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INTRODUCTION

Purpose of the Thesis

Volatility forecasting has significant importance in academic studies and empirical use. It
is one of the most challenging tasks in the financial system. Volatility is calculated from
the standard deviation or variance of the closing prices. There are various models studied
and applied on financial time series for variance forecasting in purpose of modelling asset
returns, portfolio optimization, risk management, etc. The Generalized Autoregressive
Conditional Heteroskedastic (GARCH) model (Bollerslev, 1986) is one of the most studied
and applied models for volatility forecasting. It models the autoregressive process, based on
lagged squared returns and variance. The GARCH(1,1) model is mainly used in this work
for variance forecasting.

Financial time series has certain characteristics. There are mainly zero mean in return series.
The squared returns usually have strong autocorrelations. Regarding modelling conditional
variance, the GARCH model is suitable for the estimation process. The parameters in the
statistic model are usually estimated by Maximum Likelihood Estimation (MLE) method.
The method has assumptions for error distribution. We usually assume normal distribution
and student’s t distribution when using the method. At the same time, it is known that
financial time series doesn’t have normal distribution empirically and usually with heavy
tails. In this thesis, besides the MLE method, we use Support Vector Machine (SVM) which
doesn’t need an assumption of error distribution. Under the framework of the GARCH
model, we compare the forecasted variance with true variance and examine the effect of
different methods.

Structure of the Thesis

The first part of the thesis focuses on the theoretical background. It starts from time series
analysis and introduces different models including the autoregressive model, the moving
average model and the conditional heteroscedastic models - mainly the Autoregressive
Conditional Heteroskedastic (ARCH) model (Engle, 1982) and the GARCH model. We
then introduce SVM by presenting basic theory and formulations of SVM classification and
regression as well as the main features in SVM applications which are dual formulation,
kernels and grid search. After the introduction of time series models and SVM, we proceed
with parameter estimation for the GARCH(1,1) model. For MLE method, we assume
normal and student’s t distributions for the error terms and the formulations under both
assumptions. For SVR method, we demonstrate the formulations of the New Support
Vector Regression (ν-SVR) (Schölkopf, Smola, Williamson & Bartlett, 2000), approximate
functions and how to get the estimated parameters in the GARCH model in the case of linear
kernel. To finish the theoretical part, we present the evaluation of volatility forecasting -
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using the coefficient of determination (R2) between the forecasted and true variances.

The second part contains the empirical modelling process and results. It starts with the
description and transformation of empirical data that we use in this work. Before the
empircal modelling, we also provide a simulation process. We simulate data series with
specified parameters in the GARCH model and we compare the forecastibility R2 between
GARCH-MLE and GARCH-SVR. Then we proceed with the empirical data - SP500 and
BTC/USD daily returns. We first apply time series ananlysis and normality test on the data
to examine autocorrelations, return distributions, etc. We then present the empirical result
showing that the GARCH-MLE model outperforms the GARCH-SVR model for SP500
daily returns, which is different from the simulation process with similar parameter settings.
The mixed result also shows that the GARCH-SVR model performs better for the BTC
returns.

Previous Research and Literature Overview

There are certain characteristics of volatility of asset returns. The most seen and prominent
stylized facts about volatility are persistence, mean reverting and an asymmetric effect
from innovations on volatility (Engle & Patton, 2001). From empirical modelling,
volatility has calm periods followed by more clustering periods. Volatility is not diverging
to infinity but mean reverting. Besides, volatility reacts stronger to negative shocks than
an equal size of positive shocks, which is also referred to as the leverage effect (Black, 1976).

Conventional econometric models have assumptions of constant variances. The ARCH
model introduces the conditional variance changing over time based on past errors and
leaving the unconditional variance constant. The ARCH model has widely been used and
proven useful in economic and financial modelling (Poon & Granger, 2003). Models for
the inflation rate (Engle, 1983) are constructed to recognize the uncertainty of inflation that
tends to change over time. The ARCH model and a simple regression model also provide
good performance of volatility forecasting (Brailsford & Faff, 1996).

In 1986, Bollerslev introduces the GARCH model. It is a more general class of process. It
extends the ARCH model with lagged conditional variances, meaning with resemblance of
the standard time series Autoregressive (AR) process to the general Autoregressive Moving
Average (ARMA) process (Whittle, 1951).

The GARCH model has similar properties as the ARCH model. It is widely used in the
application of inflations, exchange rates, stock markets, etc. It can model the volatility
clustering but cannot address the leverage effect and asymmetric impact from positive and
negative returns. The addition of conditional variances helps to model the volatility without
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adding many lagged squared returns compared to the ARCH model. However, studies show
that the GARCH model is inferior to models that can capture a leverage effect (Hansen &
Lunde, 2005).

Generally, the parameters in the GARCH model are estimated with the Maximum
Likelihood Estimation (MLE) method by taking the conditionally Gaussian log-likelihood
and maximizing the likelihood function. In this case, we need an assumption for error
distribution - normal or student’s t (Dutta, 2014). There are also other methods for estimating
parameters in the GARCH model, for example using non-linear modifications (Franses &
Dijk, 1996).

Support Vector Machine (SVM) (Cortes & Vapnik, 1995) is characterized by number of
support vectors, the cost functions, usage of kernel tricks, mapping into high dimensional
feature space etc. It can be applied to solve classification and regression problems. The
algorithm is widely used in categorization, image recognition, biological classification,
etc. Same as the classification approach, Support Vector Regression (SVR) (Drucker et al.,
1996) optimizes the generalization bounds with a given trade-off.

The ν-SVR introduces a new parameter ν ∈ (0, 1]. It includes an upper bound on a fraction
of training errors and a lower bound of fraction of support vectors. It controls the number of
support vectors and training errors.

The benefits of using SVM or SVR, is that there is no assumption of a probability density
function of the error distributions when estimating parameters in the GARCH(1,1) model
(Gavrishchaka & Banerjee, 2006). The SVM methods use the empirical risk minimization
inductive principle. It looks for an insensitivity zone and a decision boundary. It is a
constrained optimization problem and can be solved using quadratic programming schemes.
Instead of an assumption of error distribution as Gaussian or student’s t, it can bring a better
result of forecastibility especially when error does not have normal or standard student’s t
distribution (Chen, Jeong & Härdle, 2008).

There are studies demonstrating the effects of different hybrid GARCH models. In 1996,
Donaldson and Kamstra construct a seminonparametric nonlinear GARCH model based
on the Artificial Neural Network (ANN). They reveal that the hybrid model captures
the volatility effects overlooked by the GARCH model. The GARCH-SVR model has
consistent and stronger parameter estimation and variance forecastibility in empirical
study (Perez-Cruz, Afonso-Rodriguez & Giner, 2003). The hybrid model also shows
a significant empirical result for forecasting one-period-ahead volatility that outperforms
standard GARCH, exponential GARCH (EGARCH) and the ANN-GARCH model (Chen,
Hädle & Jeong, 2009). A brief literature overview is listed in table1.
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Table 1: Literature overview

Title Authors and Year Description
Studies of Stock Price
Volatility Changes

(Black, 1976) Volatility model: Black’s
leverage effect

What Good is a Volatility
Model

(Engle & Patton, 2001) Volatility model: the most
seen and prominent stylized
facts

Modelling and Forecasting
Realized Volatility

(Anderson, Bollerslev,
Diebold & Labys, 2003)

Modelling realized
volatility

Hypothesis Testing in Time
Series Analysis

(Whittle, 1951) The ARMA model

General Autoregressive
Conditional
Heteroskedasticity

(Bollerslev, 1986) The GARCH model

Autoregressive Conditional
Heteroscedasticity with
Estimates of the Variance of
United Kingdom Inflation

(Engle, 1982) The ARCH model

Estimates of the Variance of
U.S. Inflation Based upon
the ARCH Model

(Engle, 1983) The ARCH model:
uncertainty of inflation
changing over time

The Nature of Statistical
Learning Theory

(Vapnik, 1995) Support Vector Machine
model

Support-Vector Networks (Cortes & Vapnik, 1995) Support Vector Machine
model

Support Vector Regression
Machines

(Drucker, Burges,
Kaufman, Smola & Vapnik,
1997)

Support Vector Regression
model

Table continues
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Table 1: Literature overview (cont.)

Title Authors and Year Description
New Support Vector
Algorithms

(Schölkopf, Smola,
Williamson & Bartlett,
2000)

New Support Vector model
(ν-SVR)

An Artificial Neural
Network-GARCH Model
for International Stock
Return Volatility

(Donaldson & Kamstra,
1996)

The hybrid model
ANN-GARCH

Financial Forecasting using
Support Vector Machines

(Cao & Tay, 2001) SVM used in financial
forecasting

Estimating GARCH
Models Using Support
Vector Machines

(Perez-Cruz,
Afonso-Rodriguez &
Giner, 2003)

Estimating GARCH using
SVM

Forecasting Volatility
with Support Vector
Machine-Based GARCH
Model

(Chen, Härdle & Jeong,
2009)

Volatility forecasting
using the GARCH,
EGARCH, ANN-GARCH
and SVM-GARCH models

Modelling and Forecasting
Stock Market Volatility by
Gaussian Process based on
GARCH, EGARCH and
GJR model

(Ou & Wang, 2011) Predicting volatility using
Gaussian process

Volatility Forecasting via
SVR-GARCH with Mixture
of Gaussian Kernels

(Bezerra & Albuquerque,
2017)

Volatility forecasting using
GARCH-SVR with mixture
of gaussian kernels

Source: Own work.

1 THEORETICAL BACKGROUND

The first part of the thesis demonstrates the theoretical background with four chapters:
time series analysis, conditional heteroscedastic models, SVM models and the parameter
estimation in GARCH(1,1). We start with the characteristics of time series analysis in
financial assets and cover main models including the autoregressive model, moving average
model and the ARMA model. We then proceed with the ARCH and GARCH models. In the
third chapter, we discuss SVM classification and SVM regression and some basic concepts
when applying SVM models - dual formulations, using kernels and grid search. We then
explain the formulations for parameter estimation in the GARCH(1,1) model. When using
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MLE, we use 2 error distribution assumptions - normal and student’s t distributions. And
when using SVR, we demonstrate how parameters in the GARCH(1,1) model are estimated
from SVR approximate functions in case of applying a linear kernel.

1.1 Time Series Analysis

Time series analysis is for analyzing data in order to get useful information and meaningful
statistics from the data. There is a natural temporal ordering in time series analysis that is
different from cross-sectional studies. Time series forecasting uses models to predict values
in the future based on observed data (Tsay, 2010).

In this section we will start with some characteristics of time series analysis. To get familiar
with some basic concepts that are referred throughout the thesis, we cover the topics of the
autoregressive (AR) model, the moving average (MA) model and the ARMA model.

1.1.1 Characteristics of Time Series

Stationarity
In time series analysis, stationarity means the statistical properties - mean, variance,
autocorrelation don’t change over time. Through some use of transformations, time series
can be stationalized and it can be used to predict future values (Sollis, 2012). In other words,
time series after transformation is without the trend, seasonality and with constant variance
and autocorrelation. The purpose of getting a stationary time series is that we want useful
statistics when forecasting future values. For example, if time series is not stationary and its
mean and variance increase with sample size, consequently we will underestimate the mean
and variance in the forecasting values.

Let a time series be {rt}, the unconditional joint distribution of (rt1 , rt2 , ...rtk) is identical to
the joint distribution of (rt1+t, rt2+t, ...rtk+t) for all t, where k is an arbitrary positive integer
and (t1, ..., tk) is a collection of k positive integers. This is so called strictly stationary. It
is a very hard condition to meet empirically, meaning that the joint distribution of random
variables remains the same while shifting time index.

A weak stationary time series only requires that the first moment (i.e. the mean) and
autocovariance don’t change over time and that the second moment is finite for all time. In
mathematical terms, E(rt) = µ and Cov(rt, rt−l) = γl, where µ is constant and Cov(rt, rt−l)
only depends on l not on t, where l is an arbitrary integer. It is common that we assume time
series is weak stationary for financial assets and we use the weak stationary assumption for
this thesis.
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Autocorrelation
Autocorrelation in financial time series helps to check if returns rt is autocorrelated with
previous values. The Autocorrelation Function (ACF) estimates the correlation coefficient
between rt and rt−l. The sample lag-l autocorrelation denoted by ρl is given by

ρl =
Cov(rt, rt−l)

V ar(rt)V ar(rt−l)
=
Cov(rt, rt−l)

V ar(rt)
(1)

From the assumptions in weak stationarity, the property V ar(rt) = V ar(rt−l) holds. Series
rt is not autocorrelated if and only if ρl = 0. Considering a sample of {rt}Tt=1, the sample
autocorrelation at lag-l is then

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)√∑T

t=1(rt − r̄)2
(2)

where r̄ is the sample mean. And ρ̂1, ρ̂2,..., ρ̂T−1 is the sample autocorrelation function
(ACF).

White Noise
We often assume that a time series is a sum of series with deterministic linear process. It
is dependent on explanatory variables and a series of random white noise. White noise
is independent and identically distributed with finite mean and variance. For example, a
Gaussian white noise is normally distributed with zero mean and σ2 variance. A white noise
series is not autocorrelated. In practical modelling, sample returns are not autocorrelated if
sample ACFs are statistically significant close to zero.

1.1.2 Autoregressive (AR) Model

An Autoregressive (AR) model is a model that value rt is regressed on previous values. The
AR(1) is rt = β0 +β1yt−1 + εt, where εt is white noise. The AR(1) model can be generalized
to the AR(p) model as following:

rt = β0 + β1rt−1 + · · ·+ βprt−p + εt (3)

where p is a positive integer and εt is white noise. In the AR(p) model, rt is dependent
jointly on previous values.

To choose the order p in the AR(p) model, we can use partial autocorrelation function
(PACF). Let time series be rt, the PACF of lag l is denoted as α(l), that is the autocorrelation
between rt and rt+l, with rt+l−1 removed. The PACF of lag 1 is given then α(1) =

Corr(rt+1, rt), for l = 1. PACF of lag l is then

7



α(l) = Corr(rt+l − Pt,l(rt+l), rt − Pt,l(rt)) (4)

for k ≥ 2, where Pt,l(x) is so called surjective operator of orthogonal projection onto the
linear subspace of Hilbert space spanned by rt+1, ..., rt+l−1. (Box, Jenkins & Reinsel, 2008).

ACF and PACF plots are commonly used to identify the AR model and its lag. We look for
the order when PACF with higher lags are close to zero. When checking ACF and PACF
plots, an indication of sampling uncertainty is usually placed. Under the assumption that
there are moderately big data points (n > 30) and with finite second moment, we check
when PACF is zero at 5% significance level.

1.1.3 Moving Average (MA) Model

A moving average (MA) model focuses on the variables that are dependent on current and
previous values of white noise. Given order q for the MA model, MA(q) is then

rt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q (5)

where µ is the series mean, {εt, ..., εt−q} are white noise and {θ1, ..., θq} are the parameters
of the MA model. The white noise is also called random shocks or error terms. We assume
that the error terms are mutually independent and have a distribution with zero mean and
constant variance.

1.1.4 Autoregressive Moving Average (ARMA) Model

For the Autoregressive Moving Average (ARMA) model, we combine the AR and MA
models. The ARMA(1,1) model is then constructed with the AR(1) and MA(1) model:

rt = µ+ βrt−1 + εt + θεt−1 (6)

where β, θ 6= 0, µ is a constant mean, εt is white noise with zero mean and σ2
ε variance.

Furthermore, the ARMA(p,q) model is generalized in the form:

rt = µ+ β1rt−1 + · · ·+ βprt−p + εt + θ1εt−1 + · · ·+ θqεt−q (7)

= µ+

p∑
i=1

βirt−i + εt +

q∑
i=1

θiεt−i (8)
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1.2 Conditional Heteroscedastic Model

In this chapter, we discuss conditional heteroscedastic models - the ARCH and GARCH
models. The ARCH model introduces the conditional variance that changes over time
based on past error terms and leaving the unconditional variance constant. The GARCH
model is an extension of the ARCH model. It adds the resemblance of the standard time
series AR process to the general ARMA model. The addition of conditional variances
helps to model the volatility without adding many lagged squared returns compared with
the ARCH model. Both models have similar properties that capture volatility clustering but
cannot address the leverage effect and asymmetric impact from positive and negative returns.

1.2.1 ARCH Model

In the ARCH model (Bollerslev, Engle & Nelson, 1994), if asset returns denoted as εt, we
can write the ARCH(q) model as following:

εt = σtet

σ2
t = α0 + α1ε

2
t−1 + ...+ αqε

2
t−q

= α0 +

q∑
i=1

αiε
2
t−i

(9)

where εt is a stochastic process of white noise et and a time-dependent standard deviation
σt. The parameter α0 > 0, and returns εt is not autocorrelated. The white noise et is the
error term that is independent and identically distributed (i.i.d.) with zero mean and unit
variance.

1.2.2 GARCH Model

The GARCH model introduces a more general class of process. It extends from the ARCH
model and includes lagged conditional variances. Let yt be the return, and εt be the
innovation. The GARCH(p, q) process is as following:

yt = µ+ εt

εt = σtet

σ2
t = ω + α1ε

2
t−1 + ...+ αqε

2
t−q + β1σ

2
t−1 + ...+ βpσ

2
t−p

= ω +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

(10)

where p is the order for the conditional variance σ2
t and q is the order for innovation ε2t .

White noise et is independent and identically distributed with zero mean and unit variance.
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The parameters must satisfy that ω > 0, α ≥ 0, β ≥ 0 for conditional variance to be
positive. Intercept ω needs to be strictly positive for the process yt not degenerating. yt is
stationary if and only if α + β < 1. In empirical modelling, mean of financial return series
µ can be seen as 0.

1.3 Support Vector Machine

Support Vector Machine is applied to solving varied classification and regression problems.
The algorithm is widely used in categorization, image recognition, biological classification,
etc. We characterize SVM with a number of support vectors, the cost functions, usage of
kernel tricks, mapping into high dimensional feature space etc. (Smola & Schölkopf, 2004).

In this section, we demonstrate the basic idea and formulations for Support Vector Machine
and focus on the Support Vector Regression. Then we proceed with topics of dual
formulation, kernels and grid search that are used in the SVR.

1.3.1 SVM Regression

In SVM Regression (Vapnik 1998), the basic idea is to find a function f(x) that forms the
targets with training data that has most ε deviation and as flat as possible. The errors that are
less than ε are ignored, and ones larger than ε are not accepted (Smola, Murata, Schölkopf
& Müller, 1998).

Given training data {(x1, y1), ..., (xl, yl)} ⊂ X× R, where X denotes the space of the input
patterns. In the case of linear functions f , it is defined as (Chang & Lin, 2001):

f(x) = 〈ω, x〉+ b with ω ∈ X, b ∈ R (11)

where 〈·, ·〉 denotes the dot product in X. It is then a constrained optimization problem for
seeking small ω because of the flatness in equation 11.

Then the optimization problem is given as:

minimize
1

2
‖ ω ‖2

subject to

yi − 〈ω, xi〉 − b ≤ ε,

〈ω, xi〉+ b− yi ≤ ε

(12)
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It assumes that the convex optimization problem is feasible that such a function f exists
and pairs approximates all (xi, yi) with ε precision. When assumption is not met and if we
want to allow for some errors, a soft margin loss function in (Cortes & Vapnik, 1995) was
introduced. As stated in (Vapnik, 1995):

minimize
1

2
wTw + C

n∑
i=1

(ζi + ζ∗i )

subject to


yi − 〈ω, xi〉 − b ≤ ε+ ζi,

〈ω, xi〉+ b− yi ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, ..., n

(13)

The constant C > 0 is the determination of the trade off between how flat f should be and
up to which amount deviations larger than ε can be tolerated.

The figure1 illustrates the optimization problem with ε-insensitive loss function.

Figure 1: One-dimensional SVR model

Source:Kleynhans, Montanaro, Gerace & Kanan (2017).

The goal is to look for a decision boundary with a distance of ε. The points outside contribute
to the cost. The boundary that contains points is the margin of tolerance, which is then the
decision boundary.
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1.3.2 Dual Formulation

A standard dualization method using Lagrange multipliers provides the key for extending
support vector machine to nonlinear functions (Fletcher & Sainz de la Maza, 1989). From
the primal objective function and the constraints, a Lagrange function is constructed by
introducing a dual set of variables, leading to the minimization of:

L :=
1

2
‖ ω ‖2 +C

l∑
i=1

(ζi + ζ∗i )−
l∑

i=1

αi(ε+ ζi − yi + 〈ω, xi〉+ b)

−
l∑

i=1

α∗i (ε+ ζ∗i + yi − 〈ω, xi〉 − b)−
l∑

i=1

(ηiζi + η∗i ζ
∗
i )

(14)

Dual variables have to satisfy positivity constraints that αi, α∗i , ηi, η
∗
i ≥ 0. Partial derivatives

of L with respect to the primal variables are then set to 0:

∂bL =
l∑

i=1

(α∗i − αi) = 0 (15)

∂ωL = ω −
l∑

i=1

(αi − α∗i )xi = 0 (16)

∂ζi(∗)L = C − α(∗)
i − η

(∗)
i = 0 (17)

The dual optimization problem is obtained by substituting equations 15, 16 and 17 into
equation 14, leading to the maximization of:

maximize − 1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )〈xi, xj〉 − ε
l∑

i=1

(αi + α∗i ) +
l∑

i=1

yi(αi − α∗i )

subject to


∑l

i=1(αi − α∗i ) = 0,

αi, α
∗
i ∈ [0, C]

(18)

The dual variables ζi, ζ∗i are eliminated through conditions in equation 17. They are not in the
dual objection function but are present in the dual feasibility conditions. To rewrite equation
16, we get:

ω =
l∑

i−1

(αi − α∗i )xi

f(x) =
∑
i=1

(αi − α∗i )〈xi, x〉+ b

(19)

The function ω can be described as a linear combination of the training set xi. The
algorithm is dependent of dot products between the training data. In a sense, the function
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is independent of the dimensionality of the input space X but dependent on the number of
support vectors that are training instances within the distance of margin. When in linear
setting, it is more efficient to compute ω explicitly. In this thesis, we use Python scikit learn
to conduct SVR. In the case of linear kernel, we can obtain weights assigned to the features.

1.3.3 Kernels

Kernels can be understood as an instance-based learning method, also called memory-based
learning. It compares the instances in training that are stored in the memory to the ones in
the new problem, instead of performing explicit generalization. For example, it doesn’t learn
a fixed set of parameters and features but it learns the corresponding weights of training
samples (Hofmann, Schölkopf & Smola, 2008).

To get a decision boundary of the nonlinear function, we use the implicit mapping via
kernels. The kernel functions are expressed as an inner product in another space. The
Mercer theorem (Schölkopf, Platt, Shawe-Taylor & Smola, 2001) states the conditions for
a function K(xi, xj) to be sufficient kernel. Through the implicit mapping of the training
points to a higher dimensional space, a hyperplane can be easier found while the training
points aren’t linearly separable in the actual space.

For example, given by ϕ((a, b)) = (a, b, a2 + b2), an SVM kernel is K(x, y) =

x·y+ ‖ x ‖2‖ y ‖2. Through the kernel, the training points can be mapped to a 3-dimensional
space and the separating hyperplane can be found, as shown in Figure 2.

Figure 2: Kernel trick K(x, y) = x · y+ ‖ x ‖2‖ y ‖2

Source: Ji (2017).
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Some of the most widely used kernels are in table 2, where k is a natural number and σ is a
real positive number. In this study, these three kernels are used in the grid search for getting
the best parameter values for an estimator in SVR functions.

Table 2: Kernels used in SVR

Linear K(xi, xj) = xTi xj

Polynomial K(xi, xj) = (xTi xj + 1)k

Rbf exp(− ‖ xi − xj ‖2 /(2σ2))

Source: Gavrishchaka, Ganguli (2003).

The kernel trick makes it possible that we can apply the SVM for non-linear data sample
by mapping the training data to a higher dimensional space. We apply three kernels as
mentioned in table 2 using scikit-learn Python library. The linear models have linear
decision boundaries. And for the polynomial and Rbf kernels, there are decision boundaries
with shapes and more flexibility. Examples of kernel models and decision boundaries are
demonstrated in figure 3.

Figure 3: An example of SVM classfiers with different kernels

Source: Pedregosa et al. (2011).
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1.3.4 Grid Search

A grid search consists of an estimator, a parameter space, a method for searching or
sampling candidates, a cross-validation scheme and a score function. The hyper-parameters
are parameters not directly learnt within estimators, but passed as arguments to the
constructor of the estimator classes.

The grid search exhaustively generates candidates from a grid of parameter values. After
fitting on a dataset, all possible combinations of parameter values are evaluated using a
specified score method. We use the eightfold cross validation. We divide in-sample data
into 8 sets, using 7 sets for training and the last for validation. The process is repeated 8
times and we get the best combination for hyper-parameters with the lowest mean test score
for lowest error. We show a demonstration of cross validation in figure 4.

Figure 4: A Demonstration of Cross Validation

Source: Own work.
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In this study, we use Mean Squared Logarithmic Error (MSLE) as the scoring method in
grid search. It computes a risk metric corresponding to the expected value of the squared
logarithmic error or loss. It can be interpreted as a measure of the ratio between the true
and predicted values. It is the best to use when targets having exponential growth. It has
a characteristic that it penalizes an under-predicted estimate greater than an over-predicted
estimate.

Given ŷi as the forecasted value and yi as the corresponding true value, the MSLE in n

samples is shown in equation 20, where loge(x) is the natural logarithm of x.

MSLE(y, ŷ) =
1

n

n−1∑
i=0

(loge(1 + yi)− loge(1 + ŷi))
2 (20)

1.4 GARCH(1,1) Parameter Estimation

We use the GARCH(1,1) model in this thesis for the comparison of parameter estimation.
The GARCH(1,1) has its simplicity and good representation of characteristics of financial
assets. The GARCH(1,1) model is as following:

yt = µ+ εt (21)

εt = σtet (22)

σ2
t = ω + αε2t−1 + βσ2

t−1 (23)

In equation 23, the parameters ω, α and β are usually estimated with MLE methods, which
requires an assumption for the distribution of error term et in equation 22. In this section,
we start with the general MLE method including two distribution assumptions - normal
and student’s t distribution. Then we demonstrate the MLE estimation process for both
assumptions. After MLE method, we proceed with SVR method and explain how we
estimate parameters ω, α and β in case of linear kernel. In the last part of the section, we
show the evaluation of forecasted volatility using coefficient determination (R2).

1.4.1 Distributions of et

Recall that the error term et is identical and independently distributed with zero mean
and unit variance. We have two assumptions for the error term et: normal distribution
et ∼ N(0, 1) and student’s t distribution

√
ν
ν−2et ∼ tν .
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The density function of normal distribution is

f(z) =
1√
2πσ

e−
(z−µ)2

2σ2 ,−∞ < z <∞ (24)

The density function of students’t distribution is

f(z) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)
(1 +

z2

ν
)−(

ν+1
2

),−∞ < z <∞ (25)

In student’s t density function, ν denotes the number of degrees of freedom, Γ denotes the
function Γ(x) =

∫∞
0
yx−1e−ydy.

To check possible distribution and normality of et, we use skewness test (D’Agostino,
Belanger & D’Agostino J.R.B., 1990) and kurtosis test (Anscombe & Glynn, 1983).
Skewsness s is the z-score returned by skew test and kurtosis k is the z-score returned
by kurtosis test. The normality test refers to the statistics s2 + k2. A brief illustration of
skewness and kurtosis is shown in figure 5. A positive skewness means that the right tail
is longer and the mean is skewed to the right of a typical data center. Similarly, when
the skewness is negative, the left tail is longer. We can interpret that the mass of the
distribution is concentrated to the right with a longer left tail. Regarding the kurtosis, it also
demonstrates the shape of distributions. A positive kurtosis is called leptokurtic with fatter
tails. Comparing to a normal distribution or zero excess kurtosis, the positive kurtosis means
that there are more extreme outliers. And a negative kurtosis is called platykurtic. It means
thinner tails and the outliers are less extreme.

Figure 5: Skewness and Kurtosis

Source: Bonyar (2015).
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1.4.2 Maximum Likelihood Estimation

With an assumption of normal distribution, recalling the error term et ∼ N(0, 1), εt is
then given by εt = yt − µ ∼ N(0, σ2

t ). When performing MLE, the joint distribution
f(ε1, ..., εT ; θ) is interested with θ as the parameter vector. The joint distribution is equal to
the product of the conditional and the marginal density. We then have the joint distribution
as following:

f(ε0, ..., εT ; θ) = f(ε0; θ)f(ε1, ..., εT |ε1; θ)

= f(ε0; θ)
T∏
t=1

f(εt|εt−1, ..., ε0, ; θ)

= f(ε0; θ)
T∏
t=1

f(εt|εt−1, ; θ)

= f(ε0; θ)
T∏
t=1

1√
2πσ2

t

exp

(
− ε2t

2σ2
t

)
(26)

Now by taking logs, log-likelihood function is obtained as

L(θ) =
T∑
t=1

1

2

[
− log 2π − log(σ2

t )−
ε2t
σ2
t

]
(27)

When the assumption that error distribution is student’s t with ν degress of freedom, the
log-likelihood function is:

L(θ) = nlog

[
Γ(ν+1

2
)√

π(ν − 2)Γ(ν
2
)

]
− 1

2

T∑
t=1

log(σ2
t )−

ν + 1

2

T∑
t=1

log

[
1 +

ε2t
σ2
t (ν − 2)

]
(28)

The Gaussian log-likelihood function is maximized, through an iterative algorithm. The
estimates are called maximum likelihood when normal distribution is the underlyting pdf
from the sample data. In other case, it is called quasi-maximum likelihood. In this thesis,
we carry out the process of maximization with Python ARCH package (Sheppard, 2019).

1.4.3 New Support Vector Regression (ν-SVR)

The New Support Vector Regression introduces a new parameter ν ∈ (0, 1]. It adds an upper
bound on a fraction of training errors and a lower bound of fraction of support vectors, which
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controls the number of support vectors and training errors. With (C, ν) as parameters, ν-SVR
solves

minimize
1

2
‖ ω ‖2 +C(νε+

1

l

l∑
i=1

)(ζi + ζ∗i )

subject to


yi − 〈ω, xi〉 − b ≤ ε+ ζ∗i ,

〈ω, xi〉+ b− yi ≤ ε+ ζi,

ζi, ζ
∗
i ≥ 0, i = 1, ..., l, ε ≥ 0

(29)

A kernel k for the dot product is used via a nonlinear map Φ: k(x, y) = (Φ(x) · Φ(y)). The
ν-SVR optimization problem is:

maximize
l∑

i=1

(αi − α∗i )yi −
1

2

l∑
i,j=1

(α∗i − αi)(α∗j − αj)k(xi, xj)

subject to


∑l

i=1(αi − α∗i ) = 0,

α
(∗)
i ∈ [0, C

l
],∑l

i=1(αi + α∗i ) ≤ C · ν

(30)

for ν ≥ 0, C > 0. The approximate function gives as following:

f(x) =
l∑

i=1

(α∗i − αi)k(xi, x) + b (31)

Three kernels - linear, polynomial and rbf are used in the grid search. The linear kernel
is found as the best hyper-parameter in empirical modeling. In linear SVM, the separating
plane is the same as input features. In the case of applying linear kernel where k(xi, x) =

xTi · x, the approximate function is:

f(x) =
l∑

i=1

(α∗i − αi)xi · x + b (32)

Recalling equation 11 and rewriting as f(x) = w · x + b, weights w or coefficients for the
regressor are:

w =
l∑

i=1

(α∗i − αi)xi (33)
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In SVR, the machine needs observable variables in the training set to train the model. In the
GARCH(1,1) model recalling that σ2

t = ω + αε2t−1 + βσ2
t−1, σ

2
t is the dependent variable,

while ε2t−1 and σ2
t−1 serve as the regressor. Through solving the optimization problem of

SVR, the dual parameters and support vectors will return the weights of input features in
case of the linear kernel.

We use Python library LIBSVM and scikit learn in this study. Coefficients can be obtained
directly or by multiplying dual parameters with support vectors. In correspondence with
parameters in GARCH(1,1) model: σ2

t = ω + αε2t−1 + βσ2
t−1 , the feature vector x is then

[εt−12, σ2
t−1] and dependent variable is σ2

t . The weights w return estimated parameters α̂
and β̂ and the intercept returns ω̂ .

1.5 Volatility Forecasting and Evaluation

Analytical forecasts are applied for variance forecasting. For the one-step ahead conditional
variances, we construct the forecasts as follows:

σ̂2
t+1 = ω̂ + α̂y2t + β̂σ2

t (34)

We use squared returns as proxy of daily volatility. Given the GARCH(1,1) model and
µ = 0, we have yt = σtet. Under the condition that error term has unit variance, we get
V art[e

2
t+1] = 1 = Et[e

2
t+1] − {Et[et+1]}2 = Et[e

2
t+1] = 1. As demonstrated in equation 35,

we have now Et[y
2
t+1] = σ2

t+1 . It shows that the squared returns are unbiased and efficient
for conditional volatility forecasting as proxy. However, it is imprecise and often performs
poorly as realized variance (Triacca, 2007).

Et[y
2
t+1] = Et[σ

2
t+1e

2
t+1]

= σ2
t+1Et[e

2
t+1]

= σ2
t+1

(35)

We use coefficient determination (R2) (Wright, 1921) for evaluation of volatility forecasting.
It explains the proportion of the sample variation with the corresponding forecasts and
indicates the goodness of fit. We compare between the forecasted variance from equation 34
and true values using daily squared returns.

Given ŷ as forecasted value and ȳ = 1
n

∑n
i=1 yi, R

2 is defined as following:

20



R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(36)

Best score of R2 is 1.0. When R2 is zero, it means that the model accounts for 0% of the
variability. R2 can also be negative. The model then introduces more variability than the
sample mean. When R2 = 0.15, it means that the model explains 15% of variability in the
sample data. For all the evaluation results, R2 is increased by a factor of 100.

2 EMPIRICAL MODELLING

In the second part, we cover the simulation process and the empirical modelling. We
first start with the description of empirical data: SP500 and BTC/USD daily returns.
We then show a simulation process to examine the effect of parameter estimation and
the forecastibility with different methods: GARCH-MLE and GARCH-SVR. In the next
chapter, we demonstrate the empirical modelling with each method. The GARCH-MLE
method first shows results of estimation summary, calculated standardized residuals as well
as TSA and QQ plots. For the GARCH-SVR methods, we present one part of the grid
search table that contains the best hyper-parameters in the estimation process. At the end of
the section, we show the evaluation as well as the plots of forecasted variance.

2.1 Empirical Data

We use SP500 and BTC/USD daily prices for empirical modelling. Data is retrieved from
Yahoo finance using Python. We use daily prices from January 2014 to September 2019
for both financial assets. SP500 daily prices contain 1434 data points. Bitcoin daily prices
have 2081 data samples. Daily prices are transformed into log return series. It is divided
into half, with the first half as training set and the second as testing set. And we use time
series analysis (TSA) plots to check if there is autocorrelation. Also we can observe the
distributions of (squared) returns.

2.1.1 Data Transformation

Let pt be the prices at time t and log returns yt are calculated:

yt = ln pt − ln pt−1 (37)

Assuming the mean of return as zero (µ = 0), we have now the GARCH(1,1) model:
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yt = σtet (38)

σ2
t = ω + αy2t−1 + βσ2

t−1 (39)

We use daily squared returns as realized variance. From the GARCH(1,1) model in 38
and 39, we estimate the parameters ω̂, α̂ and β̂. And the forecasted variance becomes
σ̂2
t+1 = ω̂ + α̂y2t + β̂σ2

t . The evaluation R2 is calculated from y2t+1 and forecasted variance
σ̂2
t+1. In order to compare among different data sets and sample sizes, we use standardized

residual êt for checking their distribution and normality. The standardized residual is
calculated from êt = yt/σ̂t.

In GARCH-SVR there need to be observable variables for SVR to estimate parameters in
the GARCH model. By trying to smooth and eliminate noise from the data series, we use a
moving average of the contemporaneous and four lagged squared returns at each point. The
proxy σ̃ is given by

σ̃t
2 =

1

5

4∑
k=0

y2t−k (40)

2.1.2 Characteristics of SP500 and Bitcoin Prices

There are a number different characteristics between SP500 and Bitcoin markets. The
correlation between the two assets is generally very weak. Unless there is a global fear and a
sudden crash, as for example in March 2020, the correlation between the two assets reached
all-time highs because of the pandandemic and liquidity crisis. However it fell back to low
correlation at the end of the month.

Bitcoin as a cryptocurrency, is considered as an investment rather than a currency. One
uniqueness of Bitcoin is that the total amount of the assets is fixed. There are studies showing
its potential comparing to gold that it can replace gold as a ’safe-heaven’ investment (Meech
& Gu, 2014). It is found that Bitcoin prices react more to public interests, e.g. Google
views increasing its transaction volume (Bouoiyour & Selmi, 2014). Since Bitcoin is in its
early stages, it is also reacting strongly to extreme events and price movements comparing
to those in mature markets. It is very volatile with extreme price peaks and drops, which
happens more in less mature/less liquid markets (Bouchaud & Potters, 1999). In same
period of time, BTC prices contain more data samples because the financial asset is traded
24/7 on the market.

The empirical data we use in this thesis - SP500 and BTC/USD prices from 2014 are shown
in figure 6. It starts from 2014 and lasts till the end of 2019. Since the establishment of
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Figure 6: Data prices

Source: Own work.

the first exchange in 2010, there have been numbers of extreme price spikes and drops. In
July 2010, the prices skyrocketed by 900% in five days. From the charts below, we can see
the significant spike from year 2017 onwards. The price reached new highs throughout the
year and came to 19,783 USD on December 17th. By the end of 2018, the price fell by 76%

and came below 3,300 USD. However, Bitcoin daily returns were most volatile in February
2014 when major exchanges got hit with distributed denial-of-service attacks (DDoS). On
February 6th, Mt. Gox halted withdrawals which contributed to a sharp drop in Bitcoin
prices from 940.42 USD/BTC on 01-02-2014 to 111.92 USD/BTC on 20-02-2014. When
modelling the conditional variance, the event has a significant influence on the estimation
process. Also as mentioned in the description of GARCH model, it doesn’t capture the
asymmetric news impact (Zivot, 2009) - volatility reacts to a stronger negative effect than an
equal size of a positive shock. In this case, daily prices for Bitcoin are adjusted from March
2014 onwards for modelling. We show the calculated daily returns and the adjusted return
series in figure 7.
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Figure 7: Daily Returns 2014-2019

(a) Daily returns January 2014 to September 2019

(b) Adjusted daily returns

Source: Own work.
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From the charts of adjusted daily returns, we can observe the clustering effects for both
SP500 and BTC returns. For example, from the beginning of 2018, the BTC daily returns
clusters on the negative side and last a period of time and repeated at the end of 2018. This
is the similar case for SP500 returns in the same periods. Besides, BTC daily returns show
more extreme spikes. In our sample for BTC return, the biggest daily drop is -29.4% on
January 14th while the next day has the biggest positive return of 24%. For SP500 daily
returns, it has maximum of positive return of 4.8% and negative return of -4.2% happening
in 2018.

Now we have a further investigation into the empirical data. First we check the mean,
standard deviation, skewness and kurtosis for the return yt. Descriptive statistics are in table
3. From the observations, both return series have zero mean. It is much more volatile for
BTC returns according to the standard deviation. They both have negative skewness - the
left tail is longer and positive kurtosis - the outliers are more extreme. BTC also has relative
high returns and with extreme occasions.

Table 3: Descriptive Statistics for returns yt

yt SP500 Daily BTC Daily
N 1434 2021

Mean -6.35E-18 4.23E-17
Standard deviation 0.839 3.949

Skewness -7.46 -5.27
Kurtosis 11.23 16.41

Source: Own work.

We also check time series analysis (TSA) plots for returns yt and squared return y2t to observe
if any clustering effects and lags of autocorrelation. We add QQ and probability plots that
are helpful to examine the distribution of the residuals. QQ plot is a scatterplot of two sets of
quantiles against one another. The theoretical quantiles is normal distribution. If the sample
quantile is normally distributed, scattered data then formes a straight line (as the red line
shown in the figure). Probability plot serves in a similar way that it plots probability against
probability. Details of TSA plots are in figure 8 and 9. Based on TSA plots, we can see
that the return series is around zero mean. We also observe the clustering effect in both data
series. It doesn’t show autocorrelation for yt but shows strong autocorrelation for y2t in both
time series. There is clustering effect for both return series. SP500 and BTC returns have
heavy tails on both sides. SP500 has a heavier tail on its negative side than on its positive
side. When comparing between two return series, BTC has a heavier tail on positive side.
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Figure 8: Time Serie Analysis: Daily yt

(a) SP500 daily yt

(b) BTC/USD daily yt

Source: Own work.
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Figure 9: Time Serie Analysis: Daily y2t

(a) SP500 daily y2t

(b) BTC/USD daily y2t

Source: Own work.
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2.2 Simulation Process

Before empirical modelling, we show a simulation process with 2000 samples for different
methods. First we demonstrate an example of simulation process - using GARCH-MLE
and GARCH-SVR with generated series and compare the results. The simulation process is
demonstrated in figure 10. In addition, we simulate data with two parameter settings and we
repeat the process for 100 times so that we obtain the mean of R2 - the evaluation we use
for variance forecasting. The simulation results help us understand the predictibility and the
evaluation process.

Figure 10: Simulation Process Demonstration

Source: Own work.
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2.2.1 An Example of Simulation Process

Recalling the GARCH(1,1) model with zero mean in equation 38 and 39, we set parameters
ω, α and β and we generate data series yt with 2000 samples. The first half is used as
the training set and second as the testing test. The error term et is generated with two
separate assumptions - normal and student’s t distribution. We then use GARCH-MLE and
GARCH-SVR to estimate the parameters and forecast variance σ̂2

t+1.

Now to demonstrate the process, we take an example with the parameter set as: ω = 0.1, α =
0.1 and β = 0.8. The error term et series is generated with zero mean and unit variance. The
distributions of et are normal distribution and student’s t with 6 degrees of freedom.

We show the generated series in figure 11 and figure 12. In the two generated series, et are
generated with normal and student’s t distribution. We see that in the QQ plot with student’s
t distribution, it has significantly heavier tails comparing to the normal distribution. From
ACF plots, there isn’t obvious autocorrelation for yt, but a strong autocorrelation in y2t .

After generating simulated series, we fit the GARCH model with MLE and SVR methods.
We store the results separately for different distribution assumptions. Now we get σ̂2

t+1 from
estimated parameters and calculated R2 from y2t+1 and σ̂2

t+1. Both in-sample and out-sample
R2 are computed.

Now we proceed with GARCH-SVR for both generated series. According to equation 39,
y2t−1 and σ2

t−1 in-sample are used as regressor and σ2
t is used as dependent variable to train

the model. There are 3 hyper-parameters to set in the ν-SVR for the grid search. We set C
value for loss function as 10, the values of ν in ν-SVR are set in a range between 0.1 and 1,
with 0.1 for each step. We use linear, polynomial and rbf kernels. And we apply grid search
using eightfold cross validation. In this example, we get ν = 0.1, C set as 10 and linear kernel.

One simulation example is not enough to demonstrate the effect of different methods. Once
we plot true returns and forecasted σ̂2

t+1, the two generated processes are very different from
one another, so are the characteristics between training and testing, see in figure 13 and 14.
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Figure 11: Simulation process: normal error distribution

(a) GARCH(1,1) yt with normal error distribution

(b) GARCH(1,1) y2t with normal error distribution

Source: Own work.
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Figure 12: Simulation process: student’s t error distribution

(a) GARCH(1,1) yt with student’s t error distribution

(b) GARCH(1,1) y2t with student’s t error distribution

Source: Own work.
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Figure 13: An example of GARCH-MLE simulation with normal distribution

Source: Own work.
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Figure 14: An example of GARCH-MLE simulation with student’s t distribution

Source: Own work.
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Therefore, in order to get a better understanding for different estimation methods, we run
the simulation process for 100 times and get values of mean of R2. Two sets of parameters
are tested. Each R2 is stored for both methods and the mean of R2 is obtained at the end.
We present the simulation result in the next section.

2.2.2 Simulation Results

After 100 times of the simulatin process - with 2 parameter settings, 2 distribution
assumptions and 2000 sample size for each, we find that GARCH-SVR outperforms
GARCH-MLE in variance forecasting. A summary of simulation results R2 is in table
4. The values of results are varied given different parameter settings. In all cases,
GARCH-SVR performs better for out-sample data and GARCH-MLE has better R2 for
in-sample data. At the same time, there is no significant difference between the two methods.

Table 4: GARCH Simulation Results: Mean of R2 of 100 Simulation Process

Normal Distribution In-sample Out-sample
GARCH-MLE 11.87 (7.01) 11.59 (6.87)
GARCH-SVR 11.73 (7.26) 11.73 (6.92)

Student’s t(6) Distribution In-sample Out-sample
GARCH-MLE 12.71 (9.20) 12.89 (9.01)
GARCH-SVR 14.24 (8.33) 14.52 (8.19)

ω = 0.075, α = 0.2, β = 0.7

Normal Distribution In-sample Out-sample
GARCH-MLE 4.62 (2.29) 2.30 (2.15)
GARCH-SVR 4.52 (2.30) 2.47 (2.14)

Student’s t(3) Distribution In-sample Out-sample
GARCH-MLE 4.01 (2.71) 2.29 (2.44)
GARCH-SVR 3.86 (2.75) 2.50 (2.42)

ω = 0.27, α = 0.06, β = 0.9

Source: Own work.
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2.3 Empirical Modelling

After the simulation process, we proceed with empirical modelling using SP500 and BTC
data. We start with the GARCH-MLE model and continue to the GARCH-SVR model. In
the end, we show the estimated parameters and forecastibility R2.

Figure 15: Empirical Modelling Process

Source: Own work.

2.3.1 GARCH-MLE Method

We first fit the GARCH(1,1) model using the MLE method with both normal and student’s t
error distribution assumption. Estimated parameters ω̂, α̂, β̂ in the GARCH(1,1) model are
obtained. Model results with t-statistcs and p values are listed in the summary, see table 5
for SP500 and table 6 for BTC returns. Residuals are plotted in the manner of TSA plots.
We use them to observe if they are white noise or if any more autocorrelation is presented.
QQ plots are helpful to examine the distribution. In addition, we calculate the standardized
residuals to compare the normality - skewness and kurtosis between the financial assets.
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For SP500 daily returns, estimated ω̂, α̂, β̂ and degrees of freedom in student’s t method are
all significant, meaning that the GARCH(1,1) model well captures the effect of conditional
variance. In both error distribution methods, the estimated µ̂ is not significant. The estimated
parameters are then used for constructing forecasted variance. From the ACF and PACF
plots in figure 16, the autocorrelation effect doesn’t show in the residuals. From the QQ
plot, there shows a heavier tail focusing on the negative side.

Table 5: GARCH(1,1)-MLE SP500 daily summary

Normal error distribution
No. Observations 716

Distribution Normal
Method Maximum Likelihood

Coef Std err t P > |t| 95 % Conf. Int.
µ̂ 8.11e-03 2.54e-02 0.32 0.75 [-4.16e-02, 5.78e-02]
ω̂ 0.075 3.026e-02 2.48 1.33e-02 [1.56e-02, 0.13]
α̂ 0.20 5.54e-02 3.68 2.33e-04 [9.53e-02, 0.31]
β̂ 0.70 7.25e-02 9.60 8.03e-22 [0.56, 0.84]

Student’s t error distribution
No. Observations 716

Distribution Standardized Student’s t
Method Maximum Likelihood

Coef Std err t P > |t| 95 % Conf. Int.
µ̂ 0.03 2.34e-02 1.18 0.24 [-1.82e-02, 7.35e-02]
ω̂ 0.05 1.69e-02 3.01 2.61e-03 [1.78e-02, 8.39e-02]
α̂ 0.22 4.62e-02 4.81 1.54e-06 [0.13, 0.31]
β̂ 0.73 4.50e-02 16.16 1.05e-58 [0.64, 0.82]
nu 6.30 1.52 4.14 3.47e-05 [3.31, 9.27]

Source: Own work.

36



In BTC data, estimated parameter ω̂ and µ̂ are not significant in either assumptions. The
number of observations is around 300 more than SP500 data. Between the two error
assumptions, student’s t error distribution has a better performance regarding the t-stastics
for the estimated parameters. It shows that the estimated α̂, β̂ and the degrees of freedom are
statistically significant. While in normal error distribution, only estimated β̂ has significant
t-statistics. The residuals also show much heavier tails on both sides in QQ plots comparing
to SP500 daily returns, see in figure 17.

Table 6: GARCH(1,1)-MLE BTC daily summary

Normal error distribution
No. Observations 1010

Distribution Normal
Method Maximum Likelihood

Coef Std err t P > |t| 95 % Conf. Int.
µ̂ 0.02 6.93e-02 0.22 0.82 [-0.12, 0.15]
ω̂ 0.16 0.17 0.95 0.34 [-0.17, 0.50]
α̂ 0.11 6.09e-02 1.86 6.27e-02 [-6.01e-03, 0.23]
β̂ 0.89 6.00e-02 14.82 1.11e-49 [0.77, 1.00]

Student’s t error distribution
No. Observations 1010

Distribution Standardized Student’s t
Method Maximum Likelihood

Coef Std err t P > |t| 95 % Conf. Int.
µ̂ -5.42 4.63e-02 -0.12 0.91 [-9.62e-02, 8.54e-02]
ω̂ 0.37 0.23 1.63 0.10 [0.12, 0.24]
α̂ 0.18 3.18e-02 5.69 1.29e-08 [0.12, 0.24]
β̂ 0.82 4.67e-02 17.54 7.02e-69 [0.73, 0.91]
nu 2.76 0.13 20.61 2.17e-94 [2.50, 3.03]

Source: Own work.

37



Figure 16: GARCH(1,1) - MLE normal residuals TSA

(a) GARCH(1,1) - MLE SP500 residuals TSA

(b) GARCH(1,1) - MLE BTC residuals TSA

Source: Own work.
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Figure 17: GARCH(1,1)-MLE students’t residuals TSA

(a) GARCH(1,1)-MLE SP500 residuals TSA

(b) GARCH(1,1)-MLE BTC residuals TSA

Source: Own work.
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From the observations of the first results after fitting the GARCH(1,1) model, there is a big
difference between the empirical data series. The first idea is that the GARCH-MLE model
performs better for SP500 daily returns. The model returns a better result of estimated
parameters and it doesn’t show any autocorrelation in the residuals. Also residuals are much
closer to normal distributions comparing to BTC daily returns.

Both residuals are not likely to have normal distributions based on the normality test given
by s2 + k2 in table 7. QQ plots show that both financial assets have heavier tails on the
negative side. Besides, BTC daily returns have much heavier tails comparing to SP500
daily returns. With estimated parameters in GARCH(1,1), σ̂2

t+1 is constructed as forecasted
variance. Forecastibility R2 values are computed and stored. We present the summary
results after conducting the GARCH-SVR model.

Table 7: Skewness and kurtosis for êt

êt SP500 Daily BTC Daily
Skewness -6.34 -9.07
p-value 2.26e-10 1.21e-19
Kurtosis 5.03 13.37
p-value 4.93e-07 9.66e-41

Normality test (s2 + k2) 65.52 261.02

Source: Own work.

2.3.2 GARCH-SVR Method

Now for GARCH-SVR, dependent variables are the proxy σ̃t
2 and regressor vector is

xt = [yt−1, σt−1]. When linear kernel is used, the coefficients can be directly obtained for the
primal problem. In ν-SVR, C is set as 0.1, 1 and 10. ν is in a range from 0.1 to 1, with 0.01
for each step. Kernel sets as linear, polynomial and rbf. A grid search is done for selecting
best hyper-parameters in ν-SVR. An example of grid search and cross validation process is
as follows. For each value of C, kernel and ν, training data does a cross validation process
and gets a test score - MSLE for each split. Mean of test score is then obtained from all
the splits for the specific parameter set. At the end of grid search process, it ranks the test
score from lowest to highest. We use scikit-learn Python for the model selection. Since it
usually returns higher scores for better performance, we use the negated mean squared error
that returns the negated values. An example of a part of the grid search process is in figure 18.
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As shown in the grid search table, hyper-parameters for ν-SVR are constructed in different
combinations. For each combination, a cross validation process is done with 8-folded splits.
For each split, a test score - MSLE is stored. It focuses on the percentual difference between
estimated and true values. It treats the difference in same manner when significantly big
or small errors happen between predicted and true variance. Test score mean and standard
deviation are calculated at the end from the cross validation process. Based on the mean test
score, a rank is given for the best hyper-parameters when solving the ν-SVR problem. After
the grid search, the best hyper-parameters for SP500 daily returns are C:0.1, ν: 0.38 and
linear kernel, and for BTC daily returns are C:10, ν: 0.33 and linear kernel.

The parameters in the GARCH(1,1) model are estimated using ν-SVR with best combination
of hyper-parameters. In the case of linear kernel, we get the intercept and weights of the
features, that correspond to the parameters in the GARCH(1,1) model. We can now
construct forecasted variance: σ̂2

t+1 = ω̂ + α̂y2t + β̂σ2
t . To compare the forecastibility, we

calculate R2 from forecasted and true variances. The empirical results are presented in the
next section.

2.3.3 Empirical Modelling Results

To evaluate the forecastbility, we show a summary of R2 that is calculated from forecasted
and true variance. Results of R2 with the GARCH-MLE model and the GARCH-SVR
model as well as the estimated parameters are shown in table 8. The forecasted and true
variances are as shown in figure 19 to figure 22.

Table 8: GARCH(1,1) Forecasting results of R2 and estimated parameters

SP500 Daily In-sample Out-sample ω̂ α̂ β̂

MLE-normal 14.997 10.089 0.075 0.204 0.695
MLE-student’s t 13.759 8.952 0.0696 0.0698 0.823

nuSVR 10.532 9.033 0.0508 0.222 0.728

BTC Daily In-sample Out-sample ω̂ α̂ β̂

MLE-normal 2.817 3.206 0.163 0.113 0.886
MLE-student’s t 2.659 0.889 0.369 0.181 0.819

nuSVR 4.407 3.434 0.265 0.059 0.896

Source: Own work.
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Figure 19: GARCH-MLE forecasted variance for SP500 daily returns

Source: Own work.
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Figure 20: GARCH-SVR forecasted variance for SP500 daily returns

Source: Own work.
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Figure 21: GARCH-MLE forecasted variance for BTC/USD daily returns

Source: Own work.
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Figure 22: GARCH-SVR forecasted variance for BTC/USD daily returns

Source: Own work.
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From computed R2, GARCH-MLE shows a better result in SP500 daily returns, while
GARCH-SVR works better in BTC daily returns. Between the financial assets,R2 for SP500
daily returns performs better, explaining around 10 percent of variability for out-sample
variance. On the other hand, in the same period of BTC returns, it explains only 3.4 percent.
Recalling the skewness and kurtosis of the residuals in table 7, both êt are not likely to be
normal. BTC daily returns have more negative skewness and bigger positive kurtosis. The
estimated intercept ω̂ in BTC returns is also much bigger than the one in SP500 returns.

From the plots of forecasted variance, the method with overreaction leads to a lower R2 for
its performance. In SP500 daily returns, the GARCH-SVR method has a stronger reaction
when variance has significant changes, for example after January in 2018. On the other
hand, GARCH-MLE has a lower reaction towards extreme events. In BTC daily returns, it
is similar case that GARCH-SVR has better performance with less reactions to significant
spikes. The reasons that empirical modelling shows different results as the simulation
process can be the different characteristics of the two markets: SP500 has a much longer
history than the crypto market, BTC returns are much more volatile and have heavier tails.

CONCLUSION

In this thesis, we focus on volatility forecasting using the General Autoregressive
Conditional Heteroskedasticity (GARCH) model. The basic idea is to use two different
methods for parametenr estimation in the GARCH(1,1) model - they are Maximum
Likelihood Estimatio (MLE) and Support Vector Regression (SVR) methods. The main
difference between the two is that we don’t need an assumption for error distribution in the
GARCH-SVR estimation process. In the GARCH-MLE model, we usually assume error
term et having normal or student’s t distribution.

Empirical data contains SP500 and Bitcoin daily returns. The data series has around 1500
and 2000 data samples respectively in the period of 2014 - 2019. After data transformation,
both return series yt have zero mean with negative skewness and positive kurtosis. BTC
has very high returns and very volatile in some extreme occasions. From the TSA plots,
we don’t see an autocorrelation for yt but a strong autocorrelation for squared return y2t in
both cases. The clustering effect also exists. In terms of the distributions, SP500 and BTC
returns have heavy tails on both sides. When comparing the two, BTC has a heavier tail on
the positive side.

The simulation process presents how we use the GARCH-MLE and GARCH-SVR to
forecast variance. We start with one specific example of simulated series. Data is simulated
under framework of GARCH by setting specific parameters. To evaluate the ability of
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forecasting variance, R2 from one specific example is not enough. We generate data series
100 different times for each distribution assumption - normal and student’s t with 6 degrees
of freedom. We repeat the process and obtain mean of R2 at the end. The result shows that
GARCH-SVR outperforms GARCH-MLE in variance forecasting. The values vary given
different parameter settings, i.e. R2 = 14.52 and R2 = 2.5 - both using the GARCH-SVR
model. In all cases, GARCH-SVR has better results of R2 for out-sample data while
GARCH-MLE has better R2 for in-sample data. There is no significant difference between
the two methods. From the simulation process, we see that the GARCH-SVR method has
better performance in terms of parameter estimation and variance forecasting since we don’t
need assumptions for error distributions.

In empirical modelling, the error term et becomes important. We check distribution of the
standardized residuals and its normality calculated from skewness and kurtosis. The purpose
is to see the difference between empirical data and the assumptions. First, there doesn’t
show the autocorrelation of residuals in both cases according to ACF plots. Second, both
residuals are not likely to have normal distribution. BTC’s standardized residuals êt has
much bigger value of s2 + k2, especially the kurtosis. Third, the estimated parameter ω̂ for
BTC returns is not significant. It performs slightly better in case of student’s t assumption
but still not statistically significant. From QQ plots, we also observe much heavier tails in
BTC data.

In the GARCH-SVR model, We first look for the best hyper-parameters in SVR through
a grid search. It returns a set of values: C, kernel and ν, with which it has the lowest
error score. We get linear kernel as the best kernel for both return series. Then we are
able to estimate the parameters in the GARCH(1,1) model by extracting the intercept and
feature weights. We also use a proxy in this method. In GARCH-SVR, we need observable
variables for model learning. We use a moving average of the contemporaneous and four
lagged squared returns at each point. A proxy also helps to smooth and eliminate noise from
the realized data.

The empirical results show that GARCH-MLE has a better performance for SP500 daily
returns while GARCH-SVR is better for BTC daily returns. Both residuals are not likely
to be normally distributed. For BTC daily returns, the residuals are much more skewed
to the right and have higher kurtosis. The estimated parameters are very different. The
estimated intercept ω̂ in BTC returns is much bigger than the one in SP500 returns. The
evaluation R2 of SP500 explains around 10 percent of variability for out-sample data. In
same period, R2 is only around 3.4 for BTC returns. From the plots of forecasted and
true variance, the method that overreacts gains a lower R2. When SP500 daily is very
volatile, the GARCH-MLE model has less reaction forecasting variance comparing to the
GARCH-SVR model. It is similar for the BTC returns that the GARCH-SVR has better
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performance without an overreaction towards significant spikes.

The reasons that empirical modelling shows different result than the simulation process
can be the following. First, the two markets have very different characteristics. SP500
has a much longer history than crypto markets. Second, the returns of BTC are much
more volatile and have heavier tails on both sides. Recalling the residual distributions, êt
has bigger value of s2 + k2. In other words, BTC residuals are less likely to be normally
distributed comparing to SP500. Third, the data samples we use in training and testing sets
cover a long period of time. It is not frequent enough for the BTC returns due to its high
volatility and fast changing characteristics.

For this study, we have also tried 15-min intervals besides the daily returns for both SP500
and BTC returns. When checking the TSA and ACF plots, we find that SP500 15-min
squared returns have 26 lags of autocorrelation, meaning it is daily autocorrelated based on
the trading hours per day. BTC/USD 15-min squared returns show 4 lags of autocorrelation,
meaning an hourly autocorrelation. It is worthwhile to try other different data intervals in
the future study, i.e. hourly returns.

There are many ways to improve the work in this thesis. First, it shows that the model
performance is dependent on the characteristics of the market. More financial assets can be
included for empirical modelling. For example, to include different crypto currencies that
share similar characteristics. We can also use other proxy as realized volatility, e.g. intra-day
returns. Furtheremore, a rolling window basis can be applied on the GARCH models. The
process is computationally demanding with big datasets especially for the GARCH-SVR
model. It is expected to improve variance forecasting and get a better understanding of the
forecastibility between the two estimation methods.
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APPENDICES





Appendix 1: Povzetek

Osredotočimo se na problem modeliranja in napovedovanja variance časovnih vrst z
GARCH modeli. Posebej raziskujemo in primerjamo naslednja dva pristopa ocenjevanja
parametrov GARCH modela: dobro uveljavljen pristop po metodi največjega verjetja
(GARCH-MLE) in inovativen pristop z uporabo algoritma strojnega učenja podpornih
vektorjev za regresijo (GARCH-SVR).

Sodeč po empiričnem modeliranju, dnevni donosi niso normalno distribuirani in se običajno
ponašajo z debelimi repi. Predvidevamo, da model GARCH-SVR podaja bolj robustne
ocene, saj ne predvideva doloCenega vzorca distribucije, hkrati pa ima tudi višji nivo
fleksibilnosti.

Najprej predstavimo osnovne napovedne modele iz analize časovnih vrst, vključno z
GARCH(p, q). Nato pojasnimo in izpeljemo uporabo algoritma podpornih vektorjev za
oceno parametrov modela GARCH. Za primerjave uporabljamo GARCH(1, 1) model. Nato
izvedemo simulacijsko študijo. Pristop GARCH-SVR lažje razloži variabilnost napovedane
variance v našem simulacijskem postopku. Sicer med obema pristopoma ni večjih razlik.
Za porazdelitev napak uporabljamo normalno in t-porazdelitev.

Na koncu izvedemo še empirično raziskavo, ki temelji na podatkih SP500 in BTC/USD od
leta 2014 do leta 2019. Obe porazdelitvi dnevnih donosov nista normalni in imata debele
repe, zlasti na negativni strani. Naša študija kaže mešane rezultate. Za dnevne donose
BTC/USD je bolj uspešen GARCH-SVR. Toda za dnevne donose SP500 je bolj uspešen
GARCH-MLE pristop. Zaključimo, da je GARCH-SVR bolj primeren pristop v primeru
BTC/USD in GARCH-MLE bolj primeren v primeru SP500. Za nadaljne predvidevanje
variance, lahko vključimo različne finančne dobrine, kot tudi urne podatke. V bodoče lahko
primerjamo ocenjevanje parametrov modela na podlagi drsečega okna.
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Appendix 2: Summary in English

We focus on the problem of time-series variance modeling and forecasting with GARCH
models. We specifically investigate and compare the following two approaches of
estimating the GARCH parameters. The use of well established Maximum Likelihood
Estimation (MLE) method for estimating the GARCH parameters which we refer to as the
GARCH-MLE approach. And an innovative approach of using Support Vector Machine
learning algorithm for regression (SVR) for estimating the GARCH parameters which we
refer to as the GARCH-SVR.

From the empirical modelling, daily returns are not normally distributed and usually have
heavy tails. The GARCH-SVR is expected to give more robust estimators since it does not
assume a particular distribution and it has a higher level of flexibility.

We first introduce basic models for time series data including the GARCH(p, q) models.
Then we explain support vector regression and derive the GARCH-SVR approach for
estimating parameters in the GARCH model. We use GARCH(1, 1) model for comparisons.
Second we perform a simulation study. The GARCH-SVR is able to better explain
variability of forecasted variance in out-sample data in our simulation process. Otherwise
there are no significant differences between the two approaches. For the distribution of
errors, we use both normal and student’s t-distributions.

Finally, we follow up with empirical study based on SP500 and BTC/USD data from
2014 until 2019. Both distributions of daily returns are not normal and tend to have heavy
tails, especially on the negative side. Our study shows mixed results. For BTC/USD
daily returns, the GARCH-SVR model achieves better performance. But for SP500 daily
returns, the GARCH-MLE is better. We conclude that the GARCH-SVR approach is
better in the case of Bitcoin and the GARCH-MLE is better in the case of SP500 returns.
For future work on variance forecasting we can include different financial assets as well
as hourly data. We can also compare model parameters estimation on a rolling window basis.
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