briand, 2013). The higher number is better as it indicates reasonably diversified portfolio. 

Different measures of extreme portfolio risk include annual semi-deviation that measures 

only deviations below the mean (Amenc, Goltz, Martellini & Retkowsky, 2010). Next is 

Value at Risk (hereinafter: VaR) where the maximum possible loss has been measured for 

a given time horizon and confidence interval (usually 95% or 99%). Based on the historical 
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observations of portfolio returns, 95% VaR for one-month horizon can thus be calculated, 

which can return 7%. The explanation is that with 95% confidence, it is expected for the 

portfolio loss in the next month not to exceed 7% (Kassam, Gupta, Jain, Kouzmenko & 

Briand, 2013). 

Similarly, one can calculate Expected Shortfall (hereinafter: ES) which measures for a 

given time horizon and confidence interval (usually 95% or 99%) the expected loss. Again, 

one can calculate ES from historical observations of portfolio returns for one month at 95% 

confidence level and obtain 10%. Here, the explanation is: if the loss exceeds the 5% 

percent of the worst losses, then one can expect the average loss of 10% (Kassam, Gupta, 

Jain, Kouzmenko & Briand, 2013). 

The most extreme measure of risk is the maximum drawdown which measures the 

percentage drop from the peak to trough in the observed period. At the same time, one can 

calculate maximum drawdown period as the number of days/months/years it takes to 

recoup the losses (Kassam, Gupta, Jain, Kouzmenko & Briand, 2013). Additionally, one 

can report the skewness and kurtosis of portfolio returns distribution. 

In order to see if the differences in average return, standard deviation, and Sharpe ratio 

between the market-cap weighted portfolio and all the other portfolios are statistically 

significant, appropriate statistical tests can be performed. I have used the same tests as 

Amenc, Goltz, Martellini and Retkowsky (2010) and Amenc, Goltz, Lodh and Martellini 

(2012), i.e. the paired two-sided t-test for the average returns, the F-test for volatility and 

bootstrap approach for the Sharpe ratio. The differences are computed from annualized 

values and geometric average is used for average returns. I report the p-values for 

differences, where I state that difference is statistically significant if the p-value is lower 

than 0.05 or 5%. 

The last thing I have included in the analysis is the CAPM analysis. Here, I have calculated 

regressions of monthly returns of the examined portfolios on the market-cap weighted 

portfolio. I have reported the annualized alpha, beta and R-squared. The beta from the 

CAPM analysis shows if a portfolio moves more, equal or less than the market-cap 

portfolio. The significant alpha indicates returns that are higher than the market portfolio 

(Amenc, Goltz, Martellini and Retkowsky, 2010). Coefficient of determination or R-

squared tells the percentage of explained variability in the dependent variable from the 

independent variable(s). 

4.2 Efficient portfolio diversification of the European large-cap stocks 

Now that I have explained the research methodology, I present the results of the empirical 

analysis. First, I present the results for the sample of the European large-cap stocks. Table 

2 in panel A shows performance statistics and in panel B differences in returns, volatilities 

and Sharpe ratios are tested for statistical significance. Portfolios shown in the table are 
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market-cap weighted portfolio (MCW portfolio), equally weighted portfolio (EW 

portfolio), fundamentally weighted portfolio with book value of equity (FW portfolio), 

minimum variance portfolios (MV portfolios) with differently estimated covariance matrix 

(method is denoted in parentheses) and maximum Sharpe ratio portfolios (MSR portfolios) 

with differently estimated expected returns and covariance matrix. 

Table 2: Performance statistics and difference over the market-cap weighted portfolio of 

the European large-cap stock portfolios in the period from 2002 till 2018 

 

Source: Own work. 

From the above table, one can see that optimized portfolios, namely, three MV portfolios 

and the MSR portfolios with advanced moment estimates achieved the highest cumulative 

returns in the observed period from January 1, 2002 to December 31, 2018. For the simple 

portfolios, one can see that EW portfolio achieved higher average return and higher 

standard deviation than the MCW portfolio which is consistent with the findings of other 

authors. On the other hand, the FW portfolio performed worse in both terms and poses 

question of suitability of this approach. Furthermore, one can see that annualized standard 

deviation is the lowest for three MV portfolios, with little difference between methods for 

estimating covariance matrix. This indicates that the curse of dimensionality in the 

estimation process of the covariance matrix is not present for portfolio of only 50 stocks. 

Annualized average geometric returns are the highest for optimized portfolios, expect for 

the MSR portfolio estimated with sample moments which has lower average return than 

the EW portfolio. 

Next, I review the Sharpe ratio, Sortino ratio and Treynor ratio of different portfolios. 

Again, optimized portfolios (except for the MSR portfolio with sample estimates) achieved 

Sharpe ratios that are more than 100% higher than those of the simple portfolios. Sharpe 

ratios of two MV portfolios are also higher than the best performing MSR portfolio which 

confirms the findings from previous studies (e.g. Amenc, Goltz, Lodh & Martellini, 2012) 

that out-of-sample MV portfolios are very close to the MSR portfolios as they avoid 
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portfolio

EW 

portfolio
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MV portfolio 
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MV portfolio 

(PCA)

MV portfolio 

(Shrink)
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MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Panel A: Perfromance Statistics

Cummulative Return 84.69% 106.69% 55.78% 191.18% 166.87% 196.96% 97.11% 190.01% 181.13%

Ann. average return (geometric) 3.67% 4.36% 2.64% 6.49% 5.94% 6.61% 4.07% 6.46% 6.27%

Ann. standard deviation 14.07% 16.56% 17.65% 11.51% 11.23% 11.31% 13.27% 12.23% 12.25%

Sharpe ratio 0.17 0.18 0.08 0.45 0.41 0.47 0.21 0.42 0.40

Sortino ratio 0.06 0.08 0.04 0.17 0.15 0.17 0.07 0.15 0.15

Treynor ratio 0.02 0.03 0.01 0.07 0.07 0.08 0.03 0.06 0.06

Tracking error 0.00% 4.31% 1.79% 9.73% 7.47% 10.11% 1.13% 9.99% 9.24%

Information ratio - 0.16 -0.58 0.29 0.30 0.29 0.35 0.28 0.28

Ann. one-way turnover 7.04% 10.61% 10.95% 31.42% 21.08% 22.63% 43.85% 51.84% 48.38%

Indiff. transaction costs - 19.27% 0.00% 11.54% 16.16% 18.84% 1.08% 6.22% 6.28%

Effective N 33.43 50.00 27.01 8.39 9.18 8.23 7.11 11.60 11.79

Panel B: Difference over the MCW portfolio

Diff. in returns - 0.69% -1.03% 2.81% 2.27% 2.94% 0.40% 2.79% 2.59%

P-value - 0.125 0.709 0.263 0.400 0.213 0.956 0.155 0.174

Diff. in volatility - 2.49% 3.58% -2.56% -2.84% -2.76% -0.80% -1.84% -1.82%

P-value - 0.642 0.500 0.216 0.231 0.217 0.703 0.434 0.569

Diff. in Sharpe ratio - 0.02 -0.09 0.28 0.24 0.30 0.04 0.25 0.23

P-value - 0.417 0.094 0.010 0.043 0.009 0.723 0.012 0.046
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estimation error in the expected returns. Sortino ratio and Treynor ratio confirm what can 

already be observed with Sharpe ratio. 

Tracking error and information ratio is presented next. These metrics are important for 

portfolio managers who care about their performance with respect to a benchmark. To 

calculate tracking error and information ratio, I took the MCW portfolio as the benchmark. 

One can see that average tracking error is the highest for optimized portfolios, except for 

the MSR portfolio with sample moments. As it was explained in chapter 4.1.4, high 

tracking error can be problematic for portfolio managers. To minimize this problem, they 

can add tracking error as an optimization objective to reduce the chance of 

underperforming the benchmark. Despite the high tracking error, information ratio of 

optimized portfolios is higher than those of the simple portfolios. 

Annualized one-way turnover is also important as it indicates the average percentage of 

stocks that have to be substituted in the portfolio at each rebalancing date. Optimized 

portfolios have much higher turnover than simple portfolios which is normal but this 

reduces the chance of outperforming the benchmark when one includes transaction costs. 

That is why I have included indifference transaction costs in the table. One can see that the 

MV portfolios are more attractive than the MSR portfolios from these two perspectives. 

However, it is unlikely that any of the optimized portfolios (except for the MSR portfolio 

with sample estimates) will have transaction costs that high to eliminate the advantage over 

the MCW portfolio. Additionally, if portfolio manager is concerned with high turnover, he 

can use optimal turnover control in the optimization program where he limits the allowed 

annual rebalancing in a same way that he can specify maximum allowed tracking error. 

However, additional portfolio objectives and constraints usually come at the cost of lower 

portfolio efficiency (Sharpe ratio). 

Effective N is a measure of portfolio concentration and can take values between 1 

(investment in only one stock) and the number of all stocks (N) in a portoflio (for an 

equally weighted portfolio). One can see that optimized portfolios are poorly diversified as 

they have around 3 times less stocks in the portfolio than simple portfolios. This is normal 

for unconstrained portfolio optimizations and is their inherent characteristic as they usually 

grab only a small number of stocks, especially minimum variance portfolios. This problem 

can be mitigated by imposing stricter lower and upper bound constraints on portfolio 

weights to enhance diversification. However, additional constraints can reduce the 

portfolio efficiency. 

In panel B, differences over the MCW portfolio were calculated and tested with 

appropriate statistical tests as explained in chapter 4.1.4. For the average returns, I have 

used the paired two-sided t-test, for the volatility the F-test and bootstrap approach for the 

Sharpe ratio. The differences are computed from annualized values and geometric average 

was used for average returns. Differences where P-values are lower than 0.05 are indicated 

in bold. One can see that differences in the returns and the volatility are not statistically 
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significant, although some portfolios are closer to zero than others (the MSR portfolios for 

average returns and the MV portfolios for volatility). The power of the tests could be 

improved if I had included longer observation period, which was not possible. Standard 

error which affects the calculation can also be problematic as the examined period had 

quite a few turbulent years. Nevertheless, Sharpe ratios are statistically significant for all 

three MV portfolios and two MSR portfolios which indicate the higher efficiency of 

optimized portfolios. 

Next, I have to examine portfolios from the perspective of extreme risks which are 

presented in Table 3. The calculated metrics were described in chapter 4.1.4, hence, I will 

only comment the results. 

Table 3: Extreme risk measures of the European large-cap stock portfolios in the period 

from 2002 till 2018 

 

Source: Own work. 

In Table 3, one can see that annualized semi-deviation, VaR, ES and maximum drawdown 

are all much lower for optimized portfolios. This confirms that simple portfolios are not 

just less efficient but are also more exposed to extreme risks. The least improvement in 

optimized portfolios is seen in the MSR portfolio with sample moments which again 

confirms that past mean returns are bad estimates for future returns. If the goal of an 

investor is minimization of risk, then the MV portfolios should be selected as they are the 

best for minimizing risk. They beat the MSR portfolios in all aspects of extreme risks. 

Maximum drawdown period is also an interesting metric as it shows how many months it 

took for portfolio to recoup the biggest loss. Here, the MV portfolios also performed the 

best which confirms their superiority in the preservation of capital. Additionally, I report 

skewness and kurtosis of portfolio return distributions. One can see that all portfolios are 

negatively skewed (higher probability of large negative returns than positive) and have 

higher kurtosis (fatter tails) than normal distribution (higher than 3). Interestingly, negative 

skewness is the lowest for the EW and the FW portfolios, while kurtosis is the most similar 

to normal distribution for the MSR portfolios. 

Table 4 presents the CAPM analysis of the portfolios where the MCW portfolio is taken as 

the benchmark. I calculated annualized alpha and beta from single factor analysis with 

respective P-values. The percentage of explained variability is also shown in the last row. 

MCW 

portfolio

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Ann. semi deviation 10.64% 12.24% 13.03% 8.57% 8.44% 8.40% 9.99% 9.22% 9.10%

95% Value at Risk -6.77% -7.56% -8.22% -5.19% -5.17% -5.12% -6.38% -5.65% -5.58%

95% Expected Shortfall -9.94% -11.58% -12.50% -7.88% -7.64% -7.44% -9.09% -7.87% -7.94%

Maximum drawdown -44.92% -48.98% -53.76% -29.72% -30.94% -31.06% -42.08% -34.01% -36.16%

Maximum drawdown 

period (months)
69 71 76 34 42 39 63 39 63

Skewness -0.54 -0.28 -0.28 -0.46 -0.53 -0.46 -0.55 -0.51 -0.41

Kurtosis 4.27 4.90 4.89 4.43 4.20 4.00 3.97 3.65 3.83
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Table 4: CAPM analysis of the European large-cap stock portfolios in the period from 

2002 till 2018 

 

Source: Own work. 

In the above table, one can see that annualized alpha is significant for three MV portfolios 

and two MSR portfolios which indicate that these portfolios significantly outperformed the 

MCW benchmark. On the other hand, betas show that the EW portfolio and the FW 

portfolio move more than the market portfolio, while the MV and the MSR portfolios 

move much less. Similar findings about the MV portfolios sensitivity to the market were 

reported in studies from Clarke, De Silva and Thorley (2006; 2013) who reported low 

betas for unconstrained portfolios and lower R-squared. By imposing constraints portfolios 

moved closer with the market (higher beta) which also increased R-squared but decreased 

alpha to some extent. R-squared around 70% for the MV portfolios thus indicates that 

additional factors could explain higher returns of the optimized portfolios. 

The last thing I have calculated are risk and return together with Sharpe ratio for two sub-

periods, from January 1, 2002 till December 31, 2009 and from January 1, 2010 till 

December 31, 2018. I decided to split the analysed period to two sub-periods, where the 

first sub-period is 8 years long and presents the unstable economic and market 

environment, including two stock market downturns, first between years 2002 and 2003 

and second when the financial crisis hit in 2008 till 2009. The second sub-period is 9 years 

long and it began after the stock market reached its bottom. These 9 years were 

characterized mainly by the bull markets with less volatility and downturns. Thus, it is 

interesting to analyse the performance differences in these two sub-periods. Results are 

presented in Table 5. 

Table 5: Risk and return of the European large-cap stock portfolios in two sub-periods, 

from 2002 till 2009 and from 2010 till 2018 

 

Source: Own work. 

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Ann. Alpha 0.34% -1.37% 3.74% 3.40% 3.98% 1.21% 3.35% 3.10%

P-value 0.680 0.261 0.011 0.031 0.011 0.486 0.005 0.005

Beta 1.15 1.20 0.70 0.65 0.67 0.80 0.80 0.81

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R-squared 95.9% 92.0% 73.1% 67.3% 68.9% 71.4% 84.3% 86.8%

MCW 

portfolio

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

2002 - 2009

Ann. average return (geometric) 0.93% 1.77% 0.23% 2.80% 3.08% 3.02% 3.03% 3.65% 2.44%

Ann. standard deviation 16.42% 19.64% 20.17% 12.61% 12.51% 12.29% 15.96% 13.42% 13.34%

Sharpe ratio -0.11 -0.05 -0.12 0.00 0.02 0.02 0.01 0.06 -0.03

Beta 1.00 1.17 1.19 0.67 0.66 0.64 0.84 0.77 0.77

2010 - 2018

Ann. average return (geometric) 6.18% 6.72% 4.83% 9.88% 8.56% 9.91% 5.01% 9.03% 9.79%

Ann. standard deviation 11.63% 13.31% 15.14% 10.42% 9.96% 10.34% 10.39% 11.10% 11.18%

Sharpe ratio 0.54 0.51 0.32 0.96 0.87 0.97 0.49 0.82 0.88

Beta 1.00 1.11 1.22 0.74 0.65 0.71 0.72 0.85 0.88



 

48 

In the above table, one can see the dismal performance of equity portfolios in the first sub-

period with very low annualized average returns and high standard deviations. 

Consequently, Sharp ratios are negative for simple portfolios and for the last MSR 

portfolio while other optimized portfolios have barely positive Sharpe ratios. However, 

optimized portfolios, especially the MV portfolios, were successful in minimizing 

volatility compared to the simple portfolios. They also rewarded investors with a little bit 

higher average return which resulted in slightly positive Sharpe ratios. On the other hand, 

situation is completely different for the succeeding period, with much higher returns and 

Sharpe ratios and a lot lower volatility. Again, the MV portfolios had the lowest standard 

deviation, although the difference is not that noticeable. At the same time, the MV 

portfolios achieved high returns which resulted in the highest Sharpe ratios of all 

portfolios. Again, out of all the optimized portfolios the MSR portfolio with sample 

estimates performed the worst as it had Sharpe ratio lower than the MCW portfolio and the 

EW portfolio. Performance of other MSR portfolios was not bad but they registered lower 

Sharpe ratios than the MV portfolios. When taking a look at the beta, one cannot see any 

relationship as some portfolios had lower beta in the market downturn and higher beta in 

the bull market environment while others moved more closely with the market in the first 

sub-period and less in the second sub-period. 

4.3 Efficient portfolio diversification of the European small-cap stocks 

Now, I turn to the results for the sample of the European small-cap stocks. Portfolios from 

the small-cap stocks are constructed in the same way as for the large-cap stocks and are 

denoted in the same manner. Results are presented in Table 6, where panel A shows the 

performance statistics and panel B tests the differences in returns, volatilities and Sharpe 

ratios for statistical significance. First, one can observe that small-cap stock portfolios have 

much higher cumulative returns and annualized average returns than large-cap stock 

portfolios. Differences in standard deviations are mixed and depend on the chosen 

portfolio. The differences and similarities between portfolio diversification of large and 

small-cap stocks will be covered in detail in the next chapter, but now I will focus only on 

the results for small-cap stock portfolios. 
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Table 6: Performance statistics and difference over the market-cap weighted portfolio of 

the European small-cap stock portfolios in the period from 2002 till 2018 

 

Source: Own work. 

The cumulative return for the sample of the small-cap stocks is the highest for the MSR 

portfolio, where stocks’ semi-deviation is used for the expected returns and the PCA for 

the covariance matrix. At the same time, this portfolio also had the highest annualized 

average return. In terms of cumulative returns and average returns performance of the EW 

portfolio, the MV portfolio with sample covariance matrix and the MSR portfolio with 

stock’s semi-deviation used for the expected returns and the shrinkage estimators for 

covariance matrix, also showed a good performance. Turning to the measure of the 

volatility, one can see that all three MV portfolios were successful in minimizing the 

portfolio’s standard deviation, again with minimal differences, which indicates that I do 

not have the problems with covariance matrix dimensionality in the case of portfolio with 

50 stocks. The MSR portfolios also had lower standard deviations than the simple 

portfolios. Again, the worst performing portfolio in all aspects is the FW portfolio which 

definitely should not be used by any investor. 

When taking a look at the Sharpe ratios, one can see that optimized portfolios achieved the 

highest Sharpe ratios. Surprisingly, the highest Sharpe ratio was realized by the MV 

portfolio with sample covariance matrix. This is due to the much higher average return 

than the other two MV portfolios. The MSR portfolio with semi-deviation and the PCA 

also performed quite well. Sortino ratio mostly follows the findings from Sharpe ratio 

analysis but it equalizes the MV portfolio (Sample) and the MSR portfolio (SemiDev, 

PCA) as the best performing portfolios. Treynor ratio, which substitutes standard deviation 

and semi-deviation in the denominator with portfolio’s beta, is the highest for the MV 

portfolios as they are less volatile than the market (this will be seen in the CAPM analysis). 

Turning to the tracking error, one can see that the MV portfolios have surprisingly low 

tracking error, while it is much higher for the MSR portfolios (expect for portfolio with 

MCW 

portfolio

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Panel A: Perfromance Statistics

Cummulative Return 273.14% 418.79% 245.23% 385.67% 306.00% 300.01% 254.02% 545.32% 464.89%

Ann. average return (geometric) 8.05% 10.17% 7.56% 9.74% 8.59% 8.50% 7.72% 11.59% 10.72%

Ann. standard deviation 17.38% 18.35% 20.75% 10.46% 10.33% 10.49% 11.69% 13.92% 14.93%

Sharpe ratio 0.39 0.48 0.30 0.80 0.70 0.68 0.55 0.73 0.63

Sortino ratio 0.16 0.21 0.14 0.29 0.25 0.25 0.19 0.29 0.25

Treynor ratio 0.07 0.09 0.05 0.19 0.17 0.16 0.13 0.14 0.12

Tracking error 0.00% 8.61% 0.62% 2.35% 2.10% 2.41% 4.79% 11.09% 8.41%

Information ratio - 0.25 -0.79 0.72 0.26 0.18 -0.07 0.32 0.32

Ann. one-way turnover 10.20% 16.16% 15.68% 21.38% 18.17% 17.36% 33.56% 48.91% 49.51%

Indiff. transaction costs - 35.53% 0.00% 15.10% 6.75% 6.19% 0.00% 9.14% 6.79%

Effective N 25.46 50.00 26.53 8.29 9.19 7.83 7.90 12.23 11.78

Panel B: Difference over the MCW portfolio

Diff. in returns - 2.12% -0.49% 1.69% 0.54% 0.44% -0.33% 3.54% 2.67%

P-value - 0.118 0.587 0.828 0.605 0.621 0.448 0.392 0.494

Diff. in volatility - 0.97% 3.37% -6.92% -7.05% -6.90% -5.70% -3.47% -2.46%

P-value - 0.756 0.470 0.042 0.042 0.047 0.125 0.322 0.449

Diff. in Sharpe ratio - 0.09 -0.09 0.42 0.32 0.30 0.16 0.35 0.24

P-value - 0.282 0.249 0.014 0.103 0.190 0.347 0.000 0.026
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sample estimates) and the EW portfolio. Information ratio is the highest for the MV 

portfolio with sample covariance matrix because of a quite big difference in returns and 

low tracking error. However, other portfolios’ information ratios are also not bad (except 

for the FW portfolio and the MSR portfolio with sample estimates), but the MV portfolio 

with sample covariance matrix stands out by a big margin. 

Next, one can see that annual turnover is the lowest for simple portfolios, followed by the 

MV portfolios which do not have much higher turnover. The worst in terms of turnover are 

the MSR portfolios with improved return moments, which have turnover close to 50%. 

Indifference transaction costs are the highest for the EW portfolio (35.5%), and they range 

between 6.2% and 15.1% for optimized portfolios. Thus, it is unlikely that transaction 

costs would erase the difference in returns. The effective numbers of stocks in the portfolio 

show the same dynamic as for the large-cap stock portfolios, namely, optimized portfolios 

are poorly diversified and would need additional minimum and maximum weight 

constraints to improve the diversification. 

Tests for statistical significance reject the difference in returns over the MCW portfolio for 

all the portfolios, but they confirm that lower volatility of all the MV portfolios is 

statistically significant. Test for statistical significance of Sharpe ratios confirms the 

difference only for the MV portfolio with sample covariance matrix and two MSR ratio 

portfolios with improved estimators for return moments. Surprisingly, the difference is not 

confirmed for other two MV portfolios, as it was in the case of the large-cap stock 

portfolios, although the difference in Sharpe ratios is more than 0.30. However, statistical 

tests confirmed that the MV portfolios are successful in minimizing variance, which is 

their main goal, and the MSR portfolios with improved estimators are successful in 

improving Sharpe ratio. Thus, optimized portfolios are successful in achieving their 

objectives. 

Table 7 presents the extreme risk measures for the small-cap stock portfolios. Extreme risk 

measures are even more important for the small-cap stock portfolios because small stocks 

are much more volatile than the large-cap stocks. 

Table 7: Extreme risk measures of the European small-cap stock portfolios in the period 

from 2002 till 2018 

 

Source: Own work. 

MCW 

portfolio

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Ann. semi deviation 13.36% 13.18% 15.01% 8.18% 7.97% 7.91% 9.31% 10.72% 11.30%

95% Value at Risk -8.22% -7.24% -8.34% -4.70% -4.61% -4.53% -5.70% -6.32% -6.65%

95% Expected Shortfall -14.47% -11.47% -13.20% -7.56% -6.71% -6.61% -9.82% -10.56% -10.38%

Maximum drawdown -65.35% -61.57% -71.70% -44.93% -45.40% -45.02% -49.42% -50.04% -51.99%

Maximum drawdown 

period (months)
76 67 77 72 76 90 74 69 69

Skewness -0.80 0.02 0.01 -0.85 -0.62 -0.41 -1.22 -0.86 -0.57

Kurtosis 6.18 7.40 8.62 5.04 3.99 3.92 6.48 5.44 4.62
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One can observe that all optimized portfolios achieved lower annualized semi-deviation, 

Value at Risk, Expected Shortfall and maximum drawdown than the simple portfolios. All 

three MV portfolios also stand apart from the MSR portfolios in those four extreme risk 

metrics. Thus, for everyone whose first concern is preservation of capital, the MV 

portfolios are an obvious choice. However, the MSR portfolios also should not be 

neglected as they are still much better than the simple portfolios, whose protection against 

extreme risks is really worrying. Interestingly, maximum drawdown period does not point 

to such big differences and shows that the EW portfolio needed the least time to recover 

the largest loss. Furthermore, one can see that all portfolios except the EW portfolio and 

the FW portfolio are negatively skewed. However, when looking at the kurtosis of 

portfolio return distributions, the EW portfolio and the FW portfolio performed the worst 

with much fatter tails than the normal distribution. In the case of kurtosis, optimized 

portfolios again show their superiority in comparison to simple portfolios, especially the 

MV portfolios with improved estimators which reduced kurtosis towards that of the normal 

distribution by considerable margin. 

The CAPM analysis is presented next. I report the annualized alpha and beta with their 

significance levels, and explained variability. Results are presented in the table below. 

Table 8: CAPM analysis of the European small-cap stock portfolios in the period from 

2002 till 2018 

 

Source: Own work. 

In Table 8, one can see statistically significant annualized alphas for three MV portfolios 

and two MSR portfolios. Significant alphas indicate outperformance of the MCW 

portfolio. Looking at the betas, one can see that the EW portfolio’s beta is close to the 

market beta, while the FW portfolio is more volatile with beta of 1.15. On the other hand, 

the MV portfolios and the MSR portfolio with sample estimates have very low beta. As I 

explained already in the previous chapter, this is normal for the MV portfolios. The MSR 

portfolios with improved portfolio moments have beta which is lower than the market beta 

but much higher than those of the MV portfolios. R-squared is especially low for the MV 

portfolios which indicate that other factors could help explain the returns of these 

portfolios, and also the MSR portfolios. These additional risk factors could be the SMB 

and the HML factors proposed by Fama and French (1993), which could reveal the 

exposure of the MV portfolios to other factors than the market factor which are driving the 

MV portfolio returns. 

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Ann. Alpha 1.88% -1.23% 5.75% 4.81% 4.63% 3.65% 5.19% 3.96%

P-value 0.100 0.378 0.001 0.007 0.009 0.069 0.000 0.005

Beta 1.02 1.15 0.44 0.43 0.44 0.48 0.73 0.79

P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

R-squared 93.7% 92.6% 54.3% 51.9% 53.2% 51.9% 83.5% 85.4%
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The last thing is to look at how different portfolio diversification approaches behaved in 

two sub-periods. The same as for the large-cap stock portfolios sub-periods stretch from 

January 1, 2002 till December 31, 2009 and from January 1, 2010 till December 31, 2018.  

Annualized average returns, standard deviations and Sharpe ratios for two sub-periods are 

presented in the table below. 

Table 9: Risk and return of the European small-cap stock portfolios in two sub-periods, 

from 2002 till 2009 and from 2010 till 2018 

 

Source: Own work. 

One can see that in the first sub-period portfolios constructed from the small-cap stocks 

performed much better than the portfolios from the large-cap stocks. Sharpe ratios are high 

for three MV portfolios and two MSR portfolios. Looking at the annualized average 

returns, one can see that the EW portfolio and two MSR portfolios were returning on 

average more than 10% a year. Annualized returns of the MV portfolios did not lag much 

and they successfully minimized standard deviation which resulted in them having the 

highest Sharpe ratios. Turning to the second sub-period, one can see that in terms of 

annualized average return the MSR portfolio with semi-deviation as a proxy for expected 

returns and the PCA for covariance matrix performed better than other approaches. It also 

had the second highest Sharpe ratio. Returns above 10% were registered by the other two 

MSR portfolios, the MV portfolio with sample covariance matrix and the EW portfolio. In 

the second sub-period, the MV portfolios again successfully minimized volatility, but they 

registered lower returns than in the first sub-period (except for the MV portfolio with 

sample covariance matrix). Sharpe ratio was the highest for the MV portfolio with sample 

covariance matrix because of the better risk control than the second-best portfolio, which 

had higher return but also higher risk. In contrast to the large-cap stock portfolios, the betas 

are now higher in the first sub-period, which can be expected, as systematic risk increases 

in the market downturns and market factors become more important drivers of stock 

movements. The only portfolio where this does not hold is the last of the MSR portfolios. 

4.4 Comparison of the results 

Now, that I have examined the performance of different portfolio diversification 

approaches on the sample of large and small-cap stocks, I also have to take a look at how 

the results compare among the samples. Therefore, I present the most important portfolio 

MCW 

portfolio

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

2002 - 2009

Ann. average return (geometric) 6.71% 10.36% 7.78% 9.16% 9.11% 9.67% 5.09% 10.38% 10.48%

Ann. standard deviation 20.93% 22.29% 25.41% 12.27% 12.10% 12.12% 13.52% 16.71% 17.14%

Sharpe ratio 0.18 0.33 0.19 0.51 0.51 0.55 0.17 0.44 0.44

Beta 1.00 1.04 1.18 0.46 0.44 0.45 0.50 0.76 0.78

2010 - 2018

Ann. average return (geometric) 9.27% 10.00% 7.37% 10.27% 8.13% 7.47% 10.11% 12.68% 10.94%

Ann. standard deviation 13.58% 14.07% 15.60% 8.59% 8.52% 8.84% 9.80% 10.93% 12.72%

Sharpe ratio 0.69 0.72 0.48 1.20 0.96 0.85 1.04 1.17 0.87

Beta 1.00 0.99 1.09 0.42 0.40 0.43 0.45 0.68 0.82
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performance measures in Table 10. First, one can see that portfolios constructed from 

small-cap stocks have higher cumulative returns, average returns and Sharpe ratios. This 

holds for all portfolios. For the standard deviation, one would expect it to be higher for 

small-cap stock portfolios as small stocks are more volatile. However, this holds only for 

the MCW portfolio, the EW portfolio, the FW portfolio and the MSR portfolios with 

improved estimates. Other portfolios, one MSR portfolio and all the MV portfolios, were 

able to reduce standard deviation below those of the large-cap portfolios. This means that 

some of the small-cap stocks must have had really low volatility and the MV portfolios 

successfully selected those stocks. This lower volatility was also seen from the CAPM 

analyses, where the MV portfolios from small-cap stocks had betas of 0.43 and 0.44 

compared to the portfolios from large-cap stocks which had betas between 0.65 and 0.70. 

Table 10: Comparison of the European large and small-cap stock portfolios in the period 

from 2002 till 2018 

 

Source: Own work. 

Turning to the measures of extreme risk one can see the similar pattern as for the standard 

deviation in the VaR and ES. These measures are mostly higher for the small-cap stock 

portfolios, except for the MV portfolios. Although the VaR and ES do not show higher 

riskiness of the portfolios constructed from small-cap stocks, this is seen from the last 

measure in the table – maximum drawdown. Looking at this indicator, one can see much 

higher maximum drawdown of the small-cap stock portfolios, which was around 15% to 

20% higher. In this respect, the MV portfolios constructed from the small-cap stocks 

cannot compare with their counterparts from the large-cap stocks. 

MCW 

portfolio

EW 

portfolio

FW 

portfolio

MV portfolio 

(Sample)

MV portfolio 

(PCA)

MV portfolio 

(Shrink)

MSR portfolio 

(Sample)

MSR portfolio 

(SemiDev, PCA)

MSR portfolio 

(SemiDev, Shrink)

Large-cap stock portfolios

Cummulative Return 84.69% 106.69% 55.78% 191.18% 166.87% 196.96% 97.11% 190.01% 181.13%

Ann. average return (geometric) 3.67% 4.36% 2.64% 6.49% 5.94% 6.61% 4.07% 6.46% 6.27%

Ann. standard deviation 14.07% 16.56% 17.65% 11.51% 11.23% 11.31% 13.27% 12.23% 12.25%

Sharpe ratio 0.17 0.18 0.08 0.45 0.41 0.47 0.21 0.42 0.40

95% Value at Risk -6.77% -7.56% -8.22% -5.19% -5.17% -5.12% -6.38% -5.65% -5.58%

95% Expected Shortfall -9.94% -11.58% -12.50% -7.88% -7.64% -7.44% -9.09% -7.87% -7.94%

Maximum drawdown -44.92% -48.98% -53.76% -29.72% -30.94% -31.06% -42.08% -34.01% -36.16%

Small-cap stock portfolios

Cummulative Return 273.14% 418.79% 245.23% 385.67% 306.00% 300.01% 254.02% 545.32% 464.89%

Ann. average return (geometric) 8.05% 10.17% 7.56% 9.74% 8.59% 8.50% 7.72% 11.59% 10.72%

Ann. standard deviation 17.38% 18.35% 20.75% 10.46% 10.33% 10.49% 11.69% 13.92% 14.93%

Sharpe ratio 0.39 0.48 0.30 0.80 0.70 0.68 0.55 0.73 0.63

95% Value at Risk -8.22% -7.24% -8.34% -4.70% -4.61% -4.53% -5.70% -6.32% -6.65%

95% Expected Shortfall -14.47% -11.47% -13.20% -7.56% -6.71% -6.61% -9.82% -10.56% -10.38%

Maximum drawdown -65.35% -61.57% -71.70% -44.93% -45.40% -45.02% -49.42% -50.04% -51.99%
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Figure 9: Comparison of the European large and small-cap stock portfolios performance in 

the period from 2002 till 2009 

 
Source: Own work. 

In the above figure, one can see the graphical comparison of the portfolio performances in 

the risk-return space. Results are shown for the large and small-cap stock portfolios in the 

period from 2002 till 2009 and the differences in returns are enormous. In that period, the 

best performing portfolio constructed from the large-cap stocks had lower annualized 

average return than the worst performing portfolio constructed from the small-cap stocks. 

The standard deviation is on average lower for the large-cap stock portfolios, although the 

MV portfolios from both samples had very similar volatility. 

Figure 10: Comparison of the European large and small-cap stock portfolios performance 

in the period from 2010 till 2018 

 
Source: Own work. 
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Figure 10 is a representation of the portfolios’ performance in the period from 2010 till 

2018. One can see that in the bull markets the differences between portfolios constructed 

from the small and large-cap stocks are not that big. However, small-cap stock portfolios 

still offered better risk-adjusted returns. The smaller difference in the large and small-cap 

stock portfolios performance in the up markets can be explained with the fact that large-

cap stocks are usually dragged up in the bull markets as this are the most renowned 

companies, where the most of investors like to invest. Consequently, this companies 

exhibit huge growth in stock value and can become overvalued, which is compensated with 

lower returns in the downmarket environment. 

Figure 11 presents the growth of portfolio value (normalised to one as a starting value) for 

six selected portfolios, three portfolios from each sample, i.e. the MCW portfolio which 

serves as the benchmark, the MV portfolio with sample estimates and the MSR portfolio 

with semi-deviation and the PCA. These portfolios were selected as they have the best 

performance statistics and are representative for the performance of the MV portfolios and 

the MSR portfolios. 

Figure 11: Growth of portfolio value for selected portfolios in the period from 2002 till 

2018 

 

Source: Own work. 

The upper figure shows how the differences in average returns over the years translate into 

even bigger differences in cumulative returns. This is a great example of how 

compounding works, e.g. the difference in annualized average return of the MV portfolio 

and the MSR portfolio constructed from the small-cap stocks is 1.85% points. This small 

difference in returns compounds into 159.7% points higher cumulative return of the MSR 

portfolio over the 17 years period. Thus, the selection of the appropriate portfolio is very 
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important as the MCW portfolio of the small-cap stocks had even lower cumulative return 

that was half lower than the MSR portfolio’s (273.14% vs 545.32%). 

When taking a quick look at the cumulative returns of the large-cap stock portfolios, one 

can see that they had much lower cumulative returns. This just confirms that stocks of 

small companies have more room to grow and over the years this results in higher portfolio 

wealth. Investors usually turn away from small-cap stocks or allocate only small amounts 

of portfolio to smaller stocks because they perceive them as risky and miss on the 

opportunity to grow their portfolio value by considerable amount. Another interesting 

observation is how closely the MV portfolio and the MSR portfolio of the large-cap stocks 

moved. This can indicate that stock’s semi-deviation better predicts the expected returns of 

small-cap stocks while it is not that useful for predicting returns of large-cap stocks. This is 

possible explanation because investors are more concerned about the risk of small-cap 

stocks and require them to bring higher returns. On the other hand, large-cap stocks are not 

that volatile and it is thus more difficult to predict the best performing stocks in the next 

period. However, semi-deviation as the proxy for expected return is still much better than 

the mean return. 

I also have to confirm the research hypotheses that were set in the introduction. Based on 

the presented results for the small and large-cap stock portfolios and the computed 

statistical tests presented in Table 2 and Table 6, I confirmed the following hypotheses. 

Table 11: Review of the research hypotheses 

 
Hypothesis Result 

1. The market-cap weighted portfolio is inefficient as one can construct 

portfolio with higher out-of-sample Sharpe ratio. 
CONFIRMED 

2. The equally-weighted portfolio has higher return and higher Sharpe 

ratio but also higher risk than the market-cap weighted portfolio. 

NOT 

CONFIRMED 

3. The fundamentally-weighted portfolio has a higher Sharpe ratio than 

the market-cap weighted portfolio. 

NOT 

CONFIRMED 

4. The minimum variance portfolios with improved estimates of 

covariance matrix have the lowest standard deviations. 

PARTIALLY 

CONFIRMED 

5. The maximum Sharpe ratio portfolios with improved estimates of the 

stock return moments have the highest Sharpe ratios. 

PARTIALLY 

CONFIRMED 

6. There are no differences if the approaches are applied to the large or 

small-cap stocks. 

PARTIALLY 

CONFIRMED 

Source: Own work. 

The first research hypothesis is confirmed as five portfolios from the large-cap stocks and 

three portfolios from the small-cap stocks had statistically and economically significant 
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Sharpe ratios. The MV portfolio with sample covariance matrix and two MSR portfolios 

with advanced moment estimates had statistically significant result in both stock samples. 

The second research hypothesis is not confirmed. The EW portfolio had higher return, 

higher Sharpe ratio and higher risk in both stock samples, but the differences were not 

statistically significant. 

The third research hypothesis is not confirmed as the FW portfolio did not even have 

higher Sharpe ratio. Based on the statistical tests for the Sharpe ratio, it is more possible 

that FW portfolio has lower Sharpe ratio. The p-value was 0.094 which is close to the 0.05 

threshold. 

The fourth hypothesis is partially confirmed. The MV portfolios had the lowest standard 

deviations in both samples. The difference seems economically significant for the large-

cap stocks but with statistical tests I was not able to confirm that difference. In comparison, 

the difference was even bigger for small-cap stocks, where it was also statistically 

significant. At the same time, the MV portfolio with sample covariance matrix minimized 

volatility as successfully as the MV portfolios with improved estimates of covariance 

matrix. Based on the mixed results for the small and large-cap stocks, I cannot fully 

confirm the hypothesis. 

The fifth hypothesis is only partially confirmed, although the MSR portfolios with 

improved portfolio return moments have statistically and economically higher Sharpe ratio 

than the market-cap weighted portfolio. This difference is present for the small and large-

cap stocks. However, I cannot confirm they have the highest Sharpe ratios because in both 

samples there was at least one MV portfolio with statistically significant difference in 

Sharpe ratio compared to the MCW portfolio and that Sharpe ratio was higher than those 

of the MSR portfolios. As a result, I partially confirmed the hypothesis as it improved the 

Sharpe ratio with respect to the MCW portfolio, but I cannot say that these Sharpe ratios 

are the highest of all portfolios. 

The last hypothesis is only partially confirmed because the portfolio diversification 

approaches followed the same pattern of improvement of the MCW portfolio, but at the 

same time, improvements were not statistically significant on both stock samples. For 

example, on both samples the differences in returns showed similar directions as all 

portfolios had higher returns than the MCW portfolio, except for the FW portfolio for both 

samples and MSR portfolio with sample moments for the small-cap stocks. In both 

samples, the volatility is higher for the EW and the FW portfolios and lower for the 

optimized portfolio. The Sharpe ratio is also higher for all portfolios expect for the FW 

portfolio. Thus, in that respect portfolio diversification approaches work the same for small 

and large-cap stock portfolios. But there is a difference in statistical significance of those 

results. While differences in returns are not statistically significant for any of the 

portfolios, the differences in volatilities are significant for the MV portfolios in the small-
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cap stocks sample but not for the portfolios constructed from the large-cap stocks. Also, 

the difference in Sharpe ratios is statistically significant for five portfolios in the large-cap 

stocks sample and three portfolios in the small-cap stocks sample. Therefore, I can only 

partially confirm the hypothesis. 

To sum up, the benefits of using optimized portfolios instead of the simple weighting 

approaches are huge. The market-cap weighting is inefficient and it should not serve as the 

proxy for the tangency portfolio, neither should the equal weighting or fundamental 

weighting with book value of equity. The MV portfolios and the MSR portfolios are thus 

much better approaches, but the inputs, i.e. the covariance matrix and the expected returns 

should be estimated with special care. The results show that it is perfectly fine to use the 

sample covariance matrix for the MV portfolio but I would rather advise to use the PCA as 

an implicit factor model or shrinkage methods, because if I would have portfolios with 

more than 50 stocks, the curse of dimensionality and consequently the estimation error 

would probably step in and result in poorer performance. 

When it comes to the maximum Sharpe ratio portfolio, estimation error in expected returns 

is a huge problem.  Therefore, nobody should use the average returns as the inputs for the 

tangency portfolio. The semi-deviation estimate that I tested and was first proposed by 

Amenc, Goltz, Martellini and Retkowsky (2010) resulted in the favourable out-of-sample 

results. However, the out-of-sample Sharpe ratios for the MV portfolios and the MSR 

portfolios were comparable, which indicates that there is still room for the improvement of 

the expected return estimates. This improvement can come from the equity research 

analysts who are able to identify the best performing stocks in the next period. Without 

better estimates of expected returns minimum variance portfolio and maximum Sharpe 

ratio portfolio both look like a good proxy for the tangency portfolio – something that was 

also observed by Amenc, Goltz, Lodh and Martellini (2012). 

Two caveats that have to be added to the optimized portfolios are large tracking error and 

high turnover. The first is very important for portfolio managers, who don not want to 

deviate too much from their benchmarks. The possible solution to this problem is portfolio 

optimization, where the maximum allowed tracking error is added as the objective to 

portfolio optimizer. The problem of high turnover can be solved with optimal portfolio 

turnover control, where one rebalances portfolio only when there is significant deviation 

from optimal weights or one sets the maximum allowable portfolio turnover at each 

rebalancing. These are the question that were not addressed in the thesis as each additional 

objective reduces the out-of-sample performance to some extent and my goal was to find 

portfolio with the highest efficiency without additional portfolio constraints. 
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CONCLUSION 

The market-cap weighting which is the basis for the most equity indexes and benchmarks 

on which portfolio managers are evaluated has been shown as inefficient weighting 

approach a long ago. The first, who pointed to this were Haugen and Baker (1991) and 

Grinold (1992). I first reviewed the portfolio theory, starting from the most basic things 

such as the portfolio risk and return, covariance between stocks and diversification. I 

continued with the modern portfolio theory, which was derived by Markowitz (1952) and 

introduces two remarkable portfolios, the global minimum variance portfolio and the 

tangency portfolio (maximum Sharpe ratio portfolio). In the absence of the good inputs and 

sufficient computer power, construction of these portfolios for a large number of stocks 

was practically impossible at that time. This led to Sharpe (1964) developing the CAPM, 

where he argued that under certain assumptions the portfolio of all marketable assets 

weighted by their market value equals the tangency portfolio, and can, therefore, be called 

the market portfolio. The CAPM has been refuted numerous times as its assumptions are 

unrealistic and loosening of only one of them results in its sub-optimality. However, in the 

absence of the better portfolio construction methods investment industry have built 

numerous stock indexes which are market-cap weighted. The idea of the market-cap 

weighted indexes as being the best proxy for the tangency portfolio has become firmly 

rooted in the investment world. 

Despite the adoption from the investment industry, which has been introducing more and 

more cap-weighted indexes, researchers and practitioners started focusing on new 

approaches to portfolio diversification. I presented the most widely documented 

approaches in the second chapter. In addition to the market-cap weighting, I presented six 

other approaches, the two simple portfolio diversification techniques, i.e. the equal 

weighting and fundamentals weighting, and four advanced approaches, i.e. the minimum 

variance portfolio, the equally weighted risk contributions portfolio or risk parity, the most 

diversified portfolio and the maximum Sharpe ratio portfolio. 

In the third chapter, I looked at the estimation of portfolio moments, which are the inputs 

to advanced (optimized) portfolios. The very well-known problem in economics, the 

“garbage in, garbage out” also applies here. Meaning, no matter how good our models are, 

if one has poor quality inputs, good results cannot be expected. In this case, the inputs for 

optimized portfolios are expected returns and variance-covariance matrix. Here, practically 

all researchers agree that sample covariance matrix and sample expected returns are bad 

inputs. That is why I reviewed the estimation approaches that should yield better out-of-

sample results. 

In the last chapter, I conducted the empirical analysis based on the sample of the European 

large and small-cap stocks. The period of analysis stretches from January 1, 2002 till 

December 31, 2018. The stock samples were collected from the STOXX Europe 600 index 

and the period was chosen based on the availability of data on the Bloomberg terminal. 
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Tested portfolios are not the same as portfolios covered in chapter two of the thesis 

because the risk parity approach is more useful as the asset class weighting approach and 

not for equity portfolios. That is also the area where it was developed and the most widely 

examined. The most diversified portfolio was excluded from the analysis because it 

produced the good out-of-sample results in only few studies. 

In the end, I focused on constructing three simple portfolios (the MCW portfolio, the EW 

portfolio and the FW portfolio) and six optimized portfolios, the MV portfolio and the 

MSR portfolio, each estimated with three different combinations of portfolio return 

moments. I thought it was better to focus on the MV portfolio and the MSR portfolio, 

which have the strongest theoretical basis, and test them with different inputs instead of 

focusing on the other weighting approaches which do not have strong theoretical or 

empirical support. The optimized portfolios with different inputs are: 

1. Minimum variance portfolio based on the sample var-cov matrix, 

2. Minimum variance portfolio with the PCA used as an estimator of var-cov matrix,  

3. Minimum variance portfolio with the shrinkage estimator for var-cov matrix, 

4. Maximum Sharpe ratio portfolio based on the sample mean and sample var-cov matrix, 

5. Maximum Sharpe ratio portfolio with the semi-deviation used as an estimator for stock 

expected returns and the PCA as an estimator of var-cov matrix, 

6. Maximum Sharpe ratio portfolio with the semi-deviation used as an estimator for stock 

expected returns and the shrinkage estimator for var-cov matrix. 

The main research objective of the empirical analysis was to find the portfolio which 

improves the efficiency (Sharpe ratio) of the market-cap weighted benchmark. The results 

based on the samples of small and large-cap stocks showed that the best out-of-sample 

performance is achieved with the MV portfolios and the MSR portfolios. In both samples 

the FW portfolio, which was tested only with book value of equity, performed the worst in 

all aspects and even underperformed the MCW portfolio. The EW portfolio had higher 

return and higher Sharpe ratio but also higher volatility than the MCW benchmark, but 

these differences were not statistically significant on any sample. Thus, none of the simple 

portfolios was able to outperform the benchmark cap-weighted portfolio by statistically 

significant margin. 

The results for the optimized portfolios on the large-cap sample showed statistically 

significant improvement in Sharpe ratios for three MV portfolios and two MSR portfolios 

with improved estimates. The differences in returns and volatilities were not statistically 

significant. The small-cap sample showed slightly different results as the statistically 

significant difference in Sharpe ratios was found only for the MV portfolio with sample 

covariance matrix and two MSR portfolios with improved input estimates. Additionally, 

statistically significant difference in volatilities was obtained for all MV portfolios. The 

differences in returns were not statistically significant. 
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The conclusions I have made are, that MSR portfolio should only be constructed with 

improved estimates of portfolio return moments as sample mean is a bad estimate of 

expected returns. The MV portfolio did not show any problems when sample covariance 

matrix was used, however, I would still advise to rather use methods such as the PCA or 

shrinkage estimators. That is because the problem of dimensionality in covariance matrix 

estimation process comes into play when one has larger stock portfolios. My portfolio of 

50 stocks is much smaller than portfolios with 500 or more stocks, where the number of 

required estimates grows exponentially. 

Additionally, the optimized portfolios exhibit high tracking error and turnover which can 

be problematic for portfolio managers. The solution to this problem is optimization with 

additional objective functions, such as the maximum allowed tracking error and optimal 

portfolio turnover control. The later can be added as the maximum allowed turnover at 

each rebalancing or one can rebalance only when the weights deviate significantly from the 

optimal weights. Diversification of optimal portfolios measured as the effective number of 

stocks in the portfolio is also problematic as optimizers pick only a handful of stocks. This 

can be improved with additional minimum and maximum weight constraints. 

The out-of-sample Sharpe ratios of the MV portfolios and the MSR portfolios also look 

very similar, which was noted also by Amenc, Goltz, Lodh and Martellini (2012). 

Therefore, both portfolios look like a good proxy for the tangency portfolio. This indicates 

that active portfolio managers and stock research analysts can still beat those portfolios if 

they can come up with better estimates of expected returns. But in the absence of the better 

estimates, investors can divide their money between the MV portfolio and the MSR 

portfolio as they have different characteristics and exhibit different performance in bear 

and bull markets. 

When it comes to the differences between samples it is evident that small-cap stocks had 

much higher returns and over the years this resulted in almost twice the cumulative returns. 

At the same time, the MV portfolios from small-cap stocks even had lower volatility than 

the MV portfolios form large-cap stocks. Also, the extreme risk measures did not show 

higher riskiness of small-cap stock portfolios until I looked at the maximum drawdown 

which was much higher for all small-cap stock portfolios. 

Based on the obtained results, which are similar to other comparable studies, efficient 

portfolio diversification can only be achieved with optimized portfolios, namely, the 

minimum variance portfolio and the maximum Sharpe ratio portfolio, where it is important 

to use improved methods for the estimation of expected returns and variance-covariance 

matrix. Limiting the investment universe only to large-cap stocks can result in lower 

cumulative returns over the longer investment periods as small-cap stocks compensate 

their higher riskiness with much higher returns. 
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Appendix 1: Povzetek (Summary in Slovene language) 

V magistrski nalogi se ukvarjam z učinkovito razpršitvijo portfelja evropskih delnic z 

visoko in nizko tržno kapitalizacijo, saj je bilo dokazano, da je trenutno prevladujoč način 

izgradnje portfelja, ki temelji na ponderiranju delnic glede na njihovo tržno vrednost, 

neučinkovit. To sta kot prva dokazala Haugen in Baker (1991) ter Grinold (1992). 

S tem namenom prvo pregledam teorijo portfelja, začenši s pregledom osnovnih 

značilnosti portfelja in učinki preproste razpršitve portfelja. Nato nadaljujem z moderno 

teorijo portfelja, ki jo je postavil Markowitz (1952), ter v njej definiral dva portfelja – 

portfelj z najnižjo varianco in portfelj z najvišjim Sharpovim kazalnikom. Sharpov 

kazalnik meri razmerje med presežnim donosom portfelja nad netvegano stopnjo donosa 

deljeno s standardnim odklonom portfelja (enačba 7). Omenjeni portfelj dobimo tako, da 

pri vsakem standardnem odklonu poiščemo portfelj z najvišjim donosom, pri čemer je 

najboljši tisti, ki doseže najvišji Sharpov kazalnik. Ta portfelj je v teoriji najboljša (najbolj 

učinkovita) izbira za vsakega vlagatelja, vendar pa obstajajo težave pri njegovi 

implementaciji v praksi, predvsem je potrebno natančno oceniti prihodnje donose vseh 

delnic ter variančno-kovariančno matriko. Sharpe (1964) je v modelu vrednotenja 

dolgoročnih naložb prikazal, kako pod določenimi predpostavkami ta portfelj postane tržni 

portfelj, kjer so vse delnice ponderirane glede na njihovo tržno vrednost. Ta način 

izgradnje portfeljev, ki je veliko enostavnejši, prevladuje še danes, v njih pa se vlaga vedno 

več denarja, kljub vprašljivi učinkovitosti. 

V drugem poglavju magistrske naloge pregledam še ostale pristope pri ponderiranju delnic 

v portfelju, ki so bili predlagani s strani akademikov in upravljavcev premoženja, kot 

možne alternative tržno ponderiranim portfeljem. Ti portfelji so: portfelj z enakimi utežmi, 

portfelji ponderirani z vrednostmi knjigovodskih postavk podjetij, portfelj z najnižjo 

varianco, portfelj ponderiran z enakomernimi prispevki k tveganju, najbolj razpršen 

portfelj in portfelj z najvišjim Sharpovim kazalnikom. 

Portfelji, ki temeljijo na optimizaciji, tj. portfelj z najnižjo varianco in portfelj z najvišjim 

Sharpovim kazalnikom, zahtevajo ocene bodočih donosov delnic in oceno variančno-

kovariančne matrike. Tu nastane problem, kako čim bolj natančno oceniti te podatke, zato 

v tretjem poglavju pregledam različne metode za njihovo čim bolj natančno oceno, saj 

povprečne vrednosti iz preteklosti preslabo napovedujejo prihodnost, kar se odrazi v slabi 

učinkovitosti portfelja. 

V zadnjem delu magistrske naloge analiziram 9 različnih portfeljev, ki so: tržni portfelj, 

portfelj z enakimi utežmi, portfelj ponderiran s knjigovodsko vrednostjo kapitala podjetij 

ter portfelja z najnižjo varianco in z najvišjim Sharpovim kazalnikom, ki sta ocenjena vsak 

po trikrat, pri čemer so uporabljene različne metode za oceno prihodnjih donosov delnic in 

variančno-kovariančne matrike. Analiza je narejena na dveh vzorcih evropskih delnic z 

visoko in nizko tržno kapitalizacijo, vsak s 50 delnicami, ki so bile izbrane iz indeksa 

STOXX Europe 600, med 1. januarjem 2002 in 31. decembrom 2018. Testiranje je bilo 
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izvedeno za nazaj, uporabljeni so bili podatki o mesečnih donosih, optimizirana portfelja 

sta imela omejitev glede najnižje in najvišje uteži posamezne delnice, in sicer 0 % in 20 %, 

portfelj pa je moral biti investiran v celoti. 

Dobljeni rezultati so podobni ugotovitvam preteklih študij, ki so bile izvede pretežno za 

ameriški delniški trg, in kažejo, da so portfelji z najvišjim Sharpovim kazalnikom, ki 

uporabljajo izboljšane metode za ocene prihodnjih donosov in variančno-kovariančne 

matrike, veliko boljši od trenutno prevladujočih tržnih portfeljev. Ugotovljene razlike v 

Sharpovih kazalnikih so statistično značilne na obeh vzorcih. Vsi portfelji z najnižjo 

varianco so dosegli višji Sharpov kazalnik na vzorcu velikih delnic, medtem ko je bil na 

vzorcu malih delnic kazalnik statistično značilen le za portfelj z vzorčno variančno-

kovariančno matriko, kar nam pove, da pri portfelju s 50-imi delnicami ne obstaja problem 

prevelike dimenzionalnosti kovariančne matrike in ni potrebno uporabiti izboljšanih 

metod. Na vzorcu delnic z nizko kapitalizacijo je bila statistično značilna tudi razlika v 

standardnem odklonu portfeljev z najnižjo varianco, kjer so ti portfelji uspeli znatno 

zmanjšati volatilnost napram tržnemu portfelju. Vsi ostali portfelji niso izboljšali rezultata 

tržnega portfelja z razliko, ki bi bila statistično značilna. Portfelj ponderiran s 

knjigovodsko vrednostjo kapitala podjetij se je odrezal celo slabše v vseh pogledih. 

Rezultati so predstavljeni v tabelah od 2 do 10. 

Razlike med vzorcema kažejo predvsem na višjo donosnost portfeljev sestavljenih iz 

delnic z nizko tržno kapitalizacijo, vendar pa so ti portfelji podvrženi večjemu 

ekstremnemu tveganja, saj so delnice z nizko kapitalizacijo bolj tvegane. Kljub temu pa je 

razlika v kumulativnem donosu lahko dvakrat večja, če primerjamo enak portfelj sestavljen 

iz delnic z nizko in visoko tržno kapitalizacijo. Delnice majhnih podjetij je torej smiselno 

vključiti v vsak portfelj. Razlike so razvidne iz slik 9, 10 in 11. 

Na podlagi rezultatov je učinkovito razpršitev portfelja možno doseči le z optimiziranimi 

portfelji, in sicer s portfeljem z najnižjo varianco in portfeljem z najvišjim Sharpovim 

kazalnikom, kjer je pomembno uporabiti izboljšane metode za ocenjevanje pričakovanih 

donosov in variančno-kovariančne matrike. Omejevanje portfelja le na delnice z visoko 

tržno kapitalizacijo vpliva na nižje kumulativne donose skozi daljše časovno obdobje, saj 

delnice z nizko tržno kapitalizacijo nadomestijo višjo tveganost z večjimi donosi. 
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Appendix 2: Sample of the European large-cap stocks 

Bloomberg ticker Company name Market cap (EUR million) 

VOD LN Equity Vodafone Group PLC 199,340 

BP/ LN Equity BP PLC 197,097 

GSK LN Equity GlaxoSmithKline PLC 174,994 

NOKIA FH Equity Nokia OYJ 137,087 

HSBA LN Equity HSBC Holdings PLC 122,859 

NOVN SW Equity Novartis AG 116,924 

FP FP Equity TOTAL SA 113,098 

NESN SW Equity Nestle SA 92,653 

AZN LN Equity AstraZeneca PLC 88,460 

DTE GY Equity Deutsche Telekom AG 81,017 

RBS LN Equity Royal Bank of Scotland Group PLC 77,820 

ROG SW Equity Roche Holding AG 69,201 

LLOY LN Equity Lloyds Banking Group PLC 68,775 

VIV FP Equity Vivendi SA 66,746 

SIE GY Equity Siemens AG 66,040 

UNA NA Equity Unilever NV 64,933 

ULVR LN Equity Unilever PLC 64,321 

ALV GY Equity Allianz SE 64,157 

BARC LN Equity Barclays PLC 61,573 

SAN FP Equity Sanofi 61,340 

CSGN SW Equity Credit Suisse Group AG 56,835 

INGA NA Equity ING Groep NV 56,435 

ENI IM Equity Eni SpA 56,222 

MUV2 GY Equity Munich Re 53,959 

OR FP Equity L'Oreal SA 53,310 

ERICB SS Equity Telefonaktiebolaget LM Ericsson 49,540 

DBK GY Equity Deutsche Bank AG 49,346 

LHN SW Equity LafargeHolcim Ltd 48,647 

SAP GY Equity SAP SE 46,043 

BNP FP Equity BNP Paribas SA 44,520 

DGE LN Equity Diageo PLC 43,485 

AGN NA Equity Aegon NV 43,236 

PHIA NA Equity Koninklijke Philips NV 42,505 

CA FP Equity Carrefour SA 41,531 

CS FP Equity AXA SA 40,288 

G IM Equity Assicurazioni Generali SpA 39,763 

EOAN GY Equity E.ON SE 38,524 

BT/A LN Equity BT Group PLC 35,829 

RIO LN Equity Rio Tinto PLC 33,513 

STM FP Equity STMicroelectronics NV 32,413 

AV/ LN Equity Aviva PLC 31,041 

AD NA Equity Koninklijke Ahold Delhaize NV 30,046 

TSCO LN Equity Tesco PLC 28,194 

GLE FP Equity Societe Generale SA 27,068 

BAYN GY Equity Bayer AG 26,146 

PRU LN Equity Prudential PLC 25,743 

BMW GY Equity Bayerische Motoren Werke AG 25,684 

BAS GY Equity BASF SE 24,737 

RWE GY Equity RWE AG 23,328 

SKY LN Equity Sky Ltd 23,322 

Source: Bloomberg L.P. (2019) 
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Appendix 3: Sample of the European small-cap stocks 

Bloomberg ticker Company name Market cap (EUR million) 

RCH LN Equity Reach PLC 1,934 

TOM NO Equity Tomra Systems ASA 1,925 

CON GY Equity Continental AG 1,867 

MN IM Equity Arnoldo Mondadori Editore SpA 1,841 

COLR BB Equity Colruyt SA 1,821 

STB NO Equity Storebrand ASA 1,812 

G1A GY Equity GEA Group AG 1,805 

CBG LN Equity Close Brothers Group PLC 1,796 

COLOB DC Equity Coloplast A/S 1,775 

COB LN Equity Cobham PLC 1,762 

GFC FP Equity Gecina SA 1,760 

PSN LN Equity Persimmon PLC 1,735 

RAND NA Equity Randstad NV 1,727 

TPEIR GA Equity Piraeus Bank SA 1,668 

SOON SW Equity Sonova Holding AG 1,660 

SBMO NA Equity SBM Offshore NV 1,647 

TITK GA Equity Titan Cement Co SA 1,638 

BDEV LN Equity Barratt Developments PLC 1,633 

SON PL Equity Sonae SGPS SA 1,620 

SGC LN Equity Stagecoach Group PLC 1,594 

OERL SW Equity OC Oerlikon Corp AG 1,592 

IMI LN Equity IMI PLC 1,544 

TPK LN Equity Travis Perkins PLC 1,541 

JDW LN Equity J D Wetherspoon PLC 1,502 

GN DC Equity GN Store Nord A/S 1,478 

BKG LN Equity Berkeley Group Holdings PLC 1,468 

BPI PL Equity Banco BPI SA 1,459 

BPSO IM Equity Banca Popolare di Sondrio SCPA 1,444 

DLAR LN Equity De La Rue PLC 1,430 

SGSN SW Equity SGS SA 1,408 

HWDN LN Equity Howden Joinery Group PLC 1,360 

PNN LN Equity Pennon Group PLC 1,352 

BTG LN Equity BTG PLC 1,286 

NEX LN Equity National Express Group PLC 1,214 

INM ID Equity Independent News & Media PLC 1,198 

BBY LN Equity Balfour Beatty PLC 1,160 

VSVS LN Equity Vesuvius PLC 1,138 

SNI NO Equity Stolt-Nielsen Ltd 1,109 

ASM NA Equity ASM International NV 1,066 

TW/ LN Equity Taylor Wimpey PLC 1,064 

IRV LN Equity Interserve PLC 943 

RIEN SE Equity Rieter Holding AG 941 

VCT FP Equity Vicat SA 920 

BOY LN Equity Bodycote PLC 905 

HUH1V FH Equity Huhtamaki OYJ 898 

MGGT LN Equity Meggitt PLC 893 

JYSK DC Equity Jyske Bank A/S 861 

WHA NA Equity Wereldhave NV 841 

GPOR LN Equity Great Portland Estates PLC 814 

MGAM LN Equity Morgan Advanced Materials PLC 727 

Source: Bloomberg L.P. (2019) 


